US20120053491A1 - Abnormal motion detector and monitor - Google Patents

Abnormal motion detector and monitor Download PDF

Info

Publication number
US20120053491A1
US20120053491A1 US13/317,676 US201113317676A US2012053491A1 US 20120053491 A1 US20120053491 A1 US 20120053491A1 US 201113317676 A US201113317676 A US 201113317676A US 2012053491 A1 US2012053491 A1 US 2012053491A1
Authority
US
United States
Prior art keywords
motion
seizure
data
determining
features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/317,676
Inventor
Vaidhi Nathan
Chandan Gope
Anoo Nathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMART MONITOR CORP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/317,676 priority Critical patent/US20120053491A1/en
Assigned to NATHAN, VAIDHI reassignment NATHAN, VAIDHI ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOPE, CHANDAN, NATHAN, ANOO
Publication of US20120053491A1 publication Critical patent/US20120053491A1/en
Priority to US14/140,424 priority patent/US20140350436A1/en
Priority to US14/599,277 priority patent/US10595766B2/en
Assigned to SMART MONITOR CORP. reassignment SMART MONITOR CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOPE, CHANDAN, NATHAN, ANOO, NATHAN, VAIDHI
Priority to US16/802,494 priority patent/US20200187845A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4082Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1101Detecting tremor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • A61B5/1122Determining geometric values, e.g. centre of rotation or angular range of movement of movement trajectories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms

Definitions

  • This specification is related to medical devices.
  • EEG Electroencephalography
  • the EEGs may analyze brainwaves to detect the onset or the occurrence of a seizure.
  • EEGs require probes to be mounted on the patients' scalp to sense, extract, and transmit data. The probes are uncomfortable, intrusive, and awkward—restricting patients' movements and cause scarring.
  • the graphs from the EEGs need to be reviewed and interpreted manually by trained personnel, such as nurses and medical assistants.
  • FIG. 1 shows a block diagram of an embodiment of seizure detection system 100 .
  • FIG. 2A shows a block diagram of a system, which may be incorporated within the system of FIG. 1 .
  • FIG. 2B shows a block diagram of an embodiment of a memory system.
  • FIG. 3A shows a block diagram of an embodiment of a motion detector.
  • FIG. 3B shows a block diagram of a camera.
  • FIG. 4 is a flowchart of an embodiment of a method of detecting a seizure, based on optical flow.
  • FIG. 5 is a flowchart of an embodiment of a method of detecting a seizure, based on motion analysis.
  • FIG. 6 is a flowchart of an embodiment of a method of detecting a seizure, based on patterns of motion vector patterns.
  • FIG. 7 is a flowchart of an embodiment of a method of detecting seizures by measuring motion, via accelerometers and/or gyro sensors.
  • FIG. 8 shows a graph of three orthogonal components of acceleration of an arm.
  • FIG. 9 shows a graph of two parameters of motion.
  • FIG. 10 shows an embodiment of a seizure detection, analyzing, and monitoring device.
  • each of FIGS. 1-3 is a brief description of each element, which may have no more than the name of each of the elements in the one of FIGS. 1-3 that is being discussed. After the brief description of each element, each element is further discussed in numerical order. In general, each of FIGS. 1-7 is discussed in numerical order and the elements within FIGS. 1-7 are also usually discussed in numerical order to facilitate easily locating the discussion of a particular element. Nonetheless, there is no one location where all of the information of any element of FIGS. 1-7 is necessarily located. Unique information about any particular element or any other aspect of any of FIGS. 1-7 may be found in, or implied by, any part of the specification.
  • a seizure monitor provides intelligent epileptic seizure detection, monitoring, and alerting for epilepsy patients and/or other people that experience seizures.
  • the seizure monitor is a small consumer usable device that is wearable and can be setup and used easily by patients.
  • the seizure monitor is compact and low cost.
  • the seizure monitor may have at least any one of the following three different configurations or embodiments using—(i) motion sensor data (such as data from accelerometers, gyroscope sensors and/or other motion sensor data), or (ii) video data, and/or (iii) hybrid data (which may include both video and accelerometer or other motion sensor data).
  • the seizure monitor may be a wearable, non-intrusive, passive monitoring device that does not require any insertion or ingestion into the human body.
  • the seizure monitor may include several flexible and easy output options for outputting motion data, so that the data may be immediately validated and/or remotely viewed.
  • the seizure monitor may also support recording of motion data that can be reviewed later by a medical professional for further analysis and/or diagnosis.
  • FIGS. 1-3 b Seizure Detection System
  • FIG. 1A shows a block diagram of an embodiment of seizure detection system 100 .
  • Seizure detection system 100 may include cameras 102 a - n , communications line 104 , surfaces 106 a - m , patient 108 , motion detector 110 , and receiver 112 .
  • seizure detection system 100 may include additional components and/or may not include all of the components listed above.
  • Seizure detection system 100 may detect, monitor, and/or alert an concerned party of the onset and occurrence of epileptic seizures in patients.
  • the term “concerned party” includes any entity or person that may have an interest in knowing about the occurrence of a seizure, such as caregiver, medical professional, close friend, or relative of the patient.
  • seizure detection system 100 may be passive, compact, and/or non-intrusive.
  • seizure detection system 100 is discussed, seizure detection is just one example of a motion disorder that may be detected with seizure detection system 100 . Although the discussion of this specification focuses on seizure monitoring and detection, there are other motion based diagnostics or body motion analysis that may be performed using the same system.
  • Cameras 102 a - n may include any number of cameras, which film a patient in order to capture on film images that may be analyzed to determine whether a seizure is in progress. As also elaborated upon elsewhere, cameras 102 a - n are optional. Cameras 102 a - n are optional, and may be replaced with another form of detecting seizures, such as motion detectors. For example, another type of motion detector, such as infrared detectors, may be used instead of, or in addition to, cameras 102 a - n .
  • cameras 102 a - n are illustrated as being mounted on surfaces within a premise of the patient, cameras 102 a - n may be mounted on the patient, and instead of observing the patient to determine the motion of the patient, the motion of patent may be inferred from the images of the surroundings of the patient, for example.
  • Optical sensors such as video camera 102 a - n can be used to monitor the patient and detect seizure-like activities.
  • Seizure-like activities may offer unique motion patterns and can be distinguished from non-seizure-like activities. Easily distinguishable feature points (or feature points corresponding to particular body parts that are significant in determining whether or not a seizure is in progress) in the scene can be computed (such as those on the person or an object) and the temporal motion patterns of the feature points (such as points on the person's body or clothes) can be analyzed across frames for detection of any abnormal activity.
  • Some motion patterns of interest could be large movements in short periods of time, repetitive movements, back-and-forth movements, etc.
  • some special seizure activities offer very characteristic and predictable motion patterns, a prior knowledge of which can be utilized effectively to detect such cases.
  • Communications line 104 communicatively connects cameras 102 a - n to a processor (for analyzing the motion data and determining whether a seizure is occurring) and/or seizure alert system.
  • cameras 102 a - n may communicate wirelessly with a processor and/or seizure alert system.
  • Patient 108 suffers from seizure and is monitored by the rest of seizure detection system 108 to determine whether a seizure has occurred.
  • the word “patient” refers to any individual that is being monitored to determine whether a seizure is occurring.
  • Motion detector 110 is mounted on patient 108 so that motions of the patient may be measured.
  • motion detector 110 is an accelerometer, a gyro sensor, and/or a hybrid of both.
  • Motion detector 110 communicates wirelessly (or via wires) with a seizure alert system.
  • Motion detector 110 may include a transmitter for transmitting information about motion measured by motion detector 110 .
  • motion detector 110 may include a location determining unit (e.g., a global positioning unit) for determining the location of patient 108 and transmitting the location of the patient 108 to a concerned party.
  • motion detector 110 is a small accelerometer (and/or gyro sensor)
  • the accelerometer (and/or gyro sensor) may be passive and non-intrusive.
  • an accelerometer and/or gyro are referred to another motion sensor(s) may be used instead.
  • the detection of the seizure or movement patterns can be done inside the watch itself.
  • the results and/or an alert may be sent outside via wireless or wired medium.
  • the watch can simply send only the sensor data, and the detection and decision can be made outside on the phone or a computer outside the watch sensor. Both options are viable.
  • One way of detecting seizures is to monitor the motion of one or more parts of the body of patient 108 .
  • body parts such as the hands, legs, torso, and head.
  • Seizures can be detected by measuring the change in output of a motion detector, the frequency of the change, and/or amplitude of the change indicating a movement of one or more body parts.
  • motion detector 110 There are different types of motion detectors, which may be used of motion detector 110 .
  • One type of motion detector is an accelerometer, which measures acceleration. Ordinarily, when stationary, each part of the body experiences the acceleration of gravity (an accelerometer cannot tell the difference between a body being accelerated as a result of the body's changes in velocity and the body being pulled by a force, such as gravity). From the changes in acceleration, changes in position and/or velocity may be inferred. When a body part moves, the acceleration of the body part changes, and thus the change in the acceleration indicates a motion.
  • Another type of sensor data is gyro sensor data. Gyro sensors may detect the rotation along X, Y, and/or Z axes. The rotation angles and position can also be used to detect motion and particular types of motion. While accelerometer measures linear axis changes, gyros measure the rotation changes.
  • the sensor that is used as motion detector 110 may a small device that can fit into an enclosure the size of a wristwatch.
  • the motion data may be measured in two-dimensions (e.g., along two perpendicular axes, which may be referred to as the X and Y axes) and/or three-dimensions (e.g., along three perpendicular axes, which may be referred to as the X, Y, and Z axes).
  • Acceleration, frequency, and amplitude (angle, angular velocity, angular acceleration, and angular impulse or jerk) values above a certain threshold are indicative of abnormal body movements that occur during a seizure.
  • each of the two-dimensional (X,Y) motion sensors may be paced along perpendicular axes.
  • the two-dimensional and/or three-dimensional motion sensors can be useful to detect the jerky and back and forth movements. The detection algorithm is discussed below.
  • Motion detector 110 can be positioned and/or mounted on the patient's arms, legs, bedclothes, and/or the bed itself. Motion detector 110 placed on the patient's body may be more effective and accurate in detecting seizures.
  • Seizure alert system 112 alerts a concerned party when a seizure occurs.
  • Seizure alert system 112 may be a PC, laptop, PDA, mobile phone bell, and/or other unit capable of indicating an alert.
  • Information in signals from cameras 102 a - n and/or motion detector 110 are analyzed, and if it is determined that a seizure is occurring, an alert is output from alert system 112 .
  • Seizure alert system 112 may include a monitor for displaying seizure alerts and/or for displaying motion data.
  • seizure alert system 112 may include a processor for analyzing the signals from cameras 102 a - n and/or motion detector 110 .
  • system 100 is a general purpose alerting system and can also alert other motion disorders.
  • Motion sensors that are included within motion detector 110 may be attached to the wrist explicitly capture the motion along the x, y, and z directions.
  • the data obtained may be a time sequence of the instantaneous acceleration experienced by the sensor.
  • approaches can be used here to detect any abnormal seizure-like activities. These approaches can be divided broadly into two categories:
  • a processor which may be located in seizure alert system 112 or elsewhere may run algorithms to determine whether a seizure is occurring, and when it is determined that a seizure is occurring alerts may be output from seizure alert system 112 .
  • one or more confirmation images and/or accelerometer or other motion sensor plots may also be sent to a concerned party, such as a doctor and/or other caregiver.
  • the alert may be sent, via SMS, MMS, email, IM, or WAP or other message protocol.
  • the alert may include an alert message, alarm signal, beeps, local in-device sound alerts, and/or alarms, which may be produced by a PDA, mobile phone, or other device, which may have built in alarms and alerts.
  • Receiver 114 receives signals from transmitters on wireless units such as motion detectors 110 .
  • Receiver 114 is optional. If cameras 102 a - n do not communicate via communications line 104 (e.g., if communications line 104 , is not present), receiver 114 may receive signals from cameras 102 a - n .
  • seizure detection system 100 may detect motion via video data from cameras 102 a - n , sensor data from motion detector 110 , and/or hybrid data (which is data based on both cameras 102 a - n and/or sensor data from motion 110 ).
  • One example of an embodiment encompassed within FIG. 1 may include input sensors (video and/or motion sensors, such as accelerometers), one or more computers for receiving and processing data from the sensors, connectivity interfaces, and a system for remotely monitoring and for alerting (e.g., sending an alarm) a concerned party.
  • the connectivity interface may include any of a number of communications interfaces, such as Bluetooth interfaces and/or Wifi, wireless interfaces, and/or wired interfaces, which may use IP/LAN connections and/or serial port connections, such as USB.
  • FIG. 1 Another example of an embodiment encompassed within FIG. 1 may be a video based system, which may include one or more cameras (such as analog cameras, WebCam cameras, and/or IP/Network cameras) and/or IR detectors and/or illuminators for nighttime monitoring and analysis.
  • the cameras may be color or infrared cameras, for example.
  • the cameras can be connected to the a Personal Computer (PC) and/or any computing device, via (i) a wireless interface, such as a WIFI/LAN interface, a Serial/USB wireless interface, and/or BlueTooth interface, and/or (ii) a wired interface such as a LAN and/or Ethernet interface.
  • Video data is received by the computing device analyzed and/or processed.
  • processing intelligence, an analysis engine, and/or algorithms that reside in the computing device may be embedded and/or otherwise built into the camera resulting in a “Smart Camera.”
  • the input data to the processor may be a stream of video data from the camera.
  • the camera may be connected to a PC or other computing device, such as a PDA or smart mobile phone.
  • the camera may also have an intelligent processor embedded inside, that processes and analyzes the input data.
  • alerts and other output may communicate via alarms, SMS, MMS, IM, WAP message, email, or a phone call to the concerned part.
  • Alerts may be sent either over a LAN (a wired network), a wireless network, or over a GSM/cellular mobile network.
  • the motion data from cameras 102 a - n and/or from motion detector 110 is transformed into the frequency domain, via a Fourier transform, or wavelet transform.
  • the motion data is analyzed to see whether the motion data includes unique features in the frequency domain (such as larger coefficients corresponding to high frequency components) that are expected to be found in motion data from a seizure.
  • Performing a Fourier transform on a set of data taken within a particular window of time may be taken, (which may be referred to as a “windowed Fourier transform” and) which may capture the local nature of the signal.
  • orthogonal wavelet transforms such as Daubechies
  • another transform of the motion data may be taken (which may also provide a local representation of the signal in terms of the set of basis functions).
  • the transformed may then be scanned for large coefficients of basis vectors that are expected to be associated with a seizure.
  • the recognition seizure motion patterns in the frequency domain may be performed based on a supervised or unsupervised learning.
  • a motion sensor an accelerometer or gyro sensor
  • a processor that operates the algorithm, and processor may be located inside or outside of the motion sensor. In other words, detection may be performed via an algorithm executing within the processor to determine if a particular motion is a seizure. Alerts may be communicated from the processor via external any of a number of media to a concerned party.
  • the input data may be a stream of analog or digital signals or values from the accelerometer/gyro sensor.
  • the accelerometer or other motion sensor may have a built in processor to interpret and process the input data.
  • the accelerometer or other motion sensor may be connected to a PC or other computing device, such as a smart mobile phone or PDA.
  • the processor may execute seizure detection algorithms.
  • alerts and other output may be communicated via alarms, SMS, WAP messages, email, or phone calls to the people specified. Alerts may be sent either over LAN (wired) or wirelessly or over the GSM/cellular mobile networks.
  • both video camera and accelerometer/gyro sensor may be used to determine whether there is a seizure.
  • This embodiment may include features and elements of both video and accelerometer/gyro sensor systems, mentioned above. Both detectors may run in parallel. Images from the video system may be used for additional confirmation and validation of the data from the accelerometer systems. These systems may run 24 hours per day, seven days a week, 365 days per year, all the time, or on an as-needed basis.
  • the seizure detection system 100 , seizure alert system 112 , cameras 102 a - n , motion detector 11 may be powered externally or may be powered by a battery. In an embodiment, there may be multiple levels or thresholds.
  • a threshold for even suspected conditions may be recorded.
  • one threshold or level may indicate that there is a problem that is observed, which may record the event or condition without actually activating an alert and at a second level or threshold an alert may be activated.
  • Activating the alert may include sending a communication indicating the alert.
  • alerts are sent for only conditions or seizures that pass certain conditions or levels.
  • the patient may be able to manually trigger the alert to be activated.
  • the system can press a button and indicate to ignore the alarm and that the call this false alarm.
  • These thresholds can be adjusted by the patient/user. Each user may have different threshold or personal requirement on when to record and when to alert.
  • the system may provide two adjustable sets of thresholds that can be modified. One set of thresholds is for sending an alert and one set of thresholds is for recording events that have seizure-like characteristics, but are expected not to be a seizure or for events that are near the borderline between being a seizure and not being a seizure.
  • the input parameters may be entered manually by the user, stored, and reused, so that the user not need to input the parameters every time system 100 is turned on or put in use.
  • the input signal as is.
  • the data can be windowed (overlapping) over short durations of time and the range of values examined. It is expected that non-seizure-like activities exhibit value fluctuations only within a short range of values of acceleration (or gyro sensor), that is, the difference between the minimum acceleration value and the maximum acceleration value over a short period of time is bounded by two relatively close values. On the other hand, seizure-like activities exhibit a larger fluctuation and the difference between the minimum acceleration value and the maximum acceleration value.
  • Seizure detection system 100 may be based on learning system and incorporate supervised or unsupervised learning, which may include one or more neural-networks, machines that perform pattern recognition methods and/or support vector machines, for example. In embodiments including unsupervised learning, positive and negative data samples are provided to seizure detection system 100 as training examples for classifying patterns of behavior as seizure or non-seizure motion patterns.
  • seizure detections system 100 After being fed the training examples, seizure detections system 100 is able to make a determination as to whether other motion patterns are associated with seizures.
  • seizure detection system 100 is able to detect seizures having motion patterns that do not have features that are otherwise common amongst most other seizure-like activities.
  • a neural-network or a Support Vector Machine can be trained based on positive and negative data samples.
  • the detection system or algorithm can be based on rules, conditions, or equations and pre-defined logic that is patient independent.
  • the rule or logic can be to compute the local peaks of motion jerks. If there are N jerks happen within M seconds, then the motion may be determined to be seizure. For example, if the number of jerks are greater than 5 within 3 seconds, then it is a seizure.
  • Typical rules/logic will use one or more conditions or criteria based on: frequency/number of motion/jerks within a time frame, amplitude of the motion, continued change or duration of this motion, 1 st or 2 nd degree change of these values above.
  • the motion data form cameras 102 a - n and/or from motion detector 110 is transformed into the frequency domain, via a Fourier transform, or wavelet transform.
  • the motion data is analyzed to see whether the motion data includes unique features in the frequency domain (such as larger coefficients corresponding to high frequency components) that are expected to be found in motion data from a seizure.
  • Performing a Fourier transform on a set of data taken within a particular window of time may be taken, (which may be referred to as a “widowed Fourier transform” and) which may capture the local nature of the signal.
  • orthogonal wavelet transforms such as Daubechies
  • another transform of the motion data may be taken (which may also provide a local representation of the signal in terms of the set of basis functions).
  • the transformed may then be scanned for large coefficients of basis vectors that are expected to be associated with a seizure.
  • the recognition seizure motion patterns in the frequency domain may be performed based on a supervised or unsupervised learning.
  • a bank of motion detectors may include any combination of cameras 102 a - n , motion detector 110 , other hybrid motion detectors, and/or other motion detectors, as described above, each running in parallel.
  • the usage of a bank of motion detectors creates a system that is very robust and that detects seizures with a high level of accuracy.
  • an accelerometer in a watch measures the accelerations in the three directions, a x , a y , and a z .
  • the first and/or second derivative of each component may be computed and/or the first and/or second derivative of magnitude may be computed.
  • a count is performed of all of the peaks of the first and/or second derivative that occur during a specified time window that are above a certain threshold. If the number of peaks is greater than a threshold number, it is assumed that a seizure is occurring.
  • a preset number of peaks in the amplitude of the acceleration are obtained within a certain time interval, then it is considered to be a seizure. If less than the preset number of peaks in the amplitude of the acceleration are obtained within the time interval, then it is assumed that a seizure did not occur.
  • the variation of each component of acceleration is analyzed separately (in addition to or instead of analyzing the magnitude of the acceleration).
  • the peaks may be more frequent and shorter than for the amplitude, and consequently, for each component of acceleration, the threshold for the number of peaks (that is considered indicative of a seizure) in a given time period may be set higher and the threshold for the amplitude of the peaks (that is considered indicative of a seizure) may be set lower than for the magnitude.
  • the positive and negative examples of motion patterns that are fed to a neural network or other learning algorithm may include each component of acceleration and/or the magnitude of the acceleration.
  • FIG. 1B shows a representation an embodiment of seizure detection system 150 .
  • Seizure detection system 150 band 152 , housing 154 , display 156 , and input interface 158 .
  • seizure detection system 150 may include additional components and/or may not include all of the components listed above.
  • Seizure detection system 150 is an embodiment of a seizure detection system that is a device that is also a wristwatch, that is within a device that is a wristwatch, or doubles as a wrist watch. Other embodiments of seizure detection system 150 may be worn elsewhere on an arm, on a hand, on a leg, on a foot, on a chest, and/or other part of a person. Seizure detection system 150 may include a motion detector (not shown in FIG. 1B ), such as an accelerometer, for motion detector 110 ( FIG. 1A ). Band 152 may be used for fastening seizure detection system 150 to a wrist of patient 108 ( FIG. 1A ). Housing 154 contains the circuitry for seizure detection system 100 ( FIG.
  • Display 156 may display settings of seizure detection system 150 , the time, and/or output of seizure detection 156 .
  • Input interface 158 may be a series of buttons for inputting settings for seizure detection system 150 and/or for inputting wristwatch settings.
  • FIG. 2A shows a block diagram of system 200 , which may be incorporated within the system of FIG. 1 .
  • System 200 may include output system 202 , input system 204 , memory system 206 , processor system 208 , communications system 212 , and input/output device 214 .
  • system 200 may include additional components and/or may not include all of the components listed above.
  • System 200 may be an embodiment of seizure detection system 100 in which seizure detection system 200 is contained within one unit. Alternatively or additionally, an embodiment of seizure detector 112 may be system 200 .
  • Output system 202 may include any one of, some of, any combination of, or all of a monitor system, a handheld display system, a printer system, a speaker system, a connection or interface system to a sound system, an interface system to peripheral devices and/or a connection and/or interface system to a computer system, intranet, and/or internet, for example.
  • Output system 202 may include lights, such as a red light and/or a flashing light to indicate a seizure.
  • Output system may include sounds such as beeps, rings, buzzes, sirens, a voice message, and/or other noises.
  • Output system 202 or a part of output system 202 may be kept in the possession of a care taker or in a location that will catch a care taker's attention, such as a PDA, cell phone, and/or a monitor of a computer that is viewed by a care taker.
  • Output system 202 may send an e-mail, make a phone call, and/or send other forms of messages to alert a concerned party about the occurrence of a seizure.
  • Input system 204 may include any one of, some of, any combination of, or all of a keyboard system, a mouse system, a track ball system, a track pad system, buttons on a handheld system, a scanner system, a microphone system, a connection to a sound system, and/or a connection and/or interface system to a computer system, intranet, and/or internet (e.g., IrDA, USB), for example.
  • Input system 204 may include a motion detector and/or camera for detecting high frequency motion.
  • Input system 204 or a part of input system 204 may be kept in the possession of a care taker or in a location easily accessible to a concerned party so that the concerned party may request current motion information and/or past motion and/or seizure information.
  • input system 204 may include an interface for receiving messages from a PDA or cell phone or may include a PDA and/or cell phone.
  • Memory system 206 may include, for example, any one of, some of, any combination of, or all of a long term storage system, such as a hard drive; a short term storage system, such as random access memory; a removable storage system, such as a floppy drive or a removable drive; and/or flash memory.
  • Memory system 206 may include one or more machine-readable mediums that may store a variety of different types of information.
  • the term machine-readable medium is used to refer to any medium capable carrying information that is readable by a machine.
  • One example of a machine-readable medium is a computer-readable medium.
  • Another example of a machine-readable medium is paper having holes that are detected that trigger different mechanical, electrical, and/or logic responses.
  • Memory system 206 may store seizure detection engine and/or information about seizures. Memory system 206 will be discussed further in conjunction with FIG. 2B . If system 200 is seizure alert system 112 , memory system 206 is optional, because the processing and storage of seizure information may occur elsewhere.
  • Processor system 208 may include any one of, some of, any combination of, or all of multiple parallel processors, a single processor, a system of processors having one or more central processors and/or one or more specialized processors dedicated to specific tasks.
  • Processor system 208 may run a program stored on memory system 206 for detecting seizures, which may be referred to as a seizure detection engine.
  • Processor system 208 may implement the algorithm of seizure detection system 200 .
  • Processor system 208 may collect the data from one or more accelerometers and/or video sensors.
  • Processor system 208 may implement a detection and analysis algorithm on the data. If system 200 is an embodiment of seizure alert system 112 , processor system 208 is optional, because the processor may be located elsewhere.
  • the processor system may be located at one of at least four locations, which include within an external device such as a PC or laptop, within a handheld device, within a camera, within an accelerometer. Data may be streamed to the external device via a wired connection (such as LAN/USB/Serial) and/or a wireless connection (such as Wifi/BT).
  • the handheld computing device may be a PDA, mobile phone, or other handheld device. In other words, the detection engine and algorithm may reside inside the handheld device. The data may be streamed to the mobile phone or hand-held/PDA, and the processing and/or analysis may be executed on the handheld device.
  • the processor of seizure detection system 100 may be located and built into any one of or any combination of cameras 102 a - n .
  • the processor with the detection engine (the software that analyzes the sensor data to determine whether a seizure occurred) may be embedded inside of any one of or any combination of camera 102 a - n and the detection processing may be carried out inside the camera.
  • processor system 208 may be located within a handheld device, which may be an embodiment of seizure alert system 112 and/or seizure detection system 100 may be a handheld device strapped to patient 108 ( FIG. 1 ) in which processor 208 is located.
  • Communications system 212 communicatively links output system 202 , input system 204 , memory system 206 , processor system 208 , and/or input/output system 214 to each other.
  • Communications system 212 may include any one of, some of, any combination of, or all of electrical cables, fiber optic cables, and/or means of sending signals through air or water (e.g. wireless communications), or the like.
  • Some examples of means of sending signals through air and/or water include systems for transmitting electromagnetic waves such as infrared and/or radio waves and/or systems for sending sound waves.
  • Input/output system 214 may include devices that have the dual function as input and output devices.
  • input/output system 214 may include one or more touch sensitive screens, which display an image and therefore are an output device and accept input when the screens are pressed by a finger or stylus, for example.
  • the touch sensitive screens may be sensitive to heat and/or pressure.
  • One or more of the input/output devices may be sensitive to a voltage or current produced by a stylus, for example.
  • Input/output system 214 is optional, and may be used in addition to or in place of output system 202 and/or input device 204 .
  • FIG. 2B shows a block diagram of an embodiment of memory system 206 .
  • Memory system 206 may include seizure detection algorithm 242 , characteristic seizure data 244 , records on past seizures 246 , and device drivers 248 .
  • memory system 206 may include additional components and/or may not include all of the components listed above.
  • Seizure detection algorithm 242 analyzes motion data to determine whether a seizure has occurred.
  • Characteristic seizure data 244 includes information characterizing a seizure.
  • Characteristic seizure data 244 may include thresholds for various parameters that are indicative of a seizure having taken place.
  • characteristic seizure data may include one or more thresholds for the frequency of oscillation of a various body parts during a seizure, thresholds for frequency of oscillation of the acceleration or other parameter output by the accelerometer and/or a threshold of the frequency of oscillation of cantilever that is part of the an accelerometer that is included within motion detector 110 .
  • Characteristic seizure data 244 may include patterns of data that are indicative of a seizure.
  • Characteristic seizure data 244 may include default data that is not specific to any one individual and/or may include data that is specific to patient 108 .
  • Records of past seizures 246 may store information about seizures as the seizures are happening, which may be reviewed further by at a later date to better determine the characteristics of the seizures that are specific to patient 108 so that seizure detection system 100 may more reliably detect the seizures of patient 108 . Additionally or alternatively, records of past seizures 246 may be used for diagnosing and treating the seizure. In an embodiment, all detection results may be recorded on the hard disk of a PC or on an external memory card (SD, Compact Flash, Memstick etc). In some instances, knowledge of whether a seizure occurred may be important to know the effectiveness of a medication or for other medical reasons. However, some patients are unaware of having experienced a seizure.
  • the data may include images, videos, accelerometer, or other motion sensor data.
  • the data may include plots, summaries and/or other forms of data.
  • the data may be analyzed and reviewed later by a medical professional for diagnosis and/or other medical purposes.
  • Device drivers 248 include software for interfacing and/or controlling the motion detector.
  • FIG. 3 a Motion Detector with Processor
  • FIG. 3A shows a block diagram of an embodiment of motion detector 110 .
  • Motion detector 110 may include output system 332 , input system 334 , transmitter/receiver 336 , processor system 338 , communications system 339 , memory system 340 , which may include seizure detection algorithm 342 , characteristic seizure data 344 , records of past seizures 345 , device drivers 346 , and/or location determining software 348 .
  • Motion detector 110 may also include location determining hardware 350 , motion detection hardware 352 and clock 354 . In other embodiments, motion detector 110 may include additional components and/or may not include all of the components listed above.
  • Output system 332 is optional and may include a display for providing feedback regarding whether various settings are set and/or may provide the values of the current settings.
  • Input system 334 is optional and may include buttons and/or a pad for entering user settings.
  • output system 332 and input system 334 may include an interface for communications line 104 to seizure alert system 112 .
  • Receiver/transmitter 336 may include an antenna, other hardware, and/or software for communicating wirelessly with other devices, such as seizure alert system 112 (e.g., via receiver 114 ).
  • Processor system 338 may be any one of, some of, any combination of, or all of multiple parallel processors, a single processor, a system of processors having one or more central processors and/or one or more specialized processors dedicated to specific tasks.
  • Processor system 338 may run a program stored on memory system for detecting seizures, which may be referred to as a seizure detection engine, and/or may perform other functions.
  • Communications line 339 may be a bus that allows the various components of motion detector 110 to communicate with one another.
  • Memory system 340 may include programs for running motion detector 110 and for interfacing with other equipment.
  • Seizure detection algorithm 342 , characteristic seizure data 344 , records of past seizures 345 , device drivers 346 have essentially the same description as seizure detection algorithm 242 , characteristic seizure data 244 , records on past seizures 246 , and device drivers 248 ( FIG. 2B ), respectively.
  • Location determining software 348 is optional and includes software for determining the location of the patient 108 for situations in which patient 108 is having a seizure in an otherwise unknown location.
  • location determining software 348 and location determining hardware 350 may be global positioning software and hardware (for a GPS system), respectively.
  • Location determining software 348 and location determining hardware 350 are optional and if location determining software 348 and location determining hardware 350 are global positioning software and hardware, location determining hardware 350 may process signals from, and/or communicating with, location determining satellites to produce the location determining data that is further processed by location determining software 348 .
  • Motion detection hardware 352 is the hardware that detects the motion of patient 108 ( FIG. 1 ). Motion detection hardware 352 may include an accelerometer, which may include a cantilever with a weight attached to one end and a circuit for detecting deflections of the cantilever.
  • the seizure detector may be included within a watch, hand strap, leg strap, and/or strapped to another part of the body.
  • an accelerometer/gyro sensor coupled with Bluetooth/Zigbee wireless (or USB or LAN) connectivity may be included in the watch, hand strap, and/or leg strap for detecting seizures.
  • One or more processors may be attached to an arm coupled to the accelerometer or other motion sensor and/or incorporated within or attached to a mobile phone.
  • watch and the mobile phone in combination may provide a complete system that records and analyzes data related to possible seizures. Based on the analysis, there may be a detection of a condition that is expected to be a seizure, and an alert and/or other output communication may be sent.
  • seizure detection system 100 or motion detector 110 may be a seizure detection watch, worn by a patient, for example.
  • the seizure detection watch may contain a wireless transmitter (using Bluetooth/Zigbee/Wifi/RF), an accelerometer or other motion sensor, a battery, and a processor.
  • the sensor detects motion and generates signals that correspond to the motion.
  • the processor processes the signals using a detection algorithm that analyzes the signals and determines (and thereby detects) whether a seizure occurred.
  • the Bluetooth transmitter sends the seizure detection to the outside world via the Bluetooth, SMS, MMS, WAP, or email, IM, IP messages to another device (which may be a mobile phone, PC, Laptop, or PDA).
  • the “smart watch” is an intelligent “seizure detector” device that may do some/all the detection and alerting.
  • the Watch can also have some LED lights and/or buzzer to indicate the status of detection and what the system thinks and decides. Hence patients can look at the LEDs or hear the sound and understand the status. There may or may not be any visual displays, besides these lights and sounds.
  • FIG. 3B shows a block diagram of camera 360 .
  • Camera 360 may include output system 362 , input system 364 , transmitter/receiver 366 , processor system 368 , communications system 369 , memory 380 , which may include seizure detection algorithm 382 , characteristic seizure data 384 , and device drivers 386 .
  • Camera 360 may also include image detector 388 and imaging system 390 .
  • camera 360 may include additional components and/or may not include all of the components listed above.
  • Output system 362 , input system 364 , transmitter/receiver 366 , processor system 368 , communications system 369 , memory 380 , seizure detection algorithm 382 , characteristic seizure data 384 , records on past seizures 385 , and device drivers 386 have similar descriptions to output system 332 , input system 334 , transmitter/receiver 336 , processor system 338 , communications system 339 , memory system 340 , seizure detection algorithm 342 , characteristic seizure data 344 , records on past seizures 345 , and device drivers 346 of FIG. 3A , respectively.
  • seizure detection algorithm 382 characteristic seizure data 384 , records of past seizures 385 , device drivers 386 have a similar description as seizure detection algorithm 242 , characteristic seizure data 244 , records on past seizures 246 , and device drivers 248 ( FIG. 2B ), respectively.
  • seizure detection algorithm 382 FIG. 3B
  • seizure detection algorithm 342 FIG. 3A
  • seizure detection algorithm 342 FIG. 3A
  • device drivers 386 may include device drivers for image detector 388 and/or imaging system 390
  • device drivers 346 FIG. 3A
  • device drivers 346 may include device drivers for motion detection hardware 352 .
  • Image detector 388 converts optical images into electrical signals that represent the image and/or motion.
  • image detector 388 may be a charge couple device.
  • Imaging system 390 is the system of lenses and/or other optical components that form the image on image detector 388 .
  • the video detection algorithm is one component of the overall system.
  • Video detection can use one or more of at least 3 types of algorithms:
  • FIG. 4 Optical Flow Based Detection
  • FIG. 4 is a flowchart of an embodiment of a method 400 of detecting a seizure, based on optical flow.
  • step 402 feature points that can be tracked are determined.
  • optical flow is detected to track the path of a collection of points.
  • Feature points can also be unique or distinguished points on the person body or cloths.
  • Feature points that can be tracked may be corner points and points which exhibit texture in its local neighborhood, for example.
  • the optical flow technique works by first extracting feature points from the frame that can be tracked reliably.
  • Optical Flow Analysis (or) Feature Point Tracking can be different.
  • the optical flow analysis or feature point tracking algorithm then tracks the motion or flow of points across successive frames.
  • the tracking of points may be done in each successive frame or alternatively, some frames can be skipped, depending upon the nature of motion.
  • the paths of the tracked points are analyzed and/or plotted.
  • the plot of the points the position as a function of time, the velocity, and/or acceleration may be extracted.
  • Information is computed or determined that relate to oscillations of a change of parameter of motion, such as the frequency of the change, the amplitude of change, time over which the change occurs (e.g., the period of oscillation), the area swept out by the body part during the oscillatory movements, and/or path traced by the points being tracked.
  • the frequency of, amplitude of, and area swept by the identified points oscillate indicate the frequency of, amplitude of, and area swept out by the oscillation, respectively.
  • the amplitude may indicate the distance that the points and/or corresponding objects (e.g., body parts) are moving. Area may indicate the area swept out by a moving object. The path may indicate the exact nature and movement patterns of the points and/or corresponding objects.
  • the oscillation analysis as above determines whether a motion is classified that of a seizure. Time over which a particular motion occurs may also be indicative of a seizure. There may be a minimum length of time for the seizure and if the motion does not continue over a length of time longer than the minimum length the motion may be classified as not being part of a seizure.
  • Some or all of the above parameters and/or additional parameters may be used to decide if the movement is a seizure. For example, there may be one or more threshold levels for the frequency, amplitude, and area, and if the motion crosses one or more of the thresholds, it may be determined that there is a seizure. Some thresholds may be proportional ratios or functions of these parameters.
  • an alert is activated. In an embodiment, Method 400 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • each of the steps of method 400 is a distinct step.
  • step 402 - 410 may not be distinct steps.
  • method 400 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above.
  • the steps of method 400 may be performed in another order. Subsets of the steps listed above as part of method 400 may be used to form their own method.
  • FIG. 5 is a flowchart of an embodiment of a method 500 of detecting a seizure, based on motion analysis.
  • pairs of a series of images are taken (e.g., via a video).
  • pairs of consecutive images are compared.
  • a video algorithm may analyze a comparison of two images to determine whether there is motion, which may be detected based on pixel changes and image differencing.
  • information that is not expected to be relevant to determining whether there was seizure is eliminated using standard techniques. For example, information about lighting and shadows may be eliminated.
  • the motion signature, duration, length, and/or area are all used to see the abnormal motion behavior. Seizure patterns can are learned and compared.
  • step 508 if it is determined that a seizure is occurring, an alert is activated.
  • step 506 if it is determined that no seizure occurs, method 500 terminates.
  • termination method 500 may restart on another set of data.
  • many instances of method 500 may be performed concurrently on different set of data. For example, after a first instance of method 500 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 500 terminates.
  • method 500 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • each of the steps of method 500 is a distinct step.
  • step 502 - 508 may not be distinct steps.
  • method 500 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above.
  • the steps of method 500 may be performed in another order. Subsets of the steps listed above as part of method 500 may be used to form their own method.
  • FIG. 6 is a flowchart of an embodiment of a method 600 of detecting a seizure, based on patterns of motion vector patterns.
  • step 602 a series of images is taken.
  • step 604 motion vectors are computed. Specifically, two-dimensional vectors that provide offsets from the coordinates in one picture frame to the coordinates in another picture frame are computed. The vectors may be created in a manner similar to the motion vectors created for compression methods or same motion vectors from the compressed video may be used. In an embodiment, the motion vectors are created using IP cameras.
  • movement pattern signatures are determined from the motion vectors.
  • step 608 the movement pattern signatures measured are compared to movement pattern signatures of seizures.
  • a signature may be used for comparison with pattern signatures that are determined to fit a signature that results from a seizure, and if the signature of the pattern measured is close enough to (e.g., within a threshold value of the root mean square of the differences between) the signature of the seizure, an indication that a seizure occurred is generated.
  • an alert it activated.
  • method 600 terminates. After termination method 600 may restart on another set of data. In an embodiment, many instances of method 600 may be performed concurrently on different set of data. For example, after a first instance of method 600 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 600 terminates. In an embodiment, method 600 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • the algorithm may also be a hybrid algorithm of all 3 video detection methods; or, it may also be a combination/hybrid of Video and Motion/Accelerometer/Sensor algorithms joined and fused together.
  • each of the steps of method 600 is a distinct step.
  • step 602 - 610 may not be distinct steps.
  • method 600 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above.
  • the steps of method 600 may be performed in another order. Subsets of the steps listed above as part of method 600 may be used to form their own method.
  • FIG. 7 is a flowchart of an embodiment of a method 700 of detecting seizures by measuring motion, via an accelerometer (and/or gyro sensor).
  • An accelerometer sensor provides the acceleration and orientation of the body.
  • the accelerometer is secured to the patient's hand, arm, legs, and/or any other part of body that shakes and has the seizure movements. The following steps are used to detect the seizure from the accelerometer data.
  • the sensor data is obtained by a time based sampling of the motion. For example, 1000 or 10,000 samples per second are collected. In an embodiment, the samples may be an amount of deflection of a cantilever.
  • the data sampling may be in any one or all X, Y, and Z axes.
  • the data per axis may be one dimensional numerical accelerometer data.
  • the motion data may be sampled over time. Hence for the X and Y axes, there will be two data streams. For triple axes data from axes X, Y, and Z, there will be 3 data streams.
  • the amplitude and frequency are measured as part of the time based data stream.
  • the amplitude, frequency, change of position, and acceleration may be measured from the accelerometer or other motion sensor data.
  • the data may be tracked over time. The data can be tracked in every time interval or specified time internals may be skipped. The time intervals at which the data is sampled define the sampling frequency.
  • step 704 the path of the data is analyzed or plotted. Data such as points, position, acceleration, velocity, and/or speed are extracted. If the points, positions, velocities, and acceleration were already determined as part of step 702 , step 704 may be skipped.
  • an oscillation analysis is performed, as described above, may be used to determine whether a seizure takes place.
  • the frequency, amplitude, time, and/or path of the oscillation may be determined. Frequency may determine how frequently the sensor and objects oscillate.
  • the amplitude may indicate the amount of distance that the objects move.
  • the path may indicate the exact nature and movement patterns of the objects.
  • the frequency, amplitude, and/or path may be used to analyze oscillations and decide if the movement is a seizure.
  • method 700 terminates. After termination method 700 may restart on another set of data. In an embodiment, many instances of method 700 may be performed concurrently on different set of data. For example, after a first instance of method 700 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 700 terminates. In an embodiment, method 700 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • the detection algorithm can use any of one or more of the following mathematical methods.
  • the peak and amplitude of the oscillation are checked, and compared to thresholds value of the peaks and amplitude. In an embodiment, if the peak and/or amplitude are greater than the threshold, then a determination is made that the oscillation is associated with a seizure.
  • An absolute and/or relative threshold may be used to find abnormalities, which may indicate a seizure.
  • a search is made for repeated peaks and valleys in the one dimensional sensor data (for X, Y, and/or Z).
  • This technology uses the motion vector patterns based algorithm. Repeated and distinguished peaks and valleys may indicate seizures.
  • a search is made for duplicate peaks on other axes.
  • one axis may have stronger peaks while the others may have weaker peaks.
  • all axes can be stronger or weaker.
  • neighboring axes can provide a valuable confirmation when the peaks on one axis have corresponding peaks on another axis.
  • neural networks or other learning methods may determine abnormal patterns to detect seizures.
  • exact template patterns or signal patterns can be used to match other signal patterns.
  • a prior known seizure pattern can be used to compare the signal pattern with the known template and if the pattern detected matches the known seizure pattern within a given tolerance, then it is expected that a seizure occurred.
  • These neural networks or other machines using other learning methods may be either supervised or unsupervised learning.
  • the position may be analyzed by determining the first derivative and the second derivative of a signal that is indicative of the position as a function of time.
  • the first and second derivative of the position signal may be monitored to determine whether the first and second derivative are within a range that is considered to be an average and/or normal change of position (an average and normal first derivative dx/dt and an average and normal rate of change of position, which is the 2 nd derivative, d 2 x/dt 2 ).
  • an indication is generated that a seizure may have been detected.
  • the periodic changes of the first and second derivative are outside of a certain range, it may be an indication that a seizure has occurred.
  • Periodic changes in the second derivate are the third derivates, which are the impulses, which may be used to characterize jerky motion. Similarly, if the third derivative (or another derivative) is beyond a threshold or is not within a range that is considered normal, an indication that a seizure occurred may be generated. Additionally, if the pattern of times at which the third derivatives rise above a certain threshold matches that of a known pattern for a seizure and/or occur at a frequency that is expected to be indicative of a seizure, an indication that a seizure has occurred in generated.
  • statistical learning or probabilistic methods are used.
  • Machine learning strategies based on Bayesian Network (Bayes net) and HMM (Hidden Markov Models) and other statistical learning or probabilistic methods can be used for detection of seizure.
  • local, regional, and/or global features are detected.
  • the features may be a collection of data taken from a neighborhood of a signal with temporal information.
  • Local features are characteristics of signal and/or data in a small region of the data.
  • Local features are a function of time (e.g., the features of a plot of the signal as a function of time), regional features covers more time, and global features are an average or a collection of local/regional features over longer time. Both local and global features can be a combination of both shape and time/temporal based.
  • the local and global features are detected and compared to known local, regional and global features that are expected to characterize seizure features to determine whether a seizure has occurred. If the local, regional and global features that are associated with a seizure occur, then a signal is generated indicating that seizure has occurred.
  • a person's seizure data or motion signature may be measured as a seizure occurs.
  • “Seizure detection” parameters frequency, amplitude, patterns) can be customized as a “seizure signature” for each patient. This signature can be adjusted and configured for each patient if required for higher accuracy, as opposed to standard factory defaults.
  • the person's signature may be determined over time. Then the detection algorithm will adapt and fine-tune the seizure detection parameters based on the individuals' signature patterns—such as frequency, amplitude, time, area, path, and/or other parameters).
  • FIG. 8 shows a graph 800 of three orthogonal components of acceleration of an arm.
  • Graph 800 includes a vertical axis 802 a - c , horizontal axis 804 a - c , and plots 806 , 808 , and 810 .
  • Horizontal axis 802 a - c is the time axis
  • vertical axes 804 a - c are the amplitude axes.
  • Plots 806 , 808 , and 810 are plots of each of the three components of acceleration labeled X, Y, and Z, which are measured in a reference frame that is stationary with respect to the wrist.
  • Graph 800 shows 9 peaks with about 5 second.
  • the threshold for the number of peaks within a window of 6 seconds should be 9 peaks or less.
  • the magnitude for the peaks of the y component of acceleration is 6 cm/sec 2
  • the threshold for a single component of acceleration should be less than 6 cm/sec 2 .
  • FIG. 9 shows a graph 900 of two parameters of motion.
  • Graph 900 includes a vertical axis 902 , horizontal axis 904 , and plots 906 , 908 , and 910 .
  • Horizontal axis 902 is the time axis
  • vertical axes 904 a - c is the amplitude axis.
  • Plot 906 plots the magnitude of the acceleration vector.
  • Plot 908 plots the first derivative of the magnitude of acceleration.
  • Plot 910 is also a plot of the are plots of the first derivative of the magnitude of acceleration. However, peaks that were below a predetermined threshold were removed. If the number of peaks within a specified window of time are greater than predetermined number, it is an indication of a seizure.
  • the units for acceleration are m/sec 2 and the units for impulse or jerk are m/sec 3 .
  • the threshold for the magnitude of acceleration may be about 7 m/sec 2 .
  • the threshold for a “jerk” or impulse may be about a number less than 4 m/sec 3 e.g., 3 m/sec 3 , 3.5 m/sec 3 , or 3.8 m/sec 3 .
  • the threshold for the frequency of peaks in acceleration may 3 /(3 seconds) (e.g., 1 Hz). The number peaks in a window of 3 seconds there should be at least 3 peaks.
  • the threshold for the number of peaks in the impulse should be at least 3, and within a window of about 3 seconds there should be at least 3 peaks in the impulse/jerk.
  • the units and the values for the thresholds above may be proportional to those given above.
  • FIG. 10 shows an embodiment of a seizure detection, analyzing, and monitoring device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Geometry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Developmental Disabilities (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

In an embodiment, a seizure monitor provides intelligent epileptic seizure detection, monitoring, and alerting for epilepsy patients or people with seizures. In an embodiment, the seizure monitor may be a wearable, non-intrusive, passive monitoring device that does not require any insertion or ingestion into the human body. In an embodiment, the seizure monitor may include several output options for outputting the accelerometer/gyro or other motion sensor data and video data, so that the data may be immediately validated and/or remotely viewed. The device alerts and communicates to the outside care givers via wirelessly or wired medium. The device may also support recording of accelerometer or other motion sensor data and video data, which can be reviewed later for further analysis and/or diagnosis. The device and invention is also used and applicable for other body motion disorders or detection and diagnostics.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 12/154,085 (Docket #64-1), entitled “Abnormal Motion Detector and Monitor,” filed May 19, 2008, by Vaidhi Nathan, et al., which claims priority benefit of U.S. Provisional Patent Application No. 60/930,766, and which are both incorporated herein by reference.
  • FIELD
  • This specification is related to medical devices.
  • BACKGROUND
  • The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
  • Over two million people (about 1-3% of the population) suffer from epileptic seizures in the United States. During a seizure the patient is unable to get help, talk, think, or act. In many cases it is very important for doctors and caregivers to be able to detect seizures and give the patient immediate help. There are some types of seizures, if not attended to, that can be fatal. Currently there are no home or personal seizure monitoring or detecting devices. There are Electroencephalography (EEG) machines, which measure electrical activity in the brain. However, EEGs are for hospital use and are large and expensive. The EEGs may analyze brainwaves to detect the onset or the occurrence of a seizure. EEGs require probes to be mounted on the patients' scalp to sense, extract, and transmit data. The probes are uncomfortable, intrusive, and awkward—restricting patients' movements and cause scarring. In addition, the graphs from the EEGs need to be reviewed and interpreted manually by trained personnel, such as nurses and medical assistants.
  • BRIEF DESCRIPTION
  • In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples of the invention, the invention is not limited to the examples depicted in the figures.
  • FIG. 1 shows a block diagram of an embodiment of seizure detection system 100.
  • FIG. 2A shows a block diagram of a system, which may be incorporated within the system of FIG. 1.
  • FIG. 2B shows a block diagram of an embodiment of a memory system.
  • FIG. 3A shows a block diagram of an embodiment of a motion detector.
  • FIG. 3B shows a block diagram of a camera.
  • FIG. 4 is a flowchart of an embodiment of a method of detecting a seizure, based on optical flow.
  • FIG. 5 is a flowchart of an embodiment of a method of detecting a seizure, based on motion analysis.
  • FIG. 6 is a flowchart of an embodiment of a method of detecting a seizure, based on patterns of motion vector patterns.
  • FIG. 7 is a flowchart of an embodiment of a method of detecting seizures by measuring motion, via accelerometers and/or gyro sensors.
  • FIG. 8 shows a graph of three orthogonal components of acceleration of an arm.
  • FIG. 9 shows a graph of two parameters of motion.
  • FIG. 10 shows an embodiment of a seizure detection, analyzing, and monitoring device.
  • DETAILED DESCRIPTION
  • Although various embodiments of the invention may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments of the invention do not necessarily address any of these deficiencies. In other words, different embodiments of the invention may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
  • In general, at the beginning of the discussion of each of FIGS. 1-3 is a brief description of each element, which may have no more than the name of each of the elements in the one of FIGS. 1-3 that is being discussed. After the brief description of each element, each element is further discussed in numerical order. In general, each of FIGS. 1-7 is discussed in numerical order and the elements within FIGS. 1-7 are also usually discussed in numerical order to facilitate easily locating the discussion of a particular element. Nonetheless, there is no one location where all of the information of any element of FIGS. 1-7 is necessarily located. Unique information about any particular element or any other aspect of any of FIGS. 1-7 may be found in, or implied by, any part of the specification.
  • In an embodiment, a seizure monitor provides intelligent epileptic seizure detection, monitoring, and alerting for epilepsy patients and/or other people that experience seizures. In an embodiment, the seizure monitor is a small consumer usable device that is wearable and can be setup and used easily by patients. In an embodiment, the seizure monitor is compact and low cost. The seizure monitor may have at least any one of the following three different configurations or embodiments using—(i) motion sensor data (such as data from accelerometers, gyroscope sensors and/or other motion sensor data), or (ii) video data, and/or (iii) hybrid data (which may include both video and accelerometer or other motion sensor data). In an embodiment, the seizure monitor may be a wearable, non-intrusive, passive monitoring device that does not require any insertion or ingestion into the human body. In an embodiment, the seizure monitor may include several flexible and easy output options for outputting motion data, so that the data may be immediately validated and/or remotely viewed. The seizure monitor may also support recording of motion data that can be reviewed later by a medical professional for further analysis and/or diagnosis.
  • Seizure Detection System (FIGS. 1-3 b)
  • FIG. 1A shows a block diagram of an embodiment of seizure detection system 100. Seizure detection system 100 may include cameras 102 a-n, communications line 104, surfaces 106 a-m, patient 108, motion detector 110, and receiver 112. In other embodiments, seizure detection system 100 may include additional components and/or may not include all of the components listed above.
  • Seizure detection system 100 may detect, monitor, and/or alert an concerned party of the onset and occurrence of epileptic seizures in patients. In this specification the term “concerned party” includes any entity or person that may have an interest in knowing about the occurrence of a seizure, such as caregiver, medical professional, close friend, or relative of the patient. In an embodiment, seizure detection system 100 may be passive, compact, and/or non-intrusive.
  • Although throughout the specification seizure detection system 100 is discussed, seizure detection is just one example of a motion disorder that may be detected with seizure detection system 100. Although the discussion of this specification focuses on seizure monitoring and detection, there are other motion based diagnostics or body motion analysis that may be performed using the same system.
  • Each analysis can be different. But the HW can use the same. Just the rules or conditions or pattern recognition can be different.
  • Cameras 102 a-n may include any number of cameras, which film a patient in order to capture on film images that may be analyzed to determine whether a seizure is in progress. As also elaborated upon elsewhere, cameras 102 a-n are optional. Cameras 102 a-n are optional, and may be replaced with another form of detecting seizures, such as motion detectors. For example, another type of motion detector, such as infrared detectors, may be used instead of, or in addition to, cameras 102 a-n. Although cameras 102 a-n are illustrated as being mounted on surfaces within a premise of the patient, cameras 102 a-n may be mounted on the patient, and instead of observing the patient to determine the motion of the patient, the motion of patent may be inferred from the images of the surroundings of the patient, for example.
  • Optical sensors, such as video camera 102 a-n can be used to monitor the patient and detect seizure-like activities. Seizure-like activities may offer unique motion patterns and can be distinguished from non-seizure-like activities. Easily distinguishable feature points (or feature points corresponding to particular body parts that are significant in determining whether or not a seizure is in progress) in the scene can be computed (such as those on the person or an object) and the temporal motion patterns of the feature points (such as points on the person's body or clothes) can be analyzed across frames for detection of any abnormal activity. Some motion patterns of interest could be large movements in short periods of time, repetitive movements, back-and-forth movements, etc. Further, some special seizure activities offer very characteristic and predictable motion patterns, a prior knowledge of which can be utilized effectively to detect such cases.
  • Communications line 104 communicatively connects cameras 102 a-n to a processor (for analyzing the motion data and determining whether a seizure is occurring) and/or seizure alert system. In an embodiment, instead of or in addition to communications line 104, cameras 102 a-n may communicate wirelessly with a processor and/or seizure alert system.
  • Surfaces 106 a-m support cameras 102 a-n. Patient 108 suffers from seizure and is monitored by the rest of seizure detection system 108 to determine whether a seizure has occurred. In this specification the word “patient” refers to any individual that is being monitored to determine whether a seizure is occurring.
  • Motion detector 110 is mounted on patient 108 so that motions of the patient may be measured. In an embodiment, motion detector 110 is an accelerometer, a gyro sensor, and/or a hybrid of both. Motion detector 110 communicates wirelessly (or via wires) with a seizure alert system. Motion detector 110 may include a transmitter for transmitting information about motion measured by motion detector 110. Optionally, motion detector 110 may include a location determining unit (e.g., a global positioning unit) for determining the location of patient 108 and transmitting the location of the patient 108 to a concerned party. In an embodiment there are multiple motion detectors 110 mounted on patient 108. In another embodiment, there is only one motion detector 110 mounted on patient 110. If motion detector 110 is a small accelerometer (and/or gyro sensor), no other element needs to be worn or placed on patient 108, and the accelerometer (and/or gyro sensor) may be passive and non-intrusive. Although often in this specification an accelerometer and/or gyro are referred to another motion sensor(s) may be used instead. The detection of the seizure or movement patterns can be done inside the watch itself. The results and/or an alert may be sent outside via wireless or wired medium. Alternatively, the watch can simply send only the sensor data, and the detection and decision can be made outside on the phone or a computer outside the watch sensor. Both options are viable.
  • One way of detecting seizures is to monitor the motion of one or more parts of the body of patient 108. During a seizure there are rapid and jerky movements of one or more body parts, such as the hands, legs, torso, and head. Seizures can be detected by measuring the change in output of a motion detector, the frequency of the change, and/or amplitude of the change indicating a movement of one or more body parts.
  • There are different types of motion detectors, which may be used of motion detector 110. One type of motion detector is an accelerometer, which measures acceleration. Ordinarily, when stationary, each part of the body experiences the acceleration of gravity (an accelerometer cannot tell the difference between a body being accelerated as a result of the body's changes in velocity and the body being pulled by a force, such as gravity). From the changes in acceleration, changes in position and/or velocity may be inferred. When a body part moves, the acceleration of the body part changes, and thus the change in the acceleration indicates a motion. Another type of sensor data is gyro sensor data. Gyro sensors may detect the rotation along X, Y, and/or Z axes. The rotation angles and position can also be used to detect motion and particular types of motion. While accelerometer measures linear axis changes, gyros measure the rotation changes.
  • The sensor that is used as motion detector 110 may a small device that can fit into an enclosure the size of a wristwatch. The motion data may be measured in two-dimensions (e.g., along two perpendicular axes, which may be referred to as the X and Y axes) and/or three-dimensions (e.g., along three perpendicular axes, which may be referred to as the X, Y, and Z axes). Acceleration, frequency, and amplitude (angle, angular velocity, angular acceleration, and angular impulse or jerk) values above a certain threshold are indicative of abnormal body movements that occur during a seizure. If two two-dimensional (X,Y) motion sensors are used as motion detector 110, each of the two-dimensional (X,Y) motion sensors may be paced along perpendicular axes. The two-dimensional and/or three-dimensional motion sensors can be useful to detect the jerky and back and forth movements. The detection algorithm is discussed below. Motion detector 110 can be positioned and/or mounted on the patient's arms, legs, bedclothes, and/or the bed itself. Motion detector 110 placed on the patient's body may be more effective and accurate in detecting seizures.
  • Seizure alert system 112 alerts a concerned party when a seizure occurs. Seizure alert system 112 may be a PC, laptop, PDA, mobile phone bell, and/or other unit capable of indicating an alert. Information in signals from cameras 102 a-n and/or motion detector 110 are analyzed, and if it is determined that a seizure is occurring, an alert is output from alert system 112. Seizure alert system 112 may include a monitor for displaying seizure alerts and/or for displaying motion data. In an embodiment, seizure alert system 112 may include a processor for analyzing the signals from cameras 102 a-n and/or motion detector 110. In an embodiment, system 100 is a general purpose alerting system and can also alert other motion disorders.
  • Motion sensors that are included within motion detector 110 may be attached to the wrist explicitly capture the motion along the x, y, and z directions. The data obtained may be a time sequence of the instantaneous acceleration experienced by the sensor. Several approaches can be used here to detect any abnormal seizure-like activities. These approaches can be divided broadly into two categories:
  • In an embodiment, a processor, which may be located in seizure alert system 112 or elsewhere may run algorithms to determine whether a seizure is occurring, and when it is determined that a seizure is occurring alerts may be output from seizure alert system 112. In an embodiment, along with the alerts, one or more confirmation images and/or accelerometer or other motion sensor plots may also be sent to a concerned party, such as a doctor and/or other caregiver. The alert may be sent, via SMS, MMS, email, IM, or WAP or other message protocol. The alert may include an alert message, alarm signal, beeps, local in-device sound alerts, and/or alarms, which may be produced by a PDA, mobile phone, or other device, which may have built in alarms and alerts.
  • Receiver 114 receives signals from transmitters on wireless units such as motion detectors 110. Receiver 114 is optional. If cameras 102 a-n do not communicate via communications line 104 (e.g., if communications line 104, is not present), receiver 114 may receive signals from cameras 102 a-n. Thus, depending on the embodiment, seizure detection system 100 may detect motion via video data from cameras 102 a-n, sensor data from motion detector 110, and/or hybrid data (which is data based on both cameras 102 a-n and/or sensor data from motion 110).
  • One example of an embodiment encompassed within FIG. 1 may include input sensors (video and/or motion sensors, such as accelerometers), one or more computers for receiving and processing data from the sensors, connectivity interfaces, and a system for remotely monitoring and for alerting (e.g., sending an alarm) a concerned party. The connectivity interface may include any of a number of communications interfaces, such as Bluetooth interfaces and/or Wifi, wireless interfaces, and/or wired interfaces, which may use IP/LAN connections and/or serial port connections, such as USB.
  • Another example of an embodiment encompassed within FIG. 1 may be a video based system, which may include one or more cameras (such as analog cameras, WebCam cameras, and/or IP/Network cameras) and/or IR detectors and/or illuminators for nighttime monitoring and analysis. The cameras may be color or infrared cameras, for example. The cameras can be connected to the a Personal Computer (PC) and/or any computing device, via (i) a wireless interface, such as a WIFI/LAN interface, a Serial/USB wireless interface, and/or BlueTooth interface, and/or (ii) a wired interface such as a LAN and/or Ethernet interface. Video data is received by the computing device analyzed and/or processed. The results of the analysis and/or processing are transmitted to the concerned party. Alternatively, processing intelligence, an analysis engine, and/or algorithms that reside in the computing device may be embedded and/or otherwise built into the camera resulting in a “Smart Camera.” In an embodiment, there may be a camera and optional IR illuminators for nighttime monitoring and analysis, and there may not be an accelerometer. There may be a processor that executes the algorithm, and processor may be located inside or outside of the camera. Detection as a result of analyzing the motion data may occur within the processor in the camera or in a processor located elsewhere. Alerts may be communicated via an external media to a concerned party.
  • In a video based embodiment, the input data to the processor may be a stream of video data from the camera. The camera may be connected to a PC or other computing device, such as a PDA or smart mobile phone. The camera may also have an intelligent processor embedded inside, that processes and analyzes the input data.
  • In a film based seizure detection system, alerts and other output may communicate via alarms, SMS, MMS, IM, WAP message, email, or a phone call to the concerned part. Alerts may be sent either over a LAN (a wired network), a wireless network, or over a GSM/cellular mobile network.
  • In an embodiment, the motion data from cameras 102 a-n and/or from motion detector 110 is transformed into the frequency domain, via a Fourier transform, or wavelet transform. In the frequency domain, the motion data is analyzed to see whether the motion data includes unique features in the frequency domain (such as larger coefficients corresponding to high frequency components) that are expected to be found in motion data from a seizure. Performing a Fourier transform on a set of data taken within a particular window of time may be taken, (which may be referred to as a “windowed Fourier transform” and) which may capture the local nature of the signal. Similarly, orthogonal wavelet transforms (such as Daubechies) or another transform of the motion data may be taken (which may also provide a local representation of the signal in terms of the set of basis functions). The transformed may then be scanned for large coefficients of basis vectors that are expected to be associated with a seizure. The recognition seizure motion patterns in the frequency domain may be performed based on a supervised or unsupervised learning.
  • In an embodiment, there may be a motion sensor (an accelerometer or gyro sensor) without any video camera, which is simpler and cheaper. There may be a processor that operates the algorithm, and processor may be located inside or outside of the motion sensor. In other words, detection may be performed via an algorithm executing within the processor to determine if a particular motion is a seizure. Alerts may be communicated from the processor via external any of a number of media to a concerned party.
  • In the embodiment that is based on a motion sensor, the input data may be a stream of analog or digital signals or values from the accelerometer/gyro sensor. The accelerometer or other motion sensor may have a built in processor to interpret and process the input data. Alternatively the accelerometer or other motion sensor may be connected to a PC or other computing device, such as a smart mobile phone or PDA. The processor may execute seizure detection algorithms.
  • In the embodiment, that in which an accelerometer is the motion detector 110, alerts and other output may be communicated via alarms, SMS, WAP messages, email, or phone calls to the people specified. Alerts may be sent either over LAN (wired) or wirelessly or over the GSM/cellular mobile networks.
  • In an embodiment, both video camera and accelerometer/gyro sensor may be used to determine whether there is a seizure. This embodiment may include features and elements of both video and accelerometer/gyro sensor systems, mentioned above. Both detectors may run in parallel. Images from the video system may be used for additional confirmation and validation of the data from the accelerometer systems. These systems may run 24 hours per day, seven days a week, 365 days per year, all the time, or on an as-needed basis. The seizure detection system 100, seizure alert system 112, cameras 102 a-n, motion detector 11 may be powered externally or may be powered by a battery. In an embodiment, there may be multiple levels or thresholds. For example there may be two levels or thresholds each indicating a different degree of danger or indicating a different degree of certainty that a seizure occurred. In some cases, there may be a threshold for even suspected conditions may be recorded. In one embodiment, one threshold or level may indicate that there is a problem that is observed, which may record the event or condition without actually activating an alert and at a second level or threshold an alert may be activated. Activating the alert may include sending a communication indicating the alert. In an embodiment, alerts are sent for only conditions or seizures that pass certain conditions or levels. In an embodiment, there may be a button to indicate that there is a seizure occurring now, which may include an ask-for-help button. In an embodiment, the patient may be able to manually trigger the alert to be activated. In an embodiment, if the system detects a problem, but the patient is fine, the patient can press a button and indicate to ignore the alarm and that the call this false alarm. These thresholds can be adjusted by the patient/user. Each user may have different threshold or personal requirement on when to record and when to alert. The system may provide two adjustable sets of thresholds that can be modified. One set of thresholds is for sending an alert and one set of thresholds is for recording events that have seizure-like characteristics, but are expected not to be a seizure or for events that are near the borderline between being a seizure and not being a seizure. The input parameters may be entered manually by the user, stored, and reused, so that the user not need to input the parameters every time system 100 is turned on or put in use.
  • In this approach, we utilize the input signal as is. The data can be windowed (overlapping) over short durations of time and the range of values examined. It is expected that non-seizure-like activities exhibit value fluctuations only within a short range of values of acceleration (or gyro sensor), that is, the difference between the minimum acceleration value and the maximum acceleration value over a short period of time is bounded by two relatively close values. On the other hand, seizure-like activities exhibit a larger fluctuation and the difference between the minimum acceleration value and the maximum acceleration value.
  • There at least are four strategies to implement the detection system. Any one of these four strategies is sufficient and can be used to do the detection (1) learning based and/or (2) rules, conditions and/or logic based, (3) probabilistic/statistical models and detection methods and (4) analysis of local, regional, global features which include both data and temporal information. A hybrid of any combination these four strategies can also be used. Seizure detection system 100 may be based on learning system and incorporate supervised or unsupervised learning, which may include one or more neural-networks, machines that perform pattern recognition methods and/or support vector machines, for example. In embodiments including unsupervised learning, positive and negative data samples are provided to seizure detection system 100 as training examples for classifying patterns of behavior as seizure or non-seizure motion patterns. After being fed the training examples, seizure detections system 100 is able to make a determination as to whether other motion patterns are associated with seizures. By using unsupervised learning, after a training session and/or after learning from experience with actual motion patterns of patient 108, seizure detection system 100 is able to detect seizures having motion patterns that do not have features that are otherwise common amongst most other seizure-like activities. For example, a neural-network or a Support Vector Machine can be trained based on positive and negative data samples.
  • Alternatively, the detection system or algorithm can be based on rules, conditions, or equations and pre-defined logic that is patient independent. For example, the rule or logic can be to compute the local peaks of motion jerks. If there are N jerks happen within M seconds, then the motion may be determined to be seizure. For example, if the number of jerks are greater than 5 within 3 seconds, then it is a seizure. Typical rules/logic will use one or more conditions or criteria based on: frequency/number of motion/jerks within a time frame, amplitude of the motion, continued change or duration of this motion, 1st or 2nd degree change of these values above. These rules/logic/conditions will change between the type of seizures like TonicClonic, Partial or Complex Seizures etc. Caregivers or patients can also adjust these rules/conditions/thresholds, to better suit their individual needs and type of seizures. There can also be defined set of types of conditions or detection rules templates, built in and users can select and chose and test different ones and pick the ones they like most.
  • In an embodiment, the motion data form cameras 102 a-n and/or from motion detector 110 is transformed into the frequency domain, via a Fourier transform, or wavelet transform. In the frequency domain, the motion data is analyzed to see whether the motion data includes unique features in the frequency domain (such as larger coefficients corresponding to high frequency components) that are expected to be found in motion data from a seizure. Performing a Fourier transform on a set of data taken within a particular window of time may be taken, (which may be referred to as a “widowed Fourier transform” and) which may capture the local nature of the signal. Similarly, orthogonal wavelet transforms (such as Daubechies) or another transform of the motion data may be taken (which may also provide a local representation of the signal in terms of the set of basis functions). The transformed may then be scanned for large coefficients of basis vectors that are expected to be associated with a seizure. The recognition seizure motion patterns in the frequency domain may be performed based on a supervised or unsupervised learning.
  • In an embodiment there may be a bank of motion detectors, which may include any combination of cameras 102 a-n, motion detector 110, other hybrid motion detectors, and/or other motion detectors, as described above, each running in parallel. The usage of a bank of motion detectors creates a system that is very robust and that detects seizures with a high level of accuracy.
  • In an embodiment, an accelerometer in a watch measures the accelerations in the three directions, ax, ay, and az. Optionally, from the individual components that magnitude can be computed from a=SQRT(ax 2+ay 2+az 2). Optionally, the magnitude may be used to compute the absolute first derivative of the acceleration v=|an−an-1|, which is equivalent to “jerk.” Optionally, the absolute second derivative may be computed v′=|an−2an-1+an-2|. The first and/or second derivative of each component may be computed and/or the first and/or second derivative of magnitude may be computed. In an embodiment, a count is performed of all of the peaks of the first and/or second derivative that occur during a specified time window that are above a certain threshold. If the number of peaks is greater than a threshold number, it is assumed that a seizure is occurring.
  • If a preset number of peaks in the amplitude of the acceleration are obtained within a certain time interval, then it is considered to be a seizure. If less than the preset number of peaks in the amplitude of the acceleration are obtained within the time interval, then it is assumed that a seizure did not occur. In an embodiment, the variation of each component of acceleration is analyzed separately (in addition to or instead of analyzing the magnitude of the acceleration). During a seizure, in each component of the acceleration, the peaks may be more frequent and shorter than for the amplitude, and consequently, for each component of acceleration, the threshold for the number of peaks (that is considered indicative of a seizure) in a given time period may be set higher and the threshold for the amplitude of the peaks (that is considered indicative of a seizure) may be set lower than for the magnitude. The positive and negative examples of motion patterns that are fed to a neural network or other learning algorithm may include each component of acceleration and/or the magnitude of the acceleration.
  • FIG. 1B shows a representation an embodiment of seizure detection system 150. Seizure detection system 150 band 152, housing 154, display 156, and input interface 158. In other embodiments, seizure detection system 150 may include additional components and/or may not include all of the components listed above.
  • Seizure detection system 150 is an embodiment of a seizure detection system that is a device that is also a wristwatch, that is within a device that is a wristwatch, or doubles as a wrist watch. Other embodiments of seizure detection system 150 may be worn elsewhere on an arm, on a hand, on a leg, on a foot, on a chest, and/or other part of a person. Seizure detection system 150 may include a motion detector (not shown in FIG. 1B), such as an accelerometer, for motion detector 110 (FIG. 1A). Band 152 may be used for fastening seizure detection system 150 to a wrist of patient 108 (FIG. 1A). Housing 154 contains the circuitry for seizure detection system 100 (FIG. 1A). Display 156 may display settings of seizure detection system 150, the time, and/or output of seizure detection 156. Input interface 158 may be a series of buttons for inputting settings for seizure detection system 150 and/or for inputting wristwatch settings.
  • FIG. 2A shows a block diagram of system 200, which may be incorporated within the system of FIG. 1. System 200 may include output system 202, input system 204, memory system 206, processor system 208, communications system 212, and input/output device 214. In other embodiments, system 200 may include additional components and/or may not include all of the components listed above.
  • System 200 may be an embodiment of seizure detection system 100 in which seizure detection system 200 is contained within one unit. Alternatively or additionally, an embodiment of seizure detector 112 may be system 200. Output system 202 may include any one of, some of, any combination of, or all of a monitor system, a handheld display system, a printer system, a speaker system, a connection or interface system to a sound system, an interface system to peripheral devices and/or a connection and/or interface system to a computer system, intranet, and/or internet, for example. Output system 202 may include lights, such as a red light and/or a flashing light to indicate a seizure. Output system may include sounds such as beeps, rings, buzzes, sirens, a voice message, and/or other noises. Output system 202 or a part of output system 202 may be kept in the possession of a care taker or in a location that will catch a care taker's attention, such as a PDA, cell phone, and/or a monitor of a computer that is viewed by a care taker. Output system 202 may send an e-mail, make a phone call, and/or send other forms of messages to alert a concerned party about the occurrence of a seizure.
  • Input system 204 may include any one of, some of, any combination of, or all of a keyboard system, a mouse system, a track ball system, a track pad system, buttons on a handheld system, a scanner system, a microphone system, a connection to a sound system, and/or a connection and/or interface system to a computer system, intranet, and/or internet (e.g., IrDA, USB), for example. Input system 204 may include a motion detector and/or camera for detecting high frequency motion. Input system 204 or a part of input system 204 may be kept in the possession of a care taker or in a location easily accessible to a concerned party so that the concerned party may request current motion information and/or past motion and/or seizure information. For example, input system 204 may include an interface for receiving messages from a PDA or cell phone or may include a PDA and/or cell phone.
  • Memory system 206 may include, for example, any one of, some of, any combination of, or all of a long term storage system, such as a hard drive; a short term storage system, such as random access memory; a removable storage system, such as a floppy drive or a removable drive; and/or flash memory. Memory system 206 may include one or more machine-readable mediums that may store a variety of different types of information. The term machine-readable medium is used to refer to any medium capable carrying information that is readable by a machine. One example of a machine-readable medium is a computer-readable medium. Another example of a machine-readable medium is paper having holes that are detected that trigger different mechanical, electrical, and/or logic responses. Memory system 206 may store seizure detection engine and/or information about seizures. Memory system 206 will be discussed further in conjunction with FIG. 2B. If system 200 is seizure alert system 112, memory system 206 is optional, because the processing and storage of seizure information may occur elsewhere.
  • Processor system 208 may include any one of, some of, any combination of, or all of multiple parallel processors, a single processor, a system of processors having one or more central processors and/or one or more specialized processors dedicated to specific tasks. Processor system 208 may run a program stored on memory system 206 for detecting seizures, which may be referred to as a seizure detection engine. Processor system 208 may implement the algorithm of seizure detection system 200. Processor system 208 may collect the data from one or more accelerometers and/or video sensors. Processor system 208 may implement a detection and analysis algorithm on the data. If system 200 is an embodiment of seizure alert system 112, processor system 208 is optional, because the processor may be located elsewhere.
  • As a digression, if seizure detection system 112 is not one unit, the processor system may be located at one of at least four locations, which include within an external device such as a PC or laptop, within a handheld device, within a camera, within an accelerometer. Data may be streamed to the external device via a wired connection (such as LAN/USB/Serial) and/or a wireless connection (such as Wifi/BT). The handheld computing device may be a PDA, mobile phone, or other handheld device. In other words, the detection engine and algorithm may reside inside the handheld device. The data may be streamed to the mobile phone or hand-held/PDA, and the processing and/or analysis may be executed on the handheld device. The processor of seizure detection system 100 may be located and built into any one of or any combination of cameras 102 a-n. In other words, the processor with the detection engine (the software that analyzes the sensor data to determine whether a seizure occurred) may be embedded inside of any one of or any combination of camera 102 a-n and the detection processing may be carried out inside the camera. In an embodiment, processor system 208 may be located within a handheld device, which may be an embodiment of seizure alert system 112 and/or seizure detection system 100 may be a handheld device strapped to patient 108 (FIG. 1) in which processor 208 is located.
  • Communications system 212 communicatively links output system 202, input system 204, memory system 206, processor system 208, and/or input/output system 214 to each other. Communications system 212 may include any one of, some of, any combination of, or all of electrical cables, fiber optic cables, and/or means of sending signals through air or water (e.g. wireless communications), or the like. Some examples of means of sending signals through air and/or water include systems for transmitting electromagnetic waves such as infrared and/or radio waves and/or systems for sending sound waves.
  • Input/output system 214 may include devices that have the dual function as input and output devices. For example, input/output system 214 may include one or more touch sensitive screens, which display an image and therefore are an output device and accept input when the screens are pressed by a finger or stylus, for example. The touch sensitive screens may be sensitive to heat and/or pressure. One or more of the input/output devices may be sensitive to a voltage or current produced by a stylus, for example. Input/output system 214 is optional, and may be used in addition to or in place of output system 202 and/or input device 204.
  • FIG. 2B shows a block diagram of an embodiment of memory system 206. Memory system 206 may include seizure detection algorithm 242, characteristic seizure data 244, records on past seizures 246, and device drivers 248. In other embodiments, memory system 206 may include additional components and/or may not include all of the components listed above.
  • Seizure detection algorithm 242 analyzes motion data to determine whether a seizure has occurred. Characteristic seizure data 244 includes information characterizing a seizure. Characteristic seizure data 244 may include thresholds for various parameters that are indicative of a seizure having taken place. For example, characteristic seizure data may include one or more thresholds for the frequency of oscillation of a various body parts during a seizure, thresholds for frequency of oscillation of the acceleration or other parameter output by the accelerometer and/or a threshold of the frequency of oscillation of cantilever that is part of the an accelerometer that is included within motion detector 110. Characteristic seizure data 244 may include patterns of data that are indicative of a seizure. Characteristic seizure data 244 may include default data that is not specific to any one individual and/or may include data that is specific to patient 108.
  • Records of past seizures 246 may store information about seizures as the seizures are happening, which may be reviewed further by at a later date to better determine the characteristics of the seizures that are specific to patient 108 so that seizure detection system 100 may more reliably detect the seizures of patient 108. Additionally or alternatively, records of past seizures 246 may be used for diagnosing and treating the seizure. In an embodiment, all detection results may be recorded on the hard disk of a PC or on an external memory card (SD, Compact Flash, Memstick etc). In some instances, knowledge of whether a seizure occurred may be important to know the effectiveness of a medication or for other medical reasons. However, some patients are unaware of having experienced a seizure. By storing records of past seizures 246, patient 108 may nonetheless be informed that a seizure was experienced. The data may include images, videos, accelerometer, or other motion sensor data. The data may include plots, summaries and/or other forms of data. The data may be analyzed and reviewed later by a medical professional for diagnosis and/or other medical purposes. Device drivers 248 include software for interfacing and/or controlling the motion detector.
  • Motion Detector with Processor (FIG. 3 a)
  • FIG. 3A shows a block diagram of an embodiment of motion detector 110. Motion detector 110 may include output system 332, input system 334, transmitter/receiver 336, processor system 338, communications system 339, memory system 340, which may include seizure detection algorithm 342, characteristic seizure data 344, records of past seizures 345, device drivers 346, and/or location determining software 348. Motion detector 110 may also include location determining hardware 350, motion detection hardware 352 and clock 354. In other embodiments, motion detector 110 may include additional components and/or may not include all of the components listed above.
  • Output system 332 is optional and may include a display for providing feedback regarding whether various settings are set and/or may provide the values of the current settings. Input system 334 is optional and may include buttons and/or a pad for entering user settings. Optionally, output system 332 and input system 334 may include an interface for communications line 104 to seizure alert system 112. Receiver/transmitter 336 may include an antenna, other hardware, and/or software for communicating wirelessly with other devices, such as seizure alert system 112 (e.g., via receiver 114).
  • Processor system 338 may be any one of, some of, any combination of, or all of multiple parallel processors, a single processor, a system of processors having one or more central processors and/or one or more specialized processors dedicated to specific tasks. Processor system 338 may run a program stored on memory system for detecting seizures, which may be referred to as a seizure detection engine, and/or may perform other functions. Communications line 339 may be a bus that allows the various components of motion detector 110 to communicate with one another.
  • Memory system 340 may include programs for running motion detector 110 and for interfacing with other equipment. Seizure detection algorithm 342, characteristic seizure data 344, records of past seizures 345, device drivers 346 have essentially the same description as seizure detection algorithm 242, characteristic seizure data 244, records on past seizures 246, and device drivers 248 (FIG. 2B), respectively. Location determining software 348 is optional and includes software for determining the location of the patient 108 for situations in which patient 108 is having a seizure in an otherwise unknown location. For example, location determining software 348 and location determining hardware 350 may be global positioning software and hardware (for a GPS system), respectively. Location determining software 348 and location determining hardware 350 are optional and if location determining software 348 and location determining hardware 350 are global positioning software and hardware, location determining hardware 350 may process signals from, and/or communicating with, location determining satellites to produce the location determining data that is further processed by location determining software 348. Motion detection hardware 352 is the hardware that detects the motion of patient 108 (FIG. 1). Motion detection hardware 352 may include an accelerometer, which may include a cantilever with a weight attached to one end and a circuit for detecting deflections of the cantilever.
  • In an embodiment, the seizure detector may be included within a watch, hand strap, leg strap, and/or strapped to another part of the body. For example, an accelerometer/gyro sensor coupled with Bluetooth/Zigbee wireless (or USB or LAN) connectivity may be included in the watch, hand strap, and/or leg strap for detecting seizures. One or more processors may be attached to an arm coupled to the accelerometer or other motion sensor and/or incorporated within or attached to a mobile phone. In an embodiment, watch and the mobile phone in combination may provide a complete system that records and analyzes data related to possible seizures. Based on the analysis, there may be a detection of a condition that is expected to be a seizure, and an alert and/or other output communication may be sent.
  • Hand-Worn “Seizure Detection” Watch
  • In an embodiment, seizure detection system 100 or motion detector 110 may be a seizure detection watch, worn by a patient, for example. The seizure detection watch may contain a wireless transmitter (using Bluetooth/Zigbee/Wifi/RF), an accelerometer or other motion sensor, a battery, and a processor. The sensor detects motion and generates signals that correspond to the motion. The processor processes the signals using a detection algorithm that analyzes the signals and determines (and thereby detects) whether a seizure occurred. As described in conjunction with FIG. 1, the Bluetooth transmitter sends the seizure detection to the outside world via the Bluetooth, SMS, MMS, WAP, or email, IM, IP messages to another device (which may be a mobile phone, PC, Laptop, or PDA). In an embodiment, the “smart watch” is an intelligent “seizure detector” device that may do some/all the detection and alerting. In addition the Watch, can also have some LED lights and/or buzzer to indicate the status of detection and what the system thinks and decides. Hence patients can look at the LEDs or hear the sound and understand the status. There may or may not be any visual displays, besides these lights and sounds.
  • Camera with Processor (FIG. 3 b)
  • FIG. 3B shows a block diagram of camera 360. Camera 360 may include output system 362, input system 364, transmitter/receiver 366, processor system 368, communications system 369, memory 380, which may include seizure detection algorithm 382, characteristic seizure data 384, and device drivers 386. Camera 360 may also include image detector 388 and imaging system 390. In other embodiments, camera 360 may include additional components and/or may not include all of the components listed above.
  • Output system 362, input system 364, transmitter/receiver 366, processor system 368, communications system 369, memory 380, seizure detection algorithm 382, characteristic seizure data 384, records on past seizures 385, and device drivers 386 have similar descriptions to output system 332, input system 334, transmitter/receiver 336, processor system 338, communications system 339, memory system 340, seizure detection algorithm 342, characteristic seizure data 344, records on past seizures 345, and device drivers 346 of FIG. 3A, respectively. Also, seizure detection algorithm 382, characteristic seizure data 384, records of past seizures 385, device drivers 386 have a similar description as seizure detection algorithm 242, characteristic seizure data 244, records on past seizures 246, and device drivers 248 (FIG. 2B), respectively. However, seizure detection algorithm 382 (FIG. 3B) may be tailored for handling optical data, and characteristic seizure data 384 and records of past seizures 385 (FIG. 3B) may be optical data, whereas seizure detection algorithm 342 (FIG. 3A) may be tailored for accelerometer data and characteristic seizure data 344 and records of past seizures 345 (FIG. 3A) may be accelerometer data. Also device drivers 386 (FIG. 3B) may include device drivers for image detector 388 and/or imaging system 390, whereas device drivers 346 (FIG. 3A) may include device drivers for motion detection hardware 352.
  • Image detector 388 converts optical images into electrical signals that represent the image and/or motion. For example, image detector 388 may be a charge couple device. Imaging system 390 is the system of lenses and/or other optical components that form the image on image detector 388.
  • Video Seizure Detection Algorithms
  • The video detection algorithm is one component of the overall system. Video detection can use one or more of at least 3 types of algorithms:
  • 1: Optical Flow based or feature points based
  • 2: Intelligent Motion based and/or Abnormal behavior based motion analysis
  • 3: Motion vectors (which may be used similar to compression methods)
  • Optical Flow Based Detection (FIG. 4)
  • FIG. 4 is a flowchart of an embodiment of a method 400 of detecting a seizure, based on optical flow. In step 402, feature points that can be tracked are determined. optical flow is detected to track the path of a collection of points. Feature points can also be unique or distinguished points on the person body or cloths. Feature points that can be tracked may be corner points and points which exhibit texture in its local neighborhood, for example. The optical flow technique works by first extracting feature points from the frame that can be tracked reliably. Optical Flow Analysis (or) Feature Point Tracking can be different.
  • In step 404, the optical flow analysis or feature point tracking algorithm then tracks the motion or flow of points across successive frames. The tracking of points may be done in each successive frame or alternatively, some frames can be skipped, depending upon the nature of motion.
  • In step 406, the paths of the tracked points are analyzed and/or plotted. For example, the plot of the points the position as a function of time, the velocity, and/or acceleration may be extracted. Information is computed or determined that relate to oscillations of a change of parameter of motion, such as the frequency of the change, the amplitude of change, time over which the change occurs (e.g., the period of oscillation), the area swept out by the body part during the oscillatory movements, and/or path traced by the points being tracked. The frequency of, amplitude of, and area swept by the identified points oscillate indicate the frequency of, amplitude of, and area swept out by the oscillation, respectively. The amplitude may indicate the distance that the points and/or corresponding objects (e.g., body parts) are moving. Area may indicate the area swept out by a moving object. The path may indicate the exact nature and movement patterns of the points and/or corresponding objects. The oscillation analysis as above determines whether a motion is classified that of a seizure. Time over which a particular motion occurs may also be indicative of a seizure. There may be a minimum length of time for the seizure and if the motion does not continue over a length of time longer than the minimum length the motion may be classified as not being part of a seizure.
  • In step 408 a determination is made based on the oscillation information whether a seizure is occurring. Some or all of the above parameters and/or additional parameters may be used to decide if the movement is a seizure. For example, there may be one or more threshold levels for the frequency, amplitude, and area, and if the motion crosses one or more of the thresholds, it may be determined that there is a seizure. Some thresholds may be proportional ratios or functions of these parameters. In step 410, if it is determined that a seizure is occurring, an alert is activated. In an embodiment, Method 400 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • In an embodiment, each of the steps of method 400 is a distinct step. In another embodiment, although depicted as distinct steps in FIG. 4, step 402-410 may not be distinct steps. In other embodiments, method 400 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 400 may be performed in another order. Subsets of the steps listed above as part of method 400 may be used to form their own method.
  • Intelligent Motion Based and Abnormal Behavior Based a Motion Analysis Algorithm (FIG. 5)
  • FIG. 5 is a flowchart of an embodiment of a method 500 of detecting a seizure, based on motion analysis. In step 502, pairs of a series of images are taken (e.g., via a video). In step 504, pairs of consecutive images are compared. A video algorithm may analyze a comparison of two images to determine whether there is motion, which may be detected based on pixel changes and image differencing.
  • In step 506, a determination is made as to whether a seizure has occurred based on the length and duration of the body motion. Optionally, information that is not expected to be relevant to determining whether there was seizure is eliminated using standard techniques. For example, information about lighting and shadows may be eliminated. In the abnormal motion case, the motion signature, duration, length, and/or area are all used to see the abnormal motion behavior. Seizure patterns can are learned and compared.
  • In step 508, if it is determined that a seizure is occurring, an alert is activated. Returning to step 506, if it is determined that no seizure occurs, method 500 terminates. After termination method 500 may restart on another set of data. In an embodiment, many instances of method 500 may be performed concurrently on different set of data. For example, after a first instance of method 500 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 500 terminates. In an embodiment, method 500 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • In an embodiment, each of the steps of method 500 is a distinct step. In another embodiment, although depicted as distinct steps in FIG. 5, step 502-508 may not be distinct steps. In other embodiments, method 500 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 500 may be performed in another order. Subsets of the steps listed above as part of method 500 may be used to form their own method.
  • Motion Vectors Based Algorithm (FIG. 6)
  • FIG. 6 is a flowchart of an embodiment of a method 600 of detecting a seizure, based on patterns of motion vector patterns. In step 602, a series of images is taken. In step 604, motion vectors are computed. Specifically, two-dimensional vectors that provide offsets from the coordinates in one picture frame to the coordinates in another picture frame are computed. The vectors may be created in a manner similar to the motion vectors created for compression methods or same motion vectors from the compressed video may be used. In an embodiment, the motion vectors are created using IP cameras. In step 606, movement pattern signatures are determined from the motion vectors. In step 608, the movement pattern signatures measured are compared to movement pattern signatures of seizures. A signature may be used for comparison with pattern signatures that are determined to fit a signature that results from a seizure, and if the signature of the pattern measured is close enough to (e.g., within a threshold value of the root mean square of the differences between) the signature of the seizure, an indication that a seizure occurred is generated. In step 610, if it is determined, that a seizure is occurring, an alert it activated.
  • Returning to step 608, if it is determined that no seizure occurs, method 600 terminates. After termination method 600 may restart on another set of data. In an embodiment, many instances of method 600 may be performed concurrently on different set of data. For example, after a first instance of method 600 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 600 terminates. In an embodiment, method 600 is repeated for each set of data until motion detector 110 and/or the processor are turned off. Finally, the algorithm may also be a hybrid algorithm of all 3 video detection methods; or, it may also be a combination/hybrid of Video and Motion/Accelerometer/Sensor algorithms joined and fused together.
  • In an embodiment, each of the steps of method 600 is a distinct step. In another embodiment, although depicted as distinct steps in FIG. 6, step 602-610 may not be distinct steps. In other embodiments, method 600 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 600 may be performed in another order. Subsets of the steps listed above as part of method 600 may be used to form their own method.
  • Accelerometer Seizure Detection Algorithm (FIG. 7)
  • FIG. 7 is a flowchart of an embodiment of a method 700 of detecting seizures by measuring motion, via an accelerometer (and/or gyro sensor). An accelerometer sensor provides the acceleration and orientation of the body. The accelerometer is secured to the patient's hand, arm, legs, and/or any other part of body that shakes and has the seizure movements. The following steps are used to detect the seizure from the accelerometer data.
  • In step 702, the sensor data is obtained by a time based sampling of the motion. For example, 1000 or 10,000 samples per second are collected. In an embodiment, the samples may be an amount of deflection of a cantilever. The data sampling may be in any one or all X, Y, and Z axes. The data per axis may be one dimensional numerical accelerometer data. The motion data may be sampled over time. Hence for the X and Y axes, there will be two data streams. For triple axes data from axes X, Y, and Z, there will be 3 data streams. In an embodiment, the amplitude and frequency are measured as part of the time based data stream. The amplitude, frequency, change of position, and acceleration may be measured from the accelerometer or other motion sensor data. The data may be tracked over time. The data can be tracked in every time interval or specified time internals may be skipped. The time intervals at which the data is sampled define the sampling frequency.
  • In optional step 704, the path of the data is analyzed or plotted. Data such as points, position, acceleration, velocity, and/or speed are extracted. If the points, positions, velocities, and acceleration were already determined as part of step 702, step 704 may be skipped.
  • In step 706, an oscillation analysis is performed, as described above, may be used to determine whether a seizure takes place. The frequency, amplitude, time, and/or path of the oscillation may be determined. Frequency may determine how frequently the sensor and objects oscillate. The amplitude may indicate the amount of distance that the objects move. The path may indicate the exact nature and movement patterns of the objects. The frequency, amplitude, and/or path may be used to analyze oscillations and decide if the movement is a seizure.
  • Returning to step 708, if it is determined that no seizure occurs, method 700 terminates. After termination method 700 may restart on another set of data. In an embodiment, many instances of method 700 may be performed concurrently on different set of data. For example, after a first instance of method 700 starts working on one pair of images, a second instance may start working on the next set of data, which may come from the next available pair of images, before the first instance of method 700 terminates. In an embodiment, method 700 is repeated for each set of data until motion detector 110 and/or the processor are turned off.
  • The detection algorithm can use any of one or more of the following mathematical methods. In one embodiment, the peak and amplitude of the oscillation are checked, and compared to thresholds value of the peaks and amplitude. In an embodiment, if the peak and/or amplitude are greater than the threshold, then a determination is made that the oscillation is associated with a seizure. An absolute and/or relative threshold may be used to find abnormalities, which may indicate a seizure.
  • In another embodiment, a search is made for repeated peaks and valleys in the one dimensional sensor data (for X, Y, and/or Z). This technology uses the motion vector patterns based algorithm. Repeated and distinguished peaks and valleys may indicate seizures.
  • In another embodiment, a search is made for duplicate peaks on other axes. In other words, one axis may have stronger peaks while the others may have weaker peaks. In some cases all axes can be stronger or weaker. However, neighboring axes can provide a valuable confirmation when the peaks on one axis have corresponding peaks on another axis.
  • In another embodiment, software and/or hardware neural networks or other learning methods may determine abnormal patterns to detect seizures. In another embodiment, exact template patterns or signal patterns can be used to match other signal patterns. A prior known seizure pattern can be used to compare the signal pattern with the known template and if the pattern detected matches the known seizure pattern within a given tolerance, then it is expected that a seizure occurred. These neural networks or other machines using other learning methods may be either supervised or unsupervised learning.
  • In another embodiment, the position may be analyzed by determining the first derivative and the second derivative of a signal that is indicative of the position as a function of time. The first and second derivative of the position signal may be monitored to determine whether the first and second derivative are within a range that is considered to be an average and/or normal change of position (an average and normal first derivative dx/dt and an average and normal rate of change of position, which is the 2nd derivative, d2x/dt2). When the first and/or second derivatives are abnormal, or beyond a threshold then an indication is generated that a seizure may have been detected. Additionally, if the periodic changes of the first and second derivative are outside of a certain range, it may be an indication that a seizure has occurred. Periodic changes in the second derivate are the third derivates, which are the impulses, which may be used to characterize jerky motion. Similarly, if the third derivative (or another derivative) is beyond a threshold or is not within a range that is considered normal, an indication that a seizure occurred may be generated. Additionally, if the pattern of times at which the third derivatives rise above a certain threshold matches that of a known pattern for a seizure and/or occur at a frequency that is expected to be indicative of a seizure, an indication that a seizure has occurred in generated.
  • In another embodiment, statistical learning or probabilistic methods are used. Machine learning strategies based on Bayesian Network (Bayes net) and HMM (Hidden Markov Models) and other statistical learning or probabilistic methods can be used for detection of seizure.
  • In another embodiment, local, regional, and/or global features are detected. The features may be a collection of data taken from a neighborhood of a signal with temporal information. Local features are characteristics of signal and/or data in a small region of the data. Local features are a function of time (e.g., the features of a plot of the signal as a function of time), regional features covers more time, and global features are an average or a collection of local/regional features over longer time. Both local and global features can be a combination of both shape and time/temporal based. The local and global features are detected and compared to known local, regional and global features that are expected to characterize seizure features to determine whether a seizure has occurred. If the local, regional and global features that are associated with a seizure occur, then a signal is generated indicating that seizure has occurred.
  • Individual Person's Seizure Signature
  • In one mode or embodiment, a person's seizure data or motion signature may be measured as a seizure occurs. “Seizure detection” parameters (frequency, amplitude, patterns) can be customized as a “seizure signature” for each patient. This signature can be adjusted and configured for each patient if required for higher accuracy, as opposed to standard factory defaults.
  • Instead of a fixed seizure signature, the person's signature may be determined over time. Then the detection algorithm will adapt and fine-tune the seizure detection parameters based on the individuals' signature patterns—such as frequency, amplitude, time, area, path, and/or other parameters).
  • FIG. 8 shows a graph 800 of three orthogonal components of acceleration of an arm. Graph
  • Graph 800 includes a vertical axis 802 a-c, horizontal axis 804 a-c, and plots 806, 808, and 810. Horizontal axis 802 a-c is the time axis, and vertical axes 804 a-c are the amplitude axes. Plots 806, 808, and 810 are plots of each of the three components of acceleration labeled X, Y, and Z, which are measured in a reference frame that is stationary with respect to the wrist. Graph 800 shows 9 peaks with about 5 second. The threshold for the number of peaks within a window of 6 seconds should be 9 peaks or less. The magnitude for the peaks of the y component of acceleration is 6 cm/sec2, and the threshold for a single component of acceleration should be less than 6 cm/sec2.
  • FIG. 9 shows a graph 900 of two parameters of motion. Graph 900 includes a vertical axis 902, horizontal axis 904, and plots 906, 908, and 910. Horizontal axis 902 is the time axis, and vertical axes 904 a-c is the amplitude axis. Plot 906 plots the magnitude of the acceleration vector. Plot 908 plots the first derivative of the magnitude of acceleration. Plot 910 is also a plot of the are plots of the first derivative of the magnitude of acceleration. However, peaks that were below a predetermined threshold were removed. If the number of peaks within a specified window of time are greater than predetermined number, it is an indication of a seizure.
  • In FIGS. 8 and 9 the units for acceleration are m/sec2 and the units for impulse or jerk are m/sec3. In an embodiment, for at least some patients the threshold for the magnitude of acceleration may be about 7 m/sec2. The threshold for a “jerk” or impulse, may be about a number less than 4 m/sec3 e.g., 3 m/sec3, 3.5 m/sec3, or 3.8 m/sec3. The threshold for the frequency of peaks in acceleration may 3/(3 seconds) (e.g., 1 Hz). The number peaks in a window of 3 seconds there should be at least 3 peaks. The threshold for the number of peaks in the impulse should be at least 3, and within a window of about 3 seconds there should be at least 3 peaks in the impulse/jerk. In other embodiments, the units and the values for the thresholds above may be proportional to those given above.
  • FIG. 10 shows an embodiment of a seizure detection, analyzing, and monitoring device.
  • Extensions and Alternatives
  • Each embodiment disclosed herein may be used or otherwise combined with any of the other embodiments disclosed. Any element of any embodiment may be used in any embodiment.
  • Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the true spirit and scope of the invention. In addition, modifications may be made without departing from the essential teachings of the invention.

Claims (23)

1. A method comprising:
collecting data, at a machine having a processor system including at least one processor and a memory unit, related to motions associated with a person;
analyzing, by the processor system, the data collected to determine one or more values characterizing the motion; and
comparing, by the machine, the one or more values characterizing the motion to one or more values characterizing motion of a medically abnormal condition;
determining, by the machine, whether the one or more values characterizing the motion match the one or more values characterizing a medically abnormal condition based on the comparing; and
activating, by the machine, an alert if as a result of the determining it is determined that the one or more values characterizing the motion matches the one or more values characterizing the medically abnormal condition.
2. The method of claim 1, the one or more values characterizing the motion of a medically abnormal condition including at least a threshold value for a frequency of oscillation of a body part;
the comparing including at least comparing the one or more values characterizing the motion, collected during the collecting, to the threshold; and
the determining including at least determining whether the value crossed the threshold based on the comparing.
3. The method of claim 1, the one or more values characterizing motion of the medically abnormal condition including one or more motion patterns characterizing a medically abnormal condition;
the comparing including at least comparing a motion pattern derived from the data collected during the collecting to the one or more motion patterns characterizing the medically abnormal condition; and
the determining including at least determining whether the motion pattern derived matches within a predetermined tolerance one of the one or more motion patterns characterizing the medically abnormal condition.
4. The method of claim 1, further comprising storing the data in long term memory for later analysis.
5. The method of claim 1, the analyzing including at least
identifying distinguishable points or features, and
determining locations of the distinguishable points or features across multiple picture frames to determine a path for each of a set of the distinguishable points or features;
the comparing including at least comparing the path for each of the set of the distinguishable points or features to paths characterizing the medically abnormal condition; and
the determining including at least determining whether the path for each of the set of the distinguishable points or features matches paths characterizing the medically abnormal condition within a predetermined tolerance.
6. The method of claim 1, the analyzing including at least
determining oscillatory motion; and
determining one or more parameters characterizing the oscillatory motion.
7. The method of claim 6, the one or more parameters including at least a frequency of oscillation;
the comparing including at least comparing the frequency of oscillation to a predetermined threshold; and
the determining including at least determining whether the frequency of oscillation is higher than the predetermined threshold
the activating of the alert including activating the alert if the frequency of oscillation is higher than the predetermined threshold.
8. The method of claim 7, the one or more parameters being output of an accelerometer.
9. The method of claim 7, the one or more parameters being output of a gyro sensor.
10. The method of claim 7, the one or more parameters being output a combination of one or more accelerometers and gyro sensors.
11. The method of claim 7, the one or more parameters being derived from an optical flow or feature point analysis.
12. The method of claim 7, the one or more parameters being derived from motion vectors.
13. The method of claim 1, the activating of the alert including at least sending a message to a device associated with a concerned party.
14. The method of claim 13, the message including data from a current episode of abnormal motion.
15. The method of claim 13, the message including a current location of the person.
16. The method of claim 1, the analyzing including at least
identifying distinguishable points or features, and
determining locations of the distinguishable points or features across multiple-data sampling to determine a path for each of a set of the distinguishable points or features;
the determining whether the motion data indicates that the medically abnormal motion has occurred including at least comparing the path for each of the set of the distinguishable points or features to paths characterizing the medically abnormal motion; and
the determining of locations including at least determining whether the path for each of the set of the distinguishable points or features matches paths characterizing a the medically abnormal motion within a predetermined tolerance.
17. The method of claim 1, the medically abnormal motion being a seizure
18. The system of claim 1, the analyzing including at least
identifying distinguishable points or features, and
determining locations of the distinguishable points or features across multiple-data sampling to determine a path for each of a set of the distinguishable points or features;
the determining whether the motion data indicates that a specific type of motion has occurred including at least comparing the path for each of the set of the distinguishable points or features to paths characterizing a specific type of motion; and
the determining of locations including at least determining whether the path for each of the set of the distinguishable points or features matches paths characterizing a specific type of motion within a predetermined tolerance.
19. The system of claim 18, the algorithm also including
windowing the data being collected;
the analyzing including at least determining a difference between a minimum accelerations and maximum accelerations during a window of time;
the determining whether the motion data indicates that a specific type of motion has occurred including at least determining whether the difference is greater than a threshold value that is indicative of a specific type of motion.
20. The system of claim 1, the analyzing including at least determining how many jerks occur during a period of time;
the determining of whether the motion indicates a specific type of motion includes at least determining whether the number of jerks is greater than a threshold.
21. The system of claim 20, each jerk of the jerks being an absolute value of a numerical estimate of a first derivative of a magnitude of acceleration.
22. The system of claim 1, the analyzing including at least computing a second derivative of acceleration of the one or more parts of the body during a specified window;
the determining of whether the motion indicates a specific type of motion includes at least determining how many second derivative within the specified window have crossed a threshold indicative of a specific type of motion.
23. A system comprising:
a body-worn portable device including at least
a strap for strapping the portable device onto a person;
an input system for inputting seizure detections parameters;
an accelerometer or gyro sensor for measuring motion data;
a housing for enclosing the accelerometer or gyro sensor,
the display being attached to the housing for displaying setting for a specific type of motion and status information, and
the input system being attached to the housing in a manner in which the setting for the specific type of motion may be entered by the person; and
the remote unit, which is a unit remote from the body-worn portable device, including at least
a receiver for receiving motion data from the wrist-worn portable device;
a memory having stored thereon characteristics of a specific type of motion, and
an algorithm for
analyzing the motion data measured,
comparing tile seizure the characteristics of the specific type of motion to the motion data measured, and
determining whether to send an alert based on the comparing; and
a processor that implements the algorithm and generates an indication that abnormal motion has occurred based on the algorithm.
US13/317,676 2007-05-18 2011-10-25 Abnormal motion detector and monitor Abandoned US20120053491A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/317,676 US20120053491A1 (en) 2007-05-18 2011-10-25 Abnormal motion detector and monitor
US14/140,424 US20140350436A1 (en) 2007-05-18 2013-12-24 Abnormal motion detector and monitor
US14/599,277 US10595766B2 (en) 2007-05-18 2015-01-16 Abnormal motion detector and monitor
US16/802,494 US20200187845A1 (en) 2007-05-18 2020-02-26 Abnormal motion detector and monitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US93076607P 2007-05-18 2007-05-18
US12/154,085 US8075499B2 (en) 2007-05-18 2008-05-19 Abnormal motion detector and monitor
US13/317,676 US20120053491A1 (en) 2007-05-18 2011-10-25 Abnormal motion detector and monitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/154,085 Division US8075499B2 (en) 2007-01-29 2008-05-19 Abnormal motion detector and monitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/140,424 Continuation US20140350436A1 (en) 2007-05-18 2013-12-24 Abnormal motion detector and monitor

Publications (1)

Publication Number Publication Date
US20120053491A1 true US20120053491A1 (en) 2012-03-01

Family

ID=40786815

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/154,085 Active 2029-05-12 US8075499B2 (en) 2007-01-29 2008-05-19 Abnormal motion detector and monitor
US13/317,676 Abandoned US20120053491A1 (en) 2007-05-18 2011-10-25 Abnormal motion detector and monitor
US14/140,424 Abandoned US20140350436A1 (en) 2007-05-18 2013-12-24 Abnormal motion detector and monitor
US14/599,277 Active 2031-04-17 US10595766B2 (en) 2007-05-18 2015-01-16 Abnormal motion detector and monitor
US16/802,494 Abandoned US20200187845A1 (en) 2007-05-18 2020-02-26 Abnormal motion detector and monitor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/154,085 Active 2029-05-12 US8075499B2 (en) 2007-01-29 2008-05-19 Abnormal motion detector and monitor

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/140,424 Abandoned US20140350436A1 (en) 2007-05-18 2013-12-24 Abnormal motion detector and monitor
US14/599,277 Active 2031-04-17 US10595766B2 (en) 2007-05-18 2015-01-16 Abnormal motion detector and monitor
US16/802,494 Abandoned US20200187845A1 (en) 2007-05-18 2020-02-26 Abnormal motion detector and monitor

Country Status (2)

Country Link
US (5) US8075499B2 (en)
EP (1) EP2123221A3 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030345A1 (en) * 2007-07-23 2009-01-29 Commissariat A L'energie Atomique Method and device for the recognition of the position or movement of a device or a person
US20100121215A1 (en) * 2008-11-11 2010-05-13 Medtronic, Inc. Seizure detection algorithm adjustment
US20110230783A1 (en) * 2007-10-18 2011-09-22 Innovative Surgical Solutions, Llc Neural event detection
US20130154827A1 (en) * 2011-12-16 2013-06-20 Richard Housley Convulsive seizure detection and notification system
WO2014145985A2 (en) * 2013-03-15 2014-09-18 Aliphcom Inline calibration of motion sensor
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
US8882679B2 (en) 2007-10-18 2014-11-11 Innovative Surgical Solutions, Llc Neural monitoring system
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
WO2015009980A1 (en) * 2013-07-18 2015-01-22 Tesseract Sensors, LLC Medical data acquisition systems and methods for monitoring and diagnosis
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
WO2015076752A1 (en) * 2013-11-19 2015-05-28 Agency For Science, Technology And Research Hypermotor activity detection system and method therefrom
WO2015138488A1 (en) * 2013-03-13 2015-09-17 Vaidhi Nathan System and method of body motion analytics recognition and alerting
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
JP2016140576A (en) * 2015-02-02 2016-08-08 株式会社ソシオネクスト Information processing device, tremor information display method, information processing system, and program
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
USD821587S1 (en) 2017-01-26 2018-06-26 Michael J. Vosch Electrode patch array
USD821588S1 (en) 2017-01-26 2018-06-26 Michael J. Vosch Electrode patch array
US10173060B2 (en) 2014-06-02 2019-01-08 Cala Health, Inc. Methods for peripheral nerve stimulation
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
JP2020021456A (en) * 2018-08-03 2020-02-06 深▲セン▼▲衆▼▲リー▼▲電▼力科技有限公司 Monitoring alarm system
US10625074B2 (en) 2013-01-21 2020-04-21 Cala Health, Inc. Devices and methods for controlling tremor
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
USD898202S1 (en) 2017-11-12 2020-10-06 Dms-Service Llc Patch with electrode array
US10814130B2 (en) 2016-07-08 2020-10-27 Cala Health, Inc. Dry electrodes for transcutaneous nerve stimulation
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
USD907213S1 (en) 2017-09-18 2021-01-05 Dms-Service Llc Patch with electrode array
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US20230029222A1 (en) * 2021-07-13 2023-01-26 POSTECH Research and Business Development Foundation Wearable device and method for processing acceleration data
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035508B2 (en) * 2002-06-11 2011-10-11 Intelligent Technologies International, Inc. Monitoring using cellular phones
KR101295471B1 (en) 2004-07-30 2013-08-09 익스트림 리얼리티 엘티디. A system and method for 3D space-dimension based image processing
US8872899B2 (en) * 2004-07-30 2014-10-28 Extreme Reality Ltd. Method circuit and system for human to machine interfacing by hand gestures
US8681100B2 (en) 2004-07-30 2014-03-25 Extreme Realty Ltd. Apparatus system and method for human-machine-interface
US9046962B2 (en) 2005-10-31 2015-06-02 Extreme Reality Ltd. Methods, systems, apparatuses, circuits and associated computer executable code for detecting motion, position and/or orientation of objects within a defined spatial region
US20070285554A1 (en) 2005-10-31 2007-12-13 Dor Givon Apparatus method and system for imaging
US20080021341A1 (en) * 2006-06-23 2008-01-24 Neurovista Corporation A Delware Corporation Methods and Systems for Facilitating Clinical Trials
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
WO2008092133A2 (en) * 2007-01-25 2008-07-31 Neurovista Corporation Methods and systems for measuring a subject's susceptibility to a seizure
DK2989975T3 (en) 2007-02-06 2018-09-24 Medtronic Minimed Inc OPTICAL SYSTEMS AND PROCEDURES FOR RATIOMETRIC MEASUREMENT OF BLOOD GLUCOSE CONCENTRATION
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
WO2008141241A1 (en) * 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
US9788744B2 (en) * 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US8206325B1 (en) 2007-10-12 2012-06-26 Biosensics, L.L.C. Ambulatory system for measuring and monitoring physical activity and risk of falling and for automatic fall detection
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US9084550B1 (en) 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
WO2009067626A1 (en) 2007-11-21 2009-05-28 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
US20090171168A1 (en) * 2007-12-28 2009-07-02 Leyde Kent W Systems and Method for Recording Clinical Manifestations of a Seizure
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US8092251B2 (en) * 2007-12-29 2012-01-10 Apple Inc. Active electronic media device packaging
US20120116183A1 (en) * 2010-10-01 2012-05-10 Ivan Osorio Classifying seizures as epileptic or non-epileptic using extra-cerebral body data
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
EP2242453B1 (en) 2008-02-20 2018-11-28 Mako Surgical Corp. Implant planning using corrected captured joint motion information
US20110006902A1 (en) * 2008-03-14 2011-01-13 Fathi Saigh Cutaneous body movement sensing apparatus
WO2009129186A2 (en) * 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
EP2674104B1 (en) * 2008-06-12 2015-05-27 Amygdala Pty Ltd Detection of hypokinetic and/or hyperkinetic states
EP2342642A1 (en) * 2008-09-04 2011-07-13 Extreme Reality Ltd. Method system and software for providing image sensor based human machine interfacing
US8622795B2 (en) * 2008-12-04 2014-01-07 Home Box Office, Inc. System and method for gathering and analyzing objective motion data
EP2370147A4 (en) * 2008-12-04 2014-09-17 Neurovista Corp Universal electrode array for monitoring brain activity
US8849390B2 (en) * 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
KR101572847B1 (en) * 2009-01-09 2015-11-30 삼성전자주식회사 Method and apparatus for motion detecting in portable terminal
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP2400884B1 (en) 2009-02-25 2018-03-07 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US20100228158A1 (en) * 2009-03-05 2010-09-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Postural information system and method including device level determining of subject advisory information based on subject status information and postural influencer status information
US20100280336A1 (en) * 2009-04-30 2010-11-04 Medtronic, Inc. Anxiety disorder monitoring
US8786624B2 (en) * 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9161711B2 (en) * 2009-08-19 2015-10-20 Movea System and method for detecting an epileptic seizure in a prone epileptic person
CN101668069A (en) * 2009-09-21 2010-03-10 中兴通讯股份有限公司 Mobile phone for realizing monitoring management and monitoring method thereof
US8878779B2 (en) 2009-09-21 2014-11-04 Extreme Reality Ltd. Methods circuits device systems and associated computer executable code for facilitating interfacing with a computing platform display screen
KR101577106B1 (en) 2009-09-21 2015-12-11 익스트림 리얼리티 엘티디. Methods circuits apparatus and systems for human machine interfacing with an electronic appliance
WO2011041546A1 (en) 2009-09-30 2011-04-07 Glumetrics, Inc. Sensors with thromboresistant coating
US8467843B2 (en) 2009-11-04 2013-06-18 Glumetrics, Inc. Optical sensor configuration for ratiometric correction of blood glucose measurement
US9643019B2 (en) * 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US8979665B1 (en) 2010-03-22 2015-03-17 Bijan Najafi Providing motion feedback based on user center of mass
US9717439B2 (en) 2010-03-31 2017-08-01 Medtronic, Inc. Patient data display
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
EP2399513B1 (en) * 2010-06-23 2017-01-04 Qatar University Qstp-B System for non-invasive automated monitoring, detection, analysis, characterisation, prediction or prevention of seizures and movement disorder symptoms
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
US20120226168A1 (en) * 2011-03-04 2012-09-06 Flint Hills Scientific, Llc Detecting, assessing and managing extreme seizure events
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
US10226209B2 (en) 2010-10-15 2019-03-12 Brain Sentinel, Inc. Method and apparatus for classification of seizure type and severity using electromyography
MX339047B (en) * 2010-10-15 2016-05-09 Brain Sentinel Inc Method and apparatus for detecting seizures.
US8907287B2 (en) * 2010-12-01 2014-12-09 Hill-Rom Services, Inc. Patient monitoring system
US9737230B2 (en) * 2011-01-06 2017-08-22 The Johns Hopkins University Seizure detection device and systems
DE102011002577A1 (en) * 2011-01-12 2012-07-12 3Vi Gmbh Remote control device for controlling a device based on a moving object and interface module for communication between modules of such a remote control device or between one of the modules and an external device
CA2806520C (en) 2011-01-23 2016-02-16 Extreme Reality Ltd. Methods, systems, devices and associated processing logic for generating stereoscopic images and video
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US9392956B2 (en) * 2011-01-28 2016-07-19 Neurosky, Inc. Dry sensor EEG/EMG and motion sensing system for seizure detection and monitoring
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
US9662058B2 (en) 2011-03-07 2017-05-30 Potrero Medical, Inc. Sensing Foley catheter
JP6154372B2 (en) 2011-03-30 2017-06-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Non-contact sleep disorder screening system
FI126095B (en) * 2011-03-31 2016-06-30 Vivago Oy Arrangements for detecting or anticipating a disease attack
US8725239B2 (en) 2011-04-25 2014-05-13 Cyberonics, Inc. Identifying seizures using heart rate decrease
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9936891B2 (en) 2011-06-08 2018-04-10 Precision Biometrics, Inc. Systems and methods for providing biometric related to performance of a physical movement
CA2840101A1 (en) 2011-07-05 2013-01-10 Lgch, Inc. Method and apparatus for detecting seizures
DK177536B1 (en) * 2011-07-19 2013-09-16 Ictalcare As Method for detecting seizures
WO2013016007A2 (en) 2011-07-25 2013-01-31 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
EP2739207B1 (en) 2011-08-02 2017-07-19 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US8849605B2 (en) * 2011-08-23 2014-09-30 Qualcomm Incorporated Method and apparatus for sensor based pedestrian motion detection in hand-held devices
CN102319057B (en) * 2011-08-31 2013-11-06 深圳市视聆科技开发有限公司 Wavy physiological signal acquisition device and physiological signal acquisition cushion
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
US20130100269A1 (en) * 2011-10-20 2013-04-25 Jay Shiro Tashiro System and Method for Assessing an Individual's Physical and Psychosocial Abilities
US9251422B2 (en) * 2011-11-13 2016-02-02 Extreme Reality Ltd. Methods systems apparatuses circuits and associated computer executable code for video based subject characterization, categorization, identification and/or presence response
US9189062B2 (en) 2012-03-07 2015-11-17 Google Technology Holdings LLC Portable electronic device and method for controlling operation thereof based on user motion
US9167061B2 (en) * 2012-03-29 2015-10-20 Gary Shuster Gyroscopic alerting mechanism for portable communications device
US9681836B2 (en) * 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US10981034B1 (en) * 2012-12-19 2021-04-20 Alert Core, Inc. Companion device to support qualifying movement identification
US20140208333A1 (en) 2013-01-22 2014-07-24 Motorola Mobility Llc Initialize a Computing Device to Perform an Action
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US11207522B2 (en) * 2013-01-25 2021-12-28 Medtronic, Inc. Notification indicative of a change in efficacy of therapy
WO2014116924A1 (en) 2013-01-28 2014-07-31 Valencell, Inc. Physiological monitoring devices having sensing elements decoupled from body motion
US10292635B2 (en) 2013-03-01 2019-05-21 Global Kinetics Pty Ltd System and method for assessing impulse control disorder
US8977060B2 (en) * 2013-05-16 2015-03-10 Microsoft Technology Licensing, Llc Motion stabilization and detection of articulated objects
US20190282098A1 (en) * 2013-06-21 2019-09-19 Fitbit, Inc. System for remote child monitoring
TW201507467A (en) * 2013-08-07 2015-02-16 Hon Hai Prec Ind Co Ltd System and method for calibrating IP camera
CN103446673A (en) * 2013-09-09 2013-12-18 中国科学院深圳先进技术研究院 Epilepsy treatment system
US20150094606A1 (en) * 2013-10-02 2015-04-02 Xerox Corporation Breathing pattern identification for respiratory function assessment
JP6297822B2 (en) * 2013-11-19 2018-03-20 ルネサスエレクトロニクス株式会社 Detection device, detection system, and detection method
US11033220B2 (en) * 2013-12-05 2021-06-15 Livanova Usa, Inc. Systems and methods of limb-based accelerometer assessments of neurological disorders
CN105992550A (en) * 2013-12-05 2016-10-05 塞伯奥尼克斯公司 Motion-based seizure detection systems and methods
CA2930127C (en) 2013-12-09 2020-04-07 Greenwave Systems, Pte. Ltd. Motion detection
US10361585B2 (en) 2014-01-27 2019-07-23 Ivani, LLC Systems and methods to allow for a smart device
EP3113684B1 (en) 2014-03-03 2020-07-01 Global Kinetics Pty Ltd System for assessing motion symptoms
EP3199100A1 (en) 2014-08-06 2017-08-02 Valencell, Inc. Earbud with a physiological information sensor module
US9740839B2 (en) 2014-08-13 2017-08-22 Google Technology Holdings LLC Computing device chording authentication and control
SE538370C2 (en) * 2014-08-27 2016-05-31 Imagimob Ab Movement pattern generation using an accelerometer
AU2015314694A1 (en) 2014-09-12 2017-04-06 Brain Sentinel, Inc. Method and apparatus for communication between a sensor and a managing device
ES2835718T3 (en) * 2014-11-19 2021-06-23 Signify Holding Bv Lighting control apparatus and method
CN107250947B (en) 2014-12-16 2020-07-28 索玛提克斯公司 Method and system for monitoring and influencing gesture-based behavior
US9547971B2 (en) * 2014-12-27 2017-01-17 Intel Corporation Technologies for determining a threat assessment based on fear responses
CA2982988A1 (en) 2015-04-17 2016-10-20 Brain Sentinel, Inc. Method of monitoring a patient for seizure activity
US10588574B2 (en) * 2015-07-14 2020-03-17 Smart Solutions Technologies, S.L. System and methods for adaptive noise quantification in dynamic biosignal analysis
US10509967B2 (en) * 2015-08-10 2019-12-17 Koninklijke Philips N.V. Occupancy detection
US9474042B1 (en) 2015-09-16 2016-10-18 Ivani, LLC Detecting location within a network
US10665284B2 (en) 2015-09-16 2020-05-26 Ivani, LLC Detecting location within a network
US10321270B2 (en) 2015-09-16 2019-06-11 Ivani, LLC Reverse-beacon indoor positioning system using existing detection fields
US11350238B2 (en) 2015-09-16 2022-05-31 Ivani, LLC Systems and methods for detecting the presence of a user at a computer
US11533584B2 (en) 2015-09-16 2022-12-20 Ivani, LLC Blockchain systems and methods for confirming presence
US10455357B2 (en) 2015-09-16 2019-10-22 Ivani, LLC Detecting location within a network
US10382893B1 (en) 2015-09-16 2019-08-13 Ivani, LLC Building system control utilizing building occupancy
US11039780B2 (en) * 2015-10-05 2021-06-22 The Johns Hopkins University System and method for seizure detection and responsivity testing
WO2017062994A1 (en) 2015-10-09 2017-04-13 I2Dx, Inc. System and method for non-invasive and non-contact measurement in early therapeutic intervention
CN108135538B (en) * 2015-10-19 2022-07-19 皇家飞利浦有限公司 Monitoring a person's physical or psychological ability
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
EP3344127A4 (en) * 2015-10-23 2018-07-25 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
CN105266818A (en) * 2015-11-09 2016-01-27 四川大学华西医院 Wearable monitor for partial motor seizure of epileptic
US10588534B2 (en) * 2015-12-04 2020-03-17 Colorado Seminary, Which Owns And Operates The University Of Denver Motor task detection using electrophysiological signals
WO2017136485A1 (en) 2016-02-03 2017-08-10 Greenwave Systems PTE Ltd. Motion sensor using linear array of irdetectors
US9737263B1 (en) 2016-02-15 2017-08-22 Wipro Limited Footwear for monitoring health condition of foot of a user and a method thereof
WO2017147462A1 (en) * 2016-02-24 2017-08-31 Greenwave Systems PTE Ltd. Motion sensor for occupancy detection and intrusion detection
DE102016206367A1 (en) * 2016-04-15 2017-10-19 Robert Bosch Gmbh Camera device for the exterior of a building
EP3445231A4 (en) 2016-04-19 2019-11-27 Brain Sentinel, Inc. Systems and methods for characterization of seizures
US10129853B2 (en) 2016-06-08 2018-11-13 Cognitive Systems Corp. Operating a motion detection channel in a wireless communication network
RU2640138C2 (en) * 2016-06-14 2017-12-26 Алексей Викторович Горбунов Method for epilepsia diagnostics and device for its implementation
WO2018009736A1 (en) 2016-07-08 2018-01-11 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
KR20180017690A (en) 2016-08-10 2018-02-21 삼성전자주식회사 Apparatus and method for detecting information of living body and wearable device including the apparatus
CA3039538A1 (en) * 2016-10-05 2018-04-12 My Medic Watch Pty Ltd Alert system
US10535243B2 (en) * 2016-10-28 2020-01-14 HBH Development LLC Target behavior monitoring system
US10600290B2 (en) * 2016-12-14 2020-03-24 Immersion Corporation Automatic haptic generation based on visual odometry
SE541712C2 (en) * 2017-02-22 2019-12-03 Next Step Dynamics Ab Method and apparatus for health prediction
US10111228B2 (en) 2017-03-16 2018-10-23 Cognitive Systems Corp. Selecting wireless communication channels based on signal quality metrics
US9989622B1 (en) 2017-03-16 2018-06-05 Cognitive Systems Corp. Controlling radio states for motion detection
US9743294B1 (en) 2017-03-16 2017-08-22 Cognitive Systems Corp. Storing modem parameters for motion detection
US9927519B1 (en) 2017-03-16 2018-03-27 Cognitive Systems Corp. Categorizing motion detected using wireless signals
IT201700035240A1 (en) * 2017-03-30 2018-09-30 Luigi Battista A DEVICE AND ITS METHOD TO EVALUATE EXTRA-PYRAMID SYMPTOMS, IN PARTICULAR THE MOTOR SYMPTOMS OF PARKINSON'S DISEASE
TW201904265A (en) * 2017-03-31 2019-01-16 加拿大商艾維吉隆股份有限公司 Abnormal motion detection method and system
TWI637726B (en) * 2017-05-24 2018-10-11 亞東技術學院 Wearable device and detection system for detecting parkinson's disease
WO2018217652A1 (en) 2017-05-24 2018-11-29 Neuropath Sprl Systems and methods for markerless tracking of subjects
IT201700056212A1 (en) * 2017-05-24 2018-11-24 Milano Politecnico WEARABLE DEVICE FOR THE MANAGEMENT OF THE EPILEPTIC CRISIS OF A PERSON
US10056129B1 (en) 2017-08-10 2018-08-21 Micron Technology, Inc. Cell bottom node reset in a memory array
US10051414B1 (en) 2017-08-30 2018-08-14 Cognitive Systems Corp. Detecting motion based on decompositions of channel response variations
US10109167B1 (en) 2017-10-20 2018-10-23 Cognitive Systems Corp. Motion localization in a wireless mesh network based on motion indicator values
US10048350B1 (en) 2017-10-31 2018-08-14 Cognitive Systems Corp. Motion detection based on groupings of statistical parameters of wireless signals
US10228439B1 (en) 2017-10-31 2019-03-12 Cognitive Systems Corp. Motion detection based on filtered statistical parameters of wireless signals
US9933517B1 (en) 2017-11-03 2018-04-03 Cognitive Systems Corp. Time-alignment of motion detection signals using buffers
US10459076B2 (en) 2017-11-15 2019-10-29 Cognitive Systems Corp. Motion detection based on beamforming dynamic information
US10109168B1 (en) 2017-11-16 2018-10-23 Cognitive Systems Corp. Motion localization based on channel response characteristics
US10264405B1 (en) 2017-12-06 2019-04-16 Cognitive Systems Corp. Motion detection in mesh networks
US10852411B2 (en) 2017-12-06 2020-12-01 Cognitive Systems Corp. Motion detection and localization based on bi-directional channel sounding
US10108903B1 (en) 2017-12-08 2018-10-23 Cognitive Systems Corp. Motion detection based on machine learning of wireless signal properties
GB2571265A (en) * 2018-02-16 2019-08-28 Neuro Event Labs Oy Method for detecting and classifying a motor seizure
EP3755224A1 (en) * 2018-02-23 2020-12-30 Loma Linda University Systems and methods for detection and correction of abnormal movements
US10393866B1 (en) 2018-03-26 2019-08-27 Cognitive Systems Corp. Detecting presence based on wireless signal analysis
CN108647645B (en) * 2018-05-11 2020-10-09 广州飞宇智能科技有限公司 Multi-modal epilepsy diagnosis system and method based on video analysis
US10318890B1 (en) 2018-05-23 2019-06-11 Cognitive Systems Corp. Training data for a motion detection system using data from a sensor device
US11579703B2 (en) 2018-06-18 2023-02-14 Cognitive Systems Corp. Recognizing gestures based on wireless signals
US11701293B2 (en) 2018-09-11 2023-07-18 Encora, Inc. Apparatus and method for reduction of neurological movement disorder symptoms using wearable device
US11839583B1 (en) * 2018-09-11 2023-12-12 Encora, Inc. Apparatus and method for reduction of neurological movement disorder symptoms using wearable device
US20220062096A1 (en) * 2018-09-11 2022-03-03 Encora, Inc. Apparatus and Method for Reduction of Neurological Movement Disorder Symptoms Using Wearable Device
WO2020093164A1 (en) 2018-11-07 2020-05-14 Genetec Inc. Methods and systems for detection of anomalous motion in a video stream and for creating a video summary
US11403543B2 (en) 2018-12-03 2022-08-02 Cognitive Systems Corp. Determining a location of motion detected from wireless signals
US10506384B1 (en) 2018-12-03 2019-12-10 Cognitive Systems Corp. Determining a location of motion detected from wireless signals based on prior probability
US12057232B2 (en) 2018-12-07 2024-08-06 Emory University Passive data collection and use of machine-learning models for event prediction
KR20210104691A (en) * 2018-12-20 2021-08-25 유맨 센스 에이비 Stroke detection sensor
US10499364B1 (en) 2019-01-24 2019-12-03 Cognitive Systems Corp. Identifying static leaf nodes in a motion detection system
US10498467B1 (en) 2019-01-24 2019-12-03 Cognitive Systems Corp. Classifying static leaf nodes in a motion detection system
EP3920781A4 (en) * 2019-02-08 2022-10-12 Nanyang Technological University Method and system for seizure detection
US20220110546A1 (en) * 2019-02-27 2022-04-14 Emory University System and methods for tracking behavior and detecting abnormalities
US10565860B1 (en) 2019-03-21 2020-02-18 Cognitive Systems Corp. Offline tuning system for detecting new motion zones in a motion detection system
US10849006B1 (en) 2019-04-30 2020-11-24 Cognitive Systems Corp. Controlling measurement rates in wireless sensing systems
US10600314B1 (en) 2019-04-30 2020-03-24 Cognitive Systems Corp. Modifying sensitivity settings in a motion detection system
US10459074B1 (en) 2019-04-30 2019-10-29 Cognitive Systems Corp. Determining a location of motion detected from wireless signals based on wireless link counting
US10567914B1 (en) 2019-04-30 2020-02-18 Cognitive Systems Corp. Initializing probability vectors for determining a location of motion detected from wireless signals
US10743143B1 (en) 2019-05-15 2020-08-11 Cognitive Systems Corp. Determining a motion zone for a location of motion detected by wireless signals
US10404387B1 (en) 2019-05-15 2019-09-03 Cognitive Systems Corp. Determining motion zones in a space traversed by wireless signals
US10460581B1 (en) 2019-05-15 2019-10-29 Cognitive Systems Corp. Determining a confidence for a motion zone identified as a location of motion for motion detected by wireless signals
CN110097037B (en) * 2019-05-22 2021-10-01 天津联图科技有限公司 Intelligent monitoring method and device, storage medium and electronic equipment
US20220248980A1 (en) * 2019-05-31 2022-08-11 Biotrillion, Inc. Systems and methods for monitoring movements
CN110432909B (en) * 2019-07-24 2022-03-22 佛山市第一人民医院(中山大学附属佛山医院) Medical intelligent monitoring system and method based on medical intelligent bracelet
US10930140B1 (en) * 2019-09-19 2021-02-23 Comcast Cable Communications, Llc Methods and apparatus for detecting false alarms
US11006245B2 (en) 2019-09-30 2021-05-11 Cognitive Systems Corp. Detecting a location of motion using wireless signals and topologies of wireless connectivity
WO2021081635A1 (en) 2019-10-31 2021-05-06 Cognitive Systems Corp. Using mimo training fields for motion detection
CA3152900A1 (en) 2019-10-31 2021-05-06 Christopher Beg Eliciting mimo transmissions from wireless communication devices
US11570712B2 (en) 2019-10-31 2023-01-31 Cognitive Systems Corp. Varying a rate of eliciting MIMO transmissions from wireless communication devices
WO2021101531A1 (en) * 2019-11-20 2021-05-27 Hewlett-Packard Development Company, L.P. Detection of seizure events
US11482047B2 (en) * 2020-01-06 2022-10-25 Kaia Health Software GmbH ML model arrangement and method for evaluating motion patterns
US12019143B2 (en) 2020-03-03 2024-06-25 Cognitive Systems Corp. Using high-efficiency PHY frames for motion detection
US10928503B1 (en) 2020-03-03 2021-02-23 Cognitive Systems Corp. Using over-the-air signals for passive motion detection
EP4128276A1 (en) 2020-03-26 2023-02-08 Eisai R&D Management Co., Ltd. Apparatus for health monitoring
CN111462887B (en) * 2020-03-31 2023-08-29 首都医科大学宣武医院 Wearable epileptic digital assistant system
CN111340142B (en) * 2020-05-14 2020-08-14 南京慧脑云计算有限公司 Epilepsia magnetoencephalogram spike automatic detection method and tracing positioning system
CN111557809B (en) * 2020-06-09 2021-11-30 首都医科大学宣武医院 Telescopic protection warning bed shelves
IT202000017722A1 (en) * 2020-07-22 2022-01-22 Teseo Srl METHOD AND SYSTEM OF TOPOLOGICAL LOCATION IN THE BUILT ENVIRONMENT
WO2022040817A1 (en) 2020-08-31 2022-03-03 Cognitive Systems Corp. Controlling motion topology in a standardized wireless communication network
CN112200228A (en) * 2020-09-29 2021-01-08 黑龙江吉远健康科技有限公司 Epileptic seizure state identification method based on two-dimensional convolutional neural network
US11751800B2 (en) * 2020-10-22 2023-09-12 International Business Machines Corporation Seizure detection using contextual motion
US20220138935A1 (en) * 2020-11-04 2022-05-05 Samsung Sds America, Inc. Unsupervised representation learning and active learning to improve data efficiency
US11070399B1 (en) 2020-11-30 2021-07-20 Cognitive Systems Corp. Filtering channel responses for motion detection
USD980431S1 (en) 2021-03-25 2023-03-07 Eisai R&D Management Co., Ltd Component for a health condition monitoring system
CN115530774B (en) * 2021-06-30 2024-03-26 荣耀终端有限公司 Epilepsy detection method and device
EP4140407A1 (en) * 2021-08-30 2023-03-01 Gaia AG A method and a device for retrieving sensor data for medical motion recognition
EP4405841A1 (en) * 2021-09-21 2024-07-31 British Telecommunications public limited company Efficient vector comparison for event identification
JPWO2023119686A1 (en) * 2021-12-24 2023-06-29
PT117985B (en) * 2022-05-17 2024-06-05 Inst Superior Tecnico DEVICE AND DISCREET METHOD FOR DETECTING EPILEPTIC SEIZURES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335168B2 (en) * 2004-08-05 2008-02-26 Bio Equidae, Llc Monitoring system for animal husbandry
US8109891B2 (en) * 2005-09-19 2012-02-07 Biolert Ltd Device and method for detecting an epileptic event

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916181A (en) * 1997-10-24 1999-06-29 Creative Sports Designs, Inc. Head gear for detecting head motion and providing an indication of head movement
US6730047B2 (en) * 1997-10-24 2004-05-04 Creative Sports Technologies, Inc. Head gear including a data augmentation unit for detecting head motion and providing feedback relating to the head motion
US6212510B1 (en) * 1998-01-30 2001-04-03 Mitsubishi Electric Research Laboratories, Inc. Method for minimizing entropy in hidden Markov models of physical signals
US7643655B2 (en) * 2000-11-24 2010-01-05 Clever Sys, Inc. System and method for animal seizure detection and classification using video analysis
WO2002082999A1 (en) * 2001-04-10 2002-10-24 Battelle Memorial Institute Image analysis system and method for discriminating movements of an individual
US20030236474A1 (en) * 2002-06-24 2003-12-25 Balbir Singh Seizure and movement monitoring
US20050148882A1 (en) * 2004-01-06 2005-07-07 Triage Wireless, Incc. Vital signs monitor used for conditioning a patient's response
US7031745B2 (en) * 2003-05-12 2006-04-18 Shen Ein-Yiao Cellular phone combined physiological condition examination and processing device
US7314451B2 (en) * 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
NZ533460A (en) * 2004-06-10 2006-10-27 Movement Metrics Ltd Biomechanical monitoring apparatus with motion detectors and accumulation means to indicate time period where threshold activity is exceeded
WO2006069264A1 (en) * 2004-12-22 2006-06-29 össur hf Systems and methods for processing limb motion
US20060252999A1 (en) 2005-05-03 2006-11-09 Devaul Richard W Method and system for wearable vital signs and physiology, activity, and environmental monitoring
US20060282021A1 (en) 2005-05-03 2006-12-14 Devaul Richard W Method and system for fall detection and motion analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335168B2 (en) * 2004-08-05 2008-02-26 Bio Equidae, Llc Monitoring system for animal husbandry
US8109891B2 (en) * 2005-09-19 2012-02-07 Biolert Ltd Device and method for detecting an epileptic event

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8301575B2 (en) * 2007-07-23 2012-10-30 Commissariat A L'energie Atomique Method and device for the recognition of the position or movement of a device or a person
US20090030345A1 (en) * 2007-07-23 2009-01-29 Commissariat A L'energie Atomique Method and device for the recognition of the position or movement of a device or a person
US8882679B2 (en) 2007-10-18 2014-11-11 Innovative Surgical Solutions, Llc Neural monitoring system
US20110230783A1 (en) * 2007-10-18 2011-09-22 Innovative Surgical Solutions, Llc Neural event detection
US8343065B2 (en) * 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US20100121215A1 (en) * 2008-11-11 2010-05-13 Medtronic, Inc. Seizure detection algorithm adjustment
US20100121213A1 (en) * 2008-11-11 2010-05-13 Medtronic, Inc. Seizure disorder evaluation based on intracranial pressure and patient motion
US20100121214A1 (en) * 2008-11-11 2010-05-13 Medtronic, Inc. Seizure disorder evaluation based on intracranial pressure and patient motion
US10543359B2 (en) * 2008-11-11 2020-01-28 Medtronic, Inc. Seizure detection algorithm adjustment
US12036401B2 (en) 2008-11-11 2024-07-16 Medtronic, Inc. Seizure detection algorithm adjustment
US10369353B2 (en) 2008-11-11 2019-08-06 Medtronic, Inc. Seizure disorder evaluation based on intracranial pressure and patient motion
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
US8779918B2 (en) * 2011-12-16 2014-07-15 Richard Housley Convulsive seizure detection and notification system
US20130154827A1 (en) * 2011-12-16 2013-06-20 Richard Housley Convulsive seizure detection and notification system
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
US10625074B2 (en) 2013-01-21 2020-04-21 Cala Health, Inc. Devices and methods for controlling tremor
WO2015138488A1 (en) * 2013-03-13 2015-09-17 Vaidhi Nathan System and method of body motion analytics recognition and alerting
WO2014145985A3 (en) * 2013-03-15 2014-11-27 Aliphcom Inline calibration of motion sensor
WO2014145985A2 (en) * 2013-03-15 2014-09-18 Aliphcom Inline calibration of motion sensor
WO2015009980A1 (en) * 2013-07-18 2015-01-22 Tesseract Sensors, LLC Medical data acquisition systems and methods for monitoring and diagnosis
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US10098580B2 (en) 2013-11-19 2018-10-16 Agency For Science, Technology And Research Hypermotor activity detection system and method therefrom
WO2015076752A1 (en) * 2013-11-19 2015-05-28 Agency For Science, Technology And Research Hypermotor activity detection system and method therefrom
US10905879B2 (en) 2014-06-02 2021-02-02 Cala Health, Inc. Methods for peripheral nerve stimulation
US10179238B2 (en) 2014-06-02 2019-01-15 Cala Health, Inc. Systems for peripheral nerve stimulation
US10960207B2 (en) 2014-06-02 2021-03-30 Cala Health, Inc. Systems for peripheral nerve stimulation
US10173060B2 (en) 2014-06-02 2019-01-08 Cala Health, Inc. Methods for peripheral nerve stimulation
US10549093B2 (en) 2014-06-02 2020-02-04 Cala Health, Inc. Method for peripheral nerve stimulation
US12109413B2 (en) 2014-06-02 2024-10-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor
US10561839B2 (en) 2014-06-02 2020-02-18 Cala Health, Inc. Systems for peripheral nerve stimulation
JP2016140576A (en) * 2015-02-02 2016-08-08 株式会社ソシオネクスト Information processing device, tremor information display method, information processing system, and program
US10765856B2 (en) 2015-06-10 2020-09-08 Cala Health, Inc. Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg
US11344722B2 (en) 2016-01-21 2022-05-31 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
US10814130B2 (en) 2016-07-08 2020-10-27 Cala Health, Inc. Dry electrodes for transcutaneous nerve stimulation
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
USD821587S1 (en) 2017-01-26 2018-06-26 Michael J. Vosch Electrode patch array
USD821588S1 (en) 2017-01-26 2018-06-26 Michael J. Vosch Electrode patch array
US11331480B2 (en) 2017-04-03 2022-05-17 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder
USD907213S1 (en) 2017-09-18 2021-01-05 Dms-Service Llc Patch with electrode array
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
USD898202S1 (en) 2017-11-12 2020-10-06 Dms-Service Llc Patch with electrode array
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
JP2020021456A (en) * 2018-08-03 2020-02-06 深▲セン▼▲衆▼▲リー▼▲電▼力科技有限公司 Monitoring alarm system
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US12090320B2 (en) 2018-10-12 2024-09-17 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
US20230029222A1 (en) * 2021-07-13 2023-01-26 POSTECH Research and Business Development Foundation Wearable device and method for processing acceleration data

Also Published As

Publication number Publication date
EP2123221A2 (en) 2009-11-25
US10595766B2 (en) 2020-03-24
US20140350436A1 (en) 2014-11-27
US20200187845A1 (en) 2020-06-18
US20150190085A1 (en) 2015-07-09
US20090062696A1 (en) 2009-03-05
US8075499B2 (en) 2011-12-13
EP2123221A3 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US20200187845A1 (en) Abnormal motion detector and monitor
US9959732B2 (en) Method and system for fall detection
Vallabh et al. Fall detection monitoring systems: a comprehensive review
US20170188895A1 (en) System and method of body motion analytics recognition and alerting
US20150164377A1 (en) System and method of body motion analytics recognition and alerting
US7633527B2 (en) Attention detection
US7106204B2 (en) Shared attention detection system and method
KR20190050725A (en) Method and apparatus for estimating ppg signal and stress index using a mobile terminal
US10768196B2 (en) Determine wearing position of a wearable device
WO2007138930A1 (en) Fatigue estimation device and electronic apparatus having the fatigue estimation device mounted thereon
Hossain et al. A direction-sensitive fall detection system using single 3D accelerometer and learning classifier
CN108882853B (en) Triggering measurement of physiological parameters in time using visual context
CN107257651A (en) The scene detection of medical monitoring
JP2009157780A (en) Monitoring system
Arshad et al. A study on health monitoring system: recent advancements
Gharghan et al. A comprehensive review of elderly fall detection using wireless communication and artificial intelligence techniques
Bianchi et al. Multi sensor assistant: a multisensor wearable device for ambient assisted living
Samiei-Zonouz et al. Smartphone-centric human posture monitoring system
CN111148467A (en) System and method for analyzing behavior or activity of an object
Rakhecha Reliable and secure body fall detection algorithm in a wireless mesh network
Khawandi et al. Integrated monitoring system for fall detection in elderly
Silapasuphakornwong et al. A conceptual framework for an elder-supported smart home
Limpanadusadee et al. Eldtec: Improvement on wearable sensor for elderly fall detection
Uwaoma et al. Using embedded sensors in smartphones to monitor and detect early symptoms of exercise-induced asthma
Almazaydeh et al. A panoramic study of fall detection technologies

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATHAN, VAIDHI, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOPE, CHANDAN;NATHAN, ANOO;REEL/FRAME:027281/0153

Effective date: 20111019

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SMART MONITOR CORP., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NATHAN, VAIDHI;GOPE, CHANDAN;NATHAN, ANOO;SIGNING DATES FROM 20150115 TO 20150116;REEL/FRAME:034755/0247