US20150272490A1 - Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit - Google Patents

Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit Download PDF

Info

Publication number
US20150272490A1
US20150272490A1 US14/673,256 US201514673256A US2015272490A1 US 20150272490 A1 US20150272490 A1 US 20150272490A1 US 201514673256 A US201514673256 A US 201514673256A US 2015272490 A1 US2015272490 A1 US 2015272490A1
Authority
US
United States
Prior art keywords
lancet
housing
holding member
trigger
lancets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/673,256
Inventor
Steven Schraga
Paul R. Fuller
Brian Schwartz
David A. Carhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stat Medical Devices Inc
Original Assignee
Stat Medical Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stat Medical Devices Inc filed Critical Stat Medical Devices Inc
Priority to US14/673,256 priority Critical patent/US20150272490A1/en
Publication of US20150272490A1 publication Critical patent/US20150272490A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/1518Security or safety mechanism to be deactivated for forwarding next piercing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • A61B5/1411Devices for taking blood samples by percutaneous method, e.g. by lancet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150175Adjustment of penetration depth
    • A61B5/150198Depth adjustment mechanism at the proximal end of the carrier of the piercing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • A61B5/150519Details of construction of hub, i.e. element used to attach the single-ended needle to a piercing device or sampling device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150534Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15126Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides
    • A61B5/15128Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides comprising 2D- or 3D-shaped elements, e.g. cams, curved guide rails or threads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15149Arrangement of piercing elements relative to each other
    • A61B5/15155Piercing elements which are specially shaped or are provided with fittings or attachments to facilitate nesting, stacking or joining together end-to-end or side-by-side
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15157Geometry of stocking means or arrangement of piercing elements therein
    • A61B5/15174Piercing elements stocked in the form of a stack or pile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15182Means for keeping track or checking of the total number of piercing elements already used or the number of piercing elements still remaining in the stocking, e.g. by check window, counter, display

Definitions

  • the invention relates to a lancet device which utilizes a multi-lancet unit having the form of lancets arranged in serried and/or one in front of the other. Lancet devices are used to penetrate and puncture the skin in order to allow the taking of a blood sample for testing.
  • the present device allows the user to use the device a number of times without having to reinstall a lancet after each use.
  • Lancet devices are commonly used to prick the skin of the user so that one or more drops of blood may be extracted for testing.
  • Some users such as diabetics, for example, may have to test their blood sugar levels several times a day. This may be accomplished by the user using a simple needle. However, this procedure is often problematic for the user since the needle may be difficult to handle. Additionally, many users simply cannot perform the procedure owing to either a fear of needles or because they lack a steady hand. As a result, lancet devices have been developed which allow the user to more easily and reliably perform this procedure.
  • a lancet device which does not require the user to handle the lancets (or which minimizes handling of the lancets) so as to prevent inadvertent pricking of the user's skin.
  • a lancet device which can accurately and precisely control the depth of penetration of the needle relative to the surface of the user's skin while also being easy to use. It is also desirable for the user to be able to use and adjust the depth penetrating setting with just one hand and/or with less effort that currently required with existing lancet devices.
  • lancet device which provides for convenient, reliable and easy adjustment of penetration depth.
  • lancet device which includes plural lancets which can be replaced and/or a device which can be disposed of after all of the lancets are used.
  • a lancet device comprising a housing, a trigger, a system for placing the lancet device in a trigger-set or armed position, and a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing.
  • Each lancet comprises a front end, a needle which extends from the front end, and a rear end.
  • the front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.
  • the plurality of lancets may comprise two lancets.
  • the plurality of lancets may comprise at least three lancets.
  • the plurality of lancets may be between five lancets and twenty lancets.
  • the plurality of lancets may be between eight lancets and twelve lancets.
  • Each of the plurality of lancets may comprise a generally cylindrical portion.
  • Each of the plurality of lancets may comprise a generally circular cross-section when viewed perpendicular to a center axis of the plurality of lancets.
  • At least one of the plurality of lancets may comprise a locking mechanism.
  • the locking mechanism may be at least one of a circumferential locking recess and a tapered recess.
  • Each of the plurality of lancets may comprise a locking recess.
  • the lancet device may further comprise a depth adjustment system.
  • the lancet device may further comprise a depth adjustment system and a holding member which houses the multi-lancet unit.
  • the lancet device may further comprise a movable holding member which is configured to receive the multi-lancet unit and a rotatably mounted depth adjustment element.
  • the lancet device may further comprise at least one of a system for removing or ejecting a lancet of the plurality of lancets and a system for advancing or positioning an unused lancet into a position previously held by a used lancet that has been removed.
  • the lancet device may further comprise a manually activated system for removing or ejecting a used lancet of the multi-lancet unit.
  • the lancet device may further comprise a system for removing or ejecting a used lancet of the multi-lancet unit and for causing removal of a front cap.
  • the invention also provides for a method of puncturing a surface of skin using the lancet device of any of the types described herein, wherein the method comprises arranging the lancet device adjacent against a user's skin and triggering the lancet device so that one of the plurality of lancet is caused to penetrate the user's skin.
  • the invention also provides for a lancet device comprising a housing, a trigger, a depth adjustment system, and a plurality of lancets arranged one in front of the other and positioned in the housing.
  • Each lancet comprises a front end, a needle which extends from the front end, and a rear end.
  • the front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.
  • the plurality of lancets may comprise at least three lancets.
  • the plurality of lancets may be between eight lancets and twelve lancets.
  • Each of the plurality of lancets may comprise a generally cylindrical portion.
  • the lancet device may further comprise a system for placing the lancet device in a trigger-set or armed position.
  • the lancet device may further comprise a holding member which houses the plurality of lancets.
  • the plurality of lancets may comprise a multi-lancet unit and further comprising a system for removing or ejecting a lancet of the multi-lancet unit.
  • the plurality of lancets may comprise a multi-lancet unit and further comprising a manually activated system for removing or ejecting a used lancet of the multi-lancet unit.
  • the plurality of lancets may comprise a multi-lancet unit and further comprising a system for removing or ejecting a used lancet of the multi-lancet unit and for causing removal of a front cap.
  • the invention also provides a method of puncturing a surface of skin using the lancet device of the type described herein, wherein the method comprises arranging the lancet device adjacent against a user's skin and triggering the lancet device so that one of the plurality of lancet is caused to penetrate the user's skin.
  • the invention also provides for a lancet device comprising a trigger, a depth adjustment system, a system for placing the lancet device is a trigger-set position, a plurality of lancets arranged one in front of the other, a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and a system for axially moving or advancing the multi-lancet unit.
  • the invention also provides for a lancet device comprising at least one, preferably most, and most preferably all of the features shown in the drawings of the instant application.
  • the invention also provides for a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing.
  • a first lancet comprises a front end, a needle which extends from the front end, and a rear opening sized to receive therein a lancet needle of a second lancet arranged behind the first lancet.
  • the first and second lancets are connected together via at least one of a releasable snap connection and a connection formed by frictional engagement between an annular flange of the second lancet and a recess arranged in a rear end of the first lancet
  • FIG. 1 shows a left side view of a non-limiting embodiment of the invention
  • FIG. 2 shows a top side view of FIG. 1 ;
  • FIG. 3 shows a perspective view of the device shown in FIGS. 1 and 2 with the body portion being shown transparent in order to illustrate the inner workings of the device;
  • FIG. 4 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1 ;
  • FIG. 5 shows a side cross-section view of FIG. 1 .
  • the device is shown in an initial or intermediate state;
  • FIG. 6 shows a side cross-section view of FIG. 5 (cross-hatching removed for purposes of clarity) after the device is placed in an arming or trigger-set position;
  • FIG. 7 shows a side cross-section view of FIG. 6 after the device is triggered and before the lancet holding member is automatically moved back to the position shown in FIG. 5 ;
  • FIG. 8 shows a side cross-section view of FIG. 2 .
  • the device is shown in a triggered state and before the lancet holding member is automatically moved back to the position shown in FIG. 5 ;
  • FIG. 9 shows an enlarged cross-section view of a rear portion of the lancet device shown in FIGS. 1-3 .
  • the arming back cap is shown in an initial position;
  • FIG. 10 shows the enlarged cross-section view of FIG. 9 with the arming back cap shown in an arming position
  • FIG. 11 shows an enlarged cross-section view of a rear portion of the lancet device and illustrates an amount of axial movement that the back cap can experience before the back cap causes rearward axial movement;
  • FIG. 12 shows another cross-section view of a rear portion of the lancet device.
  • the back cap is shown moving the lancet holding member to an armed or trigger-set position;
  • FIG. 13 shows a front portion of the lancet device shown in FIG. 8 with the lancet device being in an initial or intermediate position;
  • FIG. 14 shows the front portion of FIG. 13 with the lancet device being in an armed or trigger-set position
  • FIG. 15 shows a rear portion of the lancet device with the depth adjustment member being shown transparent and illustrating how one of the projecting members of the back cap engages with one of the tapered recesses of the depth adjustment thumb wheel;
  • FIG. 16 shows an enlarged cross-section view of a rear portion of the lancet device and illustrates the adjustable distance which controls the depth of penetration of the lancet needle;
  • FIG. 17 shows a rear portion of the lancet device and illustrates the two tapered recesses (shown superimposed on each other) of the depth adjustment member or thumb wheel;
  • FIG. 18 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1 and illustrates the three steps utilized for advancing the multi-lancet unit within the lancet holding member.
  • the advance button is depressed so that a lancet engaging member engages with a third lancet.
  • the advance button is slid forward slightly to cause the slide plate to slide in the forward direction. This initial forward movement automatically causes the locking member to pivot and engage with a shoulder of the lancet holding member in step 3 .
  • Continued forward sliding movement of the slide plate causes the multi-lancet unit to move or advance forwards while the lancet holding member is axially retained by the locking member;
  • FIG. 19 shows an exploded view of the system for advancing the multi-lancet unit and shows a portion of the lower housing, a portion of the lancet holding member, as well as the advance button, the lancet engaging member, the slide plate (shown transparent for purposes of illustration), the locking member, the advance button spring, and the slide return spring;
  • FIG. 20 shows an assembled view of the system for advancing the multi-lancet unit and shows the advance button (shown transparent for purposes of illustration), the lancet engaging member, the slide plate, the locking member and the advance button spring;
  • FIG. 21 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1 and illustrates the system for advancing the multi-lancet unit within the lancet holding member in an initial position;
  • FIG. 22 shows an assembled side view of the system for advancing the multi-lancet unit shown in FIG. 21 ;
  • FIG. 23 shows the view of FIG. 21 after the system for advancing the multi-lancet unit is activated, i.e., the advance button is depressed and slid slightly forward;
  • FIG. 24 shows the view of FIG. 23 after the system for advancing the multi-lancet unit is moved to a final activated position, i.e., the advance button is slid all of the way forward. This causes the front cap to be ejected and allows the user to break or snap-off the used lancet in order to expose a fresh or new lancet. The user can then release the advance button and replace the front cap in order to place the device back into an initial or intermediate position;
  • FIG. 25 shows a perspective inside view of the upper or left-side housing part used in the two-piece housing of the lancet device shown in FIGS. 1-3 ;
  • FIG. 26 shows a perspective outside view of the upper or left-side housing part shown in FIG. 25 ;
  • FIG. 27 shows a perspective outside view of the lower or right-side housing part used in the two-piece housing of the lancet device shown in FIGS. 1-3 ;
  • FIG. 28 shows a perspective inside view of the lower or right-side housing part shown in FIG. 27 ;
  • FIG. 29 shows a perspective front side view of the front cap used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 30 shows a perspective inside view of the front cap shown in FIG. 29 ;
  • FIG. 31 shows a perspective rear side view of the back cap used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 32 shows a perspective inside view of the back cap shown in FIG. 31 ;
  • FIG. 33 shows a perspective rear side view of the thumb wheel used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 34 shows a perspective front side view of the thumb wheel shown in FIG. 33 ;
  • FIG. 35 shows a perspective top side view of the trigger used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 36 shows a perspective inside view of the trigger shown in FIG. 35 ;
  • FIG. 37 shows a perspective top side view of the advance button used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 38 shows a perspective inside view of the advance button shown in FIG. 37 ;
  • FIG. 39 shows a perspective rear side view of the lancet holding member used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 40 shows a perspective front view of the lancet holding member shown in FIG. 39 ;
  • FIG. 41 shows a perspective side view of the advance button spring used on the lancet device of FIGS. 1-3 ;
  • FIG. 42 shows a perspective side view of the slide return spring used on the lancet device of FIGS. 1-3 ;
  • FIG. 43 shows a perspective side view of the dual-purposes spring used on the lancet device of FIGS. 1-3 .
  • the spring has a front portion which causes the lancet holding member to move to the puncturing position and automatically retracts the lancet holding member after doing so.
  • the spring also has a rear portion which causes the back cap to move to an initial position after the user moves the back to the arming position and release the back cap;
  • FIG. 44 shows a perspective top side view of the slide plate used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 45 shows a perspective inside view of the slide plate shown in FIG. 44 ;
  • FIG. 46 shows a perspective top side view of the lancet engaging member used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 47 shows a perspective bottom side view of the lancet engaging member shown in FIG. 46 ;
  • FIG. 48 shows a perspective left-side view of the locking member used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 49 shows a perspective right-side view of the locking member shown in FIG. 48 ;
  • FIG. 50 shows a perspective left-side view of the last lancet of the multi-lancet unit used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 51 shows a perspective right-side view of the last lancet shown in FIG. 50 ;
  • FIG. 52 shows a perspective rear side view of the first lancet (as well as all of the other lancets except the last lancet) of the multi-lancet unit used in the lancet device shown in FIGS. 1-3 ;
  • FIG. 53 shows a perspective side view of the first lancet shown in FIG. 52 .
  • FIGS. 1-53 show one non-limiting embodiment of a lancet device LD.
  • the lancet device LD includes the following main components: a housing or body 10 which preferably comprises housing parts 10 A and 10 B, a front cap 20 , a back cap 30 , a trigger 40 , a lancet advance button or member 50 , a slide plate or member 60 , a lancet engaging member 70 , a locking member 80 , a lancet holding member 90 , a depth adjustment or thumb wheel member 100 , and three springs S 1 , S 2 and S 3 .
  • a housing or body 10 which preferably comprises housing parts 10 A and 10 B, a front cap 20 , a back cap 30 , a trigger 40 , a lancet advance button or member 50 , a slide plate or member 60 , a lancet engaging member 70 , a locking member 80 , a lancet holding member 90 , a depth adjustment or thumb wheel member 100 , and three springs S 1
  • the lancet device LD can preferably have, by way of non-limiting example, an overall length OL which is approximately 133 mm and an overall width or diameter OD of approximately 27 mm.
  • the lancet device LD can thus be held comfortably in a user's hand such that the user can rotate (both clockwise and counterclockwise) the depth adjustment thumb wheel 100 with the user's thumb and index finger, as will be described in detail later on, to set the depth of penetration prior to use.
  • the user can also depress and slide forward the advance button 50 in order cause a forward advance of the lancet and simultaneously cause removal of the front cap 20 , as will be described in detail later on.
  • the user can also depress the trigger 40 with either the user's thumb of index finger.
  • the lancet device LD includes a removable front cap 20 which covers a front area of the lancet device LD that includes a front end of the lancet holding member 90 , a first lancet FL, and a projecting portion 64 of the slide member 60 .
  • the first lancet FL is axially retained inside an elongated cylindrical opening 98 of the lancet holding member 90 by a deflectable tapered projection 97 which engages with a tapered portion TCS (see FIG. 53 ) of a lancet located directly behind the first lancet FL.
  • TCS tapered portion
  • the multi-lancet unit formed by the last lancet LL, the first lancet FL, and all of the lancets arranged therebetween) to move axially within the lancet holding member 90 .
  • the multi-lancet unit has an overall diameter LOD which is smaller than an internal diameter of the opening 98 .
  • the dimension LOD can be about 6.4 mm and the spacing or clearance (the difference between the two diameters divided by two) between these diameters can be between about 0.3 mm and about 1 mm.
  • the front cap 20 can be removably secured to the housing 10 in a number of ways such as via a snap connection of the type disclosed in U.S. Pat. No. 5,908,434 to SCHRAGA and U.S. Pat. No. 6,530,937 to SCHRAGA.
  • the disclosure of each of these documents is hereby expressly incorporated by reference in its entirety.
  • the lancet device LD functions as follows: In the position shown in FIGS. 5 , 9 , 11 and 13 , the lancet device LD is shown in the static or initial position. This is the preferred position that the device would assume during shipping, storage, and after the device is triggered or fired. In this position, the front or triggering spring portion S 1 a of the spring S 1 is in a relaxed or non-compressed or expanded position. The back or arming spring portion S 1 b of the spring S 1 is also in a relaxed position, i.e., a non-expanded position, with the spring portion S 1 b applying a biasing force which forces the back cap 30 to a forward-most position. The advance button 50 and the trigger 40 are also in an initial position.
  • the lancet device LD is shown in the loading, arming or trigger-set position. This is the position which arms the lancet device and occurs when the user moves the back cap 30 rearwardly to cause the deflecting member 96 to become releasably locked to the retaining shoulder RS (see FIG. 25 ).
  • the spring portion S 1 a is in a compressed state or position.
  • Spring portion S 1 b is in an expanded state or position such that if the user were to release the back cap 30 , the back cap 30 would automatically be moved to the position shown in FIGS. 5 and 7 .
  • the arming position shown in FIG. 6 can take place when the user grips the back cap 30 with one hand and the body 10 with the other hand and pulls the back cap 30 away from the body 10 .
  • the lancet device LD is shown in the firing position. This is the position in which a user depresses the trigger 40 so as to cause the member 96 to deflect inwardly and release from the shoulder RS. This releases the energy stored in the spring S 1 a and causes the lancet holding member 90 to move forwardly, which automatically causes the forward-most or first lancet FL to project out of the front surface of the front cap 20 and cause a puncture in a user's skin.
  • the position shown in FIGS. 7 and 8 merely shows a snap-shot of the lancet needle LN in the extended or puncturing position, i.e., defined by the puncturing depth PD.
  • the lancet needle LN would move from the position in FIG. 6 (fully retracted or trigger-set position) to that of FIGS. 7 and 8 (fully extended or puncturing position), and then finally to that of FIG. 5 (initial position) in a fraction of a second.
  • the front spring portion S 1 a is in a substantially fully expanded position owing to the forward movement of the member 90 as caused by the rapid axial expansion of the spring S 1 a acting on the flange 94 of member 90 .
  • the member 90 moves to a maximum forward position shown in FIG.
  • the spring S 1 a which has substantially reached a maximum amount of allowable expansion, will contract axially back to an original position, which, in turn, places the lancet device LD back in the position shown in FIG. 5 .
  • the user has the option of activating the lancet advancing system LAS in order to cause removal of the front cap 20 and to allow for removal of the forward-most or used lancet FL so that the next or fresh lancet can assume the position as the first lancet FL as shown in FIG. 4 .
  • the user can set a depth of penetration of the lancet device LD before the device is triggered or after the device is triggered. This can occur by the user rotating the thumb wheel 100 in either clockwise or counterclockwise directions. Such rotational movement determines the distance FM, i.e., the amount of free movement that the back cap 30 can experience in a rearward direction before it starts moving the lancet holding member 90 rearwardly. This distance FM also determines the amount of forward axial movement of the lancet holding member 90 as discussed above. This distance FM changes as a result of the rotational position of tapered recesses 105 a and 105 b of the thumb wheel 100 (see FIG.
  • the back cap 30 is kept from rotating substantially relative to the housing 10 by frictional or wedging engagement between the second end SE of the spring S 1 (whose connecting portion CP is trapped or fixed to the housing by flanges 10 A 7 and 10 B 7 ) and the generally cylindrical annular groove formed between wall portions 38 and 34 .
  • FIG. 18 illustrates the three steps utilized for advancing the multi-lancet unit within the lancet holding member 90 .
  • the advance button 50 is depressed in the direction of the vertical arrow which causes the spring S 2 to be compressed and causes the lancet engaging member 70 to pass through the slot 99 (see FIG. 39 ) and engage with the third lancet.
  • the advance button 70 is slid forward slightly against the biasing force of spring S 3 which causes the slide plate 60 to slide in the forward direction. This initial forward movement of the slide plate 60 automatically causes the locking member 80 to pivot and engage with shoulder LS of the lancet holding member 90 in step 3 .
  • FIGS. 18 and 21 illustrates the system LAS for advancing the multi-lancet unit installed in the lancet device LD in an initial position.
  • FIG. 23 shows the view of FIG.
  • FIG. 24 shows the view of FIG. 23 after the system LAS for advancing the multi-lancet unit is moved to a final activated position, i.e., the advance button 50 is slid all of the way forward.
  • the user can then release the advance button 50 and re-install the front cap 20 in order to place the device LD back into an initial or intermediate position shown in FIG. 5 .
  • the left-side or upper housing part 10 A includes a front end 10 A 1 which serves as a mounting area for the front cap 20 and a rear end 10 A 2 .
  • a front flange 10 A 3 is arranged in an area of the front end of the housing part 10 A and includes a half or semi-circular opening 10 A 4 which (together with half-opening 10 B 4 ) is sized and configured to receive therein (allowing movement therethrough) a front end portion of the lancet holding member 90 (see FIGS. 39 and 40 ).
  • the housing part 10 A also has a main body portion 10 A 5 which is preferably ergonomically shaped.
  • a projection 10 A 6 extends or projects from the body portion 10 A 5 and includes a mounting opening which is sized and configured to receive therein the mounting projection 86 of the pivotally mounted locking member 80 (see FIGS. 48 and 49 ).
  • a rear flange 10 A 7 is arranged in an area of the rear end of the housing part 10 A and includes a half-circular opening 10 A 8 which together with half-opening 10 B 8 is sized and configured to receive therein (allowing movement therethrough) a rear end portion of the lancet holding member 90 (see FIGS. 39 and 40 ).
  • a rear generally half-cylindrical mounting surface 10 A 9 is arranged in an area of the rear end of the housing part 10 A and together with half-cylindrical surface 10 B 9 is sized and configured to receive thereon (allowing rotational movement) the thumb wheel 100 (see FIGS. 33 and 34 ).
  • a rear generally half or semi-cylindrical surface 10 A 16 is arranged in an area of the rear end of the housing part 10 A and together with half-cylindrical surface 10 B 16 is sized and configured to receive therein (allowing sliding movement) the generally cylindrical surface 33 of the back cap 30 (see FIGS. 31 and 32 ).
  • a trigger opening 10 A 10 is formed in the body portion 10 A 5 and is sized and configured to receive therein the projecting portions 43 a and 43 b of the trigger 40 (see FIGS. 35 and 36 ).
  • the projecting portions 43 a and 43 b of the trigger 40 prevent removal of the trigger 40 from the housing part 10 A, but allow the trigger 40 to move against the biasing force of two integrally formed deflecting members 10 A 11 which function as flat springs and bias the trigger 40 towards an extended or initial position.
  • Each deflectable member 10 A 11 is deflected by contact with one of projections 44 of the trigger 40 when the trigger 40 is depressed.
  • a retaining shoulder RS is formed in the body portion 10 A 5 and is configured to releasably engage and/or lock with a deflecting portion 96 of the lancet holding member 90 (see FIGS. 39 and 40 ). This releasable engagement is shown in FIG. 14 .
  • An indented section 10 A 12 is arranged in an area of the front end of the housing part 10 A and together with indented section 10 B 12 forms an area for the user to activate the lancet advancing system LAS (see FIGS. 18-24 ).
  • a half-slot 10 A 13 is arranged in an area of the front end of the housing part 10 A and together with half-slot 10 B 13 forms a guide slot which guides the sliding movement of the slide plate 60 between an initial and final position (see FIGS. 23 and 24 ).
  • the slide plate 60 contacts stop surface 10 A 14 in the initial position shown in FIG. 23 (as a result of the biasing force of the spring S 3 ) and contacts stop surface 10 A 15 in the final position shown in FIG. 24 (as a result of the user causing compression of the spring S 3 ).
  • the housing part 10 A can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 10 A can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 25 and 26 .
  • the right-side or lower housing part 10 B includes a front end 10 B 1 which serves as a mounting area for the front cap 20 and a rear end 10 B 2 .
  • a front flange 10 B 3 is arranged in an area of the front end of the housing part 10 B and includes a half-circular opening 10 B 4 which (together with half-opening 10 A 4 ) is sized and configured to receive therein (allowing movement therethrough) a front end portion of the lancet holding member 90 (see FIGS. 39 and 40 ).
  • the housing part 10 B also has a main body portion 10 B 5 which is preferably ergonomically shaped.
  • a projection 10 B 6 extends or projects from the body portion 10 B 5 and includes a mounting opening which is sized and configured to receive therein the mounting projection 87 of the pivotally mounted locking member 80 (see FIGS. 48 and 49 ).
  • a rear flange 10 B 7 is arranged in an area of the rear end of the housing part 10 B and includes a half-circular opening 10 B 8 which together with half-opening 10 A 8 is sized and configured to receive therein (allowing movement therethrough) a rear end portion of the lancet holding member 90 (see FIGS. 39 and 40 ).
  • a rear generally half-cylindrical mounting surface 10 B 9 is arranged in an area of the rear end of the housing part 10 B and together with half-cylindrical surface 10 A 9 is sized and configured to receive thereon (allowing rotational movement) the thumb wheel 100 (see FIGS. 33 and 34 ).
  • a rear generally half-cylindrical surface 10 B 16 is arranged in an area of the rear end of the housing part 10 B and together with half-cylindrical surface 10 A 16 is sized and configured to receive therein (allowing sliding movement) the generally cylindrical surface 33 of the back cap 30 (see FIGS. 31 and 32 ).
  • a projection 10 B 16 projects from the flange 10 B 3 and functions as a mounting hub for a forward end of the spring S 3 (see FIGS.
  • a recess or indentation 10 B 17 is formed in the flange 10 B 7 and is configured to receive therein and (together with flange 10 A 7 ) fixedly secure the connecting portion CP of the spring S 1 (see FIG. 43 ).
  • An indented section 10 B 12 is arranged in an area of the front end of the housing part 10 B and together with indented section 10 A 12 forms an area for the user to activate the lancet advancing system LAS (see FIGS. 18-24 ).
  • a half-slot 10 B 13 is arranged in an area of the front end of the housing part 10 B and together with half-slot 10 A 13 forms a guide slot which guides the sliding movement of the slide plate 60 between an initial and final position (see FIGS. 23 and 24 ).
  • the housing part 10 B can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 10 B can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 25 and 26 .
  • the front cap 20 includes a skin contacting surface 25 which includes a lancet needle opening 24 sized and located to allow one of the lancet needles LN to pass or extend therethrough.
  • the front cap 20 has an outer tapered generally rectangular surface 22 , a rear end 21 , and a generally planar front surface 23
  • the front cap 20 preferably include mechanisms, i.e., a recess and projection, to ensure that the front cap 20 is removably mounted to the front end of the housing 10 .
  • the front cap 20 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the front cap 20 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 29 and 30 .
  • the back cap 30 includes a front end 31 and a generally cylindrical through opening 32 which is sized to allow the rear end of the lancet holding member 90 to move therein (see e.g., FIGS. 9 and 10 ).
  • An enlarged rear portion 34 sized and configured to allow the user to grip the back cap 30 .
  • the back cap 30 also includes two oppositely arranged projections 35 a and 35 b which are sized to extend into two spacings formed by the two grooves 105 a and 105 b and the cylindrical surface formed by surfaces 10 A 9 and 10 B 9 .
  • projections 35 a and 35 b have tapered front surfaces 36 a and 36 b which are adapted to slidably engage with tapered surfaces 106 a and 106 b of the semi-circumferential grooves 105 a and 105 b .
  • the depth of penetration PD (see FIG. 8 ) is adjusted or predetermined by the relative rotational position of the tapered front surfaces 36 a and 36 b and groove surfaces 106 a and 106 b .
  • a shoulder 37 is configured to abut the ends 10 A 2 and 10 B 2 of the housing 10 when the back cap 30 is in an initial or resting position (see e.g., FIG. 5 ). As is shown in FIG.
  • the back cap 30 also includes a generally cylindrical inner sleeve portion 38 which has an inwardly facing tapered circumferential shoulder 39 which is configured to contact the outward facing circumferential projection 92 .
  • Contact between projections 39 and 92 takes place when the back cap 30 is moved to the arming position shown in FIGS. 10 and 12 , as well as when the lancet holding member 90 moves to the fully extended or puncturing position shown in FIGS. 7 and 8 .
  • the annular space formed by the inner circumferential surface of portion 34 and the outer cylindrical surface of portion 38 is sized to receive therein and securely wedge or trap the second end SE of the spring S 1 . This allows the spring portion S 1 b to bias the back cap 30 towards the position shown in FIG.
  • the back cap 30 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the back cap 30 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 31 and 32 .
  • the depth adjustment member or thumb wheel 100 includes an annular rear end 101 which is configured to slidably engage with portions of shoulder 37 and an annular front end 102 which is configured to slidably engage with the shoulder formed by annular shoulder portions 10 A 18 and 10 B 18 .
  • a generally cylindrical through opening 103 is sized to rotatably engaged with and mount to cylindrical surfaces 10 A 9 and 10 B 9 .
  • the thumb wheel 100 also includes an outer surface 104 having ribs and indentations which allow a user to easily grip the thumb wheel 100 and rotate it relative to the housing 10 in each of a clockwise and counterclockwise directions. Other types of friction surfaces can also be utilized.
  • the thumb wheel 100 also includes two oppositely arranged semi-circumferential grooves 105 a and 105 b which open to the rear end 101 and are sized and configured to receive therein the two projections 35 a and 35 b and the cylindrical surface formed by surfaces 10 A 9 and 10 B 9 .
  • Tapered surfaces 106 a and 106 b of the semi-circumferential grooves 105 a and 105 b are configured to slidably engage with tapered front surfaces 36 a and 36 b .
  • the depth of penetration PD (see FIG.
  • the lancet device LD can utilize a system for indicating to the user the position of depth adjustment, i.e., thumb wheel 100 , so that the user can determine whether to change the depth of penetration.
  • This system can, by way of non-limiting example, take the form of indicia, e.g., numbers or letters, arranged on the housing 10 in an area of the thumb wheel 100 .
  • An indicator e.g., an arrow head, can be arranged on the thumb wheel 100 .
  • the thumb wheel 100 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the thumb wheel 100 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 33 and 34 .
  • the trigger 40 includes a generally rectangular top surface 41 which is configured to be contacted by a user finger.
  • the trigger 40 also includes two oppositely arranged projections 43 a and 43 b which are configured to snap into the opening 10 A 10 and prevent removal of the trigger 40 once installed on the body portion 10 A.
  • Two generally circular projections 44 are spaced apart and configured to contact free end portions of the two deflectable members 10 A 11 .
  • a generally rectangular projection 45 is configured to contact the deflectable member 96 and cause the shoulder of the deflectable member 96 (see FIGS. 39 and 40 ) to disengage from the retaining shoulder RS when the lancet device LD is in a trigger-set position (see e.g., FIG.
  • the trigger 40 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the trigger 40 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 35 and 36 .
  • the advance member or button 50 includes a generally circular top surface 51 which is configured to be contacted by a user finger.
  • a generally rectangular bottom end 52 is arranged at a bottom of a generally rectangular projection which slidably engages with rectangular opening 66 (see FIG. 44 ) and has two oppositely arranged planar surfaces 55 and 56 .
  • a through slot is formed by surfaces 50 a - 58 b and 59 a - 59 b .
  • These surfaces 50 a - 58 b and 59 a - 59 b are configured to frictionally and/or securely engaged with the oppositely arranged projections 77 and 78 of the lancet engaging member 70 (see FIGS. 46 and 47 ).
  • the member 50 also includes a side surface 53 , a bottom surface 54 , and a generally cylindrical opening 57 .
  • the opening 57 is sized and configured to receive therein the advance button spring S 2 (see 41 and FIGS. 18-20 ). The spring S 2 is compressed when the button 50 is moved towards the plate 60 (see FIG. 23 ) and more specifically when surface 54 in the opening 57 moves toward the plate 60 .
  • the two projections formed by surfaces 58 a , 58 b and 55 and by surfaces 59 a , 59 b and 56 are each sized to pass through the generally rectangular through openings 66 a and 66 b of the plate member 60 .
  • the button 50 When the button 50 is depressed, the spring S 2 is compressed and the lancet engaging member 70 (secured to the member 50 ) passes into the slot 99 and engages with one of the lancets (see FIG. 23 ).
  • the advance button 50 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the button 50 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 37 and 38 .
  • the lancet holding member 90 includes an annular front end 91 and an annular rear end which includes a generally circular circumferential shoulder 92 configured to contact shoulder 39 of the back cap 30 .
  • the member 90 has a generally cylindrical body portion 93 sized to slidably engaged with the circular openings formed semi-circular indentations 10 A 4 and 10 B 4 and 10 A 8 and 10 B 8 .
  • the member 90 also includes a circumferential projection 94 and a retaining projection 95 which together are configured to axially secure the first end FE of the spring S 1 to the member 90 .
  • the spring portion S 1 a has a connecting portion CP which is fixed to the housing 10 and a first end FE fixed to the holding member 90 via projections 94 and 95 , the spring portion S 1 a is capable of causing movement of the lancet holding member 90 to the extended or puncturing position and a retraction thereof back to the initial position shown in FIG. 5 .
  • the member 90 also includes a generally cylindrical through opening 98 which is sized and configured to receive a multi-lancet unit which can be made up of a last lancet LL (see FIGS. 50 and 51 ) and plural other lancets, e.g., nine other lancets which terminate in a first lancet FL.
  • the multi-lancet unit can be made up of any desired number of lancets provided the last lancet LL is utilized. Moreover, the multi-lancet unit can be installed into the lancet holding member 90 via the opening 32 formed in the back cap 30 ., i.e., by sliding it into the lancet device LD from a rear end thereof. Once all of the lancets are used up (i.e., the last lancet LL is used for puncturing), the lancet device LD can either be disposed of or the user can slide a new multi-lancet unit into the lancet holding member 90 from the rear side of the lancet device LD and place in into the position shown in FIG. 5 .
  • the lancet needle LN can have a removable protection mechanism of the type disclosed in U.S. Pat. No. 5,464,418 to SCHRAGA, the disclosure of which is hereby expressly incorporated by reference in its entirety (e.g., member 62 of U.S. Pat. No. 5,464,418).
  • the member 90 also includes a deflectable locking projection 97 which has an inward facing tapered projection portion sized and configured to engage with the tapered surface TCS of each lancet.
  • the shape of the taped inner section of projection 97 is such that it only permits forward movement of the multi-lancet unit. This engagement (see e.g., FIG. 4 ) ensures that the multi-lancet unit is axially within the member 90 (and moves therewith) until the user causes the multi-lancet unit to move within the member 90 via the lancet advancing system LAS.
  • the member 90 includes an elongated slot 99 which is sized to receive therein the engaging portion 73 of the lancet engaging member 70 . The slot 99 allows the portion 73 to engage with the tapered surface TCS of each lancet.
  • the member 90 includes a deflectable projecting portion 96 which has a shoulder that can be retained or locked to the retaining shoulder RS (see FIGS. 25 and 14 ) when the lancet device LD is in a trigger-set or armed position and which can be released from such engagement when the user depresses the trigger 40 .
  • the member 90 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 90 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 39 and 40 .
  • the main spring S 1 , the advance button spring S 2 and the slide plate return spring S 3 can have the form of helical wire compression springs.
  • Each spring S 1 -S 3 is preferably be a one-piece member and is most preferably a one-piece spring metal member.
  • the springs can also be made of any material provided they function in a manner similar to that of the members shown in FIGS. 41-43 .
  • the spring S 1 can also take the form of two springs each having the characteristics of portions S 1 a and S 1 b.
  • the slide plate member 60 includes a rear end 62 and a forward end 61 having an upstanding projection 64 configured to contact the edge 21 of the front cap 20 and causes removal of the front cap 20 when the lancet advancing system LAS is activated (see FIG. 24 ).
  • a generally rectangular surface 63 is configured to slidably engage with a generally planar surface form by the inside surfaces of portions 10 A 12 and 10 B 12 .
  • a projecting portion extends from one side of the plate portion 63 and includes a generally rectangular surface 65 and a generally rectangular opening 66 which is sized to slidably receive therein a bottom portion of the advance button 50 .
  • An opposite facing surface to surface 65 is configured to slidably engage with a generally planar surface form by the outside surfaces of portions 10 A 12 and 10 B 12 .
  • the opposite side of the plate portion 63 includes a generally rectangular plate projection 67 which includes a cam or guide slot 68 which is sized and configured to receive therein a guide projection 88 of the locking member 80 (see FIGS. 48 and 49 ).
  • the guide slot 68 has a beginning portion 68 a which causes an almost immediate pivoting of the member 80 when the button 50 is depressed and the slide plate 60 is caused to move forward slightly (see FIG. 23 ) and a secondary portion 68 b which maintains the pivoting position of member 80 and allows the plate 60 to move forwardly.
  • the member 60 also includes two generally rectangular openings 66 a and 66 b which are each sized to allow passage therethrough of the two projecting portions of the advance button 50 .
  • the two projections formed by surfaces 58 a , 58 b and 55 and by surfaces 59 a , 59 b and 56 are each sized to pass through and slidably engage with the generally rectangular through openings 66 a and 66 b of the plate member 60 .
  • the opposite side of the plate portion 63 includes another generally rectangular projection which includes a generally cylindrical projection 69 sized and configured to extend into one of the ends of the spring S 3 (see FIG. 22 ). As is apparent from FIGS.
  • the slide plate 60 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 60 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 44 and 45 .
  • the lancet engaging member 70 includes a generally rectangular bottom surface 71 and a tapered engaging section 73 which is configured to engage with surface TCS of the lancets.
  • a generally circular section 74 is configured to into the opening 57 of the advance button 50 .
  • Two oppositely arranged surfaces 75 and 76 include tapered securing projections 77 and 78 and are configured to engage with the slot formed by surfaces 50 a - 58 b and 59 a - 59 b .
  • These surfaces 50 a - 58 b and 59 a - 59 b are configured to frictionally and/or securely engaged with the oppositely arranged projections 77 and 78 of the lancet engaging member 70 .
  • the lancet engaging member 70 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 70 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 46 and 47 .
  • the locking member 80 includes a generally rectangular section 85 , a tapered engaging section 83 having a retaining shoulder 84 which is configured to engage with shoulder LS of the lancet holding member 90 .
  • a generally cylindrical projection 88 is configured to engage with the slot 68 in the slide plate 60 .
  • Two oppositely arranged generally cylindrical projections 86 and 87 are sized and configured to extend into the openings formed in projections 10 A 6 and 10 B 6 and form the pivot mounting for the locking member 80 .
  • the locking member 80 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member.
  • the member 80 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 48 and 49 .
  • the last lancet LL includes a lancet needle LN, a lancet body LB having three tapered sections TCS, a support shoulder SP, and a releasable connecting portion RCP.
  • the section RCP can be configured to snap-into a recess RR formed in a lancet arranged in front of the last lancet LL and has a outwardly cured front section followed by an inwardly curved section. This allows the connection to be separated by bending over the lancet in front of the last lancet LL.
  • the lancet needle LN can be of any size typically used for lancet needles and preferably has a sharp free end which is configured to puncture a user's skin while causing minimal pain.
  • the front surface is of the shoulder SP can be generally circular and is configured to be contacted by or abut the rear end RE of the lancet in front thereof.
  • the main body portion LB is generally cylindrical and is sized and configured to freely slide within opening 98 of the member 90 .
  • the last lancet LL can preferably be a one-piece member (with the exception of the lancet needle LN) and is most preferably a one-piece synthetic resin member.
  • the lancet LL can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 50 and 51 .
  • the first or front lancet FL (as well as all of the other lancets except for the last lancet LL) includes a lancet needle LN, a lancet body LB having a tapered section TCS, a support shoulder SP, and a releasable connecting portion RCP.
  • the section RCP can be configured to snap-into a recess RR formed in a lancet arranged in front thereof and has a outwardly cured front section followed by an inwardly curved section. This allows the connection to be separated by bending over the lancet in front.
  • the lancet needle LN can be of any size typically used for lancet needles and preferably has a sharp free end which is configured to puncture a user's skin while causing minimal pain.
  • the front surface is of the shoulder SP can be generally circular and is configured to be contacted by or abut the rear end RE of the lancet in front thereof.
  • the main body portion LB is generally cylindrical and is sized and configured to freely slide within opening 98 of the member 90 .
  • the first lancet FL (and other lancets except for the last lancet LL) can preferably be a one-piece member (with the exception of the lancet needle LN) and is most preferably a one-piece synthetic resin member.
  • the lancet FL can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 52 and 53 .
  • One or more of the parts of the lancet device LD such as, e.g., the housing 10 and front cap 20 can preferably made transparent and/or translucent so that a user will clearly be able to see internal components.
  • the device can also utilize one or more features or modifications disclosed in US 2006/0173478 to SCHRARA, the disclosure of which is hereby expressly incorporated by reference in its entirety.
  • an indicator system to inform the user which lancet needle has already been used and/or how many new or unused lancets remain in the multi-lancet unit.
  • Non-limiting examples of such a system include making the last lancet LL of a different color than the lancet sin front thereof so that the user will know that the device can thereafter be disposed of or requires a new multi-lancet unit.
  • All the parts of the lancet device LD, with the exception of the springs and needles (which can respectively be made of spring steel and stainless steel), may be made from plastic materials and can be formed using conventional injection molding techniques or other known manufacturing methods.
  • all or most of the parts such as the housing, trigger, front and back caps, thumb wheel, advance button, slide plate, lancet engaging member, locking member can be made of ABS plastic with the exception of the springs (which can be stainless steel) and the lancet holding member which can be made of polyoxymethylene (Delrin plastic).
  • the springs which can be stainless steel
  • the lancet holding member which can be made of polyoxymethylene (Delrin plastic).
  • other materials and manufacturing processes may also be utilized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Dermatology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Lancet device includes a housing, a trigger, a system for placing the lancet device in a trigger-set or armed position. A plurality of lancets arranged one in front of the other and positioned in the housing. Each lancet has a front end, a needle which extends from the front end, and a rear end. The front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The instant application is a continuation of U.S. non-provisional application Ser. No. 12/525,982 filed on Mar. 15, 2011, which application is a U.S. National Stage of International Application No. PCT/US2008/053400 filed Feb. 8, 2008 which published as WO 2008/100818 on Aug. 21, 2008, and claims the benefit of U.S. provisional application No. 60/900,349, filed Feb. 9, 2007. The disclosure of each of these documents is hereby expressly incorporated by reference hereto in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a lancet device which utilizes a multi-lancet unit having the form of lancets arranged in serried and/or one in front of the other. Lancet devices are used to penetrate and puncture the skin in order to allow the taking of a blood sample for testing. The present device allows the user to use the device a number of times without having to reinstall a lancet after each use.
  • 2. Discussion of Background Information
  • Lancet devices are commonly used to prick the skin of the user so that one or more drops of blood may be extracted for testing. Some users, such as diabetics, for example, may have to test their blood sugar levels several times a day. This may be accomplished by the user using a simple needle. However, this procedure is often problematic for the user since the needle may be difficult to handle. Additionally, many users simply cannot perform the procedure owing to either a fear of needles or because they lack a steady hand. As a result, lancet devices have been developed which allow the user to more easily and reliably perform this procedure.
  • Most lancet devices lack convenient and flexible adjustability. Such devices are typically made adjustable by switching their tips. U.S. Pat. No. Re. 32,922 to LEVIN et al. is one such device. That is, the user must remove one tip having a set depth and replace it with another having a different set depth. This, of course, creates the problem of storing the replaceable tips, which if not properly done, may result in their misplacement, damage, contamination, or the like.
  • What is needed is a lancet device which does not require the user to handle the lancets (or which minimizes handling of the lancets) so as to prevent inadvertent pricking of the user's skin. What is also needed is a lancet device which can accurately and precisely control the depth of penetration of the needle relative to the surface of the user's skin while also being easy to use. It is also desirable for the user to be able to use and adjust the depth penetrating setting with just one hand and/or with less effort that currently required with existing lancet devices.
  • Thus, while advances have been made, there is a continuing need for a lancet device which provides for convenient, reliable and easy adjustment of penetration depth. There is also a need for lancet device which includes plural lancets which can be replaced and/or a device which can be disposed of after all of the lancets are used.
  • SUMMARY OF THE INVENTION
  • According to one illustrative aspect of the invention there is provided a lancet device comprising a housing, a trigger, a system for placing the lancet device in a trigger-set or armed position, and a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing. Each lancet comprises a front end, a needle which extends from the front end, and a rear end. The front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.
  • The plurality of lancets may comprise two lancets. The plurality of lancets may comprise at least three lancets. The plurality of lancets may be between five lancets and twenty lancets. The plurality of lancets may be between eight lancets and twelve lancets. Each of the plurality of lancets may comprise a generally cylindrical portion. Each of the plurality of lancets may comprise a generally circular cross-section when viewed perpendicular to a center axis of the plurality of lancets. At least one of the plurality of lancets may comprise a locking mechanism. The locking mechanism may be at least one of a circumferential locking recess and a tapered recess. Each of the plurality of lancets may comprise a locking recess.
  • The lancet device may further comprise a depth adjustment system. The lancet device may further comprise a depth adjustment system and a holding member which houses the multi-lancet unit. The lancet device may further comprise a movable holding member which is configured to receive the multi-lancet unit and a rotatably mounted depth adjustment element. The lancet device may further comprise at least one of a system for removing or ejecting a lancet of the plurality of lancets and a system for advancing or positioning an unused lancet into a position previously held by a used lancet that has been removed. The lancet device may further comprise a manually activated system for removing or ejecting a used lancet of the multi-lancet unit. The lancet device may further comprise a system for removing or ejecting a used lancet of the multi-lancet unit and for causing removal of a front cap.
  • The invention also provides for a method of puncturing a surface of skin using the lancet device of any of the types described herein, wherein the method comprises arranging the lancet device adjacent against a user's skin and triggering the lancet device so that one of the plurality of lancet is caused to penetrate the user's skin.
  • The invention also provides for a lancet device comprising a housing, a trigger, a depth adjustment system, and a plurality of lancets arranged one in front of the other and positioned in the housing. Each lancet comprises a front end, a needle which extends from the front end, and a rear end. The front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.
  • The plurality of lancets may comprise at least three lancets. The plurality of lancets may be between eight lancets and twelve lancets. Each of the plurality of lancets may comprise a generally cylindrical portion. The lancet device may further comprise a system for placing the lancet device in a trigger-set or armed position. The lancet device may further comprise a holding member which houses the plurality of lancets. The plurality of lancets may comprise a multi-lancet unit and further comprising a system for removing or ejecting a lancet of the multi-lancet unit. The plurality of lancets may comprise a multi-lancet unit and further comprising a manually activated system for removing or ejecting a used lancet of the multi-lancet unit. The plurality of lancets may comprise a multi-lancet unit and further comprising a system for removing or ejecting a used lancet of the multi-lancet unit and for causing removal of a front cap.
  • The invention also provides a method of puncturing a surface of skin using the lancet device of the type described herein, wherein the method comprises arranging the lancet device adjacent against a user's skin and triggering the lancet device so that one of the plurality of lancet is caused to penetrate the user's skin.
  • The invention also provides for a lancet device comprising a trigger, a depth adjustment system, a system for placing the lancet device is a trigger-set position, a plurality of lancets arranged one in front of the other, a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and a system for axially moving or advancing the multi-lancet unit.
  • The invention also provides for a lancet device comprising at least one, preferably most, and most preferably all of the features shown in the drawings of the instant application.
  • The invention also provides for a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing. A first lancet comprises a front end, a needle which extends from the front end, and a rear opening sized to receive therein a lancet needle of a second lancet arranged behind the first lancet. The first and second lancets are connected together via at least one of a releasable snap connection and a connection formed by frictional engagement between an annular flange of the second lancet and a recess arranged in a rear end of the first lancet
  • Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
  • FIG. 1 shows a left side view of a non-limiting embodiment of the invention;
  • FIG. 2 shows a top side view of FIG. 1;
  • FIG. 3 shows a perspective view of the device shown in FIGS. 1 and 2 with the body portion being shown transparent in order to illustrate the inner workings of the device;
  • FIG. 4 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1;
  • FIG. 5 shows a side cross-section view of FIG. 1. The device is shown in an initial or intermediate state;
  • FIG. 6 shows a side cross-section view of FIG. 5 (cross-hatching removed for purposes of clarity) after the device is placed in an arming or trigger-set position;
  • FIG. 7 shows a side cross-section view of FIG. 6 after the device is triggered and before the lancet holding member is automatically moved back to the position shown in FIG. 5;
  • FIG. 8 shows a side cross-section view of FIG. 2. The device is shown in a triggered state and before the lancet holding member is automatically moved back to the position shown in FIG. 5;
  • FIG. 9 shows an enlarged cross-section view of a rear portion of the lancet device shown in FIGS. 1-3. The arming back cap is shown in an initial position;
  • FIG. 10 shows the enlarged cross-section view of FIG. 9 with the arming back cap shown in an arming position;
  • FIG. 11 shows an enlarged cross-section view of a rear portion of the lancet device and illustrates an amount of axial movement that the back cap can experience before the back cap causes rearward axial movement;
  • FIG. 12 shows another cross-section view of a rear portion of the lancet device. The back cap is shown moving the lancet holding member to an armed or trigger-set position;
  • FIG. 13 shows a front portion of the lancet device shown in FIG. 8 with the lancet device being in an initial or intermediate position;
  • FIG. 14 shows the front portion of FIG. 13 with the lancet device being in an armed or trigger-set position;
  • FIG. 15 shows a rear portion of the lancet device with the depth adjustment member being shown transparent and illustrating how one of the projecting members of the back cap engages with one of the tapered recesses of the depth adjustment thumb wheel;
  • FIG. 16 shows an enlarged cross-section view of a rear portion of the lancet device and illustrates the adjustable distance which controls the depth of penetration of the lancet needle;
  • FIG. 17 shows a rear portion of the lancet device and illustrates the two tapered recesses (shown superimposed on each other) of the depth adjustment member or thumb wheel;
  • FIG. 18 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1 and illustrates the three steps utilized for advancing the multi-lancet unit within the lancet holding member. In step 1, the advance button is depressed so that a lancet engaging member engages with a third lancet. In step 2, the advance button is slid forward slightly to cause the slide plate to slide in the forward direction. This initial forward movement automatically causes the locking member to pivot and engage with a shoulder of the lancet holding member in step 3. Continued forward sliding movement of the slide plate causes the multi-lancet unit to move or advance forwards while the lancet holding member is axially retained by the locking member;
  • FIG. 19 shows an exploded view of the system for advancing the multi-lancet unit and shows a portion of the lower housing, a portion of the lancet holding member, as well as the advance button, the lancet engaging member, the slide plate (shown transparent for purposes of illustration), the locking member, the advance button spring, and the slide return spring;
  • FIG. 20 shows an assembled view of the system for advancing the multi-lancet unit and shows the advance button (shown transparent for purposes of illustration), the lancet engaging member, the slide plate, the locking member and the advance button spring;
  • FIG. 21 shows an enlarged cross-section view of a front portion of the lancet device shown in FIG. 1 and illustrates the system for advancing the multi-lancet unit within the lancet holding member in an initial position;
  • FIG. 22 shows an assembled side view of the system for advancing the multi-lancet unit shown in FIG. 21;
  • FIG. 23 shows the view of FIG. 21 after the system for advancing the multi-lancet unit is activated, i.e., the advance button is depressed and slid slightly forward;
  • FIG. 24 shows the view of FIG. 23 after the system for advancing the multi-lancet unit is moved to a final activated position, i.e., the advance button is slid all of the way forward. This causes the front cap to be ejected and allows the user to break or snap-off the used lancet in order to expose a fresh or new lancet. The user can then release the advance button and replace the front cap in order to place the device back into an initial or intermediate position;
  • FIG. 25 shows a perspective inside view of the upper or left-side housing part used in the two-piece housing of the lancet device shown in FIGS. 1-3;
  • FIG. 26 shows a perspective outside view of the upper or left-side housing part shown in FIG. 25;
  • FIG. 27 shows a perspective outside view of the lower or right-side housing part used in the two-piece housing of the lancet device shown in FIGS. 1-3;
  • FIG. 28 shows a perspective inside view of the lower or right-side housing part shown in FIG. 27;
  • FIG. 29 shows a perspective front side view of the front cap used in the lancet device shown in FIGS. 1-3;
  • FIG. 30 shows a perspective inside view of the front cap shown in FIG. 29;
  • FIG. 31 shows a perspective rear side view of the back cap used in the lancet device shown in FIGS. 1-3;
  • FIG. 32 shows a perspective inside view of the back cap shown in FIG. 31;
  • FIG. 33 shows a perspective rear side view of the thumb wheel used in the lancet device shown in FIGS. 1-3;
  • FIG. 34 shows a perspective front side view of the thumb wheel shown in FIG. 33;
  • FIG. 35 shows a perspective top side view of the trigger used in the lancet device shown in FIGS. 1-3;
  • FIG. 36 shows a perspective inside view of the trigger shown in FIG. 35;
  • FIG. 37 shows a perspective top side view of the advance button used in the lancet device shown in FIGS. 1-3;
  • FIG. 38 shows a perspective inside view of the advance button shown in FIG. 37;
  • FIG. 39 shows a perspective rear side view of the lancet holding member used in the lancet device shown in FIGS. 1-3;
  • FIG. 40 shows a perspective front view of the lancet holding member shown in FIG. 39;
  • FIG. 41 shows a perspective side view of the advance button spring used on the lancet device of FIGS. 1-3;
  • FIG. 42 shows a perspective side view of the slide return spring used on the lancet device of FIGS. 1-3;
  • FIG. 43 shows a perspective side view of the dual-purposes spring used on the lancet device of FIGS. 1-3. The spring has a front portion which causes the lancet holding member to move to the puncturing position and automatically retracts the lancet holding member after doing so. The spring also has a rear portion which causes the back cap to move to an initial position after the user moves the back to the arming position and release the back cap;
  • FIG. 44 shows a perspective top side view of the slide plate used in the lancet device shown in FIGS. 1-3;
  • FIG. 45 shows a perspective inside view of the slide plate shown in FIG. 44;
  • FIG. 46 shows a perspective top side view of the lancet engaging member used in the lancet device shown in FIGS. 1-3;
  • FIG. 47 shows a perspective bottom side view of the lancet engaging member shown in FIG. 46;
  • FIG. 48 shows a perspective left-side view of the locking member used in the lancet device shown in FIGS. 1-3;
  • FIG. 49 shows a perspective right-side view of the locking member shown in FIG. 48;
  • FIG. 50 shows a perspective left-side view of the last lancet of the multi-lancet unit used in the lancet device shown in FIGS. 1-3;
  • FIG. 51 shows a perspective right-side view of the last lancet shown in FIG. 50;
  • FIG. 52 shows a perspective rear side view of the first lancet (as well as all of the other lancets except the last lancet) of the multi-lancet unit used in the lancet device shown in FIGS. 1-3; and
  • FIG. 53 shows a perspective side view of the first lancet shown in FIG. 52.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
  • FIGS. 1-53 show one non-limiting embodiment of a lancet device LD. The lancet device LD includes the following main components: a housing or body 10 which preferably comprises housing parts 10A and 10B, a front cap 20, a back cap 30, a trigger 40, a lancet advance button or member 50, a slide plate or member 60, a lancet engaging member 70, a locking member 80, a lancet holding member 90, a depth adjustment or thumb wheel member 100, and three springs S1, S2 and S3.
  • As can be seen in FIGS. 1-3, the lancet device LD can preferably have, by way of non-limiting example, an overall length OL which is approximately 133 mm and an overall width or diameter OD of approximately 27 mm. The lancet device LD can thus be held comfortably in a user's hand such that the user can rotate (both clockwise and counterclockwise) the depth adjustment thumb wheel 100 with the user's thumb and index finger, as will be described in detail later on, to set the depth of penetration prior to use. The user can also depress and slide forward the advance button 50 in order cause a forward advance of the lancet and simultaneously cause removal of the front cap 20, as will be described in detail later on. The user can also depress the trigger 40 with either the user's thumb of index finger. The only step which likely requires the user to use two hands, is the step of placing the lancet device LD is an armed or trigger-set position—which will be described in detail later on.
  • With reference to FIG. 4, the lancet device LD includes a removable front cap 20 which covers a front area of the lancet device LD that includes a front end of the lancet holding member 90, a first lancet FL, and a projecting portion 64 of the slide member 60. The first lancet FL is axially retained inside an elongated cylindrical opening 98 of the lancet holding member 90 by a deflectable tapered projection 97 which engages with a tapered portion TCS (see FIG. 53) of a lancet located directly behind the first lancet FL. Thus, when the lancet holding member 90 moves axially within housing 10, the lancet FL moves along therewith. With the exception of the last lancet LL (see FIGS. 50 and 51), all of the lancets are generally similarly and/or identically configured to the first lancet FL. To ensure that the multi-lancet unit (formed by the last lancet LL, the first lancet FL, and all of the lancets arranged therebetween) to move axially within the lancet holding member 90, the multi-lancet unit has an overall diameter LOD which is smaller than an internal diameter of the opening 98. By way of non-limiting example, the dimension LOD can be about 6.4 mm and the spacing or clearance (the difference between the two diameters divided by two) between these diameters can be between about 0.3 mm and about 1 mm. Although not shown, the front cap 20 can be removably secured to the housing 10 in a number of ways such as via a snap connection of the type disclosed in U.S. Pat. No. 5,908,434 to SCHRAGA and U.S. Pat. No. 6,530,937 to SCHRAGA. The disclosure of each of these documents is hereby expressly incorporated by reference in its entirety.
  • As can be seen in FIGS. 5-14, the lancet device LD functions as follows: In the position shown in FIGS. 5, 9, 11 and 13, the lancet device LD is shown in the static or initial position. This is the preferred position that the device would assume during shipping, storage, and after the device is triggered or fired. In this position, the front or triggering spring portion S1 a of the spring S1 is in a relaxed or non-compressed or expanded position. The back or arming spring portion S1 b of the spring S1 is also in a relaxed position, i.e., a non-expanded position, with the spring portion S1 b applying a biasing force which forces the back cap 30 to a forward-most position. The advance button 50 and the trigger 40 are also in an initial position.
  • In the position shown in FIGS. 6, 10, 12 and 14, the lancet device LD is shown in the loading, arming or trigger-set position. This is the position which arms the lancet device and occurs when the user moves the back cap 30 rearwardly to cause the deflecting member 96 to become releasably locked to the retaining shoulder RS (see FIG. 25). In this position, the spring portion S1 a is in a compressed state or position. Spring portion S1 b is in an expanded state or position such that if the user were to release the back cap 30, the back cap 30 would automatically be moved to the position shown in FIGS. 5 and 7. The arming position shown in FIG. 6 can take place when the user grips the back cap 30 with one hand and the body 10 with the other hand and pulls the back cap 30 away from the body 10.
  • In the position shown in FIGS. 7 and 8, the lancet device LD is shown in the firing position. This is the position in which a user depresses the trigger 40 so as to cause the member 96 to deflect inwardly and release from the shoulder RS. This releases the energy stored in the spring S1 a and causes the lancet holding member 90 to move forwardly, which automatically causes the forward-most or first lancet FL to project out of the front surface of the front cap 20 and cause a puncture in a user's skin. Of course, the position shown in FIGS. 7 and 8 merely shows a snap-shot of the lancet needle LN in the extended or puncturing position, i.e., defined by the puncturing depth PD. In actuality, the lancet needle LN would move from the position in FIG. 6 (fully retracted or trigger-set position) to that of FIGS. 7 and 8 (fully extended or puncturing position), and then finally to that of FIG. 5 (initial position) in a fraction of a second. In the firing position, the front spring portion S1 a is in a substantially fully expanded position owing to the forward movement of the member 90 as caused by the rapid axial expansion of the spring S1 a acting on the flange 94 of member 90. After the member 90 moves to a maximum forward position shown in FIG. 7, as determined by contact between shoulder 92 and shoulder 39, the spring S1 a, which has substantially reached a maximum amount of allowable expansion, will contract axially back to an original position, which, in turn, places the lancet device LD back in the position shown in FIG. 5. At this point, the user has the option of activating the lancet advancing system LAS in order to cause removal of the front cap 20 and to allow for removal of the forward-most or used lancet FL so that the next or fresh lancet can assume the position as the first lancet FL as shown in FIG. 4.
  • With reference to FIGS. 9-12 and 15-17, it can be seen that the user can set a depth of penetration of the lancet device LD before the device is triggered or after the device is triggered. This can occur by the user rotating the thumb wheel 100 in either clockwise or counterclockwise directions. Such rotational movement determines the distance FM, i.e., the amount of free movement that the back cap 30 can experience in a rearward direction before it starts moving the lancet holding member 90 rearwardly. This distance FM also determines the amount of forward axial movement of the lancet holding member 90 as discussed above. This distance FM changes as a result of the rotational position of tapered recesses 105 a and 105 b of the thumb wheel 100 (see FIG. 33) relative to the projections 35 a and 35 b of the back cap 30 (see FIGS. 31 and 32), and more specifically as a result of the rotational position of tapered surfaces 106 a and 106 b of the thumb wheel 100 (see FIG. 33) relative to the tapered surfaces 36 a and 36 b of the back cap 30 (see FIGS. 31 and 32). The back cap 30 is kept from rotating substantially relative to the housing 10 by frictional or wedging engagement between the second end SE of the spring S1 (whose connecting portion CP is trapped or fixed to the housing by flanges 10A7 and 10B7) and the generally cylindrical annular groove formed between wall portions 38 and 34.
  • The details of the lancet advancing system LAS will now be described with reference to FIGS. 18-24. FIG. 18 illustrates the three steps utilized for advancing the multi-lancet unit within the lancet holding member 90. In step 1, the advance button 50 is depressed in the direction of the vertical arrow which causes the spring S2 to be compressed and causes the lancet engaging member 70 to pass through the slot 99 (see FIG. 39) and engage with the third lancet. In step 2, the advance button 70 is slid forward slightly against the biasing force of spring S3 which causes the slide plate 60 to slide in the forward direction. This initial forward movement of the slide plate 60 automatically causes the locking member 80 to pivot and engage with shoulder LS of the lancet holding member 90 in step 3. This pivoting movement of the locking member 80 occurs when the guide projection 88 is caused to move by engagement with the guide slot 68 a. Continued forward sliding movement of the slide plate 60 causes the multi-lancet unit to move or advance forwards while the lancet holding member 90 is axially retained by the locking member 80. This forward movement of the slide plate 60 maintains the locking member 80 in the locking position because of continued engagement between the guide projection 88 and the guide slot 68 b. FIGS. 18 and 21 illustrates the system LAS for advancing the multi-lancet unit installed in the lancet device LD in an initial position. FIG. 23 shows the view of FIG. 21 after the system LAS for advancing the multi-lancet unit is activated, i.e., the advance button 50 is depressed and slid slightly forward slightly. FIG. 24 shows the view of FIG. 23 after the system LAS for advancing the multi-lancet unit is moved to a final activated position, i.e., the advance button 50 is slid all of the way forward. This causes the front cap 20 to be ejected (by virtue of the projection 64 causing the edge 21 to disengage from the housing 10), moves the used lancet out past the front end of the lancet holding member 90 by a predetermined amount, and allows the user to break or snap-off (by separating the connection between portions RCP and RR) the used lancet FL in order to expose a fresh or new lancet. The user can then release the advance button 50 and re-install the front cap 20 in order to place the device LD back into an initial or intermediate position shown in FIG. 5.
  • The details of the parts utilized in the lancet device LD shown in FIGS. 1-3 will now be described with reference to FIGS. 25-53.
  • With reference to FIGS. 25 and 26, it can be seen that the left-side or upper housing part 10A includes a front end 10A1 which serves as a mounting area for the front cap 20 and a rear end 10A2. A front flange 10A3 is arranged in an area of the front end of the housing part 10A and includes a half or semi-circular opening 10A4 which (together with half-opening 10B4) is sized and configured to receive therein (allowing movement therethrough) a front end portion of the lancet holding member 90 (see FIGS. 39 and 40). The housing part 10A also has a main body portion 10A5 which is preferably ergonomically shaped. A projection 10A6 extends or projects from the body portion 10A5 and includes a mounting opening which is sized and configured to receive therein the mounting projection 86 of the pivotally mounted locking member 80 (see FIGS. 48 and 49). A rear flange 10A7 is arranged in an area of the rear end of the housing part 10A and includes a half-circular opening 10A8 which together with half-opening 10B8 is sized and configured to receive therein (allowing movement therethrough) a rear end portion of the lancet holding member 90 (see FIGS. 39 and 40). A rear generally half-cylindrical mounting surface 10A9 is arranged in an area of the rear end of the housing part 10A and together with half-cylindrical surface 10B9 is sized and configured to receive thereon (allowing rotational movement) the thumb wheel 100 (see FIGS. 33 and 34). A rear generally half or semi-cylindrical surface 10A16 is arranged in an area of the rear end of the housing part 10A and together with half-cylindrical surface 10B16 is sized and configured to receive therein (allowing sliding movement) the generally cylindrical surface 33 of the back cap 30 (see FIGS. 31 and 32). A trigger opening 10A10 is formed in the body portion 10A5 and is sized and configured to receive therein the projecting portions 43 a and 43 b of the trigger 40 (see FIGS. 35 and 36). Once inserted in the opening 10A10, the projecting portions 43 a and 43 b of the trigger 40 prevent removal of the trigger 40 from the housing part 10A, but allow the trigger 40 to move against the biasing force of two integrally formed deflecting members 10A11 which function as flat springs and bias the trigger 40 towards an extended or initial position. Each deflectable member 10A11 is deflected by contact with one of projections 44 of the trigger 40 when the trigger 40 is depressed. A retaining shoulder RS is formed in the body portion 10A5 and is configured to releasably engage and/or lock with a deflecting portion 96 of the lancet holding member 90 (see FIGS. 39 and 40). This releasable engagement is shown in FIG. 14. An indented section 10A12 is arranged in an area of the front end of the housing part 10A and together with indented section 10B12 forms an area for the user to activate the lancet advancing system LAS (see FIGS. 18-24). A half-slot 10A13 is arranged in an area of the front end of the housing part 10A and together with half-slot 10B13 forms a guide slot which guides the sliding movement of the slide plate 60 between an initial and final position (see FIGS. 23 and 24). The slide plate 60 contacts stop surface 10A14 in the initial position shown in FIG. 23 (as a result of the biasing force of the spring S3) and contacts stop surface 10A15 in the final position shown in FIG. 24 (as a result of the user causing compression of the spring S3). As is apparent from FIGS. 25 and 26, the housing part 10A can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 10A can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 25 and 26.
  • With reference to FIGS. 27 and 28, it can be seen that the right-side or lower housing part 10B includes a front end 10B1 which serves as a mounting area for the front cap 20 and a rear end 10B2. A front flange 10B3 is arranged in an area of the front end of the housing part 10B and includes a half-circular opening 10B4 which (together with half-opening 10A4) is sized and configured to receive therein (allowing movement therethrough) a front end portion of the lancet holding member 90 (see FIGS. 39 and 40). The housing part 10B also has a main body portion 10B5 which is preferably ergonomically shaped. A projection 10B6 extends or projects from the body portion 10B5 and includes a mounting opening which is sized and configured to receive therein the mounting projection 87 of the pivotally mounted locking member 80 (see FIGS. 48 and 49). A rear flange 10B7 is arranged in an area of the rear end of the housing part 10B and includes a half-circular opening 10B8 which together with half-opening 10A8 is sized and configured to receive therein (allowing movement therethrough) a rear end portion of the lancet holding member 90 (see FIGS. 39 and 40). A rear generally half-cylindrical mounting surface 10B9 is arranged in an area of the rear end of the housing part 10B and together with half-cylindrical surface 10A9 is sized and configured to receive thereon (allowing rotational movement) the thumb wheel 100 (see FIGS. 33 and 34). A rear generally half-cylindrical surface 10B16 is arranged in an area of the rear end of the housing part 10B and together with half-cylindrical surface 10A16 is sized and configured to receive therein (allowing sliding movement) the generally cylindrical surface 33 of the back cap 30 (see FIGS. 31 and 32). A projection 10B16 projects from the flange 10B3 and functions as a mounting hub for a forward end of the spring S3 (see FIGS. 42 and 21). A recess or indentation 10B17 is formed in the flange 10B7 and is configured to receive therein and (together with flange 10A7) fixedly secure the connecting portion CP of the spring S1 (see FIG. 43). An indented section 10B12 is arranged in an area of the front end of the housing part 10B and together with indented section 10A12 forms an area for the user to activate the lancet advancing system LAS (see FIGS. 18-24). A half-slot 10B13 is arranged in an area of the front end of the housing part 10B and together with half-slot 10A13 forms a guide slot which guides the sliding movement of the slide plate 60 between an initial and final position (see FIGS. 23 and 24). The slide plate 60 contacts stop surface 10B14 in the initial position shown in FIG. 23 (as a result of the biasing force of the spring S3) and contacts stop surface 10B15 in the final position shown in FIG. 24 (as a result of the user causing compression of the spring S3). As is apparent from FIGS. 25 and 26, the housing part 10B can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 10B can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 25 and 26.
  • With reference to FIGS. 29 and 30, it can be seen that the front cap 20 includes a skin contacting surface 25 which includes a lancet needle opening 24 sized and located to allow one of the lancet needles LN to pass or extend therethrough. The front cap 20 has an outer tapered generally rectangular surface 22, a rear end 21, and a generally planar front surface 23 Although not shown, the front cap 20 preferably include mechanisms, i.e., a recess and projection, to ensure that the front cap 20 is removably mounted to the front end of the housing 10. As is apparent from FIGS. 29 and 30, the front cap 20 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the front cap 20 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 29 and 30.
  • With reference to FIGS. 31 and 32, it can be seen that the back cap 30 includes a front end 31 and a generally cylindrical through opening 32 which is sized to allow the rear end of the lancet holding member 90 to move therein (see e.g., FIGS. 9 and 10). An enlarged rear portion 34 sized and configured to allow the user to grip the back cap 30. The back cap 30 also includes two oppositely arranged projections 35 a and 35 b which are sized to extend into two spacings formed by the two grooves 105 a and 105 b and the cylindrical surface formed by surfaces 10A9 and 10B9. These projections 35 a and 35 b have tapered front surfaces 36 a and 36 b which are adapted to slidably engage with tapered surfaces 106 a and 106 b of the semi-circumferential grooves 105 a and 105 b. The depth of penetration PD (see FIG. 8) is adjusted or predetermined by the relative rotational position of the tapered front surfaces 36 a and 36 b and groove surfaces 106 a and 106 b. A shoulder 37 is configured to abut the ends 10A2 and 10B2 of the housing 10 when the back cap 30 is in an initial or resting position (see e.g., FIG. 5). As is shown in FIG. 9, the back cap 30 also includes a generally cylindrical inner sleeve portion 38 which has an inwardly facing tapered circumferential shoulder 39 which is configured to contact the outward facing circumferential projection 92. Contact between projections 39 and 92 takes place when the back cap 30 is moved to the arming position shown in FIGS. 10 and 12, as well as when the lancet holding member 90 moves to the fully extended or puncturing position shown in FIGS. 7 and 8. The annular space formed by the inner circumferential surface of portion 34 and the outer cylindrical surface of portion 38 is sized to receive therein and securely wedge or trap the second end SE of the spring S1. This allows the spring portion S1 b to bias the back cap 30 towards the position shown in FIG. 5 and automatically moves the back cap 30 back to the position shown in FIG. 5 when the user releases the back cap 30 from the position shown in FIG. 6. As is apparent from FIGS. 31 and 32, the back cap 30 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the back cap 30 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 31 and 32.
  • With reference to FIGS. 33 and 34, it can be seen that the depth adjustment member or thumb wheel 100 includes an annular rear end 101 which is configured to slidably engage with portions of shoulder 37 and an annular front end 102 which is configured to slidably engage with the shoulder formed by annular shoulder portions 10A18 and 10B18. A generally cylindrical through opening 103 is sized to rotatably engaged with and mount to cylindrical surfaces 10A9 and 10B9. The thumb wheel 100 also includes an outer surface 104 having ribs and indentations which allow a user to easily grip the thumb wheel 100 and rotate it relative to the housing 10 in each of a clockwise and counterclockwise directions. Other types of friction surfaces can also be utilized. The thumb wheel 100 also includes two oppositely arranged semi-circumferential grooves 105 a and 105 b which open to the rear end 101 and are sized and configured to receive therein the two projections 35 a and 35 b and the cylindrical surface formed by surfaces 10A9 and 10B9. Tapered surfaces 106 a and 106 b of the semi-circumferential grooves 105 a and 105 b are configured to slidably engage with tapered front surfaces 36 a and 36 b. The depth of penetration PD (see FIG. 8) is adjusted or predetermined by the rotational position of the thumb wheel 100 relative to the housing 10 and more specifically by the rotational position of the groove surfaces 106 a and 106 b relative to the tapered front surfaces 36 a and 36 b. Maximum depth of penetration PD (see FIG. 8) results when the two projections 35 a and 35 b contact stop surfaces 107 a and 108 a and whereas minimum depth of penetration PD results when the two projections 35 a and 35 b contact stop surfaces 107 b and 108 b. Although not shown, the lancet device LD can utilize a system for indicating to the user the position of depth adjustment, i.e., thumb wheel 100, so that the user can determine whether to change the depth of penetration. This system can, by way of non-limiting example, take the form of indicia, e.g., numbers or letters, arranged on the housing 10 in an area of the thumb wheel 100. An indicator, e.g., an arrow head, can be arranged on the thumb wheel 100. As is apparent from FIGS. 33 and 34, the thumb wheel 100 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the thumb wheel 100 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 33 and 34.
  • With reference to FIGS. 35 and 36, it can be seen that the trigger 40 includes a generally rectangular top surface 41 which is configured to be contacted by a user finger. The trigger 40 also includes two oppositely arranged projections 43 a and 43 b which are configured to snap into the opening 10A10 and prevent removal of the trigger 40 once installed on the body portion 10A. Two generally circular projections 44 are spaced apart and configured to contact free end portions of the two deflectable members 10A11. A generally rectangular projection 45 is configured to contact the deflectable member 96 and cause the shoulder of the deflectable member 96 (see FIGS. 39 and 40) to disengage from the retaining shoulder RS when the lancet device LD is in a trigger-set position (see e.g., FIG. 14) and the trigger 40 is depressed. As is apparent from FIGS. 35 and 36, the trigger 40 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the trigger 40 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 35 and 36.
  • With reference to FIGS. 37 and 38, it can be seen that the advance member or button 50 includes a generally circular top surface 51 which is configured to be contacted by a user finger. A generally rectangular bottom end 52 is arranged at a bottom of a generally rectangular projection which slidably engages with rectangular opening 66 (see FIG. 44) and has two oppositely arranged planar surfaces 55 and 56. A through slot is formed by surfaces 50 a-58 b and 59 a-59 b. These surfaces 50 a-58 b and 59 a-59 b are configured to frictionally and/or securely engaged with the oppositely arranged projections 77 and 78 of the lancet engaging member 70 (see FIGS. 46 and 47). This connection results in the surfaces 75 and 76 being retained in the slot formed by surfaces 50 a-58 b and 59 a-59 b and ensures that the member 70 is secured to the button 50 (so as to move therewith)—with the plate member 60 interposed therebetween. The member 50 also includes a side surface 53, a bottom surface 54, and a generally cylindrical opening 57. The opening 57 is sized and configured to receive therein the advance button spring S2 (see 41 and FIGS. 18-20). The spring S2 is compressed when the button 50 is moved towards the plate 60 (see FIG. 23) and more specifically when surface 54 in the opening 57 moves toward the plate 60. The two projections formed by surfaces 58 a, 58 b and 55 and by surfaces 59 a, 59 b and 56 are each sized to pass through the generally rectangular through openings 66 a and 66 b of the plate member 60. When the button 50 is depressed, the spring S2 is compressed and the lancet engaging member 70 (secured to the member 50) passes into the slot 99 and engages with one of the lancets (see FIG. 23). As is apparent from FIGS. 37 and 38, the advance button 50 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the button 50 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 37 and 38.
  • With reference to FIGS. 39 and 40, it can be seen that the lancet holding member 90 includes an annular front end 91 and an annular rear end which includes a generally circular circumferential shoulder 92 configured to contact shoulder 39 of the back cap 30. The member 90 has a generally cylindrical body portion 93 sized to slidably engaged with the circular openings formed semi-circular indentations 10A4 and 10B4 and 10A8 and 10B8. The member 90 also includes a circumferential projection 94 and a retaining projection 95 which together are configured to axially secure the first end FE of the spring S1 to the member 90. Because the spring portion S1 a has a connecting portion CP which is fixed to the housing 10 and a first end FE fixed to the holding member 90 via projections 94 and 95, the spring portion S1 a is capable of causing movement of the lancet holding member 90 to the extended or puncturing position and a retraction thereof back to the initial position shown in FIG. 5. The member 90 also includes a generally cylindrical through opening 98 which is sized and configured to receive a multi-lancet unit which can be made up of a last lancet LL (see FIGS. 50 and 51) and plural other lancets, e.g., nine other lancets which terminate in a first lancet FL. The multi-lancet unit can be made up of any desired number of lancets provided the last lancet LL is utilized. Moreover, the multi-lancet unit can be installed into the lancet holding member 90 via the opening 32 formed in the back cap 30., i.e., by sliding it into the lancet device LD from a rear end thereof. Once all of the lancets are used up (i.e., the last lancet LL is used for puncturing), the lancet device LD can either be disposed of or the user can slide a new multi-lancet unit into the lancet holding member 90 from the rear side of the lancet device LD and place in into the position shown in FIG. 5. This insertion causes the last lancet LL to be ejected out of the front end 91. To protect the needle LN of the first lancet on installation into the lancet device LD, the lancet needle LN can have a removable protection mechanism of the type disclosed in U.S. Pat. No. 5,464,418 to SCHRAGA, the disclosure of which is hereby expressly incorporated by reference in its entirety (e.g., member 62 of U.S. Pat. No. 5,464,418). The member 90 also includes a deflectable locking projection 97 which has an inward facing tapered projection portion sized and configured to engage with the tapered surface TCS of each lancet. The shape of the taped inner section of projection 97 is such that it only permits forward movement of the multi-lancet unit. This engagement (see e.g., FIG. 4) ensures that the multi-lancet unit is axially within the member 90 (and moves therewith) until the user causes the multi-lancet unit to move within the member 90 via the lancet advancing system LAS. In this regard, the member 90 includes an elongated slot 99 which is sized to receive therein the engaging portion 73 of the lancet engaging member 70. The slot 99 allows the portion 73 to engage with the tapered surface TCS of each lancet. Finally, the member 90 includes a deflectable projecting portion 96 which has a shoulder that can be retained or locked to the retaining shoulder RS (see FIGS. 25 and 14) when the lancet device LD is in a trigger-set or armed position and which can be released from such engagement when the user depresses the trigger 40. As is apparent from FIGS. 39 and 40, the member 90 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 90 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 39 and 40.
  • With reference to FIGS. 41-43, it can be seen that the main spring S1, the advance button spring S2 and the slide plate return spring S3 can have the form of helical wire compression springs. Each spring S1-S3 is preferably be a one-piece member and is most preferably a one-piece spring metal member. Of course, the springs can also be made of any material provided they function in a manner similar to that of the members shown in FIGS. 41-43. The spring S1 can also take the form of two springs each having the characteristics of portions S1 a and S1 b.
  • With reference to FIGS. 44 and 45, it can be seen that the slide plate member 60 includes a rear end 62 and a forward end 61 having an upstanding projection 64 configured to contact the edge 21 of the front cap 20 and causes removal of the front cap 20 when the lancet advancing system LAS is activated (see FIG. 24). A generally rectangular surface 63 is configured to slidably engage with a generally planar surface form by the inside surfaces of portions 10A12 and 10B12. A projecting portion extends from one side of the plate portion 63 and includes a generally rectangular surface 65 and a generally rectangular opening 66 which is sized to slidably receive therein a bottom portion of the advance button 50. An opposite facing surface to surface 65 is configured to slidably engage with a generally planar surface form by the outside surfaces of portions 10A12 and 10B12. The opposite side of the plate portion 63 includes a generally rectangular plate projection 67 which includes a cam or guide slot 68 which is sized and configured to receive therein a guide projection 88 of the locking member 80 (see FIGS. 48 and 49). The guide slot 68 has a beginning portion 68 a which causes an almost immediate pivoting of the member 80 when the button 50 is depressed and the slide plate 60 is caused to move forward slightly (see FIG. 23) and a secondary portion 68 b which maintains the pivoting position of member 80 and allows the plate 60 to move forwardly. The member 60 also includes two generally rectangular openings 66 a and 66 b which are each sized to allow passage therethrough of the two projecting portions of the advance button 50. The two projections formed by surfaces 58 a, 58 b and 55 and by surfaces 59 a, 59 b and 56 are each sized to pass through and slidably engage with the generally rectangular through openings 66 a and 66 b of the plate member 60. Finally, the opposite side of the plate portion 63 includes another generally rectangular projection which includes a generally cylindrical projection 69 sized and configured to extend into one of the ends of the spring S3 (see FIG. 22). As is apparent from FIGS. 44 and 45, the slide plate 60 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 60 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 44 and 45.
  • With reference to FIGS. 46 and 47, it can be seen that the lancet engaging member 70 includes a generally rectangular bottom surface 71 and a tapered engaging section 73 which is configured to engage with surface TCS of the lancets. A generally circular section 74 is configured to into the opening 57 of the advance button 50. Two oppositely arranged surfaces 75 and 76 include tapered securing projections 77 and 78 and are configured to engage with the slot formed by surfaces 50 a-58 b and 59 a-59 b. These surfaces 50 a-58 b and 59 a-59 b are configured to frictionally and/or securely engaged with the oppositely arranged projections 77 and 78 of the lancet engaging member 70. This connection results in the surfaces 75 and 76 being retained in the slot formed by surfaces 50 a-58 b and 59 a-59 b and ensures that the member 70 is secured to the button 50 (so as to move therewith)—with the plate member 60 interposed therebetween. As is apparent from FIGS. 46 and 47, the lancet engaging member 70 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 70 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 46 and 47.
  • With reference to FIGS. 48 and 49, it can be seen that the locking member 80 includes a generally rectangular section 85, a tapered engaging section 83 having a retaining shoulder 84 which is configured to engage with shoulder LS of the lancet holding member 90. A generally cylindrical projection 88 is configured to engage with the slot 68 in the slide plate 60. Two oppositely arranged generally cylindrical projections 86 and 87 are sized and configured to extend into the openings formed in projections 10A6 and 10B6 and form the pivot mounting for the locking member 80. As is apparent from FIGS. 48 and 49, the locking member 80 can preferably be a one-piece member and is most preferably a one-piece synthetic resin member. Of course, the member 80 can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 48 and 49.
  • With reference to FIGS. 50 and 51, it can be seen that the last lancet LL includes a lancet needle LN, a lancet body LB having three tapered sections TCS, a support shoulder SP, and a releasable connecting portion RCP. The section RCP can be configured to snap-into a recess RR formed in a lancet arranged in front of the last lancet LL and has a outwardly cured front section followed by an inwardly curved section. This allows the connection to be separated by bending over the lancet in front of the last lancet LL. The lancet needle LN can be of any size typically used for lancet needles and preferably has a sharp free end which is configured to puncture a user's skin while causing minimal pain. The front surface is of the shoulder SP can be generally circular and is configured to be contacted by or abut the rear end RE of the lancet in front thereof. The main body portion LB is generally cylindrical and is sized and configured to freely slide within opening 98 of the member 90. As is apparent from FIGS. 50 and 51, the last lancet LL can preferably be a one-piece member (with the exception of the lancet needle LN) and is most preferably a one-piece synthetic resin member. Of course, the lancet LL can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 50 and 51.
  • With reference to FIGS. 52 and 53, it can be seen that the first or front lancet FL (as well as all of the other lancets except for the last lancet LL) includes a lancet needle LN, a lancet body LB having a tapered section TCS, a support shoulder SP, and a releasable connecting portion RCP. The section RCP can be configured to snap-into a recess RR formed in a lancet arranged in front thereof and has a outwardly cured front section followed by an inwardly curved section. This allows the connection to be separated by bending over the lancet in front. The lancet needle LN can be of any size typically used for lancet needles and preferably has a sharp free end which is configured to puncture a user's skin while causing minimal pain. The front surface is of the shoulder SP can be generally circular and is configured to be contacted by or abut the rear end RE of the lancet in front thereof. The main body portion LB is generally cylindrical and is sized and configured to freely slide within opening 98 of the member 90. As is apparent from FIGS. 52 and 53, the first lancet FL (and other lancets except for the last lancet LL) can preferably be a one-piece member (with the exception of the lancet needle LN) and is most preferably a one-piece synthetic resin member. Of course, the lancet FL can also be an assembly of plural components provided it functions in a manner similar to that of the member shown in FIGS. 52 and 53.
  • One or more of the parts of the lancet device LD such as, e.g., the housing 10 and front cap 20 can preferably made transparent and/or translucent so that a user will clearly be able to see internal components. The device can also utilize one or more features or modifications disclosed in US 2006/0173478 to SCHRARA, the disclosure of which is hereby expressly incorporated by reference in its entirety.
  • It is also possible to utilize an indicator system to inform the user which lancet needle has already been used and/or how many new or unused lancets remain in the multi-lancet unit. Non-limiting examples of such a system include making the last lancet LL of a different color than the lancet sin front thereof so that the user will know that the device can thereafter be disposed of or requires a new multi-lancet unit. All the parts of the lancet device LD, with the exception of the springs and needles (which can respectively be made of spring steel and stainless steel), may be made from plastic materials and can be formed using conventional injection molding techniques or other known manufacturing methods. Bay way of non-limiting example, all or most of the parts such as the housing, trigger, front and back caps, thumb wheel, advance button, slide plate, lancet engaging member, locking member can be made of ABS plastic with the exception of the springs (which can be stainless steel) and the lancet holding member which can be made of polyoxymethylene (Delrin plastic). However, when practical, other materials and manufacturing processes may also be utilized.
  • It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

Claims (4)

1-20. (canceled)
21. A lancet device having lancet ejection and depth of penetration adjustment, comprising:
a housing;
a wall arranged inside the housing and having an opening;
the wall being arranged closer to a rear end of the housing than to a front end of the housing;
a front cover having a skin engaging surface and an opening allowing a needle of a lancet to pass therethrough during skin puncturing;
a trigger arranged on a side of the housing and being closer to the front end of the housing than to the rear end of the housing;
the trigger having a portion extending outside the housing so as to be contacted by a user;
a cocking system configured to place the lancet device in a trigger-set or armed position;
the cocking system comprising a cocking member arranged in an area of the rear end of the housing and having a portion extending into the housing and a portion extending outside the housing;
a lancet holding member axially movable within the housing and comprising:
a rear portion arranged on a rear side of the wall;
a front portion arranged on a front side of the wall;
an opening arranged behind a front end of the lancet holding member;
a projection; and
a longitudinal length that is greater than a longitudinal length of the housing;
said projection being configured to retain the lancet holding member in the trigger-set or armed position;
a first spring disposed in front of the wall and surrounding a portion of the lancet holding member;
a second spring disposed behind the wall, surrounding another portion of the lancet holding member, and extending into a space disposed inside the cocking member;
a rear end of the lancet holding member being arranged axially in front of a rear end of the cocking member when the lancet device is in the trigger-set or armed position;
a lancet ejector arranged on a side of the housing and being closer to the front end of the housing than to the rear end of the housing;
the lancet ejector comprising:
a portion disposed inside the housing;
a portion extending outside the housing;
a portion that can extend into the opening of the lancet holding member and contact a lancet; and
a portion that can be slid forward to a position overlying a portion of the front end of the lancet holding member when the front cover is removed,
wherein the lancet holding member is capable of moving between an initial position and a puncturing position, and
wherein the lancet device is capable of assuming plural different depth of penetration adjustment positions.
22. The lancet device of claim 21, further comprising:
a lock member that is movable to a locking position that prevents axial movement of the lancet holding member; and
a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing.
23. A lancet device comprising:
a housing;
a trigger;
a cocking system configured to place the lancet device in a trigger-set or armed position;
the cocking system comprising a cocking member arranged in an area of a rear end of the housing;
a multi-lancet unit comprising a plurality of lancets arranged one in front of the other and positioned in the housing;
each lancet comprising a front end, a needle which extends from the front end, and a rear end;
a lancet holding member receiving therein the multi-lancet unit and being movable within the housing;
a retaining member holding the holding member in a trigger-set position;
the retaining member releasing the holding member when a user activates the trigger;
a lock member that is movable to a locking position upon activation of a lancet ejection system and that prevents axial movement of the lancet holding member,
wherein the front end of at least one of the plurality lancets is removably connected to the rear end of another of the plurality of lancets.
US14/673,256 2007-02-09 2015-03-30 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit Abandoned US20150272490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/673,256 US20150272490A1 (en) 2007-02-09 2015-03-30 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US90034907P 2007-02-09 2007-02-09
PCT/US2008/053400 WO2008100818A1 (en) 2007-02-09 2008-02-08 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US52598211A 2011-03-15 2011-03-15
US14/673,256 US20150272490A1 (en) 2007-02-09 2015-03-30 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/053400 Continuation WO2008100818A1 (en) 2007-02-09 2008-02-08 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US12/525,982 Continuation US9017356B2 (en) 2007-02-09 2008-02-08 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Publications (1)

Publication Number Publication Date
US20150272490A1 true US20150272490A1 (en) 2015-10-01

Family

ID=39690469

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/525,982 Expired - Fee Related US9017356B2 (en) 2007-02-09 2008-02-08 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US14/673,256 Abandoned US20150272490A1 (en) 2007-02-09 2015-03-30 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/525,982 Expired - Fee Related US9017356B2 (en) 2007-02-09 2008-02-08 Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Country Status (3)

Country Link
US (2) US9017356B2 (en)
TW (1) TW200840547A (en)
WO (1) WO2008100818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077422A (en) * 2020-12-02 2022-06-09 삼육대학교산학협력단 A blood collection device capable of safe replacement of blood collection needles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US8617195B2 (en) 2005-08-04 2013-12-31 Bayer Healthcare Llc Lancing device
EP2591726B1 (en) 2005-09-30 2015-11-18 Intuity Medical, Inc. Multi-Site body fluid sampling and analysis cartridge
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
EP2253269B1 (en) * 2008-03-18 2013-05-22 Panasonic Corporation Blood collecting puncture device and magazine used for the same
EP2293719B1 (en) 2008-05-30 2015-09-09 Intuity Medical, Inc. Body fluid sampling device -- sampling site interface
EP3639744B1 (en) 2008-06-06 2021-11-24 Intuity Medical, Inc. Blood glucose meter and method of operating
CA2726067C (en) 2008-06-06 2020-10-20 Intuity Medical, Inc. Detection meter and mode of operation
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
US9101724B2 (en) * 2010-08-16 2015-08-11 Becton, Dickinson And Company Pen injection device needle dispensing and storing apparatus
EP2460471B1 (en) * 2010-12-04 2013-07-03 Roche Diagnostics GmbH Lancet device with optionally reusable stored lancets
ES2675773T3 (en) 2011-08-03 2018-07-12 Intuity Medical, Inc. Body fluid sampling provision
EP3019085B1 (en) * 2013-07-08 2017-05-10 Facet Technologies, LLC Lancet ejection and advancement mechanism for multi-lancet cartridge
US10070811B2 (en) * 2014-06-26 2018-09-11 Stat Medical Devices, Inc. Lancing device with depth adjustment and lancet removal system and method
CN104783809A (en) * 2015-03-14 2015-07-22 深圳市前海安测信息技术有限公司 Blood taking needle for glucometer blood taking pen
CN104799867A (en) * 2015-03-14 2015-07-29 深圳市前海安测信息技术有限公司 Glucometer blood sampling pen with inbuilt multi-section type blood taking needle
FR3038225B1 (en) * 2015-07-02 2017-08-11 Sedatelec IMPLANTATION DEVICE COMPRISING A SET OF IMPLANTS

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA523078A (en) 1956-03-27 L. Kelly Elizabeth Surgical instrument
US676678A (en) * 1901-04-24 1901-06-18 George W Webb Nut-lock.
US1135465A (en) * 1914-07-01 1915-04-13 William M Pollock Lancet.
US2699784A (en) * 1953-02-16 1955-01-18 Krayl Gerhard Max Scarifier
FR1126718A (en) 1955-06-25 1956-11-29 Maintained Orientation Syringe
US2848809A (en) * 1956-02-24 1958-08-26 John S Crowder Retractable scratch awl
US3030959A (en) * 1959-09-04 1962-04-24 Praemeta Surgical lancet for blood sampling
US3589213A (en) * 1968-08-16 1971-06-29 Mccrosky Tool Corp Turret tool post and handle assembly
DE2657053C3 (en) * 1975-12-19 1980-01-31 Societe D'etudes Et D'applications Techniques S.E.D.A.T., Irigny, Rhone (Frankreich) Device comprising an acupuncture needle and a device for piercing the same
DE2642896C3 (en) * 1976-09-24 1980-08-21 7800 Freiburg Precision snapper for setting standard stab wounds in the skin for diagnostic purposes
US4257446A (en) * 1979-05-29 1981-03-24 Ray Charles W Fluid flow shut-off system
US4257561A (en) * 1979-06-05 1981-03-24 Ethyl Products Company Child-resistant dispensing nozzle assembly
FR2487037B1 (en) * 1980-07-17 1986-02-21 Vallourec JOINT FOR TUBES INTENDED IN PARTICULAR FOR THE OIL INDUSTRY
US4388925A (en) * 1981-03-23 1983-06-21 Becton Dickinson And Company Automatic retractable lancet assembly
US4535769A (en) * 1981-03-23 1985-08-20 Becton, Dickinson And Company Automatic retractable lancet assembly
FR2508305B1 (en) * 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
USRE32922E (en) * 1983-01-13 1989-05-16 Paul D. Levin Blood sampling instrument
US4517978A (en) * 1983-01-13 1985-05-21 Levin Paul D Blood sampling instrument
NZ208203A (en) 1983-09-15 1988-03-30 Becton Dickinson Co Blood lancet and shield: lancet has three cutting edges terminating in a point
US4624253A (en) 1985-01-18 1986-11-25 Becton, Dickinson And Company Lancet
US4628929A (en) * 1985-08-16 1986-12-16 American Hospital Supply Corporation Retractable blade bleeding time device
US4834667A (en) * 1986-02-24 1989-05-30 Engineered Transitions Co., Inc. Vibration resistant electrical coupling
IT207944Z2 (en) * 1986-07-25 1988-03-14 Erba Farmitalia LOCKING DEVICE OF A SYRINGE ON A BODY TO WHICH THE SYRINGE MUST BE COUPLED.
GB8710470D0 (en) * 1987-05-01 1987-06-03 Mumford Ltd Owen Blood sampling devices
US4850973A (en) * 1987-10-16 1989-07-25 Pavel Jordon & Associates Plastic device for injection and obtaining blood samples
US4924879A (en) * 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US4990154A (en) * 1989-06-19 1991-02-05 Miles Inc. Lancet assembly
US4976724A (en) * 1989-08-25 1990-12-11 Lifescan, Inc. Lancet ejector mechanism
US5133730A (en) * 1991-05-15 1992-07-28 International Technidyne Corporation Disposable-retractable finger stick device
US5147375A (en) * 1991-05-31 1992-09-15 Ann Sullivan Safety finger prick instrument
US5284156A (en) * 1991-08-30 1994-02-08 M3 Systems, Inc. Automatic tissue sampling apparatus
WO1993009723A1 (en) * 1991-11-12 1993-05-27 Ramel Urs A Lancet device
GB9207120D0 (en) * 1992-04-01 1992-05-13 Owen Mumford Ltd Improvements relating to blood sampling devices
DE4212315A1 (en) * 1992-04-13 1993-10-14 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
PL169210B1 (en) * 1992-08-03 1996-06-28 Przed Zagraniczne Htl Puncturing device
CA2079192C (en) * 1992-09-25 1995-12-26 Bernard Strong Combined lancet and multi-function cap and lancet injector for use therewith
US5269799A (en) * 1992-11-05 1993-12-14 Daniel Richard F Finger pricker
US5282822A (en) * 1993-01-19 1994-02-01 Sherwood Medical Company Lancet ejector for lancet injector
DE4320463A1 (en) * 1993-06-21 1994-12-22 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
US5304193A (en) * 1993-08-12 1994-04-19 Sam Zhadanov Blood lancing device
US5395388A (en) * 1993-11-15 1995-03-07 Schraga; Steven Single unit lancet device
US5464418A (en) * 1993-12-09 1995-11-07 Schraga; Steven Reusable lancet device
JP3393920B2 (en) * 1993-12-09 2003-04-07 富士写真フイルム株式会社 Wearing equipment for small-volume fixed-volume blood sampling points
US5439473A (en) * 1993-12-13 1995-08-08 Modulohm A/S Safety lancet
US5509345A (en) * 1994-01-26 1996-04-23 Cyktich; James M. Muzzle attachment for improving firearm accuracy
US5350392A (en) * 1994-02-03 1994-09-27 Miles Inc. Lancing device with automatic cocking
US5454828A (en) * 1994-03-16 1995-10-03 Schraga; Steven Lancet unit with safety sleeve
USD376203S (en) 1994-10-31 1996-12-03 Steven Schraga Single use lancet
US5628765A (en) * 1994-11-29 1997-05-13 Apls Co., Ltd. Lancet assembly
US5518004A (en) * 1994-12-12 1996-05-21 Schraga; Steven Specimen drawing device
US5628764A (en) * 1995-03-21 1997-05-13 Schraga; Steven Collar lancet device
US5569286A (en) * 1995-03-29 1996-10-29 Becton Dickinson And Company Lancet assembly
EP0783868B1 (en) * 1995-07-28 2003-04-09 Apls Co., Ltd. Assembly for adjusting the piercing depth of a lancet
US5879367A (en) * 1995-09-08 1999-03-09 Integ, Inc. Enhanced interstitial fluid collection
US5643306A (en) * 1996-03-22 1997-07-01 Stat Medical Devices Inc. Disposable lancet
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
ES2121565T6 (en) * 1996-05-17 1998-11-16 Mercury Diagnostics Inc DISPOSABLE ITEM FOR USE IN A BODY FLUID SAMPLING DEVICE.
US5613978A (en) * 1996-06-04 1997-03-25 Palco Laboratories Adjustable tip for lancet device
US5741288A (en) * 1996-06-27 1998-04-21 Chemtrak, Inc. Re-armable single-user safety finger stick device having reset for multiple use by a single patient
GB9619462D0 (en) * 1996-09-18 1996-10-30 Owen Mumford Ltd Improvements relating to lancet devices
US5797942A (en) * 1996-09-23 1998-08-25 Schraga; Steven Re-usable end cap for re-usable lancet devices for removing and disposing of a contaminated lancet
US5873887A (en) * 1996-10-25 1999-02-23 Bayer Corporation Blood sampling device
US5984940A (en) * 1997-05-29 1999-11-16 Atrion Medical Products, Inc. Lancet device
US5916230A (en) * 1997-06-16 1999-06-29 Bayer Corporation Blood sampling device with adjustable end cap
US6056765A (en) * 1997-06-24 2000-05-02 Bajaj; Ratan Lancet device
US6221089B1 (en) * 1997-07-07 2001-04-24 International Technidyne Corporation Skin incision device with compression spring assembly
CA2245056A1 (en) 1997-09-25 1999-03-25 Becton, Dickinson And Company 30 gauge lancet
US5964718A (en) * 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
DE19824036A1 (en) * 1997-11-28 1999-06-02 Roche Diagnostics Gmbh Analytical measuring device with lancing device
US6071294A (en) * 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US5908434A (en) * 1998-02-13 1999-06-01 Schraga; Steven Lancet device
US6022366A (en) * 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6346114B1 (en) * 1998-06-11 2002-02-12 Stat Medical Devices, Inc. Adjustable length member such as a cap of a lancet device for adjusting penetration depth
DE19830604C2 (en) * 1998-07-09 2000-06-21 November Ag Molekulare Medizin Device for perforating skin
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
USD428150S (en) 1999-02-23 2000-07-11 Lifescan, Inc. Lancing device
US6045567A (en) * 1999-02-23 2000-04-04 Lifescan Inc. Lancing device causing reduced pain
US6197040B1 (en) * 1999-02-23 2001-03-06 Lifescan, Inc. Lancing device having a releasable connector
DE19909602A1 (en) * 1999-03-05 2000-09-07 Roche Diagnostics Gmbh Device for drawing blood for diagnostic purposes
US6306152B1 (en) * 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US6192891B1 (en) * 1999-04-26 2001-02-27 Becton Dickinson And Company Integrated system including medication delivery pen, blood monitoring device, and lancer
US6161976A (en) 1999-06-02 2000-12-19 Pioneer Industrial Corporation Automatic writing apparatus for segmental writing elements with caps
US6152942A (en) * 1999-06-14 2000-11-28 Bayer Corporation Vacuum assisted lancing device
US6168606B1 (en) * 1999-11-10 2001-01-02 Palco Labs, Inc. Single-use lancet device
US6558402B1 (en) 1999-08-03 2003-05-06 Becton, Dickinson And Company Lancer
FR2797579A1 (en) 1999-08-16 2001-02-23 Jean Yves Rouviere Lancing pen for use by diabetics has hollow body containing disposable lancets
DE19948759A1 (en) * 1999-10-09 2001-04-12 Roche Diagnostics Gmbh Blood lancet device for drawing blood for diagnostic purposes
US6283982B1 (en) * 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US6228100B1 (en) * 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
CA2287757A1 (en) * 1999-10-29 2001-04-29 Medical Plastic Devices M.P.D. Inc. Disposable lancet
US6258112B1 (en) * 1999-11-02 2001-07-10 Steven Schraga Single use lancet assembly
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6322575B1 (en) * 2000-01-05 2001-11-27 Steven Schraga Lancet depth adjustment assembly
US6506168B1 (en) * 2000-05-26 2003-01-14 Abbott Laboratories Apparatus and method for obtaining blood for diagnostic tests
TW495353B (en) * 2000-09-01 2002-07-21 Bayer Ag Adjustable endcap for lancing device
US6514270B1 (en) * 2000-11-10 2003-02-04 Steven Schraga Single use lancet device
CN1287745C (en) * 2001-06-13 2006-12-06 史蒂文·施拉格 Single use lancet device
US6645219B2 (en) * 2001-09-07 2003-11-11 Amira Medical Rotatable penetration depth adjusting arrangement
US8029525B2 (en) * 2003-07-31 2011-10-04 Panasonic Corporation Puncture instrument, puncture needle cartridge, puncture instrument set, and puncture needle disposal instrument
US9289161B2 (en) * 2005-01-28 2016-03-22 Stat Medical Divices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077422A (en) * 2020-12-02 2022-06-09 삼육대학교산학협력단 A blood collection device capable of safe replacement of blood collection needles
KR102536137B1 (en) 2020-12-02 2023-05-24 삼육대학교산학협력단 A blood collection device capable of safe replacement of blood collection needles

Also Published As

Publication number Publication date
WO2008100818A1 (en) 2008-08-21
US20110160759A1 (en) 2011-06-30
TW200840547A (en) 2008-10-16
US9017356B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
US9017356B2 (en) Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US10307095B2 (en) Lancet device with depth adjustment and lancet removal system and method
US8888804B2 (en) Adjustable lancet device and method
US8043318B2 (en) Push-button lance device and method
US8257380B2 (en) Adjustabable disposable/single-use lancet device and method
EP1790287B1 (en) Centesis instrument
US11071482B2 (en) Lancet device with depth adjustment and lancet removal system and method
US20070083222A1 (en) Lancet device, removal system for lancet device, and method
US20090069832A1 (en) Pricking Device, and Lancet Assembly and Injector Assembly That Constitute the Same
US9307939B2 (en) Lancet device with combined trigger and cocking mechanism
US20100168616A1 (en) Lancet device utilizing a revolver-type cartridge, revolver-type cartridge, and method of making and/or using the cartridge and the lancet device
KR101716529B1 (en) Disposable blood collecting instrument
KR101462447B1 (en) Safety Blood Lancet Device
EP2378952B1 (en) Puncture instrument
CN216724562U (en) Blood sampling pen
EP2220999B1 (en) Puncture device
US20140088632A1 (en) Lancet device utilizing a magnet and method of making and using the same
CN115998379A (en) Biopsy puncture device
CN118592954A (en) Blood taking needle
CN117042689A (en) Replacement type blood collection device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION