US20120271131A1 - Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same - Google Patents

Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same Download PDF

Info

Publication number
US20120271131A1
US20120271131A1 US13/540,301 US201213540301A US2012271131A1 US 20120271131 A1 US20120271131 A1 US 20120271131A1 US 201213540301 A US201213540301 A US 201213540301A US 2012271131 A1 US2012271131 A1 US 2012271131A1
Authority
US
United States
Prior art keywords
sensor
tissue
mucoadhesive
set forth
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/540,301
Inventor
Carl Kling
Shannon Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Nellcor Puritan Bennett LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nellcor Puritan Bennett LLC filed Critical Nellcor Puritan Bennett LLC
Priority to US13/540,301 priority Critical patent/US20120271131A1/en
Publication of US20120271131A1 publication Critical patent/US20120271131A1/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NELLCOR PURITAN BENNETT LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6819Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/682Mouth, e.g., oral cavity; tongue; Lips; Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue
    • A61B2562/146Coupling media or elements to improve sensor contact with skin or tissue for optical coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates generally to medical devices and, more particularly, to sensors placed on a mucosal surface used for sensing physiological parameters of a patient.
  • Pulse oximetry may be used to measure various blood flow characteristics, for example the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.
  • the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during different phases of the cardiac cycle.
  • Pulse oximeters typically utilize a non-invasive sensor that transmits electromagnetic radiation, for example light, through a patient's tissue and that photoelectrically detects the absorption and scattering of the transmitted light in such tissue.
  • One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and scattered by the blood in an amount correlative to the amount of the blood constituent present in the tissue. The measured amount of light absorbed and scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
  • Pulse oximetry is sensitive to movement, and various types of motion may cause artifacts that may obscure the blood constituent signal.
  • motion artifacts may be caused by moving a sensor in relation to the tissue, by increasing or decreasing the physical distance between emitters and detectors in a sensor, by changing the direction of emitters or detectors with respect to tissue or each other, by changing the angles of incidence and interfaces probed by the light, by directing the optical path through different amounts or types of tissue, or by expanding, compressing or otherwise altering tissue near a sensor.
  • the wide variety of sources of motion artifacts includes moving of a patient or the sensor by healthcare workers, physical motion of an unanaesthetised or ambulatory patient, shivering, seizures, agitation, response to pain and loss of neural control. These motions oftentimes have similar frequency content to the pulse, and may lead to similar or even larger optical modulations than the pulse. Thus, it is desirable to reduce the movement of a pulse oximetry sensor in order to mitigate artifacts.
  • Use of a mucoadhesive may urge the sensor into better contact with the desired site of measurement and may eliminate or reduce motion of the sensor relative to the tissue.
  • tissue constituents may also be of clinical interest.
  • One such parameter of interest is carbon dioxide. Elevated levels of carbon dioxide in the tissue may be related to poor perfusion. Thus, assessment of carbon dioxide levels may be useful for diagnosing a variety of clinical states related to poor perfusion.
  • One method of determining the level of blood carbon dioxide involves measuring carbon dioxide levels of respiratory gases. In relatively healthy individuals, the carbon dioxide in the bloodstream equilibrates rapidly with carbon dioxide in the lungs, the partial pressure of the carbon dioxide in the lungs approaches the amount in the blood during each breath. Accordingly, physicians often monitor respiratory gases at the end of expiration in order to estimate the carbon dioxide levels in the blood.
  • Respiratory gas analyzers typically function by passing electromagnetic radiation through a respiratory gas sample and measuring the absorption that is related to carbon dioxide. Often, the gas samples are collected with adapters that are fitted into patients being given respiratory assistance, for example patients under anesthesia, or patients on life support systems, to connect between the endotracheal tube (ET tube) and the ventilating tube of the breathing apparatus. These tubes convey respiratory gases to the patient and exhaled breath away from the patient.
  • the airway adapter is in the form of a short connector of tubular shape, and is required to make a connection between the generally very different cross sections of these two tubes.
  • Respiratory gases may also be collected through the use of cannulas, which are flexible tubes that are threaded through the mouth or nose. Respiratory gas samples collected from a cannula may be aspirated from the airway stream and exposed to a carbon dioxide sensor.
  • Carbon dioxide and other physiological parameters may also be measured transcutaneously by sensors held against a patient's skin. Transcutaneously measured carbon dioxide may also be clinically useful when compared to carbon dioxide measured in respiratory gases. For example, variations in carbon dioxide measurements between these two methods may be diagnostic for certain clinical states. While transcutaneous sensors may be easier to use than respiratory gas sensors, they also have certain disadvantages. As transcutaneous sensors depend upon the perfusion of carbon dioxide through a relatively thick epidermal layer, these sensors may not be as accurate.
  • tissue carbon dioxide particularly in tissues sensitive to hypoperfusion
  • the oral mucosa is a tissue involved in the visceral response to systemic hypoperfusion.
  • a sensor held in position on the oral mucosa could provide trending information about a patient's level of systemic perfusion.
  • a sensor that includes: an indicator adapted to provide feedback related to a physiological constituent; and a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • a system that includes a sensor adapted to be operatively coupled to the monitor.
  • the sensor includes: an indicator adapted to provide feedback related to a physiological constituent; and a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • a method of operating a sensor that includes: securing a sensor to a mucosal tissue with a mucoadhesive, wherein the sensor is adapted to provide feedback related to a physiological constituent.
  • a method of manufacturing a sensor that includes: providing an indicator adapted to provide feedback related to a physiological constituent; and providing a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • FIG. 1 is a schematic cross-section of a sensor showing a mucoadhesive layer according to the present invention
  • FIG. 2 illustrates a perspective view of a patient using a sensor for detection of a physiological constituent according to the present invention
  • FIG. 3 illustrates a side perspective view of a sensor for detection of tissue or blood constituents with a mucoadhesive region according to the present invention
  • FIG. 4 illustrates a schematic cross-sectional view of the sensor of FIG. 3 ;
  • FIG. 5 illustrates cross-sectional view of a sensor for detection of tissue or blood constituents with a collection chamber according to the present invention
  • FIG. 6 illustrates cross-sectional view of an exemplary pulse oximetry sensor adhered to the mucous membrane according to the present invention.
  • FIG. 7 illustrates a physiological constituent detection system coupled to a multi-parameter patient monitor and a sensor according to embodiments of the present invention.
  • Sensors are provided herein that may assess the presence of physiological constituents while secured to the mucosal tissue by mucoadhesives, which provide multiple advantages.
  • a secure mounting of the sensor to the mucosal tissue with mucoadhesives reduces movement of the sensor, which may cause signal artifacts.
  • a sensor may be attached to mucosal tissue that is easily accessible to a healthcare worker, for example buccal tissue, which does not involve the insertion of respiratory airway tubes that may cause patient discomfort.
  • Mucoadhesive mounting of sensors to the mucous membrane helps seal the sensor to the tissue, thus preventing tissue constituents at the sensor site from diffusing away before reaching the sensing elements of the sensor.
  • mucoadhesive prevents oral fluids or respiratory gases from contaminating the sensor site.
  • mucoadhesive refers to a substance that sticks to or adheres to the mucous membrane by any number of mechanisms, for example, but not limited to the following: hydrogen-bonding, ionic interaction, hydrophobic interaction, van der Waals interaction, or combinations thereof.
  • a sensor according to the present technique is appropriate for use in determining the presence or levels of physiological constituents, including blood and tissue parameters.
  • physiological constituents including blood and tissue parameters.
  • carbon dioxide or other constituents may be assessed by utilization of a sensor placed directly on the mucosal surface.
  • clinically relevant information may be ascertained and utilized for diagnostic purposes, e.g. poor tissue perfusion.
  • the sensor is secured to the mucosal tissue with a mucoadhesive, forming a seal to prevent the blood or tissue constituents, for example carbon dioxide, from diffusing away. Additionally, the seal prevents movement of the sensor from altering the optical path of any spectrophotometric elements of the sensor, which may result in signal interference.
  • the sensor may be used in the oral and nasal passages.
  • the oral passages may include the floor of the mouth, the roof of the mouth, the soft palate, the cheeks, the gums, the lips, and any other oral tissue.
  • a sensor as described herein is appropriate for use adjacent to or proximate to any mucosal surface, i.e. patient surfaces that include a mucous membrane or surfaces that are associated with mucus production.
  • mucosal surfaces may include respiratory, gastrointestinal or urogenital surfaces.
  • Sensors as provided by the present techniques may be disposable or reusable.
  • the sensors may be appropriate for short-term (e.g. minutes) or long-term (e.g. hours, days, or longer) monitoring.
  • sensors as provided herein may be used to monitor oxygen, ethanol, metabolic trace gases, e.g. acetone or anesthetic gases, e.g. isoflurane, halothane, desflurane, sevoflurane and enflurane that may diffuse transcutaneously.
  • metabolic trace gases e.g. acetone or anesthetic gases, e.g. isoflurane, halothane, desflurane, sevoflurane and enflurane that may diffuse transcutaneously.
  • sensors as provided herein may be useful for monitoring tissue metabolites, e.g.
  • sensors as provided herein are appropriate for use in determination of blood oxygen saturation as well as measurement and/or analysis of other blood and/or tissue constituents using principles of pulse oximetry.
  • the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, methemoglobin, total hemoglobin, fractional hemoglobin, intravascular dyes, and/or water content.
  • FIG. 1 is a schematic view of an exemplary sensor 10 according to the present techniques.
  • the sensor 10 has an indicator layer 12 and a mucoadhesive layer 14 .
  • the mucoadhesive layer 14 forms an adhesion complex with the tissue.
  • physiological constituents for example blood oxygen
  • the indicator layer 12 may include an emitter and detector pair.
  • tissue gases for example carbon dioxide may perfuse through the mucoadhesive-tissue complex into the indicator layer 12 .
  • the indicator layer 12 may be adapted to respond to the presence of carbon dioxide, and provides a feedback, discussed in more detail below.
  • the mucoadhesive layer 14 may include a variety of mucoadhesive compositions to secure a sensor to mucosal tissue according to the present techniques.
  • Suitable mucoadhesives include, but are not limited to hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethylcellulose, ethylcellulose, carboxymethylcellulose, dextran, guar gum, polyvinyl pyrrolidone, pectins, starches, gelatin, casein, acrylic acid polymers, polymers of acrylic acid esters, vinyl polymers, vinyl copolymers, polymers of vinyl alcohols, alkoxy polymers, polyethylene oxide polymers, polyethers, and any combination of the above.
  • the mucoadhesive may be a biocompatible polymer, for example polyacrylic acid, that is cross-linked with an acceptable agent to create an insoluble gel.
  • an insoluble gel is desirable since it remains adhered to the mucosal tissue for relatively long periods of time.
  • Cross-linked polyacrylic acid polymers for example Noveon and Carbomer, may be appropriate for use for three to five days or longer.
  • Noveon and Carbomer-based polymers are weak acids and contain many negatively-charged carboxyl-groups. The multiple negative charges on these polymers promote hydrogen-bonding between the polymers and the negatively charged mucin, a glycoprotein that mediates attachment of mucus to the epithelial lining.
  • a mucoadhesive polymer may also include acrylic acid polymers (e.g. Carbopol® 940, also known as Carbomer® 940, Carbopol 934P and Carbopol® 980, products of BF Goodrich), methyl vinyl/maleic acid copolymers (e.g. Gantrez® S-97, a product of Internationl Specialty Products), polyvinyl pyrrolidone also known as povidone (e.g. Plasdone® K-90, a product of International Specialty Products). These polymers impart relatively high viscosity at relatively low concentrations. They may therefore be incorporated onto a sensor in amounts ranging from about 0.01% to about 10% by weight relative to the total composition. These viscosity modifying agents further act to improve the film adhesion of the composition to mucous membranes. Carbopol® 980, in certain embodiments, may be 2-3% by weight of the total composition.
  • the mucoadhesive may be formulated as either a liquid or as a gel. If a liquid formulation is desired, a relatively low concentration (e.g. 0.1-1%) of the mucoadhesive/viscosity modifying agent may be used. If a gel formulation is desired, a higher concentration (e.g. 1.5-4%) of the suitable viscosity modifying/mucoadhesive agent may be incorporated into the polymethacrylate/solvent vehicle for gel formation.
  • the mucoadhesive may further comprise excipients e.g. plasticizers, flavorings, sweeteners and/or colorants.
  • plasticizers include triethyl citrate, polyethylene glycol and glycerin.
  • plasticizers may be present in amounts generally ranging from about 1% to about 10% by weight relative to the total composition.
  • glycerine can be present in the amount of 1-5% by weight.
  • Polyethylene glycol and triethyl citrate can be used in the amount of about 5% to about 12%, in certain embodiments.
  • the indicator layer 12 may include any appropriate indicating element, including chemical, enzymatic, spectrophotometric, fluorescent, or chemiluminescent indicators.
  • the indicator layer 12 may include sensing elements, e.g. an emitter and detector pair that may be of any suitable type.
  • the emitter may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range
  • the detector may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter.
  • an emitter may also be a laser diode or a vertical cavity surface emitting laser (VCSEL).
  • An emitter and detector may also include optical fiber sensing elements.
  • An emitter may include a broadband or “white light” source, in which case the detector could include any of a variety of elements for selecting specific wavelengths, for example reflective or refractive elements or interferometers. These kinds of emitters and/or detectors would typically be coupled to the rigid or rigidified sensor via fiber optics.
  • a sensor may sense light detected from the tissue is at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering and multi-photon events or photoacoustic effects.
  • the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths.
  • a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm.
  • the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra.
  • the indicator layer 12 may include an active ingredient of the indicating element, for example the active ingredient involved in providing the required response signal when exposed to a given concentration of carbon dioxide or other constituents.
  • the active ingredient may be any indicator that is sensitive to the presence of carbon dioxide and that is capable of being calibrated to give a response signal corresponding to a given predetermined concentration of carbon dioxide.
  • the signal may be visual, e.g. a change in color, or electrical.
  • Indicators which provide a color change in a presence of carbon dioxide may include chromogenic pH-sensitive indicators and oxidation/reduction indicators.
  • a chromogenic pH-sensitive indicator will provide a color change upon exposure to a given concentration of carbon dioxide or other metabolites in the presence of other ingredients of the element which provide the appropriate chemical conditions to induce the required color change.
  • a chromogenic pH-sensitive indicator e.g. a compound, or mixture of compounds, changes color when there is a change in pH in the surrounding medium.
  • a suitable base which provides an alkaline solution.
  • the hydroxyl ions or amine residues present in the alkaline solution react chemically with carbon dioxide to produce a carbonate, bicarbonate and/or carbamate moiety.
  • the resulting reaction depletes the hydroxyl ion or amine at the interface and thus lowers the pH at the surface of the component impregnated with the indicating element.
  • the lowering of the pH causes a color change in the indicator.
  • Chromogenic pH-sensitive indicators may include metacresol purple, thymol blue, cresol red, phenol red, xylenol blue, a 3:1 mixture of cresol red and thymol blue, bromthymol blue, neutral red, phenolphthalein, rosolic acid, alpha-naphtholphthalein and orange I.
  • indicators which may be used include bromcresol purple, bromphenol red, p-nitrophenol, m-nitrophenol, curcumin, quinoline blue, thymolphthalein and mixtures thereof.
  • Suitable bases include sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium barbitol, tribasic sodium phosphate, dibasic sodium phosphate, potassium acetate, monoethanolamine, diethanolamine and piperidine.
  • the indicator layer 12 may also include an enzyme-based detection system.
  • an enzyme-based detection system For example, one such enzyme may be carbonic anhydrase, which is an enzyme that assists interconversion of carbon dioxide and water into carbonic acid, protons, and bicarbonate ions. As described above, this reaction lowers the pH at the surface of the component impregnated with the indicating element. The lowering of the pH may cause a color change in the indicator.
  • Another such enzyme-based detection system is an enzyme linked immunosorbent assay (ELISA). For example, such an assay may be appropriate when assessing tissue proteins.
  • the indicator element may include a primary antibody specific for the tissue protein of interest, and a labeled secondary binding ligand or antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand.
  • the label may be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate. Suitable enzymes include urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase.
  • a chemical indicator may be used in conjunction with an electrical or electronic device that is adapted to detect and measure changes in the ambient chemical parameters induced by the presence of critical amounts of carbon dioxide.
  • optical fiber carbon dioxide sensors may be used to convert a change in a chemical indicator to a quantitative measurement of carbon dioxide in the sample.
  • such sensors operate by directing light of a predetermined wavelength from an external source through the optical fiber to impinge the chemical indicator.
  • the intensity of the emitted fluorescent light returning along the fiber is directly related to the concentration of carbon dioxide in the sample, as a result of the pH-sensitive indicator material present at the fiber tip (i.e., the pH of the indicator solution is directly related to carbon dioxide concentration, as a result of carbonic acid formation).
  • the emitted light is carried by the optical fiber to a device where it is detected and converted electronically to a carbon dioxide concentration value.
  • the sensor may additionally have a reference dye present in the indicator composition. The intensity of the light emitted form the reference dye may be used to compensate, via rationing, the signal obtained from the indicator.
  • Other components may be incorporated into the indicator composition including surfactants, antioxidants and ultraviolet stabilizers may also be present in the indicator composition.
  • the indicator layer 12 may be formed from any appropriate substrate.
  • the indicator layer 12 may be filter paper, which may be soaked in, dipped in, or otherwise exposed to the appropriate carbon dioxide-sensing compounds.
  • the filter paper may be dipped into a solution containing the indicating compounds on only one side.
  • the indicator layer 12 may also be polysulfone, polyproplylene, or other polymer substrates.
  • the indicator layer 12 may be a thin film, or a thicker substrate. A thicker substrate may lead to a slower response time, which may be advantageous in situations in which a sensor is monitoring carbon dioxide levels over a longer period of time.
  • the indicator layer 12 may have pores of a variety of sizes.
  • FIG. 2 illustrates the placement of a sensor with a mucoadhesive on a buccal surface in order to assess a tissue gas, for example carbon dioxide, in the tissue, blood or interstitial fluid.
  • a tissue gas for example carbon dioxide
  • FIG. 2 shows an embodiment of a sensor 10 including an output cable 16 that is adapted to provide an electrical feedback.
  • reference number 16 may represent a string, cord, or tether that facilitates removal of the sensor 10 .
  • reference number 16 may represent a gas collection tube. In such an embodiment, the sensor 10 may collect tissue gases in a chamber.
  • the collected gases may then diffuse through a tube connected to the collection chamber, and the gases may then be further assessed and/or measured by sensing elements not directly applied to the patient.
  • the sensor 10 may be suitably sized and shaped such that a patient may easily close his or her mouth around the sensor with minimal discomfort.
  • the sensor 10 is secured to the buccal tissue 18 such that the area covered by the sensor 10 is substantially sealed to prevent air flow out of the sensor 10 , thus preventing carbon dioxide at the sensor placement site from dissipating into the airstream, which may lead to inaccurate measurements. Further, the sensor's 10 tissue seal may also prevent respiratory gases or oral fluids from entering the sensor 10 . Generally, the sensor 10 may be suitably sized and shaped to allow the sensor 10 to be positioned flush against the buccal tissue 18 .
  • FIG. 3 is a perspective view of an exemplary sensor 10 A.
  • the sensor 10 A includes a housing 20 surrounding an indicator layer 22 .
  • the housing is formed to provide a surface 24 that is suitably shaped to be secured against a mucosal tissue.
  • Mucoadhesive 26 is disposed on the surface 24 .
  • the mucoadhesive 26 may include a substrate holder, for example a paper or foam. In such an embodiment, the paper or foam is soaked in or otherwise impregnated with the mucoadhesive 26 in the form of a gel or liquid.
  • the mucoadhesive 26 is disposed on the sensor 10 A in a ring substantially surrounding the indicator layer 22 .
  • the mucoadhesive 26 adheres in a region of tissue adjacent to the indicator layer 22 , such that the indicator layer 22 is in direct contact with the mucous membrane.
  • the mucoadhesive 26 is permeable to the tissue gases being measured.
  • the mucoadhesive 26 may be applied directly to the sensor placement site on the tissue by a healthcare worker.
  • the mucoadhesive 26 would be disposed between the mucous membrane and the indicator layer 22 , and the tissue carbon dioxide or other constituents would perfuse through the mucoadhesive 26 before reaching the indicator layer 22 .
  • Such an arrangement may be advantageous if the mucoadhesive 26 must be freshly prepared prior to use, and cannot be stored with the sensor 10 A.
  • the senor in foil or other protective materials in order to protect the mucoadhesive 26 prior to use, and prevent drying out or oxidation of the mucoadhesive 26 layer.
  • the housing 20 may be any suitable material that is generally suited to the aqueous environment of the mucous membrane, for example plastic.
  • the housing 20 may be may be any suitable optically transparent material that allows for viewing of the indicator layer 22 beneath.
  • Exemplary materials include transparent polymers, for example polypropylene or polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the housing 20 may be an opaque material with a transparent window that allows viewing of the indicator layer 22 .
  • the sensor 10 A may or may not include a mechanism for viewing a color change of the indicator layer 20 .
  • FIG. 4 is a schematic view of the exemplary sensor 10 A that includes a permeable substrate 28 disposed in the tissue-contacting side of the indicator layer 22 .
  • a permeable substrate 28 may be advantageous in providing rigidity and support to the sensor assembly 10 A. Suitable materials for a permeable substrate 28 include, but are not limited to paper, plastics, or woven materials.
  • Carbon dioxide or other constituents 30 at the surface of the mucosal tissue contacts the permeable substrate 28 when the sensor assembly is applied to a mucosal surface.
  • the substrate 28 is permeable to carbon dioxide or other constituents 30 , which diffuses to contact the indicator layer 22 .
  • a transparent window 32 allows viewing of the response, for example a change in color of the indicator layer 22 .
  • FIG. 5 is an alternate embodiment of a tissue constituent sensor 10 B in which the sensor includes an electrical indicator.
  • a housing 34 is adhered to the mucosal tissue 48 by a mucoadhesive 44 .
  • the housing 34 once adhered, forms a collection chamber that traps tissue gas 46 that diffuses through the mucosal tissue 48 .
  • the trapped tissue gas 46 may then be irradiated by an emitter 38 , and the emitted light that passes through the tissue gas 46 is detected by a detector 40 .
  • the emitter 38 and the detector 40 are electrically coupled to a cable 36 by a pair of wires 42 .
  • the wavelength of the light emitted by the emitter 38 and the detection range of the detector 40 may be selected to detect a wide range of tissue gases 46 , including carbon dioxide.
  • the housing 34 may be formed from polypropylene, polyethylene, polysulfone or similar polymers. Generally, the housing should be relatively impermeable to tissue gases, such that the sensor 10 B may collect tissue gases 46 for a sufficient period of time to allow for detection and measurement. Hence, it may be advantageous to coat the sensor 10 B with additional sealants to prevent leakage of the tissue gases 46 .
  • the emitter 38 may be an infrared light source, for example an incandescent broad band lamp, (available from Oshino Lamps).
  • the sensor may also include an infrared detector 40 , for example a lead selenide detector (available from OptoElectronics).
  • the emitter may also include a filter, for example a 4.26 micron wavelength filter. Such a filter may be appropriate for use in an embodiment where carbon dioxide is measured.
  • the senor 10 B is arranged to operate in transmission mode, and casings for the emitter and detector may be formed in the housing 34 on opposite sides of the sensor 10 B.
  • the emitter 38 and the detector 40 may be arranged to operate in reflectance mode (not shown), and can be located on the same side of sensor 10 B.
  • a mirror may be placed on the opposite side of the housing 34 to reflect the radiation emitted from the emitter 38 back to the detector 40 .
  • FIG. 6 illustrates an exemplary reflectance pulse oximetry sensor 10 C.
  • the sensor 10 C has an indicator layer that includes a sensor body 56 and an emitter 58 and a detector 60 that generally lie side-by-side.
  • the sensor 10 C is adhered to the mucous membrane 66 with a mocoadhesive 64 .
  • the sensor 10 C is arranged such that the emitter 58 emits light, represented by arrow 62 that is absorbed and/or scattered back to the detector 60 .
  • the emitter 58 and the detector 60 may be disposed on the sensor body 56 , which may be made of any suitable material, for example plastic, foam, woven material, or any water-resistant material.
  • the emitter 58 and the detector 60 may be remotely located and optically coupled to the sensor 10 C using optical fibers.
  • the sensor 10 C may be a transmission type sensor.
  • Transmission type sensors include an emitter 58 and detector 60 that are typically placed on opposing sides of the sensor site. Thus, part of the sensor may be adhered to the mucous membrane of the cheek with a mucoadhesive 64 and a part of the sensor may be adhered to the exterior portion of the cheek with other suitable adhesives, such that the emitter 58 and the detector 60 are positioned on opposite sides of the cheek.
  • the senor 10 C is positioned so that the emitter 58 is located on the interior of patient's mouth and the detector 60 is located 180° opposite the emitter 58 on the exterior of the patients mouth.
  • a conformable sensor body 56 may connect the emitter 58 and the detector 60 .
  • the locations of the emitter 58 and the detector 60 may be exchanged. In either arrangement, the sensor 10 C will perform in substantially the same manner.
  • the exemplary sensors described herein, illustrated here generically as a sensor 10 may be coupled to a monitor 50 , for example a carbon dioxide monitor or a pulse oximetry monitor, that may display the concentration of a physiological constituent in the patient sample (e.g. mucosal tissue or blood) as shown in FIG. 7 .
  • a monitor 50 for example a carbon dioxide monitor or a pulse oximetry monitor
  • the cable 52 of the sensor 10 may be coupled to the monitor 50 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 50 .
  • the monitor 50 may be any suitable carbon dioxide monitor, for example those available from Nellcor Puritan Bennett Inc.
  • the monitor 50 may be coupled to a multi-parameter patient monitor 54 via a cable 56 connected to a sensor input port or via a cable 58 connected to a digital communication port.
  • the sensors fabricated using the present method may be used to evaluate any number of sample types in a variety of industries, including fermentation technology, cell culture, and other biotechnology applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Otolaryngology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A sensor for physiological constituent detection may be adapted to include a mucoadhesive. A sensor is provided that is appropriate for use on mucosal tissue. The mucoadhesive provides a mechanism for holding the sensor on the mucous membrane in order to measure physiological constituent levels in the tissue and blood.

Description

  • This application is a continuation of U.S. application Ser. No. 11/241,724 filed Sep. 30, 2005, the disclosure of which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to medical devices and, more particularly, to sensors placed on a mucosal surface used for sensing physiological parameters of a patient.
  • 2. Description of the Related Art
  • This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
  • In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.
  • One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, for example the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during different phases of the cardiac cycle.
  • Pulse oximeters typically utilize a non-invasive sensor that transmits electromagnetic radiation, for example light, through a patient's tissue and that photoelectrically detects the absorption and scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and scattered by the blood in an amount correlative to the amount of the blood constituent present in the tissue. The measured amount of light absorbed and scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
  • Pulse oximetry is sensitive to movement, and various types of motion may cause artifacts that may obscure the blood constituent signal. For example, motion artifacts may be caused by moving a sensor in relation to the tissue, by increasing or decreasing the physical distance between emitters and detectors in a sensor, by changing the direction of emitters or detectors with respect to tissue or each other, by changing the angles of incidence and interfaces probed by the light, by directing the optical path through different amounts or types of tissue, or by expanding, compressing or otherwise altering tissue near a sensor. In the emergency room, critical care, intensive care, and trauma center settings, where pulse oximetry is commonly used for patient monitoring, the wide variety of sources of motion artifacts includes moving of a patient or the sensor by healthcare workers, physical motion of an unanaesthetised or ambulatory patient, shivering, seizures, agitation, response to pain and loss of neural control. These motions oftentimes have similar frequency content to the pulse, and may lead to similar or even larger optical modulations than the pulse. Thus, it is desirable to reduce the movement of a pulse oximetry sensor in order to mitigate artifacts. Use of a mucoadhesive may urge the sensor into better contact with the desired site of measurement and may eliminate or reduce motion of the sensor relative to the tissue.
  • Alternative means of monitoring tissue constituents may also be of clinical interest. One such parameter of interest is carbon dioxide. Elevated levels of carbon dioxide in the tissue may be related to poor perfusion. Thus, assessment of carbon dioxide levels may be useful for diagnosing a variety of clinical states related to poor perfusion. One method of determining the level of blood carbon dioxide involves measuring carbon dioxide levels of respiratory gases. In relatively healthy individuals, the carbon dioxide in the bloodstream equilibrates rapidly with carbon dioxide in the lungs, the partial pressure of the carbon dioxide in the lungs approaches the amount in the blood during each breath. Accordingly, physicians often monitor respiratory gases at the end of expiration in order to estimate the carbon dioxide levels in the blood.
  • Respiratory gas analyzers typically function by passing electromagnetic radiation through a respiratory gas sample and measuring the absorption that is related to carbon dioxide. Often, the gas samples are collected with adapters that are fitted into patients being given respiratory assistance, for example patients under anesthesia, or patients on life support systems, to connect between the endotracheal tube (ET tube) and the ventilating tube of the breathing apparatus. These tubes convey respiratory gases to the patient and exhaled breath away from the patient. The airway adapter is in the form of a short connector of tubular shape, and is required to make a connection between the generally very different cross sections of these two tubes. Respiratory gases may also be collected through the use of cannulas, which are flexible tubes that are threaded through the mouth or nose. Respiratory gas samples collected from a cannula may be aspirated from the airway stream and exposed to a carbon dioxide sensor.
  • It is often inconvenient to measure carbon dioxide in respiratory gases from respiratory gas samples collected from an intubation tube or cannula. Although these methods are considered to be noninvasive, as the surface of the skin is not breached, the insertion of such devices may cause discomfort for the patient. Further, the insertion and operation of such devices also involves the assistance of skilled medical personnel.
  • Carbon dioxide and other physiological parameters may also be measured transcutaneously by sensors held against a patient's skin. Transcutaneously measured carbon dioxide may also be clinically useful when compared to carbon dioxide measured in respiratory gases. For example, variations in carbon dioxide measurements between these two methods may be diagnostic for certain clinical states. While transcutaneous sensors may be easier to use than respiratory gas sensors, they also have certain disadvantages. As transcutaneous sensors depend upon the perfusion of carbon dioxide through a relatively thick epidermal layer, these sensors may not be as accurate.
  • Direct measurement of tissue carbon dioxide, particularly in tissues sensitive to hypoperfusion, provides clinicians with important diagnostic information regarding systemic circulation and/or onset of septic shock. The oral mucosa is a tissue involved in the visceral response to systemic hypoperfusion. A sensor held in position on the oral mucosa could provide trending information about a patient's level of systemic perfusion.
  • SUMMARY
  • Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
  • There is provided a sensor that includes: an indicator adapted to provide feedback related to a physiological constituent; and a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • There is also provided a system that includes a sensor adapted to be operatively coupled to the monitor. The sensor includes: an indicator adapted to provide feedback related to a physiological constituent; and a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • There is also provided a method of operating a sensor that includes: securing a sensor to a mucosal tissue with a mucoadhesive, wherein the sensor is adapted to provide feedback related to a physiological constituent.
  • There is also provided a method of manufacturing a sensor that includes: providing an indicator adapted to provide feedback related to a physiological constituent; and providing a mucoadhesive disposed on a tissue-contacting side of the sensor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1 is a schematic cross-section of a sensor showing a mucoadhesive layer according to the present invention;
  • FIG. 2 illustrates a perspective view of a patient using a sensor for detection of a physiological constituent according to the present invention;
  • FIG. 3 illustrates a side perspective view of a sensor for detection of tissue or blood constituents with a mucoadhesive region according to the present invention;
  • FIG. 4 illustrates a schematic cross-sectional view of the sensor of FIG. 3;
  • FIG. 5 illustrates cross-sectional view of a sensor for detection of tissue or blood constituents with a collection chamber according to the present invention
  • FIG. 6 illustrates cross-sectional view of an exemplary pulse oximetry sensor adhered to the mucous membrane according to the present invention; and
  • FIG. 7 illustrates a physiological constituent detection system coupled to a multi-parameter patient monitor and a sensor according to embodiments of the present invention.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, for example compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
  • Sensors are provided herein that may assess the presence of physiological constituents while secured to the mucosal tissue by mucoadhesives, which provide multiple advantages. A secure mounting of the sensor to the mucosal tissue with mucoadhesives reduces movement of the sensor, which may cause signal artifacts. A sensor may be attached to mucosal tissue that is easily accessible to a healthcare worker, for example buccal tissue, which does not involve the insertion of respiratory airway tubes that may cause patient discomfort. Mucoadhesive mounting of sensors to the mucous membrane helps seal the sensor to the tissue, thus preventing tissue constituents at the sensor site from diffusing away before reaching the sensing elements of the sensor. Conversely, use of a mucoadhesive prevents oral fluids or respiratory gases from contaminating the sensor site. The term mucoadhesive refers to a substance that sticks to or adheres to the mucous membrane by any number of mechanisms, for example, but not limited to the following: hydrogen-bonding, ionic interaction, hydrophobic interaction, van der Waals interaction, or combinations thereof.
  • Generally, it is envisioned that a sensor according to the present technique is appropriate for use in determining the presence or levels of physiological constituents, including blood and tissue parameters. For example, carbon dioxide or other constituents may be assessed by utilization of a sensor placed directly on the mucosal surface. Thus, clinically relevant information may be ascertained and utilized for diagnostic purposes, e.g. poor tissue perfusion.
  • The sensor is secured to the mucosal tissue with a mucoadhesive, forming a seal to prevent the blood or tissue constituents, for example carbon dioxide, from diffusing away. Additionally, the seal prevents movement of the sensor from altering the optical path of any spectrophotometric elements of the sensor, which may result in signal interference. The sensor may be used in the oral and nasal passages. The oral passages may include the floor of the mouth, the roof of the mouth, the soft palate, the cheeks, the gums, the lips, and any other oral tissue. Further, a sensor as described herein is appropriate for use adjacent to or proximate to any mucosal surface, i.e. patient surfaces that include a mucous membrane or surfaces that are associated with mucus production. In addition to the oral and nasal mucosa, mucosal surfaces may include respiratory, gastrointestinal or urogenital surfaces.
  • Sensors as provided by the present techniques may be disposable or reusable. In addition, the sensors may be appropriate for short-term (e.g. minutes) or long-term (e.g. hours, days, or longer) monitoring. In addition to carbon dioxide monitoring, sensors as provided herein may be used to monitor oxygen, ethanol, metabolic trace gases, e.g. acetone or anesthetic gases, e.g. isoflurane, halothane, desflurane, sevoflurane and enflurane that may diffuse transcutaneously. Additionally, sensors as provided herein may be useful for monitoring tissue metabolites, e.g. cytochrome a/a3, phosphomonoesters, H+, ATP, ADP, NADH, NAD+, cytokines, and inflammatory markers. Further, sensors as provided herein are appropriate for use in determination of blood oxygen saturation as well as measurement and/or analysis of other blood and/or tissue constituents using principles of pulse oximetry. For example, the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, methemoglobin, total hemoglobin, fractional hemoglobin, intravascular dyes, and/or water content.
  • FIG. 1 is a schematic view of an exemplary sensor 10 according to the present techniques. The sensor 10 has an indicator layer 12 and a mucoadhesive layer 14. When the sensor 10 is contacted with a tissue or fluid sensor site, the mucoadhesive layer 14 forms an adhesion complex with the tissue. When the sensor 10 is adhered to the mucous membrane, physiological constituents, for example blood oxygen, may be spectrophotometrically assessed, as discussed in more detail herein. In such an embodiment, the indicator layer 12 may include an emitter and detector pair. Alternatively, tissue gases for example carbon dioxide may perfuse through the mucoadhesive-tissue complex into the indicator layer 12. The indicator layer 12 may be adapted to respond to the presence of carbon dioxide, and provides a feedback, discussed in more detail below.
  • The mucoadhesive layer 14 may include a variety of mucoadhesive compositions to secure a sensor to mucosal tissue according to the present techniques. Suitable mucoadhesives include, but are not limited to hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethylcellulose, ethylcellulose, carboxymethylcellulose, dextran, guar gum, polyvinyl pyrrolidone, pectins, starches, gelatin, casein, acrylic acid polymers, polymers of acrylic acid esters, vinyl polymers, vinyl copolymers, polymers of vinyl alcohols, alkoxy polymers, polyethylene oxide polymers, polyethers, and any combination of the above.
  • In specific embodiments, the mucoadhesive may be a biocompatible polymer, for example polyacrylic acid, that is cross-linked with an acceptable agent to create an insoluble gel. The use of an insoluble gel is desirable since it remains adhered to the mucosal tissue for relatively long periods of time. Cross-linked polyacrylic acid polymers, for example Noveon and Carbomer, may be appropriate for use for three to five days or longer. Noveon and Carbomer-based polymers are weak acids and contain many negatively-charged carboxyl-groups. The multiple negative charges on these polymers promote hydrogen-bonding between the polymers and the negatively charged mucin, a glycoprotein that mediates attachment of mucus to the epithelial lining.
  • A mucoadhesive polymer may also include acrylic acid polymers (e.g. Carbopol® 940, also known as Carbomer® 940, Carbopol 934P and Carbopol® 980, products of BF Goodrich), methyl vinyl/maleic acid copolymers (e.g. Gantrez® S-97, a product of Internationl Specialty Products), polyvinyl pyrrolidone also known as povidone (e.g. Plasdone® K-90, a product of International Specialty Products). These polymers impart relatively high viscosity at relatively low concentrations. They may therefore be incorporated onto a sensor in amounts ranging from about 0.01% to about 10% by weight relative to the total composition. These viscosity modifying agents further act to improve the film adhesion of the composition to mucous membranes. Carbopol® 980, in certain embodiments, may be 2-3% by weight of the total composition.
  • The mucoadhesive may be formulated as either a liquid or as a gel. If a liquid formulation is desired, a relatively low concentration (e.g. 0.1-1%) of the mucoadhesive/viscosity modifying agent may be used. If a gel formulation is desired, a higher concentration (e.g. 1.5-4%) of the suitable viscosity modifying/mucoadhesive agent may be incorporated into the polymethacrylate/solvent vehicle for gel formation.
  • The mucoadhesive may further comprise excipients e.g. plasticizers, flavorings, sweeteners and/or colorants. Examples of plasticizers include triethyl citrate, polyethylene glycol and glycerin. Such plasticizers may be present in amounts generally ranging from about 1% to about 10% by weight relative to the total composition. For example, glycerine can be present in the amount of 1-5% by weight. Polyethylene glycol and triethyl citrate can be used in the amount of about 5% to about 12%, in certain embodiments.
  • The indicator layer 12 may include any appropriate indicating element, including chemical, enzymatic, spectrophotometric, fluorescent, or chemiluminescent indicators. In certain embodiments, the indicator layer 12 may include sensing elements, e.g. an emitter and detector pair that may be of any suitable type. For example, the emitter may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter. Alternatively, an emitter may also be a laser diode or a vertical cavity surface emitting laser (VCSEL). An emitter and detector may also include optical fiber sensing elements. An emitter may include a broadband or “white light” source, in which case the detector could include any of a variety of elements for selecting specific wavelengths, for example reflective or refractive elements or interferometers. These kinds of emitters and/or detectors would typically be coupled to the rigid or rigidified sensor via fiber optics. Alternatively, a sensor may sense light detected from the tissue is at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering and multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm. It should be understood that, as used herein, the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra.
  • Alternatively, the indicator layer 12 may include an active ingredient of the indicating element, for example the active ingredient involved in providing the required response signal when exposed to a given concentration of carbon dioxide or other constituents. The active ingredient may be any indicator that is sensitive to the presence of carbon dioxide and that is capable of being calibrated to give a response signal corresponding to a given predetermined concentration of carbon dioxide. The signal may be visual, e.g. a change in color, or electrical. Indicators which provide a color change in a presence of carbon dioxide may include chromogenic pH-sensitive indicators and oxidation/reduction indicators.
  • A chromogenic pH-sensitive indicator will provide a color change upon exposure to a given concentration of carbon dioxide or other metabolites in the presence of other ingredients of the element which provide the appropriate chemical conditions to induce the required color change. A chromogenic pH-sensitive indicator, e.g. a compound, or mixture of compounds, changes color when there is a change in pH in the surrounding medium. For such an indicator to be capable of giving a determination of carbon dioxide, it is typically used in combination with a suitable base which provides an alkaline solution. The hydroxyl ions or amine residues present in the alkaline solution react chemically with carbon dioxide to produce a carbonate, bicarbonate and/or carbamate moiety. The resulting reaction depletes the hydroxyl ion or amine at the interface and thus lowers the pH at the surface of the component impregnated with the indicating element. The lowering of the pH causes a color change in the indicator.
  • Chromogenic pH-sensitive indicators according to the present techniques may include metacresol purple, thymol blue, cresol red, phenol red, xylenol blue, a 3:1 mixture of cresol red and thymol blue, bromthymol blue, neutral red, phenolphthalein, rosolic acid, alpha-naphtholphthalein and orange I. Examples of other indicators which may be used include bromcresol purple, bromphenol red, p-nitrophenol, m-nitrophenol, curcumin, quinoline blue, thymolphthalein and mixtures thereof. Suitable bases include sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium barbitol, tribasic sodium phosphate, dibasic sodium phosphate, potassium acetate, monoethanolamine, diethanolamine and piperidine.
  • The indicator layer 12 may also include an enzyme-based detection system. For example, one such enzyme may be carbonic anhydrase, which is an enzyme that assists interconversion of carbon dioxide and water into carbonic acid, protons, and bicarbonate ions. As described above, this reaction lowers the pH at the surface of the component impregnated with the indicating element. The lowering of the pH may cause a color change in the indicator. Another such enzyme-based detection system is an enzyme linked immunosorbent assay (ELISA). For example, such an assay may be appropriate when assessing tissue proteins. Thus, the indicator element may include a primary antibody specific for the tissue protein of interest, and a labeled secondary binding ligand or antibody, or a secondary binding ligand or antibody in conjunction with a labeled tertiary antibody or third binding ligand. The label may be an enzyme that will generate color development upon incubating with an appropriate chromogenic substrate. Suitable enzymes include urease, glucose oxidase, alkaline phosphatase or hydrogen peroxidase.
  • A chemical indicator may be used in conjunction with an electrical or electronic device that is adapted to detect and measure changes in the ambient chemical parameters induced by the presence of critical amounts of carbon dioxide. For example, optical fiber carbon dioxide sensors may be used to convert a change in a chemical indicator to a quantitative measurement of carbon dioxide in the sample. Generally, such sensors operate by directing light of a predetermined wavelength from an external source through the optical fiber to impinge the chemical indicator. The intensity of the emitted fluorescent light returning along the fiber is directly related to the concentration of carbon dioxide in the sample, as a result of the pH-sensitive indicator material present at the fiber tip (i.e., the pH of the indicator solution is directly related to carbon dioxide concentration, as a result of carbonic acid formation). The emitted light is carried by the optical fiber to a device where it is detected and converted electronically to a carbon dioxide concentration value. The sensor may additionally have a reference dye present in the indicator composition. The intensity of the light emitted form the reference dye may be used to compensate, via rationing, the signal obtained from the indicator. Other components may be incorporated into the indicator composition including surfactants, antioxidants and ultraviolet stabilizers may also be present in the indicator composition.
  • The indicator layer 12 may be formed from any appropriate substrate. For example, the indicator layer 12 may be filter paper, which may be soaked in, dipped in, or otherwise exposed to the appropriate carbon dioxide-sensing compounds. In certain embodiments, the filter paper may be dipped into a solution containing the indicating compounds on only one side. The indicator layer 12 may also be polysulfone, polyproplylene, or other polymer substrates. The indicator layer 12 may be a thin film, or a thicker substrate. A thicker substrate may lead to a slower response time, which may be advantageous in situations in which a sensor is monitoring carbon dioxide levels over a longer period of time. Additionally, the indicator layer 12 may have pores of a variety of sizes.
  • In specific embodiments, it may be advantageous to provide a sensor for use on buccal or sublingual tissue that is easily reached by the patient or a healthcare worker. For example, FIG. 2 illustrates the placement of a sensor with a mucoadhesive on a buccal surface in order to assess a tissue gas, for example carbon dioxide, in the tissue, blood or interstitial fluid. Specifically, FIG. 2 shows an embodiment of a sensor 10 including an output cable 16 that is adapted to provide an electrical feedback. Alternatively, reference number 16 may represent a string, cord, or tether that facilitates removal of the sensor 10. In another embodiment, reference number 16 may represent a gas collection tube. In such an embodiment, the sensor 10 may collect tissue gases in a chamber. The collected gases may then diffuse through a tube connected to the collection chamber, and the gases may then be further assessed and/or measured by sensing elements not directly applied to the patient. The sensor 10 may be suitably sized and shaped such that a patient may easily close his or her mouth around the sensor with minimal discomfort.
  • The sensor 10 is secured to the buccal tissue 18 such that the area covered by the sensor 10 is substantially sealed to prevent air flow out of the sensor 10, thus preventing carbon dioxide at the sensor placement site from dissipating into the airstream, which may lead to inaccurate measurements. Further, the sensor's 10 tissue seal may also prevent respiratory gases or oral fluids from entering the sensor 10. Generally, the sensor 10 may be suitably sized and shaped to allow the sensor 10 to be positioned flush against the buccal tissue 18.
  • FIG. 3 is a perspective view of an exemplary sensor 10A. The sensor 10A includes a housing 20 surrounding an indicator layer 22. The housing is formed to provide a surface 24 that is suitably shaped to be secured against a mucosal tissue. Mucoadhesive 26 is disposed on the surface 24. The mucoadhesive 26 may include a substrate holder, for example a paper or foam. In such an embodiment, the paper or foam is soaked in or otherwise impregnated with the mucoadhesive 26 in the form of a gel or liquid.
  • The mucoadhesive 26 is disposed on the sensor 10A in a ring substantially surrounding the indicator layer 22. Thus, when the sensor 10A is applied to tissue, the mucoadhesive 26 adheres in a region of tissue adjacent to the indicator layer 22, such that the indicator layer 22 is in direct contact with the mucous membrane. In certain embodiments, the mucoadhesive 26 is permeable to the tissue gases being measured. In such an embodiment, the mucoadhesive 26 may be applied directly to the sensor placement site on the tissue by a healthcare worker. Thus, the mucoadhesive 26 would be disposed between the mucous membrane and the indicator layer 22, and the tissue carbon dioxide or other constituents would perfuse through the mucoadhesive 26 before reaching the indicator layer 22. Such an arrangement may be advantageous if the mucoadhesive 26 must be freshly prepared prior to use, and cannot be stored with the sensor 10A.
  • In other embodiments (not shown), it may be advantageous to package the sensor in foil or other protective materials in order to protect the mucoadhesive 26 prior to use, and prevent drying out or oxidation of the mucoadhesive 26 layer.
  • The housing 20 may be any suitable material that is generally suited to the aqueous environment of the mucous membrane, for example plastic. In certain embodiments, the housing 20 may be may be any suitable optically transparent material that allows for viewing of the indicator layer 22 beneath. Exemplary materials include transparent polymers, for example polypropylene or polyethylene terephthalate (PET). In other embodiments, the housing 20 may be an opaque material with a transparent window that allows viewing of the indicator layer 22. However, in other embodiments in which the sensor 10A is adapted to provide electrical feedback to a monitor, the sensor 10A may or may not include a mechanism for viewing a color change of the indicator layer 20.
  • FIG. 4 is a schematic view of the exemplary sensor 10A that includes a permeable substrate 28 disposed in the tissue-contacting side of the indicator layer 22. A permeable substrate 28 may be advantageous in providing rigidity and support to the sensor assembly 10A. Suitable materials for a permeable substrate 28 include, but are not limited to paper, plastics, or woven materials. Carbon dioxide or other constituents 30 at the surface of the mucosal tissue contacts the permeable substrate 28 when the sensor assembly is applied to a mucosal surface. The substrate 28 is permeable to carbon dioxide or other constituents 30, which diffuses to contact the indicator layer 22. A transparent window 32 allows viewing of the response, for example a change in color of the indicator layer 22.
  • FIG. 5 is an alternate embodiment of a tissue constituent sensor 10B in which the sensor includes an electrical indicator. A housing 34 is adhered to the mucosal tissue 48 by a mucoadhesive 44. The housing 34, once adhered, forms a collection chamber that traps tissue gas 46 that diffuses through the mucosal tissue 48. The trapped tissue gas 46 may then be irradiated by an emitter 38, and the emitted light that passes through the tissue gas 46 is detected by a detector 40. The emitter 38 and the detector 40 are electrically coupled to a cable 36 by a pair of wires 42. The wavelength of the light emitted by the emitter 38 and the detection range of the detector 40 may be selected to detect a wide range of tissue gases 46, including carbon dioxide.
  • The housing 34 may be formed from polypropylene, polyethylene, polysulfone or similar polymers. Generally, the housing should be relatively impermeable to tissue gases, such that the sensor 10B may collect tissue gases 46 for a sufficient period of time to allow for detection and measurement. Hence, it may be advantageous to coat the sensor 10B with additional sealants to prevent leakage of the tissue gases 46.
  • In certain embodiments, the emitter 38 may be an infrared light source, for example an incandescent broad band lamp, (available from Oshino Lamps). In such an embodiment, the sensor may also include an infrared detector 40, for example a lead selenide detector (available from OptoElectronics). The emitter may also include a filter, for example a 4.26 micron wavelength filter. Such a filter may be appropriate for use in an embodiment where carbon dioxide is measured.
  • In some embodiments, the sensor 10B is arranged to operate in transmission mode, and casings for the emitter and detector may be formed in the housing 34 on opposite sides of the sensor 10B. In an alternate embodiment, the emitter 38 and the detector 40 may be arranged to operate in reflectance mode (not shown), and can be located on the same side of sensor 10B. In such an embodiment (not shown), a mirror may be placed on the opposite side of the housing 34 to reflect the radiation emitted from the emitter 38 back to the detector 40.
  • FIG. 6 illustrates an exemplary reflectance pulse oximetry sensor 10C. The sensor 10C has an indicator layer that includes a sensor body 56 and an emitter 58 and a detector 60 that generally lie side-by-side. The sensor 10C is adhered to the mucous membrane 66 with a mocoadhesive 64. The sensor 10C is arranged such that the emitter 58 emits light, represented by arrow 62 that is absorbed and/or scattered back to the detector 60. The emitter 58 and the detector 60 may be disposed on the sensor body 56, which may be made of any suitable material, for example plastic, foam, woven material, or any water-resistant material. Alternatively, the emitter 58 and the detector 60 may be remotely located and optically coupled to the sensor 10C using optical fibers. In an alternative embodiment (not shown), the sensor 10C may be a transmission type sensor. Transmission type sensors include an emitter 58 and detector 60 that are typically placed on opposing sides of the sensor site. Thus, part of the sensor may be adhered to the mucous membrane of the cheek with a mucoadhesive 64 and a part of the sensor may be adhered to the exterior portion of the cheek with other suitable adhesives, such that the emitter 58 and the detector 60 are positioned on opposite sides of the cheek. In other words, the sensor 10C is positioned so that the emitter 58 is located on the interior of patient's mouth and the detector 60 is located 180° opposite the emitter 58 on the exterior of the patients mouth. In such an arrangement, a conformable sensor body 56 may connect the emitter 58 and the detector 60. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 58 and the detector 60 may be exchanged. In either arrangement, the sensor 10C will perform in substantially the same manner.
  • The exemplary sensors described herein, illustrated here generically as a sensor 10, may be coupled to a monitor 50, for example a carbon dioxide monitor or a pulse oximetry monitor, that may display the concentration of a physiological constituent in the patient sample (e.g. mucosal tissue or blood) as shown in FIG. 7. It should be appreciated that the cable 52 of the sensor 10 may be coupled to the monitor 50 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 50. The monitor 50 may be any suitable carbon dioxide monitor, for example those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional carbon dioxide detection provided by the monitor 50 to provide additional functions, the monitor 50 may be coupled to a multi-parameter patient monitor 54 via a cable 56 connected to a sensor input port or via a cable 58 connected to a digital communication port.
  • While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of carbon dioxide, but these techniques may also be utilized for the measurement and/or analysis of other blood or tissue constituents. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. It will be appreciated by those working in the art that sensors fabricated using the presently disclosed and claimed techniques may be used in a wide variety of contexts. That is, while the invention has primarily been described in conjunction with the measurement of physiological constituents in the blood or tissue, the sensors fabricated using the present method may be used to evaluate any number of sample types in a variety of industries, including fermentation technology, cell culture, and other biotechnology applications.

Claims (20)

1. A sensor kit, comprising:
a sensor comprising:
an indicator configured to provide feedback related to a physiological constituent, wherein the indicator comprises an emitter and a detector disposed on a tissue-contacting surface of the sensor;
a mucoadhesive disposed on the tissue-contacting surface of the sensor, wherein the mucoadhesive is in direct contact with the emitter and the detector; and
a protective package configured to house the sensor, wherein the protective package comprises a material configured to reduce drying out or oxidation of the mucoadhesive.
2. The sensor kit, as set forth in claim 1, wherein the material comprises a foil.
3. The sensor kit, as set forth in claim 1, wherein the mucoadhesive comprises an acrylic acid polymer, a methyl vinyl copolymer, or a polyvinyl pyrrolidone.
4. The sensor kit, as set forth in claim 1, wherein the mucoadhesive comprises a liquid or a gel.
5. The sensor kit, as set forth in claim 1, wherein the physiological constituent comprises at least one of a tissue or a blood constituent.
6. The sensor kit, as set forth in claim 1, wherein the physiological constituent comprises at least one of carboxyhemoglobin or methemoglobin.
7. The sensor kit, as set forth in claim 1, wherein the sensor comprises a pulse oximetry sensor.
8. The sensor kit, as set forth in claim 1, wherein the emitter comprises at least one light emitting diode and wherein the detector comprises at least one photodetector.
9. The sensor kit, as set forth in claim 1, wherein the mucoadhesive is configured to degrade over time.
10. The sensor kit, as set forth in claim 1, wherein the mucoadhesive is configured to dissolve upon contact with a solvent.
11. The sensor kit, as set forth in claim 1, wherein the sensor comprises a removable substrate disposed on the tissue-contacting surface of the sensor, wherein the removable substrate is configured to cover the mucoadhesive.
12. A system, comprising:
a monitor; and
a sensor configured to be operatively coupled to the monitor, wherein the sensor comprises:
a substrate comprising a tissue-contacting surface shaped to be secured to a mucosal tissue of a patient;
an indicator configured to provide feedback to the monitor related to a physiological constituent of the patient, wherein the indicator comprises an emitter and a detector disposed on the tissue-contacting surface; and
a mucoadhesive disposed on the tissue-contacting surface of the sensor such that the mucoadhesive is in direct contact with the indicator.
13. The system, as set forth in claim 12, wherein the mucoadhesive comprises an acrylic acid polymer, a methyl vinyl copolymer, or a polyvinyl pyrrolidone.
14. The system, as set forth in claim 12, wherein the mucoadhesive comprises a liquid or a gel.
15. The system, as set forth in claim 12, wherein the sensor comprises at least one of a pulse oximetry sensor or a carbon dioxide sensor.
16. A method of manufacturing a sensor, comprising:
providing a substrate comprising a tissue-contacting surface shaped to be secured to a mucosal tissue of a patient;
providing an emitter and a detector disposed on the substrate; and
providing a mucoadhesive disposed on the tissue-contacting surface such that the mucoadhesive is in direct contact with the emitter and the detector.
17. The method, as set forth in claim 16, wherein the sensor comprises a pulse oximetry sensor.
18. The method, as set forth in claim 16, comprising providing a removable layer disposed on the tissue-contacting surface of the sensor, wherein the removable layer is configured to cover the mucoadhesive.
19. The method, as set forth in claim 16, comprising providing a housing surrounding the sensor.
20. The method, as set forth in claim 16, comprising providing a cable coupled to the emitter and the detector.
US13/540,301 2005-09-30 2012-07-02 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same Abandoned US20120271131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/540,301 US20120271131A1 (en) 2005-09-30 2012-07-02 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/241,724 US8233954B2 (en) 2005-09-30 2005-09-30 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US13/540,301 US20120271131A1 (en) 2005-09-30 2012-07-02 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/241,724 Continuation US8233954B2 (en) 2005-09-30 2005-09-30 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same

Publications (1)

Publication Number Publication Date
US20120271131A1 true US20120271131A1 (en) 2012-10-25

Family

ID=37902741

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/241,724 Expired - Fee Related US8233954B2 (en) 2005-09-30 2005-09-30 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US13/540,301 Abandoned US20120271131A1 (en) 2005-09-30 2012-07-02 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/241,724 Expired - Fee Related US8233954B2 (en) 2005-09-30 2005-09-30 Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same

Country Status (3)

Country Link
US (2) US8233954B2 (en)
TW (1) TW200724090A (en)
WO (1) WO2007041331A2 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254093A1 (en) * 2006-06-09 2009-10-08 Biomet Manufacturing Corp. Patient-Specific Alignment Guide
US8828087B2 (en) 2006-02-27 2014-09-09 Biomet Manufacturing, Llc Patient-specific high tibia osteotomy
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
WO2021076194A1 (en) * 2019-10-15 2021-04-22 Exostat Medical, Inc. Carbon dioxide sensor
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US12115001B2 (en) 2019-10-15 2024-10-15 Exostat Medical, Inc. Tissue perfusion sensor and placement device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369920B2 (en) * 2004-03-09 2013-02-05 Institute Of Critical Care Medicine Mucosal sensor adaptor
US20070083094A1 (en) * 2005-10-11 2007-04-12 Colburn Joel C Medical sensor and technique for using the same
US20070106134A1 (en) 2005-11-10 2007-05-10 O'neil Michael P Medical sensor and technique for using the same
WO2007131013A1 (en) 2006-05-03 2007-11-15 Antares Pharma, Inc. Two-stage reconstituting injector
US8420405B2 (en) * 2006-09-25 2013-04-16 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431088B2 (en) * 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8431087B2 (en) * 2006-09-25 2013-04-30 Covidien Lp Carbon dioxide detector having borosilicate substrate
US8449834B2 (en) * 2006-09-25 2013-05-28 Covidien Lp Carbon dioxide detector having borosilicate substrate
US7967761B2 (en) * 2006-12-01 2011-06-28 Radi Medical Systems Ab Sensor and guide wire assembly
US20090165801A1 (en) * 2007-12-31 2009-07-02 Nellcor Puritan Bennett Llc Carbon dioxide detector having an acrylic based substrate
US8750978B2 (en) * 2007-12-31 2014-06-10 Covidien Lp System and sensor for early detection of shock or perfusion failure and technique for using the same
AT506185B1 (en) * 2008-01-09 2012-01-15 Nanoident Technologies Ag DETECTION DEVICE FOR VITAL SIGNS
US20100030052A1 (en) * 2008-07-31 2010-02-04 Bommakanti Balasubrahmanya S Analyte sensors comprising plasticizers
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8798704B2 (en) * 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
EP2822463B1 (en) * 2012-03-05 2020-04-01 Polar Electro Oy Optical detection of motion effects
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
CN104039216B (en) * 2012-09-28 2017-12-19 松下电器(美国)知识产权公司 Intraoral examination device and method for information display
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
US9170193B2 (en) 2013-06-06 2015-10-27 General Electric Company Detecting coolant leaks in turbine generators
US9097657B2 (en) 2013-07-23 2015-08-04 General Electric Company Leak detection of stator liquid cooling system
US10201299B2 (en) 2014-01-07 2019-02-12 Koninklijke Philips N.V. Reducing non-reversible cross sensitivity for volatile acids or bases in chemo-optical sensor spots
JP7258751B2 (en) 2016-12-20 2023-04-17 コーニンクレッカ フィリップス エヌ ヴェ patient monitoring
WO2018144627A1 (en) * 2017-01-31 2018-08-09 Logicink Corporation Cumulative biosensor system to detect alcohol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413100A (en) * 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
US20030036200A1 (en) * 2001-08-20 2003-02-20 Charlton Steven C. Packaging system for test sensors

Family Cites Families (668)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518313A (en) * 1966-04-05 1970-06-30 Kao Corp Method of stabilizing aqueous formaldehyde
US3721813A (en) 1971-02-01 1973-03-20 Perkin Elmer Corp Analytical instrument system
WO2000078209A2 (en) 1999-06-18 2000-12-28 Masimo Corporation Pulse oximeter probe-off detection system
GB8416219D0 (en) 1984-06-26 1984-08-01 Antec Systems Patient monitoring apparatus
JPS58143243A (en) 1982-02-19 1983-08-25 Minolta Camera Co Ltd Measuring apparatus for coloring matter in blood without taking out blood
US4621643A (en) 1982-09-02 1986-11-11 Nellcor Incorporated Calibrated optical oximeter probe
US4770179A (en) 1982-09-02 1988-09-13 Nellcor Incorporated Calibrated optical oximeter probe
US4700708A (en) 1982-09-02 1987-10-20 Nellcor Incorporated Calibrated optical oximeter probe
US4653498A (en) 1982-09-13 1987-03-31 Nellcor Incorporated Pulse oximeter monitor
US4830014A (en) 1983-05-11 1989-05-16 Nellcor Incorporated Sensor having cutaneous conformance
US4938218A (en) 1983-08-30 1990-07-03 Nellcor Incorporated Perinatal pulse oximetry sensor
US5109849A (en) 1983-08-30 1992-05-05 Nellcor, Inc. Perinatal pulse oximetry sensor
US5217013A (en) 1983-10-14 1993-06-08 Somanetics Corporation Patient sensor for optical cerebral oximeter and the like
US5140989A (en) 1983-10-14 1992-08-25 Somanetics Corporation Examination instrument for optical-response diagnostic apparatus
US4603700A (en) 1983-12-09 1986-08-05 The Boc Group, Inc. Probe monitoring system for oximeter
US4714341A (en) 1984-02-23 1987-12-22 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
IT1206462B (en) 1984-08-07 1989-04-27 Anic Spa MULTI-WAVE LENGTH PULSED LIGHT PHOTOMETER FOR NON-INVASIVE MONITORING.
US4911167A (en) 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4934372A (en) 1985-04-01 1990-06-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4928692A (en) 1985-04-01 1990-05-29 Goodman David E Method and apparatus for detecting optical pulses
USRE35122E (en) 1985-04-01 1995-12-19 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4802486A (en) 1985-04-01 1989-02-07 Nellcor Incorporated Method and apparatus for detecting optical pulses
US4685464A (en) 1985-07-05 1987-08-11 Nellcor Incorporated Durable sensor for detecting optical pulses
US4890619A (en) 1986-04-15 1990-01-02 Hatschek Rudolf A System for the measurement of the content of a gas in blood, in particular the oxygen saturation of blood
JPS6323645A (en) 1986-05-27 1988-01-30 住友電気工業株式会社 Reflection heating type oxymeter
US4759369A (en) 1986-07-07 1988-07-26 Novametrix Medical Systems, Inc. Pulse oximeter
US4869253A (en) 1986-08-18 1989-09-26 Physio-Control Corporation Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4800495A (en) 1986-08-18 1989-01-24 Physio-Control Corporation Method and apparatus for processing signals used in oximetry
US4859056A (en) 1986-08-18 1989-08-22 Physio-Control Corporation Multiple-pulse method and apparatus for use in oximetry
US4819646A (en) 1986-08-18 1989-04-11 Physio-Control Corporation Feedback-controlled method and apparatus for processing signals used in oximetry
US5259381A (en) 1986-08-18 1993-11-09 Physio-Control Corporation Apparatus for the automatic calibration of signals employed in oximetry
US4892101A (en) 1986-08-18 1990-01-09 Physio-Control Corporation Method and apparatus for offsetting baseline portion of oximeter signal
JPS6365845A (en) 1986-09-05 1988-03-24 ミノルタ株式会社 Oximeter apparatus
US4824242A (en) 1986-09-26 1989-04-25 Sensormedics Corporation Non-invasive oximeter and method
US4714080A (en) 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
US4865038A (en) 1986-10-09 1989-09-12 Novametrix Medical Systems, Inc. Sensor appliance for non-invasive monitoring
JPS63111837A (en) 1986-10-29 1988-05-17 日本光電工業株式会社 Apparatus for measuring concentration of light absorbing substance in blood
US5193543A (en) 1986-12-12 1993-03-16 Critikon, Inc. Method and apparatus for measuring arterial blood constituents
US4776339A (en) 1987-03-05 1988-10-11 N.A.D., Inc. Interlock for oxygen saturation monitor anesthesia apparatus
US4880304A (en) 1987-04-01 1989-11-14 Nippon Colin Co., Ltd. Optical sensor for pulse oximeter
JPS63252239A (en) 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd Reflection type oxymeter
USRE33643E (en) 1987-04-30 1991-07-23 Nonin Medical, Inc. Pulse oximeter with circuit leakage and ambient light compensation
US4773422A (en) 1987-04-30 1988-09-27 Nonin Medical, Inc. Single channel pulse oximeter
JPS63275323A (en) 1987-05-08 1988-11-14 Hamamatsu Photonics Kk Diagnostic apparatus
JPS63277039A (en) 1987-05-08 1988-11-15 Hamamatsu Photonics Kk Diagnostic apparatus
GB8719333D0 (en) 1987-08-14 1987-09-23 Swansea University College Of Motion artefact rejection system
US4805623A (en) 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4796636A (en) 1987-09-10 1989-01-10 Nippon Colin Co., Ltd. Noninvasive reflectance oximeter
US4819752A (en) 1987-10-02 1989-04-11 Datascope Corp. Blood constituent measuring device and method
US4825879A (en) 1987-10-08 1989-05-02 Critkon, Inc. Pulse oximeter sensor
US4848901A (en) 1987-10-08 1989-07-18 Critikon, Inc. Pulse oximeter sensor control system
US4807631A (en) 1987-10-09 1989-02-28 Critikon, Inc. Pulse oximetry system
US4807630A (en) 1987-10-09 1989-02-28 Advanced Medical Systems, Inc. Apparatus and method for use in pulse oximeters
US4859057A (en) 1987-10-13 1989-08-22 Lawrence Medical Systems, Inc. Oximeter apparatus
US4863265A (en) 1987-10-16 1989-09-05 Mine Safety Appliances Company Apparatus and method for measuring blood constituents
US4854699A (en) 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
DE3877894T2 (en) 1987-11-02 1993-06-24 Sumitomo Electric Industries ORGANIC LIGHT MEASURING PROBE.
US4781195A (en) 1987-12-02 1988-11-01 The Boc Group, Inc. Blood monitoring apparatus and methods with amplifier input dark current correction
US4846183A (en) 1987-12-02 1989-07-11 The Boc Group, Inc. Blood parameter monitoring apparatus and methods
US4927264A (en) 1987-12-02 1990-05-22 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
US4800885A (en) 1987-12-02 1989-01-31 The Boc Group, Inc. Blood constituent monitoring apparatus and methods with frequency division multiplexing
US4960126A (en) 1988-01-15 1990-10-02 Criticare Systems, Inc. ECG synchronized pulse oximeter
US4883353A (en) 1988-02-11 1989-11-28 Puritan-Bennett Corporation Pulse oximeter
US4883055A (en) 1988-03-11 1989-11-28 Puritan-Bennett Corporation Artificially induced blood pulse for use with a pulse oximeter
DE3809084C2 (en) 1988-03-18 1999-01-28 Nicolay Gmbh Sensor for the non-invasive measurement of the pulse frequency and / or the oxygen saturation of the blood and method for its production
DE3810411A1 (en) 1988-03-26 1989-10-12 Nicolay Gmbh DEVICE FOR FIXING A SENSOR, IN PARTICULAR A SENSOR FOR OXIMETRIC MEASUREMENTS
US5078136A (en) 1988-03-30 1992-01-07 Nellcor Incorporated Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients
US4869254A (en) 1988-03-30 1989-09-26 Nellcor Incorporated Method and apparatus for calculating arterial oxygen saturation
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
JPH06169902A (en) 1988-05-05 1994-06-21 Sentinel Monitoring Inc Pulse type non-invasion type oxymeter and technology for measuring it
EP0341327B1 (en) 1988-05-09 1993-09-15 Hewlett-Packard GmbH A method for processing signals, particularly for oximetric measurements on living human tissue
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US4948248A (en) 1988-07-22 1990-08-14 Invivo Research Inc. Blood constituent measuring device and method
US4825872A (en) 1988-08-05 1989-05-02 Critikon, Inc. Finger sensor for pulse oximetry system
JPH0288041A (en) 1988-09-24 1990-03-28 Misawahoomu Sogo Kenkyusho:Kk Finger tip pulse wave sensor
US5099842A (en) 1988-10-28 1992-03-31 Nellcor Incorporated Perinatal pulse oximetry probe
US5564417A (en) 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5873821A (en) 1992-05-18 1999-02-23 Non-Invasive Technology, Inc. Lateralization spectrophotometer
USH1039H (en) 1988-11-14 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Intrusion-free physiological condition monitoring
EP0374668A3 (en) 1988-12-16 1992-02-05 A.W. Faber - Castell GmbH & Co. Fluorescent marking fluid
JPH02164341A (en) 1988-12-19 1990-06-25 Nippon Koden Corp Hemoglobin concentration measuring device
US5553614A (en) 1988-12-21 1996-09-10 Non-Invasive Technology, Inc. Examination of biological tissue using frequency domain spectroscopy
US5353799A (en) 1991-01-22 1994-10-11 Non Invasive Technology, Inc. Examination of subjects using photon migration with high directionality techniques
US5119815A (en) 1988-12-21 1992-06-09 Nim, Incorporated Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation
US5111817A (en) 1988-12-29 1992-05-12 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US5365066A (en) 1989-01-19 1994-11-15 Futrex, Inc. Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
US5028787A (en) 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
FI82366C (en) 1989-02-06 1991-03-11 Instrumentarium Oy MAETNING AV BLODETS SAMMANSAETTNING.
US5596986A (en) 1989-03-17 1997-01-28 Scico, Inc. Blood oximeter
US5902235A (en) 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
DE3912993C2 (en) 1989-04-20 1998-01-29 Nicolay Gmbh Optoelectronic sensor for generating electrical signals based on physiological values
US5139023A (en) 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
JP2766317B2 (en) 1989-06-22 1998-06-18 コーリン電子株式会社 Pulse oximeter
US5090410A (en) 1989-06-28 1992-02-25 Datascope Investment Corp. Fastener for attaching sensor to the body
JPH0315502U (en) 1989-06-28 1991-02-15
US5299120A (en) 1989-09-15 1994-03-29 Hewlett-Packard Company Method for digitally processing signals containing information regarding arterial blood flow
US5058588A (en) 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5483646A (en) 1989-09-29 1996-01-09 Kabushiki Kaisha Toshiba Memory access control method and system for realizing the same
US5216598A (en) 1989-10-04 1993-06-01 Colin Electronics Co., Ltd. System for correction of trends associated with pulse wave forms in oximeters
US5007423A (en) 1989-10-04 1991-04-16 Nippon Colin Company Ltd. Oximeter sensor temperature control
US5094239A (en) 1989-10-05 1992-03-10 Colin Electronics Co., Ltd. Composite signal implementation for acquiring oximetry signals
US5203329A (en) 1989-10-05 1993-04-20 Colin Electronics Co., Ltd. Noninvasive reflectance oximeter sensor providing controlled minimum optical detection depth
US5190038A (en) 1989-11-01 1993-03-02 Novametrix Medical Systems, Inc. Pulse oximeter with improved accuracy and response time
DE3938759A1 (en) 1989-11-23 1991-05-29 Philips Patentverwaltung NON-INVASIVE OXIMETER ARRANGEMENT
US5224478A (en) 1989-11-25 1993-07-06 Colin Electronics Co., Ltd. Reflecting-type oxymeter probe
KR100213554B1 (en) 1989-11-28 1999-08-02 제이슨 오토 가도시 Fetal probe
JPH03220782A (en) 1990-01-25 1991-09-27 Mitsubishi Electric Corp Semiconductor light receiving device
DE69029152T2 (en) 1990-02-15 1997-03-06 Hewlett Packard Gmbh Procedure for the non-invasive measurement of oxygen saturation
US5152296A (en) 1990-03-01 1992-10-06 Hewlett-Packard Company Dual-finger vital signs monitor
US5104623A (en) 1990-04-03 1992-04-14 Minnesota Mining And Manufacturing Company Apparatus and assembly for use in optically sensing a compositional blood parameter
US5066859A (en) 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
WO1991018549A1 (en) 1990-05-29 1991-12-12 Yue Samuel K Fetal probe apparatus
US5239185A (en) 1990-06-22 1993-08-24 Hitachi, Ltd. Method and equipment for measuring absorptance of light scattering materials using plural wavelengths of light
US5259761A (en) 1990-08-06 1993-11-09 Jenifer M. Schnettler Tooth vitality probe and process
ATE175558T1 (en) 1990-08-22 1999-01-15 Nellcor Puritan Bennett Inc FETAL PULSE OXYGEN METER
US5158082A (en) 1990-08-23 1992-10-27 Spacelabs, Inc. Apparatus for heating tissue with a photoplethysmograph sensor
WO1992003965A1 (en) 1990-08-29 1992-03-19 Cadell Theodore E Finger receptor
US5170786A (en) 1990-09-28 1992-12-15 Novametrix Medical Systems, Inc. Reusable probe system
US5055671A (en) 1990-10-03 1991-10-08 Spacelabs, Inc. Apparatus for detecting transducer movement using a first and second light detector
US6681128B2 (en) 1990-10-06 2004-01-20 Hema Metrics, Inc. System for noninvasive hematocrit monitoring
US5372136A (en) 1990-10-06 1994-12-13 Noninvasive Medical Technology Corporation System and method for noninvasive hematocrit monitoring
US6181958B1 (en) 1998-02-05 2001-01-30 In-Line Diagnostics Corporation Method and apparatus for non-invasive blood constituent monitoring
US6266546B1 (en) 1990-10-06 2001-07-24 In-Line Diagnostics Corporation System for noninvasive hematocrit monitoring
US5209230A (en) 1990-10-19 1993-05-11 Nellcor Incorporated Adhesive pulse oximeter sensor with reusable portion
US6263221B1 (en) 1991-01-24 2001-07-17 Non-Invasive Technology Quantitative analyses of biological tissue using phase modulation spectroscopy
US5193542A (en) 1991-01-28 1993-03-16 Missanelli John S Peripartum oximetric monitoring apparatus
US5291884A (en) 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
US5125403A (en) 1991-02-20 1992-06-30 Culp Joel B Device and method for engagement of an oximeter probe
US5154175A (en) 1991-03-04 1992-10-13 Gunther Ted J Intrauterine fetal EKG-oximetry cable apparatus
US5349953A (en) 1991-03-05 1994-09-27 Sensormedics, Corp. Photoplethysmographics using component-amplitude-division multiplexing
US5343818A (en) 1991-03-05 1994-09-06 Sensormedics Corp. Photoplethysmographics using energy-reducing waveform shaping
US5349952A (en) 1991-03-05 1994-09-27 Sensormedics Corp. Photoplethysmographics using phase-division multiplexing
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
CA2105682C (en) 1991-03-07 2003-09-02 Mohamed K. Diab Signal processing apparatus and method
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
US5237994A (en) 1991-03-12 1993-08-24 Square One Technology Integrated lead frame pulse oximetry sensor
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
DE4138702A1 (en) 1991-03-22 1992-09-24 Madaus Medizin Elektronik METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES
US5273036A (en) 1991-04-03 1993-12-28 Ppg Industries, Inc. Apparatus and method for monitoring respiration
US5247932A (en) 1991-04-15 1993-09-28 Nellcor Incorporated Sensor for intrauterine use
US5218962A (en) 1991-04-15 1993-06-15 Nellcor Incorporated Multiple region pulse oximetry probe and oximeter
US5313940A (en) 1991-05-15 1994-05-24 Nihon Kohden Corporation Photo-electric pulse wave measuring probe
US5267563A (en) 1991-06-28 1993-12-07 Nellcor Incorporated Oximeter sensor with perfusion enhancing
US5402777A (en) 1991-06-28 1995-04-04 Alza Corporation Methods and devices for facilitated non-invasive oxygen monitoring
DE69227545T2 (en) 1991-07-12 1999-04-29 Robinson, Mark R., Albuquerque, N.Mex. Oximeter for the reliable clinical determination of blood oxygen saturation in a fetus
US5351685A (en) 1991-08-05 1994-10-04 Nellcor Incorporated Condensed oximeter system with noise reduction software
ATE124225T1 (en) 1991-08-12 1995-07-15 Avl Medical Instr Ag DEVICE FOR MEASURING AT LEAST ONE GAS SATURATION, IN PARTICULAR THE OXYGEN SATURATION OF BLOOD.
US5217012A (en) 1991-08-22 1993-06-08 Sensor Devices Inc. Noninvasive oximeter probe
US5429129A (en) 1991-08-22 1995-07-04 Sensor Devices, Inc. Apparatus for determining spectral absorption by a specific substance in a fluid
US5368025A (en) 1991-08-22 1994-11-29 Sensor Devices, Inc. Non-invasive oximeter probe
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5934277A (en) 1991-09-03 1999-08-10 Datex-Ohmeda, Inc. System for pulse oximetry SpO2 determination
US6714803B1 (en) 1991-09-03 2004-03-30 Datex-Ohmeda, Inc. Pulse oximetry SpO2 determination
US5247931A (en) 1991-09-16 1993-09-28 Mine Safety Appliances Company Diagnostic sensor clasp utilizing a slot, pivot and spring hinge mechanism
US5213099A (en) 1991-09-30 1993-05-25 The United States Of America As Represented By The Secretary Of The Air Force Ear canal pulse/oxygen saturation measuring device
US5249576A (en) 1991-10-24 1993-10-05 Boc Health Care, Inc. Universal pulse oximeter probe
US5311865A (en) 1991-11-07 1994-05-17 Mayeux Charles D Plastic finger oximetry probe holder
US5253645A (en) 1991-12-13 1993-10-19 Critikon, Inc. Method of producing an audible alarm in a blood pressure and pulse oximeter monitor
JPH0569784U (en) 1991-12-28 1993-09-21 センチュリーメディカル株式会社 Display device in medical equipment
DE69117964T2 (en) 1991-12-30 1996-07-25 Hamamatsu Photonics Kk Diagnostic device
EP0553372B1 (en) 1992-01-29 1996-11-13 Hewlett-Packard GmbH Method and system for monitoring vital signs
US5385143A (en) 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5297548A (en) 1992-02-07 1994-03-29 Ohmeda Inc. Arterial blood monitoring probe
US5246002A (en) 1992-02-11 1993-09-21 Physio-Control Corporation Noise insensitive pulse transmittance oximeter
US5263244A (en) 1992-04-17 1993-11-23 Gould Inc. Method of making a flexible printed circuit sensor assembly for detecting optical pulses
EP0572684B1 (en) 1992-05-15 1996-07-03 Hewlett-Packard GmbH Medical sensor
JP3091929B2 (en) 1992-05-28 2000-09-25 日本光電工業株式会社 Pulse oximeter
JP3165983B2 (en) 1992-06-15 2001-05-14 日本光電工業株式会社 Light emitting element driving device for pulse oximeter
US5377675A (en) 1992-06-24 1995-01-03 Nellcor, Inc. Method and apparatus for improved fetus contact with fetal probe
US5355880A (en) 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
JP3116252B2 (en) 1992-07-09 2000-12-11 日本光電工業株式会社 Pulse oximeter
US6411832B1 (en) 1992-07-15 2002-06-25 Optix Lp Method of improving reproducibility of non-invasive measurements
US6222189B1 (en) 1992-07-15 2001-04-24 Optix, Lp Methods of enhancing optical signals by mechanical manipulation in non-invasive testing
US5425360A (en) 1992-07-24 1995-06-20 Sensormedics Corporation Molded pulse oximeter sensor
US20050062609A9 (en) 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US5680857A (en) 1992-08-28 1997-10-28 Spacelabs Medical, Inc. Alignment guide system for transmissive pulse oximetry sensors
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
JP2547840Y2 (en) 1992-09-25 1997-09-17 日本光電工業株式会社 Oximeter probe
US5323776A (en) 1992-10-15 1994-06-28 Picker International, Inc. MRI compatible pulse oximetry system
US5329922A (en) 1992-10-19 1994-07-19 Atlee Iii John L Oximetric esophageal probe
US5368224A (en) 1992-10-23 1994-11-29 Nellcor Incorporated Method for reducing ambient noise effects in electronic monitoring instruments
EP0690692A4 (en) 1992-12-01 1999-02-10 Somanetics Corp Patient sensor for optical cerebral oximeters
US5287853A (en) 1992-12-11 1994-02-22 Hewlett-Packard Company Adapter cable for connecting a pulsoximetry sensor unit to a medical measuring device
US5551423A (en) 1993-01-26 1996-09-03 Nihon Kohden Corporation Pulse oximeter probe
DE4304693C2 (en) 1993-02-16 2002-02-21 Gerhard Rall Sensor device for measuring vital parameters of a fetus during childbirth
JP2586392Y2 (en) 1993-03-15 1998-12-02 日本光電工業株式会社 Probe for pulse oximeter
US5687719A (en) 1993-03-25 1997-11-18 Ikuo Sato Pulse oximeter probe
US5520177A (en) 1993-03-26 1996-05-28 Nihon Kohden Corporation Oximeter probe
US5368026A (en) 1993-03-26 1994-11-29 Nellcor Incorporated Oximeter with motion detection for alarm modification
US5348004A (en) 1993-03-31 1994-09-20 Nellcor Incorporated Electronic processor for pulse oximeter
US5676141A (en) 1993-03-31 1997-10-14 Nellcor Puritan Bennett Incorporated Electronic processor for pulse oximeters
US5497771A (en) 1993-04-02 1996-03-12 Mipm Mammendorfer Institut Fuer Physik Und Medizin Gmbh Apparatus for measuring the oxygen saturation of fetuses during childbirth
US5521851A (en) 1993-04-26 1996-05-28 Nihon Kohden Corporation Noise reduction method and apparatus
US5339810A (en) 1993-05-03 1994-08-23 Marquette Electronics, Inc. Pulse oximetry sensor
EP0699047A4 (en) 1993-05-20 1998-06-24 Somanetics Corp Improved electro-optical sensor for spectrophotometric medical devices
AU6942494A (en) 1993-05-21 1994-12-20 Nims, Inc. Discriminating between valid and artifactual pulse waveforms
EP0700267A4 (en) 1993-05-28 1998-06-24 Somanetics Corp Method and apparatus for spectrophotometric cerebral oximetry
JP3310390B2 (en) 1993-06-10 2002-08-05 浜松ホトニクス株式会社 Method and apparatus for measuring concentration of light absorbing substance in scattering medium
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5425362A (en) 1993-07-30 1995-06-20 Criticare Fetal sensor device
EP0717761A4 (en) * 1993-08-19 1998-01-07 Cygnus Therapeutic Systems Water-soluble pressure-sensitive mucoadhesive and devices provided therewith for emplacement in a mucosa-lined body cavity
EP0641543A1 (en) 1993-09-07 1995-03-08 Ohmeda Inc. Heat-sealed neo-natal medical monitoring probe
US5511546A (en) 1993-09-20 1996-04-30 Hon; Edward H. Finger apparatus for measuring continuous cutaneous blood pressure and electrocardiogram electrode
JP3345481B2 (en) 1993-09-22 2002-11-18 興和株式会社 Pulse wave spectrometer
JP3387171B2 (en) 1993-09-28 2003-03-17 セイコーエプソン株式会社 Pulse wave detection device and exercise intensity measurement device
US5485847A (en) 1993-10-08 1996-01-23 Nellcor Puritan Bennett Incorporated Pulse oximeter using a virtual trigger for heart rate synchronization
US5411023A (en) 1993-11-24 1995-05-02 The Shielding Corporation Optical sensor system
US5417207A (en) 1993-12-06 1995-05-23 Sensor Devices, Inc. Apparatus for the invasive use of oximeter probes
JP3125079B2 (en) 1993-12-07 2001-01-15 日本光電工業株式会社 Pulse oximeter
DE69305178T2 (en) 1993-12-11 1997-02-13 Hewlett Packard Gmbh Method for detecting an abnormal condition in a pulse powered oximeter system
US5438986A (en) 1993-12-14 1995-08-08 Criticare Systems, Inc. Optical sensor
US5411024A (en) 1993-12-15 1995-05-02 Corometrics Medical Systems, Inc. Fetal pulse oximetry sensor
US5492118A (en) 1993-12-16 1996-02-20 Board Of Trustees Of The University Of Illinois Determining material concentrations in tissues
US5645059A (en) 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5560355A (en) 1993-12-17 1996-10-01 Nellcor Puritan Bennett Incorporated Medical sensor with amplitude independent output
JP3464697B2 (en) 1993-12-21 2003-11-10 興和株式会社 Oxygen saturation meter
US5507286A (en) 1993-12-23 1996-04-16 Medical Taping Systems, Inc. Method and apparatus for improving the durability of a sensor
US5553615A (en) 1994-01-31 1996-09-10 Minnesota Mining And Manufacturing Company Method and apparatus for noninvasive prediction of hematocrit
US5437275A (en) 1994-02-02 1995-08-01 Biochem International Inc. Pulse oximetry sensor
US5632273A (en) 1994-02-04 1997-05-27 Hamamatsu Photonics K.K. Method and means for measurement of biochemical components
US5995859A (en) 1994-02-14 1999-11-30 Nihon Kohden Corporation Method and apparatus for accurately measuring the saturated oxygen in arterial blood by substantially eliminating noise from the measurement signal
US5830135A (en) 1994-03-31 1998-11-03 Bosque; Elena M. Fuzzy logic alarm system for pulse oximeters
US5421329A (en) 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US6662033B2 (en) 1994-04-01 2003-12-09 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US5474065A (en) 1994-04-04 1995-12-12 Graphic Controls Corporation Non-invasive fetal probe
JP3364819B2 (en) 1994-04-28 2003-01-08 日本光電工業株式会社 Blood absorption substance concentration measurement device
US5491299A (en) 1994-06-03 1996-02-13 Siemens Medical Systems, Inc. Flexible multi-parameter cable
US5490523A (en) 1994-06-29 1996-02-13 Nonin Medical Inc. Finger clip pulse oximeter
US5912656A (en) 1994-07-01 1999-06-15 Ohmeda Inc. Device for producing a display from monitored data
DE4423597C1 (en) 1994-07-06 1995-08-10 Hewlett Packard Gmbh Pulsoximetric ear sensor
DE4429758A1 (en) 1994-08-22 1996-02-29 Buschmann Johannes Method for validating devices for photometry of living tissue and device for carrying out the method
DE4429845C1 (en) 1994-08-23 1995-10-19 Hewlett Packard Gmbh Pulse oximeter with flexible strap for attachment to hand or foot
US5697367A (en) 1994-10-14 1997-12-16 Somanetics Corporation Specially grounded sensor for clinical spectrophotometric procedures
US5503148A (en) 1994-11-01 1996-04-02 Ohmeda Inc. System for pulse oximetry SPO2 determination
DE4442260C2 (en) 1994-11-28 2000-06-08 Mipm Mammendorfer Inst Fuer Ph Method and arrangement for the non-invasive in vivo determination of oxygen saturation
US5505199A (en) 1994-12-01 1996-04-09 Kim; Bill H. Sudden infant death syndrome monitor
DE4442855B4 (en) 1994-12-01 2004-04-01 Gerhard Dipl.-Ing. Rall Use of a pulse oximetry sensor device
US5676139A (en) 1994-12-14 1997-10-14 Ohmeda Inc. Spring clip probe housing
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5692503A (en) 1995-03-10 1997-12-02 Kuenstner; J. Todd Method for noninvasive (in-vivo) total hemoglobin, oxyhemogolobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin concentration determination
US5524617A (en) 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5617852A (en) 1995-04-06 1997-04-08 Macgregor; Alastair R. Method and apparatus for non-invasively determining blood analytes
US5774213A (en) 1995-04-21 1998-06-30 Trebino; Rick P. Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency
JP3326580B2 (en) 1995-05-08 2002-09-24 日本光電工業株式会社 Biological tissue transmitted light sensor
US5662105A (en) 1995-05-17 1997-09-02 Spacelabs Medical, Inc. System and method for the extractment of physiological signals
US7035697B1 (en) 1995-05-30 2006-04-25 Roy-G-Biv Corporation Access control systems and methods for motion control
US5851178A (en) 1995-06-02 1998-12-22 Ohmeda Inc. Instrumented laser diode probe connector
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6031603A (en) 1995-06-09 2000-02-29 Cybro Medical, Ltd. Sensor, method and device for optical blood oximetry
US5645060A (en) 1995-06-14 1997-07-08 Nellcor Puritan Bennett Incorporated Method and apparatus for removing artifact and noise from pulse oximetry
US5685301A (en) 1995-06-16 1997-11-11 Ohmeda Inc. Apparatus for precise determination of operating characteristics of optical devices contained in a monitoring probe
US6055447A (en) * 1995-07-06 2000-04-25 Institute Of Critical Care Medicine Patient CO2 Measurement
US5558096A (en) 1995-07-21 1996-09-24 Biochem International, Inc. Blood pulse detection method using autocorrelation
US6095974A (en) 1995-07-21 2000-08-01 Respironics, Inc. Disposable fiber optic probe
WO1997003603A1 (en) 1995-07-21 1997-02-06 Respironics, Inc. Method and apparatus for diode laser pulse oximetry using multifiber optical cables and disposable fiber optic probes
GB9515649D0 (en) 1995-07-31 1995-09-27 Johnson & Johnson Medical Surface sensor device
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US5800348A (en) 1995-08-31 1998-09-01 Hewlett-Packard Company Apparatus and method for medical monitoring, in particular pulse oximeter
US5629992A (en) 1995-09-14 1997-05-13 Bell Communications Research, Inc. Passband flattening of integrated optical filters
DE19537646C2 (en) 1995-10-10 1998-09-17 Hewlett Packard Gmbh Method and device for detecting falsified measurement values in pulse oximetry for measuring oxygen saturation
USD393830S (en) 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5626140A (en) 1995-11-01 1997-05-06 Spacelabs Medical, Inc. System and method of multi-sensor fusion of physiological measurements
DE19541605C2 (en) 1995-11-08 1999-06-24 Hewlett Packard Co Sensor and method for performing medical measurements, in particular pulse oximetric measurements, on the human finger
US5839439A (en) 1995-11-13 1998-11-24 Nellcor Puritan Bennett Incorporated Oximeter sensor with rigid inner housing and pliable overmold
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US5588427A (en) 1995-11-20 1996-12-31 Spacelabs Medical, Inc. Enhancement of physiological signals using fractal analysis
US5724967A (en) 1995-11-21 1998-03-10 Nellcor Puritan Bennett Incorporated Noise reduction apparatus for low level analog signals
US5995856A (en) 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6041247A (en) 1995-11-29 2000-03-21 Instrumentarium Corp Non-invasive optical measuring sensor and measuring method
US5810724A (en) 1995-12-01 1998-09-22 Nellcor Puritan Bennett Incorporated Reusable sensor accessory containing a conformable spring activated rubber sleeved clip
US6226540B1 (en) 1995-12-13 2001-05-01 Peter Bernreuter Measuring process for blood gas analysis sensors
US5922607A (en) 1995-12-13 1999-07-13 Bernreuter; Peter Measuring process for blood gas analysis sensors
US20020014533A1 (en) 1995-12-18 2002-02-07 Xiaxun Zhu Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps
US5807247A (en) 1995-12-20 1998-09-15 Nellcor Puritan Bennett Incorporated Method and apparatus for facilitating compatibility between pulse oximeters and sensor probes
US5818985A (en) 1995-12-20 1998-10-06 Nellcor Puritan Bennett Incorporated Optical oximeter probe adapter
AUPN740796A0 (en) 1996-01-04 1996-01-25 Circuitry Systems Limited Biomedical data collection apparatus
US5891026A (en) 1996-01-29 1999-04-06 Ntc Technology Inc. Extended life disposable pulse oximetry sensor and method of making
SE9600322L (en) 1996-01-30 1997-07-31 Hoek Instr Ab Sensor for pulse oximetry with fiber optic signal transmission
US6309352B1 (en) 1996-01-31 2001-10-30 Board Of Regents, The University Of Texas System Real time optoacoustic monitoring of changes in tissue properties
US5746697A (en) 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode
US5797841A (en) 1996-03-05 1998-08-25 Nellcor Puritan Bennett Incorporated Shunt barrier in pulse oximeter sensor
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
US5795304A (en) 1996-03-27 1998-08-18 Drexel University System and method for analyzing electrogastrophic signal
US6181959B1 (en) 1996-04-01 2001-01-30 Kontron Instruments Ag Detection of parasitic signals during pulsoxymetric measurement
US5790729A (en) 1996-04-10 1998-08-04 Ohmeda Inc. Photoplethysmographic instrument having an integrated multimode optical coupler device
US5766127A (en) 1996-04-15 1998-06-16 Ohmeda Inc. Method and apparatus for improved photoplethysmographic perfusion-index monitoring
US5692505A (en) 1996-04-25 1997-12-02 Fouts; James Michael Data processing systems and methods for pulse oximeters
US5913819A (en) 1996-04-26 1999-06-22 Datex-Ohmeda, Inc. Injection molded, heat-sealed housing and half-etched lead frame for oximeter sensor
US5919133A (en) 1996-04-26 1999-07-06 Ohmeda Inc. Conformal wrap for pulse oximeter sensor
US5807248A (en) 1996-05-15 1998-09-15 Ohmeda Inc. Medical monitoring probe with modular device housing
WO1997042903A1 (en) 1996-05-15 1997-11-20 Nellcor Puritan Bennett Incorporated Semi-reusable sensor with disposable sleeve
US5752914A (en) 1996-05-28 1998-05-19 Nellcor Puritan Bennett Incorporated Continuous mesh EMI shield for pulse oximetry sensor
FI962448A (en) 1996-06-12 1997-12-13 Instrumentarium Oy Method, apparatus and sensor for the determination of fractional oxygen saturation
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US5879294A (en) 1996-06-28 1999-03-09 Hutchinson Technology Inc. Tissue chromophore measurement system
US5842981A (en) 1996-07-17 1998-12-01 Criticare Systems, Inc. Direct to digital oximeter
US6163715A (en) 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
WO1998003847A2 (en) 1996-07-19 1998-01-29 Mills Alexander K Device for noninvasive determination of blood parameters
DE59707228D1 (en) 1996-07-26 2002-06-13 Linde Medical Sensors Ag Basel METHOD FOR THE NON-INVASIVE DETERMINATION OF OXYGEN SATURATION IN BLOODED TISSUE
US5916155A (en) 1996-07-30 1999-06-29 Nellcor Puritan Bennett Incorporated Fetal sensor with securing balloons remote from optics
US5842982A (en) 1996-08-07 1998-12-01 Nellcor Puritan Bennett Incorporated Infant neonatal pulse oximeter sensor
US5776058A (en) 1996-08-13 1998-07-07 Nellcor Puritan Bennett Incorporated Pressure-attached presenting part fetal pulse oximetry sensor
US5813980A (en) 1996-08-13 1998-09-29 Nellcor Puritan Bennett Incorporated Fetal pulse oximetry sensor with remote securing mechanism
US5823952A (en) 1996-08-14 1998-10-20 Nellcor Incorporated Pulse oximeter sensor with differential slip coefficient
JP3844815B2 (en) 1996-08-30 2006-11-15 浜松ホトニクス株式会社 Method and apparatus for measuring absorption information of scatterers
US5727547A (en) 1996-09-04 1998-03-17 Nellcor Puritan Bennett Incorporated Presenting part fetal oximeter sensor with securing mechanism for providing tension to scalp attachment
US5871442A (en) 1996-09-10 1999-02-16 International Diagnostics Technologies, Inc. Photonic molecular probe
JP3627243B2 (en) 1996-09-10 2005-03-09 セイコーエプソン株式会社 Biological condition measuring device and relaxation instruction device
US5782756A (en) 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US5782758A (en) 1996-09-23 1998-07-21 Ohmeda Inc. Method and apparatus for identifying the presence of noise in a time division multiplexed oximeter
US5891022A (en) 1996-09-25 1999-04-06 Ohmeda Inc. Apparatus for performing multiwavelength photoplethysmography
US5851179A (en) * 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US5800349A (en) 1996-10-15 1998-09-01 Nonin Medical, Inc. Offset pulse oximeter sensor
US5964701A (en) 1996-10-24 1999-10-12 Massachusetts Institute Of Technology Patient monitoring finger ring sensor
US5830136A (en) 1996-10-31 1998-11-03 Nellcor Puritan Bennett Incorporated Gel pad optical sensor
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US5830137A (en) 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US5810723A (en) 1996-12-05 1998-09-22 Essential Medical Devices Non-invasive carboxyhemoglobin analyer
US6397093B1 (en) 1996-12-05 2002-05-28 Essential Medical Devices, Inc. Non-invasive carboxyhemoglobin analyzer
US5921921A (en) 1996-12-18 1999-07-13 Nellcor Puritan-Bennett Pulse oximeter with sigma-delta converter
US5842979A (en) 1997-02-14 1998-12-01 Ohmeda Inc. Method and apparatus for improved photoplethysmographic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin
US6113541A (en) 1997-03-07 2000-09-05 Agilent Technologies, Inc. Noninvasive blood chemistry measurement method and system
US5954644A (en) 1997-03-24 1999-09-21 Ohmeda Inc. Method for ambient light subtraction in a photoplethysmographic measurement instrument
US5817010A (en) 1997-03-25 1998-10-06 Ohmeda Inc. Disposable sensor holder
WO1998043096A2 (en) 1997-03-25 1998-10-01 Siemens Aktiengesellschaft Method and device for non-invasive in vivo determination of blood constituents
US5827182A (en) 1997-03-31 1998-10-27 Ohmeda Inc. Multiple LED sets in oximetry sensors
US6195575B1 (en) 1997-04-02 2001-02-27 Nellcor Puritan Bennett Incorporated Fetal sensor which self-inflates using capillary force
US5891024A (en) 1997-04-09 1999-04-06 Ohmeda Inc. Two stage calibration and analyte measurement scheme for spectrophotomeric analysis
DE69700253T2 (en) 1997-04-12 1999-09-23 Hewlett-Packard Co., Palo Alto Method and device for determining the concentration of an ingredient
DE69704264T2 (en) 1997-04-12 2001-06-28 Agilent Technologies, Inc. Method and device for the non-invasive determination of the concentration of a component
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
EP0872210B1 (en) 1997-04-18 2006-01-04 Koninklijke Philips Electronics N.V. Intermittent measuring of arterial oxygen saturation of hemoglobin
AUPO676397A0 (en) 1997-05-13 1997-06-05 Dunlop, Colin Method and apparatus for monitoring haemodynamic function
IL121079A0 (en) 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
CN1309341C (en) 1997-06-17 2007-04-11 里普朗尼克股份有限公司 Fetal oximetry system and sensor
WO1999000053A1 (en) 1997-06-27 1999-01-07 Toa Medical Electronics Co., Ltd. Living body inspecting apparatus and noninvasive blood analyzer using the same
US5924985A (en) 1997-07-29 1999-07-20 Ohmeda Inc. Patient probe disconnect alarm
US5924982A (en) 1997-07-30 1999-07-20 Nellcor Puritan Bennett Incorporated Oximeter sensor with user-modifiable color surface
US6115621A (en) 1997-07-30 2000-09-05 Nellcor Puritan Bennett Incorporated Oximetry sensor with offset emitters and detector
US6466808B1 (en) 1999-11-22 2002-10-15 Mallinckrodt Inc. Single device for both heating and temperature measurement in an oximeter sensor
US6343223B1 (en) 1997-07-30 2002-01-29 Mallinckrodt Inc. Oximeter sensor with offset emitters and detector and heating device
US6018674A (en) 1997-08-11 2000-01-25 Datex-Ohmeda, Inc. Fast-turnoff photodiodes with switched-gain preamplifiers in photoplethysmographic measurement instruments
FI973454A (en) 1997-08-22 1999-02-23 Instrumentarium Oy A resilient device in a measuring sensor for observing the properties of living tissue
GB9717858D0 (en) 1997-08-23 1997-10-29 Electrode Company Ltd The Electrode Company Ltd
WO1999009884A1 (en) 1997-08-26 1999-03-04 Seiko Epson Corporation Measuring, sensing, and diagnosing apparatus and method relating to wave pulse, cardiac function, and, motion intensity
GB2329015B (en) 1997-09-05 2002-02-13 Samsung Electronics Co Ltd Method and device for noninvasive measurement of concentrations of blood components
JP3689914B2 (en) 1997-09-05 2005-08-31 セイコーエプソン株式会社 Biological information measuring device
US5865736A (en) 1997-09-30 1999-02-02 Nellcor Puritan Bennett, Inc. Method and apparatus for nuisance alarm reductions
US5960610A (en) 1997-10-01 1999-10-05 Nellcor Puritan Bennett Incorporated Method of curving a fetal sensor
US5971930A (en) 1997-10-17 1999-10-26 Siemens Medical Systems, Inc. Method and apparatus for removing artifact from physiological signals
US5954050A (en) 1997-10-20 1999-09-21 Christopher; Kent L. System for monitoring and treating sleep disorders using a transtracheal catheter
US5995858A (en) 1997-11-07 1999-11-30 Datascope Investment Corp. Pulse oximeter
US5987343A (en) 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US6035223A (en) 1997-11-19 2000-03-07 Nellcor Puritan Bennett Inc. Method and apparatus for determining the state of an oximetry sensor
AU1608099A (en) 1997-11-26 1999-06-15 Somanetics Corporation Method and apparatus for monitoring fetal cerebral oxygenation during childbirth
US5983122A (en) 1997-12-12 1999-11-09 Ohmeda Inc. Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
EP0864293B1 (en) 1997-12-22 1999-08-04 Hewlett-Packard Company Telemetry system, in particular for medical purposes
JP3567319B2 (en) 1997-12-26 2004-09-22 日本光電工業株式会社 Probe for pulse oximeter
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6179159B1 (en) 1998-01-26 2001-01-30 Mariruth D. Gurley Communicable disease barrier digit cover and dispensing package therefor
US5978693A (en) 1998-02-02 1999-11-02 E.P. Limited Apparatus and method for reduction of motion artifact
US6014576A (en) 1998-02-27 2000-01-11 Datex-Ohmeda, Inc. Segmented photoplethysmographic sensor with universal probe-end
JPH11244267A (en) 1998-03-03 1999-09-14 Fuji Photo Film Co Ltd Blood component concentration measuring device
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5924980A (en) 1998-03-11 1999-07-20 Siemens Corporate Research, Inc. Method and apparatus for adaptively reducing the level of noise in an acquired signal
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6078833A (en) 1998-03-25 2000-06-20 I.S.S. (Usa) Inc. Self referencing photosensor
US5991648A (en) 1998-03-30 1999-11-23 Palco Labs, Inc. Adjustable pulse oximetry sensor for pediatric use
US6047201A (en) 1998-04-02 2000-04-04 Jackson, Iii; William H. Infant blood oxygen monitor and SIDS warning device
EP0988521A1 (en) 1998-04-14 2000-03-29 Instrumentarium Corporation Sensor assembly and method for measuring nitrogen dioxide
US5916154A (en) 1998-04-22 1999-06-29 Nellcor Puritan Bennett Method of enhancing performance in pulse oximetry via electrical stimulation
US6064899A (en) 1998-04-23 2000-05-16 Nellcor Puritan Bennett Incorporated Fiber optic oximeter connector with element indicating wavelength shift
US6094592A (en) 1998-05-26 2000-07-25 Nellcor Puritan Bennett, Inc. Methods and apparatus for estimating a physiological parameter using transforms
EP1082050B1 (en) 1998-06-03 2011-08-24 Masimo Corporation Stereo pulse oximeter
JP3688994B2 (en) 1998-06-03 2005-08-31 スコット・ラボラトリーズ・インコーポレイテッド Sedation device, device for delivering medication to a patient, and integrated patient interface device
US5891021A (en) 1998-06-03 1999-04-06 Perdue Holdings, Inc. Partially rigid-partially flexible electro-optical sensor for fingertip transillumination
DE69800355T2 (en) 1998-06-05 2001-03-01 Hewlett-Packard Co., Palo Alto Pulse rate and heart rate matching detection for pulse oximetry
IL124787A0 (en) 1998-06-07 1999-01-26 Itamar Medical C M 1997 Ltd Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US5920263A (en) 1998-06-11 1999-07-06 Ohmeda, Inc. De-escalation of alarm priorities in medical devices
IL124965A (en) 1998-06-17 2002-08-14 Orsense Ltd Non-invasive method of optical measurements for determining concentration of a substance in blood
US5999834A (en) 1998-06-18 1999-12-07 Ntc Technology, Inc. Disposable adhesive wrap for use with reusable pulse oximetry sensor and method of making
WO2000009004A2 (en) 1998-08-13 2000-02-24 Whitland Research Limited Optical device
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6671526B1 (en) 1998-07-17 2003-12-30 Nihon Kohden Corporation Probe and apparatus for determining concentration of light-absorbing materials in living tissue
JP2000083933A (en) 1998-07-17 2000-03-28 Nippon Koden Corp Instrument for measuring concentration of light absorptive material in vital tissue
US6430513B1 (en) 1998-09-04 2002-08-06 Perkinelmer Instruments Llc Monitoring constituents of an animal organ using statistical correlation
EP1112018A1 (en) 1998-09-09 2001-07-04 U.S. Army Institute of Surgical Research Disposable pulse oximeter assembly and protective cover therefor
US6393310B1 (en) 1998-09-09 2002-05-21 J. Todd Kuenstner Methods and systems for clinical analyte determination by visible and infrared spectroscopy
US6266547B1 (en) 1998-09-09 2001-07-24 The United States Of America As Represented By The Secretary Of The Army Nasopharyngeal airway with reflectance pulse oximeter sensor
WO2000013577A1 (en) 1998-09-09 2000-03-16 U.S. Army Institute Of Surgical Research Pulse oximeter sensor combined with oropharyngeal airway and bite block
US20020028990A1 (en) 1998-09-09 2002-03-07 Shepherd John M. Device and method for monitoring arterial oxygen saturation
US6263223B1 (en) 1998-09-09 2001-07-17 The United States Of America As Represented By The Secretary Of The Army Method for monitoring arterial oxygen saturation
WO2000016685A1 (en) 1998-09-18 2000-03-30 U.S. Army Institute Of Surgical Research Self-piercing pulse oximeter sensor assembly
US6064898A (en) 1998-09-21 2000-05-16 Essential Medical Devices Non-invasive blood component analyzer
US6298252B1 (en) 1998-09-29 2001-10-02 Mallinckrodt, Inc. Oximeter sensor with encoder connected to detector
EP1117327A1 (en) 1998-09-29 2001-07-25 Mallinckrodt Inc. Multiple-code oximeter calibration element
JP4450512B2 (en) 1998-09-29 2010-04-14 マリンクロッド・インコーポレイテッド Oxymeter sensor with encoded temperature characteristics
EP2044885B3 (en) 1998-10-13 2014-11-19 Covidien LP Multi-channel non-invasive tissue oximeter
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6343224B1 (en) 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6519486B1 (en) 1998-10-15 2003-02-11 Ntc Technology Inc. Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
US6684091B2 (en) 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6006120A (en) 1998-10-22 1999-12-21 Palco Labs, Inc. Cordless Pulse oximeter
US6261236B1 (en) 1998-10-26 2001-07-17 Valentin Grimblatov Bioresonance feedback method and apparatus
US6061584A (en) 1998-10-28 2000-05-09 Lovejoy; David A. Pulse oximetry sensor
US6144444A (en) 1998-11-06 2000-11-07 Medtronic Avecor Cardiovascular, Inc. Apparatus and method to determine blood parameters
US7006855B1 (en) 1998-11-16 2006-02-28 S.P.O. Medical Equipment Ltd. Sensor for radiance based diagnostics
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
JP4986324B2 (en) 1999-01-25 2012-07-25 マシモ・コーポレイション General purpose / upgrade pulse oximeter
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
US6438399B1 (en) 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
JP4605906B2 (en) 1999-03-08 2011-01-05 ネルコー ピューリタン ベネット エルエルシー Method and circuit for storing and providing physiological history data
IL129790A0 (en) 1999-03-09 2000-02-29 Orsense Ltd A device for enhancement of blood-related signals
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
WO2000064338A2 (en) 1999-04-23 2000-11-02 Massachusetts Institute Of Technology Isolating ring sensor design
US6226539B1 (en) 1999-05-26 2001-05-01 Mallinckrodt, Inc. Pulse oximeter having a low power led drive
JP4495378B2 (en) 1999-06-10 2010-07-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Quality indicators for measurement signals, especially medical measurement signals from oxygen saturation measurements
WO2000077675A1 (en) 1999-06-10 2000-12-21 Koninklijke Philips Electronics N.V. Interference suppression for measuring signals with periodic wanted signal
US6631281B1 (en) 1999-06-10 2003-10-07 Koninklijke Philips Electronics N.V. Recognition of a useful signal in a measurement signal
US6587704B1 (en) 1999-06-16 2003-07-01 Orsense Ltd. Method for non-invasive optical measurements of blood parameters
US20030018243A1 (en) 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
JP2001017404A (en) 1999-07-09 2001-01-23 Koike Medical:Kk Medical measuring device
WO2001003577A1 (en) 1999-07-14 2001-01-18 Providence Health System - Oregon Adaptive calibration pulsed oximetry method and device
US6760609B2 (en) 1999-07-14 2004-07-06 Providence Health System - Oregon Adaptive calibration pulsed oximetry method and device
US6512937B2 (en) 1999-07-22 2003-01-28 Sensys Medical, Inc. Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
AU6894500A (en) 1999-08-06 2001-03-05 Board Of Regents, The University Of Texas System Optoacoustic monitoring of blood oxygenation
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
WO2001017426A1 (en) 1999-09-10 2001-03-15 Gorski Stephen H Oximeter sensor with functional liner
JP3627214B2 (en) 1999-09-13 2005-03-09 日本光電工業株式会社 Blood absorption substance measuring device
US6213952B1 (en) 1999-09-28 2001-04-10 Orsense Ltd. Optical device for non-invasive measurement of blood related signals utilizing a finger holder
US6708049B1 (en) 1999-09-28 2004-03-16 Nellcor Puritan Bennett Incorporated Sensor with signature of data relating to sensor
US6339715B1 (en) 1999-09-30 2002-01-15 Ob Scientific Method and apparatus for processing a physiological signal
EP1233697A4 (en) 1999-10-07 2005-06-22 Alexander K Mills Device and method for noninvasive continuous determination of physiologic characteristics
US6400971B1 (en) 1999-10-12 2002-06-04 Orsense Ltd. Optical device for non-invasive measurement of blood-related signals and a finger holder therefor
US7359741B2 (en) 1999-11-15 2008-04-15 Spo Medical Equipment Ltd. Sensor and radiance based diagnostics
CA2290083A1 (en) 1999-11-19 2001-05-19 Linde Medical Sensors Ag. Device for the combined measurement of the arterial oxygen saturation and the transcutaneous co2 partial pressure of an ear lobe
US6665551B1 (en) 1999-11-19 2003-12-16 Nihon Kohden Corporation Current driving system of light emitting diode
EP1502539B1 (en) 1999-11-22 2011-04-20 Mallinckrodt Inc. Pulse oximeter sensor with widened strip
JP2001149349A (en) 1999-11-26 2001-06-05 Nippon Koden Corp Sensor for living body
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6363269B1 (en) 1999-12-17 2002-03-26 Datex-Ohmeda, Inc. Synchronized modulation/demodulation method and apparatus for frequency division multiplexed spectrophotometric system
US6381479B1 (en) 1999-12-17 2002-04-30 Date-Ohmeda, Inc. Pulse oximeter with improved DC and low frequency rejection
US6360113B1 (en) 1999-12-17 2002-03-19 Datex-Ohmeda, Inc. Photoplethysmographic instrument
US6397092B1 (en) 1999-12-17 2002-05-28 Datex-Ohmeda, Inc. Oversampling pulse oximeter
US6408198B1 (en) 1999-12-17 2002-06-18 Datex-Ohmeda, Inc. Method and system for improving photoplethysmographic analyte measurements by de-weighting motion-contaminated data
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6711424B1 (en) 1999-12-22 2004-03-23 Orsense Ltd. Method of optical measurement for determing various parameters of the patient's blood
US6419671B1 (en) 1999-12-23 2002-07-16 Visx, Incorporated Optical feedback system for vision correction
US6594513B1 (en) 2000-01-12 2003-07-15 Paul D. Jobsis Method and apparatus for determining oxygen saturation of blood in body organs
US7198778B2 (en) 2000-01-18 2007-04-03 Mallinckrodt Inc. Tumor-targeted optical contrast agents
US6626841B1 (en) 2000-01-21 2003-09-30 Atlee, Iii John L. Carrier for mounting transesophageal recording, monitoring or stimulation devices to an esophageal stethoscope
US6564088B1 (en) 2000-01-21 2003-05-13 University Of Massachusetts Probe for localized tissue spectroscopy
AU2001234590A1 (en) 2000-01-28 2001-08-07 The General Hospital Corporation Fetal pulse oximetry
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6574491B2 (en) 2000-02-10 2003-06-03 Siemens Medical Systems Inc. Method and apparatus for detecting a physiological parameter
EP1257191A1 (en) 2000-02-11 2002-11-20 U.S. Army Institute of Surgical Research Pacifier pulse oximeter sensor
US6385821B1 (en) 2000-02-17 2002-05-14 Udt Sensors, Inc. Apparatus for securing an oximeter probe to a patient
IL135077A0 (en) 2000-03-15 2001-05-20 Orsense Ltd A probe for use in non-invasive measurements of blood related parameters
US6538721B2 (en) 2000-03-24 2003-03-25 Nikon Corporation Scanning exposure apparatus
AU2001250983A1 (en) 2000-03-29 2001-10-08 Kinderlife Instruments, Inc. Method and apparatus for determining physiological characteristics
US6453183B1 (en) 2000-04-10 2002-09-17 Stephen D. Walker Cerebral oxygenation monitor
EP1274343B1 (en) 2000-04-17 2012-08-15 Nellcor Puritan Bennett LLC Pulse oximeter sensor with piece-wise function
US6699199B2 (en) 2000-04-18 2004-03-02 Massachusetts Institute Of Technology Photoplethysmograph signal-to-noise line enhancement
AU2001250960A1 (en) 2000-04-28 2001-11-12 Kinderlife Instruments, Inc. Method for determining blood constituents
WO2001084107A2 (en) 2000-05-02 2001-11-08 Cas Medical Systems, Inc. Method for non-invasive spectrophotometric blood oxygenation monitoring
US6449501B1 (en) 2000-05-26 2002-09-10 Ob Scientific, Inc. Pulse oximeter with signal sonification
US6510331B1 (en) 2000-06-05 2003-01-21 Glenn Williams Switching device for multi-sensor array
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
GB0014854D0 (en) 2000-06-16 2000-08-09 Isis Innovation System and method for acquiring data
GB0014855D0 (en) 2000-06-16 2000-08-09 Isis Innovation Combining measurements from different sensors
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
DE10030862B4 (en) 2000-06-23 2006-02-09 Nicolay Verwaltungs-Gmbh Device for fixing a medical measuring device, in particular a pulse oximetry sensor, and use of such a device
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
DE60142900D1 (en) 2000-07-07 2010-10-07 Corium Internat Inc PREPARATION OF HYDROPHILIC PRESSURE-SENSITIVE ADHESIVES WITH OPTIMAL TONGUE CHARACTERISTICS
US6587703B2 (en) 2000-09-18 2003-07-01 Photonify Technologies, Inc. System and method for measuring absolute oxygen saturation
US6597931B1 (en) 2000-09-18 2003-07-22 Photonify Technologies, Inc. System and method for absolute oxygen saturation
US6889153B2 (en) 2001-08-09 2005-05-03 Thomas Dietiker System and method for a self-calibrating non-invasive sensor
US6719686B2 (en) 2000-08-30 2004-04-13 Mallinckrodt, Inc. Fetal probe having an optical imaging device
US6591123B2 (en) 2000-08-31 2003-07-08 Mallinckrodt Inc. Oximeter sensor with digital memory recording sensor data
US6553241B2 (en) 2000-08-31 2003-04-22 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor expiration data
US6606510B2 (en) 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US6600940B1 (en) 2000-08-31 2003-07-29 Mallinckrodt Inc. Oximeter sensor with digital memory
US6628975B1 (en) 2000-08-31 2003-09-30 Mallinckrodt Inc. Oximeter sensor with digital memory storing data
US6571113B1 (en) 2000-09-21 2003-05-27 Mallinckrodt, Inc. Oximeter sensor adapter with coding element
US6490466B1 (en) 2000-09-21 2002-12-03 Mallinckrodt Inc. Interconnect circuit between non-compatible oximeter and sensor
JP3845776B2 (en) 2000-09-22 2006-11-15 日本光電工業株式会社 Absorbent concentration measuring device in blood
AU2002212996A1 (en) 2000-09-28 2002-04-08 Non-Invasive Monitoring Systems, Inc. External addition of pulses to fluid channels of body to release or suppress endothelial mediators and to determine effectiveness of such intervention
US6505060B1 (en) 2000-09-29 2003-01-07 Datex-Ohmeda, Inc. Method and apparatus for determining pulse oximetry differential values
US6434408B1 (en) 2000-09-29 2002-08-13 Datex-Ohmeda, Inc. Pulse oximetry method and system with improved motion correction
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
US6819950B2 (en) 2000-10-06 2004-11-16 Alexander K. Mills Method for noninvasive continuous determination of physiologic characteristics
US6519484B1 (en) 2000-11-01 2003-02-11 Ge Medical Systems Information Technologies, Inc. Pulse oximetry sensor
US6466809B1 (en) 2000-11-02 2002-10-15 Datex-Ohmeda, Inc. Oximeter sensor having laminated housing with flat patient interface surface
US6560470B1 (en) 2000-11-15 2003-05-06 Datex-Ohmeda, Inc. Electrical lockout photoplethysmographic measurement system
US6505133B1 (en) 2000-11-15 2003-01-07 Datex-Ohmeda, Inc. Simultaneous signal attenuation measurements utilizing code division multiplexing
US6594512B2 (en) 2000-11-21 2003-07-15 Siemens Medical Solutions Usa, Inc. Method and apparatus for estimating a physiological parameter from a physiological signal
US6760610B2 (en) 2000-11-23 2004-07-06 Sentec Ag Sensor and method for measurement of physiological parameters
US20020068859A1 (en) 2000-12-01 2002-06-06 Knopp Christina A. Laser diode drive scheme for noise reduction in photoplethysmographic measurements
US6760607B2 (en) * 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
WO2002056760A1 (en) 2001-01-19 2002-07-25 Tufts University Method for measuring venous oxygen saturation
US6501974B2 (en) 2001-01-22 2002-12-31 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
US6510329B2 (en) 2001-01-24 2003-01-21 Datex-Ohmeda, Inc. Detection of sensor off conditions in a pulse oximeter
US6618602B2 (en) 2001-03-08 2003-09-09 Palco Labs, Inc. Method and apparatus for simultaneously determining a patient's identification and blood oxygen saturation
US20020133067A1 (en) 2001-03-15 2002-09-19 Jackson William H. New born and premature infant SIDS warning device
US6591122B2 (en) 2001-03-16 2003-07-08 Nellcor Puritan Bennett Incorporated Device and method for monitoring body fluid and electrolyte disorders
US6556852B1 (en) 2001-03-27 2003-04-29 I-Medik, Inc. Earpiece with sensors to measure/monitor multiple physiological variables
JP2002303576A (en) 2001-04-05 2002-10-18 Nippon Colin Co Ltd Oxygen saturation measuring device
KR100612827B1 (en) 2001-04-19 2006-08-14 삼성전자주식회사 Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
WO2002085191A2 (en) 2001-04-19 2002-10-31 O'mara Sean T Pulse oximetry device and method
US20020156354A1 (en) 2001-04-20 2002-10-24 Larson Eric Russell Pulse oximetry sensor with improved spring
US6505061B2 (en) 2001-04-20 2003-01-07 Datex-Ohmeda, Inc. Pulse oximetry sensor with improved appendage cushion
AU2002305313A1 (en) 2001-04-30 2002-11-11 Medtronic, Inc. Implantable medical device and patch system
DE60125326T2 (en) 2001-05-03 2007-09-27 Ge Healthcare Finland Oy Pulse oximeter
US6985764B2 (en) 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
WO2003001180A2 (en) 2001-06-20 2003-01-03 Purdue Research Foundation Body-member-illuminating pressure cuff for noninvasive optical measurement
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6801802B2 (en) 2001-06-29 2004-10-05 Ge Medical Systems Information Technologies, Inc. System and method for selecting physiological data from a plurality of physiological data sources
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US6731967B1 (en) 2001-07-16 2004-05-04 Pacesetter, Inc. Methods and devices for vascular plethysmography via modulation of source intensity
US6754516B2 (en) 2001-07-19 2004-06-22 Nellcor Puritan Bennett Incorporated Nuisance alarm reductions in a physiological monitor
US6802812B1 (en) 2001-07-27 2004-10-12 Nostix Llc Noninvasive optical sensor for measuring near infrared light absorbing analytes
US6654621B2 (en) 2001-08-29 2003-11-25 Bci, Inc. Finger oximeter with finger grip suspension system
US6668183B2 (en) 2001-09-11 2003-12-23 Datex-Ohmeda, Inc. Diode detection circuit
IL145445A (en) 2001-09-13 2006-12-31 Conmed Corp Signal processing method and device for signal-to-noise improvement
US6671532B1 (en) 2001-09-17 2003-12-30 Respironics Novametrix, Inc. Pulse oximetry sensor and dispensing method
US6723077B2 (en) 2001-09-28 2004-04-20 Hewlett-Packard Development Company, L.P. Cutaneous administration system
GB0123395D0 (en) 2001-09-28 2001-11-21 Isis Innovation Locating features ina photoplethysmograph signal
US6697655B2 (en) 2001-10-05 2004-02-24 Mortara Instrument, Inc. Low power pulse oximeter
US20030073890A1 (en) 2001-10-10 2003-04-17 Hanna D. Alan Plethysmographic signal processing method and system
US6564077B2 (en) 2001-10-10 2003-05-13 Mortara Instrument, Inc. Method and apparatus for pulse oximetry
US6697653B2 (en) 2001-10-10 2004-02-24 Datex-Ohmeda, Inc. Reduced wire count voltage drop sense
US6773397B2 (en) 2001-10-11 2004-08-10 Draeger Medical Systems, Inc. System for processing signal data representing physiological parameters
US6840904B2 (en) 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20030073889A1 (en) 2001-10-11 2003-04-17 Keilbach Kevin A. Monitoring led wavelength shift in photoplethysmography
US6748254B2 (en) 2001-10-12 2004-06-08 Nellcor Puritan Bennett Incorporated Stacked adhesive optical sensor
US7248910B2 (en) 2001-10-22 2007-07-24 Cardiodigital Limited Physiological parameter monitoring system and sensor assembly for same
US6839579B1 (en) 2001-11-02 2005-01-04 Nellcor Puritan Bennett Incorporated Temperature indicating oximetry sensor
US6701170B2 (en) 2001-11-02 2004-03-02 Nellcor Puritan Bennett Incorporated Blind source separation of pulse oximetry signals
JP3709836B2 (en) 2001-11-20 2005-10-26 コニカミノルタセンシング株式会社 Blood component measuring device
US20030100840A1 (en) 2001-11-28 2003-05-29 Nihon Kohden Corporation Pulse photometry probe
US6839580B2 (en) 2001-12-06 2005-01-04 Ric Investments, Inc. Adaptive calibration for pulse oximetry
US6780158B2 (en) 2001-12-14 2004-08-24 Nihon Kohden Corporation Signal processing method and pulse wave signal processing method
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6668182B2 (en) 2002-01-10 2003-12-23 Northeast Monitoring Pulse oxymetry data processing
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7020507B2 (en) 2002-01-31 2006-03-28 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
JP2005528134A (en) 2002-01-31 2005-09-22 ビーティージー・インターナショナル・リミテッド Venous oximetry, venous pulsatile oximetry
US6961600B2 (en) 2002-02-13 2005-11-01 Trustees Of The University Of Pennsylvania Transbronchial reflectance oximetric measurement of mixed venous oxygen saturation, and device therefor
US6882874B2 (en) 2002-02-15 2005-04-19 Datex-Ohmeda, Inc. Compensation of human variability in pulse oximetry
US20040039273A1 (en) 2002-02-22 2004-02-26 Terry Alvin Mark Cepstral domain pulse oximetry
US6805673B2 (en) 2002-02-22 2004-10-19 Datex-Ohmeda, Inc. Monitoring mayer wave effects based on a photoplethysmographic signal
US6709402B2 (en) 2002-02-22 2004-03-23 Datex-Ohmeda, Inc. Apparatus and method for monitoring respiration with a pulse oximeter
US6702752B2 (en) 2002-02-22 2004-03-09 Datex-Ohmeda, Inc. Monitoring respiration based on plethysmographic heart rate signal
JP2005518238A (en) 2002-02-22 2005-06-23 デイテックス−オーメダ インコーポレイテッド Cepstrum region pulse oximeter
US20050177034A1 (en) 2002-03-01 2005-08-11 Terry Beaumont Ear canal sensing device
US20030171662A1 (en) 2002-03-07 2003-09-11 O'connor Michael William Non-adhesive flexible electro-optical sensor for fingertip trans-illumination
US6863652B2 (en) 2002-03-13 2005-03-08 Draeger Medical Systems, Inc. Power conserving adaptive control system for generating signal in portable medical devices
KR100455289B1 (en) 2002-03-16 2004-11-08 삼성전자주식회사 Method of diagnosing using a ray and apparatus thereof
CN100350870C (en) 2002-03-21 2007-11-28 德特克斯-奥米达公司 Neonatal bootie wrap
US6647279B2 (en) 2002-03-22 2003-11-11 Jonas Alexander Pologe Hybrid optical delivery system for photoplethysmography
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6711426B2 (en) 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20080009689A1 (en) 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US20030212316A1 (en) 2002-05-10 2003-11-13 Leiden Jeffrey M. Method and apparatus for determining blood parameters and vital signs of a patient
US6711425B1 (en) 2002-05-28 2004-03-23 Ob Scientific, Inc. Pulse oximeter with calibration stabilization
US8996090B2 (en) 2002-06-03 2015-03-31 Exostat Medical, Inc. Noninvasive detection of a physiologic parameter within a body tissue of a patient
US7024235B2 (en) 2002-06-20 2006-04-04 University Of Florida Research Foundation, Inc. Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
US6865407B2 (en) 2002-07-11 2005-03-08 Optical Sensors, Inc. Calibration technique for non-invasive medical devices
WO2004010844A2 (en) 2002-07-26 2004-02-05 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US6850789B2 (en) 2002-07-29 2005-02-01 Welch Allyn, Inc. Combination SPO2/temperature measuring apparatus
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
KR100493157B1 (en) 2002-08-02 2005-06-03 삼성전자주식회사 Probe using in measuring organism signal and system for measuring organism signal comprising the same
US7133711B2 (en) 2002-08-07 2006-11-07 Orsense, Ltd. Method and system for decomposition of multiple channel signals
US6707257B2 (en) 2002-08-08 2004-03-16 Datex-Ohmeda, Inc. Ferrite stabilized LED drive
US6825619B2 (en) 2002-08-08 2004-11-30 Datex-Ohmeda, Inc. Feedback-controlled LED switching
US6720734B2 (en) 2002-08-08 2004-04-13 Datex-Ohmeda, Inc. Oximeter with nulled op-amp current feedback
US6763256B2 (en) 2002-08-16 2004-07-13 Optical Sensors, Inc. Pulse oximeter
US6879850B2 (en) 2002-08-16 2005-04-12 Optical Sensors Incorporated Pulse oximeter with motion detection
US6745061B1 (en) 2002-08-21 2004-06-01 Datex-Ohmeda, Inc. Disposable oximetry sensor
US6643531B1 (en) 2002-08-22 2003-11-04 Bci, Inc. Combination fingerprint and oximetry device
US6869402B2 (en) 2002-08-27 2005-03-22 Precision Pulsus, Inc. Method and apparatus for measuring pulsus paradoxus
US7828739B2 (en) 2002-08-27 2010-11-09 Precision Pulsus, Inc. Apnea detection system
US6912413B2 (en) 2002-09-13 2005-06-28 Ge Healthcare Finland Oy Pulse oximeter
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US20040186358A1 (en) 2002-09-25 2004-09-23 Bart Chernow Monitoring system containing a hospital bed with integrated display
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
JP4352315B2 (en) 2002-10-31 2009-10-28 日本光電工業株式会社 Signal processing method / apparatus and pulse photometer using the same
US7027849B2 (en) 2002-11-22 2006-04-11 Masimo Laboratories, Inc. Blood parameter measurement system
US7139559B2 (en) 2002-12-09 2006-11-21 Qualcomm Inc. System and method for handshaking between wireless devices and servers
JP4489385B2 (en) 2002-12-12 2010-06-23 株式会社日立メディコ Measuring probe and biological light measuring device
US6947781B2 (en) 2002-12-13 2005-09-20 Massachusetts Institute Of Technology Vibratory venous and arterial oximetry sensor
US6754515B1 (en) 2002-12-17 2004-06-22 Kestrel Labs, Inc. Stabilization of noisy optical sources in photoplethysmography
KR100499139B1 (en) 2003-01-07 2005-07-04 삼성전자주식회사 Method of removing abnormal data and blood constituent analysing system using spectroscopy employing the same
US7006856B2 (en) 2003-01-10 2006-02-28 Nellcor Puritan Bennett Incorporated Signal quality metrics design for qualifying data for a physiological monitor
US7016715B2 (en) 2003-01-13 2006-03-21 Nellcorpuritan Bennett Incorporated Selection of preset filter parameters based on signal quality
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
EP1592340B1 (en) 2003-02-05 2010-07-28 Philips Intellectual Property & Standards GmbH Finger medical sensor
WO2004075746A2 (en) 2003-02-27 2004-09-10 Cardiodigital Limited Method and system for analysing and processing ph0t0plethysmogram signals using wavelet transform
KR100571811B1 (en) 2003-05-09 2006-04-17 삼성전자주식회사 Ear type measurement apparatus for bio signal
US6993372B2 (en) 2003-06-03 2006-01-31 Orsense Ltd. Method and system for use in non-invasive optical measurements of blood parameters
US6992772B2 (en) 2003-06-19 2006-01-31 Optix Lp Method and apparatus for optical sampling to reduce interfering variances
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US7025728B2 (en) 2003-06-30 2006-04-11 Nihon Kohden Corporation Method for reducing noise, and pulse photometer using the method
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US8602986B2 (en) 2003-08-20 2013-12-10 Koninklijke Philips N.V. System and method for detecting signal artifacts
US7107088B2 (en) 2003-08-25 2006-09-12 Sarnoff Corporation Pulse oximetry methods and apparatus for use within an auditory canal
WO2005020798A2 (en) 2003-08-27 2005-03-10 Datex-Ohmeda, Inc. Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets
US7103402B2 (en) 2003-10-02 2006-09-05 Ut-Battelle, Llc Advanced synchronous luminescence imaging for chemical and medical diagnostics
US20050075550A1 (en) 2003-10-03 2005-04-07 Lindekugel Eric W. Quick-clip sensor holder
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US20050113651A1 (en) 2003-11-26 2005-05-26 Confirma, Inc. Apparatus and method for surgical planning and treatment monitoring
US7305262B2 (en) 2003-12-11 2007-12-04 Ge Medical Systems Information Technologies, Inc. Apparatus and method for acquiring oximetry and electrocardiogram signals
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US20050197548A1 (en) 2004-03-05 2005-09-08 Elekon Industries Usa, Inc. Disposable/reusable flexible sensor
US20050228248A1 (en) 2004-04-07 2005-10-13 Thomas Dietiker Clip-type sensor having integrated biasing and cushioning means
US7173525B2 (en) 2004-07-23 2007-02-06 Innovalarm Corporation Enhanced fire, safety, security and health monitoring and alarm response method, system and device
US7438687B2 (en) 2004-08-14 2008-10-21 Nova Technology Corporation Patient monitoring system with blood pressure measurement capacity
US20060036137A1 (en) 2004-08-13 2006-02-16 John Lewicke Patient monitoring apparatus
US7440788B2 (en) * 2004-08-26 2008-10-21 Kelvyn Enterprises, Inc. Oral health measurement clamping probe, system, and method
US7359742B2 (en) 2004-11-12 2008-04-15 Nonin Medical, Inc. Sensor assembly
US7236881B2 (en) 2005-02-07 2007-06-26 International Business Machines Corporation Method and apparatus for end-to-end travel time estimation using dynamic traffic data
JP5086235B2 (en) 2005-03-09 2012-11-28 クティセンセ アクティーゼルスカブ Three-dimensional adhesive device with embedded microelectronic system
US7548771B2 (en) 2005-03-31 2009-06-16 Nellcor Puritan Bennett Llc Pulse oximetry sensor and technique for using the same on a distal region of a patient's digit
US7907997B2 (en) 2005-05-11 2011-03-15 Cardiac Pacemakers, Inc. Enhancements to the detection of pulmonary edema when using transthoracic impedance
US7330746B2 (en) 2005-06-07 2008-02-12 Chem Image Corporation Non-invasive biochemical analysis
US20070038126A1 (en) 2005-06-23 2007-02-15 Pyle Jason L System and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413100A (en) * 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
US20030036200A1 (en) * 2001-08-20 2003-02-20 Charlton Steven C. Packaging system for test sensors

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US10743937B2 (en) 2006-02-27 2020-08-18 Biomet Manufacturing, Llc Backup surgical instrument system and method
US10603179B2 (en) 2006-02-27 2020-03-31 Biomet Manufacturing, Llc Patient-specific augments
US10507029B2 (en) 2006-02-27 2019-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US10426492B2 (en) 2006-02-27 2019-10-01 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US10390845B2 (en) 2006-02-27 2019-08-27 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US11534313B2 (en) 2006-02-27 2022-12-27 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8828087B2 (en) 2006-02-27 2014-09-09 Biomet Manufacturing, Llc Patient-specific high tibia osteotomy
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US10893879B2 (en) 2006-06-09 2021-01-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US11576689B2 (en) 2006-06-09 2023-02-14 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
US20090254093A1 (en) * 2006-06-09 2009-10-08 Biomet Manufacturing Corp. Patient-Specific Alignment Guide
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US8858561B2 (en) * 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US11554019B2 (en) 2007-04-17 2023-01-17 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US11324522B2 (en) 2009-10-01 2022-05-10 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US10893876B2 (en) 2010-03-05 2021-01-19 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US11234719B2 (en) 2010-11-03 2022-02-01 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US10492798B2 (en) 2011-07-01 2019-12-03 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US11253269B2 (en) 2011-07-01 2022-02-22 Biomet Manufacturing, Llc Backup kit for a patient-specific arthroplasty kit assembly
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US10456205B2 (en) 2011-09-29 2019-10-29 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US11406398B2 (en) 2011-09-29 2022-08-09 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US10426549B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US10842510B2 (en) 2011-10-27 2020-11-24 Biomet Manufacturing, Llc Patient specific glenoid guide
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US11602360B2 (en) 2011-10-27 2023-03-14 Biomet Manufacturing, Llc Patient specific glenoid guide
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US11419618B2 (en) 2011-10-27 2022-08-23 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US11298188B2 (en) 2011-10-27 2022-04-12 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US10426493B2 (en) 2011-10-27 2019-10-01 Biomet Manufacturing, Llc Patient-specific glenoid guides
US12089898B2 (en) 2011-10-27 2024-09-17 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US11617591B2 (en) 2013-03-11 2023-04-04 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US10441298B2 (en) 2013-03-11 2019-10-15 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US11191549B2 (en) 2013-03-13 2021-12-07 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10426491B2 (en) 2013-03-13 2019-10-01 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US10376270B2 (en) 2013-03-13 2019-08-13 Biomet Manufacturing, Llc Universal acetabular guide and associated hardware
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US11179165B2 (en) 2013-10-21 2021-11-23 Biomet Manufacturing, Llc Ligament guide registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US11026699B2 (en) 2014-09-29 2021-06-08 Biomet Manufacturing, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US10335162B2 (en) 2014-09-29 2019-07-02 Biomet Sports Medicine, Llc Tibial tubercle osteotomy
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10925622B2 (en) 2015-06-25 2021-02-23 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US11801064B2 (en) 2015-06-25 2023-10-31 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
US11013434B2 (en) 2019-10-15 2021-05-25 Exostat Medical, Inc. Carbon dioxide sensor
WO2021076194A1 (en) * 2019-10-15 2021-04-22 Exostat Medical, Inc. Carbon dioxide sensor
EP4045901A4 (en) * 2019-10-15 2023-11-08 Exostat Medical, Inc. Carbon dioxide sensor
CN113167761A (en) * 2019-10-15 2021-07-23 埃克索斯达医疗公司 Carbon dioxide sensor
US12115001B2 (en) 2019-10-15 2024-10-15 Exostat Medical, Inc. Tissue perfusion sensor and placement device

Also Published As

Publication number Publication date
TW200724090A (en) 2007-07-01
WO2007041331A2 (en) 2007-04-12
WO2007041331A3 (en) 2007-12-21
US8233954B2 (en) 2012-07-31
US20070078318A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US8233954B2 (en) Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US7811276B2 (en) Medical sensor and technique for using the same
US7992561B2 (en) Carbon dioxide-sensing airway products and technique for using the same
Webster Design of pulse oximeters
US8905029B2 (en) Airway system with carbon dioxide sensor for determining tracheal cuff inflation and technique for using the same
US8396524B2 (en) Medical sensor and technique for using the same
WO2007041337A1 (en) Sensor for tissue gas detection and technique for using the same
US8433383B2 (en) Stacked adhesive optical sensor
US8133177B2 (en) System and method for assessing capillary vitality
US20010044700A1 (en) Apparatus for determining concentrations of hemoglobins
US20120220845A1 (en) Shock or sepsis early detection method and system
JP3553594B2 (en) Remote sensing pressure measurement catheter device
WO2024030687A2 (en) Materials and methods for luminescence-based carbon dioxide sensing
WO2004006759A1 (en) Method for optical measurement of multiple physiologic parameters
US10732107B2 (en) Optical sensor, capnography system and methods of use
Modern et al. KEY TERMS
CO-Oximetry KEY TERMS
AU740775B2 (en) Method and device for assessing perfusion failure in a patient
Zaune et al. Value and accuracy of dual oximetry during pulmonary resections
Mould C zyxwvutsrqponmlkjihg

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NELLCOR PURITAN BENNETT LLC;REEL/FRAME:029345/0117

Effective date: 20120929

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION