US20160344964A1 - Methods for fabricating and using nanowires - Google Patents
Methods for fabricating and using nanowires Download PDFInfo
- Publication number
- US20160344964A1 US20160344964A1 US15/225,264 US201615225264A US2016344964A1 US 20160344964 A1 US20160344964 A1 US 20160344964A1 US 201615225264 A US201615225264 A US 201615225264A US 2016344964 A1 US2016344964 A1 US 2016344964A1
- Authority
- US
- United States
- Prior art keywords
- nanowire
- nanowires
- array
- ser
- electromagnetic radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 176
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000010521 absorption reaction Methods 0.000 claims abstract description 33
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 26
- 238000003384 imaging method Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 9
- 238000000701 chemical imaging Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 6
- 238000001429 visible spectrum Methods 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 6
- 238000000985 reflectance spectrum Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000009021 linear effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 229910018503 SF6 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 239000004341 Octafluorocyclobutane Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- WRQGPGZATPOHHX-UHFFFAOYSA-N ethyl 2-oxohexanoate Chemical compound CCCCC(=O)C(=O)OCC WRQGPGZATPOHHX-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for instance Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H04N5/378—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/107—Subwavelength-diameter waveguides, e.g. nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14629—Reflectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H04N5/2253—
-
- H04N5/2254—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/762—Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/813—Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
- Y10S977/815—Group III-V based compounds, e.g. AlaGabIncNxPyAsz
- Y10S977/819—III-As based compounds, e.g. AlxGayInzAs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/953—Detector using nanostructure
- Y10S977/954—Of radiant energy
Definitions
- This application generally relates to semiconductor sensing devices and manufacturing, and in particular, selected spectral absorption of nanowires.
- An image sensor may be fabricated to have a large number of identical sensor elements (pixels), generally more than 1 million, in a (Cartesian) square grid.
- the pixels may be photodiodes, or other photosensitive elements, that are adapted to convert electromagnetic radiation into electrical signals.
- Recent advances in semiconductor technologies have enabled the fabrication of nanoscale semiconductor components such as nanowires.
- Nanowires have been introduced into solid state image devices to confine and transmit electromagnetic radiation impinging thereupon to the photosensitive elements. These nanowires can be fabricated from bulk silicon which appears gray in color, although researchers have patterned the surface of silicon so it “looks” black and does not reflect any visible light.
- nanowires configured to selectively absorb (or to lower the reflectance of) light at a predetermined wavelength have not been fabricated.
- a method for fabricating a nanowire comprises: selecting a particular wavelength of electromagnetic radiation for absorption for a nanowire; determining a diameter corresponding to the particular wavelength; and fabricating a nanowire having the determined diameter.
- the nanowire diameter there may be a nearly linear relationship between the nanowire diameter and the wavelength of electromagnetic radiation absorbed by the nanowire.
- the particular wavelength of light absorbed may be within the UV, VIS or IR spectra.
- the nanowire may be fabricated to have a diameter between about 90 and 150 nm for absorbing a wavelength of visible light.
- the nanowire diameters may need to be smaller for absorbing wavelengths of UV light or larger for absorbing wavelengths of IR light. While this disclosure primarily describes nanowires having a circular cross-sectional shape, it will appreciated that other cross-sectional shapes are also possible (e.g., those that function as a waveguide).
- the length of the nanowire may be, for example, between about 1 and 10 ⁇ m (or perhaps even longer). The longer the nanowire is, the greater the volume may be available for absorption of electromagnetic energy.
- the nanowire may be fabricated by a dry etching process, or a vapor-liquid-solid (VLS) method from a silicon or indium arsenide wafer. It will be appreciated, though, that other materials and fabrication techniques may also be used.
- VLS vapor-liquid-solid
- a mask having the diameter of the nanowire may be used to form the nanowire having substantially the same diameter.
- a plurality of nanowires may be fabricated into an array, each having the same or different determined diameters.
- the size of the array may be about 100 ⁇ m ⁇ 100 ⁇ m or larger.
- the nanowires can be spaced at a pitch of about 1 ⁇ m or less in the x- and y- directions (Cartesian).
- the array may include about 10,000 or more nanowires.
- the spacing (pitch) of the nanowires may affect the amount of absorption. For instance, near total absorption may be realized by adjusting the spacing.
- an image sensor comprises: a plurality of pixels, each of the pixels including at least one nanowire, wherein each of the nanowires has a diameter that corresponds to a predetermined wavelength of electromagnetic radiation for absorption by the sensor.
- the pixels may include one or more nanowires having the same or different determined diameters.
- the latter configuration may be effective for detecting absorbing multiple wavelengths of electromagnetic radiation (light).
- a red-green-blue (RGB) pixel for an image sensor may be fabricated having three nanowires having different diameters configured to absorb red, green and blue light, respectively.
- the image sensor may include various elements, such as, foreoptics configured to receive the electromagnetic radiation and focus or collimate the received radiation onto the one or more pixels, a readout circuit configured to receive output from the one or more pixels, a processor configured to receive the output from the readout circuit and generate an image, and a display device configured to display the image generated by the processor.
- the image sensor may be configured as a spectrophotometer or as a photovoltaic cell.
- a method of imaging comprises: receiving electromagnetic radiation; selectively absorbing, via one or more nanowires, at least one predetermined wavelength of electromagnetic radiation, wherein each of the nanowires has a diameter corresponding to at least one predetermined wavelength of electromagnetic radiation for absorption.
- the method may be used for performing multispectral imaging or hyperspectral imaging.
- FIGS. 1A-1G are scanning electron microscope (SEM) images showing nanowire arrays of various diameters, according to an embodiment.
- FIG. 2 shows a plot of reflection for silicon nanowires having different diameters, but having the same pitch, according to an embodiment.
- FIGS. 3A-3C show experimental and simulation results for reflection of silicon nanowire arrays, according to an embodiment
- FIG. 4 shows a plot of absorption spectra of silicon nanowire arrays, according to an embodiment.
- FIG. 5 shows a plot of reflection spectra of silicon nanowire arrays, according to an embodiment.
- FIG. 6 shows a plot of absorption spectra of silicon nanowire arrays, according to an embodiment.
- FIG. 7 shows a plot of absorption and reflection spectra of silicon nanowire arrays, according to an embodiment.
- FIG. 8 shows an exemplary dry etch method for fabricating an array of vertical nanowires, according to an embodiment.
- FIG. 9 shows an exemplary vapor liquid solid method for fabricating an array of vertical nanowires, according to an embodiment.
- FIG. 10 shows a schematic of an image sensor, according to an embodiment.
- FIG. 11 shows a method for selectively imaging, according to an embodiment.
- FIG. 12 shows an exemplary pixel of an image sensor formed of three nanowires having different diameters configured to absorb red, green, and blue light, respectively, according to an embodiment.
- Each of the nanowires may be fabricated to absorb (or to significantly lower reflectance of) a specific wavelength of electromagnetic radiation (light). This absorbed light includes a wavelength of light in one of the ultraviolet (UV), visible (VIS) or infrared (IR) spectra.
- UV ultraviolet
- VIS visible
- IR infrared
- Silicon-based nanowires may be used for VIS applications.
- Vertically aligned crystalline silicon (Si) nanowire arrays may be fabricated, in various one embodiments, for example, by a dry etching process (as shown in FIG. 8 and further discussed below), or a Vapor Liquid Solid (VLS) growth method (as shown in FIG. 9 and further discussed below), with a silicon wafer as the starting material.
- a dry etching process as shown in FIG. 8 and further discussed below
- VLS Vapor Liquid Solid
- nanowires fabricated from an indium arsenide (InAs) wafer or related materials could be used for IR applications.
- InAs indium arsenide
- Each nanowire can include a photodiode detector element that may form a pixel in an image sensor.
- a silicon-on-insulator (SOI)-type wafer or silicon-on-glass (SG) wafer may be used as the substrate material for which one or more nanowires may be formed upon.
- the nanowire may be fabricated, such that: (i) the substrate may have an intrinsic epitaxial (epi) layer and a thin n+ layer at the oxide interface; (ii) the substrate may have a lightly doped n epi layer and a thin n+ layer at the oxide interface. (iii) the substrate may have lightly doped p epi layer and a thin p+ layer at the oxide interface, or (iv) the substrate may have an intrinsic epi layer and a thin p+ layer at the oxide interface.
- epi intrinsic epitaxial
- SG silicon-on-glass
- P+ or n+ ion implantation may be employed to form a shallow junction at the top layer of the SOI or SG wafer.
- the vertical structure of p-i-n, p-n, n-i-p, n-p diode is formed respectively, depending on the substrate doping profile.
- one or more transistors may be formed on the wafer for controlling the photocharge transfer from the nanowire to a readout circuit (ROC) and/or other electronics.
- ROC readout circuit
- the inventors have discovered a unique correlation between the nanowire diameter and its absorption (or reflectance) characteristics. For instance, the reflection spectra of fabricated silicon nanowire arrays each show a spectral dip for reflectance (or peak for absorption) at a specific wavelength position dependent on the nanowire diameter.
- nanowires fabricated having a circular cross-section it is believed that the cross-section shape of the nanowire could be any polygonal shape, in keeping with the scope of the invention.
- the nanowire may be any “waveguide” shape, although the shape might have some impact on wavelength absorption.
- absorption intensity selectivity can be realized. For instance, by adjusting the spacing of adjacent nanowire, near total absorption may be realized.
- the nanowire diameter may be determined by the diameter of a mask used in the process by which the nanowires are fabricated.
- the mask be formed of aluminum (Al).
- Al aluminum
- a filtering effect can be employed in image sensor devices based on nanowire diameters.
- one or more nanowire arrays may be used to selectively absorb electromagnetic radiation (light) at a particular wavelength. While the incident light may be white (or other colors), absorption is “selected” by the size and/or arrangement of the nanowires.
- the individual nanowires of the array may be fabricated to absorb light of one or more particular colors in the VIS spectrum, such as, for example, violet (400 nm), blue (475 nm), cyan (485 nm), green (510 nm), yellow (570 nm), orange (590 nm), and red (650 nm). Other absorbed colors are also possible, including black.
- individual nanowires of the array may be fabricated to absorb light in at least one wavelength of various bands of the IR spectrum, such as, for example, near-infrared (NIR), short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) or far infrared (FIR).
- NIR near-infrared
- SWIR short-wavelength infrared
- MWIR mid-wavelength infrared
- LWIR long-wavelength infrared
- FIR far infrared
- a plurality of nanowire arrays may also be configured for multispectral imaging or hyperspectral imaging, which detect electromagnetic (light) over multiple discrete spectral bands and/or spectra (e.g., VIS, NIR, SWIR, MWIR, LWIR, FIR, etc).
- the nanowire arrays may be configured for spectral-selective imaging which detect one or more specific wavelength of electromagnetic radiation (light).
- an image sensor may be fabricated from an array of nanowires with one or more nanowires forming each pixel of the sensor.
- FIGS. 1A-1G are scanning electron microscope (SEM) images showing nanowire arrays of various diameters, according to an embodiment.
- Vertical nanowire or nanopillar arrays may be fabricated, for example, by a dry etch method. Although, it will be appreciated that the nanowires may similarly fabricated using a VLS growing method, or other fabrication techniques.
- the nanowires may be formed in a Cartesian (x-y) matrix structure so that each nanowire can be controlled or individually addressed.
- the nanowire arrays may be fabricated to have a very uniform circular cross-sectional shape, for instance, of about 1 to 3 ⁇ m in length or more.
- VLS growing method nanowires 10 ⁇ m in length can be grown. Longer nanowires may be able to absorb more radiation as they have a larger volume for the same given diameter.
- Each of the arrays shown includes nanowires formed from silicon having the same diameters ranging from about 90 to 150 nm. This diameter range may be effective for absorbing various wavelengths (colors) of visible light. Of course, the nanowire diameters may need to be smaller for absorbing wavelengths of UV light or larger for absorbing wavelengths of IR light.
- each of the array may be about 100 ⁇ m ⁇ 100 ⁇ m, having 10,000 nanowires at a pitch (spacing) of about 1 ⁇ m or less in the x- and y- directions (in a Cartesian plane).
- the nanowire arrays may be fabricated in larger sizes, for instance, having a million or more nanowires.
- the nanowires may be spaced apart at different (larger) intervals and/or forming different shapes, as well.
- FIG. 2 shows a plot of reflectance spectra for nanowires having different diameters, but having the same pitch, according to an embodiment.
- the measured reflectance spectra were obtained using a collimated light method to measure reflectance of light from the nanowire array.
- the reflectance was normalize with respect to a silver (Ag) mirror. For each nanowire diameter, there is a significant dip in reflectance at a particular wavelength. This reflectance dip corresponds to absorption of light at that particular wavelength.
- the bandwidth of the reflectance dip (or peak in absorption) is approximately 50-100 nm at the particular wavelength.
- FIGS. 3A-3C show experimental and simulated results for reflection of Si nanowire arrays, according to an embodiment.
- FIG. 3A shows similar experimental results shown in FIG. 2 , but the measured reflectance spectra were obtained using a Raman spectroscopy setup configured to measure reflectance of light focused onto the nanowire array.
- the reflectance was normalized with respect to a silver (Ag) mirror. For each nanowire diameter, there is a significant dip in reflectance at a particular wavelength. This reflectance dip corresponds to absorption of light at that particular wavelength.
- FIG. 3B shows simulated results.
- the computer-simulated results were obtained by finite difference time domain (FDTD) simulations.
- FDTD finite difference time domain
- the first employs a technique of numerically solving for the optical modes (evalues and eigenmodes) of the nanowire array.
- the second numerical technique employed the FDTD approach wherein a simulated illuminant is propagated through the nanowire array.
- the FDTD technique is a grid-based numerical modeling method in which time-dependant Maxwell's equations (in partial differential form) are discretized using central-difference approximation to the space and time partial derivations.
- the resulting finite-difference equations for the electric field vector components are solved at a given instance in time, and then the magnetic field vector components are solved in the next instance of time. This processing is repeated over and over until a steady-state behavior is evolved.
- FIG. 3C more clearly shows the correlation between the dip positions and nanowire diameter for the experimental results and the simulation results. There is a nearly linear correlation between nanowire diameter and the wavelength for the spectral dip position for reflectance (or the peak for absorption) for the nanowire.
- FIG. 4 shows a plot of absorption spectra of Si nanowire arrays, according to an embodiment. There is clearly a peak absorption for each nanowire diameter, which corresponds to the spectral dip of reflection shown in FIG. 2 .
- FIG. 5 shows a plot of reflection spectra of Si nanowire arrays, according to an embodiment. This plot shows reflectance spectrum for nanowires of a length of 3 ⁇ m, while in FIGS. 2 and 4 , the reflectance spectra shown are for nanowires having a length of 1 ⁇ m.
- Both nanowires of 1 and 3 ⁇ m lengths generally showed a spectral dip in reflectance at the same wavelength for the same nanowire diameter. Although, for at least the smaller nanowire diameter of 100 nm, the 3 ⁇ m length nanowire experienced a much larger dip in reflectance than the 1 ⁇ m length nanowire. The larger length nanowires have a greater volume, which in turn results in higher radiation absorption.
- FIG. 6 shows a plot of absorption spectra of Si nanowire arrays, according to an embodiment. This plots show a comparison of the absorption spectrum for nanowires which are 1 ⁇ m and 3 ⁇ m in length.
- nanowires of 1 and 3 ⁇ m lengths generally showed an increase in absorption at the same wavelength for the same diameter.
- the nanowires of 3 ⁇ m length all showed a significant increase over the nanowires of 1 ⁇ m in length.
- FIG. 7 shows a plot of absorption and reflection spectra of Si nanowire arrays, according to an embodiment.
- This plot shows absorption and reflectance spectrum for nanowire arrays having nanowires of 1 ⁇ m in length.
- the absorption and reflection are inversely correlated, with a dip in reflectance corresponding to a peak in absorption at the same wavelength.
- the substrate also shows a similar phenomenon at the same wavelength.
- the dip in substrate absorption is actually due to the nanowire absorption at that wavelength (peak). This is atypical behavior for an ordinary silicon wafer.
- FIG. 8 shows an exemplary dry etch method 800 for fabricating an array of vertical nanowires, according to an embodiment.
- a starting material which may include a SOI (silicon on insulator) substrate with an intrinsic epi layer and n+ type layer at the oxide interface.
- the thickness of the i- layer and n+-layer may be 5 ⁇ m and 0.5 ⁇ m, respectively.
- the starting substrate may have a lightly doped n-type epi-layer instead of the intrinsic epi-layer layer.
- a shallow p+ type layer is formed by an ion implantation with p-type dopant and minimum energy.
- Photoresist PR
- PR is deposited on the p+ layer in step 803 for the preparation of lithography.
- the PR is patterned, for instance, by employing the electron beam (or e-beam) lithography technique.
- Metal deposition commences in step 805 , for example, by either evaporation or sputtering method.
- One metal that may be used in the fabrication for example, is aluminum.
- a lift-off etch method is then employed in step 806 for removing the PR and any unwanted metal on it.
- a dry etch is performed using the metal pattern as a etch mask.
- etching gases such as, for instance, octafluorocyclobutane (C 4 F 8 ) and sulfur hexafluoride (SF 6 ) can be used.
- An array of circular pillars (nanowires) are formed by the etch process.
- the diameter of the etch mask determines the diameter of the pillars which form each nanowire.
- the etch mask may be formed of aluminum.
- the pillar surfaces may be dipped briefly in an etchant, such as, potassium hydroxide (KOH) and a cleaning performed afterwards.
- KOH potassium hydroxide
- a readout circuit may further be fabricated in connection with to the n+ layer, to control and individually address each nanowire in the array.
- the readout circuit may include a plurality of switching transistors, with one or more switching transistors provided for selectively controlling or addressing each nanowire.
- FIG. 9 shows an exemplary VLS method 900 for fabricating an array of vertical nanowires, according to an embodiment.
- a starting material is provided which may include a SOI or SG substrate with an n+ type layer on top of the SiO 2 .
- PR is deposited for the preparation of the lithography.
- the PR may patterned in step 903 , for instance, by employing the electron beam lithography technique.
- Metal deposition commences in step 904 by either evaporation or sputtering method. Metals that may be used in the fabrication are gold or aluminum.
- a lift-off etch method is employed for removing the PR and any unwanted metal on it.
- intrinsic type nanowires are grown employing a VLS method.
- lightly doped n-type nanowires can be grown instead of the intrinsic nanowires.
- the diameter of the metal mask (applied in step 904 ) determines the diameter of the pillars which form each nanowire grown ins step 906 .
- a CMP technique may be employed to planarize the top surface and remove the metal.
- a readout circuit may further be fabricated in connection with to the n+ layer, to control and individually address each nanowire in the array.
- the readout circuit may include a plurality of switching transistors, with one or more switching transistors provided for selectively controlling or addressing each nanowire.
- FIG. 10 shows a schematic of an image sensor 1000 in accordance with an embodiment.
- the image sensor 1000 generally includes foreoptics 1010 , an array of pixels 1020 , a readout circuit (ROC) 1030 , a processor 1040 and a display device 1050 .
- a housing 1005 may incorporate one of more the foregoing elements of the sensor 1000 , and protects the elements from excessive/ambient light, the environment (e.g., moisture, dust, etc.), mechanical damage (e.g., vibration, shock), etc.
- Electromagnetic radiation (light) L from a scene S emanates toward the image sensor 1000 .
- Electromagnetic radiation (light) L from a scene S emanates toward the image sensor 1000 .
- light L from the scene S impinging upon the sensor 1000 is depicted (although it will be appreciated that light L from the scene S radiates in all directions).
- the foreoptics 1010 may be configured to receive the electromagnetic radiation (light) L from the scene S and focus or collimate the received radiation onto the array of pixels 1020 .
- foreoptics 1010 may include, for instance, one or more of: a lens, an optical filter, a polarizer, a diffuser, a collimator, etc.
- the array of pixels 1020 may be fabricated from an array of one or more nanowires, as disclosed above (see FIG. 8 or 9 ).
- Each of the pixels may include one or more nanowires having a diameter that corresponds to a predetermined wavelength of electromagnetic radiation (light) L for absorption by the sensor 1000 .
- At least one of the nanowires in the array may have a different determined diameter than another of the nanowire in the array. This enables multiple wavelength absorption (and detection).
- the ROC 1030 may be connected to the array of pixels 1020 and is configured to receive output from the pixels 1020 .
- the ROC 1030 may include one or more switching transistors connected to the nanowires for selectively controlling or addressing each pixel of the array 1020 .
- the processor 1040 is configured to receive output from the ROC 1030 and generate an image for viewing on the display device 1050 .
- the processor 1040 may, in some instances, be configured to provide data scaling, zooming/magnification, data compression, color discrimination, filtering, or other imaging processing, as desired.
- the processor 1040 may include hardware, such as Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats.
- ASICs Application Specific Integrated Circuits
- FPGAs Field Programmable Gate Arrays
- DSPs digital signal processors
- the processor 1040 may, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs having computer-executable instructions or code running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one skilled in the art in light of this disclosure.
- the display device 1050 may include any device configured for displaying image data.
- Exemplary displays may include a cathode ray tube (CRT), plasma, liquid crystal display (LCD), light emitting diode (LED) display, pen chart, etc.
- the display device 1050 may, alternatively or additionally, include a printer or other device for capturing the displayed image.
- the image data may be output to an electronic memory (not shown) for storage.
- the image sensor 1000 may be configured as a spectrophotometer to measure intensity of reflection or absorption at one more wavelengths.
- the image sensor 1000 could be configured as a photovoltaic device. By adjusting the spacing of the nanowires, it may be possibly to nearly control all various wavelengths of a spectrum, without any reflection.
- FIG. 11 shows a method 1100 for selectively imaging, according to an embodiment.
- electromagnetic radiation may be received, for instance, using the image sensor 1000 ( FIG. 10 ).
- the array 1020 of the image sensor 1000 may selectively absorb at least one predetermined wavelength of electromagnetic radiation (light).
- Method 1100 may be used for multispectral imaging or hyperspectral imaging applications.
- nanowire array multiple wavelengths of electromagnetic radiation (light) may be absorbed and/or detected by selectively providing nanowires of different diameters.
- a three-nanowire pixel element may be fabricated.
- pixels having additional nanowires are also possible.
- FIG. 12 shows an exemplary pixel 1200 formed of three nanowires R, G, B having different diameters configured to absorb red, green, and blue light, according to an embodiment.
- the R, G, B nanowires can have diameters configured to absorb wavelengths of about 650 nm, 510 nm, and 475 nm, respectively (see, e.g., FIG. 3C ).
- An array can be fabricated from a plurality of pixels 1200 .
- the effective diameter D of the pixel 1200 may be 1 ⁇ m or less.
- a cladding 1210 may, in some instance, surround the pixel 1200 to increase absorption of the nanowires.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Biophysics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Spectrometry And Color Measurement (AREA)
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 12/966,514, filed Dec. 13, 2010 and claims the benefit of U.S. Provisional Application No. 61/357,429, filed on Jun. 22, 2010, which is hereby incorporated by reference as if fully set forth herein.
- This application is related to the disclosures of U.S. patent application Ser. No. 12/204,686, filed Sep. 4, 2008 (now U.S. Pat. No. 7,646,943, issued Jan. 12, 2010), Ser. No. 12/648,942, filed Dec. 29, 2009 (now U.S. Pat. No. 8,229,255, issued Jul. 24, 2012), Ser. No. 13/556,041, filed Jul. 23, 2012, Ser. No. 15/057,153, filed Mar. 1, 2016, Ser. No. 12/270,233, filed Nov. 13, 2008 (now U.S. Pat. No. 8,274,039, issued Sep. 25, 2012), Ser. No. 13/925,429, filed Jun. 24, 2013 (now U.S. Pat. No. 9,304,035, issued Apr. 5, 2016), Ser. No. 15/090,155, filed Apr. 4, 2016, Ser. No. 13/570,027, filed Aug. 8, 2012 (now U.S. Pat. No. 8,471,190, issued Jun. 25, 2013), Ser. No. 12/472,264, filed May 26, 2009 (now U.S. Pat. No. 8,269,985, issued Sep. 18, 2012), Ser. No. 13/621,607, filed Sep. 17, 2012 (now U.S. Pat. No. 8,514,411, issued Aug. 20, 2013), Ser. No. 13/971,523, filed Aug. 20, 2013 (now U.S. Pat. No. 8,810,808, issued Aug. 19, 2014), Ser. No. 14/459,398 filed Aug. 14, 2014, Ser. No. 12/472,271, filed May 26, 2009 (now abandoned), Ser. No. 12/478,598, filed Jun. 4, 2009 (now U.S. Pat. No. 8,546,742, issued Oct. 1, 2013), Ser. No. 14/021,672, filed Sep. 9, 2013 (now U.S. Pat. No. 9,177,985, issued Nov. 3, 2015), Ser. No. 12/573,582, filed Oct. 5, 2009 (now U.S. Pat. No. 8,791,470, issued Jul. 29, 2014), Ser. No. 14/274,448, filed May 9, 2014, Ser. No. 12/575,221, filed Oct. 7, 2009 (now U.S. Pat. No. 8,384,007, issued Feb. 26, 2013), Ser. No. 12/633,323, filed Dec. 8, 2009 (now U.S. Pat. No. 8,735,797, issued May 27, 2014), Ser. No. 14/068,864, filed Oct. 31, 2013 (now U.S. Pat. No. 9,263,613, issued Feb. 16, 2016), Ser. No. 14/281,108, filed May 19, 2014 (now U.S. Pat. No. 9,123,841, issued Sep. 1, 2015), Ser. No. 13/494,661, filed Jun. 12, 2012 (now U.S. Pat. No. 8,754,359, issued Jun. 17, 2014), Ser. No. 12/633,318, filed Dec. 8, 2009 (now U.S. Pat. No. 8,519,379, issued Aug. 27, 2013), Ser. No. 13/975,553, filed Aug. 26, 2013 (now U.S. Pat. No. 8,710,488, issued Apr. 29, 2014), Ser. No. 12/633,313, filed Dec. 8, 2009, Ser. No. 12/633,305, filed Dec. 8, 2009 (now U.S. Pat. No. 8,299,472, issued Oct. 30, 2012), Ser. No. 13/543,556, filed Jul. 6, 2012 (now U.S. Pat. No. 8,766,272, issued Jul. 1, 2014), Ser. No. 14/293,164, filed Jun. 2, 2014, Ser. No. 12/621,497, filed Nov. 19, 2009 (now abandoned), Ser. No. 12/633,297, filed Dec. 8, 2009 (now U.S. Pat. No. 8,889,455, issued Nov. 18, 2014), Ser. No. 14/501,983 filed Sep. 30, 2014, 12/982,269, filed Dec. 30, 2010 (now U.S. Pat. No. 9,299,866, issued Mar. 29, 2016), Ser. No. 15/082,514, filed Mar. 28, 2016, 12/966,573, filed Dec. 13, 2010 (now U.S. Pat. No. 8,866,065, issued Oct. 21, 2014), Ser. No. 14/503,598, filed Oct. 1, 2014, Ser. No. 12/967,880, filed Dec. 14, 2010 (now U.S. Pat. No. 8,748,799, issued Jun. 10, 2014), Ser. No. 14/291,888, filed May 30, 2014, Ser. No. 12/974,499, filed Dec. 21, 2010 (now U.S. Pat. No. 8,507,840, issued Aug. 13, 2013), Ser. No. 12/966,535, filed Dec. 13, 2010 (now U.S. Pat. No. 8,890,271, issued Nov. 18, 2014) Ser. No. 12/910,664, filed Oct. 22, 2010 (now U.S. Pat. No. 9,000,353, issued Apr. 17, 2015), Ser. No. 14/632,739, filed Feb. 26, 2015, Ser. No. 12/945,492, filed Nov. 12, 2010, Ser. No. 13/047,392, filed Mar. 14, 2011 (now U.S. Pat. No. 8,835,831, issued Sep. 16, 2014), Ser. No. 14/450,812, filed Aug. 4, 2014, Ser. No. 13/048,635, filed Mar. 15, 2011 (now U.S. Pat. No. 8,835,905, issued Sep. 16, 2014), Ser. No. 14/487,375, filed Sep. 16, 2014 (now U.S. Pat. No. 9,054,008, issued Jun. 9, 2015), Ser. No. 14/705,380, filed May 6, 2015, Ser. No. 13/106,851, filed May 12, 2011 (now U.S. Pat. No. 9,082,673, issued Jul. 14, 2015) Ser. No. 14/704,143, filed May 5, 2015, Ser. No. 13/288,131, filed Nov. 3, 2011, Ser. No. 14/334,848, filed Jul. 18, 2014, Ser. No. 14/032,166, filed Sep. 19, 2013, Ser. No. 13/543,307, filed Jul. 6, 2012, Ser. No. 13/963,847, filed Aug. 9, 2013, Ser. No. 15/093,928, filed Apr. 8, 2016, Ser. No. 13/693,207, filed Dec. 4, 2012, 61/869,727, filed Aug. 25, 2013, Ser. No. 14/322,503, filed July. 2, 2014, Ser. No. 14/311,954, filed Jun. 23, 2014, Ser. No. 14/563,781, filed Dec. 8, 2014, 61/968,816, filed Mar. 21, 2014, Ser. No. 14/516,402, filed Oct. 16, 2014, Ser. No. 14/516,162, filed Oct. 16, 2014, 62/161,485, filed May 14, 2015 and 62/307,018, filed Mar. 11, 2016 are each hereby incorporated by reference in their entirety.
- This application generally relates to semiconductor sensing devices and manufacturing, and in particular, selected spectral absorption of nanowires.
- An image sensor may be fabricated to have a large number of identical sensor elements (pixels), generally more than 1 million, in a (Cartesian) square grid. The pixels may be photodiodes, or other photosensitive elements, that are adapted to convert electromagnetic radiation into electrical signals. Recent advances in semiconductor technologies have enabled the fabrication of nanoscale semiconductor components such as nanowires.
- Nanowires have been introduced into solid state image devices to confine and transmit electromagnetic radiation impinging thereupon to the photosensitive elements. These nanowires can be fabricated from bulk silicon which appears gray in color, although researchers have patterned the surface of silicon so it “looks” black and does not reflect any visible light.
- However, nanowires configured to selectively absorb (or to lower the reflectance of) light at a predetermined wavelength have not been fabricated.
- According to an embodiment, a method for fabricating a nanowire comprises: selecting a particular wavelength of electromagnetic radiation for absorption for a nanowire; determining a diameter corresponding to the particular wavelength; and fabricating a nanowire having the determined diameter.
- According to an embodiment, there may be a nearly linear relationship between the nanowire diameter and the wavelength of electromagnetic radiation absorbed by the nanowire. However, it will be appreciated that other relationships may exists, based on the nanowire materials, fabrication techniques, cross-sectional shape, and/or other parameters. Based on the diameter of the nanowire, the particular wavelength of light absorbed may be within the UV, VIS or IR spectra.
- According to an embodiment, the nanowire may be fabricated to have a diameter between about 90 and 150 nm for absorbing a wavelength of visible light. Of course, the nanowire diameters may need to be smaller for absorbing wavelengths of UV light or larger for absorbing wavelengths of IR light. While this disclosure primarily describes nanowires having a circular cross-sectional shape, it will appreciated that other cross-sectional shapes are also possible (e.g., those that function as a waveguide).
- According to an embodiment, the length of the nanowire may be, for example, between about 1 and 10 μm (or perhaps even longer). The longer the nanowire is, the greater the volume may be available for absorption of electromagnetic energy.
- According to an embodiment, the nanowire may be fabricated by a dry etching process, or a vapor-liquid-solid (VLS) method from a silicon or indium arsenide wafer. It will be appreciated, though, that other materials and fabrication techniques may also be used. During fabrication of the nanowire, a mask having the diameter of the nanowire may be used to form the nanowire having substantially the same diameter.
- According to an embodiment, a plurality of nanowires may be fabricated into an array, each having the same or different determined diameters. The size of the array may be about 100 μm×100 μm or larger. And the nanowires can be spaced at a pitch of about 1 μm or less in the x- and y- directions (Cartesian). In one implementation, the array may include about 10,000 or more nanowires.
- According to an embodiment, the spacing (pitch) of the nanowires may affect the amount of absorption. For instance, near total absorption may be realized by adjusting the spacing.
- According to an embodiment, an image sensor comprises: a plurality of pixels, each of the pixels including at least one nanowire, wherein each of the nanowires has a diameter that corresponds to a predetermined wavelength of electromagnetic radiation for absorption by the sensor. The pixels may include one or more nanowires having the same or different determined diameters. The latter configuration may be effective for detecting absorbing multiple wavelengths of electromagnetic radiation (light). For instance, a red-green-blue (RGB) pixel for an image sensor may be fabricated having three nanowires having different diameters configured to absorb red, green and blue light, respectively.
- According to an embodiment, the image sensor may include various elements, such as, foreoptics configured to receive the electromagnetic radiation and focus or collimate the received radiation onto the one or more pixels, a readout circuit configured to receive output from the one or more pixels, a processor configured to receive the output from the readout circuit and generate an image, and a display device configured to display the image generated by the processor. In some implementations, the image sensor may be configured as a spectrophotometer or as a photovoltaic cell.
- According to an embodiment, a method of imaging comprises: receiving electromagnetic radiation; selectively absorbing, via one or more nanowires, at least one predetermined wavelength of electromagnetic radiation, wherein each of the nanowires has a diameter corresponding to at least one predetermined wavelength of electromagnetic radiation for absorption. The method may be used for performing multispectral imaging or hyperspectral imaging.
- Other features of one or more embodiments of this disclosure will seem apparent from the following detailed description, and accompanying drawings, and the appended claims.
- Embodiments of the present disclosure will now be disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
-
FIGS. 1A-1G are scanning electron microscope (SEM) images showing nanowire arrays of various diameters, according to an embodiment. -
FIG. 2 shows a plot of reflection for silicon nanowires having different diameters, but having the same pitch, according to an embodiment. -
FIGS. 3A-3C show experimental and simulation results for reflection of silicon nanowire arrays, according to an embodiment -
FIG. 4 shows a plot of absorption spectra of silicon nanowire arrays, according to an embodiment. -
FIG. 5 shows a plot of reflection spectra of silicon nanowire arrays, according to an embodiment. -
FIG. 6 shows a plot of absorption spectra of silicon nanowire arrays, according to an embodiment. -
FIG. 7 shows a plot of absorption and reflection spectra of silicon nanowire arrays, according to an embodiment. -
FIG. 8 shows an exemplary dry etch method for fabricating an array of vertical nanowires, according to an embodiment. -
FIG. 9 shows an exemplary vapor liquid solid method for fabricating an array of vertical nanowires, according to an embodiment. -
FIG. 10 shows a schematic of an image sensor, according to an embodiment. -
FIG. 11 shows a method for selectively imaging, according to an embodiment. -
FIG. 12 shows an exemplary pixel of an image sensor formed of three nanowires having different diameters configured to absorb red, green, and blue light, respectively, according to an embodiment. - In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In the drawings, similar symbols typically identify similar components, unless the context dictates otherwise. The illustrative embodiments described in the detail description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
- This disclosure is drawn to, among other things, methods, apparatuses, systems, and devices relating to the fabrication of one or more nanowires. Each of the nanowires may be fabricated to absorb (or to significantly lower reflectance of) a specific wavelength of electromagnetic radiation (light). This absorbed light includes a wavelength of light in one of the ultraviolet (UV), visible (VIS) or infrared (IR) spectra.
- Silicon-based nanowires may be used for VIS applications. Vertically aligned crystalline silicon (Si) nanowire arrays may be fabricated, in various one embodiments, for example, by a dry etching process (as shown in
FIG. 8 and further discussed below), or a Vapor Liquid Solid (VLS) growth method (as shown inFIG. 9 and further discussed below), with a silicon wafer as the starting material. - Of course, it will be appreciated that other materials and/or fabrication techniques may also be used for fabricating the nanowires in keeping with the scope of the invention. For instance, nanowires fabricated from an indium arsenide (InAs) wafer or related materials could be used for IR applications.
- Each nanowire can include a photodiode detector element that may form a pixel in an image sensor. For example, a silicon-on-insulator (SOI)-type wafer or silicon-on-glass (SG) wafer may be used as the substrate material for which one or more nanowires may be formed upon. Depending on its configuration, the nanowire may be fabricated, such that: (i) the substrate may have an intrinsic epitaxial (epi) layer and a thin n+ layer at the oxide interface; (ii) the substrate may have a lightly doped n epi layer and a thin n+ layer at the oxide interface. (iii) the substrate may have lightly doped p epi layer and a thin p+ layer at the oxide interface, or (iv) the substrate may have an intrinsic epi layer and a thin p+ layer at the oxide interface.
- P+ or n+ ion implantation may be employed to form a shallow junction at the top layer of the SOI or SG wafer. As a result, the vertical structure of p-i-n, p-n, n-i-p, n-p diode is formed respectively, depending on the substrate doping profile. In some instances, one or more transistors may be formed on the wafer for controlling the photocharge transfer from the nanowire to a readout circuit (ROC) and/or other electronics.
- According to an aspect of the disclosure, the inventors have discovered a unique correlation between the nanowire diameter and its absorption (or reflectance) characteristics. For instance, the reflection spectra of fabricated silicon nanowire arrays each show a spectral dip for reflectance (or peak for absorption) at a specific wavelength position dependent on the nanowire diameter.
- While the experiments performed by the inventors used nanowires fabricated having a circular cross-section, it is believed that the cross-section shape of the nanowire could be any polygonal shape, in keeping with the scope of the invention. The nanowire may be any “waveguide” shape, although the shape might have some impact on wavelength absorption.
- Also, with different nanowire spacing (pitch), absorption intensity selectivity can be realized. For instance, by adjusting the spacing of adjacent nanowire, near total absorption may be realized.
- The nanowire diameter may be determined by the diameter of a mask used in the process by which the nanowires are fabricated. In one implementation, the mask be formed of aluminum (Al). Of course, it will be appreciated that other mask materials can also be used.
- A filtering effect can be employed in image sensor devices based on nanowire diameters. For instance, one or more nanowire arrays may be used to selectively absorb electromagnetic radiation (light) at a particular wavelength. While the incident light may be white (or other colors), absorption is “selected” by the size and/or arrangement of the nanowires. For example, the individual nanowires of the array may be fabricated to absorb light of one or more particular colors in the VIS spectrum, such as, for example, violet (400 nm), blue (475 nm), cyan (485 nm), green (510 nm), yellow (570 nm), orange (590 nm), and red (650 nm). Other absorbed colors are also possible, including black.
- Similarly, individual nanowires of the array may be fabricated to absorb light in at least one wavelength of various bands of the IR spectrum, such as, for example, near-infrared (NIR), short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) or far infrared (FIR).
- In one implementation, a plurality of nanowire arrays may also be configured for multispectral imaging or hyperspectral imaging, which detect electromagnetic (light) over multiple discrete spectral bands and/or spectra (e.g., VIS, NIR, SWIR, MWIR, LWIR, FIR, etc). The nanowire arrays may be configured for spectral-selective imaging which detect one or more specific wavelength of electromagnetic radiation (light). In one embodiment, an image sensor may be fabricated from an array of nanowires with one or more nanowires forming each pixel of the sensor.
-
FIGS. 1A-1G are scanning electron microscope (SEM) images showing nanowire arrays of various diameters, according to an embodiment. - Vertical nanowire or nanopillar arrays may be fabricated, for example, by a dry etch method. Although, it will be appreciated that the nanowires may similarly fabricated using a VLS growing method, or other fabrication techniques. The nanowires may be formed in a Cartesian (x-y) matrix structure so that each nanowire can be controlled or individually addressed.
- As shown, the nanowire arrays may be fabricated to have a very uniform circular cross-sectional shape, for instance, of about 1 to 3 μm in length or more. Using the VLS growing method, nanowires 10 μm in length can be grown. Longer nanowires may be able to absorb more radiation as they have a larger volume for the same given diameter. In addition, it may be possible to confine more radiation for absorption, for instance, using a cladding material deposited around the nanowires.
- Each of the arrays shown includes nanowires formed from silicon having the same diameters ranging from about 90 to 150 nm. This diameter range may be effective for absorbing various wavelengths (colors) of visible light. Of course, the nanowire diameters may need to be smaller for absorbing wavelengths of UV light or larger for absorbing wavelengths of IR light.
- The size of each of the array may be about 100 μm×100 μm, having 10,000 nanowires at a pitch (spacing) of about 1 μm or less in the x- and y- directions (in a Cartesian plane). Of course, the nanowire arrays may be fabricated in larger sizes, for instance, having a million or more nanowires. The nanowires may be spaced apart at different (larger) intervals and/or forming different shapes, as well.
-
FIG. 2 shows a plot of reflectance spectra for nanowires having different diameters, but having the same pitch, according to an embodiment. - The measured reflectance spectra were obtained using a collimated light method to measure reflectance of light from the nanowire array. The reflectance was normalize with respect to a silver (Ag) mirror. For each nanowire diameter, there is a significant dip in reflectance at a particular wavelength. This reflectance dip corresponds to absorption of light at that particular wavelength.
- The bandwidth of the reflectance dip (or peak in absorption) is approximately 50-100 nm at the particular wavelength.
-
FIGS. 3A-3C show experimental and simulated results for reflection of Si nanowire arrays, according to an embodiment. -
FIG. 3A shows similar experimental results shown inFIG. 2 , but the measured reflectance spectra were obtained using a Raman spectroscopy setup configured to measure reflectance of light focused onto the nanowire array. The reflectance was normalized with respect to a silver (Ag) mirror. For each nanowire diameter, there is a significant dip in reflectance at a particular wavelength. This reflectance dip corresponds to absorption of light at that particular wavelength. -
FIG. 3B shows simulated results. The computer-simulated results were obtained by finite difference time domain (FDTD) simulations. - In this case, two different mathematical techniques for solving Maxwell's equations were employed. The first employs a technique of numerically solving for the optical modes (eignenvalues and eigenmodes) of the nanowire array. The second numerical technique employed the FDTD approach wherein a simulated illuminant is propagated through the nanowire array. The FDTD technique is a grid-based numerical modeling method in which time-dependant Maxwell's equations (in partial differential form) are discretized using central-difference approximation to the space and time partial derivations. The resulting finite-difference equations for the electric field vector components are solved at a given instance in time, and then the magnetic field vector components are solved in the next instance of time. This processing is repeated over and over until a steady-state behavior is evolved.
- There is a strong correlation between the dip position for reflectance and the diameter of the nanowires for both the experimental and simulated results. Although, for small diameter nanowire (e.g., less than about 200 nm), the simulation appears to indicate a single mode confinement.
-
FIG. 3C more clearly shows the correlation between the dip positions and nanowire diameter for the experimental results and the simulation results. There is a nearly linear correlation between nanowire diameter and the wavelength for the spectral dip position for reflectance (or the peak for absorption) for the nanowire. - Experimental data appears to confirm that for certain nanowire spacing the relationship is linear, especially for silicon nanowires. However, without being bound by theory, the inventors do not rule out the possibility of non-linear effects that are small in magnitude and/or that might have a larger impact using different materials or under different fabrication conditions. Simulation, for example, shows that for larger diameter nanowires (greater than about 200 nm), if the spacing is too close, that there may be multimode coupling. As such, the relationship might not be linear.
-
FIG. 4 shows a plot of absorption spectra of Si nanowire arrays, according to an embodiment. There is clearly a peak absorption for each nanowire diameter, which corresponds to the spectral dip of reflection shown inFIG. 2 . -
FIG. 5 shows a plot of reflection spectra of Si nanowire arrays, according to an embodiment. This plot shows reflectance spectrum for nanowires of a length of 3 μm, while inFIGS. 2 and 4 , the reflectance spectra shown are for nanowires having a length of 1 μm. - Both nanowires of 1 and 3 μm lengths, generally showed a spectral dip in reflectance at the same wavelength for the same nanowire diameter. Although, for at least the smaller nanowire diameter of 100 nm, the 3 μm length nanowire experienced a much larger dip in reflectance than the 1 μm length nanowire. The larger length nanowires have a greater volume, which in turn results in higher radiation absorption.
-
FIG. 6 shows a plot of absorption spectra of Si nanowire arrays, according to an embodiment. This plots show a comparison of the absorption spectrum for nanowires which are 1 μm and 3 μm in length. - Both nanowires of 1 and 3 μm lengths, generally showed an increase in absorption at the same wavelength for the same diameter. However, the nanowires of 3 μm length all showed a significant increase over the nanowires of 1 μm in length.
-
FIG. 7 shows a plot of absorption and reflection spectra of Si nanowire arrays, according to an embodiment. This plot shows absorption and reflectance spectrum for nanowire arrays having nanowires of 1 μm in length. As is apparent, the absorption and reflection are inversely correlated, with a dip in reflectance corresponding to a peak in absorption at the same wavelength. The substrate also shows a similar phenomenon at the same wavelength. The dip in substrate absorption is actually due to the nanowire absorption at that wavelength (peak). This is atypical behavior for an ordinary silicon wafer. -
FIG. 8 shows an exemplarydry etch method 800 for fabricating an array of vertical nanowires, according to an embodiment. - In
step 801, a starting material is provided which may include a SOI (silicon on insulator) substrate with an intrinsic epi layer and n+ type layer at the oxide interface. In one instance, the thickness of the i- layer and n+-layer may be 5 μm and 0.5 μm, respectively. In an alternative implementation, the starting substrate may have a lightly doped n-type epi-layer instead of the intrinsic epi-layer layer. - Next, in
step 802, a shallow p+ type layer is formed by an ion implantation with p-type dopant and minimum energy. Photoresist (PR) is deposited on the p+ layer instep 803 for the preparation of lithography. And, instep 804, the PR is patterned, for instance, by employing the electron beam (or e-beam) lithography technique. - Metal deposition commences in
step 805, for example, by either evaporation or sputtering method. One metal that may be used in the fabrication, for example, is aluminum. A lift-off etch method is then employed instep 806 for removing the PR and any unwanted metal on it. - In
step 807, a dry etch is performed using the metal pattern as a etch mask. For applying the dry etch on the silicon material, etching gases such as, for instance, octafluorocyclobutane (C4F8) and sulfur hexafluoride (SF6) can be used. An array of circular pillars (nanowires) are formed by the etch process. The diameter of the etch mask determines the diameter of the pillars which form each nanowire. In one implementation, the etch mask may be formed of aluminum. - Since the surfaces of the etched pillars may be rough, a surface treatment may be needed to make surfaces smooth. Thus, in
step 808, the pillar surfaces may be dipped briefly in an etchant, such as, potassium hydroxide (KOH) and a cleaning performed afterwards. - In some embodiments, a readout circuit may further be fabricated in connection with to the n+ layer, to control and individually address each nanowire in the array. The readout circuit may include a plurality of switching transistors, with one or more switching transistors provided for selectively controlling or addressing each nanowire.
-
FIG. 9 shows anexemplary VLS method 900 for fabricating an array of vertical nanowires, according to an embodiment. - In
step 901, a starting material is provided which may include a SOI or SG substrate with an n+ type layer on top of the SiO2. Next, instep 902, PR is deposited for the preparation of the lithography. The PR may patterned instep 903, for instance, by employing the electron beam lithography technique. Metal deposition commences instep 904 by either evaporation or sputtering method. Metals that may be used in the fabrication are gold or aluminum. Instep 905, a lift-off etch method is employed for removing the PR and any unwanted metal on it. - Continuing to step 906, intrinsic type nanowires are grown employing a VLS method. In an alternative embodiment, lightly doped n-type nanowires can be grown instead of the intrinsic nanowires. The diameter of the metal mask (applied in step 904) determines the diameter of the pillars which form each nanowire grown
ins step 906. In a subsequent step (not shown), a CMP technique may be employed to planarize the top surface and remove the metal. - In some embodiments, a readout circuit may further be fabricated in connection with to the n+ layer, to control and individually address each nanowire in the array. The readout circuit may include a plurality of switching transistors, with one or more switching transistors provided for selectively controlling or addressing each nanowire.
-
FIG. 10 shows a schematic of animage sensor 1000 in accordance with an embodiment. - The
image sensor 1000 generally includesforeoptics 1010, an array ofpixels 1020, a readout circuit (ROC) 1030, aprocessor 1040 and adisplay device 1050. Ahousing 1005 may incorporate one of more the foregoing elements of thesensor 1000, and protects the elements from excessive/ambient light, the environment (e.g., moisture, dust, etc.), mechanical damage (e.g., vibration, shock), etc. - Electromagnetic radiation (light) L from a scene S emanates toward the
image sensor 1000. For clarity, only light L from the scene S impinging upon thesensor 1000 is depicted (although it will be appreciated that light L from the scene S radiates in all directions). - The
foreoptics 1010 may be configured to receive the electromagnetic radiation (light) L from the scene S and focus or collimate the received radiation onto the array ofpixels 1020. for instance, foreoptics 1010 may include, for instance, one or more of: a lens, an optical filter, a polarizer, a diffuser, a collimator, etc. - The array of
pixels 1020 may be fabricated from an array of one or more nanowires, as disclosed above (seeFIG. 8 or 9 ). Each of the pixels may include one or more nanowires having a diameter that corresponds to a predetermined wavelength of electromagnetic radiation (light) L for absorption by thesensor 1000. At least one of the nanowires in the array may have a different determined diameter than another of the nanowire in the array. This enables multiple wavelength absorption (and detection). - The
ROC 1030 may be connected to the array ofpixels 1020 and is configured to receive output from thepixels 1020. TheROC 1030 may include one or more switching transistors connected to the nanowires for selectively controlling or addressing each pixel of thearray 1020. - The
processor 1040 is configured to receive output from theROC 1030 and generate an image for viewing on thedisplay device 1050. Theprocessor 1040 may, in some instances, be configured to provide data scaling, zooming/magnification, data compression, color discrimination, filtering, or other imaging processing, as desired. - In one embodiment, the
processor 1040 may include hardware, such as Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that theprocessor 1040 may, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs having computer-executable instructions or code running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one skilled in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of computer-readable medium used to actually carry out the distribution. - The
display device 1050 may include any device configured for displaying image data. Exemplary displays may include a cathode ray tube (CRT), plasma, liquid crystal display (LCD), light emitting diode (LED) display, pen chart, etc. In some instance, thedisplay device 1050 may, alternatively or additionally, include a printer or other device for capturing the displayed image. In addition, the image data may be output to an electronic memory (not shown) for storage. - In some implementations, the
image sensor 1000 may be configured as a spectrophotometer to measure intensity of reflection or absorption at one more wavelengths. - In other implementations, the
image sensor 1000 could be configured as a photovoltaic device. By adjusting the spacing of the nanowires, it may be possibly to nearly control all various wavelengths of a spectrum, without any reflection. -
FIG. 11 shows amethod 1100 for selectively imaging, according to an embodiment. - In
step 1110, electromagnetic radiation (light) may be received, for instance, using the image sensor 1000 (FIG. 10 ). Next, instep 1120, thearray 1020 of theimage sensor 1000 may selectively absorb at least one predetermined wavelength of electromagnetic radiation (light).Method 1100 may be used for multispectral imaging or hyperspectral imaging applications. - Depending on the construction of the nanowire array, multiple wavelengths of electromagnetic radiation (light) may be absorbed and/or detected by selectively providing nanowires of different diameters. A three-nanowire pixel element may be fabricated. Of course, pixels having additional nanowires are also possible.
-
FIG. 12 shows anexemplary pixel 1200 formed of three nanowires R, G, B having different diameters configured to absorb red, green, and blue light, according to an embodiment. For instance, the R, G, B nanowires can have diameters configured to absorb wavelengths of about 650 nm, 510 nm, and 475 nm, respectively (see, e.g.,FIG. 3C ). - An array can be fabricated from a plurality of
pixels 1200. In one implementation, the effective diameter D of thepixel 1200 may be 1 μm or less. Acladding 1210 may, in some instance, surround thepixel 1200 to increase absorption of the nanowires. - The foregoing detailed description has set forth various embodiments of the devices and/or processes by the use of diagrams, flowcharts, and/or examples. Insofar as such diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.
- Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation.
- The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components.
- With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
- All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.
- While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/225,264 US20160344964A1 (en) | 2008-09-04 | 2016-08-01 | Methods for fabricating and using nanowires |
Applications Claiming Priority (67)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/204,686 US7646943B1 (en) | 2008-09-04 | 2008-09-04 | Optical waveguides in image sensors |
US12/270,233 US8274039B2 (en) | 2008-11-13 | 2008-11-13 | Vertical waveguides with various functionality on integrated circuits |
US12/472,271 US20100304061A1 (en) | 2009-05-26 | 2009-05-26 | Fabrication of high aspect ratio features in a glass layer by etching |
US12/472,264 US8269985B2 (en) | 2009-05-26 | 2009-05-26 | Determination of optimal diameters for nanowires |
US12/478,598 US8546742B2 (en) | 2009-06-04 | 2009-06-04 | Array of nanowires in a single cavity with anti-reflective coating on substrate |
US12/573,582 US8791470B2 (en) | 2009-10-05 | 2009-10-05 | Nano structured LEDs |
US12/575,221 US8384007B2 (en) | 2009-10-07 | 2009-10-07 | Nano wire based passive pixel image sensor |
US12/621,497 US20110115041A1 (en) | 2009-11-19 | 2009-11-19 | Nanowire core-shell light pipes |
US12/633,318 US8519379B2 (en) | 2009-12-08 | 2009-12-08 | Nanowire structured photodiode with a surrounding epitaxially grown P or N layer |
US12/633,313 US20100148221A1 (en) | 2008-11-13 | 2009-12-08 | Vertical photogate (vpg) pixel structure with nanowires |
US12/633,297 US8889455B2 (en) | 2009-12-08 | 2009-12-08 | Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor |
US12/633,323 US8735797B2 (en) | 2009-12-08 | 2009-12-08 | Nanowire photo-detector grown on a back-side illuminated image sensor |
US12/633,305 US8299472B2 (en) | 2009-12-08 | 2009-12-08 | Active pixel sensor with nanowire structured photodetectors |
US12/648,942 US8229255B2 (en) | 2008-09-04 | 2009-12-29 | Optical waveguides in image sensors |
US35742910P | 2010-06-22 | 2010-06-22 | |
US12/910,664 US9000353B2 (en) | 2010-06-22 | 2010-10-22 | Light absorption and filtering properties of vertically oriented semiconductor nano wires |
US12/945,492 US9515218B2 (en) | 2008-09-04 | 2010-11-12 | Vertical pillar structured photovoltaic devices with mirrors and optical claddings |
US12/966,514 US9406709B2 (en) | 2010-06-22 | 2010-12-13 | Methods for fabricating and using nanowires |
US12/966,535 US8890271B2 (en) | 2010-06-30 | 2010-12-13 | Silicon nitride light pipes for image sensors |
US12/966,573 US8866065B2 (en) | 2010-12-13 | 2010-12-13 | Nanowire arrays comprising fluorescent nanowires |
US12/967,880 US8748799B2 (en) | 2010-12-14 | 2010-12-14 | Full color single pixel including doublet or quadruplet si nanowires for image sensors |
US12/974,499 US8507840B2 (en) | 2010-12-21 | 2010-12-21 | Vertically structured passive pixel arrays and methods for fabricating the same |
US12/982,269 US9299866B2 (en) | 2010-12-30 | 2010-12-30 | Nanowire array based solar energy harvesting device |
US13/047,392 US8835831B2 (en) | 2010-06-22 | 2011-03-14 | Polarized light detecting device and fabrication methods of the same |
US13/048,635 US8835905B2 (en) | 2010-06-22 | 2011-03-15 | Solar blind ultra violet (UV) detector and fabrication methods of the same |
US13/106,851 US9082673B2 (en) | 2009-10-05 | 2011-05-12 | Passivated upstanding nanostructures and methods of making the same |
US13/288,131 US20130112256A1 (en) | 2011-11-03 | 2011-11-03 | Vertical pillar structured photovoltaic devices with wavelength-selective mirrors |
US13/494,661 US8754359B2 (en) | 2009-12-08 | 2012-06-12 | Nanowire photo-detector grown on a back-side illuminated image sensor |
US13/543,307 US20140007928A1 (en) | 2012-07-06 | 2012-07-06 | Multi-junction photovoltaic devices |
US13/543,556 US8766272B2 (en) | 2009-12-08 | 2012-07-06 | Active pixel sensor with nanowire structured photodetectors |
US13/556,041 US9429723B2 (en) | 2008-09-04 | 2012-07-23 | Optical waveguides in image sensors |
US13/570,027 US8471190B2 (en) | 2008-11-13 | 2012-08-08 | Vertical waveguides with various functionality on integrated circuits |
US13/621,607 US8514411B2 (en) | 2009-05-26 | 2012-09-17 | Determination of optimal diameters for nanowires |
US13/693,207 US20140150857A1 (en) | 2012-12-04 | 2012-12-04 | Multi-junction multi-tab photovoltaic devices |
US13/925,429 US9304035B2 (en) | 2008-09-04 | 2013-06-24 | Vertical waveguides with various functionality on integrated circuits |
US13/963,847 US9343490B2 (en) | 2013-08-09 | 2013-08-09 | Nanowire structured color filter arrays and fabrication method of the same |
US13/971,523 US8810808B2 (en) | 2009-05-26 | 2013-08-20 | Determination of optimal diameters for nanowires |
US201361869727P | 2013-08-25 | 2013-08-25 | |
US13/975,553 US8710488B2 (en) | 2009-12-08 | 2013-08-26 | Nanowire structured photodiode with a surrounding epitaxially grown P or N layer |
US14/021,672 US9177985B2 (en) | 2009-06-04 | 2013-09-09 | Array of nanowires in a single cavity with anti-reflective coating on substrate |
US14/032,166 US20150075599A1 (en) | 2013-09-19 | 2013-09-19 | Pillar structured multijunction photovoltaic devices |
US14/068,864 US9263613B2 (en) | 2009-12-08 | 2013-10-31 | Nanowire photo-detector grown on a back-side illuminated image sensor |
US201461968816P | 2014-03-21 | 2014-03-21 | |
US14/274,448 US20140246684A1 (en) | 2009-10-05 | 2014-05-09 | Nano structured leds |
US14/281,108 US9123841B2 (en) | 2009-12-08 | 2014-05-19 | Nanowire photo-detector grown on a back-side illuminated image sensor |
US14/291,888 US9543458B2 (en) | 2010-12-14 | 2014-05-30 | Full color single pixel including doublet or quadruplet Si nanowires for image sensors |
US14/293,164 US9490283B2 (en) | 2009-11-19 | 2014-06-02 | Active pixel sensor with nanowire structured photodetectors |
US14/311,954 US9478685B2 (en) | 2014-06-23 | 2014-06-23 | Vertical pillar structured infrared detector and fabrication method for the same |
US14/334,848 US20160020347A1 (en) | 2014-07-18 | 2014-07-18 | Bifacial photovoltaic devices |
US14/450,812 US20140339666A1 (en) | 2010-06-22 | 2014-08-04 | Polarized light detecting device and fabrication methods of the same |
US14/459,398 US20140353575A1 (en) | 2008-09-04 | 2014-08-14 | Determination of optimal diameters for nanowires |
US14/487,375 US9054008B2 (en) | 2010-06-22 | 2014-09-16 | Solar blind ultra violet (UV) detector and fabrication methods of the same |
US14/501,983 US20150053860A1 (en) | 2009-12-08 | 2014-09-30 | Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor |
US14/503,598 US9410843B2 (en) | 2008-09-04 | 2014-10-01 | Nanowire arrays comprising fluorescent nanowires and substrate |
US14/516,162 US20160111562A1 (en) | 2008-09-04 | 2014-10-16 | Multispectral and polarization-selective detector |
US14/516,402 US20160111460A1 (en) | 2008-09-04 | 2014-10-16 | Back-lit photodetector |
US14/563,781 US20160161426A1 (en) | 2014-12-08 | 2014-12-08 | Pillar Based Amorphous and Polycrystalline Photoconductors for X-ray Image Sensors |
US14/632,739 US9601529B2 (en) | 2008-09-04 | 2015-02-26 | Light absorption and filtering properties of vertically oriented semiconductor nano wires |
US14/704,143 US20150303333A1 (en) | 2008-09-04 | 2015-05-05 | Passivated upstanding nanostructures and methods of making the same |
US14/705,380 US9337220B2 (en) | 2008-09-04 | 2015-05-06 | Solar blind ultra violet (UV) detector and fabrication methods of the same |
US201562161485P | 2015-05-14 | 2015-05-14 | |
US15/057,153 US20160178840A1 (en) | 2008-09-04 | 2016-03-01 | Optical waveguides in image sensors |
US201662307018P | 2016-03-11 | 2016-03-11 | |
US15/082,514 US20160211394A1 (en) | 2008-11-13 | 2016-03-28 | Nano wire array based solar energy harvesting device |
US15/090,155 US20160216523A1 (en) | 2008-09-04 | 2016-04-04 | Vertical waveguides with various functionality on integrated circuits |
US15/093,928 US20160225811A1 (en) | 2008-09-04 | 2016-04-08 | Nanowire structured color filter arrays and fabrication method of the same |
US15/225,264 US20160344964A1 (en) | 2008-09-04 | 2016-08-01 | Methods for fabricating and using nanowires |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,514 Continuation US9406709B2 (en) | 2008-09-04 | 2010-12-13 | Methods for fabricating and using nanowires |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160344964A1 true US20160344964A1 (en) | 2016-11-24 |
Family
ID=45327810
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,514 Expired - Fee Related US9406709B2 (en) | 2008-09-04 | 2010-12-13 | Methods for fabricating and using nanowires |
US15/225,264 Abandoned US20160344964A1 (en) | 2008-09-04 | 2016-08-01 | Methods for fabricating and using nanowires |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/966,514 Expired - Fee Related US9406709B2 (en) | 2008-09-04 | 2010-12-13 | Methods for fabricating and using nanowires |
Country Status (1)
Country | Link |
---|---|
US (2) | US9406709B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9029242B2 (en) * | 2011-06-15 | 2015-05-12 | Applied Materials, Inc. | Damage isolation by shaped beam delivery in laser scribing process |
US9099389B2 (en) * | 2012-02-10 | 2015-08-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for reducing stripe patterns |
KR20150067141A (en) * | 2012-08-13 | 2015-06-17 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Multispectral imaging using silicon nanowires |
US8912637B1 (en) * | 2013-09-23 | 2014-12-16 | Texas Instruments Incorporated | Self-adhesive die |
US9627199B2 (en) * | 2013-12-13 | 2017-04-18 | University Of Maryland, College Park | Methods of fabricating micro- and nanostructure arrays and structures formed therefrom |
US11089286B2 (en) * | 2015-07-29 | 2021-08-10 | Samsung Electronics Co., Ltd. | Image sensor |
US9978808B2 (en) | 2016-05-04 | 2018-05-22 | Glo Ab | Monolithic multicolor direct view display containing different color LEDs and method of making thereof |
CN108622848B (en) * | 2017-03-16 | 2020-08-25 | 厦门大学 | Large-area three-dimensional composite nano structure and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008135905A2 (en) * | 2007-05-07 | 2008-11-13 | Nxp B.V. | A photosensitive device and a method of manufacturing a photosensitive device |
US20100295019A1 (en) * | 2007-02-27 | 2010-11-25 | The Regents Of The University Of California | Nanowire photodetector and image sensor with internal gain |
Family Cites Families (479)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1918848A (en) | 1929-04-26 | 1933-07-18 | Norwich Res Inc | Polarizing refracting bodies |
US3903427A (en) | 1973-12-28 | 1975-09-02 | Hughes Aircraft Co | Solar cell connections |
US4017332A (en) | 1975-02-27 | 1977-04-12 | Varian Associates | Solar cells employing stacked opposite conductivity layers |
US4292512A (en) | 1978-06-19 | 1981-09-29 | Bell Telephone Laboratories, Incorporated | Optical monitoring photodiode system |
US4357415A (en) | 1980-03-06 | 1982-11-02 | Eastman Kodak Company | Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier |
US4316048A (en) | 1980-06-20 | 1982-02-16 | International Business Machines Corporation | Energy conversion |
FR2495412A1 (en) | 1980-12-02 | 1982-06-04 | Thomson Csf | DIRECTLY MODULATED INFORMATION TRANSMISSION SYSTEM FOR OPTICALLY BANDWIDTH OPTICALLY LINKED LIGHT EXTENDED TO LOW FREQUENCIES AND CONTINUOUS |
US4394571A (en) | 1981-05-18 | 1983-07-19 | Honeywell Inc. | Optically enhanced Schottky barrier IR detector |
US4400221A (en) | 1981-07-08 | 1983-08-23 | The United States Of America As Represented By The Secretary Of The Air Force | Fabrication of gallium arsenide-germanium heteroface junction device |
US4387265A (en) | 1981-07-17 | 1983-06-07 | University Of Delaware | Tandem junction amorphous semiconductor photovoltaic cell |
US5696863A (en) | 1982-08-06 | 1997-12-09 | Kleinerman; Marcos Y. | Distributed fiber optic temperature sensors and systems |
US5247349A (en) | 1982-11-16 | 1993-09-21 | Stauffer Chemical Company | Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure |
US4531055A (en) | 1983-01-05 | 1985-07-23 | The United States Of America As Represented By The Secretary Of The Air Force | Self-guarding Schottky barrier infrared detector array |
US4678772A (en) | 1983-02-28 | 1987-07-07 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Compositions containing glycyrrhizin |
US4513168A (en) | 1984-04-19 | 1985-04-23 | Varian Associates, Inc. | Three-terminal solar cell circuit |
US4620237A (en) | 1984-10-22 | 1986-10-28 | Xerox Corporation | Fast scan jitter measuring system for raster scanners |
US4638484A (en) | 1984-11-20 | 1987-01-20 | Hughes Aircraft Company | Solid state laser employing diamond having color centers as a laser active material |
JPS61250605A (en) | 1985-04-27 | 1986-11-07 | Power Reactor & Nuclear Fuel Dev Corp | Image fiber with optical waveguide |
US4827335A (en) | 1986-08-29 | 1989-05-02 | Kabushiki Kaisha Toshiba | Color image reading apparatus with two color separation filters each having two filter elements |
EP0275063A3 (en) | 1987-01-12 | 1992-05-27 | Sumitomo Electric Industries Limited | Light emitting element comprising diamond and method for producing the same |
JPH0721562B2 (en) | 1987-05-14 | 1995-03-08 | 凸版印刷株式会社 | Color filter |
US4857973A (en) | 1987-05-14 | 1989-08-15 | The United States Of America As Represented By The Secretary Of The Air Force | Silicon waveguide with monolithically integrated Schottky barrier photodetector |
US4876586A (en) | 1987-12-21 | 1989-10-24 | Sangamo-Weston, Incorporated | Grooved Schottky barrier photodiode for infrared sensing |
US5071490A (en) | 1988-03-18 | 1991-12-10 | Sharp Kabushiki Kaisha | Tandem stacked amorphous solar cell device |
JPH0288498A (en) | 1988-06-13 | 1990-03-28 | Sumitomo Electric Ind Ltd | Diamond laser crystal and its formation |
FR2633101B1 (en) | 1988-06-16 | 1992-02-07 | Commissariat Energie Atomique | PHOTODIODE AND MATRIX OF PHOTODIODES ON HGCDTE AND METHODS OF MAKING SAME |
US5081049A (en) | 1988-07-18 | 1992-01-14 | Unisearch Limited | Sculpted solar cell surfaces |
US5311047A (en) | 1988-11-16 | 1994-05-10 | National Science Council | Amorphous SI/SIC heterojunction color-sensitive phototransistor |
US4990988A (en) | 1989-06-09 | 1991-02-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Laterally stacked Schottky diodes for infrared sensor applications |
US5124543A (en) | 1989-08-09 | 1992-06-23 | Ricoh Company, Ltd. | Light emitting element, image sensor and light receiving element with linearly varying waveguide index |
US5401968A (en) | 1989-12-29 | 1995-03-28 | Honeywell Inc. | Binary optical microlens detector array |
US4971928A (en) | 1990-01-16 | 1990-11-20 | General Motors Corporation | Method of making a light emitting semiconductor having a rear reflecting surface |
US5362972A (en) | 1990-04-20 | 1994-11-08 | Hitachi, Ltd. | Semiconductor device using whiskers |
JP2809826B2 (en) | 1990-06-29 | 1998-10-15 | 三菱電機株式会社 | Method for manufacturing semiconductor device |
US5096520A (en) | 1990-08-01 | 1992-03-17 | Faris Sades M | Method for producing high efficiency polarizing filters |
GB9025837D0 (en) | 1990-11-28 | 1991-01-09 | De Beers Ind Diamond | Light emitting diamond device |
US5272518A (en) | 1990-12-17 | 1993-12-21 | Hewlett-Packard Company | Colorimeter and calibration system |
US5374841A (en) | 1991-12-18 | 1994-12-20 | Texas Instruments Incorporated | HgCdTe S-I-S two color infrared detector |
US5356488A (en) | 1991-12-27 | 1994-10-18 | Rudolf Hezel | Solar cell and method for its manufacture |
US5391896A (en) | 1992-09-02 | 1995-02-21 | Midwest Research Institute | Monolithic multi-color light emission/detection device |
DE59403063D1 (en) | 1993-02-17 | 1997-07-17 | Hoffmann La Roche | Optical component |
US5468652A (en) | 1993-07-14 | 1995-11-21 | Sandia Corporation | Method of making a back contacted solar cell |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5625210A (en) | 1995-04-13 | 1997-04-29 | Eastman Kodak Company | Active pixel sensor integrated with a pinned photodiode |
US5747796A (en) | 1995-07-13 | 1998-05-05 | Sharp Kabushiki Kaisha | Waveguide type compact optical scanner and manufacturing method thereof |
JP3079969B2 (en) | 1995-09-14 | 2000-08-21 | 日本電気株式会社 | Complete contact image sensor and method of manufacturing the same |
US5767507A (en) | 1996-07-15 | 1998-06-16 | Trustees Of Boston University | Polarization sensitive photodetectors and detector arrays |
US5671914A (en) | 1995-11-06 | 1997-09-30 | Spire Corporation | Multi-band spectroscopic photodetector array |
US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
US5723945A (en) | 1996-04-09 | 1998-03-03 | Electro Plasma, Inc. | Flat-panel display |
US5853446A (en) | 1996-04-16 | 1998-12-29 | Corning Incorporated | Method for forming glass rib structures |
GB2312524A (en) | 1996-04-24 | 1997-10-29 | Northern Telecom Ltd | Planar optical waveguide cladding by PECVD method |
US6074892A (en) | 1996-05-07 | 2000-06-13 | Ciena Corporation | Semiconductor hetero-interface photodetector |
US5986297A (en) | 1996-05-22 | 1999-11-16 | Eastman Kodak Company | Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk |
US5612780A (en) | 1996-06-05 | 1997-03-18 | Harris Corporation | Device for detecting light emission from optical fiber |
GB2314478B (en) | 1996-06-17 | 2000-11-01 | Sharp Kk | A color image sensor and a production method of an optical waveguide array for use therein |
JP2917920B2 (en) | 1996-06-27 | 1999-07-12 | 日本電気株式会社 | Solid-state imaging device and method of manufacturing the same |
AUPO281896A0 (en) | 1996-10-04 | 1996-10-31 | Unisearch Limited | Reactive ion etching of silica structures for integrated optics applications |
US6388648B1 (en) | 1996-11-05 | 2002-05-14 | Clarity Visual Systems, Inc. | Color gamut and luminance matching techniques for image display systems |
US5798535A (en) | 1996-12-20 | 1998-08-25 | Motorola, Inc. | Monolithic integration of complementary transistors and an LED array |
CN1119200C (en) | 1997-04-17 | 2003-08-27 | 德比尔斯工业钻石部门有限公司 | Sintering process for diamond and diamond growth |
GB9710062D0 (en) | 1997-05-16 | 1997-07-09 | British Tech Group | Optical devices and methods of fabrication thereof |
US5968528A (en) | 1997-05-23 | 1999-10-19 | The Procter & Gamble Company | Skin care compositions |
US5857053A (en) | 1997-06-17 | 1999-01-05 | Lucent Technologies Inc. | Optical fiber filter |
US6013871A (en) | 1997-07-02 | 2000-01-11 | Curtin; Lawrence F. | Method of preparing a photovoltaic device |
US5900623A (en) | 1997-08-11 | 1999-05-04 | Chrontel, Inc. | Active pixel sensor using CMOS technology with reverse biased photodiodes |
US6046466A (en) | 1997-09-12 | 2000-04-04 | Nikon Corporation | Solid-state imaging device |
KR100250448B1 (en) | 1997-11-06 | 2000-05-01 | 정선종 | Fabrication of silicon nano-structures using silicon nitride |
US5880495A (en) | 1998-01-08 | 1999-03-09 | Omnivision Technologies, Inc. | Active pixel with a pinned photodiode |
JP2002502120A (en) | 1998-02-02 | 2002-01-22 | ユニアックス コーポレイション | Organic semiconductor image sensor |
US6771314B1 (en) | 1998-03-31 | 2004-08-03 | Intel Corporation | Orange-green-blue (OGB) color system for digital image sensor applications |
US6301420B1 (en) | 1998-05-01 | 2001-10-09 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Multicore optical fibre |
TW417383B (en) | 1998-07-01 | 2001-01-01 | Cmos Sensor Inc | Silicon butting contact image sensor chip with line transfer and pixel readout (LTPR) structure |
US6463204B1 (en) | 1998-12-18 | 2002-10-08 | Fujitsu Network Communications, Inc. | Modular lightpipe system |
US6326649B1 (en) | 1999-01-13 | 2001-12-04 | Agere Systems, Inc. | Pin photodiode having a wide bandwidth |
WO2000052765A1 (en) | 1999-03-01 | 2000-09-08 | Photobit Corporation | Active pixel sensor with fully-depleted buried photoreceptor |
GB2348399A (en) | 1999-03-31 | 2000-10-04 | Univ Glasgow | Reactive ion etching with control of etch gas flow rate, pressure and rf power |
JP4242510B2 (en) | 1999-05-06 | 2009-03-25 | オリンパス株式会社 | Solid-state imaging device and driving method thereof |
US20020071468A1 (en) | 1999-09-27 | 2002-06-13 | Sandstrom Richard L. | Injection seeded F2 laser with pre-injection filter |
JP3706527B2 (en) | 1999-06-30 | 2005-10-12 | Hoya株式会社 | Electron beam drawing mask blanks, electron beam drawing mask, and method of manufacturing electron beam drawing mask |
US6124167A (en) | 1999-08-06 | 2000-09-26 | Micron Technology, Inc. | Method for forming an etch mask during the manufacture of a semiconductor device |
US6407439B1 (en) | 1999-08-19 | 2002-06-18 | Epitaxial Technologies, Llc | Programmable multi-wavelength detector array |
US6805139B1 (en) | 1999-10-20 | 2004-10-19 | Mattson Technology, Inc. | Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing |
US6465824B1 (en) | 2000-03-09 | 2002-10-15 | General Electric Company | Imager structure |
US6610351B2 (en) | 2000-04-12 | 2003-08-26 | Quantag Systems, Inc. | Raman-active taggants and their recognition |
US20020020846A1 (en) | 2000-04-20 | 2002-02-21 | Bo Pi | Backside illuminated photodiode array |
JP2002057359A (en) | 2000-06-01 | 2002-02-22 | Sharp Corp | Laminated solar battery |
US7555333B2 (en) | 2000-06-19 | 2009-06-30 | University Of Washington | Integrated optical scanning image acquisition and display |
WO2002001650A1 (en) | 2000-06-26 | 2002-01-03 | University Of Maryland | Mgzno based uv detectors |
EP1354229A2 (en) | 2000-07-10 | 2003-10-22 | Massachusetts Institute Of Technology | Graded index waveguide |
IL154390A0 (en) | 2000-08-11 | 2003-09-17 | Gen Electric | High pressure and high temperature production of diamonds |
US7301199B2 (en) | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
US20060175601A1 (en) | 2000-08-22 | 2006-08-10 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
US6542231B1 (en) | 2000-08-22 | 2003-04-01 | Thermo Finnegan Llc | Fiber-coupled liquid sample analyzer with liquid flow cell |
CN101887935B (en) | 2000-08-22 | 2013-09-11 | 哈佛学院董事会 | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
JP2002151715A (en) | 2000-11-08 | 2002-05-24 | Sharp Corp | Thin-film solar cell |
US6800870B2 (en) | 2000-12-20 | 2004-10-05 | Michel Sayag | Light stimulating and collecting methods and apparatus for storage-phosphor image plates |
AU2002219202A1 (en) | 2000-12-21 | 2002-07-01 | Stmicroelectronics Nv | Image sensor device comprising central locking |
US7294779B2 (en) | 2001-01-31 | 2007-11-13 | Shin-Etsu Handotai Co., Ltd. | Solar cell and method for producing the same |
US6815736B2 (en) | 2001-02-09 | 2004-11-09 | Midwest Research Institute | Isoelectronic co-doping |
JP3809342B2 (en) | 2001-02-13 | 2006-08-16 | 喜萬 中山 | Light emitting / receiving probe and light emitting / receiving probe apparatus |
EP1367819A1 (en) | 2001-02-28 | 2003-12-03 | Sony Corporation | Image input device |
KR101008294B1 (en) | 2001-03-30 | 2011-01-13 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US6563995B2 (en) | 2001-04-02 | 2003-05-13 | Lightwave Electronics | Optical wavelength filtering apparatus with depressed-index claddings |
US20040058407A1 (en) | 2001-04-10 | 2004-03-25 | Miller Scott E. | Reactor systems having a light-interacting component |
US20030006363A1 (en) | 2001-04-27 | 2003-01-09 | Campbell Scott Patrick | Optimization of alignment between elements in an image sensor |
US6709929B2 (en) | 2001-06-25 | 2004-03-23 | North Carolina State University | Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates |
US6846565B2 (en) | 2001-07-02 | 2005-01-25 | Board Of Regents, The University Of Texas System | Light-emitting nanoparticles and method of making same |
US8816443B2 (en) | 2001-10-12 | 2014-08-26 | Quantum Semiconductor Llc | Method of fabricating heterojunction photodiodes with CMOS |
US7109517B2 (en) | 2001-11-16 | 2006-09-19 | Zaidi Saleem H | Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors |
FR2832995B1 (en) | 2001-12-04 | 2004-02-27 | Thales Sa | CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE |
US6987258B2 (en) | 2001-12-19 | 2006-01-17 | Intel Corporation | Integrated circuit-based compound eye image sensor using a light pipe bundle |
US6720594B2 (en) | 2002-01-07 | 2004-04-13 | Xerox Corporation | Image sensor array with reduced pixel crosstalk |
US6566723B1 (en) | 2002-01-10 | 2003-05-20 | Agilent Technologies, Inc. | Digital color image sensor with elevated two-color photo-detector and related circuitry |
CA2458124C (en) | 2002-01-14 | 2011-03-08 | China Petroleum & Chemical Corporation | A power transmission mechanism, a fluid-driven impactor and its use |
US7078296B2 (en) | 2002-01-16 | 2006-07-18 | Fairchild Semiconductor Corporation | Self-aligned trench MOSFETs and methods for making the same |
US7192533B2 (en) | 2002-03-28 | 2007-03-20 | Koninklijke Philips Electronics N.V. | Method of manufacturing nanowires and electronic device |
US20040026684A1 (en) | 2002-04-02 | 2004-02-12 | Nanosys, Inc. | Nanowire heterostructures for encoding information |
US20030189202A1 (en) | 2002-04-05 | 2003-10-09 | Jun Li | Nanowire devices and methods of fabrication |
US6852619B2 (en) | 2002-05-31 | 2005-02-08 | Sharp Kabushiki Kaisha | Dual damascene semiconductor devices |
US6660930B1 (en) | 2002-06-12 | 2003-12-09 | Rwe Schott Solar, Inc. | Solar cell modules with improved backskin |
US7311889B2 (en) | 2002-06-19 | 2007-12-25 | Fujitsu Limited | Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes |
US7253017B1 (en) | 2002-06-22 | 2007-08-07 | Nanosolar, Inc. | Molding technique for fabrication of optoelectronic devices |
WO2004001853A2 (en) | 2002-06-25 | 2003-12-31 | Commissariat A L'energie Atomique | Imager |
US7335908B2 (en) | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
US6794671B2 (en) | 2002-07-17 | 2004-09-21 | Particle Sizing Systems, Inc. | Sensors and methods for high-sensitivity optical particle counting and sizing |
AU2003261205A1 (en) | 2002-07-19 | 2004-02-09 | President And Fellows Of Harvard College | Nanoscale coherent optical components |
US6781171B2 (en) | 2002-07-19 | 2004-08-24 | Dongbu Electronics Co., Ltd. | Pinned photodiode for a CMOS image sensor and fabricating method thereof |
WO2004017125A1 (en) | 2002-08-19 | 2004-02-26 | Massachusetts Institute Of Technology | Method of efficient carrier generation in silicon waveguide systems for switching/modulating purposes using parallel pump signal waveguides |
EP2399970A3 (en) | 2002-09-05 | 2012-04-18 | Nanosys, Inc. | Nanocomposites |
JP3672900B2 (en) | 2002-09-11 | 2005-07-20 | 松下電器産業株式会社 | Pattern formation method |
US8120079B2 (en) | 2002-09-19 | 2012-02-21 | Quantum Semiconductor Llc | Light-sensing device for multi-spectral imaging |
US7067867B2 (en) | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US7135728B2 (en) * | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
JP2004128060A (en) | 2002-09-30 | 2004-04-22 | Canon Inc | Growth method of silicon film, manufacturing method of solar cell, semiconductor substrate, and solar cell |
US20040124366A1 (en) | 2002-10-02 | 2004-07-01 | Haishan Zeng | Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices |
US7507293B2 (en) | 2002-10-28 | 2009-03-24 | Hewlett-Packard Development Company, L.P. | Photonic crystals with nanowire-based fabrication |
DE60333715D1 (en) | 2002-10-30 | 2010-09-23 | Hitachi Ltd | Process for the preparation of functional substrates having columnar microcolumns |
GB0227261D0 (en) | 2002-11-21 | 2002-12-31 | Element Six Ltd | Optical quality diamond material |
US7163659B2 (en) | 2002-12-03 | 2007-01-16 | Hewlett-Packard Development Company, L.P. | Free-standing nanowire sensor and method for detecting an analyte in a fluid |
EP1570528B1 (en) | 2002-12-09 | 2019-05-29 | Quantum Semiconductor, LLC | Cmos image sensor |
US6969897B2 (en) | 2002-12-10 | 2005-11-29 | Kim Ii John | Optoelectronic devices employing fibers for light collection and emission |
KR20110011751A (en) | 2002-12-13 | 2011-02-08 | 소니 주식회사 | Solid-state imaging device and production method therefor |
US6837212B2 (en) | 2002-12-19 | 2005-01-04 | Caterpillar Inc. | Fuel allocation at idle or light engine load |
CA2419704A1 (en) | 2003-02-24 | 2004-08-24 | Ignis Innovation Inc. | Method of manufacturing a pixel with organic light-emitting diode |
JP4144378B2 (en) | 2003-02-28 | 2008-09-03 | ソニー株式会社 | Image processing apparatus and method, recording medium, and program |
US7061028B2 (en) | 2003-03-12 | 2006-06-13 | Taiwan Semiconductor Manufacturing, Co., Ltd. | Image sensor device and method to form image sensor device |
US7050660B2 (en) | 2003-04-07 | 2006-05-23 | Eksigent Technologies Llc | Microfluidic detection device having reduced dispersion and method for making same |
US7388147B2 (en) | 2003-04-10 | 2008-06-17 | Sunpower Corporation | Metal contact structure for solar cell and method of manufacture |
US7339110B1 (en) | 2003-04-10 | 2008-03-04 | Sunpower Corporation | Solar cell and method of manufacture |
US6888974B2 (en) | 2003-04-23 | 2005-05-03 | Intel Corporation | On-chip optical signal routing |
US8212138B2 (en) | 2003-05-16 | 2012-07-03 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Reverse bias protected solar array with integrated bypass battery |
US7462774B2 (en) | 2003-05-21 | 2008-12-09 | Nanosolar, Inc. | Photovoltaic devices fabricated from insulating nanostructured template |
US7465661B2 (en) | 2003-05-28 | 2008-12-16 | The United States Of America As Represented By The Secretary Of The Navy | High aspect ratio microelectrode arrays |
WO2004113957A2 (en) | 2003-06-16 | 2004-12-29 | The Regents Of The University Of California | Apparatus for optical measurements on low-index non-solid materials based on arrow waveguides |
WO2005014784A2 (en) | 2003-06-20 | 2005-02-17 | Tumer Tumay O | System for molecular imaging |
US7265037B2 (en) | 2003-06-20 | 2007-09-04 | The Regents Of The University Of California | Nanowire array and nanowire solar cells and methods for forming the same |
US7416911B2 (en) | 2003-06-24 | 2008-08-26 | California Institute Of Technology | Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures |
US7170001B2 (en) | 2003-06-26 | 2007-01-30 | Advent Solar, Inc. | Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias |
US7560750B2 (en) | 2003-06-26 | 2009-07-14 | Kyocera Corporation | Solar cell device |
US7649141B2 (en) | 2003-06-30 | 2010-01-19 | Advent Solar, Inc. | Emitter wrap-through back contact solar cells on thin silicon wafers |
US7148528B2 (en) | 2003-07-02 | 2006-12-12 | Micron Technology, Inc. | Pinned photodiode structure and method of formation |
US7335259B2 (en) | 2003-07-08 | 2008-02-26 | Brian A. Korgel | Growth of single crystal nanowires |
US6927432B2 (en) | 2003-08-13 | 2005-08-09 | Motorola, Inc. | Vertically integrated photosensor for CMOS imagers |
US7330404B2 (en) | 2003-10-10 | 2008-02-12 | Seagate Technology Llc | Near-field optical transducers for thermal assisted magnetic and optical data storage |
US6960526B1 (en) | 2003-10-10 | 2005-11-01 | The United States Of America As Represented By The Secretary Of The Army | Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors |
US7019402B2 (en) | 2003-10-17 | 2006-03-28 | International Business Machines Corporation | Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor |
US7823783B2 (en) | 2003-10-24 | 2010-11-02 | Cognex Technology And Investment Corporation | Light pipe illumination system and method |
JP2005142268A (en) | 2003-11-05 | 2005-06-02 | Canon Inc | Photovoltaic element and its manufacturing method |
US20050116271A1 (en) | 2003-12-02 | 2005-06-02 | Yoshiaki Kato | Solid-state imaging device and manufacturing method thereof |
US6969899B2 (en) | 2003-12-08 | 2005-11-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor with light guides |
US7208094B2 (en) | 2003-12-17 | 2007-04-24 | Hewlett-Packard Development Company, L.P. | Methods of bridging lateral nanowires and device using same |
DE10360274A1 (en) | 2003-12-18 | 2005-06-02 | Tesa Ag | Optical data storer with a number of superposed storage sites each having a reflection layer, preferably a metal layer, where the absorption or reflection can be altered selectively by thermal treatment useful for storage of optical data |
CN100444338C (en) | 2003-12-22 | 2008-12-17 | 皇家飞利浦电子股份有限公司 | Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires |
JP2007515639A (en) | 2003-12-22 | 2007-06-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Optical nanowire biosensor based on energy transfer |
WO2005064687A1 (en) | 2003-12-23 | 2005-07-14 | Koninklijke Philips Electronics N.V. | Semiconductor device comprising a pn-heterojunction |
CN1898784A (en) | 2003-12-23 | 2007-01-17 | 皇家飞利浦电子股份有限公司 | Semiconductor device comprising a heterojunction |
US7647695B2 (en) | 2003-12-30 | 2010-01-19 | Lockheed Martin Corporation | Method of matching harnesses of conductors with apertures in connectors |
TWI228782B (en) | 2004-01-19 | 2005-03-01 | Toppoly Optoelectronics Corp | Method of fabricating display panel |
US7052927B1 (en) | 2004-01-27 | 2006-05-30 | Raytheon Company | Pin detector apparatus and method of fabrication |
US6969568B2 (en) | 2004-01-28 | 2005-11-29 | Freescale Semiconductor, Inc. | Method for etching a quartz layer in a photoresistless semiconductor mask |
US6927145B1 (en) | 2004-02-02 | 2005-08-09 | Advanced Micro Devices, Inc. | Bitline hard mask spacer flow for memory cell scaling |
JP2005252210A (en) | 2004-02-03 | 2005-09-15 | Sharp Corp | Solar cell |
US7254287B2 (en) | 2004-02-12 | 2007-08-07 | Panorama Labs, Pty Ltd. | Apparatus, method, and computer program product for transverse waveguided display system |
JP2005251804A (en) | 2004-03-01 | 2005-09-15 | Canon Inc | Imaging device |
US7471428B2 (en) | 2004-03-12 | 2008-12-30 | Seiko Epson Corporation | Contact image sensor module and image reading device equipped with the same |
US7106938B2 (en) | 2004-03-16 | 2006-09-12 | Regents Of The University Of Minnesota | Self assembled three-dimensional photonic crystal |
WO2005091392A1 (en) | 2004-03-18 | 2005-09-29 | Phoseon Technology, Inc. | Micro-reflectors on a substrate for high-density led array |
US7115971B2 (en) | 2004-03-23 | 2006-10-03 | Nanosys, Inc. | Nanowire varactor diode and methods of making same |
US7223641B2 (en) | 2004-03-26 | 2007-05-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, method for manufacturing the same, liquid crystal television and EL television |
US7019391B2 (en) | 2004-04-06 | 2006-03-28 | Bao Tran | NANO IC packaging |
TWI244159B (en) | 2004-04-16 | 2005-11-21 | Ind Tech Res Inst | Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowire |
US7061106B2 (en) | 2004-04-28 | 2006-06-13 | Advanced Chip Engineering Technology Inc. | Structure of image sensor module and a method for manufacturing of wafer level package |
KR20070011550A (en) | 2004-04-30 | 2007-01-24 | 나노시스, 인크. | Systems and methods for nanowire growth and harvesting |
JP4449565B2 (en) | 2004-05-12 | 2010-04-14 | ソニー株式会社 | Semiconductor device for physical quantity distribution detection |
US8280214B2 (en) | 2004-05-13 | 2012-10-02 | The Regents Of The University Of California | Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices |
KR101260981B1 (en) | 2004-06-04 | 2013-05-10 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | Methods and devices for fabricating and assembling printable semiconductor elements |
JP2006013403A (en) | 2004-06-29 | 2006-01-12 | Sanyo Electric Co Ltd | Solar cell, solar cell module, its manufacturing method, and its reparing method |
US8035142B2 (en) | 2004-07-08 | 2011-10-11 | Micron Technology, Inc. | Deuterated structures for image sensors and methods for forming the same |
US7427798B2 (en) | 2004-07-08 | 2008-09-23 | Micron Technology, Inc. | Photonic crystal-based lens elements for use in an image sensor |
FR2873492B1 (en) | 2004-07-21 | 2006-11-24 | Commissariat Energie Atomique | PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME |
JPWO2006013890A1 (en) | 2004-08-04 | 2008-05-01 | 松下電器産業株式会社 | Coherent light source |
US20060027071A1 (en) | 2004-08-06 | 2006-02-09 | Barnett Ronald J | Tensegrity musical structures |
US7713849B2 (en) * | 2004-08-20 | 2010-05-11 | Illuminex Corporation | Metallic nanowire arrays and methods for making and using same |
US7285812B2 (en) | 2004-09-02 | 2007-10-23 | Micron Technology, Inc. | Vertical transistors |
KR101214780B1 (en) | 2004-09-15 | 2012-12-21 | 인터젠엑스 인크. | Microfluidic devices |
US20060071290A1 (en) | 2004-09-27 | 2006-04-06 | Rhodes Howard E | Photogate stack with nitride insulating cap over conductive layer |
EP1643565B1 (en) | 2004-09-30 | 2020-03-04 | OSRAM Opto Semiconductors GmbH | Radiation detector |
US20080260225A1 (en) | 2004-10-06 | 2008-10-23 | Harold Szu | Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera |
US7544977B2 (en) | 2006-01-27 | 2009-06-09 | Hewlett-Packard Development Company, L.P. | Mixed-scale electronic interface |
US7208783B2 (en) | 2004-11-09 | 2007-04-24 | Micron Technology, Inc. | Optical enhancement of integrated circuit photodetectors |
KR100745595B1 (en) | 2004-11-29 | 2007-08-02 | 삼성전자주식회사 | Microlens of an image sensor and method for forming the same |
US7306963B2 (en) | 2004-11-30 | 2007-12-11 | Spire Corporation | Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices |
US7193289B2 (en) | 2004-11-30 | 2007-03-20 | International Business Machines Corporation | Damascene copper wiring image sensor |
TWI263802B (en) | 2004-12-03 | 2006-10-11 | Innolux Display Corp | Color filter |
US7235475B2 (en) | 2004-12-23 | 2007-06-26 | Hewlett-Packard Development Company, L.P. | Semiconductor nanowire fluid sensor and method for fabricating the same |
US7342268B2 (en) | 2004-12-23 | 2008-03-11 | International Business Machines Corporation | CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom |
US7245370B2 (en) | 2005-01-06 | 2007-07-17 | Hewlett-Packard Development Company, L.P. | Nanowires for surface-enhanced Raman scattering molecular sensors |
US8115093B2 (en) | 2005-02-15 | 2012-02-14 | General Electric Company | Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same |
JP2006261235A (en) | 2005-03-15 | 2006-09-28 | Toshiba Corp | Semiconductor device |
KR100688542B1 (en) | 2005-03-28 | 2007-03-02 | 삼성전자주식회사 | Vertical type nanotube semiconductor device and method of manufacturing the same |
WO2006110341A2 (en) | 2005-04-01 | 2006-10-19 | North Carolina State University | Nano-structured photovoltaic solar cells and related methods |
US7326915B2 (en) | 2005-04-01 | 2008-02-05 | Em4, Inc. | Wavelength stabilization for broadband light sources |
US20070238265A1 (en) | 2005-04-05 | 2007-10-11 | Keiichi Kurashina | Plating apparatus and plating method |
KR101145146B1 (en) | 2005-04-07 | 2012-05-14 | 엘지디스플레이 주식회사 | TFT and method of fabricating of the same |
US7272287B2 (en) | 2005-05-11 | 2007-09-18 | Fitel Usa Corp | Optical fiber filter for suppression of amplified spontaneous emission |
US7230286B2 (en) | 2005-05-23 | 2007-06-12 | International Business Machines Corporation | Vertical FET with nanowire channels and a silicided bottom contact |
TW201101476A (en) | 2005-06-02 | 2011-01-01 | Sony Corp | Semiconductor image sensor module and method of manufacturing the same |
GB0511300D0 (en) | 2005-06-03 | 2005-07-13 | Ct For Integrated Photonics Th | Control of vertical axis for passive alignment of optical components with wave guides |
US7262408B2 (en) | 2005-06-15 | 2007-08-28 | Board Of Trustees Of Michigan State University | Process and apparatus for modifying a surface in a work region |
US20090050204A1 (en) | 2007-08-03 | 2009-02-26 | Illuminex Corporation. | Photovoltaic device using nanostructured material |
JP4825982B2 (en) | 2005-06-29 | 2011-11-30 | 国立大学法人 奈良先端科学技術大学院大学 | Solid-state imaging device and signal readout method thereof |
US8084728B2 (en) | 2005-07-06 | 2011-12-27 | Capella Microsystems, Corp. | Optical sensing device |
DE102005033455A1 (en) | 2005-07-18 | 2007-01-25 | GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG | Drive device for linear movement of elongated bodies |
WO2007011047A1 (en) | 2005-07-22 | 2007-01-25 | Zeon Corporation | Grid polarizer and method for manufacturing same |
ATE392013T1 (en) | 2005-07-29 | 2008-04-15 | Imec Inter Uni Micro Electr | WAVELENGTH SENSITIVE PHOTO DETECTOR WITH ENGINEERED NANOSTRUCTURES |
US7683407B2 (en) | 2005-08-01 | 2010-03-23 | Aptina Imaging Corporation | Structure and method for building a light tunnel for use with imaging devices |
US7307327B2 (en) | 2005-08-04 | 2007-12-11 | Micron Technology, Inc. | Reduced crosstalk CMOS image sensors |
KR100750933B1 (en) | 2005-08-14 | 2007-08-22 | 삼성전자주식회사 | Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof |
US7485908B2 (en) | 2005-08-18 | 2009-02-03 | United States Of America As Represented By The Secretary Of The Air Force | Insulated gate silicon nanowire transistor and method of manufacture |
US7265328B2 (en) | 2005-08-22 | 2007-09-04 | Micron Technology, Inc. | Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor |
JP2009507397A (en) | 2005-08-22 | 2009-02-19 | キュー・ワン・ナノシステムズ・インコーポレイテッド | Nanostructure and photovoltaic cell implementing it |
US7943847B2 (en) | 2005-08-24 | 2011-05-17 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanoscale cometal structures |
WO2007025023A2 (en) | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Apparatus and methods for optical switching using nanoscale optics |
WO2007025013A2 (en) | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Nanoscale optical microscope |
US7736954B2 (en) | 2005-08-26 | 2010-06-15 | Sematech, Inc. | Methods for nanoscale feature imprint molding |
US20070052050A1 (en) | 2005-09-07 | 2007-03-08 | Bart Dierickx | Backside thinned image sensor with integrated lens stack |
US8592136B2 (en) | 2005-09-13 | 2013-11-26 | Affymetrix, Inc. | Methods for producing codes for microparticles |
US7608823B2 (en) | 2005-10-03 | 2009-10-27 | Teledyne Scientific & Imaging, Llc | Multimode focal plane array with electrically isolated commons for independent sub-array biasing |
US8133637B2 (en) | 2005-10-06 | 2012-03-13 | Headwaters Technology Innovation, Llc | Fuel cells and fuel cell catalysts incorporating a nanoring support |
US7286740B2 (en) | 2005-10-07 | 2007-10-23 | Sumitomo Electric Industries, Ltd. | Optical fiber, optical transmission line, optical module and optical transmission system |
US7585474B2 (en) | 2005-10-13 | 2009-09-08 | The Research Foundation Of State University Of New York | Ternary oxide nanostructures and methods of making same |
CN1956223A (en) | 2005-10-26 | 2007-05-02 | 松下电器产业株式会社 | Semiconductor device and method for fabricating the same |
WO2007056753A2 (en) | 2005-11-08 | 2007-05-18 | General Atomics | Apparatus and methods for use in flash detection |
US20070104441A1 (en) | 2005-11-08 | 2007-05-10 | Massachusetts Institute Of Technology | Laterally-integrated waveguide photodetector apparatus and related coupling methods |
JP2007134562A (en) | 2005-11-11 | 2007-05-31 | Sharp Corp | Solid-state imaging device and its manufacturing method |
US7728277B2 (en) | 2005-11-16 | 2010-06-01 | Eastman Kodak Company | PMOS pixel structure with low cross talk for active pixel image sensors |
US20070107773A1 (en) | 2005-11-17 | 2007-05-17 | Palo Alto Research Center Incorporated | Bifacial cell with extruded gridline metallization |
US7960251B2 (en) | 2005-12-01 | 2011-06-14 | Samsung Electronics Co., Ltd. | Method for producing nanowires using a porous template |
WO2007067257A2 (en) | 2005-12-02 | 2007-06-14 | Vanderbilt University | Broad-emission nanocrystals and methods of making and using same |
US7262400B2 (en) | 2005-12-02 | 2007-08-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor device having an active layer overlying a substrate and an isolating region in the active layer |
JP2007184566A (en) | 2005-12-06 | 2007-07-19 | Canon Inc | Semiconductor element using semiconductor nanowire, and display device and imaging device employing same |
US7439560B2 (en) | 2005-12-06 | 2008-10-21 | Canon Kabushiki Kaisha | Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same |
JP2007158119A (en) | 2005-12-06 | 2007-06-21 | Canon Inc | Electric element having nano wire and its manufacturing method, and electric element assembly |
US7524694B2 (en) | 2005-12-16 | 2009-04-28 | International Business Machines Corporation | Funneled light pipe for pixel sensors |
JP4745816B2 (en) | 2005-12-20 | 2011-08-10 | 富士通セミコンダクター株式会社 | Image processing circuit and image processing method |
US20070155025A1 (en) | 2006-01-04 | 2007-07-05 | Anping Zhang | Nanowire structures and devices for use in large-area electronics and methods of making the same |
US7368779B2 (en) | 2006-01-04 | 2008-05-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Hemi-spherical structure and method for fabricating the same |
KR100767629B1 (en) | 2006-01-05 | 2007-10-17 | 한국과학기술원 | Complementary Metal Oxide Semiconductor image sensor having high photosensitivity and method for fabricating thereof |
JP4952227B2 (en) | 2006-01-06 | 2012-06-13 | 富士通株式会社 | Fine particle size sorter |
US20070290193A1 (en) | 2006-01-18 | 2007-12-20 | The Board Of Trustees Of The University Of Illinois | Field effect transistor devices and methods |
JP2007201091A (en) | 2006-01-25 | 2007-08-09 | Fujifilm Corp | Process for fabricating solid state image sensor |
US20070187787A1 (en) | 2006-02-16 | 2007-08-16 | Ackerson Kristin M | Pixel sensor structure including light pipe and method for fabrication thereof |
US7358583B2 (en) | 2006-02-24 | 2008-04-15 | Tower Semiconductor Ltd. | Via wave guide with curved light concentrator for image sensing devices |
NZ570678A (en) | 2006-03-10 | 2010-10-29 | Stc Unm | Pulsed growth of GaN nanowires and applications in group III nitride semiconductor substrate materials and devices |
US7859587B2 (en) | 2006-03-24 | 2010-12-28 | Panasonic Corporation | Solid-state image pickup device |
US7718347B2 (en) | 2006-03-31 | 2010-05-18 | Applied Materials, Inc. | Method for making an improved thin film solar cell interconnect using etch and deposition process |
US20070246689A1 (en) | 2006-04-11 | 2007-10-25 | Jiaxin Ge | Transparent thin polythiophene films having improved conduction through use of nanomaterials |
KR20070101917A (en) | 2006-04-12 | 2007-10-18 | 엘지전자 주식회사 | Thin-film solar cell and fabrication method thereof |
US7381966B2 (en) | 2006-04-13 | 2008-06-03 | Integrated Micro Sensors, Inc. | Single-chip monolithic dual-band visible- or solar-blind photodetector |
US7566875B2 (en) | 2006-04-13 | 2009-07-28 | Integrated Micro Sensors Inc. | Single-chip monolithic dual-band visible- or solar-blind photodetector |
JP5934459B2 (en) | 2006-04-17 | 2016-06-15 | オムニビジョン テクノロジーズ, インコーポレイテッド | Arrayed imaging system and related method |
US7582857B2 (en) | 2006-04-18 | 2009-09-01 | The Trustees Of The University Of Pennsylvania | Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane |
TWI297223B (en) | 2006-04-25 | 2008-05-21 | Gigno Technology Co Ltd | Package module of light emitting diode |
US7924413B2 (en) | 2006-04-28 | 2011-04-12 | Hewlett-Packard Development Company, L.P. | Nanowire-based photonic devices |
US20070272828A1 (en) | 2006-05-24 | 2007-11-29 | Micron Technology, Inc. | Method and apparatus providing dark current reduction in an active pixel sensor |
JP5060740B2 (en) | 2006-05-26 | 2012-10-31 | シャープ株式会社 | Integrated circuit device, method for manufacturing the same, and display device |
WO2008057629A2 (en) | 2006-06-05 | 2008-05-15 | The Board Of Trustees Of The University Of Illinois | Photovoltaic and photosensing devices based on arrays of aligned nanostructures |
US7696964B2 (en) | 2006-06-09 | 2010-04-13 | Philips Lumileds Lighting Company, Llc | LED backlight for LCD with color uniformity recalibration over lifetime |
US7718995B2 (en) | 2006-06-20 | 2010-05-18 | Panasonic Corporation | Nanowire, method for fabricating the same, and device having nanowires |
US7579593B2 (en) | 2006-07-25 | 2009-08-25 | Panasonic Corporation | Night-vision imaging apparatus, control method of the same, and headlight module |
TWI305047B (en) | 2006-08-11 | 2009-01-01 | United Microelectronics Corp | Image sensor and the method for manufacturing the same |
US20080044984A1 (en) | 2006-08-16 | 2008-02-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors |
US7786376B2 (en) | 2006-08-22 | 2010-08-31 | Solexel, Inc. | High efficiency solar cells and manufacturing methods |
US7893348B2 (en) | 2006-08-25 | 2011-02-22 | General Electric Company | Nanowires in thin-film silicon solar cells |
JP4321568B2 (en) | 2006-08-29 | 2009-08-26 | ソニー株式会社 | Solid-state imaging device and imaging device |
JP2008066497A (en) | 2006-09-07 | 2008-03-21 | Sony Corp | Photodetector and method for manufacturing photodetector |
JP2010503981A (en) | 2006-09-19 | 2010-02-04 | クナノ アーベー | Nanoscale field-effect transistor structure |
US7361989B1 (en) | 2006-09-26 | 2008-04-22 | International Business Machines Corporation | Stacked imager package |
KR100772114B1 (en) | 2006-09-29 | 2007-11-01 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
JP4296193B2 (en) | 2006-09-29 | 2009-07-15 | 株式会社東芝 | Optical device |
JP5116277B2 (en) | 2006-09-29 | 2013-01-09 | 株式会社半導体エネルギー研究所 | Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus |
US7525170B2 (en) | 2006-10-04 | 2009-04-28 | International Business Machines Corporation | Pillar P-i-n semiconductor diodes |
US8094247B2 (en) | 2006-10-12 | 2012-01-10 | Cambrios Technologies Corporation | Nanowire-based transparent conductors and applications thereof |
WO2008147431A2 (en) | 2006-10-12 | 2008-12-04 | Cambrios Technologies Corporation | Functional films formed by highly oriented deposition of nanowires |
US7427525B2 (en) | 2006-10-13 | 2008-09-23 | Hewlett-Packard Development Company, L.P. | Methods for coupling diamond structures to photonic devices |
US7608905B2 (en) | 2006-10-17 | 2009-10-27 | Hewlett-Packard Development Company, L.P. | Independently addressable interdigitated nanowires |
US7888159B2 (en) | 2006-10-26 | 2011-02-15 | Omnivision Technologies, Inc. | Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating |
US7537951B2 (en) | 2006-11-15 | 2009-05-26 | International Business Machines Corporation | Image sensor including spatially different active and dark pixel interconnect patterns |
US7781781B2 (en) | 2006-11-17 | 2010-08-24 | International Business Machines Corporation | CMOS imager array with recessed dielectric |
EP1926211A3 (en) | 2006-11-21 | 2013-08-14 | Imec | Diamond enhanced thickness shear mode resonator |
US20080128760A1 (en) | 2006-12-04 | 2008-06-05 | Electronics And Telecommunications Research Institute | Schottky barrier nanowire field effect transistor and method for fabricating the same |
KR101232179B1 (en) | 2006-12-04 | 2013-02-12 | 엘지디스플레이 주식회사 | Apparatus And Method of Fabricating Thin Film Pattern |
KR100993056B1 (en) | 2006-12-05 | 2010-11-08 | 주식회사 엘지화학 | Method for high resolution ink-jet print using pre-patterned substrate and conductive substrate manufactured using the same |
JP4795214B2 (en) | 2006-12-07 | 2011-10-19 | チェイル インダストリーズ インコーポレイテッド | Wire grid polarizer and manufacturing method thereof |
US8049203B2 (en) | 2006-12-22 | 2011-11-01 | Qunano Ab | Nanoelectronic structure and method of producing such |
US8183587B2 (en) | 2006-12-22 | 2012-05-22 | Qunano Ab | LED with upstanding nanowire structure and method of producing such |
CN102255018B (en) | 2006-12-22 | 2013-06-19 | 昆南诺股份有限公司 | Nanostructured LED array with collimating reflectors and manufacture method thereof |
KR100830587B1 (en) | 2007-01-10 | 2008-05-21 | 삼성전자주식회사 | Image sensor and method of displaying a image using the same |
WO2008084830A1 (en) | 2007-01-10 | 2008-07-17 | Nec Corporation | Optical control element |
US8003883B2 (en) | 2007-01-11 | 2011-08-23 | General Electric Company | Nanowall solar cells and optoelectronic devices |
US7977568B2 (en) | 2007-01-11 | 2011-07-12 | General Electric Company | Multilayered film-nanowire composite, bifacial, and tandem solar cells |
WO2008094517A1 (en) | 2007-01-30 | 2008-08-07 | Solasta, Inc. | Photovoltaic cell and method of making thereof |
US20090104160A1 (en) | 2007-02-01 | 2009-04-23 | Moraga Biotechnology Corporation | Mobilization of Stem Cells After Trauma and Methods Therefor |
US7960807B2 (en) | 2007-02-09 | 2011-06-14 | Intersil Americas Inc. | Ambient light detectors using conventional CMOS image sensor process |
KR20080079058A (en) | 2007-02-26 | 2008-08-29 | 엘지전자 주식회사 | Thin-film solar cell module and fabrication method thereof |
WO2008112764A1 (en) | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
EP1971129A1 (en) | 2007-03-16 | 2008-09-17 | STMicroelectronics (Research & Development) Limited | Improvements in or relating to image sensors |
US20080233280A1 (en) | 2007-03-22 | 2008-09-25 | Graciela Beatriz Blanchet | Method to form a pattern of functional material on a substrate by treating a surface of a stamp |
SE532485C2 (en) | 2007-03-27 | 2010-02-02 | Qunano Ab | Nanostructure for charge storage |
US7906778B2 (en) | 2007-04-02 | 2011-03-15 | Hewlett-Packard Development Company, L.P. | Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures |
US7803698B2 (en) | 2007-04-09 | 2010-09-28 | Hewlett-Packard Development Company, L.P. | Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire |
US8027086B2 (en) | 2007-04-10 | 2011-09-27 | The Regents Of The University Of Michigan | Roll to roll nanoimprint lithography |
US7652280B2 (en) | 2007-04-11 | 2010-01-26 | General Electric Company | Light-emitting device and article |
CN103839955B (en) | 2007-04-18 | 2016-05-25 | 因维萨热技术公司 | For material, the system and method for electrooptical device |
ATE545036T1 (en) | 2007-04-19 | 2012-02-15 | Oerlikon Solar Ag | TEST EQUIPMENT FOR AUTOMATED QUALITY CONTROL OF THIN FILM SOALR MODULES |
US7719688B2 (en) | 2007-04-24 | 2010-05-18 | Hewlett-Packard Development Company, L.P. | Optical device and method of making the same |
US7719678B2 (en) | 2007-04-25 | 2010-05-18 | Hewlett-Packard Development Company, L.P. | Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same |
US8212235B2 (en) | 2007-04-25 | 2012-07-03 | Hewlett-Packard Development Company, L.P. | Nanowire-based opto-electronic device |
TW200915551A (en) | 2007-05-10 | 2009-04-01 | Koninkl Philips Electronics Nv | Spectrum detector and manufacturing method therefore |
JP2008288243A (en) | 2007-05-15 | 2008-11-27 | Sony Corp | Solid-state imaging device, manufacturing method thereof and imaging device |
KR100901236B1 (en) | 2007-05-16 | 2009-06-08 | 주식회사 동부하이텍 | Image Sensor and Method for Manufacturing thereof |
KR101426941B1 (en) | 2007-05-30 | 2014-08-06 | 주성엔지니어링(주) | Solar cell and method for fabricating the same |
US7812692B2 (en) | 2007-06-01 | 2010-10-12 | Georgia Tech Research Corporation | Piezo-on-diamond resonators and resonator systems |
US20100186809A1 (en) | 2007-06-19 | 2010-07-29 | Lars Samuelson | Nanowire- based solar cell structure |
US7736979B2 (en) | 2007-06-20 | 2010-06-15 | New Jersey Institute Of Technology | Method of forming nanotube vertical field effect transistor |
US7663202B2 (en) | 2007-06-26 | 2010-02-16 | Hewlett-Packard Development Company, L.P. | Nanowire photodiodes and methods of making nanowire photodiodes |
US7586077B2 (en) | 2007-07-18 | 2009-09-08 | Mesa Imaging Ag | Reference pixel array with varying sensitivities for time of flight (TOF) sensor |
CN101842909A (en) | 2007-07-19 | 2010-09-22 | 加利福尼亚技术学院 | Structures of ordered arrays of semiconductors |
US8154127B1 (en) | 2007-07-30 | 2012-04-10 | Hewlett-Packard Development Company, L.P. | Optical device and method of making the same |
US8090225B2 (en) | 2007-08-01 | 2012-01-03 | Silverbrook Research Pty Ltd | Interactive handheld scanner |
JP5285880B2 (en) | 2007-08-31 | 2013-09-11 | シャープ株式会社 | Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module |
WO2009030980A2 (en) | 2007-09-06 | 2009-03-12 | Quantum Semiconductor Llc | Photonic via waveguide for pixel arrays |
US7786440B2 (en) | 2007-09-13 | 2010-08-31 | Honeywell International Inc. | Nanowire multispectral imaging array |
US7623560B2 (en) | 2007-09-27 | 2009-11-24 | Ostendo Technologies, Inc. | Quantum photonic imagers and methods of fabrication thereof |
WO2009042901A1 (en) | 2007-09-28 | 2009-04-02 | Regents Of The University Of Minnesota | Image sensor with high dynamic range imaging and integrated motion detection |
KR101608953B1 (en) | 2007-11-09 | 2016-04-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Photoelectric conversion device and method for manufacturing the same |
KR20090048920A (en) | 2007-11-12 | 2009-05-15 | 삼성전자주식회사 | Camera module and electronic apparatus including the same |
FR2923602B1 (en) | 2007-11-12 | 2009-11-20 | Commissariat Energie Atomique | ELECTROMAGNETIC RADIATION DETECTOR WITH NANOFIL THERMOMETER AND METHOD OF MAKING SAME |
FR2923651A1 (en) | 2007-11-13 | 2009-05-15 | Commissariat Energie Atomique | PN junction forming method for nanowire of e.g. LED, involves polarizing conductor element such that regions are created in nanowire, where regions comprise conductivity carriers provided with PN junction between them |
US7822300B2 (en) | 2007-11-20 | 2010-10-26 | Aptina Imaging Corporation | Anti-resonant reflecting optical waveguide for imager light pipe |
US8588920B2 (en) | 2007-11-21 | 2013-11-19 | The Trustees Of Boston College | Apparatus and methods for visual perception using an array of nanoscale waveguides |
KR101385250B1 (en) | 2007-12-11 | 2014-04-16 | 삼성전자주식회사 | CMOS image sensor |
KR101000064B1 (en) | 2007-12-18 | 2010-12-10 | 엘지전자 주식회사 | Hetero-junction silicon solar cell and fabrication method thereof |
US8106289B2 (en) | 2007-12-31 | 2012-01-31 | Banpil Photonics, Inc. | Hybrid photovoltaic device |
US7880207B2 (en) | 2008-01-14 | 2011-02-01 | International Business Machines Corporation | Photo detector device |
US8030729B2 (en) | 2008-01-29 | 2011-10-04 | Hewlett-Packard Development Company, L.P. | Device for absorbing or emitting light and methods of making the same |
US20090189145A1 (en) | 2008-01-30 | 2009-07-30 | Shih-Yuan Wang | Photodetectors, Photovoltaic Devices And Methods Of Making The Same |
US20090188552A1 (en) | 2008-01-30 | 2009-07-30 | Shih-Yuan Wang | Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same |
US9009573B2 (en) | 2008-02-01 | 2015-04-14 | Qualcomm Incorporated | Method and apparatus for facilitating concatenated codes for beacon channels |
JP2011511464A (en) | 2008-02-03 | 2011-04-07 | ンリテン エナジー コーポレイション | Thin film photovoltaic device and related manufacturing method |
US20090199597A1 (en) | 2008-02-07 | 2009-08-13 | Danley Jeffrey D | Systems and methods for collapsing air lines in nanostructured optical fibers |
US20090201400A1 (en) | 2008-02-08 | 2009-08-13 | Omnivision Technologies, Inc. | Backside illuminated image sensor with global shutter and storage capacitor |
CN101981703A (en) | 2008-02-15 | 2011-02-23 | 新加坡科技研究局 | Photodetector with valence-mending adsorbate region and a method of fabrication thereof |
US20090206405A1 (en) | 2008-02-15 | 2009-08-20 | Doyle Brian S | Fin field effect transistor structures having two dielectric thicknesses |
US20090266418A1 (en) | 2008-02-18 | 2009-10-29 | Board Of Regents, The University Of Texas System | Photovoltaic devices based on nanostructured polymer films molded from porous template |
CN101527327B (en) | 2008-03-07 | 2012-09-19 | 清华大学 | Solar cell |
US8101526B2 (en) | 2008-03-12 | 2012-01-24 | City University Of Hong Kong | Method of making diamond nanopillars |
US8016993B2 (en) | 2008-03-14 | 2011-09-13 | Stuart Alfred Hoenig | Electrostatic desalination and water purification |
EP2263262A2 (en) | 2008-03-21 | 2010-12-22 | Oerlikon Trading AG, Trübbach | Photovoltaic cell and methods for producing a photovoltaic cell |
KR101448152B1 (en) | 2008-03-26 | 2014-10-07 | 삼성전자주식회사 | Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same |
JP4770857B2 (en) | 2008-03-27 | 2011-09-14 | 日本テキサス・インスツルメンツ株式会社 | Semiconductor device |
KR20090105732A (en) | 2008-04-03 | 2009-10-07 | 삼성전자주식회사 | Solar cell |
JP2011523902A (en) | 2008-04-14 | 2011-08-25 | バンドギャップ エンジニアリング, インコーポレイテッド | Process for manufacturing nanowire arrays |
KR20090109980A (en) | 2008-04-17 | 2009-10-21 | 한국과학기술연구원 | Visible-range semiconductor nanowire-based photosensor and method for manufacturing the same |
WO2009135078A2 (en) | 2008-04-30 | 2009-11-05 | The Regents Of The University Of California | Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate |
US7902540B2 (en) | 2008-05-21 | 2011-03-08 | International Business Machines Corporation | Fast P-I-N photodetector with high responsitivity |
US8138493B2 (en) | 2008-07-09 | 2012-03-20 | Qunano Ab | Optoelectronic semiconductor device |
KR101435519B1 (en) | 2008-07-24 | 2014-08-29 | 삼성전자주식회사 | Image sensor having light focusing structure |
US7863625B2 (en) | 2008-07-24 | 2011-01-04 | Hewlett-Packard Development Company, L.P. | Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface |
US8198796B2 (en) | 2008-07-25 | 2012-06-12 | Konica Minolta Holdings, Inc. | Transparent electrode and production method of same |
US8198706B2 (en) | 2008-07-25 | 2012-06-12 | Hewlett-Packard Development Company, L.P. | Multi-level nanowire structure and method of making the same |
JP2010040672A (en) | 2008-08-01 | 2010-02-18 | Oki Semiconductor Co Ltd | Semiconductor device, and fabrication method thereof |
US20110248315A1 (en) | 2008-08-14 | 2011-10-13 | Brookhaven Science Associates | Structured pillar electrodes |
US20100304061A1 (en) | 2009-05-26 | 2010-12-02 | Zena Technologies, Inc. | Fabrication of high aspect ratio features in a glass layer by etching |
US9082673B2 (en) | 2009-10-05 | 2015-07-14 | Zena Technologies, Inc. | Passivated upstanding nanostructures and methods of making the same |
US8866065B2 (en) | 2010-12-13 | 2014-10-21 | Zena Technologies, Inc. | Nanowire arrays comprising fluorescent nanowires |
US9515218B2 (en) | 2008-09-04 | 2016-12-06 | Zena Technologies, Inc. | Vertical pillar structured photovoltaic devices with mirrors and optical claddings |
US8519379B2 (en) | 2009-12-08 | 2013-08-27 | Zena Technologies, Inc. | Nanowire structured photodiode with a surrounding epitaxially grown P or N layer |
JP2012502466A (en) | 2008-09-04 | 2012-01-26 | クナノ アーベー | Nanostructured photodiode |
US8507840B2 (en) | 2010-12-21 | 2013-08-13 | Zena Technologies, Inc. | Vertically structured passive pixel arrays and methods for fabricating the same |
US8299472B2 (en) | 2009-12-08 | 2012-10-30 | Young-June Yu | Active pixel sensor with nanowire structured photodetectors |
US9000353B2 (en) | 2010-06-22 | 2015-04-07 | President And Fellows Of Harvard College | Light absorption and filtering properties of vertically oriented semiconductor nano wires |
US8274039B2 (en) | 2008-11-13 | 2012-09-25 | Zena Technologies, Inc. | Vertical waveguides with various functionality on integrated circuits |
US8835831B2 (en) | 2010-06-22 | 2014-09-16 | Zena Technologies, Inc. | Polarized light detecting device and fabrication methods of the same |
US8229255B2 (en) | 2008-09-04 | 2012-07-24 | Zena Technologies, Inc. | Optical waveguides in image sensors |
US8269985B2 (en) | 2009-05-26 | 2012-09-18 | Zena Technologies, Inc. | Determination of optimal diameters for nanowires |
US20100148221A1 (en) | 2008-11-13 | 2010-06-17 | Zena Technologies, Inc. | Vertical photogate (vpg) pixel structure with nanowires |
US8791470B2 (en) | 2009-10-05 | 2014-07-29 | Zena Technologies, Inc. | Nano structured LEDs |
US20130112256A1 (en) | 2011-11-03 | 2013-05-09 | Young-June Yu | Vertical pillar structured photovoltaic devices with wavelength-selective mirrors |
US8546742B2 (en) | 2009-06-04 | 2013-10-01 | Zena Technologies, Inc. | Array of nanowires in a single cavity with anti-reflective coating on substrate |
US7646943B1 (en) | 2008-09-04 | 2010-01-12 | Zena Technologies, Inc. | Optical waveguides in image sensors |
US8384007B2 (en) | 2009-10-07 | 2013-02-26 | Zena Technologies, Inc. | Nano wire based passive pixel image sensor |
US8748799B2 (en) | 2010-12-14 | 2014-06-10 | Zena Technologies, Inc. | Full color single pixel including doublet or quadruplet si nanowires for image sensors |
US8735797B2 (en) | 2009-12-08 | 2014-05-27 | Zena Technologies, Inc. | Nanowire photo-detector grown on a back-side illuminated image sensor |
CA2736450A1 (en) | 2008-09-09 | 2010-03-18 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
KR101143706B1 (en) | 2008-09-24 | 2012-05-09 | 인터내셔널 비지네스 머신즈 코포레이션 | Nanoelectronic device |
US7972885B1 (en) | 2008-09-25 | 2011-07-05 | Banpil Photonics, Inc. | Broadband imaging device and manufacturing thereof |
US20110247676A1 (en) | 2008-09-30 | 2011-10-13 | The Regents Of The University Of California | Photonic Crystal Solar Cell |
US20100090341A1 (en) | 2008-10-14 | 2010-04-15 | Molecular Imprints, Inc. | Nano-patterned active layers formed by nano-imprint lithography |
US8591661B2 (en) | 2009-12-11 | 2013-11-26 | Novellus Systems, Inc. | Low damage photoresist strip method for low-K dielectrics |
EP2180526A2 (en) | 2008-10-23 | 2010-04-28 | Samsung Electronics Co., Ltd. | Photovoltaic device and method for manufacturing the same |
FR2937791B1 (en) | 2008-10-24 | 2010-11-26 | Thales Sa | POLARIMETRIC IMAGING DEVICE OPTIMIZED IN RELATION TO THE POLARIZATION CONTRAST |
US20100104494A1 (en) | 2008-10-24 | 2010-04-29 | Meng Yu-Fei | Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure/High-Temperature Annealing |
US8932940B2 (en) | 2008-10-28 | 2015-01-13 | The Regents Of The University Of California | Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication |
CA2744706C (en) | 2008-11-26 | 2015-11-24 | Microlink Devices, Inc. | Solar cell with a backside via to contact the emitter layer |
KR20100063536A (en) | 2008-12-03 | 2010-06-11 | 삼성에스디아이 주식회사 | Light emission device and display device using same as light source |
CN102326258A (en) | 2008-12-19 | 2012-01-18 | 惠普开发有限公司 | Photovoltaic structure and on short column, adopt the manufacturing approach of nano wire |
KR20100079058A (en) | 2008-12-30 | 2010-07-08 | 주식회사 동부하이텍 | Image sensor and method for manufacturing thereof |
US20100200065A1 (en) | 2009-02-12 | 2010-08-12 | Kyu Hyun Choi | Photovoltaic Cell and Fabrication Method Thereof |
TW201034212A (en) | 2009-03-13 | 2010-09-16 | guo-hong Shen | Thin-film solar cell structure |
US8242353B2 (en) | 2009-03-16 | 2012-08-14 | International Business Machines Corporation | Nanowire multijunction solar cell |
US7888155B2 (en) | 2009-03-16 | 2011-02-15 | Industrial Technology Research Institute | Phase-change memory element and method for fabricating the same |
US20100244108A1 (en) | 2009-03-31 | 2010-09-30 | Glenn Eric Kohnke | Cmos image sensor on a semiconductor-on-insulator substrate and process for making same |
TWI425643B (en) | 2009-03-31 | 2014-02-01 | Sony Corp | Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure |
CN102348657A (en) | 2009-04-09 | 2012-02-08 | E.I.内穆尔杜邦公司 | Glass compositions used in conductors for photovoltaic cells |
WO2010119916A1 (en) | 2009-04-13 | 2010-10-21 | Olympus Corporation | Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte |
WO2010126519A1 (en) | 2009-04-30 | 2010-11-04 | Hewlett-Packard Development Company | Photonic device and method of making same |
EP2356696A4 (en) | 2009-05-06 | 2013-05-15 | Thinsilicon Corp | Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks |
US8809672B2 (en) | 2009-05-27 | 2014-08-19 | The Regents Of The University Of California | Nanoneedle plasmonic photodetectors and solar cells |
JP5504695B2 (en) | 2009-05-29 | 2014-05-28 | ソニー株式会社 | Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus |
US9551650B2 (en) | 2009-06-01 | 2017-01-24 | Cornell University | Integrated optofluidic system using microspheres |
US8211735B2 (en) | 2009-06-08 | 2012-07-03 | International Business Machines Corporation | Nano/microwire solar cell fabricated by nano/microsphere lithography |
WO2010144459A2 (en) | 2009-06-10 | 2010-12-16 | Thinsilicon Corporation | Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks |
WO2010144866A2 (en) | 2009-06-11 | 2010-12-16 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Microgrid imaging polarimeters with frequency domain reconstruction |
KR101139458B1 (en) | 2009-06-18 | 2012-04-30 | 엘지전자 주식회사 | Sollar Cell And Fabrication Method Thereof |
US8304759B2 (en) | 2009-06-22 | 2012-11-06 | Banpil Photonics, Inc. | Integrated image sensor system on common substrate |
US8558336B2 (en) | 2009-08-17 | 2013-10-15 | United Microelectronics Corp. | Semiconductor photodetector structure and the fabrication method thereof |
EP2290718B1 (en) | 2009-08-25 | 2015-05-27 | Samsung Electronics Co., Ltd. | Apparatus for generating electrical energy and method for manufacturing the same |
US8319309B2 (en) | 2009-08-28 | 2012-11-27 | Samsung Electro-Mechanics Co., Ltd. | Semiconductor device and method for manufacturing of the same |
KR101067114B1 (en) | 2009-09-08 | 2011-09-22 | 삼성전기주식회사 | Semiconductor component and method for manufacturing of the same |
KR101058593B1 (en) | 2009-09-08 | 2011-08-22 | 삼성전기주식회사 | Semiconductor device and manufacturing method thereof |
KR101051578B1 (en) | 2009-09-08 | 2011-07-22 | 삼성전기주식회사 | Semiconductor device and manufacturing method thereof |
US20110084212A1 (en) | 2009-09-22 | 2011-04-14 | Irvine Sensors Corporation | Multi-layer photon counting electronic module |
WO2011047359A2 (en) | 2009-10-16 | 2011-04-21 | Cornell University | Method and apparatus including nanowire structure |
US8115097B2 (en) | 2009-11-19 | 2012-02-14 | International Business Machines Corporation | Grid-line-free contact for a photovoltaic cell |
US8563395B2 (en) | 2009-11-30 | 2013-10-22 | The Royal Institute For The Advancement Of Learning/Mcgill University | Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof |
US20120006390A1 (en) | 2009-12-08 | 2012-01-12 | Yijie Huo | Nano-wire solar cell or detector |
CN102652366A (en) | 2009-12-15 | 2012-08-29 | 索尼公司 | Pphotoelectric conversion element and method for manufacturing photoelectric conversion element |
JP5608384B2 (en) | 2010-02-05 | 2014-10-15 | 東京エレクトロン株式会社 | Semiconductor device manufacturing method and plasma etching apparatus |
EP2537010A4 (en) | 2010-02-19 | 2013-12-25 | Pacific Biosciences California | Optics collection and detection system and method |
US8816324B2 (en) | 2010-02-25 | 2014-08-26 | National University Corporation Hokkaido University | Semiconductor device and method for manufacturing semiconductor device |
US9263612B2 (en) | 2010-03-23 | 2016-02-16 | California Institute Of Technology | Heterojunction wire array solar cells |
US20130037100A1 (en) | 2010-04-09 | 2013-02-14 | Charlotte PLATZER BJÖRKMAN | Thin Film Photovoltaic Solar Cells |
US8194197B2 (en) | 2010-04-13 | 2012-06-05 | Sharp Kabushiki Kaisha | Integrated display and photovoltaic element |
TWI409963B (en) | 2010-05-07 | 2013-09-21 | Huang Chung Cheng | Coaxial nanowire solar cell structure |
EP2572242A4 (en) | 2010-05-21 | 2014-02-19 | Univ Princeton | Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same |
US8431817B2 (en) | 2010-06-08 | 2013-04-30 | Sundiode Inc. | Multi-junction solar cell having sidewall bi-layer electrical interconnect |
US8324010B2 (en) | 2010-06-29 | 2012-12-04 | Himax Imaging, Inc. | Light pipe etch control for CMOS fabrication |
US8878055B2 (en) | 2010-08-09 | 2014-11-04 | International Business Machines Corporation | Efficient nanoscale solar cell and fabrication method |
US9231133B2 (en) | 2010-09-10 | 2016-01-05 | International Business Machines Corporation | Nanowires formed by employing solder nanodots |
JP5884486B2 (en) | 2010-09-30 | 2016-03-15 | 三菱マテリアル株式会社 | Composition for antireflection film for solar cell, antireflection film for solar cell, method for producing antireflection film for solar cell, and solar cell |
WO2012088481A2 (en) | 2010-12-22 | 2012-06-28 | California Institute Of Technology | Heterojunction microwire array semiconductor devices |
SG185248A1 (en) | 2011-05-05 | 2012-11-29 | Agency Science Tech & Res | A photodetector and a method of forming the same |
US20120318336A1 (en) | 2011-06-17 | 2012-12-20 | International Business Machines Corporation | Contact for silicon heterojunction solar cells |
US9331220B2 (en) | 2011-06-30 | 2016-05-03 | International Business Machines Corporation | Three-dimensional conductive electrode for solar cell |
US9406824B2 (en) | 2011-11-23 | 2016-08-02 | Quswami, Inc. | Nanopillar tunneling photovoltaic cell |
US20130220406A1 (en) | 2012-02-27 | 2013-08-29 | Sharp Kabushiki Kaisha | Vertical junction solar cell structure and method |
KR20150103661A (en) | 2012-10-26 | 2015-09-11 | 글로 에이비 | Nanowire led structure and method for manufacturing the same |
-
2010
- 2010-12-13 US US12/966,514 patent/US9406709B2/en not_active Expired - Fee Related
-
2016
- 2016-08-01 US US15/225,264 patent/US20160344964A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100295019A1 (en) * | 2007-02-27 | 2010-11-25 | The Regents Of The University Of California | Nanowire photodetector and image sensor with internal gain |
WO2008135905A2 (en) * | 2007-05-07 | 2008-11-13 | Nxp B.V. | A photosensitive device and a method of manufacturing a photosensitive device |
US20100127153A1 (en) * | 2007-05-07 | 2010-05-27 | Nxp B.V. | Photosensitive device and a method of manufacturing a photosensitive device |
Also Published As
Publication number | Publication date |
---|---|
US9406709B2 (en) | 2016-08-02 |
US20110309233A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160344964A1 (en) | Methods for fabricating and using nanowires | |
US9543458B2 (en) | Full color single pixel including doublet or quadruplet Si nanowires for image sensors | |
US9082673B2 (en) | Passivated upstanding nanostructures and methods of making the same | |
KR101468369B1 (en) | Vertically structured passive pixel arrays and methods for fabricating the same | |
US9177985B2 (en) | Array of nanowires in a single cavity with anti-reflective coating on substrate | |
US8274039B2 (en) | Vertical waveguides with various functionality on integrated circuits | |
US20150214261A1 (en) | Multispectral imaging using silicon nanowires | |
JP5300344B2 (en) | Photodetection element, imaging element, photodetection method, and imaging method | |
WO2011044101A1 (en) | Nanostructured leds | |
CN103620785A (en) | Passivated upstanding nanostructures and methods of making the same | |
US10481420B2 (en) | Optical detector and filter employing resonant nano-/microparticles | |
Park et al. | Tandem photodetectors containing silicon nanowires with selective spectral absorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZENA TECHNOLOGIES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WOBER, MUNIB;REEL/FRAME:039306/0075 Effective date: 20110603 Owner name: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEO, KWANYONG;STEINVURZEL, PAUL;SCHONBRUN, ETHAN;AND OTHERS;SIGNING DATES FROM 20110519 TO 20110524;REEL/FRAME:039306/0001 |
|
AS | Assignment |
Owner name: WU, XIANHONG, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041901/0038 Effective date: 20151015 |
|
AS | Assignment |
Owner name: HABBAL, FAWWAZ, MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:041941/0895 Effective date: 20161230 |
|
AS | Assignment |
Owner name: PILLSBURY WINTHROP SHAW PITTMAN LLP, VIRGINIA Free format text: SECURITY INTEREST;ASSIGNOR:ZENA TECHNOLOGIES, INC.;REEL/FRAME:042100/0230 Effective date: 20170320 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |