US20110098704A1 - Electrical ablation devices - Google Patents
Electrical ablation devices Download PDFInfo
- Publication number
- US20110098704A1 US20110098704A1 US12/607,252 US60725209A US2011098704A1 US 20110098704 A1 US20110098704 A1 US 20110098704A1 US 60725209 A US60725209 A US 60725209A US 2011098704 A1 US2011098704 A1 US 2011098704A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- electrodes
- electrical ablation
- ablation apparatus
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/327—Applying electric currents by contact electrodes alternating or intermittent currents for enhancing the absorption properties of tissue, e.g. by electroporation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/143—Needle multiple needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1467—Probes or electrodes therefor using more than two electrodes on a single probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1475—Electrodes retractable in or deployable from a housing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0811—Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
Definitions
- Electrical ablation therapy has been employed in medicine for the treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. While conventional apparatuses, systems, and methods for the electrical ablation of undesirable tissue are effective, one drawback with conventional electrical ablation treatment is the resulting permanent damage that may occur to the healthy tissue surrounding the abnormal tissue due primarily to the detrimental thermal effects resulting from exposing the tissue to thermal energy generated by the electrical ablation device. This may be particularly true when exposing the tissue to electric potentials sufficient to cause cell necrosis using high temperature thermal therapies including focused ultrasound ablation, radiofrequency (RF) ablation, or interstitial laser coagulation.
- RF radiofrequency
- tissue ablation Other techniques for tissue ablation include chemical ablation, in which chemical agents are injected into the undesirable tissue to cause ablation as well as surgical excision, cryotherapy, radiation, photodynamic therapy, Moh's micrographic surgery, topical treatments with 5-fluorouracil, laser ablation.
- chemical ablation in which chemical agents are injected into the undesirable tissue to cause ablation as well as surgical excision, cryotherapy, radiation, photodynamic therapy, Moh's micrographic surgery, topical treatments with 5-fluorouracil, laser ablation.
- Other drawbacks of conventional thermal, chemical, and other ablation therapy are cost, length of recovery, and the extraordinary pain inflicted on the patient.
- thermal, chemical, and other ablation techniques have been employed for the treatment of a variety of undesirable tissue.
- Thermal and chemical ablation techniques have been used for the treatment of varicose veins resulting from reflux disease of the greater saphenous vein (GSV), in which the varicose vein is stripped and then is exposed to either chemical or thermal ablation.
- Other techniques for the treatment of undesirable tissue are more radical.
- Prostate cancer for example, may be removed using a prostatectomy, in which the entire or part of prostate gland and surrounding lymph nodes are surgically removed.
- radiation therapy may be used in conjunction with or as an alternate method for the treatment of prostate cancer.
- Another thermal ablation technique for the treatment of prostate cancer is RF interstitial tumor ablation (RITA) via trans-rectal ultrasound guidance.
- RITA RF interstitial tumor ablation
- BCC tissue basal cell carcinoma
- BCC tissue in tumors ranging in size from about 5 mm to about 40 mm may be thermally ablated with a pulsed carbon dioxide laser.
- carbon dioxide laser ablation is a thermal treatment method and may cause permanent damage to healthy tissue surrounding the BCC tissue.
- this technique requires costly capital investment in carbon dioxide laser equipment.
- Surgical removal of undesirable tissue, such as a malignant or benign tumor, from the breast is likely to leave a cavity.
- Surgical resection of residual intralumenal tissue may remove only a portion of the undesirable tissue cells within a certain margin of healthy tissue. Accordingly, some undesirable tissue is likely to remain within the wall of the cavity due to the limitation of conventional ablation instrument configurations, which may be effective for treating line-of-sight regions of tissue, but may be less effective for treating the residual undesirable tissue.
- FIG. 1 illustrates one embodiment of an electrical ablation system in accordance with one non-limiting embodiment.
- FIGS. 2A-D illustrate one embodiment of the electrical ablation device in various phases of deployment.
- FIGS. 3A-C illustrate perspective views of one embodiment of the electrical ablation device shown in FIGS. 2A-2D .
- FIGS. 4A-C illustrate perspective views of one embodiment of the electrical ablation device.
- FIGS. 5A-C illustrate the operation of electrical ablation device shown in FIGS. 4A-C in accordance with one non-limiting embodiment.
- FIG. 6 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIG. 7 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIG. 8 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIG. 9 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIG. 10 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIGS. 11A-B illustrate the use of an alignment guide with an electrical ablation apparatus in accordance with one non-limiting embodiment.
- FIG. 12 illustrates the engagement of the alignment guide shown in FIGS. 11A-B and a handle of the electrical ablation apparatus shown in FIGS. 11A-B .
- FIG. 13 illustrates an alignment guide comprising a plurality of visual indicators in accordance with one non-limiting embodiment.
- FIG. 14 illustrates an alignment guide comprising a plurality of detents in accordance with one non-limiting embodiment.
- Various embodiments are directed to apparatuses, systems, and methods for the electrical ablation treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths without causing any detrimental thermal effects to surrounding healthy tissue.
- undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths without causing any detrimental thermal effects to surrounding healthy tissue.
- proximal and distal may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient.
- proximal refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician.
- distal refers to the portion located furthest from the clinician.
- spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments.
- surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
- the electrical ablation devices in accordance with the described embodiments may comprise one or more electrodes configured to be positioned into or proximal to undesirable tissue in a tissue treatment region (e.g., target site, worksite) where there is evidence of abnormal tissue growth, for example.
- a tissue treatment region e.g., target site, worksite
- the electrodes comprise an electrically conductive portion (e.g., medical grade stainless steel, gold plated, etc.) and are configured to electrically couple to an energy source.
- an energizing potential is applied to the electrodes to create an electric field to which the undesirable tissue is exposed.
- the energizing potential (and the resulting electric field) may be characterized by multiple parameters such as frequency, amplitude, pulse width (duration of a pulse or pulse length), and/or polarity.
- a particular electrode may be configured either as an anode (+) or a cathode ( ⁇ ) or may comprise a plurality of electrodes with at least one configured as an anode and at least one other configured as a cathode. Regardless of the initial polar configuration, the polarity of the electrodes may be reversed by reversing the polarity of the output of the energy source.
- a suitable energy source may comprise an electrical waveform generator, which may be configured to create an electric field that is suitable to create irreversible electroporation in undesirable tissue at various electric field amplitudes and durations.
- the energy source may be configured to deliver irreversible electroporation pulses in the form of direct-current (DC) and/or alternating-current (AC) voltage potentials (e.g., time-varying voltage potentials) to the electrodes.
- the energy source may also be configured to reverse the potential between the electrodes.
- the irreversible electroporation pulses may be characterized by various parameters such as frequency, amplitude, pulse length, and/or polarity.
- the undesirable tissue may be ablated by exposure to the electric potential difference across the electrodes.
- the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas.
- wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from an energy source to an electrical load without interconnecting wires.
- An electrical transformer is the simplest instance of wireless energy transfer. The primary and secondary circuits of a transformer are not directly connected and the transfer of energy takes place by electromagnetic coupling through a process known as mutual induction. Power also may be transferred wirelessly using RF energy. Wireless power transfer technology using RF energy is produced by Powercast, Inc. and can achieve an output of about 6 volts for a little over one meter. Other low-power wireless power technology has been proposed such as described in U.S. Pat. No. 6,967,462.
- the apparatuses, systems, and methods in accordance with the described embodiments may be configured for minimally invasive ablation treatment of undesirable tissue through the use of irreversible electroporation to be able to ablate undesirable tissue in a controlled and focused manner without inducing thermally damaging effects to the surrounding healthy tissue.
- the apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of electroporation or electropermeabilization. More specifically, the apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of irreversible electroporation. Electroporation increases the permeabilization of a cell membrane by exposing the cell to electric pulses.
- the primary parameter affecting the transmembrane potential is the potential difference across the cell membrane. Irreversible electroporation is the application of an electric field of a specific magnitude and duration to a cell membrane such that the permeabilization of the cell membrane cannot be reversed, leading to cell death without inducing a significant amount of heat in the cell membrane.
- the destabilizing potential forms pores in the cell membrane when the potential across the cell membrane exceeds its dielectric strength causing the cell to die under a process known as apoptosis and/or necrosis.
- irreversible electroporation pulses to cells is an effective way for ablating large volumes of undesirable tissue without deleterious thermal effects to the surrounding healthy tissue associated with thermal-inducing ablation treatments. This is because irreversible electroporation destroys cells without heat and thus does not destroy the cellular support structure or regional vasculature.
- a destabilizing irreversible electroporation pulse suitable to cause cell death without inducing a significant amount of thermal damage to the surrounding healthy tissue, may have amplitude in the range of about several hundred to about several thousand volts and is generally applied across biological membranes over a distance of about several millimeters, for example, for a relatively long duration.
- the undesirable tissue may be ablated in-vivo through the delivery of destabilizing electric fields by quickly creating cell necrosis.
- the apparatuses, systems, and methods for electrical ablation therapy in accordance with the described embodiments may be adapted for use in minimally invasive surgical procedures to access the tissue treatment region in various anatomic locations such as the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, and various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity, for example, without limitation.
- Minimally invasive electrical ablation devices may be introduced to the tissue treatment region using a trocar inserted though a small opening formed in the patient's body or through a natural body orifice such as the mouth, anus, or vagina using translumenal access techniques known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)TM.
- NOTES Natural Orifice Translumenal Endoscopic Surgery
- the electrical ablation devices e.g., electrodes
- electric field potentials can be applied to the undesirable tissue by the energy source.
- the electrical ablation devices comprise portions that may be inserted into the tissue treatment region percutaneously (e.g., where access to inner organs or other tissue is done via needle-puncture of the skin).
- tissue treatment region may be introduced into the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically) through trocars or channels of the endoscope, through small incisions, or transcutaneously (e.g., where electric pulses are delivered to the tissue treatment region through the skin).
- FIG. 1 illustrates one embodiment of an electrical ablation system 10 .
- the electrical ablation system 10 may be employed to ablate undesirable tissue such as diseased tissues, cancers, tumors, masses, lesions, abnormal tissue growths inside a patient using electrical energy.
- the electrical ablation system 10 may be used in conjunction with endoscopic, laparoscopic, thoracoscopic, open surgical procedures via small incisions or keyholes, percutaneous techniques, transcutaneous techniques, and/or external non-invasive techniques, or any combinations thereof without limitation.
- the electrical ablation system 10 may be configured to be positioned within a natural body orifice of the patient such as the mouth, anus, or vagina and advanced through internal body lumen or cavities such as the esophagus, colon, cervix, urethra, for example, to reach the tissue treatment region.
- the electrical ablation system 10 also may be configured to be positioned and passed through a small incision or keyhole formed through the skin or abdominal wall of the patient to reach the tissue treatment region using a trocar.
- the tissue treatment region may be located in the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity, for example, without limitation.
- the electrical ablation system 10 can be configured to treat a number of lesions and ostepathologies comprising metastatic lesions, tumors, fractures, infected sites, inflamed sites. Once positioned into or proximate the tissue treatment region, the electrical ablation system 10 can be actuated (e.g., energized) to ablate the undesirable tissue.
- the electrical ablation system 10 may be configured to treat diseased tissue in the gastrointestinal (GI) tract, esophagus, lung, or stomach that may be accessed orally.
- the electrical ablation system 10 may be adapted to treat undesirable tissue in the liver or other organs that may be accessible using translumenal access techniques such as, without limitation, NOTESTM techniques, where the electrical ablation devices may be initially introduced through a natural orifice such as the mouth, anus, or vagina and then advanced to the tissue treatment site by puncturing the walls of internal body lumen such as the stomach, intestines, colon, cervix.
- the electrical ablation system 10 may be adapted to treat undesirable tissue in the brain, liver, breast, gall bladder, pancreas, or prostate gland, using one or more electrodes positioned percutaneously, transcutaneously, translumenally, minimally invasively, and/or through open surgical techniques, or any combination thereof.
- the electrical ablation system 10 may be employed in conjunction with a flexible endoscope 12 , as well as a rigid endoscope, laparoscope, or thoracoscope, such as the GIF-100 model available from Olympus Corporation.
- the endoscope 12 may be introduced to the tissue treatment region trans-anally through the colon, trans-orally through the esophagus and stomach, trans-vaginally through the cervix, transcutaneously, or via an external incision or keyhole formed in the abdomen in conjunction with a trocar.
- the electrical ablation system 10 may be inserted and guided into or proximate the tissue treatment region using the endoscope 12 .
- an endoscope 12 is not utilized, and instead other technique, such as ultrasound or a computerized tomography (CT) scan, for example, is used to determine proper instrument placement during the procedure.
- CT computerized tomography
- the endoscope 12 comprises an endoscope handle 34 and an elongate relatively flexible shaft 32 .
- the distal end of the flexible shaft 32 may comprise a light source and a viewing port.
- the flexible shaft 32 may define one or more channels for receiving various instruments therethrough, such as electrical ablation devices, for example. Images within the field of view of the viewing port are received by an optical device, such as a camera comprising a charge coupled device (CCD) usually located within the endoscope 12 , and are transmitted to a display monitor (not shown) outside the patient.
- an optical device such as a camera comprising a charge coupled device (CCD) usually located within the endoscope 12 , and are transmitted to a display monitor (not shown) outside the patient.
- CCD charge coupled device
- the electrical ablation system 10 may comprise an electrical ablation device 20 , a plurality of electrical conductors 18 , a handpiece 16 comprising an activation switch 62 , and an energy source 14 , such as an electrical waveform generator, electrically coupled to the activation switch 62 and the electrical ablation device 20 .
- the electrical ablation device 20 may comprise a first lumen 26 and a second lumen 27 .
- the first lumen 26 and the second lumen 27 may be introduced to the tissue treatment region using a variety of known techniques such as an open incision and a trocar, through one of more of the channels of the endoscope 12 , percutaneously, or transcutaneously.
- the first lumen 26 and the second lumen 27 may be relatively rigid or flexible.
- additional lumens may be utilized, such as a larger lumen (not shown) surrounding the first lumen 26 and the second lumen 27 .
- a housing 33 or other suitable structure, may be utilized to maintain the relative position of the first lumen 26 and the second lumen 27 .
- one or more electrodes extend out from the distal end of the electrical ablation device 20 .
- the first electrode 24 may be configured as the positive electrode and the second electrode 25 may be configured as the negative electrode.
- the first electrode 24 is electrically connected to a first electrical conductor 18 , or similar electrically conductive lead or wire, which is coupled to the positive terminal of the energy source 14 through the activation switch 62 .
- the second electrode 25 is electrically connected to a second electrical conductor 19 , or similar electrically conductive lead or wire, which is coupled to the negative terminal of the energy source 14 through the activation switch 62 .
- the electrical conductors 18 , 19 are electrically insulated from each other and surrounding structures except for the electrical connections to the respective electrodes 24 , 25 .
- the electrical ablation device 20 may be configured to be introduced into or proximate the tissue treatment region using the endoscope 12 (laparoscope or thoracoscope), open surgical procedures, or external and non-invasive medical procedures.
- the electrodes 24 , 25 may be referred to herein as endoscopic or laparoscopic electrodes, although variations thereof may be inserted transcutaneously or percutaneously. As previously discussed, either one or both electrodes 24 , 25 may be adapted and configured to slideably move in and out of lumens 26 , 27 , respectively.
- either one or both of the electrodes 24 , 25 may be formed in a radius (i.e., arcuate, curved). Additionally, as discussed in more detail below, either one or both of the electrodes 24 , 25 may be rotatable within their respective lumens 26 , 27 .
- Various features of one embodiment of the first and second electrodes 24 , 25 are described in more detail in FIGS. 2A-D .
- the electrodes 24 , 25 may be connected to or disconnected from the energy source 14 by actuating or de-actuating the switch 62 on the handpiece 16 .
- the switch 62 may be operated manually or may be mounted on a foot switch (not shown), for example.
- the electrodes 24 , 25 deliver electric field pulses to the undesirable tissue.
- the electric field pulses may be characterized based on various parameters such as pulse shape, amplitude, frequency, and duration.
- the electric field pulses may be sufficient to induce irreversible electroporation in the undesirable tissue.
- the induced potential depends on a variety of conditions such as tissue type, cell size, and electrical pulse parameters.
- the primary electrical pulse parameter affecting the transmembrane potential for a specific tissue type is the amplitude of the electric field and pulse length that the tissue is exposed to.
- the first and second electrical conductors 18 , 19 may be provided through the handle 28 .
- the electrode 24 can be slideably moved in and out of the distal end of the first lumen 26 using a slide member 30 to retract and/or advance the first electrode 24 .
- the electrode 25 can be slideably moved in and out of the distal end of the second lumen 27 using a slide member 31 to retract and/or advance the second electrode 25 .
- either or both electrodes 24 , 25 may be coupled to a single slide member, or additional slide members, to advance and retract the electrodes 24 , 25 , e.g., position the electrodes 24 , 25 .
- the first electrical conductor 18 coupled to the first electrode 24 is coupled to the slide member 30 .
- the first electrode 24 which is slidably movable within the cannula, lumen, or channel defined by the first lumen 26
- the second electrical conductor 19 coupled to the second electrode 25 is coupled to the slide member 31 .
- the second electrode 25 which is slidably movable within the cannula, lumen, or channel defined by the second lumen 27 , can be advanced and retracted with the slide member 31 .
- various slide members, such as the slide member 31 are rotatable. Thus rotation of the slide member 30 , 31 rotates the corresponding electrode 24 , 25 , respectively, at the distal end of the electrical ablation device 20 .
- transducers or sensors 29 may be located in the handle 28 (or other suitable location) of the electrical ablation device 20 to sense the force with which the electrodes 24 , 25 penetrate the tissue in the tissue treatment zone. This feedback information may be useful to determine whether either one or both of the electrodes 24 , 25 have been properly inserted in the tissue treatment region. As is particularly well known, cancerous tumor tissue tends to be denser than healthy tissue and thus greater force is required to insert the electrodes 24 , 25 therein. The transducers or sensors 29 can provide feedback to the operator, surgeon, or clinician to physically sense when the electrodes 24 , 25 are placed within the cancerous tumor.
- the feedback information provided by the transducers or sensors 29 may be processed and displayed by circuits located either internally or externally to the energy source 14 .
- the sensor 29 readings may be employed to determine whether the electrodes 24 , 25 have been properly located within the cancerous tumor thereby assuring that a suitable margin of error has been achieved in locating the electrodes 24 , 25 .
- the input to the energy source 14 may be connected to a commercial power supply by way of a plug (not shown).
- the output of the energy source 14 is coupled to the electrodes 24 , 25 , which may be energized using the activation switch 62 on the handpiece 16 , or in one embodiment, an activation switch mounted on a foot activated pedal (not shown).
- the energy source 14 may be configured to produce electrical energy suitable for electrical ablation, as described in more detail below.
- the electrodes 24 , 25 are adapted and configured to electrically couple to the energy source 14 (e.g., generator, waveform generator). Once electrical energy is coupled to the electrodes 24 , 25 , an electric field is formed at a distal end of the electrodes 24 , 25 .
- the energy source 14 may be configured to generate electric pulses at a predetermined frequency, amplitude, pulse length, and/or polarity that are suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.
- the energy source 14 may be configured to deliver DC electric pulses having a predetermined frequency, amplitude, pulse length, and/or polarity suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.
- the DC pulses may be positive or negative relative to a particular reference polarity.
- the polarity of the DC pulses may be reversed or inverted from positive-to-negative or negative-to-positive a predetermined number of times to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.
- a timing circuit may be coupled to the output of the energy source 14 to generate electric pulses.
- the timing circuit may comprise one or more suitable switching elements to produce the electric pulses.
- the energy source 14 may produce a series of n electric pulses (where n is any positive integer) of sufficient amplitude and duration to induce irreversible electroporation suitable for tissue ablation when the n electric pulses are applied to the electrodes 24 , 25 .
- the electric pulses may have a fixed or variable pulse length, amplitude, and/or frequency.
- the electrical ablation device 20 may be operated either in bipolar or monopolar mode.
- bipolar mode the first electrode 24 is electrically connected to a first polarity and the second electrode 25 is electrically connected to the opposite polarity.
- monopolar mode the first electrode 24 is coupled to a prescribed voltage and the second electrode 25 is set to ground.
- the energy source 14 may be configured to operate in either the bipolar or monopolar modes with the electrical ablation system 10 .
- bipolar mode the first electrode 24 is electrically connected to a prescribed voltage of one polarity and the second electrode 25 is electrically connected to a prescribed voltage of the opposite polarity.
- the polarity of the electrodes may be alternated so that any two adjacent electrodes may have either the same or opposite polarities, for example.
- the impedance circuit simulates a connection to the ground pad and thus is able to activate the energy source 14 . It will be appreciated that in monopolar mode, the impedance circuit can be electrically connected in series with either one of the electrodes 24 , 25 that would otherwise be attached to a grounding pad.
- the energy source 14 may be configured to produce RF waveforms at predetermined frequencies, amplitudes, pulse widths or durations, and/or polarities suitable for electrical ablation of cells in the tissue treatment region.
- a suitable RF energy source is a commercially available conventional, bipolar/monopolar electrosurgical RF generator such as Model Number ICC 350, available from Erbe, GmbH.
- the energy source 14 may be configured to produce destabilizing electrical potentials (e.g., fields) suitable to induce irreversible electroporation.
- the destabilizing electrical potentials may be in the form of bipolar/monopolar DC electric pulses suitable for inducing irreversible electroporation to ablate tissue undesirable tissue with the electrical ablation device 20 .
- a commercially available energy source suitable for generating irreversible electroporation electric field pulses in bipolar or monopolar mode is a pulsed DC generator such as Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass.
- the first electrode 24 may be electrically coupled to a first polarity and the second electrode 25 may be electrically coupled to a second (e.g., opposite) polarity of the energy source 14 .
- Bipolar/monopolar DC electric pulses may be produced at a variety of frequencies, amplitudes, pulse lengths, and/or polarities.
- irreversible electroporation requires very little energy applied to the tissue to kill the cells of the undesirable tissue using electric field potentials rather than heat. Accordingly, irreversible electroporation systems avoid the detrimental thermal effects of RF ablation systems.
- the energy source 14 may be coupled to the first and second electrodes 24 , 25 by either a wired or a wireless connection.
- a wired connection the energy source 14 is coupled to the electrodes 24 , 25 by way of the electrical conductors 18 , 19 , as shown.
- the electrical conductors 18 , 19 may be replaced with a first antenna (not shown) coupled the energy source 14 and a second antenna (not shown) coupled to the electrodes 24 , 25 , wherein the second antenna is remotely located from the first antenna.
- the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas.
- wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from the energy source 14 to an electrical load, e.g., the abnormal cells in the tissue treatment region, without using the interconnecting electrical conductors 18 , 19 .
- the energy source 14 may be configured to produce DC electric pulses at frequencies in the range of about 1 Hz to about 10,000 Hz, amplitudes in the range of about ⁇ 100 to about ⁇ 3,000 VDC, and pulse lengths (e.g., pulse width, pulse duration) in the range of about 1 ⁇ s to about 100 ms.
- the polarity of the electric potentials coupled to the electrodes 24 , 25 may be reversed during an electrical ablation therapy procedure.
- the DC electric pulses may have a positive polarity and an amplitude in the range of about +100 to about +3,000 VDC.
- the polarity of the DC electric pulses may be reversed such that the amplitude is in the range of about ⁇ 100 to about ⁇ 3,000 VDC.
- the undesirable cells in the tissue treatment region may be electrically ablated with DC pulses suitable to induce irreversible electroporation at frequencies of about 10 Hz to about 100 Hz, amplitudes in the range of about +700 to about +1,500 VDC, and pulse lengths of about 10 ⁇ s to about 50 ⁇ s.
- FIGS. 2A-D illustrate one embodiment of the electrical ablation device 20 in various phases of deployment.
- the electrical ablation device 20 may be used in conjunction with the electrical ablation system 10 shown in FIG. 1 . It will be appreciated that other devices and electrode configurations may be employed without limitation.
- FIG. 2A illustrates an initial phase of deployment in which the first electrode 24 is retracted into the first lumen 26 and the second electrode 25 is retraced into the second lumen 27 .
- the electrodes 24 , 25 may have dimensions of about 0.5 mm, about 0.75 mm, about 1 mm, or about 1.5 mm in diameter. It will be appreciated that the dimensions of the electrodes 24 , 25 may be anywhere from about 0.5 mm to about 1.5 mm in diameter.
- the diameter of the first electrode 24 may by different from the diameter of the second electrode 25 .
- the electrical ablation device 20 may be introduced into the tissue treatment region through a trocar, for example, or inserted to a tissue treatment region transcutaneously, percutaneously, or other suitable techniques.
- the distal end 46 of the first lumen 26 may comprise a cutting edge, such as a bevel or other sharp edge, to aid in the puncturing/piercing of tissue.
- the distal end 47 of the second lumen 27 may have a similar configuration.
- FIG. 2B illustrates another phase of deployment in which the first electrode 24 is extended distally from the first lumen 26 and the second electrode 25 is extended distally from the second lumen 27 .
- the electrodes 24 , 25 may comprise a cutting edge, such as a bevel, on their distal ends-to aid in the puncturing/piercing of tissue.
- movement of the slide member 30 in the direction indicated by arrow 35 extends the first electrode 24 distally from the first lumen 26 and movement of the slide member 31 in the direction indicated by arrow 37 extends the second electrode 25 distally from the second lumen 27 .
- other techniques of extending the electrodes 24 , 25 may be utilized, such as a linear drive motor, for example.
- the first and second electrodes 24 , 25 may extend distally through the distal end of the electrical ablation device 20 into or proximate the tissue treatment region.
- the second electrode 25 may be formed with a radius, such that it curves or splays when it extends from the second lumen 27 , as illustrated in FIG. 2B .
- the first electrode 24 may be retracted into the second lumen 27 by pulling proximally on the slide member 31 in the direction indicated by arrow 39 in FIG. 2C .
- the first electrode 24 may remain inserted into the tissue treatment area.
- the first electrode 24 may be rotated about its longitudinal axis (shown as “A”) as indicated by arrow 41 .
- the slide member 31 may be rotated to rotate the first electrode 24 .
- the first electrode 24 may be rotated in any suitable direction and any suitable number of degrees, such as 45°, 90°, or 135°, for example.
- FIG. 2D illustrates another phase of deployment in which the first electrode 24 is in a fully extended position after it has been rotated. To achieve this position, the slide member 31 may be moved in the direction indicated by arrow 37 .
- FIGS. 3A-C are perspective views of one embodiment of the electrical ablation device 20 in various stages of rotation about axis “A.” Such rotation enables the surgeon or clinician to target and treat a larger tissue treatment region without having to remove the electrical ablation device 20 from the tissue treatment area.
- the second electrode 25 may be located in a plurality of positions in and around the tissue treatment region in order to change the distance between the first electrode 24 and the second electrode 25 and treat much larger regions of tissue. As shown in FIG.
- the distal tip of the first electrode 24 in a first position, may be separated by a distance “d 1 ” from the distal tip of the second electrode 25 .
- the distal tip of the first electrode 24 in a second position, may be separated by a distance “d 2 ” from the distal tip of the second electrode 25 .
- the distal tip of the first electrode 24 in a third position, may be separated by a distance “d 3 ” from the distal tip of the second electrode 25 .
- increasing the radius “r” FIG.
- the second electrode 25 and/or the spacing between the electrodes 24 , 25 enables the generation of an electric field over much larger tissue treatment regions and thus the ablation of larger volumes of undesirable tissue.
- the operator can treat a larger tissue treatment region comprising cancerous lesions, polyps, or tumors, for example.
- the electrical ablation device 20 described with reference to FIGS. 1 , 2 A-E, and 3 A-C may be introduced inside a patient transcutaneously, percutaneously, through an open incision, through a trocar, through a natural orifice, or any combination thereof.
- the outside diameter of the electrical ablation device 20 may be sized to fit within a channel of an endoscope and in other embodiments the outside diameter of the electrical ablation device 20 may be sized to fit within a hollow outer sleeve, or trocar, for example.
- the hollow outer sleeve or trocar may be inserted into the upper gastrointestinal tract of a patient and may be sized to also receive a flexible endoscopic portion of an endoscope (e.g., gastroscope), similar to the endoscope 12 described in FIG. 1 .
- an endoscope e.g., gastroscope
- the electrical ablation device 20 may comprise three or more retractable electrodes, one embodiment of which is described below with reference to FIGS. 4A and 4B .
- the electrical ablation device 20 may comprise at least one slidable electrode disposed within at least one channel of the flexible shaft 32 of the endoscope 12 .
- the electrical ablation device 20 may comprise at least one electrode may be configured to be inserted into the tissue treatment region transcutaneously or percutaneously. Still in various other embodiments, the electrical ablation device 20 may comprise at least one electrode configured to be introduced to the tissue treatment region transcutaneously or percutaneously and at least one other electrode may be configured to be introduced to the tissue treatment region through at least one channel of the flexible shaft 32 of the endoscope 12 .
- FIGS. 4A-4B illustrate one embodiment of an electrical ablation device 100 comprising multiple needle electrodes.
- the electrical ablation device 100 comprises three electrodes 124 , 125 , 126 . It will be appreciated that in one embodiment, the electrical ablation device 100 also may comprise a greater number of needle electrodes.
- One or more needle electrodes of the electrical ablation device 200 may be formed with a radius. In the illustrated embodiment the electrode 125 and the electrode 126 are both formed with a radius r 1 and r 2 ( FIG. 4A ), respectively, such that they curved when extended distally from the electrical ablation device 100 .
- the electrical ablation device 100 may be used in conjunction with the electrical ablation system 10 shown in FIG. 1 . It will be appreciated that other devices and electrode configurations may be employed without limitation.
- the electrodes 124 , 125 , 126 each may have dimensions of about 0.5 mm, about 0.75 mm, about 1 mm, or about 1.5 mm in diameter. It will be appreciated that the dimensions of each of the electrodes 124 , 125 , 126 may be anywhere from about 0.5 mm to about 1.5 mm in diameter.
- the electrical ablation device 100 may be introduced into the tissue treatment region through a trocar, transcutaneously, percutaneously, or using other suitable techniques.
- the electrical ablation device 100 comprises essentially the same components as the electrical ablation device 20 described with reference to FIGS. 2A-D .
- the electrical ablation device 100 comprises electrodes 124 , 125 , 126 that may be individually or simultaneously deployable, retractable, and/or rotatable with respect to the corresponding lumens 126 , 127 , 128 .
- the electrodes 124 , 125 , 126 extend distally from the distal end of the electrical ablation device 100 .
- the electrode 124 may be configured as the positive electrode coupled to the anode of the energy source 14 ( FIG. 1 ) and the electrodes 125 , 126 may be configured as the negative electrode coupled to the cathode of the energy source 14 ( FIG. 1 ).
- the electrodes 124 , 125 , 126 may be connected/disconnected from the energy source 14 by actuating/de-actuating the switch 62 ( FIG. 1 ).
- the various electrodes 124 , 125 , 126 may be rotatable and the distance between the various electrodes and/or relative positions of the electrodes 124 , 125 , 126 may be may be changed.
- two of the electrodes 125 , 126 are rotatable whereas the other electrode 124 s non-rotatable.
- one of the electrodes 125 may be rotatable about its longitudinal axis (illustrated as “B”) and the other electrode 126 may be rotatable about its longitudinal axis (illustrated as “C”).
- FIG. 4A illustrates the rotatable electrodes 125 , 126 in a first position
- FIG. 4A illustrates the rotatable electrodes 125 , 126 in a first position
- FIG. 4B illustrates the rotatable electrodes 125 , 126 in a second position (i.e., after rotation).
- the rotatable electrodes 125 , 126 may be rotated using any suitable method, such as by slide members similar to slide member 31 ( FIGS. 2A-2B ).
- the rotatable electrodes 125 , 126 may be retracted into their respective lumens 127 , 128 prior to rotation. Once rotated to a desired position, the rotatable electrodes 125 , 126 then may be extended distally from the distal end of the ablation device 100 .
- each electrode may be retracted, extended, and rotated independently from the other electrodes.
- FIGS. 5A-5B illustrate the operation of electrical ablation device 100 in accordance with one non-limiting embodiment.
- the electrodes 124 , 125 , 126 may be inserted into a tissue treatment region 144 .
- the tissue treatment region 144 may be representative of a variety of diseased tissues, cancers, tumors, masses, lesions, abnormal tissue growths, for example.
- one of the rotatable electrodes 125 may be rotated in the directions indicated by arrow 140 and the other rotatable electrode 126 may be rotated in the directions indicated by arrow 142 .
- One of the rotatable electrodes 125 may be retracted into the lumen 127 prior to rotation and the other rotatable electrode 126 may be retracted into the lumen 128 prior to rotation.
- the operator initially may locate one of the rotatable electrodes 125 at a first position and the other rotatable electrode 126 at a second position. Once the rotatable electrodes 125 , 126 are located into or proximate the tissue treatment region 144 , all of the electrodes 124 , 125 , 126 are energized with irreversible electroporation pulses to create a first necrotic zone 146 having a first shape substantially similar to that shown in FIG. 5B .
- the tissue treatment region 144 may be exposed to an electric field generated by energizing all of the electrodes 124 , 125 , 126 with the energy source 14 ( FIG. 1 ).
- the electric field may have a magnitude, frequency, and pulse length suitable to induce irreversible electroporation in the tissue treatment region 144 to create the first necrotic zone 146 having a first shape.
- the size of the necrotic zone 146 is substantially dependent on the size, separation, and orientation of the rotatable electrodes 125 , 126 , as previously discussed.
- the treatment time is defined as the time that the rotatable electrodes 125 , 126 are activated or energized to generate the electric pulses suitable for inducing irreversible electroporation in the tissue treatment region 144 .
- This procedure may be repeated to destroy relatively larger portions of the tissue treatment region 144 through rotation of at least one of the rotatable electrodes 125 , 126 .
- one of the rotatable electrodes 125 has been rotated to a second position.
- one of the rotatable electrodes 125 Prior to rotating, one of the rotatable electrodes 125 is retracted by pulling on an associated slide member (not shown) in a direction toward the proximal end. The rotatable electrode 125 may then be rotated within the corresponding lumen 127 to the second position.
- the rotatable electrode 125 may be advanced to engage the tissue treatment region 144 by pushing on the slide member (not shown) in a direction towards the distal end of the electrical ablation device 100 .
- a second necrotic zone 148 having a second shape substantially as shown is formed upon energizing all of the electrodes 124 , 125 , 126 .
- a plurality of necrotic zones having a plurality of shapes may be formed by retracting the at least one of the rotatable electrodes 125 , 126 , rotating the first electrode(s) to a new location, advancing the first electrode(s) into the tissue treatment region 144 and energizing all of the electrodes 124 , 125 , 126 .
- This process may be repeated as often as necessary to create any number of necrotic zones.
- the surgeon or clinician can reposition the non-rotatable electrode 124 and begin the process anew.
- FIG. 6 illustrates an electrical ablation apparatus 200 in accordance with various embodiments.
- the electrical ablation apparatus 200 may comprise an elongate sheath 202 .
- the distal end of the elongate sheath 202 may have a cutting edge, such as a bevel 208 , to aid in the puncturing or piercing of tissue.
- a first and second electrode 210 , 212 may be deployable from the distal end of the elongate sheath 202 .
- a greater number of electrodes or lesser number of electrodes may be deployable from the distal end of the elongate sheath 202 .
- a sleeve 204 at least partially surrounds the elongate sheath 202 .
- the sleeve 204 comprises the second electrode 206 .
- An insulator 218 may be utilized to electrically isolate the electrode 206 from the elongate sheath 202 . While the sleeve 204 is illustrated as a cylinder, it is to be appreciated that the sleeve 204 may be any suitable size, shape, or configuration.
- the first and second electrodes 210 , 212 may be pre-formed with a radius. Upon deployment from the distal end of the elongate sheath 202 , the first and second electrodes 210 , 212 may generally bend toward the proximal end of the electrical ablation apparatus 200 due to their pre-formed radius.
- At least one of the first and second electrodes 210 , 212 is rotatable within the elongate sheath 202 .
- the electrical ablation apparatus 200 may be inserted into a tissue treatment region and a plurality of necrotic zones having a plurality of shapes may be formed by retracting at least one of the electrodes 210 , 212 , rotating the electrode(s) to a new location, advancing the electrode(s) into the tissue treatment region and energizing the electrodes 206 , 210 , 212 . This process may be repeated as often as necessary to create any number of necrotic zones, each with a varying shape.
- FIG. 7 illustrates an electrical ablation apparatus 300 in accordance with various embodiments.
- the electrical ablation apparatus 300 comprises features similar to the electrical ablation apparatus 200 .
- the electrical ablation apparatus 300 comprises an elongate sheath 302 having a bevel 308 at the distal end to aid in the puncturing or piercing of tissue.
- the illustrated embodiment also comprises first and second electrodes 310 , 312 , each with a pre-formed radius, that are deployable from the elongate sheath 302 .
- the sleeve 304 comprises an extension 314 extending distally from the distal end of the electrical ablation apparatus 300 .
- the extension 314 may have a sharp distal end.
- the sleeve 304 and the extension 314 may comprise the second electrode 306 .
- An insulator 318 may be utilized to electrically isolate the electrode 306 from the elongate sheath 302 .
- the extension 314 may be used to pierce tissue and positionally secure the electrical ablation apparatus 300 proximate to a tissue treatment region.
- At least one of the first and second electrodes 310 , 312 may be rotatable within the elongate sheath 302 . Similar to the electrical ablation device 200 described with reference to FIG.
- the electrical ablation apparatus 300 may be inserted into a tissue treatment region to create a plurality of necrotic zones having a plurality of shapes by retracting the at least one of the electrodes 310 , 312 , rotating the electrode(s) to a new location, advancing the electrode(s) into the tissue treatment region and energizing the electrodes 306 , 310 , 312 . This process may be repeated as often as necessary to create any number of necrotic zones, each with a varying shape.
- the extension 306 is used to anchor the electrical ablation device 300 during the procedure.
- FIG. 8 illustrates another embodiment of an electrical ablation apparatus 400 .
- the electrical ablation apparatus 400 may comprise a first elongate sheath 402 and a second elongate sheath 404 .
- the first elongate sheath 402 may be substantially parallel to the second elongate sheath 404 .
- the first elongate sheath 402 and the second elongate sheath 404 may be coupled together or otherwise formed together.
- First, second, and third electrodes 424 , 425 , 426 are deployable from the first elongate sheath 402 .
- Fourth, fifth, and sixth electrodes 427 , 428 , 429 are deployable from the second elongate sheath 404 .
- Each electrode 424 , 425 , 426 , 427 , 428 , 429 may be coupled to an energy source (not shown) at a proximal end and configured to couple to a tissue treatment region at the distal end. As illustrated, in various embodiments, some electrodes, such as the first electrode 424 and the fourth electrode 427 may be electrically isolated from the other electrodes. In one embodiment, the first electrode 424 is at least partially surrounded by an insulative sleeve 432 and the fourth electrode 437 is at least partially surrounded by an insulative sleeve 434 . In one embodiment, the first electrode 424 comprises a non-conductive distal end 431 and the second electrode 427 also comprises a non-conductive distal end 433 .
- the non-conductive distal ends 431 , 433 comprise ceramic, or another non-conductive material.
- the use of the non-conductive distal ends 431 , 433 reduces the current density present at the distal end of the electrodes 424 , 427 when energized.
- Electrodes of the electrical ablation apparatus 400 may be pre-formed with a radius.
- the second and third electrodes 425 , 426 and the fifth and sixth electrodes 428 , 429 are formed with a pre-formed radius. Therefore, similar to the previously discussed embodiments, after an initial energization, these electrodes may be retraced into their respective elongate sheaths and rotated in order to change the shape of the necrotic zone when the electrodes are re-introduced into a tissue treatment regain and energized.
- FIG. 9 Yet another embodiment of an electrical ablation apparatus 500 is illustrated in FIG. 9 .
- the electrical ablation apparatus 500 comprises an elongate shaft 502 .
- The-distal end of the elongate shaft 502 may be sharpened, or otherwise contain a cutting edge, such as a bevel 504 .
- a plurality of electrodes may be disposed along the elongate shaft, alternating in polarity when in an energized state.
- the first and second electrodes 506 , 508 may be at a first polarity and a third electrode 510 may be at a second polarity when energized.
- the third electrode 510 may be coupled to an energy source (not shown) via any suitable connection, such as an insulated conductor 512 , for example.
- the first and second electrodes 506 , 508 may be coupled to an energy source, such as with conductors positioned internal to the elongate shaft 502 , for example.
- a first insulator 514 may be positioned intermediate the first electrode 506 and the third electrode 510 and a second insulator 516 may be positioned intermediate the second electrode 508 and the third electrode 510 .
- the insulators 514 , 516 may be coupled to the third electrode 510 .
- the insulators 514 , 516 prohibit an electrically conductive connection between two adjacent electrodes having opposite polarities.
- the third electrode 510 is slidably engaged with the elongate sheath 502 .
- the position along the elongate sheath 502 may be controlled by the user at the proximal end of the electrical ablation apparatus 500 , such as with a slide member similar to previously discussed embodiments.
- the third electrode 510 is placed in a first position and the electrical ablation apparatus 500 is positioned within a tissue treatment region.
- the electrical ablation apparatus 500 may be introduced inside a patient endoscopically, transcutaneously, percutaneously, through an open incision, through a trocar, through a natural orifice, or any combination thereof.
- the electrodes 506 , 508 , 510 may be energized to form a necrotic zone having a first shape in the tissue treatment region.
- the shape of the necrotic zone will be dependent on the position of the third electrode 510 relative to the first and second electrodes 506 , 508 .
- the use may slide the third electrode 510 in-the direction indicated by arrow 518 to change the relative position of the third electrode 510 .
- a necrotic zone having a second shape is formed in the tissue treatment region. This process may be repeated as often as necessary to create any number of necrotic zones using the electrical ablation apparatus 500 .
- the surgeon or clinician can reposition the electrical ablation apparatus 500 within the tissue treatment region and begin the process anew.
- the electrodes 506 , 508 , 510 may be formed in any suitable configuration.
- the third electrode 510 comprises a cutting edge to assist in the movement of the third electrode 510 through tissue.
- FIG. 10 illustrates an electrical ablation apparatus 600 in accordance with one non-limiting embodiment.
- the electrical ablation apparatus 600 comprises an elongate sheath 602 and an electrode 624 deployable from the distal end of the elongate sheath 602 .
- the electrode 624 may be at least partially surrounded by an insulative sleeve 632 .
- the electrical ablation apparatus 600 further comprises a fluid nozzle 640 configured to deploy a fluid into a tissue treatment region 644 .
- the fluid nozzle 640 may be coupled to a fluid source 642 via a fluid conduit 648 . Upon deployment, the fluid 640 bores a path in the tissue treatment region 644 to create a cavity 650 .
- the fluid 640 may be any suitable conductive solution (e.g., saline solution).
- the fluid 640 located in the cavity 650 may be electrically connected to a first polarity of an energy source 614 to function as an electrode.
- the electrode 624 is supplied energy having an opposite polarity through an electrical coupling to the energy source 614 .
- a necrotic zone having a first shape is formed in the tissue treatment region 644 .
- the user of the electrical ablation apparatus 600 then can rotate, or otherwise reposition the fluid nozzle 640 , and deploy the fluid 640 to create a second cavity 652 and the process may be repeated to form a third necrotic zone having a second shape.
- a third cavity 654 may be created to form yet a third necrotic zone having a third shape.
- Various parameters of the fluid and the fluid deployment process such as a pressure, temperature, duration, may be altered or adjusted according to the type of tissue in the tissue treatment region 644 and the desired size of the cavity created.
- a plurality of fluid nozzles 640 and/or a plurality of electrodes 624 may be utilized by the electrical ablation apparatus 600 .
- FIGS. 11A-B illustrate an alignment guide 700 in accordance with one non-limiting embodiment.
- the alignment guide 700 assists in the placement and delivery of electrodes to a treatment site inside a patient.
- the alignment guide 700 is positioned on the surface 702 of the skin 704 of a patient.
- the center of the alignment guide 700 may be positioned above the center of the targeted tissue (e.g., a tumor).
- the alignment guide 700 may be secured to the surface 702 of the skin 704 using any suitable attachment technique, such as surgical tape.
- the alignment guide 700 comprises an adhesive on the skin contacting portion to adhere the alignment guide to the patient.
- the alignment guide 700 may be radio-opaque to allow proper placement through the use of ultrasound, CT guidance, or other techniques, proximate to the target tissue.
- the alignment guide 700 defines a passageway 706 configured to receive an electrical ablation apparatus 710 .
- the electrical ablation apparatus 710 comprises first and second electrodes 712 , 714 , with each electrode 712 , 714 comprising a first end configured to couple to an energy source 720 and a second end configured to couple to a tissue treatment region.
- more electrodes such as a third electrode 716 , may be utilized.
- one or more of the electrodes may be pre-formed with a radius so that they curve or splay upon deployment from the distal end of the electrical ablation apparatus 710 .
- the electrical ablation apparatus 710 comprises a first lumen 718 configured to receive the first electrode 712 and a second lumen 722 configured to receive the second electrode 714 . If additional electrodes are utilized, the electrical ablation apparatus 710 also may comprise additional lumens, such as a third lumen 724 configured to receive a third electrode 716 .
- the first electrode 712 may movable between a first position and a second position with respect to the second electrode 714 (e.g., through rotation of the electrical ablation apparatus 710 ).
- a zone of cell necrosis in a first shape is created in a tissue treatment-region when the first electrode 712 is in a first position and a zone of necrosis in a second shape is created when the first electrode 712 is in the second position (e.g., subsequent to rotation).
- the electrical ablation apparatus 710 may further comprise a first handle 730 , a second handle 732 , and a third handle 734 .
- the handles 730 , 732 , 734 are configured to receive the lumens 718 , 722 , 724 .
- the first handle 730 is configured to be placed against the surface 702 of the skin 714 through the passageway 706 of the alignment guide 700 .
- the electrical ablation apparatus 710 is rotatable about the longitudinal axis (shown as “D”) in the directions indicated by arrow 738 .
- the second and third handles 730 , 732 may be moved in the direction indicated by arrow 740 in order to pass the electrodes 712 , 714 , 716 through the skin 704 and into a tissue treatment region (not shown). Once the electrodes 712 , 714 , 716 are coupled to the target tissue, the electrodes 712 , 714 , 716 may be energized with the energy source 720 using previously discussed techniques to create a necrotic zone having a first shape. The user may then move the second and third handles 730 , 732 in the direction indicated by arrow 742 ( FIG. 11B ) to remove at least one electrode from the target treatment region.
- the center electrode i.e., the second electrode 714
- the center electrode remains engaged with the tissue treatment region to serve as a central pivot as the electrical ablation apparatus 710 is rotated about axis A by the user.
- the user may once again move the second and third handles 730 , in the direction indicated by arrow 740 in order to pass the rotated electrodes 714 , 716 through the skin 704 and into a tissue treatment region at a different location.
- the electrodes 712 , 714 , 716 are again coupled to the target tissue, the electrodes may be energized with the energy source 720 to create a necrotic zone having a second shape. This process may be repeated as often as necessary to create any number of necrotic zones using the electrical ablation apparatus 700 .
- the alignment guide 700 serves to ensure proper position of the electrical ablation apparatus 700 during the procedure.
- the handle 730 may be configured to rotate within the passageway 706 of the alignment guide 700 .
- various alignment aids may be used.
- the skin contacting portion of the handle 730 may comprise a dye to mark the surface of the skin upon contact.
- a series of marks indicative of previous contacts will be imprinted on the skin.
- a plurality of visual indicators 750 may be distributed around the periphery of the alignment guide 700 . Throughout a procedure, the user lines the handle 730 with the various visual indicators 750 prior to piercing the skin and underlying target tissue with the electrodes. Through the use of the visual indicators 750 , the user can create necrotic zones of varying shapes within the target treatment region.
- a plurality of detents may be used to assist the user in positioning the handle 730 during rotation.
- the alignment guide 700 may define a plurality of notches 752 distributed around the periphery of the passageway 706 .
- the notches 752 are configured to receive a portion of the handle 730 , such as a protrusion 754 , during rotation.
- the embodiments of the electrical ablation devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the electrical ablation devices inside the patient using a combination of minimally invasive and open surgical techniques.
- Minimally invasive techniques provide more accurate and effective access to the treatment region for diagnostic and treatment procedures.
- the electrical ablation devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example.
- Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTESTM procedures.
- Surgical devices such as an electrical ablation devices, may be introduced to the treatment region through the channels of the endoscope to perform key surgical activities (KSA), including, for example, electrical ablation of tissues using irreversible electroporation energy.
- KSA key surgical activities
- Some portions of the electrical ablation devices may be introduced to the tissue treatment region percutaneously or through small-keyhole-incisions.
- Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body.
- the endoscope may have a rigid or a flexible tube.
- a flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina).
- a rigid endoscope may be introduced via trocar through a relatively small-keyhole-incision incisions (usually 0.5-1.5 cm).
- the endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography.
- the endoscope may be adapted and configured with channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
- an electrical ablation device is inserted in the human body internal organs may be reached using trans-organ or translumenal surgical procedures.
- the electrical ablation device may be advanced to the treatment site using endoscopic translumenal access techniques to perforate a lumen, and then, advance the electrical ablation device and the endoscope into the peritoneal cavity.
- Translumenal access procedures for perforating a lumen wall, inserting, and advancing an endoscope therethrough, and pneumoperitoneum devices for insufflating the peritoneal cavity and closing or suturing the perforated lumen wall are well known.
- a puncture must be formed in the stomach wall or in the gastrointestinal tract to access the peritoneal cavity.
- One device often used to form such a puncture is a needle knife which is inserted through the channel of the endoscope, and which utilizes energy to penetrate through the tissue.
- a guidewire is then feed through the endoscope and is passed through the puncture in the stomach wall and into the peritoneal cavity.
- the needle knife is removed, leaving the guidewire as a placeholder.
- a balloon catheter is then passed over the guidewire and through the channel of the endoscope to position the balloon within the opening in the stomach wall.
- the balloon can then be inflated to increase the size of the opening, thereby enabling the endoscope to push against the rear of the balloon and to be feed through the opening and into the peritoneal cavity.
- the endoscope may be connected to a video camera (single chip or multiple chips) and may be attached to a fiber-optic cable system connected to a “cold” light source (halogen or xenon), to illuminate the operative field.
- the video camera provides a direct line-of-sight view of the treatment region.
- CO 2 carbon dioxide
- the abdomen is essentially blown up like a balloon (insufflated), elevating the abdominal wall above the internal organs like a dome.
- CO 2 gas is used because it is common to the human body and can be removed by the respiratory system if it is absorbed through tissue.
- the diseased tissue may be electrically ablated or destroyed using the various embodiments of electrodes discussed herein.
- the placement and location of the electrodes can be important for effective and efficient electrical ablation therapy.
- the electrodes may be positioned proximal to a treatment region (e.g., target site or worksite) either endoscopically or transcutaneously (percutaneously).
- a treatment region e.g., target site or worksite
- transcutaneously percutaneously
- the electrodes may be introduced to the tissue treatment region through a channel of the endoscope, an overtube, or a trocar and, in some implementations, may be introduced through percutaneously or through small-keyhole-incisions.
- the various embodiments of the devices described herein will be processed before surgery.
- a new or used instrument is obtained and if necessary cleaned.
- the instrument can then be sterilized.
- the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag.
- the container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons.
- the radiation kills bacteria on the instrument and in the container.
- the sterilized instrument can then be stored in the sterile container.
- the sealed container keeps the instrument sterile until it is opened in the medical facility.
- the device is sterilized prior to use. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Otolaryngology (AREA)
- Cardiology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgical Instruments (AREA)
Abstract
An electrical ablation apparatus comprises first and second electrodes. Each electrode comprises a first end configured to couple an energy source and a second end configured to couple to a tissue treatment region. An energy source is coupled to the first and second electrodes. At least one electrode is movable between a first position and a second position. A first necrotic zone having a first shape is created when the electrodes are energized in the first position and a second necrotic zone having a second shape is created when the electrodes are energized in the second position. At least one electrode may be pre-formed with a radius.
Description
- Electrical ablation therapy has been employed in medicine for the treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. While conventional apparatuses, systems, and methods for the electrical ablation of undesirable tissue are effective, one drawback with conventional electrical ablation treatment is the resulting permanent damage that may occur to the healthy tissue surrounding the abnormal tissue due primarily to the detrimental thermal effects resulting from exposing the tissue to thermal energy generated by the electrical ablation device. This may be particularly true when exposing the tissue to electric potentials sufficient to cause cell necrosis using high temperature thermal therapies including focused ultrasound ablation, radiofrequency (RF) ablation, or interstitial laser coagulation. Other techniques for tissue ablation include chemical ablation, in which chemical agents are injected into the undesirable tissue to cause ablation as well as surgical excision, cryotherapy, radiation, photodynamic therapy, Moh's micrographic surgery, topical treatments with 5-fluorouracil, laser ablation. Other drawbacks of conventional thermal, chemical, and other ablation therapy are cost, length of recovery, and the extraordinary pain inflicted on the patient.
- Conventional thermal, chemical, and other ablation techniques have been employed for the treatment of a variety of undesirable tissue. Thermal and chemical ablation techniques have been used for the treatment of varicose veins resulting from reflux disease of the greater saphenous vein (GSV), in which the varicose vein is stripped and then is exposed to either chemical or thermal ablation. Other techniques for the treatment of undesirable tissue are more radical. Prostate cancer, for example, may be removed using a prostatectomy, in which the entire or part of prostate gland and surrounding lymph nodes are surgically removed. Like most other forms of cancer, radiation therapy may be used in conjunction with or as an alternate method for the treatment of prostate cancer. Another thermal ablation technique for the treatment of prostate cancer is RF interstitial tumor ablation (RITA) via trans-rectal ultrasound guidance. While these conventional methods for the treatment of prostate cancer are effective, they are not preferred by many surgeons and may result in detrimental thermal effects to healthy tissue surrounding the prostate. Similar thermal ablation techniques may be used for the treatment of basal cell carcinoma (BCC) tissue, a slowly growing cutaneous malignancy derived from the rapidly proliferating basal layer of the epidermis. BCC tissue in tumors ranging in size from about 5 mm to about 40 mm may be thermally ablated with a pulsed carbon dioxide laser. Nevertheless, carbon dioxide laser ablation is a thermal treatment method and may cause permanent damage to healthy tissue surrounding the BCC tissue. Furthermore, this technique requires costly capital investment in carbon dioxide laser equipment. Undesirable tissue growing inside a body lumen such as the esophagus, large bowel, or in cavities formed in solid tissue such as the breast, for example, can be difficult to destroy using conventional ablation techniques. Surgical removal of undesirable tissue, such as a malignant or benign tumor, from the breast is likely to leave a cavity. Surgical resection of residual intralumenal tissue may remove only a portion of the undesirable tissue cells within a certain margin of healthy tissue. Accordingly, some undesirable tissue is likely to remain within the wall of the cavity due to the limitation of conventional ablation instrument configurations, which may be effective for treating line-of-sight regions of tissue, but may be less effective for treating the residual undesirable tissue.
- Accordingly, there remains a need for improved electrical ablation apparatuses, systems, and methods for the treatment of undesirable tissue found in diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. There remains a need for minimally invasive treatment of undesirable tissue through the use of irreversible electroporation (IRE) ablation techniques without causing the detrimental thermal effects of conventional thermal ablation techniques.
- The novel features of the various described embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
-
FIG. 1 illustrates one embodiment of an electrical ablation system in accordance with one non-limiting embodiment. -
FIGS. 2A-D illustrate one embodiment of the electrical ablation device in various phases of deployment. -
FIGS. 3A-C illustrate perspective views of one embodiment of the electrical ablation device shown inFIGS. 2A-2D . -
FIGS. 4A-C illustrate perspective views of one embodiment of the electrical ablation device. -
FIGS. 5A-C illustrate the operation of electrical ablation device shown inFIGS. 4A-C in accordance with one non-limiting embodiment. -
FIG. 6 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIG. 7 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIG. 8 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIG. 9 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIG. 10 illustrates an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIGS. 11A-B illustrate the use of an alignment guide with an electrical ablation apparatus in accordance with one non-limiting embodiment. -
FIG. 12 illustrates the engagement of the alignment guide shown inFIGS. 11A-B and a handle of the electrical ablation apparatus shown inFIGS. 11A-B . -
FIG. 13 illustrates an alignment guide comprising a plurality of visual indicators in accordance with one non-limiting embodiment. -
FIG. 14 illustrates an alignment guide comprising a plurality of detents in accordance with one non-limiting embodiment. - Various embodiments are directed to apparatuses, systems, and methods for the electrical ablation treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths without causing any detrimental thermal effects to surrounding healthy tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without the specific details described and illustrated herein. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
- Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
- It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
- Various embodiments of apparatuses, systems, and methods for the electrical ablation treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths, are described throughout the specification and illustrated in the accompanying drawings. The electrical ablation devices in accordance with the described embodiments may comprise one or more electrodes configured to be positioned into or proximal to undesirable tissue in a tissue treatment region (e.g., target site, worksite) where there is evidence of abnormal tissue growth, for example. In general, the electrodes comprise an electrically conductive portion (e.g., medical grade stainless steel, gold plated, etc.) and are configured to electrically couple to an energy source. Once the electrodes are positioned into or proximal to the undesirable tissue, an energizing potential is applied to the electrodes to create an electric field to which the undesirable tissue is exposed. The energizing potential (and the resulting electric field) may be characterized by multiple parameters such as frequency, amplitude, pulse width (duration of a pulse or pulse length), and/or polarity. Depending on the diagnostic or therapeutic treatment to be rendered, a particular electrode may be configured either as an anode (+) or a cathode (−) or may comprise a plurality of electrodes with at least one configured as an anode and at least one other configured as a cathode. Regardless of the initial polar configuration, the polarity of the electrodes may be reversed by reversing the polarity of the output of the energy source.
- In various embodiments, a suitable energy source may comprise an electrical waveform generator, which may be configured to create an electric field that is suitable to create irreversible electroporation in undesirable tissue at various electric field amplitudes and durations. The energy source may be configured to deliver irreversible electroporation pulses in the form of direct-current (DC) and/or alternating-current (AC) voltage potentials (e.g., time-varying voltage potentials) to the electrodes. The energy source may also be configured to reverse the potential between the electrodes. The irreversible electroporation pulses may be characterized by various parameters such as frequency, amplitude, pulse length, and/or polarity. The undesirable tissue may be ablated by exposure to the electric potential difference across the electrodes.
- In one embodiment, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. Those skilled in the art will appreciate that wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from an energy source to an electrical load without interconnecting wires. An electrical transformer is the simplest instance of wireless energy transfer. The primary and secondary circuits of a transformer are not directly connected and the transfer of energy takes place by electromagnetic coupling through a process known as mutual induction. Power also may be transferred wirelessly using RF energy. Wireless power transfer technology using RF energy is produced by Powercast, Inc. and can achieve an output of about 6 volts for a little over one meter. Other low-power wireless power technology has been proposed such as described in U.S. Pat. No. 6,967,462.
- The apparatuses, systems, and methods in accordance with the described embodiments may be configured for minimally invasive ablation treatment of undesirable tissue through the use of irreversible electroporation to be able to ablate undesirable tissue in a controlled and focused manner without inducing thermally damaging effects to the surrounding healthy tissue. The apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of electroporation or electropermeabilization. More specifically, the apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of irreversible electroporation. Electroporation increases the permeabilization of a cell membrane by exposing the cell to electric pulses. The external electric field (electric potential/per unit length) to which the cell membrane is exposed to significantly increases the electrical conductivity and permeability of the plasma in the cell membrane. The primary parameter affecting the transmembrane potential is the potential difference across the cell membrane. Irreversible electroporation is the application of an electric field of a specific magnitude and duration to a cell membrane such that the permeabilization of the cell membrane cannot be reversed, leading to cell death without inducing a significant amount of heat in the cell membrane. The destabilizing potential forms pores in the cell membrane when the potential across the cell membrane exceeds its dielectric strength causing the cell to die under a process known as apoptosis and/or necrosis. The application of irreversible electroporation pulses to cells is an effective way for ablating large volumes of undesirable tissue without deleterious thermal effects to the surrounding healthy tissue associated with thermal-inducing ablation treatments. This is because irreversible electroporation destroys cells without heat and thus does not destroy the cellular support structure or regional vasculature. A destabilizing irreversible electroporation pulse, suitable to cause cell death without inducing a significant amount of thermal damage to the surrounding healthy tissue, may have amplitude in the range of about several hundred to about several thousand volts and is generally applied across biological membranes over a distance of about several millimeters, for example, for a relatively long duration. Thus, the undesirable tissue may be ablated in-vivo through the delivery of destabilizing electric fields by quickly creating cell necrosis.
- The apparatuses, systems, and methods for electrical ablation therapy in accordance with the described embodiments may be adapted for use in minimally invasive surgical procedures to access the tissue treatment region in various anatomic locations such as the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, and various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity, for example, without limitation. Minimally invasive electrical ablation devices may be introduced to the tissue treatment region using a trocar inserted though a small opening formed in the patient's body or through a natural body orifice such as the mouth, anus, or vagina using translumenal access techniques known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™. Once the electrical ablation devices (e.g., electrodes) are located into or proximal to the undesirable tissue in the treatment region, electric field potentials can be applied to the undesirable tissue by the energy source. The electrical ablation devices comprise portions that may be inserted into the tissue treatment region percutaneously (e.g., where access to inner organs or other tissue is done via needle-puncture of the skin). Other portions of the electrical ablation devices may be introduced into the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically) through trocars or channels of the endoscope, through small incisions, or transcutaneously (e.g., where electric pulses are delivered to the tissue treatment region through the skin). An electrical ablation device in commonly owned U.S. patent application Ser. No. 12/352,375 titled “ELECTRICAL ABLATION DEVICES,” filed Jan. 12, 2009, the entire disclosure of which is incorporated herein by reference in its entirety.
-
FIG. 1 illustrates one embodiment of anelectrical ablation system 10. Theelectrical ablation system 10 may be employed to ablate undesirable tissue such as diseased tissues, cancers, tumors, masses, lesions, abnormal tissue growths inside a patient using electrical energy. Theelectrical ablation system 10 may be used in conjunction with endoscopic, laparoscopic, thoracoscopic, open surgical procedures via small incisions or keyholes, percutaneous techniques, transcutaneous techniques, and/or external non-invasive techniques, or any combinations thereof without limitation. Theelectrical ablation system 10 may be configured to be positioned within a natural body orifice of the patient such as the mouth, anus, or vagina and advanced through internal body lumen or cavities such as the esophagus, colon, cervix, urethra, for example, to reach the tissue treatment region. Theelectrical ablation system 10 also may be configured to be positioned and passed through a small incision or keyhole formed through the skin or abdominal wall of the patient to reach the tissue treatment region using a trocar. The tissue treatment region may be located in the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity, for example, without limitation. Theelectrical ablation system 10 can be configured to treat a number of lesions and ostepathologies comprising metastatic lesions, tumors, fractures, infected sites, inflamed sites. Once positioned into or proximate the tissue treatment region, theelectrical ablation system 10 can be actuated (e.g., energized) to ablate the undesirable tissue. In one embodiment, theelectrical ablation system 10 may be configured to treat diseased tissue in the gastrointestinal (GI) tract, esophagus, lung, or stomach that may be accessed orally. In another embodiment, theelectrical ablation system 10 may be adapted to treat undesirable tissue in the liver or other organs that may be accessible using translumenal access techniques such as, without limitation, NOTES™ techniques, where the electrical ablation devices may be initially introduced through a natural orifice such as the mouth, anus, or vagina and then advanced to the tissue treatment site by puncturing the walls of internal body lumen such as the stomach, intestines, colon, cervix. In various embodiments, theelectrical ablation system 10 may be adapted to treat undesirable tissue in the brain, liver, breast, gall bladder, pancreas, or prostate gland, using one or more electrodes positioned percutaneously, transcutaneously, translumenally, minimally invasively, and/or through open surgical techniques, or any combination thereof. - In one embodiment, the
electrical ablation system 10 may be employed in conjunction with aflexible endoscope 12, as well as a rigid endoscope, laparoscope, or thoracoscope, such as the GIF-100 model available from Olympus Corporation. In one embodiment, theendoscope 12 may be introduced to the tissue treatment region trans-anally through the colon, trans-orally through the esophagus and stomach, trans-vaginally through the cervix, transcutaneously, or via an external incision or keyhole formed in the abdomen in conjunction with a trocar. Theelectrical ablation system 10 may be inserted and guided into or proximate the tissue treatment region using theendoscope 12. In other embodiments, anendoscope 12 is not utilized, and instead other technique, such as ultrasound or a computerized tomography (CT) scan, for example, is used to determine proper instrument placement during the procedure. - In the embodiment illustrated in
FIG. 1 , theendoscope 12 comprises anendoscope handle 34 and an elongate relativelyflexible shaft 32. The distal end of theflexible shaft 32 may comprise a light source and a viewing port. Optionally, theflexible shaft 32 may define one or more channels for receiving various instruments therethrough, such as electrical ablation devices, for example. Images within the field of view of the viewing port are received by an optical device, such as a camera comprising a charge coupled device (CCD) usually located within theendoscope 12, and are transmitted to a display monitor (not shown) outside the patient. - In one embodiment, the
electrical ablation system 10 may comprise anelectrical ablation device 20, a plurality ofelectrical conductors 18, ahandpiece 16 comprising anactivation switch 62, and anenergy source 14, such as an electrical waveform generator, electrically coupled to theactivation switch 62 and theelectrical ablation device 20. Theelectrical ablation device 20 may comprise afirst lumen 26 and asecond lumen 27. Thefirst lumen 26 and thesecond lumen 27 may be introduced to the tissue treatment region using a variety of known techniques such as an open incision and a trocar, through one of more of the channels of theendoscope 12, percutaneously, or transcutaneously. In some embodiments, thefirst lumen 26 and thesecond lumen 27 may be relatively rigid or flexible. Additionally, additional lumens may be utilized, such as a larger lumen (not shown) surrounding thefirst lumen 26 and thesecond lumen 27. Further, ahousing 33, or other suitable structure, may be utilized to maintain the relative position of thefirst lumen 26 and thesecond lumen 27. - In one embodiment, one or more electrodes (e.g., needle electrodes, balloon electrodes), such as a
first electrodes 24 and asecond electrode 25, extend out from the distal end of theelectrical ablation device 20. In one embodiment, thefirst electrode 24 may be configured as the positive electrode and thesecond electrode 25 may be configured as the negative electrode. Thefirst electrode 24 is electrically connected to a firstelectrical conductor 18, or similar electrically conductive lead or wire, which is coupled to the positive terminal of theenergy source 14 through theactivation switch 62. Thesecond electrode 25 is electrically connected to a secondelectrical conductor 19, or similar electrically conductive lead or wire, which is coupled to the negative terminal of theenergy source 14 through theactivation switch 62. Theelectrical conductors respective electrodes electrical ablation device 20 may be configured to be introduced into or proximate the tissue treatment region using the endoscope 12 (laparoscope or thoracoscope), open surgical procedures, or external and non-invasive medical procedures. Theelectrodes electrodes lumens electrodes electrodes respective lumens second electrodes FIGS. 2A-D . - Once the
electrodes electrodes energy source 14 by actuating or de-actuating theswitch 62 on thehandpiece 16. Theswitch 62 may be operated manually or may be mounted on a foot switch (not shown), for example. Theelectrodes - In one embodiment, the first and second
electrical conductors handle 28. In the illustrated embodiment, theelectrode 24 can be slideably moved in and out of the distal end of thefirst lumen 26 using aslide member 30 to retract and/or advance thefirst electrode 24. Theelectrode 25 can be slideably moved in and out of the distal end of thesecond lumen 27 using aslide member 31 to retract and/or advance thesecond electrode 25. In various embodiments either or bothelectrodes electrodes electrodes electrical conductor 18 coupled to thefirst electrode 24 is coupled to theslide member 30. In this manner, thefirst electrode 24, which is slidably movable within the cannula, lumen, or channel defined by thefirst lumen 26, can be advanced and retracted with theslide member 30. In the illustrated embodiment, the secondelectrical conductor 19 coupled to thesecond electrode 25 is coupled to theslide member 31. In this manner, thesecond electrode 25, which is slidably movable within the cannula, lumen, or channel defined by thesecond lumen 27, can be advanced and retracted with theslide member 31. In one embodiment, various slide members, such as theslide member 31, are rotatable. Thus rotation of theslide member electrode electrical ablation device 20. - In various other embodiments, transducers or
sensors 29 may be located in the handle 28 (or other suitable location) of theelectrical ablation device 20 to sense the force with which theelectrodes electrodes electrodes sensors 29 can provide feedback to the operator, surgeon, or clinician to physically sense when theelectrodes sensors 29 may be processed and displayed by circuits located either internally or externally to theenergy source 14. Thesensor 29 readings may be employed to determine whether theelectrodes electrodes - In one embodiment, the input to the
energy source 14 may be connected to a commercial power supply by way of a plug (not shown). The output of theenergy source 14 is coupled to theelectrodes activation switch 62 on thehandpiece 16, or in one embodiment, an activation switch mounted on a foot activated pedal (not shown). Theenergy source 14 may be configured to produce electrical energy suitable for electrical ablation, as described in more detail below. - In one embodiment, the
electrodes electrodes electrodes energy source 14 may be configured to generate electric pulses at a predetermined frequency, amplitude, pulse length, and/or polarity that are suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. For example, theenergy source 14 may be configured to deliver DC electric pulses having a predetermined frequency, amplitude, pulse length, and/or polarity suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. The DC pulses may be positive or negative relative to a particular reference polarity. The polarity of the DC pulses may be reversed or inverted from positive-to-negative or negative-to-positive a predetermined number of times to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. - In one embodiment, a timing circuit may be coupled to the output of the
energy source 14 to generate electric pulses. The timing circuit may comprise one or more suitable switching elements to produce the electric pulses. For example, theenergy source 14 may produce a series of n electric pulses (where n is any positive integer) of sufficient amplitude and duration to induce irreversible electroporation suitable for tissue ablation when the n electric pulses are applied to theelectrodes - The
electrical ablation device 20 may be operated either in bipolar or monopolar mode. In bipolar mode, thefirst electrode 24 is electrically connected to a first polarity and thesecond electrode 25 is electrically connected to the opposite polarity. For example, in monopolar mode, thefirst electrode 24 is coupled to a prescribed voltage and thesecond electrode 25 is set to ground. In the illustrated embodiment, theenergy source 14 may be configured to operate in either the bipolar or monopolar modes with theelectrical ablation system 10. In bipolar mode, thefirst electrode 24 is electrically connected to a prescribed voltage of one polarity and thesecond electrode 25 is electrically connected to a prescribed voltage of the opposite polarity. When more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes may have either the same or opposite polarities, for example. - In monopolar mode, it is not necessary that the patient be grounded with a grounding pad. Since a
monopolar energy source 14 is typically constructed to operate upon sensing a ground pad connection to the patient, the negative electrode of theenergy source 14 may be coupled to an impedance simulation circuit. In this manner, the impedance circuit simulates a connection to the ground pad and thus is able to activate theenergy source 14. It will be appreciated that in monopolar mode, the impedance circuit can be electrically connected in series with either one of theelectrodes - In one embodiment, the
energy source 14 may be configured to produce RF waveforms at predetermined frequencies, amplitudes, pulse widths or durations, and/or polarities suitable for electrical ablation of cells in the tissue treatment region. One example of a suitable RF energy source is a commercially available conventional, bipolar/monopolar electrosurgical RF generator such as Model Number ICC 350, available from Erbe, GmbH. - In one embodiment, the
energy source 14 may be configured to produce destabilizing electrical potentials (e.g., fields) suitable to induce irreversible electroporation. The destabilizing electrical potentials may be in the form of bipolar/monopolar DC electric pulses suitable for inducing irreversible electroporation to ablate tissue undesirable tissue with theelectrical ablation device 20. A commercially available energy source suitable for generating irreversible electroporation electric field pulses in bipolar or monopolar mode is a pulsed DC generator such as Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass. In bipolar mode, thefirst electrode 24 may be electrically coupled to a first polarity and thesecond electrode 25 may be electrically coupled to a second (e.g., opposite) polarity of theenergy source 14. Bipolar/monopolar DC electric pulses may be produced at a variety of frequencies, amplitudes, pulse lengths, and/or polarities. Unlike RF ablation systems, which require high power and energy levels delivered into the tissue to heat and thermally destroy the tissue, irreversible electroporation requires very little energy applied to the tissue to kill the cells of the undesirable tissue using electric field potentials rather than heat. Accordingly, irreversible electroporation systems avoid the detrimental thermal effects of RF ablation systems. - In one embodiment, the
energy source 14 may be coupled to the first andsecond electrodes energy source 14 is coupled to theelectrodes electrical conductors electrical conductors energy source 14 and a second antenna (not shown) coupled to theelectrodes energy source 14 to an electrical load, e.g., the abnormal cells in the tissue treatment region, without using the interconnectingelectrical conductors - In one embodiment, the
energy source 14 may be configured to produce DC electric pulses at frequencies in the range of about 1 Hz to about 10,000 Hz, amplitudes in the range of about ±100 to about ±3,000 VDC, and pulse lengths (e.g., pulse width, pulse duration) in the range of about 1 μs to about 100 ms. The polarity of the electric potentials coupled to theelectrodes -
FIGS. 2A-D illustrate one embodiment of theelectrical ablation device 20 in various phases of deployment. Theelectrical ablation device 20 may be used in conjunction with theelectrical ablation system 10 shown inFIG. 1 . It will be appreciated that other devices and electrode configurations may be employed without limitation.FIG. 2A illustrates an initial phase of deployment in which thefirst electrode 24 is retracted into thefirst lumen 26 and thesecond electrode 25 is retraced into thesecond lumen 27. Theelectrodes electrodes first electrode 24 may by different from the diameter of thesecond electrode 25. Theelectrical ablation device 20 may be introduced into the tissue treatment region through a trocar, for example, or inserted to a tissue treatment region transcutaneously, percutaneously, or other suitable techniques. In one embodiment, thedistal end 46 of thefirst lumen 26 may comprise a cutting edge, such as a bevel or other sharp edge, to aid in the puncturing/piercing of tissue. Thedistal end 47 of thesecond lumen 27 may have a similar configuration. -
FIG. 2B illustrates another phase of deployment in which thefirst electrode 24 is extended distally from thefirst lumen 26 and thesecond electrode 25 is extended distally from thesecond lumen 27. As illustrated, theelectrodes slide member 30 in the direction indicated byarrow 35 extends thefirst electrode 24 distally from thefirst lumen 26 and movement of theslide member 31 in the direction indicated byarrow 37 extends thesecond electrode 25 distally from thesecond lumen 27. In various embodiments, other techniques of extending theelectrodes second electrodes electrical ablation device 20 into or proximate the tissue treatment region. In one embodiment, thesecond electrode 25 may be formed with a radius, such that it curves or splays when it extends from thesecond lumen 27, as illustrated inFIG. 2B . - The
first electrode 24 may be retracted into thesecond lumen 27 by pulling proximally on theslide member 31 in the direction indicated byarrow 39 inFIG. 2C . During a medical procedure, thefirst electrode 24 may remain inserted into the tissue treatment area. In a retracted position, thefirst electrode 24 may be rotated about its longitudinal axis (shown as “A”) as indicated byarrow 41. In the illustrated embodiment, theslide member 31 may be rotated to rotate thefirst electrode 24. Thefirst electrode 24 may be rotated in any suitable direction and any suitable number of degrees, such as 45°, 90°, or 135°, for example.FIG. 2D illustrates another phase of deployment in which thefirst electrode 24 is in a fully extended position after it has been rotated. To achieve this position, theslide member 31 may be moved in the direction indicated byarrow 37. - One or more of the
electrodes FIGS. 3A-C are perspective views of one embodiment of theelectrical ablation device 20 in various stages of rotation about axis “A.” Such rotation enables the surgeon or clinician to target and treat a larger tissue treatment region without having to remove theelectrical ablation device 20 from the tissue treatment area. Thus, thesecond electrode 25, for example, may be located in a plurality of positions in and around the tissue treatment region in order to change the distance between thefirst electrode 24 and thesecond electrode 25 and treat much larger regions of tissue. As shown inFIG. 3A , in a first position, the distal tip of thefirst electrode 24 may be separated by a distance “d1” from the distal tip of thesecond electrode 25. As shown inFIG. 3B , in a second position, the distal tip of thefirst electrode 24 may be separated by a distance “d2” from the distal tip of thesecond electrode 25. As shown inFIG. 3C , in a third position, the distal tip of thefirst electrode 24 may be separated by a distance “d3” from the distal tip of thesecond electrode 25. Furthermore, increasing the radius “r” (FIG. 3A ) of thesecond electrode 25 and/or the spacing between theelectrodes - It will be appreciated that the
electrical ablation device 20 described with reference toFIGS. 1 , 2A-E, and 3A-C may be introduced inside a patient transcutaneously, percutaneously, through an open incision, through a trocar, through a natural orifice, or any combination thereof. In one embodiment, the outside diameter of theelectrical ablation device 20 may be sized to fit within a channel of an endoscope and in other embodiments the outside diameter of theelectrical ablation device 20 may be sized to fit within a hollow outer sleeve, or trocar, for example. The hollow outer sleeve or trocar may be inserted into the upper gastrointestinal tract of a patient and may be sized to also receive a flexible endoscopic portion of an endoscope (e.g., gastroscope), similar to theendoscope 12 described inFIG. 1 . - Although the electrical ablation electrodes according to the described embodiments have been described in terms of the particular
needle type electrodes FIGS. 1 , 2A-D, and 3A-C those skilled in the art will appreciate that other configurations of electrical ablation electrodes may be employed for the ablation of undesirable tissue, without limitation. In another embodiment, theelectrical ablation device 20 may comprise three or more retractable electrodes, one embodiment of which is described below with reference toFIGS. 4A and 4B . In another embodiment, theelectrical ablation device 20 may comprise at least one slidable electrode disposed within at least one channel of theflexible shaft 32 of theendoscope 12. In another embodiment, theelectrical ablation device 20 may comprise at least one electrode may be configured to be inserted into the tissue treatment region transcutaneously or percutaneously. Still in various other embodiments, theelectrical ablation device 20 may comprise at least one electrode configured to be introduced to the tissue treatment region transcutaneously or percutaneously and at least one other electrode may be configured to be introduced to the tissue treatment region through at least one channel of theflexible shaft 32 of theendoscope 12. The embodiments, however, are not limited in this context. -
FIGS. 4A-4B illustrate one embodiment of anelectrical ablation device 100 comprising multiple needle electrodes. In the illustrated embodiment, theelectrical ablation device 100 comprises threeelectrodes electrical ablation device 100 also may comprise a greater number of needle electrodes. One or more needle electrodes of theelectrical ablation device 200 may be formed with a radius. In the illustrated embodiment theelectrode 125 and theelectrode 126 are both formed with a radius r1 and r2 (FIG. 4A ), respectively, such that they curved when extended distally from theelectrical ablation device 100. - The
electrical ablation device 100 may be used in conjunction with theelectrical ablation system 10 shown inFIG. 1 . It will be appreciated that other devices and electrode configurations may be employed without limitation. Theelectrodes electrodes electrical ablation device 100 may be introduced into the tissue treatment region through a trocar, transcutaneously, percutaneously, or using other suitable techniques. - The
electrical ablation device 100 comprises essentially the same components as theelectrical ablation device 20 described with reference toFIGS. 2A-D . Theelectrical ablation device 100 compriseselectrodes lumens electrodes electrical ablation device 100. In one embodiment, theelectrode 124 may be configured as the positive electrode coupled to the anode of the energy source 14 (FIG. 1 ) and theelectrodes FIG. 1 ). Once theelectrodes electrodes energy source 14 by actuating/de-actuating the switch 62 (FIG. 1 ). - Similar to the
electrical ablation device 20, thevarious electrodes electrodes electrodes electrodes 125 may be rotatable about its longitudinal axis (illustrated as “B”) and theother electrode 126 may be rotatable about its longitudinal axis (illustrated as “C”).FIG. 4A illustrates therotatable electrodes FIG. 4B illustrates therotatable electrodes rotatable electrodes FIGS. 2A-2B ). As is to be appreciated, therotatable electrodes respective lumens rotatable electrodes ablation device 100. Such rotation of therotatable electrodes electrical ablation device 100 from the tissue treatment area. Additionally, for embodiments with multiple rotating electrodes, each electrode may be retracted, extended, and rotated independently from the other electrodes. -
FIGS. 5A-5B illustrate the operation ofelectrical ablation device 100 in accordance with one non-limiting embodiment. Theelectrodes tissue treatment region 144. Thetissue treatment region 144 may be representative of a variety of diseased tissues, cancers, tumors, masses, lesions, abnormal tissue growths, for example. In one embodiment, one of therotatable electrodes 125 may be rotated in the directions indicated byarrow 140 and the otherrotatable electrode 126 may be rotated in the directions indicated byarrow 142. One of therotatable electrodes 125 may be retracted into thelumen 127 prior to rotation and the otherrotatable electrode 126 may be retracted into thelumen 128 prior to rotation. As shown inFIG. 5B , to ablate a portion of thetissue treatment region 144, the operator initially may locate one of therotatable electrodes 125 at a first position and the otherrotatable electrode 126 at a second position. Once therotatable electrodes tissue treatment region 144, all of theelectrodes FIG. 5B . For example, once therotatable electrodes tissue treatment region 144 may be exposed to an electric field generated by energizing all of theelectrodes FIG. 1 ). The electric field may have a magnitude, frequency, and pulse length suitable to induce irreversible electroporation in thetissue treatment region 144 to create the first necrotic zone 146 having a first shape. The size of the necrotic zone 146 is substantially dependent on the size, separation, and orientation of therotatable electrodes rotatable electrodes tissue treatment region 144. - This procedure may be repeated to destroy relatively larger portions of the
tissue treatment region 144 through rotation of at least one of therotatable electrodes FIG. 5C , one of therotatable electrodes 125 has been rotated to a second position. Prior to rotating, one of therotatable electrodes 125 is retracted by pulling on an associated slide member (not shown) in a direction toward the proximal end. Therotatable electrode 125 may then be rotated within thecorresponding lumen 127 to the second position. Once therotatable electrode 125 is rotated to the second position, it may be advanced to engage thetissue treatment region 144 by pushing on the slide member (not shown) in a direction towards the distal end of theelectrical ablation device 100. Asecond necrotic zone 148 having a second shape substantially as shown is formed upon energizing all of theelectrodes rotatable electrodes tissue treatment region 144 and energizing all of theelectrodes non-rotatable electrode 124 and begin the process anew. Those skilled in the art will appreciate that similar techniques may be employed to ablate any other undesirable tissues that may be accessible trans-anally through the colon, and/or orally through the esophagus and the stomach using translumenal access techniques. Therefore, the embodiments are not limited in this context. -
FIG. 6 illustrates anelectrical ablation apparatus 200 in accordance with various embodiments. Theelectrical ablation apparatus 200 may comprise anelongate sheath 202. The distal end of theelongate sheath 202 may have a cutting edge, such as abevel 208, to aid in the puncturing or piercing of tissue. A first andsecond electrode elongate sheath 202. In various embodiments, a greater number of electrodes or lesser number of electrodes may be deployable from the distal end of theelongate sheath 202. In one embodiment, asleeve 204 at least partially surrounds theelongate sheath 202. Thesleeve 204 comprises thesecond electrode 206. Aninsulator 218 may be utilized to electrically isolate theelectrode 206 from theelongate sheath 202. While thesleeve 204 is illustrated as a cylinder, it is to be appreciated that thesleeve 204 may be any suitable size, shape, or configuration. The first andsecond electrodes elongate sheath 202, the first andsecond electrodes electrical ablation apparatus 200 due to their pre-formed radius. - In one embodiment, at least one of the first and
second electrodes elongate sheath 202. Similar to previously discussed embodiments, theelectrical ablation apparatus 200 may be inserted into a tissue treatment region and a plurality of necrotic zones having a plurality of shapes may be formed by retracting at least one of theelectrodes electrodes -
FIG. 7 illustrates anelectrical ablation apparatus 300 in accordance with various embodiments. Theelectrical ablation apparatus 300 comprises features similar to theelectrical ablation apparatus 200. Theelectrical ablation apparatus 300 comprises anelongate sheath 302 having abevel 308 at the distal end to aid in the puncturing or piercing of tissue. The illustrated embodiment also comprises first andsecond electrodes elongate sheath 302. Thesleeve 304 comprises anextension 314 extending distally from the distal end of theelectrical ablation apparatus 300. Theextension 314 may have a sharp distal end. Thesleeve 304 and theextension 314 may comprise thesecond electrode 306. Aninsulator 318 may be utilized to electrically isolate theelectrode 306 from theelongate sheath 302. Theextension 314 may be used to pierce tissue and positionally secure theelectrical ablation apparatus 300 proximate to a tissue treatment region. At least one of the first andsecond electrodes elongate sheath 302. Similar to theelectrical ablation device 200 described with reference toFIG. 6 , theelectrical ablation apparatus 300 may be inserted into a tissue treatment region to create a plurality of necrotic zones having a plurality of shapes by retracting the at least one of theelectrodes electrodes extension 306 is used to anchor theelectrical ablation device 300 during the procedure. -
FIG. 8 illustrates another embodiment of anelectrical ablation apparatus 400. Theelectrical ablation apparatus 400 may comprise a firstelongate sheath 402 and a secondelongate sheath 404. The firstelongate sheath 402 may be substantially parallel to the secondelongate sheath 404. In some embodiments, the firstelongate sheath 402 and the secondelongate sheath 404 may be coupled together or otherwise formed together. First, second, andthird electrodes elongate sheath 402. Fourth, fifth, andsixth electrodes elongate sheath 404. Eachelectrode first electrode 424 and thefourth electrode 427 may be electrically isolated from the other electrodes. In one embodiment, thefirst electrode 424 is at least partially surrounded by aninsulative sleeve 432 and the fourth electrode 437 is at least partially surrounded by aninsulative sleeve 434. In one embodiment, thefirst electrode 424 comprises a non-conductivedistal end 431 and thesecond electrode 427 also comprises a non-conductivedistal end 433. In various embodiments, the non-conductive distal ends 431, 433 comprise ceramic, or another non-conductive material. The use of the non-conductive distal ends 431, 433 reduces the current density present at the distal end of theelectrodes - Various electrodes of the
electrical ablation apparatus 400 may be pre-formed with a radius. In the illustrated embodiment, the second andthird electrodes sixth electrodes - In various embodiments, other electrode configurations may be implemented to create necrotic zones of various shapes within a tissue treatment region. Yet another embodiment of an
electrical ablation apparatus 500 is illustrated inFIG. 9 . Theelectrical ablation apparatus 500 comprises anelongate shaft 502. The-distal end of theelongate shaft 502 may be sharpened, or otherwise contain a cutting edge, such as abevel 504. A plurality of electrodes may be disposed along the elongate shaft, alternating in polarity when in an energized state. In one embodiment, the first andsecond electrodes insulated conductor 512, for example. Similarly, the first andsecond electrodes elongate shaft 502, for example. Afirst insulator 514 may be positioned intermediate thefirst electrode 506 and the third electrode 510 and asecond insulator 516 may be positioned intermediate thesecond electrode 508 and the third electrode 510. In some embodiments, theinsulators insulators - In one embodiment, the third electrode 510 is slidably engaged with the
elongate sheath 502. The position along theelongate sheath 502 may be controlled by the user at the proximal end of theelectrical ablation apparatus 500, such as with a slide member similar to previously discussed embodiments. During a tissue treatment procedure, the third electrode 510 is placed in a first position and theelectrical ablation apparatus 500 is positioned within a tissue treatment region. As is to be appreciated, theelectrical ablation apparatus 500 may be introduced inside a patient endoscopically, transcutaneously, percutaneously, through an open incision, through a trocar, through a natural orifice, or any combination thereof. Once positioned by the user, theelectrodes second electrodes arrow 518 to change the relative position of the third electrode 510. When theelectrodes electrical ablation apparatus 500. At anytime, the surgeon or clinician can reposition theelectrical ablation apparatus 500 within the tissue treatment region and begin the process anew. Further, as is to be appreciated, theelectrodes -
FIG. 10 illustrates anelectrical ablation apparatus 600 in accordance with one non-limiting embodiment. Theelectrical ablation apparatus 600 comprises anelongate sheath 602 and anelectrode 624 deployable from the distal end of theelongate sheath 602. As illustrated, in various embodiments, theelectrode 624 may be at least partially surrounded by aninsulative sleeve 632. Theelectrical ablation apparatus 600 further comprises afluid nozzle 640 configured to deploy a fluid into atissue treatment region 644. Thefluid nozzle 640 may be coupled to afluid source 642 via afluid conduit 648. Upon deployment, the fluid 640 bores a path in thetissue treatment region 644 to create acavity 650. The fluid 640 may be any suitable conductive solution (e.g., saline solution). After the formation of thecavity 650, the fluid 640 located in thecavity 650 may be electrically connected to a first polarity of anenergy source 614 to function as an electrode. Theelectrode 624 is supplied energy having an opposite polarity through an electrical coupling to theenergy source 614. As current flows through thetissue treatment region 644 from thefirst electrode 624 to the fluid 640 in thecavity 650, a necrotic zone having a first shape is formed in thetissue treatment region 644. The user of theelectrical ablation apparatus 600 then can rotate, or otherwise reposition thefluid nozzle 640, and deploy the fluid 640 to create a second cavity 652 and the process may be repeated to form a third necrotic zone having a second shape. As illustrated, athird cavity 654 may be created to form yet a third necrotic zone having a third shape. Various parameters of the fluid and the fluid deployment process, such as a pressure, temperature, duration, may be altered or adjusted according to the type of tissue in thetissue treatment region 644 and the desired size of the cavity created. Furthermore, in various embodiments, a plurality offluid nozzles 640 and/or a plurality ofelectrodes 624 may be utilized by theelectrical ablation apparatus 600. -
FIGS. 11A-B illustrate analignment guide 700 in accordance with one non-limiting embodiment. Thealignment guide 700 assists in the placement and delivery of electrodes to a treatment site inside a patient. As illustrated, thealignment guide 700 is positioned on thesurface 702 of theskin 704 of a patient. The center of thealignment guide 700 may be positioned above the center of the targeted tissue (e.g., a tumor). Once placed in the proper position, thealignment guide 700 may be secured to thesurface 702 of theskin 704 using any suitable attachment technique, such as surgical tape. In one embodiment, thealignment guide 700 comprises an adhesive on the skin contacting portion to adhere the alignment guide to the patient. Thealignment guide 700 may be radio-opaque to allow proper placement through the use of ultrasound, CT guidance, or other techniques, proximate to the target tissue. - The
alignment guide 700 defines apassageway 706 configured to receive anelectrical ablation apparatus 710. In one embodiment, theelectrical ablation apparatus 710 comprises first andsecond electrodes electrode energy source 720 and a second end configured to couple to a tissue treatment region. In some embodiments, more electrodes, such as athird electrode 716, may be utilized. Furthermore, one or more of the electrodes may be pre-formed with a radius so that they curve or splay upon deployment from the distal end of theelectrical ablation apparatus 710. According to one embodiment, theelectrical ablation apparatus 710 comprises afirst lumen 718 configured to receive thefirst electrode 712 and asecond lumen 722 configured to receive thesecond electrode 714. If additional electrodes are utilized, theelectrical ablation apparatus 710 also may comprise additional lumens, such as athird lumen 724 configured to receive athird electrode 716. Thefirst electrode 712 may movable between a first position and a second position with respect to the second electrode 714 (e.g., through rotation of the electrical ablation apparatus 710). A zone of cell necrosis in a first shape is created in a tissue treatment-region when thefirst electrode 712 is in a first position and a zone of necrosis in a second shape is created when thefirst electrode 712 is in the second position (e.g., subsequent to rotation). - The
electrical ablation apparatus 710 may further comprise afirst handle 730, asecond handle 732, and athird handle 734. Thehandles lumens first handle 730 is configured to be placed against thesurface 702 of theskin 714 through thepassageway 706 of thealignment guide 700. Theelectrical ablation apparatus 710 is rotatable about the longitudinal axis (shown as “D”) in the directions indicated byarrow 738. The second andthird handles arrow 740 in order to pass theelectrodes skin 704 and into a tissue treatment region (not shown). Once theelectrodes electrodes energy source 720 using previously discussed techniques to create a necrotic zone having a first shape. The user may then move the second andthird handles FIG. 11B ) to remove at least one electrode from the target treatment region. In one embodiment, the center electrode (i.e., the second electrode 714) remains engaged with the tissue treatment region to serve as a central pivot as theelectrical ablation apparatus 710 is rotated about axis A by the user. Once rotated, the user may once again move the second andthird handles 730, in the direction indicated byarrow 740 in order to pass the rotatedelectrodes skin 704 and into a tissue treatment region at a different location. Once theelectrodes energy source 720 to create a necrotic zone having a second shape. This process may be repeated as often as necessary to create any number of necrotic zones using theelectrical ablation apparatus 700. Thealignment guide 700 serves to ensure proper position of theelectrical ablation apparatus 700 during the procedure. - As illustrated in
FIG. 12 , thehandle 730 may be configured to rotate within thepassageway 706 of thealignment guide 700. In order to assist the user in the rotation of thehandle 730, various alignment aids may be used. For example, the skin contacting portion of thehandle 730 may comprise a dye to mark the surface of the skin upon contact. As the user rotates thehandle 730 and places it against the skin, a series of marks indicative of previous contacts will be imprinted on the skin. Additionally, as illustrated inFIG. 13 , a plurality ofvisual indicators 750 may be distributed around the periphery of thealignment guide 700. Throughout a procedure, the user lines thehandle 730 with the variousvisual indicators 750 prior to piercing the skin and underlying target tissue with the electrodes. Through the use of thevisual indicators 750, the user can create necrotic zones of varying shapes within the target treatment region. - In some embodiments, as illustrated in
FIG. 14 , a plurality of detents may be used to assist the user in positioning thehandle 730 during rotation. For example, thealignment guide 700 may define a plurality ofnotches 752 distributed around the periphery of thepassageway 706. Thenotches 752 are configured to receive a portion of thehandle 730, such as aprotrusion 754, during rotation. - The embodiments of the electrical ablation devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the electrical ablation devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the electrical ablation devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Surgical devices, such as an electrical ablation devices, may be introduced to the treatment region through the channels of the endoscope to perform key surgical activities (KSA), including, for example, electrical ablation of tissues using irreversible electroporation energy. Some portions of the electrical ablation devices may be introduced to the tissue treatment region percutaneously or through small-keyhole-incisions.
- Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina). A rigid endoscope may be introduced via trocar through a relatively small-keyhole-incision incisions (usually 0.5-1.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
- Once an electrical ablation device is inserted in the human body internal organs may be reached using trans-organ or translumenal surgical procedures. The electrical ablation device may be advanced to the treatment site using endoscopic translumenal access techniques to perforate a lumen, and then, advance the electrical ablation device and the endoscope into the peritoneal cavity. Translumenal access procedures for perforating a lumen wall, inserting, and advancing an endoscope therethrough, and pneumoperitoneum devices for insufflating the peritoneal cavity and closing or suturing the perforated lumen wall are well known. During a translumenal access procedure, a puncture must be formed in the stomach wall or in the gastrointestinal tract to access the peritoneal cavity. One device often used to form such a puncture is a needle knife which is inserted through the channel of the endoscope, and which utilizes energy to penetrate through the tissue. A guidewire is then feed through the endoscope and is passed through the puncture in the stomach wall and into the peritoneal cavity. The needle knife is removed, leaving the guidewire as a placeholder. A balloon catheter is then passed over the guidewire and through the channel of the endoscope to position the balloon within the opening in the stomach wall. The balloon can then be inflated to increase the size of the opening, thereby enabling the endoscope to push against the rear of the balloon and to be feed through the opening and into the peritoneal cavity. Once the endoscope is positioned within the peritoneal cavity, numerous procedures can be performed through the channel of the endoscope.
- The endoscope may be connected to a video camera (single chip or multiple chips) and may be attached to a fiber-optic cable system connected to a “cold” light source (halogen or xenon), to illuminate the operative field. The video camera provides a direct line-of-sight view of the treatment region. If working in the abdomen, the abdomen may be insufflated with carbon dioxide (CO2) gas to create a working and viewing space. The abdomen is essentially blown up like a balloon (insufflated), elevating the abdominal wall above the internal organs like a dome. CO2 gas is used because it is common to the human body and can be removed by the respiratory system if it is absorbed through tissue.
- Once the electrical ablation devices are located at the target site, the diseased tissue may be electrically ablated or destroyed using the various embodiments of electrodes discussed herein. The placement and location of the electrodes can be important for effective and efficient electrical ablation therapy. For example, the electrodes may be positioned proximal to a treatment region (e.g., target site or worksite) either endoscopically or transcutaneously (percutaneously). In some implementations, it may be necessary to introduce the electrodes inside the patient using a combination of endoscopic, transcutaneous, and/or open techniques. The electrodes may be introduced to the tissue treatment region through a channel of the endoscope, an overtube, or a trocar and, in some implementations, may be introduced through percutaneously or through small-keyhole-incisions.
- Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
- It is preferred that the device is sterilized prior to use. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
- Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
- Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Claims (20)
1. An electrical ablation apparatus, comprising:
first and second electrodes, each electrode comprising a first end configured to couple to an energy source and a second end configured to couple to a tissue treatment region;
wherein the first electrode is movable between a first position and a second position with respect to the second electrode;
wherein the first and second electrodes are configured to induce a zone of cell necrosis in a first shape when the first electrode is in the first position; and
wherein the first and second electrodes are configured to induce a zone of necrosis in a second shape when the first electrode is in the second position.
2. The electrical ablation apparatus of claim 1 , further comprising:
a third electrode;
a first lumen configured to receive the first electrode;
a second lumen configured to receive the second electrode; and
a third lumen configured to receive the third electrode.
3. The electrical ablation apparatus of claim 2 , wherein the first electrode is pre-formed with a radius and rotatable within the first lumen and the third electrode is pre-formed with a radius and rotatable with the third lumen.
4. The electrical ablation apparatus of claim 2 , wherein the first, second, and third lumens each have a distal end comprising a cutting edge.
5. The electrical ablation apparatus of claim 1 , further comprising:
an elongate sheath; and
a sleeve at least partially surrounding the elongate sheath, wherein the sleeve comprises the second electrode.
6. The electrical ablation apparatus of claim 5 , wherein the first electrode is deployable from a distal end of the elongate sheath and pre-formed with a radius.
7. The electrical ablation apparatus of claim 6 , wherein the first electrode is rotatable within the elongate sheath.
8. The electrical ablation apparatus of claim 1 , further comprising:
a first elongate sheath;
a second elongate sheath; and
third and fourth electrodes, each electrode comprising a first end configured to couple to the energy source and a second end configured to couple to the tissue treatment region;
wherein the first and second electrodes are deployable from the first elongate sheath and the third and fourth electrodes are deployable from the second elongate sheath.
9. The electrical ablation apparatus of claim 8 , wherein the first and third electrodes each are pre-formed with a radius.
10. The electrical ablation apparatus of claim 8 , wherein the first elongate sheath and the second elongate sheath are substantially parallel.
11. The electrical ablation apparatus of claim 1 , further comprising:
a fluid nozzle configured to deploy a fluid to bore a path in the tissue treatment region using a fluid, wherein the first electrode is configured to couple to the fluid in the path.
12. The electrical ablation apparatus of claim 11 , wherein the fluid nozzle is movable.
13. The electrical ablation apparatus of claim 11 , further comprising a plurality of fluid nozzles.
14. The electrical ablation apparatus of claim 1 , further comprising:
an elongate shaft, wherein the first electrode is slidably engaged with the elongate sheath.
15. The electrical ablation apparatus of claim 14 , wherein the second electrode comprises a distal electrode and a proximal electrode each disposed along the elongate shaft.
16. The electrical ablation apparatus of claim 15 , wherein the first electrode is disposed on the elongate shaft intermediate the distal electrode and the proximal electrode.
17. The electrical ablation apparatus of claim 16 , further comprising:
a first insulator disposed on the elongate shaft intermediate the distal electrode and the first electrode; and
a second insulator disposed on the elongate shaft intermediate the first electrode and the proximal electrode.
18. An electrical ablation system, comprising:
first and second electrodes, each electrode comprising a first end configured to couple to an energy source and a second end configured to couple to a tissue treatment region, wherein the first electrode is movable between a first position and a second position with respect to the second electrode, wherein the first and second electrodes are configured to induce a zone of cell necrosis in a first shape when the first electrode is in the first position, and wherein the first and second electrodes are configured to induce a zone of necrosis in a second shape when the first electrode is in the second position;
a first lumen configured to receive the first electrode;
a second lumen configured to receive the second electrode;
an alignment guide defining a passageway, wherein the passageway is configured to receive the first and second lumens; and
a handle coupled to the first and second lumens, wherein the handle is configured to rotatably move the first electrode from the first position to the second position.
19. The electrical ablation system of claim 18 , wherein the alignment guide comprises a plurality of position indicators positioned proximate to the passageway.
20. An electrical ablation apparatus, comprising:
first and second electrodes, each electrode comprising a first end configured to couple to an energy source and a second end configured to couple to a tissue treatment region;
wherein the first electrode is movable between a first position and a second position with respect to the second electrode;
wherein the first and second electrodes are configured to induce a zone of cell necrosis in a first shape when the first electrode is in the first position;
wherein the first and second electrodes are configured to induce a zone of necrosis in a second shape when the first electrode is in the second position; and
wherein a distance between the first and second electrodes is adjustable by rotating at least one of the first and second electrodes about a central axis of the at least one of the first and second electrodes.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/607,252 US20110098704A1 (en) | 2009-10-28 | 2009-10-28 | Electrical ablation devices |
PCT/US2010/053694 WO2011056464A2 (en) | 2009-10-28 | 2010-10-22 | Electrical ablation devices |
US15/250,507 US10779882B2 (en) | 2009-10-28 | 2016-08-29 | Electrical ablation devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/607,252 US20110098704A1 (en) | 2009-10-28 | 2009-10-28 | Electrical ablation devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,507 Continuation US10779882B2 (en) | 2009-10-28 | 2016-08-29 | Electrical ablation devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110098704A1 true US20110098704A1 (en) | 2011-04-28 |
Family
ID=43481017
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/607,252 Abandoned US20110098704A1 (en) | 2009-10-28 | 2009-10-28 | Electrical ablation devices |
US15/250,507 Expired - Fee Related US10779882B2 (en) | 2009-10-28 | 2016-08-29 | Electrical ablation devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,507 Expired - Fee Related US10779882B2 (en) | 2009-10-28 | 2016-08-29 | Electrical ablation devices |
Country Status (2)
Country | Link |
---|---|
US (2) | US20110098704A1 (en) |
WO (1) | WO2011056464A2 (en) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100042045A1 (en) * | 2008-08-15 | 2010-02-18 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US20100087813A1 (en) * | 2007-02-15 | 2010-04-08 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
US8070759B2 (en) | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
US8075572B2 (en) | 2007-04-26 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus |
US8100922B2 (en) | 2007-04-27 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Curved needle suturing tool |
US8114119B2 (en) | 2008-09-09 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8114072B2 (en) | 2008-05-30 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Electrical ablation device |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US8172772B2 (en) | 2008-12-11 | 2012-05-08 | Ethicon Endo-Surgery, Inc. | Specimen retrieval device |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US8480689B2 (en) | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US8652150B2 (en) | 2008-05-30 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Multifunction surgical device |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8939897B2 (en) | 2007-10-31 | 2015-01-27 | Ethicon Endo-Surgery, Inc. | Methods for closing a gastrotomy |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9011431B2 (en) | 2009-01-12 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US20180317995A1 (en) * | 2017-05-02 | 2018-11-08 | C. R. Bard, Inc. | Systems And Methods Of An Electrohemostatic Renal Sheath |
CN109310861A (en) * | 2016-06-14 | 2019-02-05 | 标准有限公司 | Utilize the therapeutic device of endoscope coordinated type electrode |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
WO2019135185A1 (en) * | 2018-01-02 | 2019-07-11 | Rocworks, Llc | An adjustable nerve probe assembly |
US20200093537A1 (en) * | 2018-09-26 | 2020-03-26 | Erbe Elektromedizin Gmbh | HF-Surgical Preparation Instrument with Fluid Channel |
US20200146749A1 (en) * | 2017-07-20 | 2020-05-14 | Changzhou Lunghealth Medtech Company Limited | Radiofrequency ablation catheter and system |
US10779882B2 (en) | 2009-10-28 | 2020-09-22 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
CN112807079A (en) * | 2021-03-03 | 2021-05-18 | 江苏邦士医疗科技有限公司 | Telescopic scalpel for spine and scalpel head |
US11166745B2 (en) * | 2017-09-12 | 2021-11-09 | Jessica Jameson | Multi-port epidural needle |
WO2024184808A1 (en) * | 2023-03-06 | 2024-09-12 | Acclarent, Inc. | Apparatus and method for ablation with variable electrode spacing and fluid medium |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3141203T3 (en) * | 2015-09-10 | 2022-06-13 | Erbe Elektromedizin Gmbh | Ablation device for large-scale mucosa ablation |
SE542514C2 (en) | 2017-07-28 | 2020-05-26 | Scandinavian Chemotech Ab | A pulse generating device for delivery of electrical pulses to a desired tissue of a mammal |
SE541651C2 (en) | 2017-07-28 | 2019-11-19 | Scandinavian Chemotech Ab | An electrode device and a needle electrode for use in delivery of electrical pulses to a desired tissue of a mammal |
US11577071B2 (en) | 2018-03-13 | 2023-02-14 | Pulse Biosciences, Inc. | Moving electrodes for the application of electrical therapy within a tissue |
WO2022132730A1 (en) * | 2020-12-15 | 2022-06-23 | Ne Scientific, Llc. | System and method for ablation treatment of tissue with interactive guidance |
EP4319673A1 (en) | 2021-04-07 | 2024-02-14 | BTL Medical Development A.S. | Pulsed field ablation device and method |
IL309432B1 (en) | 2021-07-06 | 2024-10-01 | Btl Medical Dev A S | Pulsed field ablation device and method |
WO2023055711A1 (en) * | 2021-09-30 | 2023-04-06 | Mayo Foundation For Medical Education And Research | Endoscopic or endobronchial tumor treatment systems and methods |
WO2023243738A1 (en) * | 2022-06-14 | 2023-12-21 | 사피엔메드 주식회사 | Endoscopic surgery apparatus and system comprising same |
US20240090941A1 (en) * | 2022-09-19 | 2024-03-21 | Varian Medical Systems, Inc. | Probe systems and methods for irreversible electroporation |
WO2024075034A1 (en) | 2022-10-05 | 2024-04-11 | Btl Medical Technologies S.R.O. | Pulsed field ablation device and method |
Citations (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US640938A (en) * | 1898-11-19 | 1900-01-09 | James W Patterson | Opera-glass shutter. |
US1127948A (en) * | 1914-12-31 | 1915-02-09 | Reinhold H Wappler | Cystoscope. |
US1482653A (en) * | 1923-01-16 | 1924-02-05 | William E Lilly | Gripping device |
US2028635A (en) * | 1933-09-11 | 1936-01-21 | Wappler Frederick Charles | Forcipated surgical instrument |
US2031682A (en) * | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US2191858A (en) * | 1939-06-09 | 1940-02-27 | William H Moore | Paper and trash picker tongs and the like |
US2493108A (en) * | 1950-01-03 | Akticle handler | ||
US3170471A (en) * | 1962-04-23 | 1965-02-23 | Schnitzer Emanuel | Inflatable honeycomb |
US4311143A (en) * | 1978-10-12 | 1982-01-19 | Olympus Optical Co., Ltd. | Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents |
US4569347A (en) * | 1984-05-30 | 1986-02-11 | Advanced Cardiovascular Systems, Inc. | Catheter introducing device, assembly and method |
US4721116A (en) * | 1985-06-04 | 1988-01-26 | Schintgen Jean Marie | Retractable needle biopsy forceps and improved control cable therefor |
US4727600A (en) * | 1985-02-15 | 1988-02-23 | Emik Avakian | Infrared data communication system |
US4994079A (en) * | 1989-07-28 | 1991-02-19 | C. R. Bard, Inc. | Grasping forceps |
US5275616A (en) * | 1990-10-01 | 1994-01-04 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5275614A (en) * | 1992-02-21 | 1994-01-04 | Habley Medical Technology Corporation | Axially extendable endoscopic surgical instrument |
US5284162A (en) * | 1992-07-14 | 1994-02-08 | Wilk Peter J | Method of treating the colon |
US5287845A (en) * | 1991-01-19 | 1994-02-22 | Olympus Winter & Ibe Gmbh | Endoscope for transurethral surgery |
US5287852A (en) * | 1993-01-13 | 1994-02-22 | Direct Trends International Ltd. | Apparatus and method for maintaining a tracheal stoma |
US5377695A (en) * | 1994-01-13 | 1995-01-03 | An Haack; Karl W. | Wound-closing strip |
US5387259A (en) * | 1992-10-20 | 1995-02-07 | Sun Microsystems, Inc. | Optical transdermal linking method for transmitting power and a first data stream while receiving a second data stream |
US5479701A (en) * | 1993-05-25 | 1996-01-02 | Sumitomo Wiring Systems, Ltd. | Cover strip-off method in a covered wire cutting and stripping apparatus |
US5591179A (en) * | 1995-04-19 | 1997-01-07 | Applied Medical Resources Corporation | Anastomosis suturing device and method |
US5593420A (en) * | 1995-02-17 | 1997-01-14 | Mist, Inc. | Miniature endoscopic surgical instrument assembly and method of use |
US5595562A (en) * | 1994-11-10 | 1997-01-21 | Research Corporation Technologies, Inc. | Magnetic enteral gastrostomy |
US5597378A (en) * | 1983-10-14 | 1997-01-28 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US5704892A (en) * | 1992-09-01 | 1998-01-06 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
US5709708A (en) * | 1997-01-31 | 1998-01-20 | Thal; Raymond | Captured-loop knotless suture anchor assembly |
US5711921A (en) * | 1996-01-02 | 1998-01-27 | Kew Import/Export Inc. | Medical cleaning and sterilizing apparatus |
US5855585A (en) * | 1996-06-11 | 1999-01-05 | X-Site, L.L.C. | Device and method for suturing blood vessels and the like |
US5860913A (en) * | 1996-05-16 | 1999-01-19 | Olympus Optical Co., Ltd. | Endoscope whose distal cover can be freely detachably attached to main distal part thereof with high positioning precision |
US5860995A (en) * | 1995-09-22 | 1999-01-19 | Misener Medical Co. Inc. | Laparoscopic endoscopic surgical instrument |
US5951547A (en) * | 1995-08-15 | 1999-09-14 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US5995875A (en) * | 1997-10-01 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US6010515A (en) * | 1993-09-03 | 2000-01-04 | University College London | Device for use in tying knots |
US6012494A (en) * | 1995-03-16 | 2000-01-11 | Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Flexible structure |
US6017356A (en) * | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US6090105A (en) * | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US6168605B1 (en) * | 1999-07-08 | 2001-01-02 | Ethicon Endo-Surgery, Inc. | Curved laparoscopic scissor having arcs of curvature |
US6168570B1 (en) * | 1997-12-05 | 2001-01-02 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
US6169269B1 (en) * | 1996-09-05 | 2001-01-02 | Medtronic Inc. | Selectively activated shape memory device |
US6170130B1 (en) * | 1999-01-15 | 2001-01-09 | Illinois Tool Works Inc. | Lashing system |
US6179832B1 (en) * | 1997-09-11 | 2001-01-30 | Vnus Medical Technologies, Inc. | Expandable catheter having two sets of electrodes |
US6179837B1 (en) * | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6179766B1 (en) * | 1999-01-28 | 2001-01-30 | Gregg A. Dickerson | Methods of breast cancer treatment |
US6190383B1 (en) * | 1998-10-21 | 2001-02-20 | Sherwood Services Ag | Rotatable electrode device |
US6214028B1 (en) * | 1997-05-01 | 2001-04-10 | Inbae Yoon | Surgical instrument with multiple rotatably mounted offset end effectors and method of using the same |
US6314963B1 (en) * | 1996-10-22 | 2001-11-13 | Epicor, Inc. | Method of ablating tissue from an epicardial location |
US6402746B1 (en) * | 1996-12-19 | 2002-06-11 | Ep Technologies, Inc. | Branched structures for supporting multiple electrode elements |
US6503192B1 (en) * | 1999-05-18 | 2003-01-07 | Pentax Corporation | Insertion facilitating device for intestinal endoscope |
US6506190B1 (en) * | 1998-05-21 | 2003-01-14 | Christopher J. Walshe | Tissue anchor system |
US20030014090A1 (en) * | 2000-02-07 | 2003-01-16 | Hans Abrahamson | Wireless communication system for implamtable medical devices |
US6508827B1 (en) * | 1998-01-14 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Instrument for application in endoscopic surgery |
US20030023255A1 (en) * | 2001-06-29 | 2003-01-30 | Miles Scott D. | Cannulation apparatus and method |
US20040002683A1 (en) * | 2002-06-26 | 2004-01-01 | Nicholson Thomas J. | Percutaneous medical insertion device |
US6673058B2 (en) * | 2001-06-20 | 2004-01-06 | Scimed Life Systems, Inc. | Temporary dilating tip for gastro-intestinal tubes |
US6673092B1 (en) * | 1998-07-25 | 2004-01-06 | Karl Storz Gmbh & Co. Kg | Medical forceps with two independently moveable jaw parts |
US6672338B1 (en) * | 1998-12-14 | 2004-01-06 | Masayoshi Esashi | Active slender tubes and method of making the same |
US6673087B1 (en) * | 2000-12-15 | 2004-01-06 | Origin Medsystems | Elongated surgical scissors |
US6679445B2 (en) * | 2001-01-10 | 2004-01-20 | Shimano Inc. | Spool for spinning reel |
US20040059328A1 (en) * | 2001-01-11 | 2004-03-25 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US20040199159A1 (en) * | 2001-09-12 | 2004-10-07 | Manoa Medical, Inc., A Delaware Corporation | Devices and methods for tissue severing and removal |
US20040254572A1 (en) * | 2003-04-25 | 2004-12-16 | Mcintyre Jon T. | Self anchoring radio frequency ablation array |
US6837847B2 (en) * | 2002-06-13 | 2005-01-04 | Usgi Medical, Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US20050004515A1 (en) * | 2002-11-15 | 2005-01-06 | Hart Charles C. | Steerable kink resistant sheath |
US6840346B2 (en) * | 2002-07-08 | 2005-01-11 | Honda Giken Kogyo Kabushiki Kaisha | Steering apparatus for a vehicle |
US6843794B2 (en) * | 2001-06-25 | 2005-01-18 | Ethicon Endo-Surgery, Inc. | Surgical clip applier having jaws adapted to guide and deform a clip |
US20050059964A1 (en) * | 2003-09-12 | 2005-03-17 | Fitz William R. | Enhancing the effectiveness of medial branch nerve root RF neurotomy |
US6944490B1 (en) * | 2002-09-25 | 2005-09-13 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for positioning and delivering a therapeutic tool to the inside of a heart |
US20060004410A1 (en) * | 2004-05-14 | 2006-01-05 | Nobis Rudolph H | Suture locking and cutting devices and methods |
US20060004406A1 (en) * | 2004-07-05 | 2006-01-05 | Helmut Wehrstein | Surgical instrument |
US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US6984205B2 (en) * | 1999-03-01 | 2006-01-10 | Gazdzinski Robert F | Endoscopic smart probe and method |
US6986774B2 (en) * | 1989-08-16 | 2006-01-17 | Medtronic, Inc. | Method of manipulating matter in a mammalian body |
US20060015131A1 (en) * | 2004-07-15 | 2006-01-19 | Kierce Paul C | Cannula for in utero surgery |
US6988967B2 (en) * | 2002-09-19 | 2006-01-24 | Danny Brian Allison | Team trampoline game and method of playing the same |
US20060020167A1 (en) * | 2004-06-30 | 2006-01-26 | James Sitzmann | Medical devices for minimally invasive surgeries and other internal procedures |
US6991627B2 (en) * | 1996-05-20 | 2006-01-31 | Intuitive Surgical Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US20060183975A1 (en) * | 2004-04-14 | 2006-08-17 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal procedures |
US20060200121A1 (en) * | 2005-03-03 | 2006-09-07 | Mowery Thomas M | Navigable, multi-positional and variable tissue ablation apparatus and methods |
US20070005019A1 (en) * | 2005-06-24 | 2007-01-04 | Terumo Kabushiki Kaisha | Catheter assembly |
US7160296B2 (en) * | 2001-05-10 | 2007-01-09 | Rita Medical Systems, Inc. | Tissue ablation apparatus and method |
US20070010801A1 (en) * | 2005-06-22 | 2007-01-11 | Anna Chen | Medical device control system |
US7163525B2 (en) * | 2004-12-17 | 2007-01-16 | Ethicon Endo-Surgery, Inc. | Duckbill seal protector |
US20070015965A1 (en) * | 2005-07-13 | 2007-01-18 | Usgi Medical Inc. | Methods and apparatus for colonic cleaning |
US7229438B2 (en) * | 2004-10-14 | 2007-06-12 | Boston Scientific Scimed, Inc. | Ablation probe with distal inverted electrode array |
US7318802B2 (en) * | 2000-07-24 | 2008-01-15 | Olympus Optical Co., Ltd. | Endoscope and endoscopic suturing instrument for treatment of gastroesophageal reflux disease |
US20080015409A1 (en) * | 2006-03-09 | 2008-01-17 | Barlow David E | Treatment device for endoscope |
US20080015413A1 (en) * | 2006-02-22 | 2008-01-17 | Olympus Medical Systems Corporation | Capsule endoscope system and medical procedure |
US7320695B2 (en) * | 2003-12-31 | 2008-01-22 | Biosense Webster, Inc. | Safe septal needle and method for its use |
US20080020927A1 (en) * | 2006-07-21 | 2008-01-24 | Globe Union Industrial Corp. | Metal-supporting photocatalyst and method for preparing the same |
US20080021416A1 (en) * | 2004-10-07 | 2008-01-24 | Keio University | Thin tube which can be hyperflexed by light |
US7323006B2 (en) * | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US7322934B2 (en) * | 2003-06-24 | 2008-01-29 | Olympus Corporation | Endoscope |
US20080027387A1 (en) * | 2005-10-31 | 2008-01-31 | Andreas Grabinsky | Cleveland round tip (CRT) needle |
US20080200912A1 (en) * | 2007-02-15 | 2008-08-21 | Long Gary L | Electroporation ablation apparatus, system, and method |
US20090005636A1 (en) * | 2005-11-28 | 2009-01-01 | Mport Pte Ltd | Device for Laparoscopic or Thoracoscopic Surgery |
US7476237B2 (en) * | 2003-02-27 | 2009-01-13 | Olympus Corporation | Surgical instrument |
US20090062788A1 (en) * | 2007-08-31 | 2009-03-05 | Long Gary L | Electrical ablation surgical instruments |
US20090076499A1 (en) * | 2007-09-14 | 2009-03-19 | Lazure Technologies, Llc. | Multi-layer electrode ablation probe and related methods |
US7561907B2 (en) * | 2001-12-31 | 2009-07-14 | Biosense Webster, Inc. | Catheter having multiple spines each having electrical mapping and location sensing capabilities |
US20100010294A1 (en) * | 2008-07-10 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Temporarily positionable medical devices |
US20100010510A1 (en) * | 2008-07-09 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Devices and methods for placing occlusion fastners |
US20100010303A1 (en) * | 2008-07-09 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Inflatable access device |
US20100010298A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal flexible overtube |
US20100010299A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US20100010511A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US7650742B2 (en) * | 2004-10-19 | 2010-01-26 | Tokyo Rope Manufacturing Co., Ltd. | Cable made of high strength fiber composite material |
US7651483B2 (en) * | 2005-06-24 | 2010-01-26 | Ethicon Endo-Surgery, Inc. | Injection port |
US7651509B2 (en) * | 1999-12-02 | 2010-01-26 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
US20100023032A1 (en) * | 2006-06-06 | 2010-01-28 | Luiz Gonzaga Granja Filho | Prosthesis for anastomosis |
US20100057078A1 (en) * | 2008-09-02 | 2010-03-04 | Tyco Healthcare Group Lp | Catheter With Remotely Extendible Instruments |
US20100179530A1 (en) * | 2009-01-12 | 2010-07-15 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US7862546B2 (en) * | 2003-06-16 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Subcutaneous self attaching injection port with integral moveable retention members |
US7867216B2 (en) * | 2001-05-01 | 2011-01-11 | St. Jude Medical, Cardiology Division, Inc. | Emboli protection device and related methods of use |
US8088062B2 (en) * | 2007-06-28 | 2012-01-03 | Ethicon Endo-Surgery, Inc. | Interchangeable endoscopic end effectors |
US20120004502A1 (en) * | 2006-12-01 | 2012-01-05 | Boston Scientific Scimed, Inc. | Direct drive endoscopy systems and methods |
US8096459B2 (en) * | 2005-10-11 | 2012-01-17 | Ethicon Endo-Surgery, Inc. | Surgical stapler with an end effector support |
US8106473B2 (en) * | 2009-05-01 | 2012-01-31 | Sharp Laboratories Of America, Inc. | Germanium film optical device |
Family Cites Families (1806)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US112794A (en) | 1871-03-21 | Improvement in sawing-machines | ||
US645576A (en) | 1897-09-02 | 1900-03-20 | Nikola Tesla | System of transmission of electrical energy. |
US787412A (en) | 1900-05-16 | 1905-04-18 | Nikola Tesla | Art of transmitting electrical energy through the natural mediums. |
US1039354A (en) | 1910-03-29 | 1912-09-24 | Pasquale Bonadio | Hose-coupling. |
US1330205A (en) | 1916-03-03 | 1920-02-10 | John W Mckeehan | Spring-clothespin |
US1330147A (en) | 1918-04-20 | 1920-02-10 | George W Stitzer | Clothespin |
US1335331A (en) | 1918-09-20 | 1920-03-30 | John E Gunderson | Clothespin |
US1440116A (en) | 1922-07-24 | 1922-12-26 | Telfer George | Clothespin and anchor therefor |
US1581708A (en) | 1925-11-16 | 1926-04-20 | Patent Button Co | Two-hole sew-on button |
US1581709A (en) | 1925-11-16 | 1926-04-20 | Patent Button Co | Four-hole sew-on button |
US1581707A (en) | 1925-11-16 | 1926-04-20 | Patent Button Co | Four-hole button |
US1581710A (en) | 1925-11-16 | 1926-04-20 | Patent Button Co | Four-hole sew-on button |
US1581706A (en) | 1925-11-16 | 1926-04-20 | Patent Button Co | Two-hole button |
US1625602A (en) | 1926-04-06 | 1927-04-19 | Harold G Gould | Surgical appliance |
GB330629A (en) | 1929-03-14 | 1930-06-16 | Edward Baron | Improvements in and connected with vaginal specula and like instruments |
US1916722A (en) | 1931-06-15 | 1933-07-04 | Frank M Ende | Diathermy |
US1892018A (en) | 1932-04-05 | 1932-12-27 | Ephraim H Stanton | Clothespin |
US2113246A (en) | 1937-05-17 | 1938-04-05 | Wappler Frederick Charles | Endoscopic forceps |
US2137710A (en) | 1937-12-13 | 1938-11-22 | Alfred W Anderson | Forceps |
US2155365A (en) | 1938-03-07 | 1939-04-18 | Kearney James R Corp | Pick-up tongs |
US2196620A (en) | 1938-10-25 | 1940-04-09 | Sarkis T Attarian | Hook attaching device and spreader |
US2303961A (en) | 1940-11-26 | 1942-12-01 | Sprague Junie Etta | Clothespin |
US2330120A (en) | 1942-05-09 | 1943-09-21 | Hagelstein William | Spring device |
US2409379A (en) | 1944-11-04 | 1946-10-15 | Earl M Mosaly | Clothespin |
US2388137A (en) | 1945-05-07 | 1945-10-30 | George D Graumlich | Device for installing and removing tubular lamps and the like |
US2504152A (en) | 1945-12-14 | 1950-04-18 | Robert T Riker | Gripper |
US2514951A (en) | 1946-08-01 | 1950-07-11 | William E Herndon | Clothespin |
US2514698A (en) | 1947-02-18 | 1950-07-11 | Herrero Jose Antonio | Clothespin |
US2451077A (en) | 1948-03-01 | 1948-10-12 | Emsig Sidney | Molded integral sewing hole button of thermosetting synthetic resinous materials |
US2644210A (en) | 1950-06-27 | 1953-07-07 | Robert W Mcnamee | Clothespin device |
US2938382A (en) | 1955-04-29 | 1960-05-31 | Vloeistofmeetapp Nfabriek Nv | Fluid meter |
US2952206A (en) | 1957-05-10 | 1960-09-13 | Austin Powder Co | Fuse connector |
US3069195A (en) | 1959-05-18 | 1962-12-18 | Buck Frank | Device for changing tubular lights |
US3044461A (en) | 1960-01-21 | 1962-07-17 | Murdock Barbara | Procto-sigmoidoscope |
US3070088A (en) | 1961-02-02 | 1962-12-25 | Brahos Nicholas George | Surgical retractor device |
US3110956A (en) | 1961-08-25 | 1963-11-19 | Rca Corp | Jig loading apparatus |
US3481325A (en) | 1966-03-31 | 1969-12-02 | Jacob A Glassman | Gastroscope |
US3470876A (en) | 1966-09-28 | 1969-10-07 | John Barchilon | Dirigible catheter |
US3435824A (en) | 1966-10-27 | 1969-04-01 | Herminio Gamponia | Surgical apparatus and related process |
US3543760A (en) | 1968-03-11 | 1970-12-01 | Medical Plastic Inc | Disposable ground plate electrode |
US3595239A (en) | 1969-04-04 | 1971-07-27 | Roy A Petersen | Catheter with electrical cutting means |
US3669487A (en) | 1970-11-09 | 1972-06-13 | Lonnie D Roberts | Tool |
US3746881A (en) | 1971-02-16 | 1973-07-17 | Maxwell Lab | Marx generator and triggering circuitry therefor |
US3799672A (en) | 1972-09-15 | 1974-03-26 | Us Health Education & Welfare | Oximeter for monitoring oxygen saturation in blood |
US3948251A (en) | 1972-10-25 | 1976-04-06 | Olympus Optical Co., Ltd. | Flexible tube endoscope |
US3929123A (en) | 1973-02-07 | 1975-12-30 | Khosrow Jamshidi | Muscle biopsy needle |
US3854473A (en) | 1973-05-29 | 1974-12-17 | Olympus Optical Co | Stilet for endoscopes |
US3854743A (en) | 1973-08-02 | 1974-12-17 | H Hansen | Ski boot attachment frame |
DE2513868C2 (en) | 1974-04-01 | 1982-11-04 | Olympus Optical Co., Ltd., Tokyo | Bipolar electrodiathermy forceps |
US4043342A (en) | 1974-08-28 | 1977-08-23 | Valleylab, Inc. | Electrosurgical devices having sesquipolar electrode structures incorporated therein |
US3946740A (en) | 1974-10-15 | 1976-03-30 | Bassett John W | Suturing device |
US3965890A (en) | 1974-10-18 | 1976-06-29 | William Kohlmann Gauthier | Surgical retractor |
US3961632A (en) | 1974-12-13 | 1976-06-08 | Moossun Mohamed H | Stomach intubation and catheter placement system |
US3994301A (en) | 1975-04-14 | 1976-11-30 | S & S Medical Products Co., Inc. | Submammary dissector |
US4071028A (en) | 1976-02-17 | 1978-01-31 | Perkins George C | Radio frequency cautery instrument and control unit therefor |
US4085743A (en) | 1976-03-02 | 1978-04-25 | In Bae Yoon | Multiple occlusion ring applicator and method |
US4012812A (en) | 1976-03-11 | 1977-03-22 | Wade Industries, Inc. | Double lock tufting button |
US4174715A (en) | 1977-03-28 | 1979-11-20 | Hasson Harrith M | Multi-pronged laparoscopy forceps |
US4207873A (en) | 1977-05-16 | 1980-06-17 | American Cystoscope Makers, Inc. | Endoscope deflection control |
US4461281A (en) | 1977-06-15 | 1984-07-24 | Carson Robert W | Arthroscopic surgical apparatus and method |
US4170997A (en) | 1977-08-26 | 1979-10-16 | Hughes Aircraft Company | Medical laser instrument for transmitting infrared laser energy to a selected part of the body |
US5133727A (en) | 1990-05-10 | 1992-07-28 | Symbiosis Corporation | Radial jaw biopsy forceps |
US4178920A (en) | 1977-10-03 | 1979-12-18 | American Hospital Supply Corporation | Urological instrument with deflecting element |
US4164225A (en) | 1977-12-28 | 1979-08-14 | Johnson & Lorenz, Inc. | Surgical suturing instrument |
US4258716A (en) | 1978-02-06 | 1981-03-31 | The University Of Melbourne | Microsurgical instruments |
US4235238A (en) | 1978-05-11 | 1980-11-25 | Olympus Optical Co., Ltd. | Apparatus for suturing coeliac tissues |
US4281646A (en) | 1978-06-30 | 1981-08-04 | Olympus Optical Co., Ltd. | Cleaning device for an observation window of an endoscope |
JPS5519124A (en) | 1978-07-27 | 1980-02-09 | Olympus Optical Co | Camera system for medical treatment |
US4329980A (en) | 1979-03-06 | 1982-05-18 | Olympus Optical Co., Ltd. | Flexible sheath for an endoscope |
JPH0127762Y2 (en) | 1979-06-30 | 1989-08-23 | ||
US4269174A (en) | 1979-08-06 | 1981-05-26 | Medical Dynamics, Inc. | Transcutaneous vasectomy apparatus and method |
US4527564A (en) | 1980-02-06 | 1985-07-09 | Janome Sewing Machine Co. Ltd. | Suturing needle for medical operation |
US4396139A (en) | 1980-02-15 | 1983-08-02 | Technalytics, Inc. | Surgical stapling system, apparatus and staple |
US4285344A (en) | 1980-02-21 | 1981-08-25 | Marshall Warren S | Surgical scissors |
SU980703A1 (en) | 1980-05-16 | 1982-12-15 | Иркутский Государственный Медицинский Институт | Device for dissection of tissues |
US4393872A (en) | 1980-05-27 | 1983-07-19 | Eder Instrument Co., Inc. | Aspirating surgical forceps |
US4396021A (en) | 1980-12-15 | 1983-08-02 | Baumgartner George C | Surgical instrument and process |
US4394791A (en) | 1981-05-26 | 1983-07-26 | Groth Francis R | Closure clamp for food bags |
US4406656A (en) | 1981-06-01 | 1983-09-27 | Brack Gillium Hattler | Venous catheter having collapsible multi-lumens |
US4452246A (en) | 1981-09-21 | 1984-06-05 | Bader Robert F | Surgical instrument |
US4677982A (en) | 1981-12-31 | 1987-07-07 | New York University | Infrared transcutaneous communicator and method of using same |
AU9143982A (en) | 1982-01-20 | 1983-07-28 | Sorenson Research Co. Inc. | Translating and positioning a catheter |
US4527331A (en) | 1982-01-26 | 1985-07-09 | Lasner Jeffrey I | Suture remover and continuous band scissors |
US4823794A (en) | 1982-07-12 | 1989-04-25 | Pierce William S | Surgical pledget |
US4491132A (en) | 1982-08-06 | 1985-01-01 | Zimmer, Inc. | Sheath and retractable surgical tool combination |
USD281104S (en) | 1982-09-27 | 1985-10-22 | Adler Instrument Company | Serrated surgical scissors |
US4492232A (en) | 1982-09-30 | 1985-01-08 | United States Surgical Corporation | Surgical clip applying apparatus having fixed jaws |
US4491135A (en) | 1982-11-03 | 1985-01-01 | Klein Harvey A | Surgical needle holder |
GB2130889B (en) | 1982-11-26 | 1986-06-18 | Wolf Gmbh Richard | Rectoscope |
US4655219A (en) | 1983-07-22 | 1987-04-07 | American Hospital Supply Corporation | Multicomponent flexible grasping device |
US4657018A (en) | 1983-08-19 | 1987-04-14 | Hakky Said I | Automatic/manual resectoscope |
US4712545A (en) | 1984-04-05 | 1987-12-15 | Acufex Microsurgical, Inc. | Surgical instrument |
GB2161389B (en) | 1984-07-05 | 1988-06-08 | Wolf Gmbh Richard | Instrument insert for a uretero-renoscope |
US4657016A (en) | 1984-08-20 | 1987-04-14 | Garito Jon C | Electrosurgical handpiece for blades, needles and forceps |
US4938214A (en) | 1984-09-10 | 1990-07-03 | Micrins Surgical Instruments, Ltd. | Hand held surgical tool |
US4580551A (en) | 1984-11-02 | 1986-04-08 | Warner-Lambert Technologies, Inc. | Flexible plastic tube for endoscopes and the like |
US4646722A (en) | 1984-12-10 | 1987-03-03 | Opielab, Inc. | Protective endoscope sheath and method of installing same |
WO1986004226A1 (en) | 1985-01-25 | 1986-07-31 | Kharkovsky Nauchno-Issledovatelsky Institut Obsche | Electrosurgical instrument |
US4685447A (en) | 1985-03-25 | 1987-08-11 | Pmt Corporation | Tissue expander system |
US4742817A (en) | 1985-05-15 | 1988-05-10 | Olympus Optical Co., Ltd. | Endoscopic apparatus having a bendable insertion section |
WO1986007543A1 (en) | 1985-06-20 | 1986-12-31 | Noel Desmond Gray | Internally applied self energising healing electrodes |
US5020535A (en) | 1985-09-26 | 1991-06-04 | Alcon Laboratories, Inc. | Handpiece drive apparatus for powered surgical scissors |
USD295894S (en) | 1985-09-26 | 1988-05-24 | Acme United Corporation | Disposable surgical scissors |
US4669470A (en) | 1985-11-20 | 1987-06-02 | Brandfield Robert T | Surgical forceps/scissors |
US4649904A (en) | 1986-01-02 | 1987-03-17 | Welch Allyn, Inc. | Biopsy seal |
US4763669A (en) | 1986-01-09 | 1988-08-16 | Jaeger John C | Surgical instrument with adjustable angle of operation |
FR2595938A1 (en) | 1986-03-18 | 1987-09-25 | Hanna Khalil | MICROSURGICAL INSTRUMENT FOR THE USE OF CLAMPS OR SCISSORS |
US4836188A (en) | 1986-05-06 | 1989-06-06 | Berry Yale J | Instrument for illuminated sterescopic viewing of body cavities |
US5066295A (en) | 1986-05-13 | 1991-11-19 | Mill-Rose Laboratories, Inc. | Rotatable surgical snare |
US4711240A (en) | 1986-05-15 | 1987-12-08 | Duke University Patents Foundation | Surgical dissector |
US5123914A (en) | 1986-05-19 | 1992-06-23 | Cook Incorporated | Visceral anchor for visceral wall mobilization |
US4867140A (en) | 1986-05-19 | 1989-09-19 | Hovis Donald B | Fluid-actuated medical support |
US5010876A (en) | 1986-06-02 | 1991-04-30 | Smith & Nephew Dyonics, Inc. | Arthroscopic surgical practice |
US4671477A (en) | 1986-06-12 | 1987-06-09 | Cullen Thomas J | Device for handling a workpiece such as a container for chemotherapy drugs or the like |
JPS6349125A (en) | 1986-08-16 | 1988-03-01 | 奥津 一郎 | Guide pipe for endoscope |
US4796627A (en) | 1986-08-26 | 1989-01-10 | Tucker Wilson H | Clip applicator and spreadable clips for use therein |
US4791707A (en) | 1986-08-26 | 1988-12-20 | Tucker Wilson H | Clip applicator, spreadable clips and method for applying the clips |
US4790624A (en) | 1986-10-31 | 1988-12-13 | Identechs Corporation | Method and apparatus for spatially orienting movable members using shape memory effect alloy actuator |
US4753223A (en) | 1986-11-07 | 1988-06-28 | Bremer Paul W | System for controlling shape and direction of a catheter, cannula, electrode, endoscope or similar article |
DE3743920A1 (en) | 1986-12-26 | 1988-07-14 | Olympus Optical Co | ENDOSCOPE DEVICE |
US4733662A (en) | 1987-01-20 | 1988-03-29 | Minnesota Mining And Manufacturing Company | Tissue gripping and cutting assembly for surgical instrument |
DE3852895T2 (en) | 1987-02-09 | 1995-05-18 | Sumitomo Electric Industries | Device for bending an elongated body. |
US4979950A (en) | 1987-04-08 | 1990-12-25 | Ethicon, Inc. | Surgical hemostatic clips |
GB8708481D0 (en) | 1987-04-09 | 1987-05-13 | Wickham J E A | Tissue disintegrator |
US4846573A (en) | 1987-04-10 | 1989-07-11 | Identechs Corporation | Shape memory effect alloy pull wire articulator for borescopes |
US4807593A (en) | 1987-05-08 | 1989-02-28 | Olympus Optical Co. Ltd. | Endoscope guide tube |
US5065516A (en) | 1987-05-11 | 1991-11-19 | Andrew Tool Company | Disassemblable scissors means |
US4898156A (en) | 1987-05-18 | 1990-02-06 | Mitek Surgical Products, Inc. | Suture anchor |
JPS63309252A (en) | 1987-06-12 | 1988-12-16 | Meidensha Electric Mfg Co Ltd | Hydrated polymer gel actuator |
US4829999A (en) | 1987-07-17 | 1989-05-16 | E. R. Squibb And Sons, Inc. | Side mount guidewire gripping device |
US4950273A (en) | 1987-10-26 | 1990-08-21 | Briggs Jeffrey M | Cable action instrument |
US4815450A (en) | 1988-02-01 | 1989-03-28 | Patel Jayendra I | Endoscope having variable flexibility |
US4926860A (en) | 1988-02-05 | 1990-05-22 | Flexmedics Corporation | ARthroscopic instrumentation and method |
JPH01244732A (en) | 1988-03-28 | 1989-09-29 | Asahi Optical Co Ltd | Endoscope with sheath |
US4979496A (en) | 1988-04-05 | 1990-12-25 | Fuji Photo Optical Co., Ltd. | Endoscope for bile duct and pancreatic duct |
US5052372A (en) | 1988-04-05 | 1991-10-01 | Shapiro Jerome J | Vaginal speculum having a unique single control |
US4869459A (en) | 1988-04-20 | 1989-09-26 | Bourne Douglas A | Valve operators |
US4869238A (en) | 1988-04-22 | 1989-09-26 | Opielab, Inc. | Endoscope for use with a disposable sheath |
US4880015A (en) | 1988-06-03 | 1989-11-14 | Nierman David M | Biopsy forceps |
US6120437A (en) | 1988-07-22 | 2000-09-19 | Inbae Yoon | Methods for creating spaces at obstructed sites endoscopically and methods therefor |
US5843156A (en) | 1988-08-24 | 1998-12-01 | Endoluminal Therapeutics, Inc. | Local polymeric gel cellular therapy |
US4990152A (en) | 1988-10-12 | 1991-02-05 | Inbae Yoon | Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue |
US4984581A (en) | 1988-10-12 | 1991-01-15 | Flexmedics Corporation | Flexible guide having two-way shape memory alloy |
US4960133A (en) | 1988-11-21 | 1990-10-02 | Brunswick Manufacturing Co., Inc. | Esophageal electrode |
US5222362A (en) | 1989-01-10 | 1993-06-29 | Maus Daryl D | Heat-activated drug delivery system and thermal actuators therefor |
US4911148A (en) | 1989-03-14 | 1990-03-27 | Intramed Laboratories, Inc. | Deflectable-end endoscope with detachable flexible shaft assembly |
US5245460A (en) | 1989-03-30 | 1993-09-14 | Photonics Corporation | Infrared network entry permission method and apparatus |
US5290302A (en) | 1989-04-07 | 1994-03-01 | The University Of Melbourne | Surgical instrument |
JPH0651018B2 (en) | 1989-05-02 | 1994-07-06 | 株式会社東芝 | Endoscope |
US5033169A (en) | 1989-05-22 | 1991-07-23 | Straight Line Water Sports, Inc. | Rope fastener |
US5098378A (en) | 1989-06-02 | 1992-03-24 | Abbott Laboratories | Method of jejunal feeding |
US4991565A (en) | 1989-06-26 | 1991-02-12 | Asahi Kogaku Kogyo Kabushiki Kaisha | Sheath device for endoscope and fluid conduit connecting structure therefor |
DE3923851C1 (en) | 1989-07-19 | 1990-08-16 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
US5301061A (en) | 1989-07-27 | 1994-04-05 | Olympus Optical Co., Ltd. | Endoscope system |
JPH03128028A (en) | 1989-10-13 | 1991-05-31 | Machida Seisakusho:Kk | Angle for curving operation device |
EP0422887B1 (en) | 1989-10-13 | 1996-12-11 | Kabushiki Kaisha Machida Seisakusho | Bending device |
US5174283A (en) | 1989-11-08 | 1992-12-29 | Parker Jeffrey D | Blind orolaryngeal and oroesophageal guiding and aiming device |
US4950285A (en) | 1989-11-27 | 1990-08-21 | Wilk Peter J | Suture device |
US5123913A (en) | 1989-11-27 | 1992-06-23 | Wilk Peter J | Suture device |
US5217473A (en) | 1989-12-05 | 1993-06-08 | Inbae Yoon | Multi-functional instruments and stretchable ligating and occluding devices |
US5665100A (en) | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5984938A (en) | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Surgical instrument with jaws and movable internal scissors and method for use thereof |
US5984939A (en) | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures |
US5026379A (en) | 1989-12-05 | 1991-06-25 | Inbae Yoon | Multi-functional instruments and stretchable ligating and occluding devices |
US5797939A (en) | 1989-12-05 | 1998-08-25 | Yoon; Inbae | Endoscopic scissors with longitudinal operating channel |
DE3941108C1 (en) | 1989-12-13 | 1991-06-27 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
US5049153A (en) | 1989-12-26 | 1991-09-17 | Nakao Naomi L | Endoscopic stapling device and method |
US5015249A (en) | 1989-12-26 | 1991-05-14 | Nakao Naomi L | Endoscopic stapling device and method |
US5222961A (en) | 1989-12-26 | 1993-06-29 | Naomi Nakao | Endoscopic stapling device and related staple |
US5156609A (en) | 1989-12-26 | 1992-10-20 | Nakao Naomi L | Endoscopic stapling device and method |
US5356381A (en) | 1990-03-01 | 1994-10-18 | Ensminger William D | Implantable access devices |
US5345927A (en) | 1990-03-02 | 1994-09-13 | Bonutti Peter M | Arthroscopic retractors |
US6277136B1 (en) | 1990-03-02 | 2001-08-21 | General Surgical Innovations, Inc. | Method for developing an anatomic space |
US5007917A (en) | 1990-03-08 | 1991-04-16 | Stryker Corporation | Single blade cutter for arthroscopic surgery |
US5976131A (en) | 1990-03-13 | 1999-11-02 | The Regents Of The University At California | Detachable endovascular occlusion device activated by alternating electric current |
US5025778A (en) | 1990-03-26 | 1991-06-25 | Opielab, Inc. | Endoscope with potential channels and method of using the same |
US5203785A (en) | 1990-05-10 | 1993-04-20 | Symbrosis Corporation | Laparoscopic hook scissors |
US5234453A (en) | 1990-05-10 | 1993-08-10 | Symblosis Corporation | Cobalt base alloy end effectors for laparoscopic surgical scissors |
US5395386A (en) | 1990-05-10 | 1995-03-07 | Symbiosis Corporation | Endoscopic pericardial scissors |
US5482054A (en) | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5439478A (en) | 1990-05-10 | 1995-08-08 | Symbiosis Corporation | Steerable flexible microsurgical instrument with rotatable clevis |
US5331971A (en) | 1990-05-10 | 1994-07-26 | Symbiosis Corporation | Endoscopic surgical instruments |
US5037433A (en) | 1990-05-17 | 1991-08-06 | Wilk Peter J | Endoscopic suturing device and related method and suture |
US5219357A (en) | 1990-05-31 | 1993-06-15 | Tnco, Inc. | Micro-instrument |
JPH0438960A (en) | 1990-06-04 | 1992-02-10 | Yoichi Tatara | Artificial blood vessel of polyvinyl alcohol and polyacrylic acid |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
US5041129A (en) | 1990-07-02 | 1991-08-20 | Acufex Microsurgical, Inc. | Slotted suture anchor and method of anchoring a suture |
US5224946A (en) | 1990-07-02 | 1993-07-06 | American Cyanamid Company | Bone anchor and method of anchoring a suture to a bone |
US5843017A (en) | 1990-07-24 | 1998-12-01 | Yoon; Inbae | Multifunctional tissue dissecting instrument |
US5201752A (en) | 1990-09-27 | 1993-04-13 | Pod, Inc. | Cholecystectomy dissector instrument |
US5192300A (en) | 1990-10-01 | 1993-03-09 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5478347A (en) | 1990-10-05 | 1995-12-26 | United States Surgical Corporation | Endoscopic surgical instrument having curved blades |
CA2050868C (en) | 1990-10-05 | 2002-01-01 | Ernie Aranyi | Endoscopic surgical instrument |
US5685820A (en) | 1990-11-06 | 1997-11-11 | Partomed Medizintechnik Gmbh | Instrument for the penetration of body tissue |
US5203787A (en) | 1990-11-19 | 1993-04-20 | Biomet, Inc. | Suture retaining arrangement |
US5366458A (en) | 1990-12-13 | 1994-11-22 | United States Surgical Corporation | Latchless surgical clip |
US5209747A (en) | 1990-12-13 | 1993-05-11 | Knoepfler Dennis J | Adjustable angle medical forceps |
US5431635A (en) | 1990-12-18 | 1995-07-11 | Yoon; Inbae | Safety penetrating instrument having a triggered safety member for establishing an endoscopic portal in an anatomical cavity wall |
US5324261A (en) | 1991-01-04 | 1994-06-28 | Medtronic, Inc. | Drug delivery balloon catheter with line of weakness |
US5312416A (en) | 1991-10-18 | 1994-05-17 | Endomedix Corporation | Method and system for enclosing, manipulating, debulking and removing tissue through minimal access incisions |
US5370647A (en) | 1991-01-23 | 1994-12-06 | Surgical Innovations, Inc. | Tissue and organ extractor |
JP3041099B2 (en) | 1991-02-01 | 2000-05-15 | オリンパス光学工業株式会社 | Electronic endoscope device |
JPH06505654A (en) | 1991-02-06 | 1994-06-30 | ラパロームド コーポレイション | electrosurgical device |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5409453A (en) | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5217003A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5392789A (en) | 1991-04-04 | 1995-02-28 | Symbiosis Corporation | Endoscopic scissors having scissor elements loosely engaged with a clevis |
US5320636A (en) | 1991-04-04 | 1994-06-14 | Symbiosis Corporation | Endoscopic scissors instrument with cammed surface end effectors |
US5174300A (en) | 1991-04-04 | 1992-12-29 | Symbiosis Corporation | Endoscopic surgical instruments having rotatable end effectors |
US5383877A (en) | 1991-05-01 | 1995-01-24 | Clarke; Henry C. | Instruments and method for suturing and ligation |
US5330496A (en) | 1991-05-06 | 1994-07-19 | Alferness Clifton A | Vascular catheter assembly for tissue penetration and for cardiac stimulation and methods thereof |
AU666310B2 (en) | 1991-06-06 | 1996-02-08 | Meditech International Pty Ltd. | Speculum |
JP3007713B2 (en) | 1991-06-06 | 2000-02-07 | オリンパス光学工業株式会社 | Endoscope protection tube |
US5324289A (en) | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5386817A (en) | 1991-06-10 | 1995-02-07 | Endomedical Technologies, Inc. | Endoscope sheath and valve system |
US5503616A (en) | 1991-06-10 | 1996-04-02 | Endomedical Technologies, Inc. | Collapsible access channel system |
US5201908A (en) | 1991-06-10 | 1993-04-13 | Endomedical Technologies, Inc. | Sheath for protecting endoscope from contamination |
US5688269A (en) | 1991-07-10 | 1997-11-18 | Electroscope, Inc. | Electrosurgical apparatus for laparoscopic and like procedures |
EP0526115B1 (en) | 1991-07-29 | 1997-04-02 | Smith & Nephew Richards Inc | Forceps |
DE4220701C2 (en) | 1991-08-02 | 2001-02-08 | Olympus Optical Co | Endoscope cleaning device |
US5383888A (en) | 1992-02-12 | 1995-01-24 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5219358A (en) | 1991-08-29 | 1993-06-15 | Ethicon, Inc. | Shape memory effect surgical needles |
US5741429A (en) | 1991-09-05 | 1998-04-21 | Cardia Catheter Company | Flexible tubular device for use in medical applications |
US5222965A (en) | 1991-09-06 | 1993-06-29 | Donald Haughton | Teat knife |
US5275607A (en) | 1991-09-23 | 1994-01-04 | Visionary Medical, Inc. | Intraocular surgical scissors |
CA2075241A1 (en) | 1991-10-03 | 1993-04-04 | Stephen W. Gerry | Handle for manipulating a laparoscopic tool |
US5273524A (en) | 1991-10-09 | 1993-12-28 | Ethicon, Inc. | Electrosurgical device |
US6569120B1 (en) | 1991-10-18 | 2003-05-27 | United States Surgical Corporation | Seal assembly |
US5312023A (en) | 1991-10-18 | 1994-05-17 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
CA2079417C (en) | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
US5374273A (en) | 1992-10-05 | 1994-12-20 | Nakao; Naomi L. | Method for retrieval of retained common bile duct stones |
US5190050A (en) | 1991-11-08 | 1993-03-02 | Electro-Catheter Corporation | Tip deflectable steerable catheter |
US5242456A (en) | 1991-11-21 | 1993-09-07 | Kensey Nash Corporation | Apparatus and methods for clamping tissue and reflecting the same |
US5308327A (en) | 1991-11-25 | 1994-05-03 | Advanced Surgical Inc. | Self-deployed inflatable retractor |
US5524633A (en) | 1991-11-25 | 1996-06-11 | Advanced Surgical, Inc. | Self-deploying isolation bag |
US5336192A (en) | 1991-11-27 | 1994-08-09 | Palestrant Aubrey M | Self-sealing valve device for angiographic catheters |
US5391174A (en) | 1991-11-29 | 1995-02-21 | Weston; Peter V. | Endoscopic needle holders |
US5197963A (en) | 1991-12-02 | 1993-03-30 | Everest Medical Corporation | Electrosurgical instrument with extendable sheath for irrigation and aspiration |
US5147374A (en) | 1991-12-05 | 1992-09-15 | Alfredo Fernandez | Prosthetic mesh patch for hernia repair |
US5235964A (en) | 1991-12-05 | 1993-08-17 | Analogic Corporation | Flexible probe apparatus |
US5290299A (en) | 1991-12-11 | 1994-03-01 | Ventritex, Inc. | Double jaw apparatus for attaching implanted materials to body tissue |
US5234437A (en) | 1991-12-12 | 1993-08-10 | Target Therapeutics, Inc. | Detachable pusher-vasoocclusion coil assembly with threaded coupling |
US5190555A (en) | 1991-12-13 | 1993-03-02 | Unisurge, Inc. | Device for collection and removal of body parts during laparoscopic surgery |
US5614943A (en) | 1991-12-19 | 1997-03-25 | Olympus Optical Co., Ltd. | Dissimilar endoscopes usable with a common control unit |
US5643283A (en) | 1992-01-03 | 1997-07-01 | Younker; Marlin E. | Surgical pouch |
US6183469B1 (en) | 1997-08-27 | 2001-02-06 | Arthrocare Corporation | Electrosurgical systems and methods for the removal of pacemaker leads |
US5192284A (en) | 1992-01-10 | 1993-03-09 | Pleatman Mark A | Surgical collector and extractor |
US5433721A (en) | 1992-01-17 | 1995-07-18 | Ethicon, Inc. | Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue |
GB9201214D0 (en) | 1992-01-21 | 1992-03-11 | Mcmahon Michael J | Surgical retractors |
DE69332914T2 (en) | 1992-01-21 | 2004-02-26 | Sri International, Menlo Park | Surgical system |
US5284128A (en) | 1992-01-24 | 1994-02-08 | Applied Medical Resources Corporation | Surgical manipulator |
US5348259A (en) | 1992-02-10 | 1994-09-20 | Massachusetts Institute Of Technology | Flexible, articulable column |
US5514157A (en) | 1992-02-12 | 1996-05-07 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5555883A (en) | 1992-02-24 | 1996-09-17 | Avitall; Boaz | Loop electrode array mapping and ablation catheter for cardiac chambers |
US5352184A (en) | 1992-03-12 | 1994-10-04 | Uresil Corporation | Reservoir for enclosing and retrieving body specimens |
US5297687A (en) | 1992-03-12 | 1994-03-29 | Freed Anna B | Virtual hinge |
US5246424A (en) | 1992-03-13 | 1993-09-21 | Wilk Peter J | Device and method for use in obtaining access to an internal body organ |
US5312333A (en) | 1992-04-03 | 1994-05-17 | United States Surgical Corporation | Endoscopic material delivery device |
US5263958A (en) | 1992-04-08 | 1993-11-23 | Microline Inc. | Microsurgical instrument |
US5499997A (en) | 1992-04-10 | 1996-03-19 | Sharpe Endosurgical Corporation | Endoscopic tenaculum surgical instrument |
US5470320A (en) | 1992-04-10 | 1995-11-28 | Tiefenbrun; Jonathan | Method and related device for obtaining access to a hollow organ |
US5254130A (en) | 1992-04-13 | 1993-10-19 | Raychem Corporation | Surgical device |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5522829A (en) | 1992-04-16 | 1996-06-04 | Arthur D. Little Enterprises, Inc. | Surgical cutting instrument |
EP0680282A1 (en) | 1992-04-16 | 1995-11-08 | MICHALOS, Peter | Surgical cutting instrument |
US5403328A (en) | 1992-04-22 | 1995-04-04 | United States Surgical Corporation | Surgical apparatus and method for suturing body tissue |
US5417203A (en) | 1992-04-23 | 1995-05-23 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5484451A (en) | 1992-05-08 | 1996-01-16 | Ethicon, Inc. | Endoscopic surgical instrument and staples for applying purse string sutures |
US5536248A (en) | 1992-05-11 | 1996-07-16 | Arrow Precision Products, Inc. | Method and apparatus for electrosurgically obtaining access to the biliary tree and placing a stent therein |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
US5766246A (en) | 1992-05-20 | 1998-06-16 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
DE4217202C2 (en) | 1992-05-23 | 1994-06-23 | Kernforschungsz Karlsruhe | Surgical sewing instrument |
US6540764B1 (en) | 1992-06-02 | 2003-04-01 | General Surgical Innovations, Inc. | Apparatus and method for dissecting tissue layers |
US5540711A (en) | 1992-06-02 | 1996-07-30 | General Surgical Innovations, Inc. | Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization |
US5906625A (en) | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US5257999A (en) | 1992-06-04 | 1993-11-02 | Slanetz Jr Charles A | Self-oriented laparoscopic needle holder for curved needles |
US5325845A (en) | 1992-06-08 | 1994-07-05 | Adair Edwin Lloyd | Steerable sheath for use with selected removable optical catheter |
WO1994000059A1 (en) | 1992-06-24 | 1994-01-06 | Microsurge, Inc. | Reusable endoscopic surgical instrument |
US5478351A (en) | 1992-06-24 | 1995-12-26 | Microsurge, Inc. | Endoscopic surgical tool with handle and detachable tool assembly |
US5482029A (en) | 1992-06-26 | 1996-01-09 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
CA2098896C (en) | 1992-06-30 | 2005-03-29 | H. Jonathan Tovey | Specimen retrieval pouch and method for use |
US5368606A (en) | 1992-07-02 | 1994-11-29 | Marlow Surgical Technologies, Inc. | Endoscopic instrument system |
US5366466A (en) | 1992-07-09 | 1994-11-22 | Unisurge, Inc. | Surgical scissors |
WO1994002077A2 (en) | 1992-07-15 | 1994-02-03 | Angelase, Inc. | Ablation catheter system |
US5366467A (en) | 1992-07-15 | 1994-11-22 | Linvatec Corporation | Endoscopic scissors |
US5360428A (en) | 1992-07-22 | 1994-11-01 | Hutchinson Jr William B | Laparoscopic instrument with electrical cutting wires |
DE4235023A1 (en) | 1992-07-22 | 1994-01-27 | Friedrichsfeld Ag | Gripping and / or cutting instrument for endoscopic purposes |
US5330486A (en) | 1992-07-29 | 1994-07-19 | Wilk Peter J | Laparoscopic or endoscopic anastomosis technique and associated instruments |
US5395367A (en) | 1992-07-29 | 1995-03-07 | Wilk; Peter J. | Laparoscopic instrument with bendable shaft and removable actuator |
US5511564A (en) | 1992-07-29 | 1996-04-30 | Valleylab Inc. | Laparoscopic stretching instrument and associated method |
US5470308A (en) | 1992-08-12 | 1995-11-28 | Vidamed, Inc. | Medical probe with biopsy stylet |
US5540648A (en) | 1992-08-17 | 1996-07-30 | Yoon; Inbae | Medical instrument stabilizer with anchoring system and methods |
US5458131A (en) | 1992-08-25 | 1995-10-17 | Wilk; Peter J. | Method for use in intra-abdominal surgery |
US5297536A (en) | 1992-08-25 | 1994-03-29 | Wilk Peter J | Method for use in intra-abdominal surgery |
DE69321963T2 (en) | 1992-09-01 | 1999-04-01 | Edwin L. Castle Pines Village Col. Adair | STERILIZABLE ENDOSCOPE WITH A DETACHABLE DISPOSABLE PIPE ARRANGEMENT |
US5630782A (en) | 1992-09-01 | 1997-05-20 | Adair; Edwin L. | Sterilizable endoscope with separable auxiliary assembly |
US5447533A (en) | 1992-09-03 | 1995-09-05 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
US5364408A (en) | 1992-09-04 | 1994-11-15 | Laurus Medical Corporation | Endoscopic suture system |
US5342373A (en) | 1992-09-14 | 1994-08-30 | Ethicon, Inc. | Sterile clips and instrument for their placement |
CA2106128A1 (en) | 1992-09-23 | 1994-03-24 | Ernie Aranyi | Endoscopic surgical instrument |
US5312423A (en) | 1992-10-01 | 1994-05-17 | Advanced Surgical Intervention, Inc. | Apparatus and method for laparaoscopic ligation |
US5330502A (en) | 1992-10-09 | 1994-07-19 | Ethicon, Inc. | Rotational endoscopic mechanism with jointed drive mechanism |
US5374277A (en) | 1992-10-09 | 1994-12-20 | Ethicon, Inc. | Surgical instrument |
US5334198A (en) | 1992-10-09 | 1994-08-02 | Innovasive Devices, Inc. | Surgical instrument |
US5626587A (en) | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
US5431696A (en) | 1992-10-13 | 1995-07-11 | Atlee, Iii; John L. | Esophageal probe for transeophageal cardiac stimulation |
US5350391A (en) | 1992-10-19 | 1994-09-27 | Benedetto Iacovelli | Laparoscopic instruments |
US5259366A (en) | 1992-11-03 | 1993-11-09 | Boris Reydel | Method of using a catheter-sleeve assembly for an endoscope |
US5354302A (en) | 1992-11-06 | 1994-10-11 | Ko Sung Tao | Medical device and method for facilitating intra-tissue visual observation and manipulation of distensible tissues |
US5376077A (en) | 1992-12-04 | 1994-12-27 | Interventional Technologies, Inc. | Introducer sheath with seal protector |
US20020095164A1 (en) | 1997-06-26 | 2002-07-18 | Andreas Bernard H. | Device and method for suturing tissue |
US5417699A (en) | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5460168A (en) | 1992-12-25 | 1995-10-24 | Olympus Optical Co., Ltd. | Endoscope cover assembly and cover-system endoscope |
US5653690A (en) | 1992-12-30 | 1997-08-05 | Medtronic, Inc. | Catheter having a balloon with retention enhancement |
DK0683684T3 (en) | 1993-01-07 | 2001-11-05 | Medical Innovations Corp | Catheter system for gastrostomy |
CA2114330A1 (en) | 1993-01-29 | 1994-07-30 | Smith & Nephew Endoscopy, Inc. | Rotatable curved instrument |
US5312351A (en) | 1993-01-29 | 1994-05-17 | Gerrone Carmen J | Combined pneumo-needle and trocar apparatus |
US5403326A (en) | 1993-02-01 | 1995-04-04 | The Regents Of The University Of California | Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux |
US6338730B1 (en) | 1993-02-04 | 2002-01-15 | Peter M. Bonutti | Method of using expandable cannula |
US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5643294A (en) | 1993-03-01 | 1997-07-01 | United States Surgical Corporation | Surgical apparatus having an increased range of operability |
US5342396A (en) | 1993-03-02 | 1994-08-30 | Cook Melvin S | Staples |
US5431676A (en) | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
US5344428A (en) | 1993-03-05 | 1994-09-06 | Auburn International, Inc. | Miniature surgical instrument |
US5814058A (en) | 1993-03-05 | 1998-09-29 | Innerdyne, Inc. | Method and apparatus employing conformable sleeve for providing percutaneous access |
US5445638B1 (en) | 1993-03-08 | 1998-05-05 | Everest Medical Corp | Bipolar coagulation and cutting forceps |
US5368605A (en) | 1993-03-09 | 1994-11-29 | Miller, Jr.; Herman A. | Laparoscopic surgical instrument |
US5657755A (en) | 1993-03-11 | 1997-08-19 | Desai; Jawahar M. | Apparatus and method for cardiac ablation |
US5378234A (en) | 1993-03-15 | 1995-01-03 | Pilot Cardiovascular Systems, Inc. | Coil polymer composite |
US5330488A (en) | 1993-03-23 | 1994-07-19 | Goldrath Milton H | Verres needle suturing kit |
US5341815A (en) | 1993-03-25 | 1994-08-30 | Ethicon, Inc. | Endoscopic surgical pouch |
US5374275A (en) | 1993-03-25 | 1994-12-20 | Synvasive Technology, Inc. | Surgical suturing device and method of use |
US5403311A (en) | 1993-03-29 | 1995-04-04 | Boston Scientific Corporation | Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue |
US5336222A (en) | 1993-03-29 | 1994-08-09 | Boston Scientific Corporation | Integrated catheter for diverse in situ tissue therapy |
US5496347A (en) | 1993-03-30 | 1996-03-05 | Olympus Optical Co., Ltd. | Surgical instrument |
US5468250A (en) | 1993-04-01 | 1995-11-21 | Ethicon, Inc. | Endoscopic mechanism with friction maintaining handle |
US5613975A (en) | 1993-04-28 | 1997-03-25 | Christy; William J. | Endoscopic suturing device and method |
US5295977A (en) | 1993-05-11 | 1994-03-22 | Symbiosis Corporation | Trocar catheter for drainage |
US5403348A (en) | 1993-05-14 | 1995-04-04 | Bonutti; Peter M. | Suture anchor |
US5456667A (en) | 1993-05-20 | 1995-10-10 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
US5364410A (en) | 1993-05-28 | 1994-11-15 | Ethicon, Inc. | Percutaneous suture externalizer |
US5334168A (en) | 1993-06-11 | 1994-08-02 | Catheter Research, Inc. | Variable shape guide apparatus |
US5480404A (en) | 1993-06-16 | 1996-01-02 | Ethicon, Inc. | Surgical tissue retrieval instrument |
CA2165829A1 (en) | 1993-07-01 | 1995-01-19 | John E. Abele | Imaging, electrical potential sensing, and ablation catheters |
US5447148A (en) | 1993-07-08 | 1995-09-05 | Vision Sciences, Inc. | Endoscopic contamination protection system to facilitate cleaning of endoscopes |
US5569243A (en) | 1993-07-13 | 1996-10-29 | Symbiosis Corporation | Double acting endoscopic scissors with bipolar cautery capability |
US5527321A (en) | 1993-07-14 | 1996-06-18 | United States Surgical Corporation | Instrument for closing trocar puncture wounds |
DE4323585A1 (en) | 1993-07-14 | 1995-01-19 | Delma Elektro Med App | Bipolar high-frequency surgical instrument |
US5356408A (en) | 1993-07-16 | 1994-10-18 | Everest Medical Corporation | Bipolar electrosurgical scissors having nonlinear blades |
JPH09501333A (en) | 1993-07-21 | 1997-02-10 | エイチ. クリーマン,チャールズ | Surgical instruments for endoscopy and surgery |
US5582617A (en) | 1993-07-21 | 1996-12-10 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
US5441494A (en) | 1993-07-29 | 1995-08-15 | Ethicon, Inc. | Manipulable hand for laparoscopy |
US5507755A (en) | 1993-08-03 | 1996-04-16 | Origin Medsystems, Inc. | Apparatus and method for closing puncture wounds |
US5462561A (en) | 1993-08-05 | 1995-10-31 | Voda; Jan K. | Suture device |
US5469863A (en) | 1993-08-11 | 1995-11-28 | Polygenex International, Inc. | Polyurethane condom of welded polyurethane film |
AU7559394A (en) | 1993-08-18 | 1995-03-14 | Vista Medical Technologies | Optical surgical device |
US5827299A (en) | 1993-08-25 | 1998-10-27 | Inlet Medical, Inc | Insertable suture passing grasping probe and methodology for using same |
US5807395A (en) | 1993-08-27 | 1998-09-15 | Medtronic, Inc. | Method and apparatus for RF ablation and hyperthermia |
US5397332A (en) | 1993-09-02 | 1995-03-14 | Ethicon, Inc. | Surgical mesh applicator |
US5902238A (en) | 1993-09-14 | 1999-05-11 | University Of Washington | Medical tube and apparatus for locating the same in the body of a patient |
US5607386A (en) | 1993-09-21 | 1997-03-04 | Flam; Gary H. | Malleable fiberoptic intubating stylet and method |
US5433735A (en) | 1993-09-27 | 1995-07-18 | Zanakis; Michael F. | Electrical stimulation technique for tissue regeneration |
US5496333A (en) | 1993-10-20 | 1996-03-05 | Applied Medical Resources Corporation | Laparoscopic surgical clamp |
US5690660A (en) | 1993-10-27 | 1997-11-25 | Stryker Corporation | Arthroscopic cutter having curved rotatable drive |
US5405359A (en) | 1994-04-29 | 1995-04-11 | Pierce; Javi | Toggle wedge |
US5472441A (en) | 1993-11-08 | 1995-12-05 | Zomed International | Device for treating cancer and non-malignant tumors and methods |
US6569159B1 (en) | 1993-11-08 | 2003-05-27 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US5405073A (en) | 1993-12-06 | 1995-04-11 | Ethicon, Inc. | Flexible support shaft assembly |
US6530922B2 (en) | 1993-12-15 | 2003-03-11 | Sherwood Services Ag | Cluster ablation electrode system |
US5743456A (en) | 1993-12-16 | 1998-04-28 | Stryker Corporation | Hand actuable surgical handpiece |
CA2138076A1 (en) | 1993-12-17 | 1995-06-18 | Philip E. Eggers | Monopolar electrosurgical instruments |
US5439471A (en) | 1994-01-05 | 1995-08-08 | Kerr; Harry D. | Combined surgical needle holder and scissors |
IL108352A (en) | 1994-01-17 | 2000-02-29 | Given Imaging Ltd | In vivo video camera system |
DE4401237C2 (en) | 1994-01-18 | 1997-06-05 | Ruesch Willy Ag | Trocar device |
US5423821A (en) | 1994-01-18 | 1995-06-13 | Pasque; Michael K. | Sternal closure device |
US5501692A (en) | 1994-01-28 | 1996-03-26 | Riza; Erol D. | Laparoscopic suture snare |
US5538509A (en) | 1994-01-31 | 1996-07-23 | Richard-Allan Medical Industries, Inc. | Trocar assembly |
US5638827A (en) | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
US5441059A (en) | 1994-02-02 | 1995-08-15 | Dannan; Patrick A. | Method of minimally invasive surgery |
US5645083A (en) | 1994-02-10 | 1997-07-08 | Essig; Mitchell N. | Peritoneal surgical method |
CH687060A5 (en) | 1994-02-11 | 1996-09-13 | Alice Walder Utz Dr | Piece surgical clip. |
US5501698A (en) | 1994-02-14 | 1996-03-26 | Heartport, Inc. | Endoscopic microsurgical instruments and methods |
US5441498A (en) | 1994-02-16 | 1995-08-15 | Envision Surgical Systems, Inc. | Method of using a multimodality probe with extendable bipolar electrodes |
US5401248A (en) | 1994-02-22 | 1995-03-28 | Ethicon Endo-Surgery | Seal for trocar assembly |
US5681330A (en) | 1994-03-02 | 1997-10-28 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instrument and method for their placement |
CA2143560C (en) | 1994-03-02 | 2007-01-16 | Mark Fogelberg | Sterile occlusion fasteners and instrument and method for their placement |
US5833700A (en) | 1995-03-15 | 1998-11-10 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instrument and method for their placement |
US6216043B1 (en) | 1994-03-04 | 2001-04-10 | Ep Technologies, Inc. | Asymmetric multiple electrode support structures |
US5352222A (en) | 1994-03-15 | 1994-10-04 | Everest Medical Corporation | Surgical scissors with bipolar coagulation feature |
US5645519A (en) | 1994-03-18 | 1997-07-08 | Jai S. Lee | Endoscopic instrument for controlled introduction of tubular members in the body and methods therefor |
GB9405790D0 (en) | 1994-03-23 | 1994-05-11 | Univ London | Sewing device |
US5819736A (en) | 1994-03-24 | 1998-10-13 | Sightline Technologies Ltd. | Viewing method and apparatus particularly useful for viewing the interior of the large intestine |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5653677A (en) | 1994-04-12 | 1997-08-05 | Fuji Photo Optical Co. Ltd | Electronic endoscope apparatus with imaging unit separable therefrom |
EP0677276B1 (en) | 1994-04-15 | 2000-06-14 | Smith & Nephew, Inc. | Curved surgical instrument with segmented inner member |
US5569298A (en) | 1994-05-02 | 1996-10-29 | Schnell; William J. | Resposable scissors |
US5505686A (en) | 1994-05-05 | 1996-04-09 | Imagyn Medical, Inc. | Endoscope with protruding member and method of utilizing the same |
US5807308A (en) | 1996-02-23 | 1998-09-15 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
GB9409625D0 (en) | 1994-05-13 | 1994-07-06 | Univ London | Surgical cutting tool |
US5507731A (en) | 1994-05-17 | 1996-04-16 | Cordis Corporation | Rapid exchange segmented catheter |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5569183A (en) | 1994-06-01 | 1996-10-29 | Archimedes Surgical, Inc. | Method for performing surgery around a viewing space in the interior of the body |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
WO1995035064A1 (en) | 1994-06-20 | 1995-12-28 | Slotman Gus J | Tissue spreading surgical instrument |
US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6033401A (en) | 1997-03-12 | 2000-03-07 | Advanced Closure Systems, Inc. | Vascular sealing device with microwave antenna |
JPH0829699A (en) | 1994-07-11 | 1996-02-02 | Kitagawa Ind Co Ltd | Image scope |
US5573540A (en) | 1994-07-18 | 1996-11-12 | Yoon; Inbae | Apparatus and method for suturing an opening in anatomical tissue |
EP0694289B1 (en) | 1994-07-29 | 2003-05-07 | Olympus Optical Co., Ltd. | Medical instrument for use in combination with endoscopes |
IT1274589B (en) | 1994-08-05 | 1997-07-18 | Nuovo Pignone Spa | IMPROVED SYSTEM OF GRIPPING AND TIGHTENING THE WEFT IN THE TRACTION GRIPPER OF A TEXTILE FRAME |
US5573542A (en) | 1994-08-17 | 1996-11-12 | Tahoe Surgical Instruments-Puerto Rico | Endoscopic suture placement tool |
US5584845A (en) | 1994-08-18 | 1996-12-17 | Innovasive Devices, Inc. | Surgical scissor blade and method for making the same |
JP2802244B2 (en) | 1994-08-29 | 1998-09-24 | オリンパス光学工業株式会社 | Endoscope sheath |
US5456684A (en) | 1994-09-08 | 1995-10-10 | Hutchinson Technology Incorporated | Multifunctional minimally invasive surgical instrument |
DE19501752A1 (en) | 1994-09-20 | 1996-07-25 | Stefan Koscher | Surgical instrument |
US5609601A (en) | 1994-09-23 | 1997-03-11 | United States Surgical Corporation | Endoscopic surgical apparatus with rotation lock |
US5554151A (en) | 1994-09-27 | 1996-09-10 | United States Surgical Corporation | Specimen retrieval container |
JP3614943B2 (en) | 1994-09-29 | 2005-01-26 | オリンパス株式会社 | Endoscopic puncture needle |
US5571090A (en) | 1994-10-07 | 1996-11-05 | United States Surgical Corporation | Vascular suturing apparatus |
US6152920A (en) | 1997-10-10 | 2000-11-28 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body |
US5938668A (en) | 1994-10-07 | 1999-08-17 | United States Surgical | Surgical suturing apparatus |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US5893875A (en) | 1994-10-07 | 1999-04-13 | Tnco, Inc. | Surgical instrument with replaceable jaw assembly |
US5578030A (en) | 1994-11-04 | 1996-11-26 | Levin; John M. | Biopsy needle with cauterization feature |
US5549637A (en) | 1994-11-10 | 1996-08-27 | Crainich; Lawrence | Articulated medical instrument |
US5695511A (en) | 1994-11-29 | 1997-12-09 | Metamorphic Surgical Devices | Surgical instruments for minimally invasive procedures |
US7235089B1 (en) | 1994-12-07 | 2007-06-26 | Boston Scientific Corporation | Surgical apparatus and method |
US5533418A (en) | 1994-12-09 | 1996-07-09 | Kung C. Wu | Spherical robotic shoulder joint |
US5976130A (en) | 1994-12-13 | 1999-11-02 | Symbiosis Corporation | Bipolar push rod assembly for a bipolar endoscopic surgical instrument and instruments incorporating the same |
US6447511B1 (en) | 1994-12-13 | 2002-09-10 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
JPH08256295A (en) | 1994-12-21 | 1996-10-01 | Olympus Optical Co Ltd | Image processing unit |
US5665109A (en) | 1994-12-29 | 1997-09-09 | Yoon; Inbae | Methods and apparatus for suturing tissue |
US5653722A (en) | 1995-01-03 | 1997-08-05 | Kieturakis; Maciej J. | Anterograde/retrograde spiral dissector and method of use in vein grafting |
US5643292A (en) | 1995-01-10 | 1997-07-01 | Applied Medical Resources Corporation | Percutaneous suturing device |
JP3798838B2 (en) | 1995-01-20 | 2006-07-19 | オリンパス株式会社 | Ligation device |
CA2168404C (en) | 1995-02-01 | 2007-07-10 | Dale Schulze | Surgical instrument with expandable cutting element |
US6391029B1 (en) | 1995-03-07 | 2002-05-21 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5665096A (en) | 1995-03-07 | 1997-09-09 | Yoon; Inbae | Needle driving apparatus and methods of suturing tissue |
US6464701B1 (en) | 1995-03-07 | 2002-10-15 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5695505A (en) | 1995-03-09 | 1997-12-09 | Yoon; Inbae | Multifunctional spring clips and cartridges and applicators therefor |
FR2731610B1 (en) | 1995-03-16 | 1997-06-20 | Amp Dev | ANCHOR FOR INSERTION INTO A BONE CAVITY. |
US5868740A (en) | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
DE69632906T2 (en) | 1995-03-31 | 2005-07-28 | Boston Scientific Ltd., St. Michael | BIOPSY SAMPLER |
US5626607A (en) | 1995-04-03 | 1997-05-06 | Heartport, Inc. | Clamp assembly and method of use |
DE19512559A1 (en) | 1995-04-04 | 1996-10-10 | Aesculap Ag | Scissors-shaped tool for a surgical instrument and method for its manufacture |
US5681276A (en) | 1995-04-19 | 1997-10-28 | Lundquist; Ingemar H. | Medical probe device and electrode assembly for use therewith |
US6090108A (en) | 1995-04-27 | 2000-07-18 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5779701A (en) | 1995-04-27 | 1998-07-14 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5626578A (en) | 1995-05-08 | 1997-05-06 | Tihon; Claude | RF valvulotome |
JP3633032B2 (en) | 1995-05-26 | 2005-03-30 | 佐々木 寛 | Puncture device |
ATE222076T1 (en) | 1995-06-07 | 2002-08-15 | Medtronic Inc | WOUND CLOSURE DEVICE |
CA2223001A1 (en) | 1995-06-07 | 1996-12-19 | St. Jude Medical, Inc. | Direct suture orifice for mechanical heart valve |
US6132438A (en) | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
US5759151A (en) | 1995-06-07 | 1998-06-02 | Carnegie Mellon University | Flexible steerable device for conducting exploratory procedures |
US5964740A (en) | 1996-07-09 | 1999-10-12 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessory for an endoscope |
US5702438A (en) | 1995-06-08 | 1997-12-30 | Avitall; Boaz | Expandable recording and ablation catheter system |
US5645565A (en) | 1995-06-13 | 1997-07-08 | Ethicon Endo-Surgery, Inc. | Surgical plug |
US6607529B1 (en) | 1995-06-19 | 2003-08-19 | Medtronic Vidamed, Inc. | Electrosurgical device |
US5690656A (en) | 1995-06-27 | 1997-11-25 | Cook Incorporated | Method and apparatus for creating abdominal visceral anastomoses |
US5662621A (en) | 1995-07-06 | 1997-09-02 | Scimed Life Systems, Inc. | Guide catheter with shape memory retention |
US5759150A (en) | 1995-07-07 | 1998-06-02 | Olympus Optical Co., Ltd. | System for evulsing subcutaneous tissue |
US5616117A (en) | 1995-08-03 | 1997-04-01 | Ohio Medical Instrument Company, Inc. | Self locking surgical retractor |
US5562693A (en) | 1995-08-11 | 1996-10-08 | Alcon Laboratories, Inc. | Cutting blade assembly for a surgical scissors |
US5716326A (en) | 1995-08-14 | 1998-02-10 | Dannan; Patrick A. | Method for lifting tissue and apparatus for performing same |
US6053937A (en) | 1995-08-15 | 2000-04-25 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method with cooling element |
US6117144A (en) | 1995-08-24 | 2000-09-12 | Sutura, Inc. | Suturing device and method for sealing an opening in a blood vessel or other biological structure |
US6562052B2 (en) | 1995-08-24 | 2003-05-13 | Sutura, Inc. | Suturing device and method |
US6001120A (en) | 1995-09-07 | 1999-12-14 | Levin; John M. | Universal dissector |
JP3636511B2 (en) | 1995-09-11 | 2005-04-06 | 株式会社セムコ | Electrosurgical equipment |
US5797959A (en) | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US5624399A (en) | 1995-09-29 | 1997-04-29 | Ackrad Laboratories, Inc. | Catheter having an intracervical/intrauterine balloon made from polyurethane |
US5810715A (en) | 1995-09-29 | 1998-09-22 | Olympus Optical Co., Ltd. | Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member |
US5810876A (en) | 1995-10-03 | 1998-09-22 | Akos Biomedical, Inc. | Flexible forceps device |
US5779716A (en) | 1995-10-06 | 1998-07-14 | Metamorphic Surgical Devices, Inc. | Device for removing solid objects from body canals, cavities and organs |
AU7255896A (en) | 1995-10-06 | 1997-04-28 | Brian S. Kelleher | Steerable, flexible forceps device |
US5853374A (en) | 1995-10-11 | 1998-12-29 | Applied Medical Resources Corporation | Tissue collection and retrieval bag |
IL151563A0 (en) | 1995-10-13 | 2003-04-10 | Transvascular Inc | A longitudinal compression apparatus for compressing tissue |
US5882344A (en) | 1995-10-18 | 1999-03-16 | Stouder, Jr.; Albert E. | Adjustable length cannula and trocar |
US5885280A (en) | 1995-11-08 | 1999-03-23 | Megadyne Medical Products, Inc. | Electrosurgical electrode connector |
US5730740A (en) | 1995-11-09 | 1998-03-24 | Ethicon Endo-Surgery, Inc. | Latch mechanism for surgical instruments |
IT1277690B1 (en) | 1995-12-22 | 1997-11-11 | Bieffe Medital Spa | VERTEBRAL SUPPORT AND IMPLEMENTATION SYSTEM IN PARTICULAR FOR SURGICAL AND DIAGNOSTIC INSTRUMENTS |
US5817107A (en) | 1995-12-28 | 1998-10-06 | Schaller; Guenter | Grasping instrument with a guided-on, attachable modified knot pusher |
US5827281A (en) | 1996-01-05 | 1998-10-27 | Levin; John M. | Insulated surgical scissors |
WO1997026039A1 (en) | 1996-01-18 | 1997-07-24 | University Of New Mexico | Soft actuators and artificial muscles |
US5628732A (en) | 1996-01-19 | 1997-05-13 | Ethicon Endo-Surgery, Inc. | Trocar with improved universal seal |
US5791022A (en) | 1996-01-29 | 1998-08-11 | Bohman; Lars | Cord locking mechanism |
US6579311B1 (en) | 1996-02-02 | 2003-06-17 | Transvascular, Inc. | Method for interstitial transvascular intervention |
DE19603889C2 (en) | 1996-02-03 | 1999-05-06 | Aesculap Ag & Co Kg | Surgical application device |
US5810805A (en) | 1996-02-09 | 1998-09-22 | Conmed Corporation | Bipolar surgical devices and surgical methods |
US5749889A (en) | 1996-02-13 | 1998-05-12 | Imagyn Medical, Inc. | Method and apparatus for performing biopsy |
US5957953A (en) | 1996-02-16 | 1999-09-28 | Smith & Nephew, Inc. | Expandable suture anchor |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855546A (en) | 1996-02-29 | 1999-01-05 | Sci-Med Life Systems | Perfusion balloon and radioactive wire delivery system |
US5702390A (en) | 1996-03-12 | 1997-12-30 | Ethicon Endo-Surgery, Inc. | Bioplar cutting and coagulation instrument |
US5833603A (en) | 1996-03-13 | 1998-11-10 | Lipomatrix, Inc. | Implantable biosensing transponder |
US5649372A (en) | 1996-03-14 | 1997-07-22 | American Dryer Corporation | Drying cycle controller for controlling drying as a function of humidity and temperature |
JP3225835B2 (en) | 1996-03-14 | 2001-11-05 | 富士写真光機株式会社 | Endoscope treatment instrument fixing mechanism |
US5814026A (en) | 1996-03-19 | 1998-09-29 | Yoon; Inbae | Endoscopic portal having a universal seal and methods for introducing instruments therethrough |
US6016452A (en) | 1996-03-19 | 2000-01-18 | Kasevich; Raymond S. | Dynamic heating method and radio frequency thermal treatment |
US5725523A (en) | 1996-03-29 | 1998-03-10 | Mueller; Richard L. | Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications |
US5813976A (en) | 1996-04-02 | 1998-09-29 | Filipi; Charles J. | Stabilizing instrumentation for the performing of endoscopic surgical procedures |
DE19713797A1 (en) | 1996-04-04 | 1997-10-09 | Valleylab Inc | Electrosurgical instrument for use in e.g. myoma necrosis |
US5669875A (en) | 1996-04-16 | 1997-09-23 | United States Surgical Corporation | Endoscopic surgical apparatus with longitudinal actuation |
WO1997039689A1 (en) | 1996-04-19 | 1997-10-30 | Applied Medical Resources Corporation | Grasping clip applier |
US5700275A (en) | 1996-04-25 | 1997-12-23 | United States Surgical Corporation | Articulating endoscopic surgical instrument |
US6036640A (en) | 1996-04-29 | 2000-03-14 | Medtronic, Inc. | Device and method for repositioning the heart during surgery |
EP0848598B1 (en) | 1996-05-10 | 2005-02-23 | Emmanuil Giannadakis | System of laparoscopic-endoscopic surgery |
US5893846A (en) | 1996-05-15 | 1999-04-13 | Symbiosis Corp. | Ceramic coated endoscopic scissor blades and a method of making the same |
US6090129A (en) | 1996-06-11 | 2000-07-18 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessory for endoscope |
US5993474A (en) | 1996-06-11 | 1999-11-30 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treatment accessory for endoscope |
WO1997049342A1 (en) | 1996-06-24 | 1997-12-31 | Karl Storz Gmbh & Co. | Endoscopic instrument which can be bent |
US5925052A (en) | 1996-06-26 | 1999-07-20 | Simmons; Paul L. | Umbilical surgical scissors |
US5752951A (en) | 1996-07-02 | 1998-05-19 | Yanik; Gary W. | Shielded monopolar electrosurgical apparatus |
US5728133A (en) | 1996-07-09 | 1998-03-17 | Cardiologics, L.L.C. | Anchoring device and method for sealing percutaneous punctures in vessels |
US5782748A (en) | 1996-07-10 | 1998-07-21 | Symbiosis Corporation | Endoscopic surgical instruments having detachable proximal and distal portions |
US5741234A (en) | 1996-07-16 | 1998-04-21 | Aboul-Hosn; Walid Nagib | Anatomical cavity access sealing condit |
US5902254A (en) | 1996-07-29 | 1999-05-11 | The Nemours Foundation | Cathether guidewire |
US5993447A (en) | 1996-08-16 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US6106521A (en) | 1996-08-16 | 2000-08-22 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US5718717A (en) | 1996-08-19 | 1998-02-17 | Bonutti; Peter M. | Suture anchor |
US6123712A (en) | 1996-08-23 | 2000-09-26 | Scimed Life Systems, Inc. | Balloon catheter with stent securement means |
US5810806A (en) | 1996-08-29 | 1998-09-22 | Ethicon Endo-Surgery | Methods and devices for collection of soft tissue |
US5655548A (en) | 1996-09-16 | 1997-08-12 | Circulation, Inc. | Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
EP0942765A1 (en) | 1996-09-16 | 1999-09-22 | Philip S. Green | System and method for endosurgery employing conjoint operation of an endoscope and endosurgical instrument |
US5830221A (en) | 1996-09-20 | 1998-11-03 | United States Surgical Corporation | Coil fastener applier |
US6152936A (en) | 1996-09-23 | 2000-11-28 | Esd Medical, Llc | Surgical loop delivery device |
JP2957134B2 (en) | 1996-10-08 | 1999-10-04 | 株式会社八光電機製作所 | Valve and valved trocar mantle |
TW375522B (en) | 1996-10-24 | 1999-12-01 | Danek Medical Inc | Devices for percutaneous surgery under direct visualization and through an elongated cannula |
US5954720A (en) | 1996-10-28 | 1999-09-21 | Endoscopic Concepts, Inc. | Bipolar electrosurgical end effectors |
US6371956B1 (en) | 1996-10-28 | 2002-04-16 | Endoscopic Concepts, Inc. | Monopolar electrosurgical end effectors |
US5681279A (en) | 1996-11-04 | 1997-10-28 | Roper; David H. | Pill dispensing syringe |
US5749826A (en) | 1996-11-06 | 1998-05-12 | Faulkner; James W. | Urinary incontinence control device |
AU735761B2 (en) | 1996-11-06 | 2001-07-12 | Sts Biopolymers, Inc. | Echogenic coating containing gaseous spaces for ultrasonography |
US6106473A (en) | 1996-11-06 | 2000-08-22 | Sts Biopolymers, Inc. | Echogenic coatings |
US5976178A (en) | 1996-11-07 | 1999-11-02 | Vascular Science Inc. | Medical grafting methods |
US5735849A (en) | 1996-11-07 | 1998-04-07 | Everest Medical Corporation | Endoscopic forceps with thumb-slide lock release mechanism |
US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
JP2002505592A (en) | 1996-11-15 | 2002-02-19 | アドバンスト バイオ サーフェイシズ,インコーポレイティド | Biomaterial systems used to repair tissue in situ |
US6165184A (en) | 1996-11-18 | 2000-12-26 | Smith & Nephew, Inc. | Systems methods and instruments for minimally invasive surgery |
DE69735501T2 (en) | 1996-11-18 | 2006-12-14 | The University Of Massachusetts, Boston | SYSTEMS AND INSTRUMENTS FOR MINIMALLY INVASIVE SURGERY |
US6102926A (en) | 1996-12-02 | 2000-08-15 | Angiotrax, Inc. | Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use |
US5779624A (en) | 1996-12-05 | 1998-07-14 | Boston Scientific Corporation | Sigmoid splint device for endoscopy |
US5792113A (en) | 1996-12-12 | 1998-08-11 | Ethicon Endo-Surgerym Inc. | Universal seal for a trocar |
US5951549A (en) | 1996-12-20 | 1999-09-14 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6030634A (en) | 1996-12-20 | 2000-02-29 | The Chinese University Of Hong Kong | Polymer gel composition and uses therefor |
US5782861A (en) | 1996-12-23 | 1998-07-21 | Sub Q Inc. | Percutaneous hemostasis device |
US6708066B2 (en) | 1999-12-10 | 2004-03-16 | Ewa Herbst | Electrochemical treatment of tissues, especially tumors |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5938661A (en) | 1997-02-05 | 1999-08-17 | Symbosis Corporation | Single arm electrocautery probes for use with a resectoscope |
US5893874A (en) | 1997-02-07 | 1999-04-13 | Smith & Nephew, Inc. | Surgical instrument |
US6173872B1 (en) | 1997-02-10 | 2001-01-16 | The Accessory Corp. | Crease-free combination hanger |
US5779727A (en) | 1997-02-18 | 1998-07-14 | Orejola; Wilmo C. | Hydraulically operated surgical scissors |
US5911737A (en) | 1997-02-28 | 1999-06-15 | The Regents Of The University Of California | Microfabricated therapeutic actuators |
US5957943A (en) | 1997-03-05 | 1999-09-28 | Ethicon Endo-Surgery, Inc. | Method and devices for increasing ultrasonic effects |
US6152944A (en) | 1997-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Catheter with removable balloon protector and stent delivery system with removable stent protector |
US5800449A (en) | 1997-03-11 | 1998-09-01 | Ethicon Endo-Surgery, Inc. | Knife shield for surgical instruments |
US5876411A (en) | 1997-03-11 | 1999-03-02 | X-Site L.L.C. | Device and method for locating and sealing a blood vessel |
US5830231A (en) | 1997-03-19 | 1998-11-03 | Geiges, Jr.; John J. | Handle and actuating mechanism for surgical instruments |
US5782866A (en) | 1997-03-25 | 1998-07-21 | Ethicon, Inc. | System for anchoring tissue to bone |
US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
US5936536A (en) | 1997-04-08 | 1999-08-10 | Medicor Corporation | Electrical insulation testing device and method for electrosurgical instruments |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5897487A (en) | 1997-04-15 | 1999-04-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Front end hood for endoscope |
US5873849A (en) | 1997-04-24 | 1999-02-23 | Ichor Medical Systems, Inc. | Electrodes and electrode arrays for generating electroporation inducing electrical fields |
US5908429A (en) | 1997-05-01 | 1999-06-01 | Yoon; Inbae | Methods of anatomical tissue ligation |
US5957936A (en) | 1997-05-01 | 1999-09-28 | Inbae Yoon | Instrument assemblies for performing anatomical tissue ligation |
US5921993A (en) | 1997-05-01 | 1999-07-13 | Yoon; Inbae | Methods of endoscopic tubal ligation |
US5993463A (en) | 1997-05-15 | 1999-11-30 | Regents Of The University Of Minnesota | Remote actuation of trajectory guide |
US5817061A (en) | 1997-05-16 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Trocar assembly |
US6050992A (en) | 1997-05-19 | 2000-04-18 | Radiotherapeutics Corporation | Apparatus and method for treating tissue with multiple electrodes |
US5810849A (en) | 1997-06-09 | 1998-09-22 | Cardiologics, L.L.C. | Device and method for suturing blood vessels and the like |
US6066090A (en) * | 1997-06-19 | 2000-05-23 | Yoon; Inbae | Branched endoscope system |
US6183420B1 (en) | 1997-06-20 | 2001-02-06 | Medtronic Ave, Inc. | Variable stiffness angioplasty guide wire |
WO1999000060A1 (en) | 1997-06-26 | 1999-01-07 | Advanced Coronary Intervention | Electrosurgical catheter for resolving obstructions by radio frequency ablation |
US5921892A (en) | 1997-06-30 | 1999-07-13 | Essi-Ferno | Underwater treadmill device |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6322578B1 (en) | 1997-07-14 | 2001-11-27 | Heartport, Inc. | Endoscopic microsurgical instruments |
ES2371067T3 (en) | 1997-07-25 | 2011-12-27 | Covidien Ag | ABLATION ELECTRODE SYSTEM IN RACE. |
US5954731A (en) | 1997-07-29 | 1999-09-21 | Yoon; Inbae | Surgical instrument with multiple rotatably mounted spreadable end effectors |
US6293952B1 (en) | 1997-07-31 | 2001-09-25 | Circon Corporation | Medical instrument system for piercing through tissue |
US6059719A (en) | 1997-08-06 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope system |
US5904702A (en) | 1997-08-14 | 1999-05-18 | University Of Massachusetts | Instrument for thoracic surgical procedures |
US5803903A (en) | 1997-08-15 | 1998-09-08 | Mist, Inc. | Surgical retractor and method of use with balloon dissection |
US6102909A (en) | 1997-08-26 | 2000-08-15 | Ethicon, Inc. | Scissorlike electrosurgical cutting instrument |
US6024744A (en) | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US5922008A (en) | 1997-08-28 | 1999-07-13 | Gimpelson; Richard J. | Surgical forceps |
WO1999011177A2 (en) | 1997-09-05 | 1999-03-11 | Deslauriers Richard J | Self-retaining anchor track and method of making and using same |
US6149662A (en) | 1997-09-08 | 2000-11-21 | Miltex Technology Corporation | Medical scissor sharpener |
US6267761B1 (en) | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US5964782A (en) | 1997-09-18 | 1999-10-12 | Scimed Life Systems, Inc. | Closure device and method |
US5916147A (en) | 1997-09-22 | 1999-06-29 | Boury; Harb N. | Selectively manipulable catheter |
US5868762A (en) | 1997-09-25 | 1999-02-09 | Sub-Q, Inc. | Percutaneous hemostatic suturing device and method |
WO1999017661A1 (en) | 1997-10-02 | 1999-04-15 | Board Of Regents, The University Of Texas System | Subcutaneous endoscopic dissector |
US5908420A (en) | 1997-10-03 | 1999-06-01 | Everest Medical Corporation | Surgical scissors with bipolar distal electrodes |
DE69829833T2 (en) | 1997-10-08 | 2006-01-26 | Ethicon, Inc. | Bipolar electrosurgical scissors for fine dissection. |
US6171316B1 (en) | 1997-10-10 | 2001-01-09 | Origin Medsystems, Inc. | Endoscopic surgical instrument for rotational manipulation |
DE19745157A1 (en) | 1997-10-14 | 1999-06-10 | Storz Karl Gmbh & Co | Instrument or forceps for medical and especially endoscopic applications |
JP3342021B2 (en) | 1997-10-17 | 2002-11-05 | サーコン コーポレーション | Medical device system that penetrates tissue |
US20020055717A1 (en) | 1997-10-20 | 2002-05-09 | Philippe Poncet | Fluid-based agent delivery device with self-expanding delivery element |
US6240312B1 (en) | 1997-10-23 | 2001-05-29 | Robert R. Alfano | Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment |
JP4121615B2 (en) | 1997-10-31 | 2008-07-23 | オリンパス株式会社 | Endoscope |
US6086600A (en) | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
IL122111A (en) | 1997-11-04 | 2004-06-01 | Sightline Techn Ltd | Video rectoscope |
DE19752331C1 (en) | 1997-11-26 | 1999-09-30 | Aesculap Ag & Co Kg | Magazine for a surgical clip applier |
US6019770A (en) | 1997-12-04 | 2000-02-01 | Christoudias; George C. | Versatile endoscopic retrieval bag |
US5976075A (en) | 1997-12-15 | 1999-11-02 | University Of Massachusetts | Endoscope deployment apparatus |
WO1999030622A2 (en) | 1997-12-17 | 1999-06-24 | Surgical Insight, Inc. | Low profile endoscopic surgical instruments |
US5989182A (en) | 1997-12-19 | 1999-11-23 | Vista Medical Technologies, Inc. | Device-steering shaft assembly and endoscope |
DE19757056B4 (en) | 1997-12-20 | 2008-08-28 | Aesculap Ag & Co. Kg | Surgical instrument |
US6632171B2 (en) | 1997-12-22 | 2003-10-14 | Given Imaging Ltd. | Method for in vivo delivery of autonomous capsule |
IL122716A0 (en) | 1997-12-22 | 1998-08-16 | Tally Eitan Zeev Pearl And Co | System and method for in vivo delivery of autonomous capsule |
US6626919B1 (en) | 1997-12-29 | 2003-09-30 | Lee L. Swanstrom | Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall |
US6068648A (en) | 1998-01-26 | 2000-05-30 | Orthodyne, Inc. | Tissue anchoring system and method |
US6165175A (en) | 1999-02-02 | 2000-12-26 | Ethicon Endo-Surgery, Inc. | RF bipolar mesentery takedown device including improved bipolar end effector |
US6440127B2 (en) | 1998-02-11 | 2002-08-27 | Cosman Company, Inc. | Method for performing intraurethral radio-frequency urethral enlargement |
US6517534B1 (en) | 1998-02-11 | 2003-02-11 | Cosman Company, Inc. | Peri-urethral ablation |
US6352543B1 (en) | 2000-04-29 | 2002-03-05 | Ventrica, Inc. | Methods for forming anastomoses using magnetic force |
JP4157183B2 (en) | 1998-02-17 | 2008-09-24 | オリンパス株式会社 | Endoscopic treatment tool |
US6949106B2 (en) | 1998-02-24 | 2005-09-27 | Endovia Medical, Inc. | Surgical instrument |
US7090683B2 (en) | 1998-02-24 | 2006-08-15 | Hansen Medical, Inc. | Flexible instrument |
US6454727B1 (en) | 1998-03-03 | 2002-09-24 | Senorx, Inc. | Tissue acquisition system and method of use |
US6141037A (en) | 1998-03-18 | 2000-10-31 | Linvatec Corporation | Video camera system and related method |
US7674259B2 (en) | 2000-12-09 | 2010-03-09 | Tsunami Medtech | Medical instruments and techniques for thermally-mediated therapies |
US6139562A (en) | 1998-03-30 | 2000-10-31 | Agilent Technologies, Inc. | Apparatus and method for incising |
US5971995A (en) | 1998-03-30 | 1999-10-26 | Ethicon, Inc. | Surgical pouch instrument |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
JPH11285502A (en) | 1998-04-03 | 1999-10-19 | Asahi Optical Co Ltd | High frequency treatment tool for endoscope |
US6296630B1 (en) | 1998-04-08 | 2001-10-02 | Biocardia, Inc. | Device and method to slow or stop the heart temporarily |
US6383195B1 (en) | 1998-04-13 | 2002-05-07 | Endoline, Inc. | Laparoscopic specimen removal apparatus |
US6546277B1 (en) | 1998-04-21 | 2003-04-08 | Neutar L.L.C. | Instrument guidance system for spinal and other surgery |
US6030384A (en) | 1998-05-01 | 2000-02-29 | Nezhat; Camran | Bipolar surgical instruments having focused electrical fields |
US5997555A (en) | 1998-05-01 | 1999-12-07 | X-Site, L.L.C. | Device and method for suturing blood vessels |
US6315753B1 (en) | 1998-05-01 | 2001-11-13 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US5980539A (en) | 1998-05-06 | 1999-11-09 | X-Site L.L.C. | Device and method for suturing blood vessels and the like |
JP2000037388A (en) | 1998-05-20 | 2000-02-08 | Osamu Yoshida | Organ housing bag and organ housing bag inserter |
US6740082B2 (en) | 1998-12-29 | 2004-05-25 | John H. Shadduck | Surgical instruments for treating gastro-esophageal reflux |
US6027522A (en) | 1998-06-02 | 2000-02-22 | Boston Scientific Corporation | Surgical instrument with a rotatable distal end |
US5972002A (en) | 1998-06-02 | 1999-10-26 | Cabot Technology Corporation | Apparatus and method for surgical ligation |
US5919207A (en) | 1998-06-02 | 1999-07-06 | Taheri; Syde A. | Percutaneous arterial closure with staples |
US6030365A (en) | 1998-06-10 | 2000-02-29 | Laufer; Michael D. | Minimally invasive sterile surgical access device and method |
JP3331172B2 (en) | 1998-06-12 | 2002-10-07 | 旭光学工業株式会社 | Endoscope foreign matter collection tool |
US6679882B1 (en) | 1998-06-22 | 2004-01-20 | Lina Medical Aps | Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue |
US5970581A (en) | 1998-06-22 | 1999-10-26 | Bic Corporation | Controllable fluid gripping devices |
US6096046A (en) | 1998-06-24 | 2000-08-01 | Weiss; Sol | Surgical instrument |
US6706039B2 (en) | 1998-07-07 | 2004-03-16 | Medtronic, Inc. | Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue |
US6537248B2 (en) | 1998-07-07 | 2003-03-25 | Medtronic, Inc. | Helical needle apparatus for creating a virtual electrode used for the ablation of tissue |
US6148222A (en) | 1998-07-10 | 2000-11-14 | Cardiocommand, Inc. | Esophageal catheters and method of use |
US6352503B1 (en) | 1998-07-17 | 2002-03-05 | Olympus Optical Co., Ltd. | Endoscopic surgery apparatus |
US6889089B2 (en) | 1998-07-28 | 2005-05-03 | Scimed Life Systems, Inc. | Apparatus and method for treating tumors near the surface of an organ |
US6212433B1 (en) | 1998-07-28 | 2001-04-03 | Radiotherapeutics Corporation | Method for treating tumors near the surface of an organ |
TW455482B (en) | 1998-07-30 | 2001-09-21 | David Lubowski | Sigmoidoscope |
IT1301986B1 (en) | 1998-07-31 | 2000-07-20 | Valerio Cigaina | LAPAROSCOPIC FORCEPS FOR SUTURE. |
US5916145A (en) | 1998-08-07 | 1999-06-29 | Scimed Life Systems, Inc. | Device and method of using a surgical assembly with mesh sheath |
US7335220B2 (en) | 2004-11-05 | 2008-02-26 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US6527748B1 (en) | 1998-08-17 | 2003-03-04 | Yutaka Suzuki | Method of gastrostomy, and an infection preventive cover, kit or catheter kit, and a gastrostomy catheter kit |
JP4225624B2 (en) | 1998-08-27 | 2009-02-18 | オリンパス株式会社 | High frequency treatment device |
US6786913B1 (en) | 1999-02-01 | 2004-09-07 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US6131790A (en) | 1998-09-02 | 2000-10-17 | Piraka; Hadi A. | Surgical stapler and cartridge |
US6454783B1 (en) | 1998-09-15 | 2002-09-24 | Gregory Piskun | Laparoscopic instruments and trocar systems for trans-umbilical laproscopic surgery |
US6731875B1 (en) | 1998-09-22 | 2004-05-04 | Lucent Technologies Inc. | Wavelength bus architecture for ultra-high speed dense wavelength division multiplexed systems |
JP4136118B2 (en) | 1998-09-30 | 2008-08-20 | オリンパス株式会社 | Electrosurgical equipment |
US6402689B1 (en) | 1998-09-30 | 2002-06-11 | Sicel Technologies, Inc. | Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors |
US6074408A (en) | 1998-10-13 | 2000-06-13 | Freeman; Kenneth V. | Modular medical instrument and method of using same |
US6053927A (en) | 1998-10-15 | 2000-04-25 | Rsh-Gs Trust | Apparatus and method for implant removal |
US6090107A (en) | 1998-10-20 | 2000-07-18 | Megadyne Medical Products, Inc. | Resposable electrosurgical instrument |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US6086530A (en) | 1998-10-30 | 2000-07-11 | Mack; Michael | Adjustable sleeve for endoscopes |
US6123718A (en) | 1998-11-02 | 2000-09-26 | Polymerex Medical Corp. | Balloon catheter |
EP1131011B1 (en) | 1998-11-16 | 2005-04-13 | United States Surgical Corporation | Apparatus for thermal treatment of tissue |
US6066160A (en) | 1998-11-23 | 2000-05-23 | Quickie Llc | Passive knotless suture terminator for use in minimally invasive surgery and to facilitate standard tissue securing |
US6234958B1 (en) | 1998-11-30 | 2001-05-22 | Medical Access Systems, Llc | Medical device introduction system including medical introducer having a plurality of access ports and methods of performing medical procedures with same |
JP4181306B2 (en) | 1998-12-01 | 2008-11-12 | アトロポス・リミテッド | Wound retractor device |
DE19855812C2 (en) | 1998-12-03 | 2001-05-03 | Aesculap Ag & Co Kg | Surgical bipolar scissors |
DE69920178T2 (en) | 1998-12-09 | 2005-09-22 | Cook Inc., Bloomington | SUPER-ELASTIC CURVED CAVITY NEEDLE FOR MEDICAL USE |
US6346092B1 (en) | 1998-12-14 | 2002-02-12 | Datascope Investment Corp. | Intra-aortic balloon catheter and insertion sheath |
US6110183A (en) | 1998-12-22 | 2000-08-29 | Cook Incorporated | Suture anchor device |
US6306159B1 (en) | 1998-12-23 | 2001-10-23 | Depuy Orthopaedics, Inc. | Meniscal repair device |
EP1171368B1 (en) | 1998-12-30 | 2008-02-27 | Ethicon, Inc. | Sterile packaging for flexible endoscopes |
US6780352B2 (en) | 1999-01-11 | 2004-08-24 | 2Phase Technologies, Inc. | Use of state-change materials in reformable shapes, templates or tooling |
US7172714B2 (en) | 1999-01-11 | 2007-02-06 | 2Phase Technologies, Inc. | Use of state-change materials in reformable shapes, templates or tooling |
US20030111209A1 (en) | 1999-01-20 | 2003-06-19 | Hino Motors, Ltd. | EGR cooler |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6896683B1 (en) | 1999-01-25 | 2005-05-24 | Applied Material Resources Corporation | Surgical instrument with improved handle assembly |
US6113593A (en) | 1999-02-01 | 2000-09-05 | Tu; Lily Chen | Ablation apparatus having temperature and force sensing capabilities |
GB9902647D0 (en) | 1999-02-05 | 1999-03-31 | Minop Ltd | Actuating and locking mechanism for a surgical tool |
DE50008326D1 (en) | 1999-02-12 | 2004-11-25 | Storz Karl Gmbh & Co | DEVICE FOR INSERTING AN INTUBATION TUBE INTO THE TRACHEA |
DE19906191A1 (en) | 1999-02-15 | 2000-08-17 | Ingo F Herrmann | Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening |
US6427089B1 (en) | 1999-02-19 | 2002-07-30 | Edward W. Knowlton | Stomach treatment apparatus and method |
US6248124B1 (en) | 1999-02-22 | 2001-06-19 | Tyco Healthcare Group | Arterial hole closure apparatus |
JP4801839B2 (en) | 1999-02-25 | 2011-10-26 | メドトロニック ミニメド インコーポレイテッド | Test plug and cable for glucose monitor |
US6350269B1 (en) | 1999-03-01 | 2002-02-26 | Apollo Camera, L.L.C. | Ligation clip and clip applier |
JP2000245683A (en) | 1999-03-02 | 2000-09-12 | Toshiba Corp | Endoscope system cart |
US6149535A (en) | 1999-03-12 | 2000-11-21 | Acushnet Company | Golf ball with spun elastic threads |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US6293923B1 (en) | 1999-03-15 | 2001-09-25 | Innoventions, Inc. | Intravesicular balloon |
US6328730B1 (en) | 1999-03-26 | 2001-12-11 | William W. Harkrider, Jr. | Endoluminal multi-luminal surgical sheath and method |
US6228096B1 (en) | 1999-03-31 | 2001-05-08 | Sam R. Marchand | Instrument and method for manipulating an operating member coupled to suture material while maintaining tension on the suture material |
WO2000059376A1 (en) | 1999-04-07 | 2000-10-12 | Endonetics, Inc. | Implantable monitoring probe |
US6491626B1 (en) | 1999-04-16 | 2002-12-10 | Nuvasive | Articulation systems for positioning minimally invasive surgical tools |
US6210409B1 (en) | 1999-05-03 | 2001-04-03 | Alan G. Ellman | Electrosurgical handpiece for treating tissue |
WO2000066017A1 (en) | 1999-05-04 | 2000-11-09 | Curon Medical, Inc. | Electrodes for creating lesions in tissue regions at or near a sphincter |
US6331158B1 (en) | 1999-05-04 | 2001-12-18 | Cardiothoracic Systems, Inc. | Surgical retractor apparatus for operating on the heart through an incision |
US6167297A (en) | 1999-05-05 | 2000-12-26 | Benaron; David A. | Detecting, localizing, and targeting internal sites in vivo using optical contrast agents |
AU761693B2 (en) | 1999-05-07 | 2003-06-05 | Emmet Joseph Howard Peter Andrews | A surgical forceps |
US6673088B1 (en) | 1999-05-18 | 2004-01-06 | Cardica, Inc. | Tissue punch |
US6692462B2 (en) | 1999-05-19 | 2004-02-17 | Mackenzie Andrew J. | System and method for establishing vascular access |
US6488689B1 (en) | 1999-05-20 | 2002-12-03 | Aaron V. Kaplan | Methods and apparatus for transpericardial left atrial appendage closure |
US7349223B2 (en) | 2000-05-23 | 2008-03-25 | Nanonexus, Inc. | Enhanced compliant probe card systems having improved planarity |
US6214007B1 (en) | 1999-06-01 | 2001-04-10 | David G. Anderson | Surgical fastener for fixation of a soft tissue graft to a bone tunnel |
US6699256B1 (en) | 1999-06-04 | 2004-03-02 | St. Jude Medical Atg, Inc. | Medical grafting apparatus and methods |
US6890329B2 (en) | 1999-06-15 | 2005-05-10 | Cryocath Technologies Inc. | Defined deflection structure |
US7813789B2 (en) | 1999-06-15 | 2010-10-12 | Given Imaging Ltd. | In-vivo imaging device, optical system and method |
CA2377430A1 (en) | 1999-06-15 | 2000-12-21 | Cryocath Technologies Inc. | Deflection structure |
SE519023C2 (en) | 1999-06-21 | 2002-12-23 | Micromuscle Ab | Catheter-borne microsurgical tool kit |
US6821285B2 (en) | 1999-06-22 | 2004-11-23 | Ndo Surgical, Inc. | Tissue reconfiguration |
US6835200B2 (en) | 1999-06-22 | 2004-12-28 | Ndo Surgical. Inc. | Method and devices for tissue reconfiguration |
FR2795301B1 (en) | 1999-06-25 | 2001-08-31 | Prec | ENDOSCOPIC SURGERY INSTRUMENT |
US7637905B2 (en) | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US7416554B2 (en) | 2002-12-11 | 2008-08-26 | Usgi Medical Inc | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7955340B2 (en) | 1999-06-25 | 2011-06-07 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US6364867B2 (en) | 1999-07-01 | 2002-04-02 | Catheter Innovations, Inc. | Anti-clotting methods and apparatus for indwelling catheter tubes |
NL1012527C2 (en) | 1999-07-06 | 2001-01-09 | Cordis Europ | Balloon catheter with tear line. |
US6117158A (en) | 1999-07-07 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Ratchet release mechanism for hand held instruments |
US6387671B1 (en) | 1999-07-21 | 2002-05-14 | The Regents Of The University Of California | Electrical impedance tomography to control electroporation |
US6692445B2 (en) | 1999-07-27 | 2004-02-17 | Scimed Life Systems, Inc. | Biopsy sampler |
US6767352B2 (en) | 1999-08-03 | 2004-07-27 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
US6326177B1 (en) | 1999-08-04 | 2001-12-04 | Eastern Virginia Medical School Of The Medical College Of Hampton Roads | Method and apparatus for intracellular electro-manipulation |
US6419639B2 (en) | 1999-08-05 | 2002-07-16 | National Institute Of Health | Laparoscopic SAC holder assembly |
US6235026B1 (en) | 1999-08-06 | 2001-05-22 | Scimed Life Systems, Inc. | Polypectomy snare instrument |
US6246914B1 (en) | 1999-08-12 | 2001-06-12 | Irvine Biomedical, Inc. | High torque catheter and methods thereof |
US6325534B1 (en) | 1999-08-12 | 2001-12-04 | Tarwa L. Hawley | Medication reminder |
US6491627B1 (en) | 1999-08-18 | 2002-12-10 | Fuji Photo Optical Co., Ltd. | Manipulation mechanism for an angle section of an endoscope |
JP3901421B2 (en) | 1999-08-19 | 2007-04-04 | 有限会社 パックス オプティカ ジャパン | Organ anastomosis device |
US6685724B1 (en) | 1999-08-24 | 2004-02-03 | The Penn State Research Foundation | Laparoscopic surgical instrument and method |
ATE363235T1 (en) | 1999-09-09 | 2007-06-15 | Tuebingen Scient Medical Gmbh | SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE PROCEDURES |
US6368328B1 (en) | 1999-09-16 | 2002-04-09 | Scimed Life Systems, Inc. | Laser-resistant medical retrieval device |
GB2354170A (en) | 1999-09-16 | 2001-03-21 | Minop Ltd | A tool and an effector, e.g. surgical forceps, scissors or spreader |
US6231561B1 (en) | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6258064B1 (en) | 1999-10-04 | 2001-07-10 | Syntheon, Llc | Helically advanceable endoscopic needle device |
US6491691B1 (en) | 1999-10-08 | 2002-12-10 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
EP1242131A4 (en) | 1999-10-12 | 2006-05-03 | Univ Ohio State | Reactive polymeric valve, dispensing devices and methods using same |
US6287304B1 (en) | 1999-10-15 | 2001-09-11 | Neothermia Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
US6409727B1 (en) | 1999-10-15 | 2002-06-25 | Scimed Life Systems, Inc. | Multifilar flexible rotary shaft and medical instruments incorporating the same |
US6749560B1 (en) | 1999-10-26 | 2004-06-15 | Circon Corporation | Endoscope shaft with slotted tube |
US6780151B2 (en) | 1999-10-26 | 2004-08-24 | Acmi Corporation | Flexible ureteropyeloscope |
US20030093104A1 (en) | 1999-10-29 | 2003-05-15 | Bonner Matthew D. | Methods and apparatus for providing intra-pericardial access |
US6402735B1 (en) | 1999-11-19 | 2002-06-11 | University Of Florida | Medical tube collar |
US6551304B1 (en) | 1999-12-01 | 2003-04-22 | Abbeymoor Medical, Inc. | Magnetic retrieval device and method of use |
WO2001041627A2 (en) | 1999-12-02 | 2001-06-14 | Scott Resnick | Speculum |
DK200001852A (en) | 1999-12-14 | 2001-06-15 | Asahi Optical Co Ltd | Manipulation section for an endoscopic treatment instrument |
US6428487B1 (en) | 1999-12-17 | 2002-08-06 | Ethicon Endo-Surgery, Inc. | Surgical biopsy system with remote control for selecting an operational mode |
US7842068B2 (en) | 2000-12-07 | 2010-11-30 | Integrated Vascular Systems, Inc. | Apparatus and methods for providing tactile feedback while delivering a closure device |
AU781899B2 (en) | 2000-01-10 | 2005-06-23 | Medivas, Llc | Flexible stabilizer arm for forcibly holding an object against a surface |
US6517477B1 (en) | 2000-01-27 | 2003-02-11 | Scimed Life Systems, Inc. | Catheter introducer system for exploration of body cavities |
US6989028B2 (en) | 2000-01-31 | 2006-01-24 | Edwards Lifesciences Ag | Medical system and method for remodeling an extravascular tissue structure |
US6458076B1 (en) | 2000-02-01 | 2002-10-01 | 5 Star Medical | Multi-lumen medical device |
JP3679674B2 (en) | 2000-02-03 | 2005-08-03 | オリンパス株式会社 | Endoscope |
WO2001058360A2 (en) | 2000-02-08 | 2001-08-16 | Medsource Technologies, Llc | Endoscopic tool restraint |
US6493590B1 (en) | 2000-02-09 | 2002-12-10 | Micronet Medical, Inc. | Flexible band electrodes for medical leads |
US6610074B2 (en) | 2000-02-10 | 2003-08-26 | Albert N. Santilli | Aorta cross clamp assembly |
DE10007919C2 (en) | 2000-02-21 | 2003-07-17 | Wolf Gmbh Richard | Forceps for free preparation of tissue in a body cavity |
US20050119613A1 (en) | 2000-02-23 | 2005-06-02 | Moenning Stephen P. | Fluid delivery trocar-cannula complex, fluid delivery accessory, and method for delivering fluids during minimally invasive surgery |
MXPA00001922A (en) | 2000-02-24 | 2002-03-08 | De Hayos Garza Andres | Percutaneous intra-gastric balloon catheter for obesity treatment. |
US6527753B2 (en) | 2000-02-29 | 2003-03-04 | Olympus Optical Co., Ltd. | Endoscopic treatment system |
US7993368B2 (en) | 2003-03-13 | 2011-08-09 | C.R. Bard, Inc. | Suture clips, delivery devices and methods |
DK200100367A (en) | 2000-03-07 | 2001-09-08 | Asahi Optical Co Ltd | Endoscopic treatment instrument |
KR100800040B1 (en) | 2000-03-08 | 2008-01-31 | 기븐 이미징 리미티드 | A capsule for in vivo imaging |
US6264664B1 (en) | 2000-03-10 | 2001-07-24 | General Science And Technology Corp. | Surgical basket devices |
JP4222706B2 (en) | 2000-03-22 | 2009-02-12 | オリンパス株式会社 | Medical instrument holding device |
AU2001249308A1 (en) | 2000-03-24 | 2001-10-15 | Johns Hopkins University | Peritoneal cavity device and method |
DE10015421C2 (en) | 2000-03-28 | 2002-07-04 | Implex Ag Hearing Technology I | Partially or fully implantable hearing system |
CA2536163A1 (en) | 2000-04-03 | 2005-03-03 | Neoguide Systems, Inc. | Activated polymer articulated instruments and methods of insertion |
US6800056B2 (en) | 2000-04-03 | 2004-10-05 | Neoguide Systems, Inc. | Endoscope with guiding apparatus |
US6974411B2 (en) | 2000-04-03 | 2005-12-13 | Neoguide Systems, Inc. | Endoscope with single step guiding apparatus |
US6837846B2 (en) | 2000-04-03 | 2005-01-04 | Neo Guide Systems, Inc. | Endoscope having a guide tube |
JP2001292107A (en) | 2000-04-06 | 2001-10-19 | Sony Corp | Reception device, transmission device and communication system |
US7660621B2 (en) | 2000-04-07 | 2010-02-09 | Medtronic, Inc. | Medical device introducer |
GB0008939D0 (en) | 2000-04-11 | 2000-05-31 | Glaxo Group Ltd | Process for preparing substituted benzimidazole compounds |
US6485411B1 (en) | 2000-04-12 | 2002-11-26 | Circon Corporation | Endoscope shaft with superelastic alloy spiral frame and braid |
JP4716594B2 (en) | 2000-04-17 | 2011-07-06 | オリンパス株式会社 | Endoscope |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
US8518062B2 (en) | 2000-04-29 | 2013-08-27 | Medtronic, Inc. | Devices and methods for forming magnetic anastomoses between vessels |
US6569091B2 (en) | 2000-05-04 | 2003-05-27 | Ananias Diokno | Disconnectable vaginal speculum with removeable blades |
DE10023534A1 (en) | 2000-05-13 | 2001-11-22 | Aesculap Ag & Co Kg | Scissors-shaped or forceps-shaped surgical instrument |
US6709387B1 (en) | 2000-05-15 | 2004-03-23 | Given Imaging Ltd. | System and method for controlling in vivo camera capture and display rate |
JP2003533257A (en) | 2000-05-15 | 2003-11-11 | シー・アール・バード・インク | Endoscope accessory mounting mechanism |
US6485503B2 (en) | 2000-05-19 | 2002-11-26 | Coapt Systems, Inc. | Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device |
AU6057801A (en) | 2000-05-23 | 2001-12-03 | Given Imaging Ltd. | Device and method for positioning an object in a body lumen |
US6743239B1 (en) | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
DE10026847A1 (en) | 2000-05-31 | 2002-01-10 | Engelbert Gmeilbauer | Tool for tensioning or releasing / opening spring clamping elements |
US6602262B2 (en) | 2000-06-02 | 2003-08-05 | Scimed Life Systems, Inc. | Medical device having linear to rotation control |
US20020023353A1 (en) | 2000-06-06 | 2002-02-28 | Wu. Ting-Kung | Surgical scissors |
WO2001093766A1 (en) | 2000-06-07 | 2001-12-13 | Stereotaxis, Inc. | Guide for medical devices |
JP3484398B2 (en) | 2000-06-07 | 2004-01-06 | 株式会社第一クリエイト | Plastic jaws |
US6394979B1 (en) | 2000-06-09 | 2002-05-28 | Inviro Medical Devices Ltd. | Cannula for use with a medical syringe |
CA2427534A1 (en) | 2000-06-09 | 2001-12-20 | Fiberliner Networks | Method and apparatus for lining a conduit |
US6840246B2 (en) | 2000-06-20 | 2005-01-11 | University Of Maryland, Baltimore | Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart |
US6477426B1 (en) | 2000-06-20 | 2002-11-05 | Celsion Corporation | System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors |
US7727242B2 (en) | 2000-06-29 | 2010-06-01 | Concentric Medical, Inc. | Systems, methods and devices for removing obstructions from a blood vessel |
US20020022822A1 (en) | 2000-07-14 | 2002-02-21 | Cragg Andrew H. | Sheath-mounted arterial plug delivery device |
US6340344B1 (en) | 2000-07-18 | 2002-01-22 | Evergreen Medical Incorporated | Endoscope with a removable suction tube |
AU2002224519A1 (en) | 2000-07-21 | 2002-02-05 | Atropos Limited | A surgical instrument |
US6652551B1 (en) | 2000-07-21 | 2003-11-25 | Frederick W. Heiss | Biliary sphincter scissors |
US7419487B2 (en) | 2000-07-25 | 2008-09-02 | Angiodynamics, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
JP2004516044A (en) | 2000-08-08 | 2004-06-03 | エスディージーアイ・ホールディングス・インコーポレーテッド | Method and apparatus for improving stereotactic body transplantation |
SE0002878D0 (en) | 2000-08-11 | 2000-08-11 | Kimblad Ola | Device and method of treatment of atrioventricular regurgitation |
US6572629B2 (en) | 2000-08-17 | 2003-06-03 | Johns Hopkins University | Gastric reduction endoscopy |
US6795728B2 (en) | 2001-08-17 | 2004-09-21 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation |
GB0020263D0 (en) | 2000-08-18 | 2000-10-04 | Femcare Cyprus Ltd | Improvements in or relating to applicators |
US6551270B1 (en) | 2000-08-30 | 2003-04-22 | Snowden Pencer, Inc. | Dual lumen access port |
US6767356B2 (en) | 2000-09-01 | 2004-07-27 | Angiolink Corporation | Advanced wound site management systems and methods |
US7387628B1 (en) | 2000-09-15 | 2008-06-17 | Boston Scientific Scimed, Inc. | Methods and systems for focused bipolar tissue ablation |
US20020042562A1 (en) | 2000-09-27 | 2002-04-11 | Gavriel Meron | Immobilizable in vivo sensing device |
US6638275B1 (en) | 2000-10-05 | 2003-10-28 | Medironic, Inc. | Bipolar ablation apparatus and method |
JP2002112946A (en) | 2000-10-11 | 2002-04-16 | Olympus Optical Co Ltd | Hood for endoscope |
US6554823B2 (en) | 2000-10-11 | 2003-04-29 | Medcania, Inc. | System for performing port off-pump beating heart coronary artery bypass surgery |
US6500176B1 (en) | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6645225B1 (en) | 2000-11-01 | 2003-11-11 | Alvan W. Atkinson | Method and apparatus for plugging a patent foramen ovale formed in the heart |
US6679889B1 (en) | 2000-11-13 | 2004-01-20 | Hs West Investments, Llc | Apparatus and methods for independently conditioning and pretensioning a plurality of ligament grafts during joint repair surgery |
WO2002058578A1 (en) | 2000-11-13 | 2002-08-01 | Wit Ip Corporation | Treatment catheters with thermally insulated regions |
US6638286B1 (en) | 2000-11-16 | 2003-10-28 | Vascular Control Systems, Inc. | Doppler directed suture ligation device and method |
US6431500B1 (en) | 2000-11-28 | 2002-08-13 | Gregory J. Jacobs | Flexible tube or cord anchoring apparatus |
US6419641B1 (en) | 2000-11-28 | 2002-07-16 | Promex, Llc | Flexible tip medical instrument |
US7232445B2 (en) | 2000-12-06 | 2007-06-19 | Id, Llc | Apparatus for the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US20020068945A1 (en) | 2000-12-06 | 2002-06-06 | Robert Sixto | Surgical clips particularly useful in the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US6569085B2 (en) | 2001-08-16 | 2003-05-27 | Syntheon, Llc | Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen |
US7727246B2 (en) | 2000-12-06 | 2010-06-01 | Ethicon Endo-Surgery, Inc. | Methods for endoluminal treatment |
US20020138086A1 (en) | 2000-12-06 | 2002-09-26 | Robert Sixto | Surgical clips particularly useful in the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US6695867B2 (en) | 2002-02-21 | 2004-02-24 | Integrated Vascular Systems, Inc. | Plunger apparatus and methods for delivering a closure device |
US6896692B2 (en) | 2000-12-14 | 2005-05-24 | Ensure Medical, Inc. | Plug with collet and apparatus and method for delivering such plugs |
US6846319B2 (en) | 2000-12-14 | 2005-01-25 | Core Medical, Inc. | Devices for sealing openings through tissue and apparatus and methods for delivering them |
US6623509B2 (en) | 2000-12-14 | 2003-09-23 | Core Medical, Inc. | Apparatus and methods for sealing vascular punctures |
US6890343B2 (en) | 2000-12-14 | 2005-05-10 | Ensure Medical, Inc. | Plug with detachable guidewire element and methods for use |
US6592603B2 (en) | 2000-12-15 | 2003-07-15 | Michael Lasner | Manually adjustable scissors or forceps |
US6406440B1 (en) | 2000-12-21 | 2002-06-18 | Ethicon Endo-Surgery, Inc. | Specimen retrieval bag |
US6350267B1 (en) | 2000-12-21 | 2002-02-26 | Ethicon Endo-Surgery, Inc. | Method of use of an improved specimen retrieval bag |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US6890295B2 (en) | 2002-10-31 | 2005-05-10 | Medtronic, Inc. | Anatomical space access tools and methods |
US6837848B2 (en) | 2003-01-15 | 2005-01-04 | Medtronic, Inc. | Methods and apparatus for accessing and stabilizing an area of the heart |
US20060025781A1 (en) | 2001-01-17 | 2006-02-02 | Young Wayne P | Laparoscopic instruments and methods utilizing suction |
US7131980B1 (en) | 2001-01-18 | 2006-11-07 | Dvl Acquisitions Sub, Inc. | Surgical suturing instrument and method of use |
US6443970B1 (en) | 2001-01-24 | 2002-09-03 | Ethicon, Inc. | Surgical instrument with a dissecting tip |
US6652521B2 (en) | 2001-01-24 | 2003-11-25 | Ethicon, Inc. | Surgical instrument with a bi-directional cutting element |
US6464702B2 (en) | 2001-01-24 | 2002-10-15 | Ethicon, Inc. | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
US6554829B2 (en) | 2001-01-24 | 2003-04-29 | Ethicon, Inc. | Electrosurgical instrument with minimally invasive jaws |
US7105005B2 (en) | 2001-01-29 | 2006-09-12 | Scanlan International, Inc. | Arteriotomy scissors for minimally invasive surgical procedures |
JP4624572B2 (en) | 2001-01-30 | 2011-02-02 | オリンパス株式会社 | Endoscope |
US8313496B2 (en) | 2001-02-02 | 2012-11-20 | Lsi Solutions, Inc. | System for endoscopic suturing |
US6997931B2 (en) | 2001-02-02 | 2006-02-14 | Lsi Solutions, Inc. | System for endoscopic suturing |
JP4097924B2 (en) | 2001-02-05 | 2008-06-11 | オリンパス株式会社 | Biological tissue clip device |
JP3939158B2 (en) | 2001-02-06 | 2007-07-04 | オリンパス株式会社 | Endoscope device |
JP2002224124A (en) | 2001-02-06 | 2002-08-13 | Olympus Optical Co Ltd | Ligating device |
US6743226B2 (en) | 2001-02-09 | 2004-06-01 | Cosman Company, Inc. | Adjustable trans-urethral radio-frequency ablation |
US20030135204A1 (en) | 2001-02-15 | 2003-07-17 | Endo Via Medical, Inc. | Robotically controlled medical instrument with a flexible section |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
US7842050B2 (en) | 2001-02-26 | 2010-11-30 | Diduch David R | Suture passing devices |
JP2002253648A (en) | 2001-02-28 | 2002-09-10 | Olympus Optical Co Ltd | Recycling device for spent endoscope |
US7422586B2 (en) | 2001-02-28 | 2008-09-09 | Angiodynamics, Inc. | Tissue surface treatment apparatus and method |
US20020133115A1 (en) | 2001-03-13 | 2002-09-19 | Pharmaspec Corporation | Apparatus and methods for capture of medical agents |
US6551356B2 (en) | 2001-03-19 | 2003-04-22 | Ethicon, Inc. | Pocketed hernia repair |
AUPR406501A0 (en) | 2001-03-28 | 2001-04-26 | Kaladelfos, George | Treatment of vault prolapse |
US6530880B2 (en) | 2001-03-29 | 2003-03-11 | Endius Incorporated | Apparatus for supporting an endoscope |
US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
US20030181900A1 (en) | 2002-03-25 | 2003-09-25 | Long Gary L. | Endoscopic ablation system with a plurality of electrodes |
US20020183739A1 (en) | 2001-03-30 | 2002-12-05 | Long Gary L. | Endoscopic ablation system with sealed sheath |
JP2004528890A (en) | 2001-04-04 | 2004-09-24 | ギブン・イメージング・リミテッド | Inductive power in vivo imaging device |
CN1284019C (en) | 2001-04-05 | 2006-11-08 | 斯卡拉株式会社 | Camera and unit for camera |
US6709188B2 (en) | 2001-04-05 | 2004-03-23 | Alps Electric Co., Ltd. | Fitting structure for knobs |
US7083618B2 (en) | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US7090673B2 (en) | 2001-04-06 | 2006-08-15 | Sherwood Services Ag | Vessel sealer and divider |
US6980854B2 (en) | 2001-04-06 | 2005-12-27 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery of lidocaine and/or other drugs |
US7118587B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealer and divider |
US7101373B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
WO2002082979A2 (en) | 2001-04-18 | 2002-10-24 | Bbms Ltd. | Navigating and maneuvering of an in vivo vechicle by extracorporeal devices |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US6562035B1 (en) | 2001-04-19 | 2003-05-13 | Levin John M | Insulated surgical scissors including cauterizing tip |
US20060069429A1 (en) | 2001-04-24 | 2006-03-30 | Spence Paul A | Tissue fastening systems and methods utilizing magnetic guidance |
US20080065169A1 (en) | 2001-05-01 | 2008-03-13 | Intrapace, Inc. | Endoscopic Instrument for Engaging a Device |
US6535764B2 (en) | 2001-05-01 | 2003-03-18 | Intrapace, Inc. | Gastric treatment and diagnosis device and method |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
US6685715B2 (en) | 2001-05-02 | 2004-02-03 | Novare Surgical Systems | Clamp having bendable shaft |
US6575988B2 (en) | 2001-05-15 | 2003-06-10 | Ethicon, Inc. | Deployment apparatus for supple surgical materials |
US6814739B2 (en) | 2001-05-18 | 2004-11-09 | U.S. Endoscopy Group, Inc. | Retrieval device |
US6808491B2 (en) | 2001-05-21 | 2004-10-26 | Syntheon, Llc | Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments |
US7083629B2 (en) | 2001-05-30 | 2006-08-01 | Satiety, Inc. | Overtube apparatus for insertion into a body |
US7560006B2 (en) | 2001-06-11 | 2009-07-14 | Boston Scientific Scimed, Inc. | Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses |
JP2002369791A (en) | 2001-06-14 | 2002-12-24 | Pentax Corp | Endoscopic system and insertion assist instrument for endoscope |
DE60238677D1 (en) | 2001-06-15 | 2011-02-03 | Uv Solutions Llc | Method for determining the permeability of a dressing |
US6939292B2 (en) | 2001-06-20 | 2005-09-06 | Olympus Corporation | Capsule type endoscope |
US7090685B2 (en) | 2001-06-25 | 2006-08-15 | Ethicon Endo-Surgery, Inc. | Surgical tool having a distal ratchet mechanism |
US7727248B2 (en) | 2001-06-25 | 2010-06-01 | Ethicon Endo-Surgery, Inc. | Surgical clip |
US6383197B1 (en) | 2001-06-29 | 2002-05-07 | Ethicon Endo-Surgery, Inc. | Self disengaging anti-backup mechanism for specimen retrieval bag deployment |
US6409733B1 (en) | 2001-06-29 | 2002-06-25 | Ethicon Endo-Surgery, Inc. | Specimen retrieval bag |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US6951536B2 (en) | 2001-07-30 | 2005-10-04 | Olympus Corporation | Capsule-type medical device and medical system |
JP4744026B2 (en) | 2001-07-30 | 2011-08-10 | オリンパス株式会社 | Capsule endoscope and capsule endoscope system |
AT411144B (en) | 2001-08-03 | 2003-10-27 | Ami Gmbh | MEDICAL INSTRUMENT FOR INTRODUCING SURGICAL IMPLANTS |
EP1281356A3 (en) | 2001-08-03 | 2003-08-13 | Terumo Kabushiki Kaisha | Blood vessel connecting instrument |
DE10138356A1 (en) | 2001-08-04 | 2003-02-27 | Aesculap Ag & Co Kg | Scissors, in particular for surgical purposes |
US7208005B2 (en) | 2001-08-06 | 2007-04-24 | The Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US20040249394A1 (en) | 2001-08-06 | 2004-12-09 | Arthrex, Inc. | Compact suture punch with malleable needle |
US6986738B2 (en) | 2001-08-06 | 2006-01-17 | Given Imaging Ltd | System and method for maneuvering a device in vivo |
US7112208B2 (en) | 2001-08-06 | 2006-09-26 | Morris John K | Compact suture punch with malleable needle |
US7130697B2 (en) | 2002-08-13 | 2006-10-31 | Minnesota Medical Physics Llc | Apparatus and method for the treatment of benign prostatic hyperplasia |
US6994706B2 (en) | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
US20040249443A1 (en) | 2001-08-20 | 2004-12-09 | Shanley John F. | Expandable medical device for treating cardiac arrhythmias |
US6719764B1 (en) | 2001-08-24 | 2004-04-13 | Scimed Life Systems, Inc. | Forward deploying suturing device and methods of use |
DE10142253C1 (en) | 2001-08-29 | 2003-04-24 | Siemens Ag | endorobot |
US6945472B2 (en) | 2001-09-04 | 2005-09-20 | Boehringer Ingelheim International Gmbh | Locking-stressing mechanism for a miniaturised high pressuriser |
US7122605B2 (en) | 2001-11-29 | 2006-10-17 | Basf Corporation | Method for selective graft polymerization |
US6761718B2 (en) | 2001-09-06 | 2004-07-13 | Children's Medical Center Corp. | Direction-oriented and spatially controlled bipolar coagulator for in-situ cauterization of adherent cranial tissue occluding a ventricular catheter previously implanted in-vivo |
US20030050603A1 (en) | 2001-09-12 | 2003-03-13 | Todd Erik F. | Cannula that provides bi-directional fluid flow that is regulated by a single valve |
US6662035B2 (en) | 2001-09-13 | 2003-12-09 | Neuropace, Inc. | Implantable lead connector assembly for implantable devices and methods of using it |
US6489745B1 (en) | 2001-09-13 | 2002-12-03 | The Boeing Company | Contactless power supply |
DE60227288D1 (en) | 2001-09-17 | 2008-08-07 | Hydrocision Inc | SURGICAL ROTATING ABRASION DEVICE |
US6773434B2 (en) | 2001-09-18 | 2004-08-10 | Ethicon, Inc. | Combination bipolar forceps and scissors instrument |
JP2003088494A (en) | 2001-09-19 | 2003-03-25 | Pentax Corp | Flexibility varying device for flexible tube part of endoscope |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
DE10147145C2 (en) | 2001-09-25 | 2003-12-18 | Kunz Reiner | Multi-function instrument for micro-invasive surgery |
JP5073895B2 (en) | 2001-09-25 | 2012-11-14 | オリンパス株式会社 | Endoscopic treatment tool |
JP2003116772A (en) | 2001-10-18 | 2003-04-22 | Olympus Optical Co Ltd | Endoscope instrument and hood member for endoscope |
US6652518B2 (en) | 2001-09-28 | 2003-11-25 | Ethicon, Inc. | Transmural ablation tool and method |
WO2003028542A2 (en) | 2001-10-02 | 2003-04-10 | Arthrocare Corporation | Apparatus and methods for electrosurgical removal and digestion of tissue |
US6776787B2 (en) | 2001-10-05 | 2004-08-17 | Trinh D. Phung | Surgical punch device |
US6866669B2 (en) | 2001-10-12 | 2005-03-15 | Cordis Corporation | Locking handle deployment mechanism for medical device and method |
US20030078471A1 (en) | 2001-10-18 | 2003-04-24 | Foley Frederick J. | Manipulation of an organ |
US7052454B2 (en) | 2001-10-20 | 2006-05-30 | Applied Medical Resources Corporation | Sealed surgical access device |
US20030124009A1 (en) | 2001-10-23 | 2003-07-03 | Ravi Vilupanur A. | Hydrophilic polymer actuators |
US6592594B2 (en) | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method |
AU2002365091A1 (en) | 2001-11-01 | 2003-06-30 | Regents Of The University Of Minnesota | Hydrogel compositions, devices, and microscale components |
CA2363473C (en) | 2001-11-20 | 2010-10-19 | Marc G. Morin | Anoscope |
GB2369797B (en) | 2001-11-20 | 2002-11-06 | Tayside Flow Technologies Ltd | Helical formations in tubes |
US6830578B2 (en) | 2001-11-26 | 2004-12-14 | Neosurg Technologies, Inc. | Trocar |
US6706018B2 (en) | 2001-12-04 | 2004-03-16 | Cardiac Pacemakers, Inc. | Adjustable length catheter assembly |
US20030170898A1 (en) | 2001-12-04 | 2003-09-11 | Gundersen Martin A. | Method for intracellular modifications within living cells using pulsed electric fields |
US7542807B2 (en) | 2001-12-04 | 2009-06-02 | Endoscopic Technologies, Inc. | Conduction block verification probe and method of use |
US20040193186A1 (en) | 2003-03-25 | 2004-09-30 | Kortenbach Juergen A. | Flexible housing element for a surgical tool |
US7367939B2 (en) | 2004-06-14 | 2008-05-06 | Ethicon Endo-Surgery, Inc. | Rotational, translational and torqueing control members for an endoscopic instrument |
US20030114731A1 (en) | 2001-12-14 | 2003-06-19 | Cadeddu Jeffrey A. | Magnetic positioning system for trocarless laparoscopic instruments |
US7029450B2 (en) | 2001-12-14 | 2006-04-18 | Boston Scientific Scimed, Inc. | Dilation catheter assembly and related methods |
US20030114732A1 (en) | 2001-12-18 | 2003-06-19 | Advanced Cardiovascular Systems, Inc. | Sheath for guiding imaging instruments |
US6908476B2 (en) | 2001-12-21 | 2005-06-21 | Alcon Grieshaber Ag | Micro surgical cutting instrument configured as scissors |
US6814743B2 (en) | 2001-12-26 | 2004-11-09 | Origin Medsystems, Inc. | Temporary seal and method for facilitating anastomosis |
IL147324A0 (en) | 2001-12-26 | 2002-08-14 | Sergey Popov | Minimally invasive device |
US6980858B2 (en) | 2001-12-31 | 2005-12-27 | Biosense Webster, Inc. | Method and system for atrial defibrillation |
US6740030B2 (en) | 2002-01-04 | 2004-05-25 | Vision Sciences, Inc. | Endoscope assemblies having working channels with reduced bending and stretching resistance |
US6695791B2 (en) | 2002-01-04 | 2004-02-24 | Spiration, Inc. | System and method for capturing body tissue samples |
US7150750B2 (en) | 2002-01-10 | 2006-12-19 | Boston Scientific Scimed, Inc. | Method and device for endoscopic suturing |
JP2003204920A (en) | 2002-01-11 | 2003-07-22 | Olympus Optical Co Ltd | Insertion assisting tool |
US6878110B2 (en) | 2002-01-14 | 2005-04-12 | Seung Choul Yang | Surgical instruments and method for creating anatomic working space in minilaparotomy procedure |
US20030139646A1 (en) | 2002-01-23 | 2003-07-24 | Sharrow James S. | Devices and methods for manipulation of organ tissue |
US6752822B2 (en) | 2002-01-23 | 2004-06-22 | Chris A. Jespersen | Body tissue retrievel bag arrangement |
US6749609B1 (en) | 2002-02-05 | 2004-06-15 | Origin Medsystems, Inc. | Electrocautery scissors |
JP3826045B2 (en) | 2002-02-07 | 2006-09-27 | オリンパス株式会社 | Endoscope hood |
IL154392A (en) | 2002-02-11 | 2010-06-30 | Given Imaging Ltd | Self propelled device having a magnetohydrodynamic propulsion |
AU2003215263A1 (en) | 2002-02-13 | 2003-09-04 | Arthrocare Corporation | Electrosurgical apparatus and methods for treating joint tissue |
JP3893065B2 (en) | 2002-02-15 | 2007-03-14 | 有限会社 パックス オプティカ ジャパン | Organ anastomosis device |
US7494499B2 (en) | 2002-02-15 | 2009-02-24 | Olympus Corporation | Surgical therapeutic instrument |
US6736822B2 (en) | 2002-02-20 | 2004-05-18 | Mcclellan Scott B. | Device and method for internal ligation of tubular structures |
US20030158521A1 (en) | 2002-02-21 | 2003-08-21 | Ameri Darius M. | Trocar placement guide needle |
US20050215858A1 (en) | 2002-03-07 | 2005-09-29 | Vail William B Iii | Tubular personal pelvic viewers |
US6921408B2 (en) | 2002-03-12 | 2005-07-26 | Lsi Solutions, Inc. | Apparatus for sewing tissue and method of use |
US8723936B2 (en) | 2002-03-12 | 2014-05-13 | Karl Storz Imaging, Inc. | Wireless camera coupling with rotatable coupling |
GB0206208D0 (en) | 2002-03-15 | 2002-05-01 | Gyrus Medical Ltd | A surgical instrument |
US7261728B2 (en) | 2002-03-15 | 2007-08-28 | Ethicon Endo-Surgery, Inc. | Biopsy forceps device and method |
US7060024B2 (en) | 2002-03-15 | 2006-06-13 | Ethicon Endo-Surgery, Inc. | Apparatus for guiding an instrument used with an endoscope |
US7060025B2 (en) | 2002-03-15 | 2006-06-13 | Ethicon Endo-Surgery, Inc. | Method for controlling position of medical instruments |
US20030225312A1 (en) | 2002-03-18 | 2003-12-04 | Anthony Kalloo | Endoscopic system for treating inside of body cavity |
US6988987B2 (en) | 2002-03-18 | 2006-01-24 | Olympus Corporation | Guide tube |
AU2003224714A1 (en) | 2002-03-21 | 2003-10-08 | The Regents Of The University Of California | Conducting polymer activators based on microporous asymmetric membranes |
US7137981B2 (en) | 2002-03-25 | 2006-11-21 | Ethicon Endo-Surgery, Inc. | Endoscopic ablation system with a distally mounted image sensor |
JP3869291B2 (en) | 2002-03-25 | 2007-01-17 | オリンパス株式会社 | Capsule medical device |
US7588585B2 (en) | 2002-03-26 | 2009-09-15 | Novare Surgical Systems, Inc. | Handleless clamping device |
EP1487348B1 (en) | 2002-03-27 | 2010-01-06 | Tyco Healthcare Group Lp | Minimally invasive removal device with breakaway sheath |
US6926725B2 (en) | 2002-04-04 | 2005-08-09 | Rex Medical, L.P. | Thrombectomy device with multi-layered rotational wire |
US6699263B2 (en) | 2002-04-05 | 2004-03-02 | Cook Incorporated | Sliding suture anchor |
US6858014B2 (en) | 2002-04-05 | 2005-02-22 | Scimed Life Systems, Inc. | Multiple biopsy device |
US7146984B2 (en) | 2002-04-08 | 2006-12-12 | Synecor, Llc | Method and apparatus for modifying the exit orifice of a satiation pouch |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
JP4131011B2 (en) | 2002-04-09 | 2008-08-13 | Hoya株式会社 | Endoscopic sputum treatment device |
JP3930757B2 (en) | 2002-04-10 | 2007-06-13 | 有限会社 パックス オプティカ ジャパン | Organ anastomosis device |
US6866628B2 (en) | 2002-04-11 | 2005-03-15 | Medtronic, Inc. | Apparatus for temporarily engaging body tissue |
US7146222B2 (en) | 2002-04-15 | 2006-12-05 | Neurospace, Inc. | Reinforced sensing and stimulation leads and use in detection systems |
AU2003221976A1 (en) | 2002-04-16 | 2003-11-03 | Tyco Healthcare Group Lp | Method and apparatus for anastomosis including an expandable anchor |
US6887255B2 (en) | 2002-04-19 | 2005-05-03 | Peter Shimm | Laparoscopic specimen extraction port |
US7485093B2 (en) | 2002-04-25 | 2009-02-03 | Given Imaging Ltd. | Device and method for in-vivo sensing |
US6939327B2 (en) | 2002-05-07 | 2005-09-06 | Cardiac Pacemakers, Inc. | Peel-away sheath |
US8105342B2 (en) | 2002-05-08 | 2012-01-31 | Apollo Endosurgery, Inc. | Apparatus for ligating/suturing living tissues and system for resecting/suturing living tissues |
US7632250B2 (en) | 2002-05-10 | 2009-12-15 | Tyco Healthcare Group Lp | Introducer seal assembly |
US6830545B2 (en) | 2002-05-13 | 2004-12-14 | Everest Vit | Tube gripper integral with controller for endoscope of borescope |
US6685628B2 (en) | 2002-05-15 | 2004-02-03 | Dinh Q. Vu | Endoscopic balloon for spill-proof laparoscopic ovarian cystectomy |
JP3831683B2 (en) | 2002-05-16 | 2006-10-11 | ペンタックス株式会社 | Bending prevention of flexible tube insertion part of endoscope with outer sheath |
WO2003096885A2 (en) | 2002-05-17 | 2003-11-27 | Onux Medical, Inc. | Surgical suturing instrument and method of use |
CA2484870A1 (en) | 2002-05-17 | 2003-11-27 | Dvl Acquisition Sub, Inc. | Surgical suturing instrument and method of use |
US6852078B2 (en) | 2002-05-22 | 2005-02-08 | Pentax Corporation | Outer sheathed endoscope |
US7250027B2 (en) | 2002-05-30 | 2007-07-31 | Karl Storz Endovision, Inc. | Articulating vertebrae with asymmetrical and variable radius of curvature |
US6543456B1 (en) | 2002-05-31 | 2003-04-08 | Ethicon Endo-Surgery, Inc. | Method for minimally invasive surgery in the digestive system |
JP2004000336A (en) | 2002-05-31 | 2004-01-08 | Olympus Corp | Ultrasonic treatment apparatus |
US7056330B2 (en) | 2002-05-31 | 2006-06-06 | Ethicon Endo-Surgery, Inc. | Method for applying tissue fastener |
AU2003240512B2 (en) | 2002-06-04 | 2009-11-05 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for rapid aspiration and collection of body tissue from within an enclosed body space |
US20030229269A1 (en) | 2002-06-05 | 2003-12-11 | Humphrey Robert N. | Scope sleeve |
US20030229273A1 (en) | 2002-06-06 | 2003-12-11 | Mulac Anthony J. | Universal scissors joint apparatus |
JP4461022B2 (en) | 2002-06-06 | 2010-05-12 | コヴィディエン アクチェンゲゼルシャフト | Laparoscopic surgical bipolar electrosurgical instrument |
US20030229371A1 (en) | 2002-06-10 | 2003-12-11 | Whitworth Warren A. | Offset surgical scissors |
US7041052B2 (en) | 2002-06-13 | 2006-05-09 | Usgi Medical Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US20060058582A1 (en) | 2002-06-13 | 2006-03-16 | Usgi Medical Inc. | Disposable shapelocking system |
US20050137454A1 (en) | 2002-06-13 | 2005-06-23 | Usgi Medical Corp. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
ES2378149T3 (en) | 2002-06-18 | 2012-04-09 | Tyco Healthcare Group Lp | Tissue removal device |
EP1519688B1 (en) | 2002-06-20 | 2010-06-16 | Tyco Healthcare Group Lp | Apparatus for anastomosis including an anchoring sleeve |
US6679836B2 (en) | 2002-06-21 | 2004-01-20 | Scimed Life Systems, Inc. | Universal programmable guide catheter |
US6932834B2 (en) | 2002-06-27 | 2005-08-23 | Ethicon, Inc. | Suture anchor |
US7288075B2 (en) | 2002-06-27 | 2007-10-30 | Ethicon, Inc. | Methods and devices utilizing rheological materials |
US6881213B2 (en) | 2002-06-28 | 2005-04-19 | Ethicon, Inc. | Device and method to expand treatment array |
US20050228406A1 (en) | 2002-07-03 | 2005-10-13 | Bose Ganendra C | Formation of knots |
JP2004033525A (en) | 2002-07-04 | 2004-02-05 | Fuji Photo Optical Co Ltd | Hardness variable treatment instrument |
JP4373146B2 (en) | 2002-07-11 | 2009-11-25 | オリンパス株式会社 | Endoscopic suturing device |
DE03764480T1 (en) | 2002-07-12 | 2005-10-20 | Cook Urological Inc | FLEXIBLE CANNULA STAY |
US7591781B2 (en) | 2002-07-15 | 2009-09-22 | Olympus Corporation | Endoscope system with insertion direction changing guides |
US6976992B2 (en) | 2002-07-16 | 2005-12-20 | Suturecut, Llc | Dual-function medical instrument |
US7001329B2 (en) | 2002-07-23 | 2006-02-21 | Pentax Corporation | Capsule endoscope guidance system, capsule endoscope holder, and capsule endoscope |
US7294139B1 (en) | 2002-07-26 | 2007-11-13 | C.M. Wright, Inc. | Controlled - motion endoscopic grasping instrument |
US20040210245A1 (en) | 2002-07-26 | 2004-10-21 | John Erickson | Bendable needle with removable stylet |
WO2004032621A2 (en) | 2002-08-01 | 2004-04-22 | The Johns Hopkins University | Techniques for identifying molecular structures and treating cell types lining a body lumen using fluorescence |
JP4142369B2 (en) | 2002-08-07 | 2008-09-03 | オリンパス株式会社 | Endoscopic treatment system |
JP4172966B2 (en) | 2002-08-08 | 2008-10-29 | Hoya株式会社 | Endoscope hardness variable sheath adapter |
NL1021295C2 (en) | 2002-08-19 | 2004-02-20 | Monti Ind B V | Container, especially for foodstuffs, can be torn along line of weakness using tab to separate it into different parts |
US20040045133A1 (en) | 2002-09-06 | 2004-03-11 | Buettell Bruce J. | Double clamp card attachment |
US7188627B2 (en) | 2002-09-06 | 2007-03-13 | Apneon, Inc. | Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngeal conduit |
EP1542577B1 (en) | 2002-09-06 | 2016-05-25 | C.R. Bard, Inc. | Endoscopic accessory mounting adaptor |
US8298161B2 (en) | 2002-09-12 | 2012-10-30 | Intuitive Surgical Operations, Inc. | Shape-transferring cannula system and method of use |
US7947000B2 (en) | 2003-09-12 | 2011-05-24 | Intuitive Surgical Operations, Inc. | Cannula system for free-space navigation and method of use |
US6776165B2 (en) | 2002-09-12 | 2004-08-17 | The Regents Of The University Of California | Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles |
US9808597B2 (en) | 2002-09-12 | 2017-11-07 | Intuitive Surgical Operations, Inc. | Shape-transferring cannula system and method of use |
JP4147315B2 (en) | 2002-09-13 | 2008-09-10 | Hoya株式会社 | Magnetic anchor remote guidance system |
US7115092B2 (en) | 2002-09-18 | 2006-10-03 | The Board Of Trustees Of The Leland Stanford Junior University | Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices |
US6966919B2 (en) | 2002-09-20 | 2005-11-22 | Id, Llc | Instrument for applying a surgical fastener particularly for the transoral treatment of gastroesophageal reflux disease (GERD) |
US20050080435A1 (en) | 2002-09-20 | 2005-04-14 | Kevin Smith | Tissue retractor and method for using the retractor |
US7118531B2 (en) | 2002-09-24 | 2006-10-10 | The Johns Hopkins University | Ingestible medical payload carrying capsule with wireless communication |
ATE353235T1 (en) | 2002-09-27 | 2007-02-15 | Nucletron Bv | DEVICE FOR RADIATION TREATMENT OF PROLIFERATIVE TISSUE BOUNDARY TO A BODY CAVITY |
AU2003269438A1 (en) | 2002-09-30 | 2004-04-19 | Given Imaging Ltd. | In-vivo sensing system |
CA2500832C (en) | 2002-10-04 | 2011-03-22 | Tyco Healthcare Group, Lp | Tool assembly for a surgical stapling device |
JP3791916B2 (en) | 2002-10-11 | 2006-06-28 | オリンパス株式会社 | End hood member for endoscope |
US6958035B2 (en) | 2002-10-15 | 2005-10-25 | Dusa Pharmaceuticals, Inc | Medical device sheath apparatus and method of making and using same |
US20040092970A1 (en) | 2002-10-18 | 2004-05-13 | Xavier Alfredo F. | Prosthetic mesh anchor device |
US7211089B2 (en) | 2002-10-18 | 2007-05-01 | Scimed Life Systems, Inc. | Medical retrieval device |
US6960209B2 (en) | 2002-10-23 | 2005-11-01 | Medtronic, Inc. | Electrosurgical methods and apparatus for making precise incisions in body vessels |
EP1553908A1 (en) | 2002-10-23 | 2005-07-20 | Tcam Technologies, Inc. | Smart decubitus mat |
US6861250B1 (en) | 2002-10-25 | 2005-03-01 | Pmt Corporation | Tissue dissecting board assembly |
US6936003B2 (en) | 2002-10-29 | 2005-08-30 | Given Imaging Ltd | In-vivo extendable element device and system, and method of use |
US7083620B2 (en) | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US6656194B1 (en) | 2002-11-05 | 2003-12-02 | Satiety, Inc. | Magnetic anchoring devices |
US6923754B2 (en) | 2002-11-06 | 2005-08-02 | Senorx, Inc. | Vacuum device and method for treating tissue adjacent a body cavity |
US7455675B2 (en) | 2002-11-06 | 2008-11-25 | Angiodynamics, Inc. | Device and method for withdrawing a tubular body part |
JP4187508B2 (en) | 2002-11-12 | 2008-11-26 | フジノン株式会社 | Electronic endoscope device |
US7335213B1 (en) | 2002-11-15 | 2008-02-26 | Abbott Cardiovascular Systems Inc. | Apparatus and methods for heart valve repair |
US7211092B2 (en) | 2002-11-19 | 2007-05-01 | Pilling Weck Incorporated | Automated-feed surgical clip applier and related methods |
US6939347B2 (en) | 2002-11-19 | 2005-09-06 | Conmed Corporation | Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply |
DE10255082A1 (en) | 2002-11-20 | 2004-06-17 | Aesculap Ag & Co. Kg | endoscope |
JP2004173850A (en) | 2002-11-26 | 2004-06-24 | Olympus Corp | Transporter for steam sterilization |
US6960183B2 (en) | 2002-12-02 | 2005-11-01 | Nicolette Jon R | Veterinary pill and capsule delivery device |
JP4098613B2 (en) | 2002-12-11 | 2008-06-11 | 朝日インテック株式会社 | Hollow stranded wire coil body, medical instrument using the same, and manufacturing method thereof |
US7037290B2 (en) | 2002-12-16 | 2006-05-02 | Medtronic, Inc. | Multi-lumen steerable catheter |
US20040115164A1 (en) | 2002-12-17 | 2004-06-17 | Pierce Ryan K. | Soft filament occlusive device delivery system |
US6969381B2 (en) | 2002-12-18 | 2005-11-29 | Medical Components, Inc. | Multi-lumen catheter with detachable locking hub |
TW589170B (en) | 2002-12-25 | 2004-06-01 | De-Yang Tian | Endoscopic device |
US6908427B2 (en) | 2002-12-30 | 2005-06-21 | PARÉ Surgical, Inc. | Flexible endoscope capsule |
US6869398B2 (en) | 2003-01-06 | 2005-03-22 | Theodore G. Obenchain | Four-blade surgical speculum |
US20040186350A1 (en) | 2003-01-13 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for guiding an endoscope via a rigidizable wire guide |
US20040136779A1 (en) | 2003-01-13 | 2004-07-15 | Vishal Bhaskar | Connector |
US20040138587A1 (en) | 2003-01-15 | 2004-07-15 | Lyons William Lawrence | Specimen collection instrument with inflatable bag |
US20040249367A1 (en) | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
JP2004219329A (en) | 2003-01-16 | 2004-08-05 | Ntt Docomo Inc | Method, system and instrument for measuring position, and in-vivo wireless device |
US20040225186A1 (en) | 2003-01-29 | 2004-11-11 | Horne Guy E. | Composite flexible endoscope insertion shaft with tubular substructure |
JP4197965B2 (en) | 2003-01-31 | 2008-12-17 | オリンパス株式会社 | High frequency snare and medical equipment |
EP1603474B1 (en) | 2003-02-14 | 2013-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Electrosurgical system with uniformly enhanced electric field and minimal collateral damage |
JP4414662B2 (en) | 2003-03-03 | 2010-02-10 | オリンパス株式会社 | Closely wound coil and medical treatment tool using the closely wound coil |
US20040176699A1 (en) | 2003-03-03 | 2004-09-09 | Volcano Therapeutics, Inc. | Thermography catheter with improved wall contact |
ES2628742T3 (en) | 2003-03-17 | 2017-08-03 | Covidien Lp | Endoscopic tissue removal device |
US9486241B2 (en) | 2003-03-21 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Trocar seal assembly |
US20040193188A1 (en) | 2003-03-25 | 2004-09-30 | Inscope Development, Llc | Laminated surgical clip |
US20060041188A1 (en) | 2003-03-25 | 2006-02-23 | Dirusso Carlo A | Flexible endoscope |
US7105000B2 (en) | 2003-03-25 | 2006-09-12 | Ethicon Endo-Surgery, Inc. | Surgical jaw assembly with increased mechanical advantage |
US20040193189A1 (en) | 2003-03-25 | 2004-09-30 | Kortenbach Juergen A. | Passive surgical clip |
US7001369B2 (en) | 2003-03-27 | 2006-02-21 | Scimed Life Systems, Inc. | Medical device |
US7972330B2 (en) | 2003-03-27 | 2011-07-05 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US8021362B2 (en) | 2003-03-27 | 2011-09-20 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US7922739B2 (en) | 2003-03-28 | 2011-04-12 | Downey Earl C | Surgical instrument with trigger control |
DE10324844A1 (en) | 2003-04-01 | 2004-12-23 | Tuebingen Scientific Surgical Products Gmbh | Surgical instrument with instrument handle and zero point adjustment |
US20040199052A1 (en) | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Endoscopic imaging system |
US7591783B2 (en) | 2003-04-01 | 2009-09-22 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US7008375B2 (en) | 2003-04-03 | 2006-03-07 | Surgical Solutions Llc | Articulating shaft |
US20040199192A1 (en) | 2003-04-04 | 2004-10-07 | Takayuki Akahoshi | Phacoemulsification needle |
GB0307826D0 (en) | 2003-04-04 | 2003-05-07 | Univ London | A device for transfixing and joining tissue |
US7731697B2 (en) | 2003-04-12 | 2010-06-08 | Incumed Llc, A Nevada Limited Liability Co. | Apparatus and method for percutaneous catheter implantation and replacement |
US20040206859A1 (en) | 2003-04-17 | 2004-10-21 | Chong Ian M. | Apparatuses, systems, and methods for positioning a powered tool |
US8075478B2 (en) | 2003-04-22 | 2011-12-13 | Campos Jorge A | System, apparatus, and method for viewing a visually obscured portion of a cavity |
JP2004350938A (en) | 2003-05-29 | 2004-12-16 | Olympus Corp | Forceps for endoscope |
US20050143690A1 (en) | 2003-05-01 | 2005-06-30 | High Kenneth A. | Cystotomy catheter capture device and methods of using same |
JP4610563B2 (en) | 2003-05-08 | 2011-01-12 | タイコ ヘルスケア グループ リミテッド パートナーシップ | Balloon dissection instrument with balloon tip cannula |
JP4391762B2 (en) | 2003-05-08 | 2009-12-24 | オリンパス株式会社 | Surgical instrument |
US7815565B2 (en) | 2003-05-16 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Endcap for use with an endoscope |
US7615003B2 (en) | 2005-05-13 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Track for medical devices |
CA2525275C (en) | 2003-05-16 | 2012-02-07 | C.R. Bard, Inc. | Single intubation, multi-stitch endoscopic suturing system |
US7615005B2 (en) | 2003-05-16 | 2009-11-10 | Ethicon Endo-Surgery, Inc. | Medical apparatus for use with an endoscope |
US6978921B2 (en) | 2003-05-20 | 2005-12-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an E-beam firing mechanism |
US7410483B2 (en) | 2003-05-23 | 2008-08-12 | Novare Surgical Systems, Inc. | Hand-actuated device for remote manipulation of a grasping tool |
US7413563B2 (en) | 2003-05-27 | 2008-08-19 | Cardia, Inc. | Flexible medical device |
JP3854946B2 (en) | 2003-05-30 | 2006-12-06 | オリンパス株式会社 | Endoscope |
DE10325225B4 (en) | 2003-06-04 | 2006-11-16 | Leica Microsystems Semiconductor Gmbh | system Cabinets |
US6967462B1 (en) | 2003-06-05 | 2005-11-22 | Nasa Glenn Research Center | Charging of devices by microwave power beaming |
JP4145200B2 (en) | 2003-06-06 | 2008-09-03 | オリンパス株式会社 | Suture device |
EP1643906A2 (en) | 2003-06-12 | 2006-04-12 | University of Utah Research Foundation | Apparatus, systems and methods for diagnosing carpal tunnel syndrome |
US7150097B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Method of manufacturing jaw assembly for vessel sealer and divider |
US7561916B2 (en) | 2005-06-24 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Implantable medical device with indicator |
US7553298B2 (en) | 2003-12-19 | 2009-06-30 | Ethicon Endo-Surgery, Inc. | Implantable medical device with cover and method |
US20040260315A1 (en) | 2003-06-17 | 2004-12-23 | Dell Jeffrey R. | Expandable tissue support member and method of forming the support member |
US20040260337A1 (en) | 2003-06-18 | 2004-12-23 | Scimed Life Systems, Inc. | Endoscopic instruments and methods of manufacture |
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US6918871B2 (en) | 2003-06-19 | 2005-07-19 | Ethicon Endo-Surgery, Inc. | Method for accessing cavity |
DE10328512A1 (en) | 2003-06-20 | 2005-01-13 | Aesculap Ag & Co. Kg | Surgical instrument |
US7883458B2 (en) | 2003-06-27 | 2011-02-08 | Stryker Corporation | System for remotely controlling two or more medical devices |
JP4266738B2 (en) | 2003-07-02 | 2009-05-20 | オリンパス株式会社 | Ligation device |
GB0315479D0 (en) | 2003-07-02 | 2003-08-06 | Paz Adrian | Virtual ports devices |
US7479104B2 (en) | 2003-07-08 | 2009-01-20 | Maquet Cardiovascular, Llc | Organ manipulator apparatus |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US7066879B2 (en) | 2003-07-15 | 2006-06-27 | The Trustees Of Columbia University In The City Of New York | Insertable device and system for minimal access procedure |
US20100081875A1 (en) | 2003-07-15 | 2010-04-01 | EndoRobotics Inc. | Surgical Device For Minimal Access Surgery |
US8684967B2 (en) | 2003-07-15 | 2014-04-01 | Medtronic, Inc. | Kink resistant cannula having buckle resistant apertures |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7291127B2 (en) | 2003-07-28 | 2007-11-06 | Boston Scientific Scimed, Inc. | Variable manipulative strength catheter |
JP4547184B2 (en) | 2003-07-29 | 2010-09-22 | オリンパス株式会社 | Endoscope adapter and endoscope |
WO2005009227A1 (en) | 2003-07-29 | 2005-02-03 | Pentax Corporation | Internal treatment apparatus for a patient and an internal treatment system for a patient |
US7623904B2 (en) | 2003-08-06 | 2009-11-24 | Olympus Corporation | Medical apparatus, medical apparatus guide system, capsule type medical apparatus, and capsule type medical apparatus guide apparatus |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7001341B2 (en) | 2003-08-13 | 2006-02-21 | Scimed Life Systems, Inc. | Marking biopsy sites |
GB0319504D0 (en) | 2003-08-20 | 2003-09-17 | Promedics Ltd | Suturing device |
US7115785B2 (en) | 2003-08-25 | 2006-10-03 | General Electric Company | Method for making salts hydroxy-substituted hydrocarbons |
US7763012B2 (en) | 2003-09-02 | 2010-07-27 | St. Jude Medical, Cardiology Division, Inc. | Devices and methods for crossing a chronic total occlusion |
US7154378B1 (en) | 2003-09-11 | 2006-12-26 | Stryker Corporation | Apparatus and method for using RFID to track use of a component within a device |
US20050059963A1 (en) | 2003-09-12 | 2005-03-17 | Scimed Life Systems, Inc. | Systems and method for creating transmural lesions |
CN101869496B (en) | 2003-09-15 | 2012-10-17 | 阿勒根公司 | Implantable device fastening system and methods of use |
DE10342759A1 (en) | 2003-09-16 | 2005-04-14 | Campus Gmbh & Co. Kg | Stent with improved durability |
US20060200005A1 (en) | 2003-09-17 | 2006-09-07 | Levahn Intellectual Property Holding Company, Llc | Low profile, handle-in-between surgical scissors clamp |
US20050065509A1 (en) | 2003-09-22 | 2005-03-24 | Scimed Life Systems, Inc. | Flat electrode arrays for generating flat lesions |
US7035680B2 (en) | 2003-09-23 | 2006-04-25 | Cardiac Pacemakers, Inc. | Catheter lead placement system and method |
US7753901B2 (en) | 2004-07-21 | 2010-07-13 | Tyco Healthcare Group Lp | Laparoscopic instrument and cannula assembly and related surgical method |
JP4533695B2 (en) | 2003-09-23 | 2010-09-01 | オリンパス株式会社 | Treatment endoscope |
US7955355B2 (en) | 2003-09-24 | 2011-06-07 | Stryker Spine | Methods and devices for improving percutaneous access in minimally invasive surgeries |
US7588557B2 (en) | 2003-09-24 | 2009-09-15 | Granit-Medical Innovations, Llc | Medical instrument for fluid injection and related method |
US7789825B2 (en) | 2003-09-29 | 2010-09-07 | Ethicon Endo-Surgery, Inc. | Handle for endoscopic device |
US7708756B2 (en) | 2003-09-29 | 2010-05-04 | Ethicon Endo-Surgery, Inc. | Actuation mechanism for flexible endoscopic device |
US6994705B2 (en) | 2003-09-29 | 2006-02-07 | Ethicon-Endo Surgery, Inc. | Endoscopic mucosal resection device with conductive tissue stop |
US7169115B2 (en) | 2003-09-29 | 2007-01-30 | Ethicon Endo-Surgery, Inc. | Endoscopic mucosal resection device with overtube and method of use |
US20050070947A1 (en) | 2003-09-30 | 2005-03-31 | Franer Paul T. | Rotational latching system for a trocar |
CA2539979C (en) | 2003-09-30 | 2011-11-29 | Scimed Life Systems, Inc. | Through the scope tension member release clip |
US7549990B2 (en) | 2003-10-07 | 2009-06-23 | Jerome Canady | Surgical scissors with argon plasma coagulation capability |
US7416549B2 (en) | 2003-10-10 | 2008-08-26 | Boston Scientific Scimed, Inc. | Multi-zone bipolar ablation probe assembly |
CA2542368A1 (en) | 2003-10-15 | 2005-04-28 | Kabushikikaisha Igaki Iryo Sekkei | Device for delivery of stent for vessel |
US7150713B2 (en) | 2003-10-16 | 2006-12-19 | Smith & Nephew, Inc. | Endoscopic device |
US7270663B2 (en) | 2003-10-16 | 2007-09-18 | Granit Medical Innovations, Llc | Medical snare loop with indentations for changing effective size of loop and associated method |
US7029435B2 (en) | 2003-10-16 | 2006-04-18 | Granit Medical Innovation, Llc | Endoscope having multiple working segments |
US7762949B2 (en) | 2003-10-16 | 2010-07-27 | Granit Medical Innovation, Llc | Endoscope with open channels |
JP2005121947A (en) | 2003-10-17 | 2005-05-12 | Olympus Corp | Object lens insertion fixture, microscope and microscope system |
US20050143774A1 (en) | 2003-10-21 | 2005-06-30 | Polo Oscar R. | Laparoscopic needle manipulator |
US7329383B2 (en) | 2003-10-22 | 2008-02-12 | Boston Scientific Scimed, Inc. | Alloy compositions and devices including the compositions |
US20050240249A1 (en) | 2003-10-28 | 2005-10-27 | Hosheng Tu | Methods for treating mitral valve annulus with biodegradable compression element |
US20050096502A1 (en) | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
US7147650B2 (en) | 2003-10-30 | 2006-12-12 | Woojin Lee | Surgical instrument |
US7338513B2 (en) | 2003-10-30 | 2008-03-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7842028B2 (en) | 2005-04-14 | 2010-11-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument guide device |
US7686826B2 (en) | 2003-10-30 | 2010-03-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
AU2004308247B2 (en) | 2003-11-05 | 2010-11-04 | Applied Medical Resources Corporation | Multiple-angle scissor blade |
JP4496223B2 (en) | 2003-11-06 | 2010-07-07 | エヌエムティー メディカル, インコーポレイティッド | Septal penetration device |
CA2541210C (en) | 2003-11-07 | 2012-12-11 | Scimed Life Systems, Inc. | Endoscopic hemostatic clipping apparatus |
US20050101838A1 (en) | 2003-11-12 | 2005-05-12 | Camillocci Philip L. | Endoscope cover |
WO2005048814A2 (en) | 2003-11-12 | 2005-06-02 | Van Lue Stephen J | Magnetic devices and apparatus for medical/surgical procedures and methods for using same |
US7115124B1 (en) | 2003-11-12 | 2006-10-03 | Jia Hua Xiao | Device and method for tissue ablation using bipolar radio-frequency current |
CA2546376C (en) | 2003-11-17 | 2013-04-16 | Scimed Life Systems, Inc. | Systems and methods relating to associating a medical implant with a delivery device |
JP4675241B2 (en) | 2003-12-01 | 2011-04-20 | オリンパス株式会社 | Endoscope system |
US7052489B2 (en) | 2003-12-05 | 2006-05-30 | Scimed Life Systems, Inc. | Medical device with deflecting shaft and related methods of manufacture and use |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US20050131457A1 (en) | 2003-12-15 | 2005-06-16 | Ethicon, Inc. | Variable stiffness shaft |
US7524302B2 (en) | 2003-12-17 | 2009-04-28 | Numed, Inc. | Prenatal balloon catheter |
US20050149096A1 (en) | 2003-12-23 | 2005-07-07 | Hilal Said S. | Catheter with conduit traversing tip |
ES2543832T3 (en) | 2003-12-24 | 2015-08-24 | The Regents Of The University Of California | Tissue ablation with irreversible electroporation |
US20050143803A1 (en) | 2003-12-24 | 2005-06-30 | Medtronic Vascular, Inc. | Protective sheath for drug coated stent |
JP4286127B2 (en) | 2003-12-25 | 2009-06-24 | オリンパス株式会社 | In-subject position detection system |
US7951073B2 (en) | 2004-01-21 | 2011-05-31 | Boston Scientific Limited | Endoscopic device having spray mechanism and related methods of use |
US20050165429A1 (en) | 2004-01-23 | 2005-07-28 | Peter Douglas | Surgical clamp possessing a combined parallel and scissor style clamp head |
US7025721B2 (en) | 2004-01-29 | 2006-04-11 | Boston Scientific Scimed, Inc. | Endoscope channel cap |
CA2553869A1 (en) | 2004-01-30 | 2005-08-18 | Nmt Medical, Inc. | Welding systems for closure of cardiac openings |
DE102004005709A1 (en) | 2004-02-05 | 2005-08-25 | Polydiagnost Gmbh | Endoscope with a flexible probe |
ES2429591T3 (en) | 2004-02-09 | 2013-11-15 | Smart Medical Systems Ltd. | Endoscope set |
US7798960B2 (en) | 2004-02-09 | 2010-09-21 | John C. Jaeger | Speculum |
US7637903B2 (en) | 2004-02-09 | 2009-12-29 | Cryocor, Inc. | Catheter articulation segment with alternating cuts |
ITPI20040008A1 (en) | 2004-02-17 | 2004-05-17 | Dino Accoto | ROBOTIC CAPSULE FOR INTRA-BODY BIOMEDICAL APPLICATIONS |
US8882786B2 (en) | 2004-02-17 | 2014-11-11 | Lawrence Livermore National Security, Llc. | System for closure of a physical anomaly |
JP4436698B2 (en) | 2004-02-25 | 2010-03-24 | オリンパス株式会社 | High frequency treatment tool |
US7435229B2 (en) | 2004-02-25 | 2008-10-14 | Wolf Erich W | System for transcutaneous monitoring of intracranial pressure (ICP) using near infrared (NIR) telemetry |
US20050192478A1 (en) | 2004-02-27 | 2005-09-01 | Williams James P. | System and method for endoscopic optical constrast imaging using an endo-robot |
WO2005092216A1 (en) | 2004-02-27 | 2005-10-06 | Applied Medical Resources Corporation | System and method for actuating a laparoscopic surgical instrument |
WO2005082226A1 (en) | 2004-02-27 | 2005-09-09 | Olympus Corporation | Endoscope |
JP3967731B2 (en) | 2004-04-06 | 2007-08-29 | オリンパス株式会社 | Capsule endoscope |
US6932824B1 (en) | 2004-03-02 | 2005-08-23 | St. Jude Medical Puerto Rico B.V. | Three-needle closure device |
US7751866B2 (en) | 2004-03-08 | 2010-07-06 | Olympus Corporation | Detecting system of position and posture of capsule medical device |
US7179254B2 (en) | 2004-03-09 | 2007-02-20 | Ethicon, Inc. | High intensity ablation device |
WO2005084556A1 (en) | 2004-03-10 | 2005-09-15 | Olympus Corporation | Treatment tool for surgery |
JP2005261514A (en) | 2004-03-17 | 2005-09-29 | Pentax Corp | Beak-like high frequency hemostatic forceps for endoscope |
US7699864B2 (en) | 2004-03-18 | 2010-04-20 | Onset Medical Corporation | Expandable medical access device |
US20050209624A1 (en) | 2004-03-22 | 2005-09-22 | Venkataramana Vijay | Scissors for piercing and cutting anatomical vessels |
EP4026486A1 (en) | 2004-03-23 | 2022-07-13 | Boston Scientific Medical Device Limited | In-vivo visualization system |
US20060142790A1 (en) | 2004-03-23 | 2006-06-29 | Michael Gertner | Methods and devices to facilitate connections between body lumens |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
FR2867964B1 (en) | 2004-03-24 | 2007-08-10 | Pentax Corp | HIGH FREQUENCY TREATMENT INSTRUMENT FOR ENDOSCOPE |
US20050216036A1 (en) | 2004-03-29 | 2005-09-29 | Nakao Naomi L | Endoscopic fastening system with multiple fasteners |
US7916809B2 (en) | 2004-03-31 | 2011-03-29 | Pioneer Corporation | Digital receiver apparatus |
US8007495B2 (en) | 2004-03-31 | 2011-08-30 | Biosense Webster, Inc. | Catheter for circumferential ablation at or near a pulmonary vein |
JP4652713B2 (en) | 2004-04-02 | 2011-03-16 | オリンパス株式会社 | Endoscopic treatment device |
WO2005097234A2 (en) | 2004-04-05 | 2005-10-20 | Tyco Healthcare Group Lp | Surgical hand access apparatus |
JP4868602B2 (en) | 2004-04-05 | 2012-02-01 | タイコ・ヘルスケア・グループ・リミテッド・パートナーシップ | Surgical hand access device |
JP2005296412A (en) | 2004-04-13 | 2005-10-27 | Olympus Corp | Endoscopic treatment apparatus |
US8277373B2 (en) | 2004-04-14 | 2012-10-02 | Usgi Medical, Inc. | Methods and apparaus for off-axis visualization |
JP4923231B2 (en) | 2004-04-15 | 2012-04-25 | クック メディカル テクノロジーズ エルエルシー | Endoscopic surgical access instrument and method for articulating an external accessory channel |
US8517921B2 (en) | 2004-04-16 | 2013-08-27 | Gyrus Acmi, Inc. | Endoscopic instrument having reduced diameter flexible shaft |
US7833238B2 (en) | 2004-04-19 | 2010-11-16 | Granit Medical Innovations, Llc | Endoscopic anchoring device and associated method |
US8092549B2 (en) | 2004-09-24 | 2012-01-10 | The Invention Science Fund I, Llc | Ciliated stent-like-system |
US20070167682A1 (en) | 2004-04-21 | 2007-07-19 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US7534228B2 (en) | 2004-04-27 | 2009-05-19 | Applied Medical Technology, Inc. | Bridle catheter with umbilical tape |
US7301250B2 (en) | 2004-05-04 | 2007-11-27 | Stangenes Industries, Inc. | High voltage pulsed power supply using solid state switches |
JP5227588B2 (en) | 2004-05-05 | 2013-07-03 | ダイレクト フロウ メディカル、 インク. | Stentless heart valve with in situ formed support structure |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7918869B2 (en) | 2004-05-07 | 2011-04-05 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal gastroplasty |
US20050250987A1 (en) | 2004-05-07 | 2005-11-10 | Usgi Medical Inc. | Removable apparatus and methods for manipulating and securing tissue |
US20050251176A1 (en) | 2004-05-07 | 2005-11-10 | Usgi Medical Inc. | System for treating gastroesophageal reflux disease |
US20060135971A1 (en) | 2004-05-07 | 2006-06-22 | Usgi Medical Inc. | System for treating gastroesophageal reflux disease |
EP1750595A4 (en) | 2004-05-07 | 2008-10-22 | Valentx Inc | Devices and methods for attaching an endolumenal gastrointestinal implant |
US7837615B2 (en) | 2004-05-10 | 2010-11-23 | Usgi Medical, Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US20050267492A1 (en) | 2004-05-12 | 2005-12-01 | Philippe Poncet | Surgical instrument for specimen retrieval |
US20050256524A1 (en) | 2004-05-14 | 2005-11-17 | Long Gary L | RF ablation device and method of use |
US7658738B2 (en) | 2004-05-14 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Medical devices for use with endoscope |
WO2005110241A1 (en) | 2004-05-14 | 2005-11-24 | Ethicon Endo-Surgery, Inc. | Devices for locking and/or cutting a suture |
US20050261711A1 (en) | 2004-05-24 | 2005-11-24 | Olympus Corporation | Treatment method and endoscope apparatus |
US20070078439A1 (en) | 2004-05-27 | 2007-04-05 | Axel Grandt | Multiple lumen catheter and method of making same |
US7846171B2 (en) | 2004-05-27 | 2010-12-07 | C.R. Bard, Inc. | Method and apparatus for delivering a prosthetic fabric into a patient |
WO2005120376A2 (en) | 2004-06-02 | 2005-12-22 | Medtronic, Inc. | Ablation device with jaws |
US7803195B2 (en) | 2004-06-03 | 2010-09-28 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US7066936B2 (en) | 2004-06-07 | 2006-06-27 | Ethicon, Inc. | Surgical cutting and tissue vaporizing instrument |
US7828808B2 (en) | 2004-06-07 | 2010-11-09 | Novare Surgical Systems, Inc. | Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools |
US20050274935A1 (en) | 2004-06-14 | 2005-12-15 | Nelson Mark S | Post puller |
US8216255B2 (en) | 2004-06-14 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Endoscopic clip applier actuator |
US7931661B2 (en) | 2004-06-14 | 2011-04-26 | Usgi Medical, Inc. | Apparatus and methods for performing transluminal gastrointestinal procedures |
US7670282B2 (en) | 2004-06-14 | 2010-03-02 | Pneumrx, Inc. | Lung access device |
WO2006007399A1 (en) | 2004-06-16 | 2006-01-19 | Smith & Nephew, Inc. | Suture passing |
US7241290B2 (en) | 2004-06-16 | 2007-07-10 | Kinetic Surgical, Llc | Surgical tool kit |
KR100615881B1 (en) | 2004-06-21 | 2006-08-25 | 한국과학기술연구원 | Capsule Type Endoscope Control System |
US20050288555A1 (en) | 2004-06-28 | 2005-12-29 | Binmoeller Kenneth E | Methods and devices for illuminating, vievwing and monitoring a body cavity |
US20060074413A1 (en) | 2004-06-28 | 2006-04-06 | Kamran Behzadian | Method and apparatus for substantial and uniform ablation about a linear bipolar array of electrodes |
EP1618831A3 (en) | 2004-06-29 | 2006-04-19 | Nippon Cable System Inc. | A moving device in pipe lines |
JP2006014960A (en) | 2004-07-01 | 2006-01-19 | Olympus Corp | Endoscope |
US7497867B2 (en) | 2004-07-12 | 2009-03-03 | Jeffrey Lasner | Handles and shafts for manually adjustable scissors and forceps |
US9060782B2 (en) | 2004-07-12 | 2015-06-23 | S.D.M.H. Pty. Ltd. | Devices and methods for thermal ablation of biological tissue using geometric ablation patterns |
WO2006012630A2 (en) | 2004-07-23 | 2006-02-02 | Calypso Medical Technologies, Inc. | Apparatuses and methods for percutaneously implanting objects in patients |
WO2006014881A2 (en) | 2004-07-26 | 2006-02-09 | Van Lue Stephen J | Surgical stapler with magnetically secured components |
US7857183B2 (en) | 2004-07-28 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation mechanism |
US20060025812A1 (en) | 2004-07-28 | 2006-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated pivoting articulation mechanism |
US20060036267A1 (en) | 2004-08-11 | 2006-02-16 | Usgi Medical Inc. | Methods and apparatus for performing malabsorptive bypass procedures within a patient's gastro-intestinal lumen |
US7261725B2 (en) | 2005-01-13 | 2007-08-28 | Binmoeller Kenneth F | Endoscopic device with independently actuated legs |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US20060135962A1 (en) | 2004-09-09 | 2006-06-22 | Kick George F | Expandable trans-septal sheath |
DE102004044119B4 (en) | 2004-09-11 | 2016-11-03 | Olympus Winter & Ibe Gmbh | Video endoscope with rotatable video camera |
US20060064083A1 (en) | 2004-09-17 | 2006-03-23 | Steve Khalaj | Multi-tip probe used for an ocular procedure |
US7290615B2 (en) | 2004-09-17 | 2007-11-06 | Schlumberger Technology Corporation | Fluid having recyclable viscosity |
WO2006034209A2 (en) | 2004-09-20 | 2006-03-30 | Suturtek Incorporated | Apparatus and method for minimally invasive suturing |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US20060095031A1 (en) | 2004-09-22 | 2006-05-04 | Arthrocare Corporation | Selectively controlled active electrodes for electrosurgical probe |
US7559916B2 (en) | 2004-09-24 | 2009-07-14 | Syntheon, Llc | Catheter with controllable stiffness and method for operating a selective stiffening catheter |
EP1707122B1 (en) | 2004-09-24 | 2010-04-21 | Kabushiki Kaisha Toshiba | Ultrasonic probe |
JP4302602B2 (en) | 2004-09-24 | 2009-07-29 | オリンパス株式会社 | Endoscopic treatment tool, endoscopic treatment system, and support adapter |
US7909809B2 (en) | 2004-09-27 | 2011-03-22 | Boston Scientific Scimed, Inc. | Devices and methods for agent-assisted medical procedures |
US20060069424A1 (en) | 2004-09-27 | 2006-03-30 | Xtent, Inc. | Self-constrained segmented stents and methods for their deployment |
AU2005290341B2 (en) | 2004-09-28 | 2012-01-19 | Surgical Solutions Llc | Suture anchor |
US7887558B2 (en) | 2004-09-28 | 2011-02-15 | Maquet Cardiovascular Llc | Modular vessel harvesting system and method |
US7967808B2 (en) | 2004-10-07 | 2011-06-28 | Flea Street Translational, Llc | Methods, systems and devices for establising communication between hollow organs and tissue lumens |
JP2006105911A (en) | 2004-10-08 | 2006-04-20 | Fuji Photo Film Co Ltd | Unidimensional measuring unit |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
US7776035B2 (en) | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
ATE397912T1 (en) | 2004-10-11 | 2008-07-15 | Smm Medical Ab | ELECTROACTIVE COMPRESSION BANDAGE |
JP4801083B2 (en) | 2004-10-18 | 2011-10-26 | タイコ ヘルスケア グループ エルピー | Structure for applying a sprayable wound treatment material |
DE102004052515B4 (en) | 2004-10-22 | 2019-01-03 | Aesculap Ag | Surgical scissors and method for making a surgical scissors |
US7937143B2 (en) | 2004-11-02 | 2011-05-03 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
EP1656963B1 (en) | 2004-11-10 | 2007-11-21 | Creganna Technologies Limited | Stent delivery catheter assembly |
US20060217665A1 (en) | 2004-11-18 | 2006-09-28 | Laparoscopic Partners Llc | Surgical instrument seal assembly and triple lead thread |
US20060111704A1 (en) | 2004-11-22 | 2006-05-25 | Rox Medical, Inc. | Devices, systems, and methods for energy assisted arterio-venous fistula creation |
US9700334B2 (en) | 2004-11-23 | 2017-07-11 | Intuitive Surgical Operations, Inc. | Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools |
WO2006058195A2 (en) | 2004-11-23 | 2006-06-01 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
US7429261B2 (en) | 2004-11-24 | 2008-09-30 | Ablation Frontiers, Inc. | Atrial ablation catheter and method of use |
AU2005311966A1 (en) | 2004-12-01 | 2006-06-08 | Gildenberg, Phillip L. | System and method for tensioning a suture |
US7497863B2 (en) | 2004-12-04 | 2009-03-03 | Medtronic, Inc. | Instrument guiding stage apparatus and method for using same |
US7655014B2 (en) | 2004-12-06 | 2010-02-02 | Cameron Health, Inc. | Apparatus and method for subcutaneous electrode insertion |
US7559887B2 (en) | 2004-12-08 | 2009-07-14 | Patrick Dannan | Tool insertion device for use in minimally invasive surgery |
GB0427506D0 (en) | 2004-12-15 | 2005-01-19 | George Samuel | Improvements in or relating to specula |
CA2590156A1 (en) | 2004-12-15 | 2006-06-22 | Cook Urological Incorporated | Radiopaque manipulation devices |
US7565201B2 (en) | 2004-12-17 | 2009-07-21 | Eastern Virginia Medical School | Activation of calcium-mediated cell functions in cells and tissues, including aggregation of human platelets. by nanosecond pulsed electric fields |
EP1833551B1 (en) | 2004-12-22 | 2013-02-27 | Proteus Digital Health, Inc. | Implantable addressable segmented electrodes |
US20060142798A1 (en) | 2004-12-27 | 2006-06-29 | Holman Thomas J | Device and method for closing an opening in a body cavity or lumen |
US20070225552A1 (en) | 2004-12-28 | 2007-09-27 | Olympus Corporation | Introduction-assisting apparatus for capsule medical device |
US20060142652A1 (en) | 2004-12-28 | 2006-06-29 | Erick Keenan | Concepts using the improved "composite flexible and conductive catheter electrode bands" and their method of construction |
US20060149132A1 (en) | 2004-12-30 | 2006-07-06 | Given Imaging Ltd. | Device and method for in vivo illumination |
US20060149131A1 (en) | 2005-01-05 | 2006-07-06 | Sightline Technologies Ltd. | Surgical tool for endoscope |
US20060149129A1 (en) | 2005-01-05 | 2006-07-06 | Watts H D | Catheter with multiple visual elements |
US8066702B2 (en) | 2005-01-11 | 2011-11-29 | Rittman Iii William J | Combination electrical stimulating and infusion medical device and method |
US20060161190A1 (en) | 2005-01-19 | 2006-07-20 | Gadberry Donald L | Disposable laparoscopic instrument |
GB2423269A (en) | 2005-02-16 | 2006-08-23 | Samuel George | Scissors with laterally restrained blades |
US20060184161A1 (en) | 2005-02-16 | 2006-08-17 | Usgi Medical Inc. | Flexible shaft system having interchangeable end effectors |
US7654431B2 (en) | 2005-02-18 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument with guided laterally moving articulation member |
US7559450B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating a fluid transfer controlled articulation mechanism |
US7559452B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument having fluid actuated opposing jaws |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
TW200630066A (en) | 2005-02-23 | 2006-09-01 | Chung Shan Inst Of Science | Disposable two-stage endoscope |
US20060200170A1 (en) | 2005-03-07 | 2006-09-07 | Ernest Aranyi | Specimen retrieval apparatus and method of use |
US20060200169A1 (en) | 2005-03-07 | 2006-09-07 | Kevin Sniffin | Specimen retrieval apparatus and method of use |
GB0504988D0 (en) | 2005-03-10 | 2005-04-20 | Emcision Ltd | Device and method for the treatment of diseased tissue such as tumors |
US7784663B2 (en) | 2005-03-17 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having load sensing control circuitry |
US8685058B2 (en) | 2005-03-23 | 2014-04-01 | Wilk Patent, Llc | Surgical closure method and associated device |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7670336B2 (en) | 2005-03-25 | 2010-03-02 | Boston Scientific Scimed, Inc. | Ablation probe with heat sink |
US20060217742A1 (en) | 2005-03-28 | 2006-09-28 | Messerly Jeffrey D | Mechanical coupling method |
US7621927B2 (en) | 2005-03-28 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Medical instrument with a mechanical coupling |
US7547310B2 (en) | 2005-03-29 | 2009-06-16 | Tyco Healthcare Group Lp | Specimen retrieval apparatus |
US7670346B2 (en) | 2005-03-29 | 2010-03-02 | Tyco Healthcare Group Lp | Specimen retrieval apparatus |
US7195612B2 (en) | 2005-03-31 | 2007-03-27 | Gordis Corporation | Esophageal balloon catheter with visual marker |
US7931624B2 (en) | 2005-04-05 | 2011-04-26 | Tyco Healthcare Group Lp | Introducer seal assembly with low profile gimbal seal |
IL174531A0 (en) | 2005-04-06 | 2006-08-20 | Given Imaging Ltd | System and method for performing capsule endoscopy diagnosis in remote sites |
US20060270911A1 (en) | 2005-04-08 | 2006-11-30 | Voegele James W | Tissue retraction device |
US20060241691A1 (en) | 2005-04-12 | 2006-10-26 | Wilk Patent, Llc | Medical treatment method and device utilizing magnetic elements |
JP2006297005A (en) | 2005-04-15 | 2006-11-02 | Yoshimoto Ando | Artificial muscle with double layer structure |
US8333777B2 (en) | 2005-04-22 | 2012-12-18 | Benvenue Medical, Inc. | Catheter-based tissue remodeling devices and methods |
US20060241570A1 (en) | 2005-04-22 | 2006-10-26 | Wilk Patent, Llc | Intra-abdominal medical method |
US20060237023A1 (en) | 2005-04-26 | 2006-10-26 | Usgi Medical Inc. | Transgastric tubal ligation |
US8663236B2 (en) | 2005-04-26 | 2014-03-04 | Usgi Medical Inc. | Transgastric abdominal access |
DE602006003120D1 (en) | 2005-04-26 | 2008-11-27 | Niti On Co Ltd | Endoscopic surgical instrument |
US20060247663A1 (en) | 2005-04-27 | 2006-11-02 | Southern Illinois University Office Of Research, Development And Administration | Laser resistant calculus retrieval device and method of using |
US20060264752A1 (en) | 2005-04-27 | 2006-11-23 | The Regents Of The University Of California | Electroporation controlled with real time imaging |
US7645288B2 (en) | 2005-05-05 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Anastomotic ring applier with inflatable members |
US20060264904A1 (en) | 2005-05-09 | 2006-11-23 | Kerby Walter L | Medical device |
DE102005021470A1 (en) | 2005-05-10 | 2006-11-16 | Tracoe Medical Gmbh | Introducer for percutaneous tracheostomy |
US7762960B2 (en) | 2005-05-13 | 2010-07-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US7905830B2 (en) | 2005-05-13 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Sheath for use with an endoscope |
US7648457B2 (en) | 2005-05-13 | 2010-01-19 | Ethicon Endo-Surgery, Inc. | Method of positioning a device on an endoscope |
US20060259010A1 (en) | 2005-05-13 | 2006-11-16 | David Stefanchik | Feeding tube |
US7813590B2 (en) | 2005-05-13 | 2010-10-12 | Given Imaging Ltd. | System and method for displaying an in-vivo image stream |
US7846107B2 (en) | 2005-05-13 | 2010-12-07 | Boston Scientific Scimed, Inc. | Endoscopic apparatus with integrated multiple biopsy device |
JP2006314703A (en) | 2005-05-16 | 2006-11-24 | Fujinon Corp | Apparatus for supporting laparoscope |
US7666180B2 (en) | 2005-05-20 | 2010-02-23 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
DE102006023696B4 (en) | 2005-05-20 | 2019-10-17 | Kaneka Corporation | High-frequency incision instrument for an endoscope |
EP2453240B1 (en) | 2005-05-23 | 2016-12-28 | Harald F. Hess | Optical microscopy with phototransformable optical labels |
AU2006251051B2 (en) | 2005-05-25 | 2009-07-16 | Gyrus Medical, Inc. | A surgical instrument |
WO2006128017A2 (en) | 2005-05-25 | 2006-11-30 | The Board Of Trustees Of The Leland Stanford Junior University | Devices and methods for the controlled formation and closure of vascular openings |
US8932208B2 (en) | 2005-05-26 | 2015-01-13 | Maquet Cardiovascular Llc | Apparatus and methods for performing minimally-invasive surgical procedures |
US20060271042A1 (en) | 2005-05-26 | 2006-11-30 | Gyrus Medical, Inc. | Cutting and coagulating electrosurgical forceps having cam controlled jaw closure |
US7553278B2 (en) | 2005-06-01 | 2009-06-30 | Cannuflow, Inc. | Protective cap for arthroscopic instruments |
JP2006343510A (en) | 2005-06-08 | 2006-12-21 | Eastman Kodak Co | Lens adapter |
US8641728B2 (en) | 2005-06-13 | 2014-02-04 | Ethicon Endo-Surgery, Inc. | Attachment apparatus for coupling with an endoscope |
EP2289591A3 (en) | 2005-06-14 | 2012-01-04 | Olympus Medical Systems Corp. | Endoscope treatment instrument and treatment instrument apparatus for endoscope |
US20070000550A1 (en) | 2005-06-14 | 2007-01-04 | Osinski Tomas K | Flexible multiple tubing that resists collapsing and kinking |
US20060287666A1 (en) | 2005-06-15 | 2006-12-21 | Usgi Medical Inc. | Apparatus and methods for endoluminal advancement |
DE102005027809A1 (en) | 2005-06-15 | 2006-12-28 | Q Medial International Ag | Closing device for hollow organs |
JP2009500052A (en) | 2005-06-20 | 2009-01-08 | アブレーション フロンティアズ,インコーポレーテッド | Ablation catheter |
US7918844B2 (en) | 2005-06-24 | 2011-04-05 | Ethicon Endo-Surgery, Inc. | Applier for implantable medical device |
EP1902663A4 (en) | 2005-07-08 | 2009-12-16 | Olympus Medical Systems Corp | Apparatus for placing capsule type medical device, apparatus for placing capsule endoscope in the body and capsule type medical device for placement |
WO2007008954A2 (en) | 2005-07-11 | 2007-01-18 | Ablation Frontiers | Low power tissue ablation system |
US7862553B2 (en) | 2005-07-13 | 2011-01-04 | Microline Surgical, Inc. | Tip and shaft connection for medical device |
JP4530931B2 (en) | 2005-07-14 | 2010-08-25 | オリンパス株式会社 | Imaging display system and in-subject indwelling system |
US7618437B2 (en) | 2005-07-15 | 2009-11-17 | Granit Medical Innovation, Llc | Endoscope retrieval instrument assembly |
US8083787B2 (en) | 2005-07-18 | 2011-12-27 | Tearscience, Inc. | Method and apparatus for treating meibomian gland dysfunction |
US20070100405A1 (en) | 2005-07-21 | 2007-05-03 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US7794458B2 (en) | 2005-07-22 | 2010-09-14 | Boston Scientific Scimed, Inc. | Bipolar radio frequency ablation device with retractable insulator |
WO2007013059A2 (en) | 2005-07-26 | 2007-02-01 | Ram Weiss | Extending intrabody capsule |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
US7548040B2 (en) | 2005-07-28 | 2009-06-16 | Zerog Wireless, Inc. | Wireless battery charging of electronic devices such as wireless headsets/headphones |
JP2007054125A (en) | 2005-08-22 | 2007-03-08 | Olympus Medical Systems Corp | Endoscope |
US8920442B2 (en) | 2005-08-24 | 2014-12-30 | Abbott Vascular Inc. | Vascular opening edge eversion methods and apparatuses |
US20070060895A1 (en) | 2005-08-24 | 2007-03-15 | Sibbitt Wilmer L Jr | Vascular closure methods and apparatuses |
US8052597B2 (en) | 2005-08-30 | 2011-11-08 | Boston Scientific Scimed, Inc. | Method for forming an endoscope articulation joint |
US7998132B2 (en) | 2005-09-02 | 2011-08-16 | Boston Scientific Scimed, Inc. | Adjustable stiffness catheter |
US20070051375A1 (en) | 2005-09-06 | 2007-03-08 | Milliman Keith L | Instrument introducer |
JP2009507617A (en) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | Method and apparatus for performing transluminal and other operations |
US7655749B2 (en) | 2005-09-19 | 2010-02-02 | Gm Global Technology Operations, Inc. | Method for making nitrogen aromatic oligomers and polymers |
US20070066869A1 (en) | 2005-09-21 | 2007-03-22 | David Hoffman | Endoscopic assembly including cap and sheath |
US8114113B2 (en) | 2005-09-23 | 2012-02-14 | Acclarent, Inc. | Multi-conduit balloon catheter |
US20070073102A1 (en) | 2005-09-27 | 2007-03-29 | Kiyotaka Matsuno | Endoscope apparatus |
US8758375B2 (en) | 2005-09-28 | 2014-06-24 | Olympus Medical Systems Corp | Method for suturing perforation |
US8702753B2 (en) | 2005-09-28 | 2014-04-22 | Olympus Medical Systems Corp. | Method for suturing perforation and suture instrument |
CA2561034C (en) | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
US7520950B2 (en) | 2005-10-06 | 2009-04-21 | Usgi Medical Inc. | Flexible tubular liner coating system |
US20070083192A1 (en) | 2005-10-07 | 2007-04-12 | Eric Welch | Apparatus and method for ablation of targeted tissue |
WO2007048085A2 (en) | 2005-10-14 | 2007-04-26 | Applied Medical Resources Corporation | Tissue retrieval system |
US20070123840A1 (en) | 2005-10-18 | 2007-05-31 | Usgi Medical, Inc. | Instrument assisted abdominal access |
US20070173870A2 (en) | 2005-10-18 | 2007-07-26 | Jaime Zacharias | Precision Surgical System |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
JP5121132B2 (en) | 2005-11-02 | 2013-01-16 | オリンパスメディカルシステムズ株式会社 | Endoscope system and operation assist device for endoscope |
US20070106113A1 (en) | 2005-11-07 | 2007-05-10 | Biagio Ravo | Combination endoscopic operative delivery system |
JP4394634B2 (en) | 2005-11-07 | 2010-01-06 | Hoya株式会社 | Endoscope clip removal device |
US20070112251A1 (en) | 2005-11-08 | 2007-05-17 | The Trustees Of Columbia University In The City Of New York | Apparatuses and methods for delivering one or more deliverables into a body |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
WO2007055032A1 (en) | 2005-11-14 | 2007-05-18 | Olympus Medical Systems Corp. | Method of endoscopical diagnosis or treatment and medical device |
US7850712B2 (en) | 2005-11-15 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Self-shielding suture anchor |
US8876772B2 (en) | 2005-11-16 | 2014-11-04 | Boston Scientific Scimed, Inc. | Variable stiffness shaft |
US20070167901A1 (en) | 2005-11-17 | 2007-07-19 | Herrig Judson A | Self-sealing residual compressive stress graft for dialysis |
US20070118115A1 (en) | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US9036015B2 (en) | 2005-11-23 | 2015-05-19 | Koninklijke Philips N.V. | Rendering views for a multi-view display device |
US7959627B2 (en) | 2005-11-23 | 2011-06-14 | Barrx Medical, Inc. | Precision ablating device |
US7579005B2 (en) | 2005-11-28 | 2009-08-25 | E. I. Du Pont De Nemours And Company | Process for recombinant expression and purification of antimicrobial peptides using periplasmic targeting signals as precipitable hydrophobic tags |
WO2007063550A2 (en) | 2005-12-02 | 2007-06-07 | Given Imaging Ltd. | System and device for in vivo procedures |
US7751869B2 (en) | 2005-12-09 | 2010-07-06 | Boston Scientific Scimed, Inc. | Radiation ablation tracking system and method |
US20070142779A1 (en) | 2005-12-20 | 2007-06-21 | Medtronic Vascular, Inc. | Catheter for guidewire placement |
JP2007167302A (en) | 2005-12-21 | 2007-07-05 | Olympus Medical Systems Corp | Overtube for endoscope and endoscopic system |
WO2007092101A2 (en) | 2005-12-29 | 2007-08-16 | Boston Scientific Limited | Foam electrode for tissue resection |
US20070156028A1 (en) | 2005-12-29 | 2007-07-05 | Van Lue Stephen J | Magnetic surgical/oral retractor |
US7678043B2 (en) | 2005-12-29 | 2010-03-16 | Given Imaging, Ltd. | Device, system and method for in-vivo sensing of a body lumen |
US9833595B2 (en) | 2005-12-30 | 2017-12-05 | Biosense Webster, Inc. | Dual-lever bi-directional handle |
US8518052B2 (en) | 2006-01-06 | 2013-08-27 | Cordis Corporation | Medical delivery system for delivery of a medically useful payload |
WO2007078003A1 (en) | 2006-01-06 | 2007-07-12 | Olympus Medical Systems Corp. | Trans-natural opening based or transcutaneous medical system |
US20070161855A1 (en) | 2006-01-06 | 2007-07-12 | Olympus Medical Systems Corp. | Medical procedure through natural body orifice |
US7988618B2 (en) | 2006-01-11 | 2011-08-02 | Olympus Medical Systems Corp | Medical procedure via natural opening |
US9308049B2 (en) | 2006-01-13 | 2016-04-12 | Olympus Corporation | Medical treatment endoscope |
US20070173872A1 (en) | 2006-01-23 | 2007-07-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument for cutting and coagulating patient tissue |
TWI285543B (en) | 2006-01-24 | 2007-08-21 | Everest Display Inc | Capsule laparoscope having a mechanism of direction control and releasing |
EP1983905B1 (en) | 2006-01-27 | 2014-04-16 | Medtronic, Inc. | Ablation device with lockout feature |
US7628797B2 (en) | 2006-01-31 | 2009-12-08 | Edwards Lifesciences Corporation | System, apparatus, and method for fastening tissue |
US7575144B2 (en) | 2006-01-31 | 2009-08-18 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with single cable actuator |
JP2007208781A (en) | 2006-02-03 | 2007-08-16 | Olympus Corp | Imaging apparatus |
US7953326B2 (en) | 2006-02-06 | 2011-05-31 | Woods Hole Oceanographic Institution | Systems and methods for underwater optical communication |
US20070191904A1 (en) | 2006-02-14 | 2007-08-16 | Imad Libbus | Expandable stimulation electrode with integrated pressure sensor and methods related thereto |
US20070198057A1 (en) | 2006-02-21 | 2007-08-23 | Daniel Gelbart | Method and device for closing holes in tissue |
JP4980625B2 (en) | 2006-02-21 | 2012-07-18 | 富士フイルム株式会社 | Body cavity observation device |
JP5131951B2 (en) | 2006-02-21 | 2013-01-30 | 富士フイルム株式会社 | Body cavity observation device |
KR101299751B1 (en) | 2006-02-24 | 2013-08-23 | 테루모 가부시키가이샤 | Pfo closing device |
JP4425227B2 (en) | 2006-02-28 | 2010-03-03 | Hoya株式会社 | Endoscopic high-frequency treatment instrument |
US8092374B2 (en) | 2006-03-02 | 2012-01-10 | Kevin Smith | Variably flexible insertion device and method for variably flexing an insertion device |
US8109872B2 (en) | 2006-03-03 | 2012-02-07 | Cook Medical Technologies Llc | Endoscopic apparatus having an improved catheter |
US20070208407A1 (en) | 2006-03-06 | 2007-09-06 | Michael Gerdts | Medical device delivery systems |
US20070213754A1 (en) | 2006-03-08 | 2007-09-13 | Olympus Medical Systems Corp. | Incision instrument, incision apparatus, and organ incision method |
ITMI20060443A1 (en) | 2006-03-13 | 2007-09-14 | Ethicon Endo Surgery Inc | DEVICE FOR THE MANIPULATION OF BODY TEXTILE |
WO2007109171A2 (en) | 2006-03-17 | 2007-09-27 | Microcube, Llc | Devices and methods for creating continuous lesions |
CA2643097C (en) | 2006-03-20 | 2012-03-13 | Pfizer Limited | Amine derivatives |
US7815652B2 (en) | 2006-03-21 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Surgical fastener and instrument |
US7771396B2 (en) | 2006-03-22 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Intubation device for enteral feeding |
US7918783B2 (en) | 2006-03-22 | 2011-04-05 | Boston Scientific Scimed, Inc. | Endoscope working channel with multiple functionality |
US8090451B2 (en) | 2006-03-30 | 2012-01-03 | Medtronic Inc. | Transvenous active fixation lead system |
US7850686B2 (en) | 2006-03-30 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Protective needle knife |
US20070233040A1 (en) | 2006-03-31 | 2007-10-04 | Boston Scientific Scimed, Inc. | Flexible endoscope with variable stiffness shaft |
US7579550B2 (en) | 2006-03-31 | 2009-08-25 | Boston Scientific Scimed, Inc. | Flexible device shaft with angled spiral wrap |
US8430811B2 (en) | 2008-09-30 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Multiple port surgical access device |
DE102006027873B4 (en) | 2006-06-16 | 2009-10-15 | Erbe Elektromedizin Gmbh | Endoscopic multifunction surgery device |
US8034046B2 (en) | 2006-04-13 | 2011-10-11 | Boston Scientific Scimed, Inc. | Medical devices including shape memory materials |
US20070244356A1 (en) | 2006-04-17 | 2007-10-18 | Boston Scientific Scimed, Inc. | Elongate medical devices having an improved distal profile for use with an endoscope |
US8202265B2 (en) | 2006-04-20 | 2012-06-19 | Boston Scientific Scimed, Inc. | Multiple lumen assembly for use in endoscopes or other medical devices |
US7520876B2 (en) | 2006-04-21 | 2009-04-21 | Entellus Medical, Inc. | Device and method for treatment of sinusitis |
US7766922B1 (en) | 2006-04-21 | 2010-08-03 | Advanced Neuromodulation Systems, Inc. | Burr hole caps and methods of use |
JP5091229B2 (en) | 2006-04-24 | 2012-12-05 | シネコー・エルエルシー | Transluminal surgical system |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
US7766896B2 (en) | 2006-04-25 | 2010-08-03 | Boston Scientific Scimed, Inc. | Variable stiffness catheter assembly |
EP2012697A4 (en) | 2006-04-29 | 2010-07-21 | Univ Texas | Devices for use in transluminal and endoluminal surgery |
US20070255303A1 (en) | 2006-05-01 | 2007-11-01 | Ethicon Endo-Surgery, Inc. | Integrated Guidewire Needle Knife Device |
US8328836B2 (en) | 2006-05-01 | 2012-12-11 | Ethicon Endo-Surgery, Inc. | Flexible endoscopic safety needle |
US7846087B2 (en) | 2006-05-01 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Endoscopic rotation |
US7862582B2 (en) | 2006-05-02 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Suture management |
EP2019632B1 (en) | 2006-05-03 | 2015-07-01 | Indiana University Research and Technology Corporation | Apparatus for reshaping the esophagus and other body lumens |
US20070260273A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
US7963912B2 (en) | 2006-05-08 | 2011-06-21 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal surgical methods using a sheath |
US20070260121A1 (en) | 2006-05-08 | 2007-11-08 | Ethicon Endo-Surgery, Inc. | Endoscopic Translumenal Surgical Systems |
US20070265494A1 (en) | 2006-05-10 | 2007-11-15 | Boston Scientific Scimed Inc. | Flexible and retractable endoscope elevator |
DE102006058359A1 (en) | 2006-12-05 | 2008-06-12 | Carl Zeiss Surgical Gmbh | Remote control system for medical devices |
US7959642B2 (en) | 2006-05-16 | 2011-06-14 | Ethicon Endo-Surgery, Inc. | Medical instrument having a needle knife |
US7927271B2 (en) | 2006-05-17 | 2011-04-19 | C.R. Bard, Inc. | Endoscope tool coupling |
US7549991B2 (en) | 2006-05-18 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Bipolar endoscopic device with parallel electrodes for endoluminal and transluminal haemostasis |
US7758598B2 (en) | 2006-05-19 | 2010-07-20 | Ethicon Endo-Surgery, Inc. | Combination knotting element and suture anchor applicator |
US20070270629A1 (en) | 2006-05-19 | 2007-11-22 | Charles Filipi J | System and techniques for magnetic manipulation of internal organs during minimally invasive surgery |
US20070270907A1 (en) | 2006-05-19 | 2007-11-22 | Stokes Michael J | Suture locking device |
KR20090019794A (en) | 2006-05-22 | 2009-02-25 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Catheter insertion sheath with adjustable flexibility |
US7635373B2 (en) | 2006-05-25 | 2009-12-22 | Ethicon Endo-Surgery, Inc. | Absorbable gastric restriction devices and methods |
US20070282165A1 (en) | 2006-05-31 | 2007-12-06 | Karl Storz Endovision | Optically coupled endoscope with microchip |
US9596994B2 (en) | 2006-06-02 | 2017-03-21 | J. William J. Futrell | System and methods for illuminating materials |
US7615067B2 (en) | 2006-06-05 | 2009-11-10 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
BRPI0602735A (en) | 2006-06-06 | 2008-01-29 | Luiz Gonzaga Granja Jr | anastomosis prosthesis |
US8523939B1 (en) | 2006-06-12 | 2013-09-03 | Cardica, Inc. | Method and apparatus for heart valve surgery |
ATE451067T1 (en) | 2006-06-12 | 2009-12-15 | Region Hovedstaden V Herlev Ho | ELECTRODE INTRODUCTION DEVICE |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US20100229610A1 (en) | 2006-06-23 | 2010-09-16 | Cornerstone Research Group, Inc. | Locking Device Using Shape Memory Materials |
EP2089096A4 (en) | 2006-06-23 | 2010-09-29 | Amir Belson | Transesophageal implantation of cardiac electrodes and delivery of cardiac therapies |
EP2034910B1 (en) | 2006-06-30 | 2012-02-15 | Bovie Medical Corporation | Surgical instrument with detachable tool assembly |
JP4546424B2 (en) | 2006-07-04 | 2010-09-15 | オリンパスメディカルシステムズ株式会社 | Endoscopic treatment tool |
US8021340B2 (en) | 2006-07-05 | 2011-09-20 | Incumed, Llc | Enhanced apparatus for percutaneous catheter implantation and replacement |
CN101528830A (en) | 2006-07-10 | 2009-09-09 | 麦德医像公司 | Super elastic epoxy hydrogel |
WO2008007355A1 (en) | 2006-07-13 | 2008-01-17 | Stark Med Gmbh | Trans-douglas endoscopical surgical device (ted) |
US10376314B2 (en) | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US7815566B2 (en) | 2006-07-20 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Methods for stabilizing and positioning an endoscope and surgical procedures |
US8202295B2 (en) | 2006-07-20 | 2012-06-19 | Kaplan Lee D | Surgical instruments |
US20080022927A1 (en) | 2006-07-28 | 2008-01-31 | Sean Xiao-An Zhang | Microfluidic device for controlled movement of material |
JP2008035909A (en) | 2006-08-01 | 2008-02-21 | Olympus Medical Systems Corp | Insertion aid for endoscope |
DE102006000382A1 (en) | 2006-08-01 | 2008-02-07 | Novineon Healthcare Technology Partners Gmbh | Medical instrument |
US8840655B2 (en) | 2006-08-09 | 2014-09-23 | Coherex Medical, Inc. | Systems and devices for reducing the size of an internal tissue opening |
US20080287801A1 (en) | 2006-08-14 | 2008-11-20 | Novelis, Inc. | Imaging device, imaging system, and methods of imaging |
US7789827B2 (en) | 2006-08-21 | 2010-09-07 | Karl Storz Endovision, Inc. | Variable shaft flexibility in endoscope |
AU2007292481B2 (en) | 2006-09-05 | 2013-08-29 | Cook Medical Technologies Llc | Apparatus suitable for performing mucosal resection |
JP5300187B2 (en) | 2006-09-07 | 2013-09-25 | 三洋電機株式会社 | Pack battery charged by magnetic induction |
CA2662602C (en) | 2006-09-11 | 2011-12-06 | Karl Storz Endovision, Inc. | System and method for an hysteroscope with integrated instruments |
US7648519B2 (en) | 2006-09-13 | 2010-01-19 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7722606B2 (en) | 2006-09-14 | 2010-05-25 | LaZúre Technologies, LLC | Device and method for destruction of cancer cells |
US7965180B2 (en) | 2006-09-28 | 2011-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Wireless sensor device |
US8485412B2 (en) | 2006-09-29 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical staples having attached drivers and stapling instruments for deploying the same |
WO2008041225A2 (en) | 2006-10-03 | 2008-04-10 | Virtual Ports Ltd | Lens cleaning device, system and method for surgical procdures |
US8603138B2 (en) | 2006-10-04 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Use of an adhesive to treat intraluminal bleeding |
US7892220B2 (en) | 2006-10-04 | 2011-02-22 | Ethicon Endo-Surgery, Inc. | Use of an adhesive as an intestinal barrier for bariatrics |
US8372090B2 (en) | 2006-10-05 | 2013-02-12 | Covidien Lp | Flexible endoscopic stitching devices |
US7674275B2 (en) | 2006-10-05 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Suture anchor |
US20130184727A1 (en) | 2006-10-16 | 2013-07-18 | Scottsdale Medical Devices, Inc. | Vessel support device and method of vessel harvesting |
IL178801A (en) | 2006-10-22 | 2013-11-28 | Jonathan Agmon | Episiotomy aid device |
GB2443261B (en) | 2006-10-26 | 2009-04-22 | Starbridge Systems Ltd | Wax micro actuator |
US20080103527A1 (en) | 2006-10-27 | 2008-05-01 | Martin David T | Flexible endoscopic suture anchor applier |
AU2007319364B2 (en) | 2006-11-10 | 2013-02-21 | Cook Medical Technologies Llc | Ring magnets for surgical procedures |
EP2086385B1 (en) | 2006-11-16 | 2018-10-31 | Stryker Corporation | Wireless endoscopic camera |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US20100286791A1 (en) | 2006-11-21 | 2010-11-11 | Goldsmith David S | Integrated system for the ballistic and nonballistic infixion and retrieval of implants |
KR100876647B1 (en) | 2006-11-22 | 2009-01-08 | 주식회사 코렌 | Capsule type image photographing apparatus and endoscopy using the same |
US20080125765A1 (en) | 2006-11-24 | 2008-05-29 | Berenshteyn A | Microwave apparatus for ablation |
US20080125796A1 (en) | 2006-11-28 | 2008-05-29 | Stryker Development Llc | Gastrotomy closure device |
US7749161B2 (en) | 2006-12-01 | 2010-07-06 | Ethicon Endo-Surgery, Inc. | Hand assisted laparoscopic device |
US7976458B2 (en) | 2006-12-05 | 2011-07-12 | Ethicon Endo-Surgery, Inc. | Independent articulating accessory channel |
US7758577B2 (en) | 2006-12-05 | 2010-07-20 | Ethicon Endo-Surgery, Inc. | Monopolar resection device and method of use |
US20080140069A1 (en) | 2006-12-07 | 2008-06-12 | Cierra, Inc. | Multi-electrode apparatus for tissue welding and ablation |
US20080140113A1 (en) | 2006-12-07 | 2008-06-12 | Cierra, Inc. | Method for sealing a pfo using an energy delivery device |
JP2008142410A (en) | 2006-12-12 | 2008-06-26 | Olympus Corp | Device introduced inside subject |
US7879004B2 (en) | 2006-12-13 | 2011-02-01 | University Of Washington | Catheter tip displacement mechanism |
US8062306B2 (en) | 2006-12-14 | 2011-11-22 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
EP2101657A1 (en) | 2006-12-15 | 2009-09-23 | Tyco Healthcare Group LP | Trocar assembly with obturator and retractable stylet |
RU2480254C2 (en) | 2006-12-22 | 2013-04-27 | Мед-Эль Электромедицинише Герэте Гмбх | Adatice therapeutic system (versions) and therapeutic system for long neurons |
US20080171907A1 (en) | 2007-01-12 | 2008-07-17 | Ethicon Endo-Surgery, Inc. | Magnetic Tissue Grasping |
US7918785B2 (en) | 2007-01-17 | 2011-04-05 | Olympus Medical Systems Corp. | Medical apparatus, treatment instrument for endoscope and endoscope apparatus |
JP4847354B2 (en) | 2007-01-22 | 2011-12-28 | オリンパスメディカルシステムズ株式会社 | Endoscopic treatment tool |
US8050772B1 (en) | 2007-01-25 | 2011-11-01 | Advanced Neuromodulation Systems, Inc. | Burr hole caps and methods of use |
US20080188710A1 (en) | 2007-02-02 | 2008-08-07 | Olympus Medical Systems Corporation | Capsule medical apparatus and body-cavity observation method |
DE602008003536D1 (en) | 2007-02-15 | 2010-12-30 | Hansen Medical Inc | MEDICAL ROBOT INSTRUMENT SYSTEM |
US20080200911A1 (en) | 2007-02-15 | 2008-08-21 | Long Gary L | Electrical ablation apparatus, system, and method |
US20080200755A1 (en) | 2007-02-15 | 2008-08-21 | Bakos Gregory J | Method and device for retrieving suture tags |
US20080200933A1 (en) | 2007-02-15 | 2008-08-21 | Bakos Gregory J | Surgical devices and methods for forming an anastomosis between organs by gaining access thereto through a natural orifice in the body |
US20080200934A1 (en) | 2007-02-15 | 2008-08-21 | Fox William D | Surgical devices and methods using magnetic force to form an anastomosis |
US20080200762A1 (en) | 2007-02-16 | 2008-08-21 | Stokes Michael J | Flexible endoscope shapelock |
US8475452B2 (en) | 2007-02-21 | 2013-07-02 | Electromedical Associates, Llc | Instruments and methods for thermal tissue treatment |
GB0703417D0 (en) | 2007-02-22 | 2007-04-04 | Eschmann Holdings Ltd | Electro-surgical systems |
US20080214890A1 (en) | 2007-03-01 | 2008-09-04 | Olympus Medical Systems Corporation | Therapeutic method and therapeutic system used with steps for approaching to lesion using overtube |
US7815662B2 (en) | 2007-03-08 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Surgical suture anchors and deployment device |
US20080221587A1 (en) | 2007-03-09 | 2008-09-11 | Jeremy Schwartz | Two-stage snare-basket medical device |
US20080228213A1 (en) | 2007-03-15 | 2008-09-18 | Terumo Cardiovascular Systems Corporation And Olympus Medical Systems Corporation | Variable size trocar |
US7780691B2 (en) | 2007-03-21 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Endoscopic tissue resection device |
US8075567B2 (en) | 2007-03-22 | 2011-12-13 | Anchor Products Company | Surgical tissue retrieval instrument |
US20080230972A1 (en) | 2007-03-23 | 2008-09-25 | Ganley Robert F | Pipe holding or manipulating tool |
AU2008241974B2 (en) | 2007-03-26 | 2013-09-12 | Nippon Suisan Kaisha, Ltd. | Germ cell marker using fish Vasa gene |
US8377044B2 (en) | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US7950560B2 (en) | 2007-04-13 | 2011-05-31 | Tyco Healthcare Group Lp | Powered surgical instrument |
US20080262524A1 (en) | 2007-04-19 | 2008-10-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems and methods for closing of fascia |
US20080262540A1 (en) | 2007-04-19 | 2008-10-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems and methods for approximating surfaces |
US9596980B2 (en) | 2007-04-25 | 2017-03-21 | Karl Storz Endovision, Inc. | Endoscope system with pivotable arms |
US8075572B2 (en) | 2007-04-26 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus |
EP2144569A4 (en) | 2007-04-27 | 2014-03-26 | Cvdevices Llc | Devices, systems, and methods for accessing the epicardial surface of the heart |
US8100922B2 (en) | 2007-04-27 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Curved needle suturing tool |
US20080275476A1 (en) | 2007-05-04 | 2008-11-06 | Cropper Michael S | Threader for knotting element |
US7875042B2 (en) | 2007-05-04 | 2011-01-25 | Ethicon Endo-Surgery, Inc. | Suture anchor loader |
JP2010526598A (en) | 2007-05-11 | 2010-08-05 | ボエッジ メディカル, インコーポレイテッド | Visual electrode ablation system |
US8052699B1 (en) | 2007-05-15 | 2011-11-08 | Cook Medical Technologies Llc | Viscerotomy closure device and method of use |
US20090198212A1 (en) | 2007-05-16 | 2009-08-06 | Tyler Timberlake | Endoscopic injection needle assembly inluding an endoscopic hood |
US9125631B2 (en) | 2007-05-17 | 2015-09-08 | Boston Scientific Scimed, Inc. | Tissue securing and sealing apparatus and related methods of use |
JP2010527704A (en) | 2007-05-22 | 2010-08-19 | デイビッド エー. シェクター | Apparatus for tissue attachment / strengthening, apparatus for tissue strengthening, method for attaching and strengthening tissue, and method for strengthening tissue |
JP2009006128A (en) | 2007-05-25 | 2009-01-15 | Kazuya Akaboshi | High-frequency treatment instrument |
WO2008150871A1 (en) | 2007-05-30 | 2008-12-11 | Critical Care Innovations, Inc. | Process and device for selectively treating interstitial tissue |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US7549564B2 (en) | 2007-06-22 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulating end effector |
US20080300461A1 (en) | 2007-05-31 | 2008-12-04 | Ethicon Endo-Surgery, Inc. | Endoscopic Device |
US7967842B2 (en) | 2007-06-01 | 2011-06-28 | Ethicon Endo-Surgery, Inc. | Integrated securement and closure apparatus |
EP2152182A4 (en) | 2007-06-04 | 2011-06-22 | Terumo Corp | Multi-electrode apparatus for tissue welding and ablation |
JP2008302097A (en) | 2007-06-11 | 2008-12-18 | Hoya Corp | Clip device for endoscope |
US8348827B2 (en) | 2007-06-12 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Specimen removal pouch |
JP2008307226A (en) | 2007-06-14 | 2008-12-25 | Olympus Medical Systems Corp | Endoscope system |
JP4472727B2 (en) | 2007-06-14 | 2010-06-02 | オリンパスメディカルシステムズ株式会社 | Endoscope device |
US7771416B2 (en) | 2007-06-14 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Control mechanism for flexible endoscopic device and method of use |
JP4472728B2 (en) | 2007-06-14 | 2010-06-02 | オリンパスメディカルシステムズ株式会社 | Endoscope system |
US7588176B2 (en) | 2007-06-18 | 2009-09-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved closure system |
US7604150B2 (en) | 2007-06-22 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an anti-back up mechanism |
US7597229B2 (en) | 2007-06-22 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | End effector closure system for a surgical stapling instrument |
JP5349852B2 (en) * | 2007-06-25 | 2013-11-20 | テルモ株式会社 | Medical device |
JP2009022666A (en) | 2007-07-23 | 2009-02-05 | Hoya Corp | Power supplier of electronic endoscope apparatus, and electronic endoscope apparatus |
US20090048486A1 (en) | 2007-08-08 | 2009-02-19 | Wilson-Cook Medical Inc. | Distal Tip for an Endoscope |
US7798750B2 (en) | 2007-08-20 | 2010-09-21 | Allen Ip Inc. | Drill guide with removeable clamp retainer |
US20090054728A1 (en) | 2007-08-21 | 2009-02-26 | Trusty Robert M | Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery |
WO2009029065A1 (en) | 2007-08-24 | 2009-03-05 | Hazem Ezzat | A surgical device and method |
DE102007040358A1 (en) | 2007-08-27 | 2009-03-05 | Technische Universität München | Trocar tube, trocar, obturator or rectoscope for transluminal endoscopic surgery over natural orifices |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
WO2009032623A2 (en) * | 2007-08-31 | 2009-03-12 | Ethicon Endo-Surgery, Inc | Electrical albation surgical instruments |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US20090062795A1 (en) | 2007-08-31 | 2009-03-05 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US8118738B2 (en) | 2007-09-06 | 2012-02-21 | Daniel Larkin | Vaginal speculum including collapsible and expandable frame |
JP2009072367A (en) | 2007-09-20 | 2009-04-09 | Olympus Medical Systems Corp | Medical apparatus |
JP2009072368A (en) | 2007-09-20 | 2009-04-09 | Olympus Medical Systems Corp | Medical apparatus |
US8097001B2 (en) | 2007-09-24 | 2012-01-17 | Granit Medical Innovations Llc | Medical instrument with stop motion override and associated method |
US8096998B2 (en) | 2007-09-26 | 2012-01-17 | Ebi, Llc | External fixation tensioner |
US8118821B2 (en) | 2007-10-09 | 2012-02-21 | Cook Medical Technologies Llc | Magnetic anastomosis device having improved delivery |
JP5635224B2 (en) | 2007-10-09 | 2014-12-03 | オリンパス株式会社 | Biological information acquisition apparatus, biological observation system, and driving method of biological observation system |
EP2203139A4 (en) | 2007-10-12 | 2010-12-01 | Medical Res Products B Inc | Medical apparatus and method for facilitating the management of long term tunneled conduits |
US8500697B2 (en) | 2007-10-19 | 2013-08-06 | Pressure Products Medical Supplies, Inc. | Transseptal guidewire |
US20090112059A1 (en) | 2007-10-31 | 2009-04-30 | Nobis Rudolph H | Apparatus and methods for closing a gastrotomy |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US20090112063A1 (en) | 2007-10-31 | 2009-04-30 | Bakos Gregory J | Endoscopic overtubes |
WO2009060460A2 (en) | 2007-11-09 | 2009-05-14 | Given Imaging Ltd. | Apparatus and methods for capsule endoscopy of the esophagus |
US8200334B1 (en) | 2007-11-09 | 2012-06-12 | Pacesetter, Inc. | Systems and methods for remote monitoring of signals sensed by an implantable medical device during an MRI |
US20090131751A1 (en) | 2007-11-20 | 2009-05-21 | Spivey James T | Anal surgical instrument guides |
US20090143794A1 (en) | 2007-11-29 | 2009-06-04 | Conlon Sean P | Tissue resection device |
US20090143649A1 (en) | 2007-11-30 | 2009-06-04 | Physion Srl | Speculum for the electropharmacological treatment of vaginal diseases |
US20090198231A1 (en) | 2007-12-06 | 2009-08-06 | Massachusetts Institute Of Technology | Methods to treat unwanted tissue with electric pulses |
US9066655B2 (en) | 2007-12-07 | 2015-06-30 | Ethicon Endo-Surgery, Inc. | Selective stiffening devices and methods |
US8118834B1 (en) | 2007-12-20 | 2012-02-21 | Angiotech Pharmaceuticals, Inc. | Composite self-retaining sutures and method |
WO2009082656A1 (en) | 2007-12-21 | 2009-07-02 | Smith & Nephew, Inc. | Cannula |
CA2711300A1 (en) | 2008-01-03 | 2009-07-16 | Vihar C. Surti | Medical systems, devices and methods for endoscopically suturing perforations |
US20090177219A1 (en) | 2008-01-03 | 2009-07-09 | Conlon Sean P | Flexible tissue-penetration instrument with blunt tip assembly and methods for penetrating tissue |
US20090182332A1 (en) | 2008-01-15 | 2009-07-16 | Ethicon Endo-Surgery, Inc. | In-line electrosurgical forceps |
JP4971209B2 (en) | 2008-01-22 | 2012-07-11 | オリンパスメディカルシステムズ株式会社 | Medical equipment |
US20090192344A1 (en) | 2008-01-24 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Surgical devices for manipulating tissue |
US20090192534A1 (en) | 2008-01-29 | 2009-07-30 | Ethicon Endo-Surgery, Inc. | Sensor trigger |
JP5258314B2 (en) | 2008-02-01 | 2013-08-07 | テルモ株式会社 | Medical manipulator and medical robot system |
EP2244625B1 (en) | 2008-02-05 | 2018-04-04 | Cook Medical Technologies LLC | Adaptor for endoscopic orientation of an elongate medical device |
US20090198251A1 (en) | 2008-02-06 | 2009-08-06 | Terrance Ransbury | Lead delivery, fixation and extraction devices and methods for use with intravascular implantable medical devices |
US8343041B2 (en) | 2008-05-19 | 2013-01-01 | Boston Scientific Scimed, Inc. | Integrated locking device with passive sealing |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
WO2009103051A1 (en) | 2008-02-15 | 2009-08-20 | Gundersen Lutheran Health Systems, Inc. | Percutaneous pedicle plug and method of use |
JP5377991B2 (en) | 2008-02-26 | 2013-12-25 | テルモ株式会社 | manipulator |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
US20090248012A1 (en) | 2008-03-27 | 2009-10-01 | The Regents Of The University Of California | Irreversible electroporation device and method for attenuating neointimal |
US8366733B2 (en) | 2008-03-28 | 2013-02-05 | Ethicon, Inc. | Applicator instruments for controlling bleeding at surgical sites and methods therefor |
US8540744B2 (en) | 2008-04-01 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Tissue penetrating surgical device |
US20090259105A1 (en) | 2008-04-10 | 2009-10-15 | Miyano Hiromichi | Medical treatment system and suturing method |
WO2009132190A2 (en) | 2008-04-23 | 2009-10-29 | Tornier, Inc. | Control circuitry for a tissue ablation system |
US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds |
WO2009134876A1 (en) | 2008-04-29 | 2009-11-05 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds |
US8992517B2 (en) | 2008-04-29 | 2015-03-31 | Virginia Tech Intellectual Properties Inc. | Irreversible electroporation to treat aberrant cell masses |
US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies |
KR101565441B1 (en) | 2008-04-30 | 2015-11-03 | 각코우호우진 지치 이카다이가쿠 | Surgical system for natural orifice transluminal endoscopic surgery(notes) |
US20090281559A1 (en) | 2008-05-06 | 2009-11-12 | Ethicon Endo-Surgery, Inc. | Anastomosis patch |
US20090287045A1 (en) | 2008-05-15 | 2009-11-19 | Vladimir Mitelberg | Access Systems and Methods of Intra-Abdominal Surgery |
KR101108569B1 (en) | 2008-05-15 | 2012-01-30 | 전명기 | Electrode for radiofrequency tissue ablation |
US20090287236A1 (en) | 2008-05-16 | 2009-11-19 | Ethicon Endo-Surgery, Inc. | Endoscopic rotary access needle |
US8562513B2 (en) | 2008-05-20 | 2013-10-22 | Olympus Medical Systems Corp. | Endoscope device |
JP5188880B2 (en) | 2008-05-26 | 2013-04-24 | オリンパスメディカルシステムズ株式会社 | Capsule type medical device and method for charging capsule type medical device |
US7736191B1 (en) | 2008-05-27 | 2010-06-15 | Jerzy Roman Sochor | Implantable connector with protected contacts |
US8114072B2 (en) | 2008-05-30 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Electrical ablation device |
US8652150B2 (en) | 2008-05-30 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Multifunction surgical device |
US8070759B2 (en) | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
JP2010012222A (en) | 2008-06-06 | 2010-01-21 | Olympus Medical Systems Corp | Medical apparatus |
US9271796B2 (en) | 2008-06-09 | 2016-03-01 | Covidien Lp | Ablation needle guide |
EP2135545B1 (en) | 2008-06-19 | 2013-07-31 | Olympus Medical Systems Corp. | Magnetically guiding system and method |
US8795161B2 (en) | 2008-06-25 | 2014-08-05 | Covidien Lp | Button port |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
JP5204564B2 (en) | 2008-06-30 | 2013-06-05 | オリンパスメディカルシステムズ株式会社 | Medical equipment |
US8727967B2 (en) | 2008-07-18 | 2014-05-20 | Boston Scientific Scimed, Inc. | Endoscope with guide |
US8221411B2 (en) | 2008-07-28 | 2012-07-17 | Medtronic, Inc. | Systems and methods for cardiac tissue electroporation ablation |
US8166615B2 (en) | 2008-08-10 | 2012-05-01 | The Hip Klub, Llc | Apparel accessory clamp |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US20100048990A1 (en) | 2008-08-25 | 2010-02-25 | Ethicon Endo-Surgery, Inc. | Endoscopic needle for natural orifice translumenal endoscopic surgery |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8480689B2 (en) | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US20100056862A1 (en) | 2008-09-03 | 2010-03-04 | Ethicon Endo-Surgery, Inc. | Access needle for natural orifice translumenal endoscopic surgery |
US8114119B2 (en) | 2008-09-09 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US20100076451A1 (en) | 2008-09-19 | 2010-03-25 | Ethicon Endo-Surgery, Inc. | Rigidizable surgical instrument |
JP5161714B2 (en) | 2008-09-19 | 2013-03-13 | オリンパスメディカルシステムズ株式会社 | Medical equipment |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
JP2010093746A (en) | 2008-10-10 | 2010-04-22 | Sony Corp | Solid-state image pickup element and signal processing system |
US9370341B2 (en) | 2008-10-23 | 2016-06-21 | Covidien Lp | Surgical retrieval apparatus |
EP2355699A4 (en) | 2008-11-11 | 2012-08-01 | Univ Texas | Medical devices, apparatuses, systems, and methods |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US20100331622A2 (en) | 2008-11-25 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Tissue manipulation devices |
US8172772B2 (en) | 2008-12-11 | 2012-05-08 | Ethicon Endo-Surgery, Inc. | Specimen retrieval device |
US20100152725A1 (en) | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
US20100152539A1 (en) | 2008-12-17 | 2010-06-17 | Ethicon Endo-Surgery, Inc. | Positionable imaging medical devices |
US20100160906A1 (en) | 2008-12-23 | 2010-06-24 | Asthmatx, Inc. | Expandable energy delivery devices having flexible conductive elements and associated systems and methods |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US8753335B2 (en) | 2009-01-23 | 2014-06-17 | Angiodynamics, Inc. | Therapeutic energy delivery device with rotational mechanism |
US20100191050A1 (en) | 2009-01-23 | 2010-07-29 | Ethicon Endo-Surgery, Inc. | Variable length accessory for guiding a flexible endoscopic tool |
US20100191267A1 (en) | 2009-01-26 | 2010-07-29 | Ethicon Endo-Surgery, Inc. | Rotary needle for natural orifice translumenal endoscopic surgery |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US8821532B2 (en) | 2009-01-30 | 2014-09-02 | Cook Medical Technologies Llc | Vascular closure device |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US20110306840A1 (en) | 2009-01-30 | 2011-12-15 | The Trustees Of Columbia University In The City Of New York | Controllable magnetic source to fixture intracorporeal apparatus. |
US20100198248A1 (en) | 2009-02-02 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical dissector |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
US20100249700A1 (en) | 2009-03-27 | 2010-09-30 | Ethicon Endo-Surgery, Inc. | Surgical instruments for in vivo assembly |
US8632534B2 (en) | 2009-04-03 | 2014-01-21 | Angiodynamics, Inc. | Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD) |
WO2010118387A1 (en) | 2009-04-09 | 2010-10-14 | Virginia Tech Intellectual Properties, Inc. | Integration of very short electric pulses for minimally to noninvasive electroporation |
JP5383904B2 (en) | 2009-05-07 | 2014-01-08 | カーディアック ペースメイカーズ, インコーポレイテッド | Application of an electric field to the lung as a treatment for pulmonary edema |
US20100298642A1 (en) | 2009-05-19 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Manipulatable guide system and methods for natural orifice translumenal endoscopic surgery |
US20120101331A1 (en) | 2009-05-28 | 2012-04-26 | Zvika Gilad | Apparatus for delivery of autonomous in-vivo capsules |
US20100312056A1 (en) | 2009-06-03 | 2010-12-09 | Gyrus, ACMI, Inc. | Endoscope shaft |
US8206295B2 (en) | 2009-06-15 | 2012-06-26 | Ashutosh Kaul | Suction-based tissue manipulator |
EP2467189A4 (en) | 2009-08-20 | 2013-03-06 | Angiodynamics Inc | Multi-electrode energy delivery device and method of using the same |
EP2286756B1 (en) | 2009-08-21 | 2013-04-03 | Novineon Healthcare Technology Partners Gmbh | Surgical manipulator means |
US20110077718A1 (en) | 2009-09-30 | 2011-03-31 | Broadcom Corporation | Electromagnetic power booster for bio-medical units |
US8623011B2 (en) | 2009-10-09 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Magnetic surgical sled with locking arm |
US20110087224A1 (en) | 2009-10-09 | 2011-04-14 | Cadeddu Jeffrey A | Magnetic surgical sled with variable arm |
US9186203B2 (en) | 2009-10-09 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Method for exchanging end effectors In Vivo |
US9295485B2 (en) | 2009-10-09 | 2016-03-29 | Ethicon Endo-Surgery, Inc. | Loader for exchanging end effectors in vivo |
DE102009049143B3 (en) | 2009-10-12 | 2010-12-30 | Sopro-Comeg Gmbh | Rigid, rod shaped endoscope for examining inner organ of patient, has magnet within inner space, where movement of inner hollow tubes against innermost hollow tube takes place by forces produced by magnet |
US20110093009A1 (en) | 2009-10-16 | 2011-04-21 | Ethicon Endo-Surgery, Inc. | Otomy closure device |
US20110098694A1 (en) | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Methods and instruments for treating cardiac tissue through a natural orifice |
US20110098704A1 (en) | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
DE102009051408A1 (en) | 2009-10-30 | 2011-05-05 | Ovesco Endoscopy Ag | Medical instrument for setting tissue clips |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US20110112434A1 (en) | 2009-11-06 | 2011-05-12 | Ethicon Endo-Surgery, Inc. | Kits and procedures for natural orifice translumenal endoscopic surgery |
US20110112527A1 (en) | 2009-11-06 | 2011-05-12 | Angiodynamics, Inc. | Flexible medical ablation device and method of use |
US20110115891A1 (en) | 2009-11-13 | 2011-05-19 | Ethicon Endo-Surgery, Inc. | Energy delivery apparatus, system, and method for deployable medical electronic devices |
US20110152610A1 (en) | 2009-12-17 | 2011-06-23 | Ethicon Endo-Surgery, Inc. | Intralumenal accessory tip for endoscopic sheath arrangements |
US20110152878A1 (en) | 2009-12-17 | 2011-06-23 | Ethicon Endo-Surgery, Inc. | Interface systems for aiding clinicians in controlling and manipulating at least one endoscopic surgical instrument and a cable controlled guide tube system |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US20110152923A1 (en) | 2009-12-18 | 2011-06-23 | Ethicon Endo-Surgery, Inc. | Incision closure device |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8668686B2 (en) | 2009-12-23 | 2014-03-11 | Biosense Webster (Israel) Ltd. | Sensing contact of ablation catheter using differential temperature measurements |
US20110160514A1 (en) | 2009-12-31 | 2011-06-30 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8512335B2 (en) | 2010-05-20 | 2013-08-20 | Curo Medical, Inc. | High frequency alternating current medical device with self-limiting conductive material and method |
US8721539B2 (en) | 2010-01-20 | 2014-05-13 | EON Surgical Ltd. | Rapid laparoscopy exchange system and method of use thereof |
US20110190764A1 (en) | 2010-01-29 | 2011-08-04 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
CA2792529C (en) | 2010-03-11 | 2018-06-05 | Mainstay Medical, Inc. | Modular stimulator for treatment of back pain, implantable rf ablation system and methods of use |
US20110245619A1 (en) | 2010-04-01 | 2011-10-06 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US20110284014A1 (en) | 2010-05-19 | 2011-11-24 | The Board Of Regents Of The University Of Texas System | Medical Devices That Include Removable Magnet Units and Related Methods |
US9627120B2 (en) | 2010-05-19 | 2017-04-18 | The Board Of Regents Of The University Of Texas System | Magnetic throttling and control: magnetic control |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US20120005939A1 (en) | 2010-07-08 | 2012-01-12 | Vandewalle Thomas A | Fine line and string threading device |
US8636730B2 (en) | 2010-07-12 | 2014-01-28 | Covidien Lp | Polarity control of electrosurgical generator |
US9974944B2 (en) | 2010-07-29 | 2018-05-22 | Cameron Health, Inc. | Subcutaneous leads and methods of implant and explant |
WO2012031204A2 (en) | 2010-09-03 | 2012-03-08 | Guided Delivery Systems Inc. | Devices and methods for anchoring tissue |
US20120089093A1 (en) | 2010-10-07 | 2012-04-12 | Ethicon Endo-Surgery, Inc. | Seal arrangement for minimally invasive diagnostic or surgical instruments |
US20120089089A1 (en) | 2010-10-12 | 2012-04-12 | Ethicon Endo-Surgery, Inc. | Methods of magnetically guiding and axially aligning distal ends of surgical devices |
US20120088965A1 (en) | 2010-10-12 | 2012-04-12 | Ethicon Endo-Surgery, Inc. | Magnetically manipulatable surgical camera with removable adhesion removal system |
ES2751156T3 (en) | 2010-10-20 | 2020-03-30 | Medtronic Ardian Luxembourg | Catheter devices having expandable mesh structures for renal neuromodulation |
BR112013010002A2 (en) | 2010-10-25 | 2020-03-10 | Medtronic Ardian Luxembourg S.a.r.l | CATHETER APPLIANCE |
US20120116155A1 (en) | 2010-11-04 | 2012-05-10 | Ethicon Endo-Surgery, Inc. | Light-based, transcutaneous video signal transmission |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
WO2012068505A1 (en) | 2010-11-19 | 2012-05-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrode catheter device with indifferent electrode for direct current tissue therapies |
WO2012077107A2 (en) | 2010-12-08 | 2012-06-14 | Given Imaging Ltd. | Magnetically maneuverable in-vivo device |
US8771173B2 (en) | 2010-12-14 | 2014-07-08 | Saint Joseph's Translational Research Institute, Inc. | Access device for surgery |
WO2012088149A2 (en) | 2010-12-20 | 2012-06-28 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy |
US8747401B2 (en) | 2011-01-20 | 2014-06-10 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US20120191075A1 (en) | 2011-01-25 | 2012-07-26 | Ethicon Endo-Surgery, Inc. | Method and devices for pulling a tether through an organ wall |
US20120197246A1 (en) | 2011-01-28 | 2012-08-02 | Medtronic Vascular, Inc. | Ablation catheter |
WO2012112622A2 (en) | 2011-02-14 | 2012-08-23 | The Board Of Trustees Of The Leland Stanford Jr. University | Apparatus, systems, and methods for performing laparoscopic surgery |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US8978955B2 (en) | 2011-03-14 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Anvil assemblies with collapsible frames for circular staplers |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US8738141B2 (en) | 2011-04-07 | 2014-05-27 | Greatbatch, Ltd. | Contact assembly for implantable pulse generator and method of use |
US9788890B2 (en) | 2011-05-06 | 2017-10-17 | Minerva Surgical, Inc. | Methods for evaluating the integrity of a uterine cavity |
US20130030430A1 (en) | 2011-07-29 | 2013-01-31 | Stewart Mark T | Intracardiac tools and methods for delivery of electroporation therapies |
US8939969B2 (en) | 2011-09-30 | 2015-01-27 | Kimberly-Clark, Inc. | Electrosurgical device with offset conductive element |
US20130090666A1 (en) | 2011-10-06 | 2013-04-11 | Ethicon Endo-Surgery, Inc. | Vacuum assisted tissue manipulation devices and surgical methods |
MX2011013382A (en) | 2011-12-12 | 2013-06-20 | Equipos Medicos Vizcarra S A | Safety peripheral intravenous catheter having a quick, painless puncture system. |
US20130158348A1 (en) | 2011-12-14 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | Introducer for an internal magnetic camera |
US9149172B2 (en) | 2011-12-29 | 2015-10-06 | Given Imaging Ltd. | System and apparatus for anchoring and operation of in-vivo medical devices |
US9138586B2 (en) | 2012-01-27 | 2015-09-22 | Greatbatch Ltd. | Contact block using spherical electrical contacts for electrically contacting implantable leads |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
TWI463965B (en) | 2012-03-05 | 2014-12-11 | Gi Shih Lien | Magnetic maneuvering system of capsule endoscope |
US20130245356A1 (en) | 2012-03-15 | 2013-09-19 | Board Of Regents Of The University Of Texas System | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US20130267834A1 (en) | 2012-04-06 | 2013-10-10 | Tracy Scott McGee | Needle guidance apparatus and method |
US9364278B2 (en) | 2012-04-30 | 2016-06-14 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
CA2876628C (en) | 2012-06-29 | 2018-01-02 | Xhale, Inc. | Photoplethysmography sensors |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US20140014024A1 (en) | 2012-07-10 | 2014-01-16 | Joan Schroeder | Flag Retention Clips |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US20140052216A1 (en) | 2012-08-15 | 2014-02-20 | Ethicon Endo-Surgery, Inc. | Methods for promoting wound healing |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
JP5646674B2 (en) | 2013-03-19 | 2014-12-24 | ヤフー株式会社 | Terminal device, character input method, and character input program |
US9668725B2 (en) | 2015-03-24 | 2017-06-06 | Richard B. Beaven | Laparoscopic wound closure device |
-
2009
- 2009-10-28 US US12/607,252 patent/US20110098704A1/en not_active Abandoned
-
2010
- 2010-10-22 WO PCT/US2010/053694 patent/WO2011056464A2/en active Application Filing
-
2016
- 2016-08-29 US US15/250,507 patent/US10779882B2/en not_active Expired - Fee Related
Patent Citations (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2493108A (en) * | 1950-01-03 | Akticle handler | ||
US640938A (en) * | 1898-11-19 | 1900-01-09 | James W Patterson | Opera-glass shutter. |
US1127948A (en) * | 1914-12-31 | 1915-02-09 | Reinhold H Wappler | Cystoscope. |
US1482653A (en) * | 1923-01-16 | 1924-02-05 | William E Lilly | Gripping device |
US2031682A (en) * | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US2028635A (en) * | 1933-09-11 | 1936-01-21 | Wappler Frederick Charles | Forcipated surgical instrument |
US2191858A (en) * | 1939-06-09 | 1940-02-27 | William H Moore | Paper and trash picker tongs and the like |
US3170471A (en) * | 1962-04-23 | 1965-02-23 | Schnitzer Emanuel | Inflatable honeycomb |
US4311143A (en) * | 1978-10-12 | 1982-01-19 | Olympus Optical Co., Ltd. | Apparatus for resecting tissue inside the body cavity utilizing high-frequency currents |
US5597378A (en) * | 1983-10-14 | 1997-01-28 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
US4569347A (en) * | 1984-05-30 | 1986-02-11 | Advanced Cardiovascular Systems, Inc. | Catheter introducing device, assembly and method |
US4727600A (en) * | 1985-02-15 | 1988-02-23 | Emik Avakian | Infrared data communication system |
US4721116A (en) * | 1985-06-04 | 1988-01-26 | Schintgen Jean Marie | Retractable needle biopsy forceps and improved control cable therefor |
US4994079A (en) * | 1989-07-28 | 1991-02-19 | C. R. Bard, Inc. | Grasping forceps |
US6986774B2 (en) * | 1989-08-16 | 2006-01-17 | Medtronic, Inc. | Method of manipulating matter in a mammalian body |
US5275616A (en) * | 1990-10-01 | 1994-01-04 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5275616B1 (en) * | 1990-10-01 | 1996-01-23 | Quinton Instr | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5591205A (en) * | 1990-10-01 | 1997-01-07 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5287845A (en) * | 1991-01-19 | 1994-02-22 | Olympus Winter & Ibe Gmbh | Endoscope for transurethral surgery |
US5275614A (en) * | 1992-02-21 | 1994-01-04 | Habley Medical Technology Corporation | Axially extendable endoscopic surgical instrument |
US5284162A (en) * | 1992-07-14 | 1994-02-08 | Wilk Peter J | Method of treating the colon |
US5704892A (en) * | 1992-09-01 | 1998-01-06 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
US5387259A (en) * | 1992-10-20 | 1995-02-07 | Sun Microsystems, Inc. | Optical transdermal linking method for transmitting power and a first data stream while receiving a second data stream |
US5287852A (en) * | 1993-01-13 | 1994-02-22 | Direct Trends International Ltd. | Apparatus and method for maintaining a tracheal stoma |
US5479701A (en) * | 1993-05-25 | 1996-01-02 | Sumitomo Wiring Systems, Ltd. | Cover strip-off method in a covered wire cutting and stripping apparatus |
US6010515A (en) * | 1993-09-03 | 2000-01-04 | University College London | Device for use in tying knots |
US5377695A (en) * | 1994-01-13 | 1995-01-03 | An Haack; Karl W. | Wound-closing strip |
US5595562A (en) * | 1994-11-10 | 1997-01-21 | Research Corporation Technologies, Inc. | Magnetic enteral gastrostomy |
US5593420A (en) * | 1995-02-17 | 1997-01-14 | Mist, Inc. | Miniature endoscopic surgical instrument assembly and method of use |
US6179837B1 (en) * | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US6012494A (en) * | 1995-03-16 | 2000-01-11 | Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Flexible structure |
US5591179A (en) * | 1995-04-19 | 1997-01-07 | Applied Medical Resources Corporation | Anastomosis suturing device and method |
US5951547A (en) * | 1995-08-15 | 1999-09-14 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method |
US6090105A (en) * | 1995-08-15 | 2000-07-18 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method |
US5860995A (en) * | 1995-09-22 | 1999-01-19 | Misener Medical Co. Inc. | Laparoscopic endoscopic surgical instrument |
US5711921A (en) * | 1996-01-02 | 1998-01-27 | Kew Import/Export Inc. | Medical cleaning and sterilizing apparatus |
US5860913A (en) * | 1996-05-16 | 1999-01-19 | Olympus Optical Co., Ltd. | Endoscope whose distal cover can be freely detachably attached to main distal part thereof with high positioning precision |
US6991627B2 (en) * | 1996-05-20 | 2006-01-31 | Intuitive Surgical Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5855585A (en) * | 1996-06-11 | 1999-01-05 | X-Site, L.L.C. | Device and method for suturing blood vessels and the like |
US6169269B1 (en) * | 1996-09-05 | 2001-01-02 | Medtronic Inc. | Selectively activated shape memory device |
US6314963B1 (en) * | 1996-10-22 | 2001-11-13 | Epicor, Inc. | Method of ablating tissue from an epicardial location |
US6402746B1 (en) * | 1996-12-19 | 2002-06-11 | Ep Technologies, Inc. | Branched structures for supporting multiple electrode elements |
US5709708A (en) * | 1997-01-31 | 1998-01-20 | Thal; Raymond | Captured-loop knotless suture anchor assembly |
US6214028B1 (en) * | 1997-05-01 | 2001-04-10 | Inbae Yoon | Surgical instrument with multiple rotatably mounted offset end effectors and method of using the same |
US6179832B1 (en) * | 1997-09-11 | 2001-01-30 | Vnus Medical Technologies, Inc. | Expandable catheter having two sets of electrodes |
US6017356A (en) * | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US5995875A (en) * | 1997-10-01 | 1999-11-30 | United States Surgical | Apparatus for thermal treatment of tissue |
US6168570B1 (en) * | 1997-12-05 | 2001-01-02 | Micrus Corporation | Micro-strand cable with enhanced radiopacity |
US6508827B1 (en) * | 1998-01-14 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Instrument for application in endoscopic surgery |
US6506190B1 (en) * | 1998-05-21 | 2003-01-14 | Christopher J. Walshe | Tissue anchor system |
US6673092B1 (en) * | 1998-07-25 | 2004-01-06 | Karl Storz Gmbh & Co. Kg | Medical forceps with two independently moveable jaw parts |
US6190383B1 (en) * | 1998-10-21 | 2001-02-20 | Sherwood Services Ag | Rotatable electrode device |
US6672338B1 (en) * | 1998-12-14 | 2004-01-06 | Masayoshi Esashi | Active slender tubes and method of making the same |
US6170130B1 (en) * | 1999-01-15 | 2001-01-09 | Illinois Tool Works Inc. | Lashing system |
US6179766B1 (en) * | 1999-01-28 | 2001-01-30 | Gregg A. Dickerson | Methods of breast cancer treatment |
US6984205B2 (en) * | 1999-03-01 | 2006-01-10 | Gazdzinski Robert F | Endoscopic smart probe and method |
US6503192B1 (en) * | 1999-05-18 | 2003-01-07 | Pentax Corporation | Insertion facilitating device for intestinal endoscope |
US6168605B1 (en) * | 1999-07-08 | 2001-01-02 | Ethicon Endo-Surgery, Inc. | Curved laparoscopic scissor having arcs of curvature |
US7651509B2 (en) * | 1999-12-02 | 2010-01-26 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
US20030014090A1 (en) * | 2000-02-07 | 2003-01-16 | Hans Abrahamson | Wireless communication system for implamtable medical devices |
US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US7318802B2 (en) * | 2000-07-24 | 2008-01-15 | Olympus Optical Co., Ltd. | Endoscope and endoscopic suturing instrument for treatment of gastroesophageal reflux disease |
US6673087B1 (en) * | 2000-12-15 | 2004-01-06 | Origin Medsystems | Elongated surgical scissors |
US6679445B2 (en) * | 2001-01-10 | 2004-01-20 | Shimano Inc. | Spool for spinning reel |
US20040059328A1 (en) * | 2001-01-11 | 2004-03-25 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US7867216B2 (en) * | 2001-05-01 | 2011-01-11 | St. Jude Medical, Cardiology Division, Inc. | Emboli protection device and related methods of use |
US20070112342A1 (en) * | 2001-05-10 | 2007-05-17 | Rita Medical Systems, Inc. | Tissue ablation apparatus and method |
US7160296B2 (en) * | 2001-05-10 | 2007-01-09 | Rita Medical Systems, Inc. | Tissue ablation apparatus and method |
US6673058B2 (en) * | 2001-06-20 | 2004-01-06 | Scimed Life Systems, Inc. | Temporary dilating tip for gastro-intestinal tubes |
US6843794B2 (en) * | 2001-06-25 | 2005-01-18 | Ethicon Endo-Surgery, Inc. | Surgical clip applier having jaws adapted to guide and deform a clip |
US20030023255A1 (en) * | 2001-06-29 | 2003-01-30 | Miles Scott D. | Cannulation apparatus and method |
US20040199159A1 (en) * | 2001-09-12 | 2004-10-07 | Manoa Medical, Inc., A Delaware Corporation | Devices and methods for tissue severing and removal |
US7561907B2 (en) * | 2001-12-31 | 2009-07-14 | Biosense Webster, Inc. | Catheter having multiple spines each having electrical mapping and location sensing capabilities |
US6837847B2 (en) * | 2002-06-13 | 2005-01-04 | Usgi Medical, Inc. | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
US20040002683A1 (en) * | 2002-06-26 | 2004-01-01 | Nicholson Thomas J. | Percutaneous medical insertion device |
US6840346B2 (en) * | 2002-07-08 | 2005-01-11 | Honda Giken Kogyo Kabushiki Kaisha | Steering apparatus for a vehicle |
US6988967B2 (en) * | 2002-09-19 | 2006-01-24 | Danny Brian Allison | Team trampoline game and method of playing the same |
US6944490B1 (en) * | 2002-09-25 | 2005-09-13 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for positioning and delivering a therapeutic tool to the inside of a heart |
US20050004515A1 (en) * | 2002-11-15 | 2005-01-06 | Hart Charles C. | Steerable kink resistant sheath |
US7476237B2 (en) * | 2003-02-27 | 2009-01-13 | Olympus Corporation | Surgical instrument |
US20040254572A1 (en) * | 2003-04-25 | 2004-12-16 | Mcintyre Jon T. | Self anchoring radio frequency ablation array |
US7862546B2 (en) * | 2003-06-16 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Subcutaneous self attaching injection port with integral moveable retention members |
US7322934B2 (en) * | 2003-06-24 | 2008-01-29 | Olympus Corporation | Endoscope |
US20050059964A1 (en) * | 2003-09-12 | 2005-03-17 | Fitz William R. | Enhancing the effectiveness of medial branch nerve root RF neurotomy |
US7320695B2 (en) * | 2003-12-31 | 2008-01-22 | Biosense Webster, Inc. | Safe septal needle and method for its use |
US7323006B2 (en) * | 2004-03-30 | 2008-01-29 | Xtent, Inc. | Rapid exchange interventional devices and methods |
US20060183975A1 (en) * | 2004-04-14 | 2006-08-17 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal procedures |
US20060004410A1 (en) * | 2004-05-14 | 2006-01-05 | Nobis Rudolph H | Suture locking and cutting devices and methods |
US20060020167A1 (en) * | 2004-06-30 | 2006-01-26 | James Sitzmann | Medical devices for minimally invasive surgeries and other internal procedures |
US20060004406A1 (en) * | 2004-07-05 | 2006-01-05 | Helmut Wehrstein | Surgical instrument |
US20060015131A1 (en) * | 2004-07-15 | 2006-01-19 | Kierce Paul C | Cannula for in utero surgery |
US20080021416A1 (en) * | 2004-10-07 | 2008-01-24 | Keio University | Thin tube which can be hyperflexed by light |
US7229438B2 (en) * | 2004-10-14 | 2007-06-12 | Boston Scientific Scimed, Inc. | Ablation probe with distal inverted electrode array |
US7650742B2 (en) * | 2004-10-19 | 2010-01-26 | Tokyo Rope Manufacturing Co., Ltd. | Cable made of high strength fiber composite material |
US7163525B2 (en) * | 2004-12-17 | 2007-01-16 | Ethicon Endo-Surgery, Inc. | Duckbill seal protector |
US20060200121A1 (en) * | 2005-03-03 | 2006-09-07 | Mowery Thomas M | Navigable, multi-positional and variable tissue ablation apparatus and methods |
US20070010801A1 (en) * | 2005-06-22 | 2007-01-11 | Anna Chen | Medical device control system |
US7651483B2 (en) * | 2005-06-24 | 2010-01-26 | Ethicon Endo-Surgery, Inc. | Injection port |
US20070005019A1 (en) * | 2005-06-24 | 2007-01-04 | Terumo Kabushiki Kaisha | Catheter assembly |
US20070015965A1 (en) * | 2005-07-13 | 2007-01-18 | Usgi Medical Inc. | Methods and apparatus for colonic cleaning |
US8096459B2 (en) * | 2005-10-11 | 2012-01-17 | Ethicon Endo-Surgery, Inc. | Surgical stapler with an end effector support |
US20080027387A1 (en) * | 2005-10-31 | 2008-01-31 | Andreas Grabinsky | Cleveland round tip (CRT) needle |
US20090005636A1 (en) * | 2005-11-28 | 2009-01-01 | Mport Pte Ltd | Device for Laparoscopic or Thoracoscopic Surgery |
US20080015413A1 (en) * | 2006-02-22 | 2008-01-17 | Olympus Medical Systems Corporation | Capsule endoscope system and medical procedure |
US20080015409A1 (en) * | 2006-03-09 | 2008-01-17 | Barlow David E | Treatment device for endoscope |
US20100023032A1 (en) * | 2006-06-06 | 2010-01-28 | Luiz Gonzaga Granja Filho | Prosthesis for anastomosis |
US20080020927A1 (en) * | 2006-07-21 | 2008-01-24 | Globe Union Industrial Corp. | Metal-supporting photocatalyst and method for preparing the same |
US20120004502A1 (en) * | 2006-12-01 | 2012-01-05 | Boston Scientific Scimed, Inc. | Direct drive endoscopy systems and methods |
US20080200912A1 (en) * | 2007-02-15 | 2008-08-21 | Long Gary L | Electroporation ablation apparatus, system, and method |
US8088062B2 (en) * | 2007-06-28 | 2012-01-03 | Ethicon Endo-Surgery, Inc. | Interchangeable endoscopic end effectors |
US20090062788A1 (en) * | 2007-08-31 | 2009-03-05 | Long Gary L | Electrical ablation surgical instruments |
US20090076499A1 (en) * | 2007-09-14 | 2009-03-19 | Lazure Technologies, Llc. | Multi-layer electrode ablation probe and related methods |
US20100010303A1 (en) * | 2008-07-09 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Inflatable access device |
US20100010510A1 (en) * | 2008-07-09 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Devices and methods for placing occlusion fastners |
US20100010294A1 (en) * | 2008-07-10 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Temporarily positionable medical devices |
US20100010298A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal flexible overtube |
US20100010299A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US20100010511A1 (en) * | 2008-07-14 | 2010-01-14 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US20100057078A1 (en) * | 2008-09-02 | 2010-03-04 | Tyco Healthcare Group Lp | Catheter With Remotely Extendible Instruments |
US8303581B2 (en) * | 2008-09-02 | 2012-11-06 | Covidien Lp | Catheter with remotely extendible instruments |
US20100179530A1 (en) * | 2009-01-12 | 2010-07-15 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US20120330306A1 (en) * | 2009-01-12 | 2012-12-27 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8361066B2 (en) * | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8106473B2 (en) * | 2009-05-01 | 2012-01-31 | Sharp Laboratories Of America, Inc. | Germanium film optical device |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8449538B2 (en) | 2007-02-15 | 2013-05-28 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US20100087813A1 (en) * | 2007-02-15 | 2010-04-08 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US10478248B2 (en) | 2007-02-15 | 2019-11-19 | Ethicon Llc | Electroporation ablation apparatus, system, and method |
US8029504B2 (en) | 2007-02-15 | 2011-10-04 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US8425505B2 (en) | 2007-02-15 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US9375268B2 (en) | 2007-02-15 | 2016-06-28 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US8075572B2 (en) | 2007-04-26 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus |
US8100922B2 (en) | 2007-04-27 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Curved needle suturing tool |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US8939897B2 (en) | 2007-10-31 | 2015-01-27 | Ethicon Endo-Surgery, Inc. | Methods for closing a gastrotomy |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8114072B2 (en) | 2008-05-30 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Electrical ablation device |
US8070759B2 (en) | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8652150B2 (en) | 2008-05-30 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Multifunction surgical device |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
US11399834B2 (en) | 2008-07-14 | 2022-08-02 | Cilag Gmbh International | Tissue apposition clip application methods |
US10105141B2 (en) | 2008-07-14 | 2018-10-23 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application methods |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US20100331774A2 (en) * | 2008-08-15 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US20100042045A1 (en) * | 2008-08-15 | 2010-02-18 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8480689B2 (en) | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8114119B2 (en) | 2008-09-09 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
US9220526B2 (en) | 2008-11-25 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US10314603B2 (en) | 2008-11-25 | 2019-06-11 | Ethicon Llc | Rotational coupling device for surgical instrument with flexible actuators |
US8172772B2 (en) | 2008-12-11 | 2012-05-08 | Ethicon Endo-Surgery, Inc. | Specimen retrieval device |
US9011431B2 (en) | 2009-01-12 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US10004558B2 (en) | 2009-01-12 | 2018-06-26 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
US10779882B2 (en) | 2009-10-28 | 2020-09-22 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US10098691B2 (en) | 2009-12-18 | 2018-10-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US10278761B2 (en) | 2011-02-28 | 2019-05-07 | Ethicon Llc | Electrical ablation devices and methods |
US10258406B2 (en) | 2011-02-28 | 2019-04-16 | Ethicon Llc | Electrical ablation devices and methods |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9883910B2 (en) | 2011-03-17 | 2018-02-06 | Eticon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US11284918B2 (en) | 2012-05-14 | 2022-03-29 | Cilag GmbH Inlernational | Apparatus for introducing a steerable camera assembly into a patient |
US10206709B2 (en) | 2012-05-14 | 2019-02-19 | Ethicon Llc | Apparatus for introducing an object into a patient |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9788888B2 (en) | 2012-07-03 | 2017-10-17 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US10492880B2 (en) | 2012-07-30 | 2019-12-03 | Ethicon Llc | Needle probe guide |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US10342598B2 (en) | 2012-08-15 | 2019-07-09 | Ethicon Llc | Electrosurgical system for delivering a biphasic waveform |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US9788885B2 (en) | 2012-08-15 | 2017-10-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical system energy source |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US11484191B2 (en) | 2013-02-27 | 2022-11-01 | Cilag Gmbh International | System for performing a minimally invasive surgical procedure |
CN109310861A (en) * | 2016-06-14 | 2019-02-05 | 标准有限公司 | Utilize the therapeutic device of endoscope coordinated type electrode |
US20180317995A1 (en) * | 2017-05-02 | 2018-11-08 | C. R. Bard, Inc. | Systems And Methods Of An Electrohemostatic Renal Sheath |
US20200146749A1 (en) * | 2017-07-20 | 2020-05-14 | Changzhou Lunghealth Medtech Company Limited | Radiofrequency ablation catheter and system |
EP3656326A4 (en) * | 2017-07-20 | 2021-04-14 | Changzhou Lunghealth Medtech Company Limited | Radiofrequency ablation catheter and system |
US11166745B2 (en) * | 2017-09-12 | 2021-11-09 | Jessica Jameson | Multi-port epidural needle |
US11801072B2 (en) | 2017-09-12 | 2023-10-31 | Jessica Jameson | Multi-port epidural needle |
WO2019135185A1 (en) * | 2018-01-02 | 2019-07-11 | Rocworks, Llc | An adjustable nerve probe assembly |
US11857780B2 (en) | 2018-01-02 | 2024-01-02 | Rocworks, Llc | Adjustable nerve probe assembly |
US20200093537A1 (en) * | 2018-09-26 | 2020-03-26 | Erbe Elektromedizin Gmbh | HF-Surgical Preparation Instrument with Fluid Channel |
US12029471B2 (en) * | 2018-09-26 | 2024-07-09 | Erbe Elektromedizin Gmbh | HF-surgical preparation instrument with fluid channel |
CN112807079A (en) * | 2021-03-03 | 2021-05-18 | 江苏邦士医疗科技有限公司 | Telescopic scalpel for spine and scalpel head |
WO2024184808A1 (en) * | 2023-03-06 | 2024-09-12 | Acclarent, Inc. | Apparatus and method for ablation with variable electrode spacing and fluid medium |
Also Published As
Publication number | Publication date |
---|---|
US20170049508A1 (en) | 2017-02-23 |
WO2011056464A3 (en) | 2011-06-30 |
WO2011056464A2 (en) | 2011-05-12 |
US10779882B2 (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10779882B2 (en) | Electrical ablation devices | |
US10278761B2 (en) | Electrical ablation devices and methods | |
US9788888B2 (en) | Endoscopic cap electrode and method for using the same | |
US10004558B2 (en) | Electrical ablation devices | |
US20180303541A1 (en) | Surgical instrument comprising an electrode | |
US8506564B2 (en) | Surgical instrument comprising an electrode | |
US10258406B2 (en) | Electrical ablation devices and methods | |
US9314620B2 (en) | Electrical ablation devices and methods | |
US9005198B2 (en) | Surgical instrument comprising an electrode | |
US20170119465A1 (en) | Electrical ablation devices comprising an injector catheter electrode | |
US20110190764A1 (en) | Surgical instrument comprising an electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ETHICON ENDO-SURGERY, INC., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LONG, GARY L.;PLESCIA, DAVID N.;VAKHARIA, OMAR J.;SIGNING DATES FROM 20091116 TO 20091123;REEL/FRAME:023612/0388 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
AS | Assignment |
Owner name: CILAG GMBH INTERNATIONAL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056983/0569 Effective date: 20210405 |