US20140136227A1 - Readmission risk assessment - Google Patents
Readmission risk assessment Download PDFInfo
- Publication number
- US20140136227A1 US20140136227A1 US14/156,001 US201414156001A US2014136227A1 US 20140136227 A1 US20140136227 A1 US 20140136227A1 US 201414156001 A US201414156001 A US 201414156001A US 2014136227 A1 US2014136227 A1 US 2014136227A1
- Authority
- US
- United States
- Prior art keywords
- patient
- readmission risk
- readmission
- risk score
- outpatient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G06F19/3431—
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/20—ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Definitions
- An unplanned readmission occurs when a patient is readmitted to a hospital within a certain period of time (e.g., 30 days) after having been discharged from the hospital for treatment of the same or related condition. Readmission rates are particularly high with certain conditions, such as heart failure and pneumonia. Hospitals are typically concerned with reducing the number of unplanned readmissions as they may reflect upon the quality of treatment provided by the hospitals and also result in significantly increased costs. Often, readmissions may have been preventable if the patients received proper care while admitted at the hospitals during the first visit and/or if the patients' length of stay had been extended. Additionally, readmissions may have been preventable if proper monitoring and education had been provided to patients after discharge. However, it is typically difficult to identify the proper inpatient treatments and post-discharge care appropriate for properly treating patients and preventing readmissions.
- Embodiments of the present invention relate to generating readmission risk prediction models for determining the risk of readmission for patients and using the patients' readmission risk in determining proper inpatient interventions and/or outpatient activities.
- Readmission risk prediction models may be generated using linear regression techniques over clinically relevant data for any of a variety of different clinical conditions.
- a readmission risk prediction model may be built around a single patient condition or multiple patient conditions. When a patient is admitted to a hospital or other clinical facility, the patient's condition is identified and a corresponding readmission risk prediction model is used to determine the patient's readmission risk. Inpatient treatment interventions may be identified based on the patient's readmission risk and provided as clinical decision support to a clinician.
- the patient's readmission risk may be reassessed and the patient's care plan adjusted over the patient's stay.
- the patient's readmission risk score may be used to identify outpatient activities for the patient.
- the patient's readmission risk may be reassessed after the patient has been discharged and the post-discharge readmission risk may be used for determining outpatient activities and/or to readmit the patient.
- an embodiment of the present invention is directed to one or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform a method.
- the method includes identifying a patient condition for a patient admitted to a clinical facility and selecting a readmission risk prediction model based on the patient condition.
- the method also includes receiving patient data for the patient and computing a readmission risk score using the readmission risk prediction model and the patient data, the readmission risk score representing a probability of readmission for the patient.
- the method further includes providing an indication of readmission risk for the patient based on the readmission risk score for presentation to a clinician treating the patient.
- an aspect of the invention is directed to one or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform a method.
- the method includes computing a readmission risk score for a patient previously discharged from a clinical facility.
- the method also includes determining an outpatient treatment recommendation based on the readmission risk score.
- the method further includes providing the outpatient treatment recommendation for presentation to a clinician.
- a further embodiment of the present invention is directed to a computerized system that includes one or more processors; and one or more computer storage media storing computer-useable instructions that, when used by the one or more processors, cause the one or more processors to: compute a readmission risk score for a patient previously discharged from a clinical facility; determine an outpatient treatment recommendation based on the readmission risk score; and provide the outpatient treatment recommendation for presentation to a clinician.
- FIG. 1 is a block diagram of an exemplary computing environment suitable for use in implementing the present invention
- FIG. 2 is a flow diagram showing a method for generating a readmission risk prediction model in accordance with an embodiment of the present invention
- FIGS. 3A and 3B include a flow diagram showing a method for using readmission risk for inpatient treatment and outpatient activity planning in accordance with an embodiment of the present invention
- FIG. 4 is a screen display of an exemplary view illustrating condition management for a patient including lab results for the patient and the patient's readmission risk in accordance with an embodiment of the present invention
- FIG. 5 is a screen display of an exemplary view illustrating a user interface for generating orders for patients including a initiating a readmission risk protocol in accordance with an embodiment of the present invention
- FIG. 6 is a screen display of an exemplary view illustrating an outpatient surveillance call list in accordance with an embodiment of the present invention
- FIG. 7 is a screen display of an exemplary view illustrating patient summary information for managing an outpatient call in accordance with an embodiment of the present invention.
- FIG. 8 is a screen display of an exemplary view illustrating a user interface for tracking outpatient information in accordance with an embodiment of the present invention.
- Embodiments of the present invention provide computerized methods and systems for generating readmission risk prediction models using linear regression techniques. Embodiments of the present invention further provide computerized methods and systems for employing the readmission risk prediction models to assess the readmission risk of patients and determine inpatient treatment interventions and outpatient activities based on the patients' readmission risk.
- An exemplary operating environment is described below.
- an exemplary computing system environment for instance, a medical information computing system, on which embodiments of the present invention may be implemented is illustrated and designated generally as reference numeral 20 .
- reference numeral 20 It will be understood and appreciated by those of ordinary skill in the art that the illustrated medical information computing system environment 20 is merely an example of one suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the medical information computing system environment 20 be interpreted as having any dependency or requirement relating to any single component or combination of components illustrated therein.
- the present invention may be operational with numerous other general purpose or special purpose computing system environments or configurations.
- Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the present invention include, by way of example only, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above-mentioned systems or devices, and the like.
- the present invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
- program modules include, but are not limited to, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types.
- the present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
- program modules may be located in local and/or remote computer storage media including, by way of example only, memory storage devices.
- the exemplary medical information computing system environment 20 includes a general purpose computing device in the form of a server 22 .
- Components of the server 22 may include, without limitation, a processing unit, internal system memory, and a suitable system bus for coupling various system components, including database cluster 24 , with the server 22 .
- the system bus may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, and a local bus, using any of a variety of bus architectures.
- such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronic Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, also known as Mezzanine bus.
- ISA Industry Standard Architecture
- MCA Micro Channel Architecture
- EISA Enhanced ISA
- VESA Video Electronic Standards Association
- PCI Peripheral Component Interconnect
- the server 22 typically includes, or has access to, a variety of computer readable media, for instance, database cluster 24 .
- Computer readable media can be any available media that may be accessed by server 22 , and includes volatile and nonvolatile media, as well as removable and non-removable media.
- Computer readable media may include computer storage media and communication media.
- Computer storage media may include, without limitation, volatile and nonvolatile media, as well as removable and nonremovable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data.
- computer storage media may include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVDs) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage device, or any other medium which can be used to store the desired information and which may be accessed by the server 22 .
- Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and may include any information delivery media.
- modulated data signal refers to a signal that has one or more of its attributes set or changed in such a manner as to encode information in the signal.
- communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above also may be included within the scope of computer readable media.
- the computer storage media discussed above and illustrated in FIG. 1 including database cluster 24 , provide storage of computer readable instructions, data structures, program modules, and other data for the server 22 .
- the server 22 may operate in a computer network 26 using logical connections to one or more remote computers 28 .
- Remote computers 28 may be located at a variety of locations in a medical or research environment, for example, but not limited to, clinical laboratories, hospitals and other inpatient settings, veterinary environments, ambulatory settings, medical billing and financial offices, hospital administration settings, home health care environments, and clinicians' offices.
- Clinicians may include, but are not limited to, a treating physician or physicians, specialists such as surgeons, radiologists, cardiologists, and oncologists, emergency medical technicians, physicians' assistants, nurse practitioners, nurses, nurses' aides, pharmacists, dieticians, microbiologists, laboratory experts, genetic counselors, researchers, veterinarians, students, and the like.
- the remote computers 28 may also be physically located in non-traditional medical care environments so that the entire health care community may be capable of integration on the network.
- the remote computers 28 may be personal computers, servers, routers, network PCs, peer devices, other common network nodes, or the like, and may include some or all of the components described above in relation to the server 22 .
- the devices can be personal digital assistants or other like devices.
- Exemplary computer networks 26 may include, without limitation, local area networks (LANs) and/or wide area networks (WANs). Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
- the server 22 When utilized in a WAN networking environment, the server 22 may include a modem or other means for establishing communications over the WAN, such as the Internet.
- program modules or portions thereof may be stored in the server 22 , in the database cluster 24 , or on any of the remote computers 28 .
- various application programs may reside on the memory associated with any one or more of the remote computers 28 . It will be appreciated by those of ordinary skill in the art that the network connections shown are exemplary and other means of establishing a communications link between the computers (e.g., server 22 and remote computers 28 ) may be utilized.
- a user may enter commands and information into the server 22 or convey the commands and information to the server 22 via one or more of the remote computers 28 through input devices, such as a keyboard, a pointing device (commonly referred to as a mouse), a trackball, or a touch pad.
- input devices such as a keyboard, a pointing device (commonly referred to as a mouse), a trackball, or a touch pad.
- Other input devices may include, without limitation, microphones, satellite dishes, scanners, or the like.
- Commands and information may also be sent directly from a remote healthcare device to the server 22 .
- the server 22 and/or remote computers 28 may include other peripheral output devices, such as speakers and a printer.
- embodiments of the present invention relate to generating readmission risk prediction models and using the readmission risk prediction models to facilitate inpatient treatment and/or outpatient activities.
- readmission risk prediction models may be generated utilizing logistic regression of existing clinically relevant data.
- Each readmission risk prediction model may be generated for a given condition using clinically relevant data from patients diagnosed with that condition.
- a readmission risk prediction model may be built around multiple conditions.
- the readmission risk prediction models may be embedded within electronic medical systems or provided as a standalone software tool that facilitates determining the readmission risk of patients.
- the patient's condition may be diagnosed.
- a readmission risk prediction model may be selected and used to calculate a readmission risk score that represents the probability of readmission for the patient.
- the readmission risk may be based on readmission within a predetermined period of time, such as within 7 days after discharge, within 30 days after discharge, within 60 days after discharge, within 90 days after discharge, etc.
- the readmission risk determined for patients may be utilized during hospitalization to drive clinical workflows for the patients. This may include linking the readmission risk for patients to clinical decision support and providing user interfaces to assist in identifying interventions for patients and also linking to orders to allow clinicians to enter orders based on review of readmission risk. For instance, readmission risk scores may help identify high readmission risk patients such that clinicians may determine proper interventions for those patients.
- the system may recommend treatment interventions based on patients' readmission risks. For instance, readmission risk may be used to modify a patient's care plan including recommending alternate therapies, performing additional studies, and/or extending the patient's length of stay.
- readmission risk may be linked to clinical decision support and/or order subsystems such that clinicians may be identify and implement patient treatments deemed appropriate based in part on patients' readmission risks.
- readmission risk scores may be recalculated over the length of hospitalization for patients and the patient care plans modified based on the recalculated readmission risk scores.
- readmission risk may be used to facilitate discharge planning and outpatient activities. For instance, readmission risk may be used to determine the need for and scheduling of surveillance calls to patients and/or in-person appointments, in-home treatment, and patient education. In some embodiments, readmission risk scores may also be calculated after a patient has been discharged. Such post-discharge readmission risk scores may be used to modify outpatient activities and may warrant readmitting patients in some instances.
- a flow diagram is provided that illustrates a method 200 for generating a readmission risk prediction model in accordance with an embodiment of the present invention.
- the condition around which the readmission risk prediction model will be generated is determined, as shown at block 202 .
- risk prediction models may be built around any given condition. For instance, a risk prediction model may be built around heart failure, acute myocardial infarction, pneumonia, acute kidney injury, sepsis, to name a few.
- a readmission risk prediction model may be built around multiple conditions, each of which is identified at block 202 .
- Clinically relevant data for the identified condition is accessed at block 204 for use as training data.
- the clinically relevant data may come from any of a variety of public or private sources, including, for instance, hospital electronic medical records, research facilities, and academic institutions.
- the data may be collected manually or may be retrieved using electronic data gathering mechanisms.
- the process may include identifying relevant cases useful for constructing a readmission risk prediction model for the condition identified at block 202 . Additionally, the process may include identifying input and output variables relevant to the identified condition. In some embodiments, evidence-based practices may be used in determining relevant cases and variables.
- a logistic regression model is built using the retrieved clinically relevant data.
- the logistic regression model may be built around patient readmissions within one or more given time periods, such as readmission within 7 days after discharge, within 30 days after discharge, within 60 days after discharge, within 90 days after discharge, etc.
- the logistic regression model is then tested for model fit, as shown at block 208 . This may include performing analyses to determine how well the model predicts outcomes, how well the model calibrates, and whether the model is clinically useful.
- the model may be tested by performing a receiver-operating characteristic (ROC) area-under-the-curve (C-statistic) analysis to determine how well the model predicts outcomes.
- the model may be analyzed using a chi-square test to determine how well the model calibrates.
- ROC receiver-operating characteristic
- C-statistic area-under-the-curve
- Whether the performance of the logistic regression model is adequate based on the model testing is determined at block 210 . If the performance of the logistic regression model is deemed to be inadequate, the process of selecting clinically relevant data and/or building a logistic regression model may be iterated until sufficient performance is achieved. A readmission risk prediction model is then generated using the output from the logistic regression model, as shown at block 212 .
- FIGS. 3A and 3B a flow diagram is provided that illustrates a method 300 for using a readmission risk score to facilitate treatment of a patient in accordance with an embodiment of the present invention.
- a patient is admitted to a hospital or other clinical facility.
- a condition is identified for the patient, as shown at block 304 .
- the patient may be suffering from a single condition and the single condition is identified, while in other instances, the patient may be suffering from multiple conditions and the multiple conditions are identified at block 304 .
- a readmission risk prediction model is selected at block 306 based on the condition identified for the patient at block 304 .
- a readmission risk prediction model corresponding with that condition is selected. For instance, if the patient is identified as suffering from heart failure, the system selects a readmission risk prediction model that was built around heart failure patients to determine the readmission risk of heart failure patients.
- a single readmission risk prediction model built around those identified conditions is selected. For instance, a patient may be suffering from heart failure and pneumonia, and a single readmission risk prediction model built around those two conditions may be selected.
- multiple readmission risk prediction models are selected, each model corresponding with one of the identified conditions. For instance, if the patient is suffering from heart failure and pneumonia, a readmission risk prediction model for heart failure and a readmission risk prediction model for pneumonia may both be selected and used in conjunction to identify readmission risk for the patient.
- Patient data for the patient is received at block 308 .
- the patient data may include demographic data and/or clinically relevant data for the patient. Additionally, the data received at block 308 may be dependent upon the selected readmission risk prediction model.
- each readmission risk prediction model may have a number of input variables that are relevant to that model. As such, data corresponding with the relevant variables are received as input to the model for readmission risk assessment purposes.
- the readmission risk prediction models may be embedded within an electronic medical system that includes electronic medical records or otherwise may be in communication with electronic medical records for patients.
- the patient data may be received by accessing the electronic medical record for the patient and retrieving the relevant data.
- patient data used by the readmission risk prediction model may not be available in the patient's electronic medical records, and the system may prompt a clinician to enter the data or to order particular tests to be performed to obtain the data.
- the readmission risk prediction models may be provided in standalone software separate from an electronic medical record, and a clinician may enter the patient data as variables for the readmission risk prediction model. Any and all variations are contemplated to be within the scope of embodiments of the present invention.
- a readmission risk score is computed using the selected readmission risk prediction model and the received patient data, as shown at block 310 .
- the readmission risk score is then compared against one or more thresholds, as shown at block 312 .
- thresholds may be set by the clinical facility treating the patient, an external policy maker, and/or other entity and used to trigger treatment recommendations based on the risk of readmission.
- the thresholds may be condition-specific. For instance, a readmission risk threshold used for heart failure patients may differ from a readmission risk threshold used for pneumonia patients.
- a single threshold may be provided. If the readmission risk score exceeds the threshold, the patient is identified as a high risk for readmission. Alternatively, if the readmission risk score is below the threshold, the patient is considered to be a low readmission risk. In other embodiments, multiple thresholds may be set providing more than two ranges of readmission risk scores corresponding with more than two levels of readmission risk.
- treatment recommendations are determined based on the patient's readmission risk level.
- the treatment recommendations may be any of a variety of different interventions intended to treat the patient's condition and reduce the likelihood that the patient would need to be readmitted. For instance, as noted above, a single threshold may be used such that the readmission risk score indicates either a low or high readmission risk. In some embodiments, if the readmission risk is low, no interventions may be recommended and the care plan may remain unmodified. Alternatively, if the threshold is exceeded such that the readmission risk is high, certain interventions or a modified care plan may be recommended based on the high readmission risk. In embodiments in which multiple thresholds are used providing multiple risk levels, treatment recommendations may be determined based on the risk level determined for the patient. In various embodiments of the present invention, the treatment recommendations may be predetermined for each risk level or the system may analyze or provide tools that allow a clinician to analyze the input variables used by the readmission risk prediction model to identify personalized treatment recommendations for the patient.
- the readmission risk and/or recommended treatments for the patient are presented to a clinician, as shown at block 316 .
- the readmission risk may be presented, for instance, as a readmission risk score comprising a percentage indicating the probability that the patient will need to be readmitted after discharge.
- the readmission risk determined by comparison to one or more thresholds may be presented to a clinician.
- the patient may be identified as a high readmission risk.
- the system may automatically recommended interventions based on the readmission risk level, and the system may present those interventions.
- the system may provide tools to the clinician to allow the clinician to explore reasons why the readmission risk score is high and to determine the best treatment options for the patient.
- the readmission risk score and recommended treatments may only be presented if a threshold is exceeded by the patient's readmission risk score. For instance, if the patient's readmission risk score is low, no readmission risk information may be presented to the clinician and a routine care plan may be provided. In other embodiments, the system may provide an indication to the clinician that the readmission risk for the patient is low.
- Treatment alternatives are selected, and the patient is treated, as shown at block 318 .
- This may include performing a routine care plan if the readmission risk is low or performing a modified care plan including interventions recommended based on readmission risk exceeding certain thresholds.
- the readmission risk score may be recalculated as shown by the return to block 308 .
- the readmission risk score may be recalculated at predetermined points in time or any time patient data is updated that may impact the readmission risk score for the patient. Based on the readmission risk score recalculations, different treatments options may be recommended and/or the patient's care plan may be modified. As such, the patient's readmission risk may be monitored during treatment and the patient's care modified as dictated by the patient's readmission risk.
- the system may monitor risk score trending for the patient during treatment and use such trending information to provide treatment recommendations. For instance, multiple readmission risk score calculations may indicate that the patient's readmission risk is decreasing, demonstrating that the current care plan is effective. Alternatively, readmission risk score trending may correspond with the patient's readmission risk remaining stable or even increasing, demonstrating that the current care plan is ineffective and/or that different interventions may be necessary.
- discharge planning is conducted prior to discharging the patient, as shown at block 320 .
- This may include recalculating a readmission risk score for discharge planning purposes and/or using a previously obtained readmission risk score or risk score trending in discharge planning.
- the patient's readmission risk score may be used to determine whether to discharge the patient. For instance, a rule may dictate that the patient may not be discharged until the patient's readmission risk score falls below a certain threshold or exhibits a certain downward trend over time.
- Discharge planning may also include planning outpatient activities to be conducted after the patient is discharged.
- the patient's readmission risk score may be used in planning the outpatient activities for the patient.
- the outpatient activities may include performing patient monitoring, such as outpatient surveillance calls from a clinician to the patient, scheduling appointments for the patient, providing in-home healthcare, and educating the patient on healthcare issues related to the patient's condition.
- the patient's readmission risk score may be used to determine which outpatient activities to provide for the patient and may also determine a schedule for surveillance calls and/or appointments. For instance, if the patient is determined to be a high risk for readmission, the discharge planning may include placing the patient on a surveillance call list for high risk patients.
- the patient is discharged, as shown at block 322 .
- Any outpatient activities planned by the patient are performed after discharge, as shown at block 324 .
- the outpatient activities may include surveillance calls, appointments, as well as a number of other activities.
- the patient's readmission risk score is calculated after the patient has been discharged, as shown at block 326 .
- the readmission risk score may be calculated, for instance, based on additional information gathered from patient calls and appointments.
- the readmission risk score calculated for a patient after discharge may be used for a number of purposes, such as determining whether to readmit the patient and whether to alter the patient's outpatient activities. Accordingly, as shown at block 328 , a determination is made regarding whether to readmit the patient based on the readmission risk score calculated at block 326 . This determination may be made, for instance, by comparing the readmission risk score to a threshold and determining to readmit based on the readmission risk score exceeding the threshold. The determination may also be made on readmission risk trending demonstrating a certain increase in readmission risk over time. The determination to readmit the patient may be based on clinician judgment as well.
- the system may present a notice to the clinician recommending that the patient be readmitted based on the readmission risk score and the clinician may review the notice and determine whether to readmit the patient. If it is determined that the patient should be readmitted, the patient may be readmitted as shown at block 330 . If readmitted, the patient may be treated and the patient's readmission risk tracked and used for treatment purposes as described above.
- the patient should not be readmitted at block 328 .
- the patient's risk score may not exceed a predetermined threshold and/or a treating clinician may determine not to readmit.
- outpatient activity recommendations are determined based on the outpatient readmission risk score. The readmission risk and/or outpatient activity recommendations are presented to a clinician, as shown at block 334 .
- the outpatient activities may be modified, as shown at block 336 .
- the process of performing outpatient activities and recalculating readmission risk may be repeated until the patient is readmitted or until it is determined that outpatient activities and readmission risk score monitoring is no longer necessary.
- FIGS. 4 through 8 are illustrative of user interfaces providing readmission risk information for patients and proving clinical decision support to clinicians based on readmission risk. It will be understood and appreciated by those of ordinary skill in the art that the screen displays of FIGS. 4 through 8 are provided by way of example only and are not intended to limit the scope of the present invention in any way.
- an illustrative screen display 400 is provided showing readmission risk in context of a condition management view for a patient in accordance with an embodiment of the present invention.
- the condition management view provides lab results information for the patient. Additionally, the condition management view provides an indication of readmission risk 402 for the patient.
- the condition management view further includes clinical decision support 404 in the form of care plans that are suggested by the system based on the patient's readmission risk. The clinician may review the information, including the patient's readmission risk, and determine whether to implement suggested care plans.
- an illustrative screen display 500 shows a user interface allowing a clinician to enter orders for a patient in accordance with an embodiment of the present invention.
- the orders user interface allows the clinician to select from a number of different orders.
- the orders user interface also provides an indication: “This patient meets criteria for ‘High’ 30 day readmission risk” and suggests that the clinician initiate a heart failure readmission risk protocol. Accordingly, the clinician can review the information and understand that the patient has been identified as a high readmission risk. Based on this information, the clinician may select an order 502 to implement the heart failure readmission risk protocol for the patient.
- FIG. 6 provides an illustrative screen display 600 of an outpatient surveillance user interface in accordance with an embodiment of the present invention.
- the outpatient surveillance user interface may include two lists of patients: patients on a call list and patients on a no call list. A clinician may toggle between the two lists using the links 602 and 604 .
- patients having a high readmission risk may be placed on the call list while patients having a low readmission risk may be placed on the no call list. Patients may be moved from one list to another based on readmission risk and clinician judgment.
- the screen display 600 illustrates a view of the patient call list.
- the list may be used to by clinicians to manage outpatient surveillance calls to patients.
- the list may include information such as contact information for each patient, how long ago each patient was discharged, when each patient was previously contacted, scheduled contact for each patient, etc.
- the clinician may access patient information by selecting a patient from the call list.
- FIG. 7 illustrates patient information when “Joe Patient” is selected from the call list.
- the patient summary includes a readmission risk score for the patient providing the clinician with an indication of the readmission risk for the patient.
- the patient summary also includes a variety of information that may be useful to a clinician responsible for contacting the patient, including surveillance information from previous contacts, medications, problems, and other related documentation.
- Embodiments of the present invention may further provide user interfaces for collecting patient information when performing outpatient surveillance.
- FIG. 8 provides an illustrate screen display 800 of such a user interface. The user interface and the information to be collected may be triggered based upon the readmission risk for the patient.
- the present invention provides a readmission risk prediction model built using linear regression techniques and clinically relevant data.
- the present invention further provides inpatient treatment interventions and outpatient activity recommendations based on patients' monitored readmission risk.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Bioethics (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
A readmission risk prediction model is generated and used for identifying patients having elevated risk of readmission and determining inpatient treatment and outpatient activities based on readmission risk. Readmission risk prediction models may be generated for a variety of different clinical conditions using logistic regression techniques. When a patient is admitted to a hospital, the patient's condition is identified and a corresponding readmission risk prediction model is employed to identify the patient's risk of readmission. The readmission risk may be presented to a clinician and employed to recommend interventions intended to treat the patient and reduce the probability of readmission for the patient. The patient's readmission risk may also be calculated after the patient has been discharged and used for planning outpatient activities for the patient.
Description
- This application is a continuation of U.S. patent application Ser. No. 12/817,602, filed on Jun. 17, 2010, which is herein incorporated by reference in its entirety.
- An unplanned readmission occurs when a patient is readmitted to a hospital within a certain period of time (e.g., 30 days) after having been discharged from the hospital for treatment of the same or related condition. Readmission rates are particularly high with certain conditions, such as heart failure and pneumonia. Hospitals are typically concerned with reducing the number of unplanned readmissions as they may reflect upon the quality of treatment provided by the hospitals and also result in significantly increased costs. Often, readmissions may have been preventable if the patients received proper care while admitted at the hospitals during the first visit and/or if the patients' length of stay had been extended. Additionally, readmissions may have been preventable if proper monitoring and education had been provided to patients after discharge. However, it is typically difficult to identify the proper inpatient treatments and post-discharge care appropriate for properly treating patients and preventing readmissions.
- This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
- Embodiments of the present invention relate to generating readmission risk prediction models for determining the risk of readmission for patients and using the patients' readmission risk in determining proper inpatient interventions and/or outpatient activities. Readmission risk prediction models may be generated using linear regression techniques over clinically relevant data for any of a variety of different clinical conditions. In embodiments, a readmission risk prediction model may be built around a single patient condition or multiple patient conditions. When a patient is admitted to a hospital or other clinical facility, the patient's condition is identified and a corresponding readmission risk prediction model is used to determine the patient's readmission risk. Inpatient treatment interventions may be identified based on the patient's readmission risk and provided as clinical decision support to a clinician. Additionally, the patient's readmission risk may be reassessed and the patient's care plan adjusted over the patient's stay. When the patient is discharged, the patient's readmission risk score may be used to identify outpatient activities for the patient. Further, the patient's readmission risk may be reassessed after the patient has been discharged and the post-discharge readmission risk may be used for determining outpatient activities and/or to readmit the patient.
- Accordingly, in one aspect, an embodiment of the present invention is directed to one or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform a method. The method includes identifying a patient condition for a patient admitted to a clinical facility and selecting a readmission risk prediction model based on the patient condition. The method also includes receiving patient data for the patient and computing a readmission risk score using the readmission risk prediction model and the patient data, the readmission risk score representing a probability of readmission for the patient. The method further includes providing an indication of readmission risk for the patient based on the readmission risk score for presentation to a clinician treating the patient.
- In another embodiment, an aspect of the invention is directed to one or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform a method. The method includes computing a readmission risk score for a patient previously discharged from a clinical facility. The method also includes determining an outpatient treatment recommendation based on the readmission risk score. The method further includes providing the outpatient treatment recommendation for presentation to a clinician.
- A further embodiment of the present invention is directed to a computerized system that includes one or more processors; and one or more computer storage media storing computer-useable instructions that, when used by the one or more processors, cause the one or more processors to: compute a readmission risk score for a patient previously discharged from a clinical facility; determine an outpatient treatment recommendation based on the readmission risk score; and provide the outpatient treatment recommendation for presentation to a clinician.
- The present invention is described in detail below with reference to the attached drawing figures, wherein:
-
FIG. 1 is a block diagram of an exemplary computing environment suitable for use in implementing the present invention; -
FIG. 2 is a flow diagram showing a method for generating a readmission risk prediction model in accordance with an embodiment of the present invention; -
FIGS. 3A and 3B include a flow diagram showing a method for using readmission risk for inpatient treatment and outpatient activity planning in accordance with an embodiment of the present invention; -
FIG. 4 is a screen display of an exemplary view illustrating condition management for a patient including lab results for the patient and the patient's readmission risk in accordance with an embodiment of the present invention; -
FIG. 5 is a screen display of an exemplary view illustrating a user interface for generating orders for patients including a initiating a readmission risk protocol in accordance with an embodiment of the present invention; -
FIG. 6 is a screen display of an exemplary view illustrating an outpatient surveillance call list in accordance with an embodiment of the present invention; -
FIG. 7 is a screen display of an exemplary view illustrating patient summary information for managing an outpatient call in accordance with an embodiment of the present invention; and -
FIG. 8 is a screen display of an exemplary view illustrating a user interface for tracking outpatient information in accordance with an embodiment of the present invention. - The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” may be used herein to connote different components of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly described.
- Embodiments of the present invention provide computerized methods and systems for generating readmission risk prediction models using linear regression techniques. Embodiments of the present invention further provide computerized methods and systems for employing the readmission risk prediction models to assess the readmission risk of patients and determine inpatient treatment interventions and outpatient activities based on the patients' readmission risk. An exemplary operating environment is described below.
- Referring to the drawings in general, and initially to
FIG. 1 in particular, an exemplary computing system environment, for instance, a medical information computing system, on which embodiments of the present invention may be implemented is illustrated and designated generally asreference numeral 20. It will be understood and appreciated by those of ordinary skill in the art that the illustrated medical informationcomputing system environment 20 is merely an example of one suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the medical informationcomputing system environment 20 be interpreted as having any dependency or requirement relating to any single component or combination of components illustrated therein. - The present invention may be operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the present invention include, by way of example only, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above-mentioned systems or devices, and the like.
- The present invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include, but are not limited to, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types. The present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including, by way of example only, memory storage devices.
- With continued reference to
FIG. 1 , the exemplary medical informationcomputing system environment 20 includes a general purpose computing device in the form of aserver 22. Components of theserver 22 may include, without limitation, a processing unit, internal system memory, and a suitable system bus for coupling various system components, includingdatabase cluster 24, with theserver 22. The system bus may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, and a local bus, using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronic Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, also known as Mezzanine bus. - The
server 22 typically includes, or has access to, a variety of computer readable media, for instance,database cluster 24. Computer readable media can be any available media that may be accessed byserver 22, and includes volatile and nonvolatile media, as well as removable and non-removable media. By way of example, and not limitation, computer readable media may include computer storage media and communication media. Computer storage media may include, without limitation, volatile and nonvolatile media, as well as removable and nonremovable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. In this regard, computer storage media may include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVDs) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage device, or any other medium which can be used to store the desired information and which may be accessed by theserver 22. Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and may include any information delivery media. As used herein, the term “modulated data signal” refers to a signal that has one or more of its attributes set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above also may be included within the scope of computer readable media. - The computer storage media discussed above and illustrated in
FIG. 1 , includingdatabase cluster 24, provide storage of computer readable instructions, data structures, program modules, and other data for theserver 22. - The
server 22 may operate in acomputer network 26 using logical connections to one or moreremote computers 28.Remote computers 28 may be located at a variety of locations in a medical or research environment, for example, but not limited to, clinical laboratories, hospitals and other inpatient settings, veterinary environments, ambulatory settings, medical billing and financial offices, hospital administration settings, home health care environments, and clinicians' offices. Clinicians may include, but are not limited to, a treating physician or physicians, specialists such as surgeons, radiologists, cardiologists, and oncologists, emergency medical technicians, physicians' assistants, nurse practitioners, nurses, nurses' aides, pharmacists, dieticians, microbiologists, laboratory experts, genetic counselors, researchers, veterinarians, students, and the like. Theremote computers 28 may also be physically located in non-traditional medical care environments so that the entire health care community may be capable of integration on the network. Theremote computers 28 may be personal computers, servers, routers, network PCs, peer devices, other common network nodes, or the like, and may include some or all of the components described above in relation to theserver 22. The devices can be personal digital assistants or other like devices. -
Exemplary computer networks 26 may include, without limitation, local area networks (LANs) and/or wide area networks (WANs). Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet. When utilized in a WAN networking environment, theserver 22 may include a modem or other means for establishing communications over the WAN, such as the Internet. In a networked environment, program modules or portions thereof may be stored in theserver 22, in thedatabase cluster 24, or on any of theremote computers 28. For example, and not by way of limitation, various application programs may reside on the memory associated with any one or more of theremote computers 28. It will be appreciated by those of ordinary skill in the art that the network connections shown are exemplary and other means of establishing a communications link between the computers (e.g.,server 22 and remote computers 28) may be utilized. - In operation, a user may enter commands and information into the
server 22 or convey the commands and information to theserver 22 via one or more of theremote computers 28 through input devices, such as a keyboard, a pointing device (commonly referred to as a mouse), a trackball, or a touch pad. Other input devices may include, without limitation, microphones, satellite dishes, scanners, or the like. Commands and information may also be sent directly from a remote healthcare device to theserver 22. In addition to a monitor, theserver 22 and/orremote computers 28 may include other peripheral output devices, such as speakers and a printer. - Although many other internal components of the
server 22 and theremote computers 28 are not shown, those of ordinary skill in the art will appreciate that such components and their interconnection are well known. Accordingly, additional details concerning the internal construction of theserver 22 and theremote computers 28 are not further disclosed herein. - As previously mentioned, embodiments of the present invention relate to generating readmission risk prediction models and using the readmission risk prediction models to facilitate inpatient treatment and/or outpatient activities. In embodiments, readmission risk prediction models may be generated utilizing logistic regression of existing clinically relevant data. Each readmission risk prediction model may be generated for a given condition using clinically relevant data from patients diagnosed with that condition. Additionally, in some embodiments, a readmission risk prediction model may be built around multiple conditions.
- The readmission risk prediction models may be embedded within electronic medical systems or provided as a standalone software tool that facilitates determining the readmission risk of patients. In accordance with embodiments of the present invention, when a patient is admitted to a hospital or other clinical facility, the patient's condition may be diagnosed. Based on the patient's condition, a readmission risk prediction model may be selected and used to calculate a readmission risk score that represents the probability of readmission for the patient. The readmission risk may be based on readmission within a predetermined period of time, such as within 7 days after discharge, within 30 days after discharge, within 60 days after discharge, within 90 days after discharge, etc.
- The readmission risk determined for patients may be utilized during hospitalization to drive clinical workflows for the patients. This may include linking the readmission risk for patients to clinical decision support and providing user interfaces to assist in identifying interventions for patients and also linking to orders to allow clinicians to enter orders based on review of readmission risk. For instance, readmission risk scores may help identify high readmission risk patients such that clinicians may determine proper interventions for those patients. In some embodiments, the system may recommend treatment interventions based on patients' readmission risks. For instance, readmission risk may be used to modify a patient's care plan including recommending alternate therapies, performing additional studies, and/or extending the patient's length of stay. Additionally, the readmission risk may be linked to clinical decision support and/or order subsystems such that clinicians may be identify and implement patient treatments deemed appropriate based in part on patients' readmission risks. In some embodiments, readmission risk scores may be recalculated over the length of hospitalization for patients and the patient care plans modified based on the recalculated readmission risk scores.
- In addition to facilitating inpatient treatment, readmission risk may be used to facilitate discharge planning and outpatient activities. For instance, readmission risk may be used to determine the need for and scheduling of surveillance calls to patients and/or in-person appointments, in-home treatment, and patient education. In some embodiments, readmission risk scores may also be calculated after a patient has been discharged. Such post-discharge readmission risk scores may be used to modify outpatient activities and may warrant readmitting patients in some instances.
- Referring now to
FIG. 2 , a flow diagram is provided that illustrates amethod 200 for generating a readmission risk prediction model in accordance with an embodiment of the present invention. Initially, the condition around which the readmission risk prediction model will be generated is determined, as shown atblock 202. As indicated previously, risk prediction models may be built around any given condition. For instance, a risk prediction model may be built around heart failure, acute myocardial infarction, pneumonia, acute kidney injury, sepsis, to name a few. In some embodiments, a readmission risk prediction model may be built around multiple conditions, each of which is identified atblock 202. - Clinically relevant data for the identified condition is accessed at
block 204 for use as training data. The clinically relevant data may come from any of a variety of public or private sources, including, for instance, hospital electronic medical records, research facilities, and academic institutions. The data may be collected manually or may be retrieved using electronic data gathering mechanisms. In embodiments, the process may include identifying relevant cases useful for constructing a readmission risk prediction model for the condition identified atblock 202. Additionally, the process may include identifying input and output variables relevant to the identified condition. In some embodiments, evidence-based practices may be used in determining relevant cases and variables. - As shown at
block 206, a logistic regression model is built using the retrieved clinically relevant data. In embodiments, the logistic regression model may be built around patient readmissions within one or more given time periods, such as readmission within 7 days after discharge, within 30 days after discharge, within 60 days after discharge, within 90 days after discharge, etc. The logistic regression model is then tested for model fit, as shown atblock 208. This may include performing analyses to determine how well the model predicts outcomes, how well the model calibrates, and whether the model is clinically useful. By way of example only, the model may be tested by performing a receiver-operating characteristic (ROC) area-under-the-curve (C-statistic) analysis to determine how well the model predicts outcomes. As another example, the model may be analyzed using a chi-square test to determine how well the model calibrates. - Whether the performance of the logistic regression model is adequate based on the model testing is determined at
block 210. If the performance of the logistic regression model is deemed to be inadequate, the process of selecting clinically relevant data and/or building a logistic regression model may be iterated until sufficient performance is achieved. A readmission risk prediction model is then generated using the output from the logistic regression model, as shown atblock 212. - Turning next to
FIGS. 3A and 3B , a flow diagram is provided that illustrates amethod 300 for using a readmission risk score to facilitate treatment of a patient in accordance with an embodiment of the present invention. Initially, as shown atblock 302, a patient is admitted to a hospital or other clinical facility. Upon admitting the patient, a condition is identified for the patient, as shown atblock 304. In some instances, the patient may be suffering from a single condition and the single condition is identified, while in other instances, the patient may be suffering from multiple conditions and the multiple conditions are identified atblock 304. - A readmission risk prediction model is selected at
block 306 based on the condition identified for the patient atblock 304. In instances in which a single condition is identified, a readmission risk prediction model corresponding with that condition is selected. For instance, if the patient is identified as suffering from heart failure, the system selects a readmission risk prediction model that was built around heart failure patients to determine the readmission risk of heart failure patients. In some embodiment in which multiple conditions are identified for the patient, a single readmission risk prediction model built around those identified conditions is selected. For instance, a patient may be suffering from heart failure and pneumonia, and a single readmission risk prediction model built around those two conditions may be selected. In other embodiments in which multiple conditions are identified, multiple readmission risk prediction models are selected, each model corresponding with one of the identified conditions. For instance, if the patient is suffering from heart failure and pneumonia, a readmission risk prediction model for heart failure and a readmission risk prediction model for pneumonia may both be selected and used in conjunction to identify readmission risk for the patient. - Patient data for the patient is received at
block 308. The patient data may include demographic data and/or clinically relevant data for the patient. Additionally, the data received atblock 308 may be dependent upon the selected readmission risk prediction model. In particular, each readmission risk prediction model may have a number of input variables that are relevant to that model. As such, data corresponding with the relevant variables are received as input to the model for readmission risk assessment purposes. - In some embodiments, the readmission risk prediction models may be embedded within an electronic medical system that includes electronic medical records or otherwise may be in communication with electronic medical records for patients. In such embodiments, the patient data may be received by accessing the electronic medical record for the patient and retrieving the relevant data. In some instances, patient data used by the readmission risk prediction model may not be available in the patient's electronic medical records, and the system may prompt a clinician to enter the data or to order particular tests to be performed to obtain the data. In further embodiments, the readmission risk prediction models may be provided in standalone software separate from an electronic medical record, and a clinician may enter the patient data as variables for the readmission risk prediction model. Any and all variations are contemplated to be within the scope of embodiments of the present invention.
- A readmission risk score is computed using the selected readmission risk prediction model and the received patient data, as shown at
block 310. The readmission risk score is then compared against one or more thresholds, as shown atblock 312. In accordance with embodiments of the present invention, thresholds may be set by the clinical facility treating the patient, an external policy maker, and/or other entity and used to trigger treatment recommendations based on the risk of readmission. The thresholds may be condition-specific. For instance, a readmission risk threshold used for heart failure patients may differ from a readmission risk threshold used for pneumonia patients. - In some embodiments, a single threshold may be provided. If the readmission risk score exceeds the threshold, the patient is identified as a high risk for readmission. Alternatively, if the readmission risk score is below the threshold, the patient is considered to be a low readmission risk. In other embodiments, multiple thresholds may be set providing more than two ranges of readmission risk scores corresponding with more than two levels of readmission risk.
- As shown at
block 314, treatment recommendations are determined based on the patient's readmission risk level. The treatment recommendations may be any of a variety of different interventions intended to treat the patient's condition and reduce the likelihood that the patient would need to be readmitted. For instance, as noted above, a single threshold may be used such that the readmission risk score indicates either a low or high readmission risk. In some embodiments, if the readmission risk is low, no interventions may be recommended and the care plan may remain unmodified. Alternatively, if the threshold is exceeded such that the readmission risk is high, certain interventions or a modified care plan may be recommended based on the high readmission risk. In embodiments in which multiple thresholds are used providing multiple risk levels, treatment recommendations may be determined based on the risk level determined for the patient. In various embodiments of the present invention, the treatment recommendations may be predetermined for each risk level or the system may analyze or provide tools that allow a clinician to analyze the input variables used by the readmission risk prediction model to identify personalized treatment recommendations for the patient. - The readmission risk and/or recommended treatments for the patient are presented to a clinician, as shown at
block 316. The readmission risk may be presented, for instance, as a readmission risk score comprising a percentage indicating the probability that the patient will need to be readmitted after discharge. In addition to or in lieu of presenting a readmission risk score, the readmission risk determined by comparison to one or more thresholds may be presented to a clinician. For example, the patient may be identified as a high readmission risk. As noted above, in some embodiments, the system may automatically recommended interventions based on the readmission risk level, and the system may present those interventions. In other embodiments, after determining that the readmission risk score exceeds certain thresholds, the system may provide tools to the clinician to allow the clinician to explore reasons why the readmission risk score is high and to determine the best treatment options for the patient. - In some embodiments, the readmission risk score and recommended treatments may only be presented if a threshold is exceeded by the patient's readmission risk score. For instance, if the patient's readmission risk score is low, no readmission risk information may be presented to the clinician and a routine care plan may be provided. In other embodiments, the system may provide an indication to the clinician that the readmission risk for the patient is low.
- Treatment alternatives are selected, and the patient is treated, as shown at
block 318. This may include performing a routine care plan if the readmission risk is low or performing a modified care plan including interventions recommended based on readmission risk exceeding certain thresholds. While the patient is treated, the readmission risk score may be recalculated as shown by the return to block 308. The readmission risk score may be recalculated at predetermined points in time or any time patient data is updated that may impact the readmission risk score for the patient. Based on the readmission risk score recalculations, different treatments options may be recommended and/or the patient's care plan may be modified. As such, the patient's readmission risk may be monitored during treatment and the patient's care modified as dictated by the patient's readmission risk. - In some embodiments, the system may monitor risk score trending for the patient during treatment and use such trending information to provide treatment recommendations. For instance, multiple readmission risk score calculations may indicate that the patient's readmission risk is decreasing, demonstrating that the current care plan is effective. Alternatively, readmission risk score trending may correspond with the patient's readmission risk remaining stable or even increasing, demonstrating that the current care plan is ineffective and/or that different interventions may be necessary.
- After treating the patient, discharge planning is conducted prior to discharging the patient, as shown at
block 320. This may include recalculating a readmission risk score for discharge planning purposes and/or using a previously obtained readmission risk score or risk score trending in discharge planning. In some embodiments, the patient's readmission risk score may be used to determine whether to discharge the patient. For instance, a rule may dictate that the patient may not be discharged until the patient's readmission risk score falls below a certain threshold or exhibits a certain downward trend over time. - Discharge planning may also include planning outpatient activities to be conducted after the patient is discharged. In embodiments, the patient's readmission risk score may be used in planning the outpatient activities for the patient. The outpatient activities may include performing patient monitoring, such as outpatient surveillance calls from a clinician to the patient, scheduling appointments for the patient, providing in-home healthcare, and educating the patient on healthcare issues related to the patient's condition. The patient's readmission risk score may be used to determine which outpatient activities to provide for the patient and may also determine a schedule for surveillance calls and/or appointments. For instance, if the patient is determined to be a high risk for readmission, the discharge planning may include placing the patient on a surveillance call list for high risk patients.
- After discharge planning is performed, the patient is discharged, as shown at
block 322. Any outpatient activities planned by the patient are performed after discharge, as shown atblock 324. As noted above, the outpatient activities may include surveillance calls, appointments, as well as a number of other activities. Additionally, the patient's readmission risk score is calculated after the patient has been discharged, as shown atblock 326. The readmission risk score may be calculated, for instance, based on additional information gathered from patient calls and appointments. - The readmission risk score calculated for a patient after discharge may be used for a number of purposes, such as determining whether to readmit the patient and whether to alter the patient's outpatient activities. Accordingly, as shown at
block 328, a determination is made regarding whether to readmit the patient based on the readmission risk score calculated atblock 326. This determination may be made, for instance, by comparing the readmission risk score to a threshold and determining to readmit based on the readmission risk score exceeding the threshold. The determination may also be made on readmission risk trending demonstrating a certain increase in readmission risk over time. The determination to readmit the patient may be based on clinician judgment as well. For instance, the system may present a notice to the clinician recommending that the patient be readmitted based on the readmission risk score and the clinician may review the notice and determine whether to readmit the patient. If it is determined that the patient should be readmitted, the patient may be readmitted as shown atblock 330. If readmitted, the patient may be treated and the patient's readmission risk tracked and used for treatment purposes as described above. - Alternatively, it may be determined that the patient should not be readmitted at
block 328. For instance, the patient's risk score may not exceed a predetermined threshold and/or a treating clinician may determine not to readmit. However, it may be desirable to modify the outpatient activities for the patient based on the readmission risk score. For instance, more frequent monitoring or additional testing may be desirable based on an elevated readmission risk score. As another example, no further outpatient activities may be deemed advisable based on a decreased readmission risk. Accordingly, as shown atblock 332, outpatient activity recommendations are determined based on the outpatient readmission risk score. The readmission risk and/or outpatient activity recommendations are presented to a clinician, as shown atblock 334. Based on the readmission risk and/or recommendations, the outpatient activities may be modified, as shown atblock 336. The process of performing outpatient activities and recalculating readmission risk may be repeated until the patient is readmitted or until it is determined that outpatient activities and readmission risk score monitoring is no longer necessary. - As discussed previously, embodiments of the present invention include providing graphical user interfaces that facilitate inpatient treatment and outpatient activities based on readmission risk.
FIGS. 4 through 8 are illustrative of user interfaces providing readmission risk information for patients and proving clinical decision support to clinicians based on readmission risk. It will be understood and appreciated by those of ordinary skill in the art that the screen displays ofFIGS. 4 through 8 are provided by way of example only and are not intended to limit the scope of the present invention in any way. - Referring initially to
FIG. 4 , anillustrative screen display 400 is provided showing readmission risk in context of a condition management view for a patient in accordance with an embodiment of the present invention. The condition management view provides lab results information for the patient. Additionally, the condition management view provides an indication ofreadmission risk 402 for the patient. The condition management view further includes clinical decision support 404 in the form of care plans that are suggested by the system based on the patient's readmission risk. The clinician may review the information, including the patient's readmission risk, and determine whether to implement suggested care plans. - Turning to
FIG. 5 , anillustrative screen display 500 is provided that shows a user interface allowing a clinician to enter orders for a patient in accordance with an embodiment of the present invention. As shown inFIG. 5 , the orders user interface allows the clinician to select from a number of different orders. The orders user interface also provides an indication: “This patient meets criteria for ‘High’ 30 day readmission risk” and suggests that the clinician initiate a heart failure readmission risk protocol. Accordingly, the clinician can review the information and understand that the patient has been identified as a high readmission risk. Based on this information, the clinician may select anorder 502 to implement the heart failure readmission risk protocol for the patient. - As noted above, in addition to providing inpatient treatment tools, some embodiments of the present invention may provide tools facilitating outpatient activities for patients after discharge from a hospital.
FIG. 6 provides anillustrative screen display 600 of an outpatient surveillance user interface in accordance with an embodiment of the present invention. The outpatient surveillance user interface may include two lists of patients: patients on a call list and patients on a no call list. A clinician may toggle between the two lists using thelinks - The
screen display 600 illustrates a view of the patient call list. The list may be used to by clinicians to manage outpatient surveillance calls to patients. The list may include information such as contact information for each patient, how long ago each patient was discharged, when each patient was previously contacted, scheduled contact for each patient, etc. - In some embodiments, the clinician may access patient information by selecting a patient from the call list. For instance,
FIG. 7 illustrates patient information when “Joe Patient” is selected from the call list. The patient summary includes a readmission risk score for the patient providing the clinician with an indication of the readmission risk for the patient. The patient summary also includes a variety of information that may be useful to a clinician responsible for contacting the patient, including surveillance information from previous contacts, medications, problems, and other related documentation. Embodiments of the present invention may further provide user interfaces for collecting patient information when performing outpatient surveillance.FIG. 8 provides an illustratescreen display 800 of such a user interface. The user interface and the information to be collected may be triggered based upon the readmission risk for the patient. - As can be understood, the present invention provides a readmission risk prediction model built using linear regression techniques and clinically relevant data. The present invention further provides inpatient treatment interventions and outpatient activity recommendations based on patients' monitored readmission risk.
- The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope.
- From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects set forth above, together with other advantages which are obvious and inherent to the system and method. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated and within the scope of the claims.
Claims (20)
1. One or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform operations comprising:
computing a readmission risk score for a patient previously discharged from a clinical facility;
determining an outpatient treatment recommendation based on the readmission risk score; and
providing the outpatient treatment recommendation for presentation to a clinician.
2. The one or more computer storage media of claim 1 , wherein determining the outpatient treatment recommendation based on the readmission risk score comprises comparing the readmission risk score against one or more predetermined thresholds and determining the outpatient treatment recommendation based on the comparison.
3. The one or more computer storage media of claim 1 , wherein determining the outpatient treatment recommendation based on the readmission risk score comprises determining to readmit the patient based on the readmission risk score exceeding a predetermined threshold.
4. The one or more computer storage media of claim 1 , wherein the outpatient treatment recommendation comprises at least one selected from the following:
performing outpatient monitoring, scheduling outpatient appointments for the patient, providing in-home healthcare, and educating the patient on healthcare issues related to the patient's condition.
5. The one or more computer storage media of claim 1 , wherein determining the outpatient treatment recommendation based on the readmission risk score and providing the outpatient treatment recommendation for presentation to the clinician comprises determining that the patient has a high risk for readmission based on the readmission risk score and placing or maintaining the patient on a call list for high risk patients.
6. The one or more computer storage media of claim 1 , wherein the readmission risk score is computed using a readmission risk prediction model selected based on a patient condition for the patient.
7. The one or more computer storage media of claim 6 , wherein multiple patient conditions are identified for the patient, and wherein the readmission risk prediction model corresponds with the multiple patient conditions.
8. The one or more computer storage media of claim 6 , wherein the method further comprises:
identifying a second patient condition for the patient; and
selecting a second readmission risk prediction model based on the second patient condition;
wherein the readmission risk score is computed using the readmission risk prediction model and the second readmission risk prediction model.
9. The one or more computer storage media of claim 1 , wherein the patient is identified as a high readmission risk based on the readmission risk score.
10. The one or more computer storage media of claim 1 , wherein the operations further comprise re-computing the readmission risk score and determining new outpatient treatment recommendations based on the recomputed readmission risk score.
11. One or more computer storage media storing computer-useable instructions that, when used by one or more computing devices, cause the one or more computing devices to perform operations comprising:
receiving clinically relevant data associated with a given clinical condition from a plurality of patient cases;
building a logistic regression model using the clinically relevant data; and
developing a readmission risk prediction model using the logistic regression model, the readmission risk prediction model being capable of calculating a readmission risk score for patients based on patient data, wherein a readmission risk score for a patient represents a probability of readmission for the patient.
12. The one or more computer storage media of claim 11 , wherein the operations further comprise testing the logistic regression model for model fit by performing a receiver-operating characteristic (ROC) area-under-the curve analysis.
13. The one or more computer storage media of claim 11 , wherein the operations further comprise repeating building a logistic regression model until the ROC area-under-the curve analysis satisfies a predetermined threshold.
14. A computerized system comprising:
one or more processors; and
one or more computer storage media storing computer-useable instructions that, when used by the one or more processors, cause the one or more processors to:
compute a readmission risk score for a patient previously discharged from a clinical facility;
determine an outpatient treatment recommendation based on the readmission risk score; and
provide the outpatient treatment recommendation for presentation to a clinician.
15. The system of claim 14 , wherein the outpatient treatment recommendation is determined based on the readmission risk score by comparing the readmission risk score against one or more predetermined thresholds and determining the outpatient treatment recommendation based on the comparison.
16. The system of claim 14 , wherein the outpatient treatment recommendation includes determining to readmit the patient based on the readmission risk score exceeding a predetermined threshold.
17. The system of claim 14 , wherein the outpatient treatment recommendation comprises at least one selected from the following: performing outpatient monitoring, scheduling outpatient appointments for the patient, providing in-home healthcare, and educating the patient on healthcare issues related to the patient's condition.
18. The system of claim 14 , wherein the outpatient treatment recommendation is determined based on the readmission risk score by determining that the patient has a high risk for readmission based on the readmission risk score, and the outpatient treatment recommendation is provided for presentation to the clinician by placing or maintaining the patient on a call list for high risk patients.
19. The system of claim 14 , wherein the readmission risk score is computed using a readmission risk prediction model selected based on a patient condition for the patient.
20. The system of claim 19 , wherein multiple patient conditions are identified for the patient, and wherein the readmission risk prediction model corresponds with the multiple patient conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/156,001 US20140136227A1 (en) | 2010-06-17 | 2014-01-15 | Readmission risk assessment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/817,602 US8751257B2 (en) | 2010-06-17 | 2010-06-17 | Readmission risk assessment |
US14/156,001 US20140136227A1 (en) | 2010-06-17 | 2014-01-15 | Readmission risk assessment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/817,602 Continuation US8751257B2 (en) | 2010-06-17 | 2010-06-17 | Readmission risk assessment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140136227A1 true US20140136227A1 (en) | 2014-05-15 |
Family
ID=45329450
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/817,602 Active US8751257B2 (en) | 2010-06-17 | 2010-06-17 | Readmission risk assessment |
US14/156,001 Abandoned US20140136227A1 (en) | 2010-06-17 | 2014-01-15 | Readmission risk assessment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/817,602 Active US8751257B2 (en) | 2010-06-17 | 2010-06-17 | Readmission risk assessment |
Country Status (1)
Country | Link |
---|---|
US (2) | US8751257B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015195836A3 (en) * | 2014-06-17 | 2016-03-17 | RightCare Solutions, Inc. | Systems and methods for assessing patient readmission risk and selecting post-acute care intervention |
WO2017106558A1 (en) * | 2015-12-15 | 2017-06-22 | Allyalign Health, Inc. | Hospitalization admission risk assessment tool and uses thereof |
US10943676B2 (en) | 2010-06-08 | 2021-03-09 | Cerner Innovation, Inc. | Healthcare information technology system for predicting or preventing readmissions |
US11436284B1 (en) * | 2018-05-04 | 2022-09-06 | Massachusetts Mutual Life Insurance Company | Systems and methods for computational risk scoring based upon machine learning |
US11510572B2 (en) * | 2016-03-17 | 2022-11-29 | Koninklijke Philips N.V. | Method and apparatus for detecting clinical deterioration in patients on a telehealth service |
US20230105348A1 (en) * | 2021-09-27 | 2023-04-06 | Siemens Healthcare Gmbh | System for adaptive hospital discharge |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2430578A1 (en) * | 2009-05-15 | 2012-03-21 | Koninklijke Philips Electronics N.V. | Clinical decision support systems with external context |
US20110229867A1 (en) * | 2010-03-19 | 2011-09-22 | Joseph William Gough | System and method of administrating instructions to a recipient of medical treatment |
US20160358282A1 (en) * | 2010-12-29 | 2016-12-08 | Humana Inc. | Computerized system and method for reducing hospital readmissions |
WO2013098748A2 (en) * | 2011-12-27 | 2013-07-04 | Koninklijke Philips Electronics N.V. | System and method for prioritizing risk models and suggesting services based on a patient profile |
EP2798551A2 (en) * | 2011-12-27 | 2014-11-05 | Koninklijke Philips N.V. | Method and system for reducing early readmission |
US10528913B2 (en) | 2011-12-30 | 2020-01-07 | Elwha Llc | Evidence-based healthcare information management protocols |
US10475142B2 (en) | 2011-12-30 | 2019-11-12 | Elwha Llc | Evidence-based healthcare information management protocols |
US10552581B2 (en) | 2011-12-30 | 2020-02-04 | Elwha Llc | Evidence-based healthcare information management protocols |
US20130173296A1 (en) | 2011-12-30 | 2013-07-04 | Elwha LLC, a limited liability company of the State of Delaware | Evidence-based healthcare information management protocols |
US10340034B2 (en) * | 2011-12-30 | 2019-07-02 | Elwha Llc | Evidence-based healthcare information management protocols |
US10559380B2 (en) | 2011-12-30 | 2020-02-11 | Elwha Llc | Evidence-based healthcare information management protocols |
US10679309B2 (en) | 2011-12-30 | 2020-06-09 | Elwha Llc | Evidence-based healthcare information management protocols |
US10325064B2 (en) * | 2012-01-20 | 2019-06-18 | 3M Innovative Properties Company | Patient readmission prediction tool |
US8930223B2 (en) | 2012-03-30 | 2015-01-06 | International Business Machines Corporation | Patient cohort matching |
WO2013192593A2 (en) * | 2012-06-21 | 2013-12-27 | Battelle Memorial Institute | Clinical predictive analytics system |
US9836700B2 (en) * | 2013-03-15 | 2017-12-05 | Microsoft Technology Licensing, Llc | Value of information with streaming evidence based on a prediction of a future belief at a future time |
WO2014145705A2 (en) | 2013-03-15 | 2014-09-18 | Battelle Memorial Institute | Progression analytics system |
AU2014259708A1 (en) | 2013-05-03 | 2015-10-29 | Emory University | Systems and methods for supporting hospital discharge decision making |
US9940683B2 (en) * | 2013-07-31 | 2018-04-10 | Elwha Llc | Managing a risk of a liability that is incurred if a subject treated for a condition is retreated within a specified time period |
US9256645B2 (en) | 2013-08-15 | 2016-02-09 | Universal Research Solutions, Llc | Patient-to-patient communities |
US10354347B2 (en) | 2013-09-13 | 2019-07-16 | Universal Research Solutions, Llc | Generating and processing medical alerts for re-admission reductions |
US20150112728A1 (en) * | 2013-10-17 | 2015-04-23 | Elwha Llc | Managing a risk of a liability that is incurred if one or more insurers denies coverage for treating one or more insured for one or more conditions |
US11551814B2 (en) * | 2014-03-17 | 2023-01-10 | 3M Innovative Properties Company | Predicting risk for preventable patient healthcare events |
US20160055412A1 (en) * | 2014-08-20 | 2016-02-25 | Accenture Global Services Limited | Predictive Model Generator |
US20160188834A1 (en) * | 2014-12-31 | 2016-06-30 | Cerner Innovation, Inc. | Determination of patient-appropriate post-acute care settings |
USD832874S1 (en) | 2015-02-19 | 2018-11-06 | Cerner Innovation, Inc. | Display screen with graphical user interface |
CA2932204A1 (en) | 2015-06-25 | 2016-12-25 | Alaya Care Inc. | Method for predicting adverse events for home healthcare of remotely monitored patients |
US10726097B2 (en) * | 2015-10-16 | 2020-07-28 | Carefusion 303, Inc. | Readmission risk scores |
US10558785B2 (en) | 2016-01-27 | 2020-02-11 | International Business Machines Corporation | Variable list based caching of patient information for evaluation of patient rules |
US10528702B2 (en) | 2016-02-02 | 2020-01-07 | International Business Machines Corporation | Multi-modal communication with patients based on historical analysis |
EP3413783A1 (en) | 2016-02-12 | 2018-12-19 | Cardiac Pacemakers, Inc. | Systems and methods for patient monitoring |
US10565309B2 (en) | 2016-02-17 | 2020-02-18 | International Business Machines Corporation | Interpreting the meaning of clinical values in electronic medical records |
US10937526B2 (en) | 2016-02-17 | 2021-03-02 | International Business Machines Corporation | Cognitive evaluation of assessment questions and answers to determine patient characteristics |
US10437957B2 (en) | 2016-02-17 | 2019-10-08 | International Business Machines Corporation | Driving patient campaign based on trend patterns in patient registry information |
US10395330B2 (en) | 2016-02-17 | 2019-08-27 | International Business Machines Corporation | Evaluating vendor communications for accuracy and quality |
US10685089B2 (en) | 2016-02-17 | 2020-06-16 | International Business Machines Corporation | Modifying patient communications based on simulation of vendor communications |
US11037658B2 (en) | 2016-02-17 | 2021-06-15 | International Business Machines Corporation | Clinical condition based cohort identification and evaluation |
US10311388B2 (en) | 2016-03-22 | 2019-06-04 | International Business Machines Corporation | Optimization of patient care team based on correlation of patient characteristics and care provider characteristics |
US10923231B2 (en) | 2016-03-23 | 2021-02-16 | International Business Machines Corporation | Dynamic selection and sequencing of healthcare assessments for patients |
US10262423B2 (en) * | 2016-03-29 | 2019-04-16 | Verily Life Sciences Llc | Disease and fall risk assessment using depth mapping systems |
US10957450B2 (en) | 2016-12-30 | 2021-03-23 | Intel Corporation | Automatic prediction of patient length of stay and detection of medical center readmission diagnoses |
US20220215910A1 (en) * | 2017-03-20 | 2022-07-07 | Cornell University | System and methods for managing healthcare resources |
US11017903B2 (en) * | 2017-05-12 | 2021-05-25 | University Of Central Florida Research Foundation, Inc. | Heart failure readmission evaluation and prevention systems and methods |
WO2019010266A1 (en) * | 2017-07-05 | 2019-01-10 | Avixena Population Health Solutions, Llc | Readmission prevention management and method and system thereof |
US11355222B2 (en) * | 2017-10-05 | 2022-06-07 | Cerner Innovation, Inc. | Analytics at the point of care |
US12003426B1 (en) | 2018-08-20 | 2024-06-04 | C/Hca, Inc. | Multi-tier resource, subsystem, and load orchestration |
CN109978701A (en) * | 2019-04-01 | 2019-07-05 | 太平洋医疗健康管理有限公司 | Personal probability forecasting method and the system of being hospitalized |
US11514339B2 (en) | 2019-04-24 | 2022-11-29 | Optum, Inc. | Machine-learning based recommendation engine providing transparency in generation of recommendations |
US20200402665A1 (en) * | 2019-06-19 | 2020-12-24 | GE Precision Healthcare LLC | Unplanned readmission prediction using an interactive augmented intelligent (iai) system |
US11468994B2 (en) * | 2019-06-28 | 2022-10-11 | Cerner Innovation, Inc. | Pneumonia readmission prevention |
US20210082575A1 (en) * | 2019-09-18 | 2021-03-18 | Cerner Innovation, Inc. | Computerized decision support tool for post-acute care patients |
US20210193327A1 (en) * | 2019-12-18 | 2021-06-24 | Cerner Innovation, Inc. | Reducing Readmission Risk Through Co-Existing Condition Prediction |
US12040062B2 (en) * | 2020-02-03 | 2024-07-16 | Saiva, Inc. | Systems and methods for reducing patient readmission to acute care facilities |
TW202217850A (en) * | 2020-10-23 | 2022-05-01 | 陳彥斌 | Method to generate physiological representation suggestion information including using a model based on a back-propagation algorithm |
US20230068453A1 (en) * | 2021-08-25 | 2023-03-02 | Koninklijke Philips N.V. | Methods and systems for determining and displaying dynamic patient readmission risk and intervention recommendation |
WO2024202466A1 (en) * | 2023-03-30 | 2024-10-03 | テルモ株式会社 | Computer program, information processing method, and information processing device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110246220A1 (en) * | 2010-03-31 | 2011-10-06 | Remcare, Inc. | Web Based Care Team Portal |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7734477B2 (en) | 2003-12-29 | 2010-06-08 | Montefiore Medical Center | System and method for monitoring patient care |
US7693728B2 (en) * | 2004-03-31 | 2010-04-06 | Aetna Inc. | System and method for administering health care cost reduction |
US20120004925A1 (en) | 2010-06-30 | 2012-01-05 | Microsoft Corporation | Health care policy development and execution |
-
2010
- 2010-06-17 US US12/817,602 patent/US8751257B2/en active Active
-
2014
- 2014-01-15 US US14/156,001 patent/US20140136227A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110246220A1 (en) * | 2010-03-31 | 2011-10-06 | Remcare, Inc. | Web Based Care Team Portal |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10943676B2 (en) | 2010-06-08 | 2021-03-09 | Cerner Innovation, Inc. | Healthcare information technology system for predicting or preventing readmissions |
US11664097B2 (en) | 2010-06-08 | 2023-05-30 | Cerner Innovation, Inc. | Healthcare information technology system for predicting or preventing readmissions |
WO2015195836A3 (en) * | 2014-06-17 | 2016-03-17 | RightCare Solutions, Inc. | Systems and methods for assessing patient readmission risk and selecting post-acute care intervention |
WO2017106558A1 (en) * | 2015-12-15 | 2017-06-22 | Allyalign Health, Inc. | Hospitalization admission risk assessment tool and uses thereof |
EP3391258A4 (en) * | 2015-12-15 | 2019-07-24 | Allyalign Health, Inc. | Hospitalization admission risk assessment tool and uses thereof |
US11510572B2 (en) * | 2016-03-17 | 2022-11-29 | Koninklijke Philips N.V. | Method and apparatus for detecting clinical deterioration in patients on a telehealth service |
US11436284B1 (en) * | 2018-05-04 | 2022-09-06 | Massachusetts Mutual Life Insurance Company | Systems and methods for computational risk scoring based upon machine learning |
US12093790B1 (en) | 2018-05-04 | 2024-09-17 | Massachusetts Mutual Life Insurance Company | Systems and methods for computational risk scoring based upon machine learning |
US20230105348A1 (en) * | 2021-09-27 | 2023-04-06 | Siemens Healthcare Gmbh | System for adaptive hospital discharge |
Also Published As
Publication number | Publication date |
---|---|
US20110313788A1 (en) | 2011-12-22 |
US8751257B2 (en) | 2014-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8751257B2 (en) | Readmission risk assessment | |
US8694334B2 (en) | Readmission risk assessment | |
US8112291B2 (en) | User interface for prioritizing opportunities for clinical process improvement | |
US8214227B2 (en) | Optimized practice process model for clinical process improvement | |
US20080082357A1 (en) | User Interface for Clinical Decision Support | |
Vest et al. | Impact of risk stratification on referrals and uptake of wraparound services that address social determinants: a stepped wedged trial | |
US11923094B2 (en) | Monitoring predictive models | |
US8060381B2 (en) | User interface for analyzing opportunities for clinical process improvement | |
US10891053B2 (en) | Predicting glucose trends for population management | |
US11751821B2 (en) | Systems and methods of advanced warning for clinical deterioration in patients | |
US20100114599A1 (en) | System for evaluation patient care outcomes | |
US20070083390A1 (en) | Monitoring Clinical Processes for Process Optimization | |
US20170177801A1 (en) | Decision support to stratify a medical population | |
US20070083391A1 (en) | Measuring Performance Improvement for a Clinical Process | |
US20190221308A1 (en) | Method and system for recommending treatment plans, preventive actions, and preparedness actions | |
US20240257982A1 (en) | Reducing The Risk Of Potentially Preventable Events | |
US20180322942A1 (en) | Medical protocol evaluation | |
US8265948B2 (en) | Proactive and interactive clinical decision support | |
US20080082358A1 (en) | Clinical Decision Support Triggered From Another Clinical Decision Support | |
US11183302B1 (en) | Clinical decision support system using phenotypic features | |
US20070106534A1 (en) | Computerized system and method for predicting and tracking billing groups for patients in a healthcare environment | |
US8078480B2 (en) | Method and system for prioritizing opportunities for clinical process improvement | |
Anderson et al. | When is an ounce of prevention worth a pound of cure? Identifying high-risk candidates for case management | |
Alhorishi et al. | Using machine learning to predict early preparation of pharmacy prescriptions at psmmc-a comparison of four machine learning algorithms | |
US20210193327A1 (en) | Reducing Readmission Risk Through Co-Existing Condition Prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CERNER INNOVATION, INC., KANSAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AMLAND, ROBERT CHARLES;RYAN, HUGH;HOWARD, JASON;AND OTHERS;REEL/FRAME:039919/0857 Effective date: 20100616 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |