US20100287152A1 - System, method and computer readable medium for web crawling - Google Patents

System, method and computer readable medium for web crawling Download PDF

Info

Publication number
US20100287152A1
US20100287152A1 US12/435,774 US43577409A US2010287152A1 US 20100287152 A1 US20100287152 A1 US 20100287152A1 US 43577409 A US43577409 A US 43577409A US 2010287152 A1 US2010287152 A1 US 2010287152A1
Authority
US
United States
Prior art keywords
url
web page
interaction data
data store
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/435,774
Inventor
Robert R. Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lipari Paul
Oracle America Inc
Suboti LLC
Original Assignee
Suboti LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suboti LLC filed Critical Suboti LLC
Priority to US12/435,774 priority Critical patent/US20100287152A1/en
Assigned to LIPARI, PAUL A, SUBOTI, LLC reassignment LIPARI, PAUL A ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAUSER, ROBERT R
Publication of US20100287152A1 publication Critical patent/US20100287152A1/en
Priority to US13/287,535 priority patent/US9940391B2/en
Assigned to LIPARI, PAUL, SUBOTI LLC reassignment LIPARI, PAUL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAUSER, ROBERT R.
Assigned to APRFSH17, LLC reassignment APRFSH17, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIPARI, PAUL, SUBOTI LLC
Assigned to Moat, Inc. reassignment Moat, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APRFSH17, LLC
Assigned to Oracle America, Inc. reassignment Oracle America, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Moat, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques

Definitions

  • This invention relates to a system, method and computer medium for crawling the web to find relevant internet content.
  • web crawlers are used to find new web pages by collecting and following URLs (Uniform Resource Locators). By following an URL and downloading the corresponding web page the links within that web page can be added to the web crawler's URL collection.
  • the web pages are stored for indexing and ranking by internet search engines.
  • Internet search engines use web page ranking algorithms that relate the links within a web page to the relevance of the web page.
  • link farms In order to manipulate a web page's ranking, a large sub-web of interlinked web pages is created and linked to a web page so that the page receives a high search engine ranking.
  • a problem with link farms is that a web crawler spends a lot of resources following links and collecting web pages for eventual indexing into a search engine, even though many of these pages are created only for page ranking and are not otherwise used by, nor useful for humans.
  • a method for web crawling comprising determining a plurality of Uniform Resource Locators (URL)s, determining a subset of the plurality of URLs that have associated interaction data, selecting at least one URL of the subset, and downloading a web page corresponding to the at least one selected URL.
  • URL Uniform Resource Locator
  • a web crawler comprising at least one Uniform Resource Locator (URL) data store that stores a plurality of URLs, at least one interaction data store that stores interaction data for a plurality of web pages, at least one download module that downloads web page content corresponding to a URL, and at least one URL selection module in communication with the at least one URL data store and the at least one interaction data store.
  • the interaction data indicates an interaction between a human and a web page corresponding to a URL.
  • the at least one URL selection module selects at least one URL from the at least one URL data store that has interaction data in the at least one interaction data store.
  • the at least one URL selection module provides the at least one selected URL to the at least one download module.
  • a computer-readable medium comprising computer-executable instructions for execution by a processor, that, when executed, cause the processor to select a Uniform Resource Locator (URL) from a URL data store, look up the selected URL in an interaction data store to determine if interaction data exists for the selected URL in the interaction data store, and if interaction data exists for the selected URL, provide the selected URL to a download module.
  • URL Uniform Resource Locator
  • FIG. 1 illustrates a web crawler in accordance with an embodiment of the disclosure
  • FIG. 2 illustrates a method for web crawling
  • FIG. 3 illustrates a method for downloading web pages in the web crawler of FIG. 1 ;
  • FIG. 4 illustrates a method of a URL selection module
  • FIG. 5 illustrates a system for recording and analyzing event data
  • FIG. 6 illustrates an event header message
  • FIG. 7 illustrates an event stream message
  • FIG. 8 illustrates an alternative web crawler embodiment
  • FIG. 9 illustrates an alternative method of the URL selection module
  • FIG. 10 illustrates a processor and memory of a URL selection module
  • FIG. 11 illustrates an instruction set that may be executed on the processor and memory of FIG. 10 ;
  • FIG. 12 illustrates the processor and memory of FIG. 10 in association with a processor and memory of an download module.
  • FIG. 1 A system 10 for providing web crawling in accordance with an embodiment of the disclosure is illustrated in FIG. 1 .
  • a web crawler 12 provides URL requests 21 to the internet 20 and downloads web pages 22 corresponding to the URL requests.
  • the web crawler 12 includes a download module 14 that downloads the web pages 22 and provides the web pages 22 to a web page data store 15 .
  • the web crawler 12 also includes a URL data store 16 , a URL selection module 18 and an interaction data store 19 . While the components of the web crawler are shown within the web crawler 12 , a person skilled in the art will readily understand that these components may be provided in a distributed form.
  • the various data stores may be co-located with processing modules such as the download module 14 or URL selection module 18 . Alternatively, the various data stores may be located offsite with data retrieval occurring through appropriate communication links.
  • a web crawling method using the system 10 of FIG. 1 is illustrated in the flowchart 100 of FIG. 2 .
  • the URL selection module 18 determines from the URL data store 16 a plurality of URLs for which web page content is to be downloaded.
  • the URLs may represent new web pages or web pages for which web page content, ranking statistics etc have not been updated for a period of time.
  • the URL selection module 18 accesses the interaction data store 19 to determine which URLs have interaction data associated with them. URLs for which interaction data exist are formed into a subset. At least one URL is selected from the subset (step 103 ) and provided to the download module 14 so that the web page corresponding to the URL can be downloaded (step 104 ).
  • the download module 14 downloads web pages 22 from the internet 20 and extracts linked URLs 13 from the download pages.
  • the operation of the download module in accordance with an embodiment of the disclosure is illustrated in the flowchart 200 of FIG. 3 .
  • the download module receives a URL 11 to fetch from the URL selection module 18 at step 201 .
  • the download module 14 sends a URL request 21 to an appropriate web server within the internet 20 (step 202 ) and downloads the web page 22 corresponding to the URL request 21 from the internet 20 (step 203 ).
  • the download module 14 extracts any URLs 13 found within the web page 22 .
  • These URLs are added to the URL data store 16 (step 205 ).
  • duplicate URLs are not stored multiple times and links extracted from web pages may need to be normalized into their respective URLs.
  • the web page 22 is also loaded into the web page data store 15 (step 206 ).
  • the URL selection module 18 reviews the URL data store 16 for URLs that have not yet been submitted to the download module 14 .
  • the URL selection module 18 accesses the interaction data store 19 to determine the subset of the selected URLs that have interaction data records.
  • the URL selection module selects the highest ranked URLs according to human interaction behavior (step 303 ).
  • human interaction behavior there are at least two types of human interaction behaviour that may be considered. There is a first type of human interaction in selecting a link (URL) that corresponds to a web page, even though the selected linked URL/web page may not have been downloaded and may not have any interaction data.
  • Another ranking could rely on the attention ranking of the content area containing the URL/link (the location of the URL/link within human attentive areas of the web pages containing the URL as a link).
  • the most preferred URLs have corresponding web pages that have highly ranked content areas, ranked by the amount of human attention, e.g time, that those content areas receive.
  • Other ranking and selection policies may be applied to filter the URLs at step 304 and a filtered set of the URLs is sent to the download module at step 305 , returning the cycle to step 201 of FIG. 3 .
  • the interaction data in the interaction data store 19 may be derived from interactions between users and the web page at client browsers, for example as described in any of the Applicant's co-pending patent applications Attorney Docket Nos. HAUSER001, HAUSER002, HAUSER006, HAUSER007, HAUSER007B, HAUSER008, HAUSER009, HAUSER010, the entire contents of each of which are explicitly incorporated herein by reference.
  • event recorders provided within the web pages may record event data during these interactions and provide event streams to an event server.
  • An example of an event data processing system is illustrated in FIG. 5 .
  • a client 118 provides web page requests 113 to a web server 114 , in response to which, the web server 114 provides page content 111 for display in a browser 115 of the client 118 .
  • the web page 111 will include visible content 127 as well as javascript applications.
  • the web server 114 may be modified such that the web page content provided to the client 118 includes an event observer module 126 which may be provided as appropriate code or scripts that run in the background of the client's browser 115 .
  • code for providing the event observer module 126 is provided to the web server 114 by a third party service, such as provided from an event server 112 , described in greater detail below.
  • the event observer module 126 observes events generated in a user interaction with the web page 111 at the client 118 .
  • the event observer module 126 records events generated within the web browser 115 , such as mouse clicks, mouse moves, text entries etc., and generates event streams 121 including an event header message 122 and one or more event stream messages 123 . It will be apparent to a person skilled in the art that terms used to describe mouse movements are to be considered broadly and to encompass all such cursor manipulation devices and will include a plug-in mouse, on board mouse, touch pad, pixel pen, eye-tracker, etc.
  • the event observer module 126 provides the event streams 121 to the event server 112 .
  • An example of an event header message 30 is illustrated in FIG. 6 and an example of an event stream message 40 is illustrated in FIG. 7 .
  • the messages 30 , 40 show a number of components that can be included, though in various embodiments, not all of these components may be required and additional components may be added.
  • an Interaction_ID 32 , 42 uniquely identifies an interaction between the client 18 and the web server 14 and aids to identify the particular event stream 121 .
  • the event header message 30 and the event stream message 40 may also identify the Uniform Resource Locator (URL) 31 , 41 . Fixed parameters such as the operating system 33 and browser type 34 may form part of the event header message 30 .
  • URL Uniform Resource Locator
  • Screen parameters 36 , 46 such as the screen size, depth and orientation may be included in either or both of the event header message 30 or the event stream message 40 .
  • a capture event stream 43 and a bubble event stream 44 specifies the events recorded in respective event capture and bubbling phases during the web page interaction. Each event may be indicated by the event type, time and x/y location relative to the viewport. Not all web browser types support event capture, and thus the capture event stream 43 may be empty. Where required, events missing from the event bubble stream may be inferred, for example as described in the Applicant's co-pending application Attorney Docket No. HAUSER002, referenced above.
  • An event_count field 45 may indicate the total number of unique events observed by the event observer module including those events not included in the event stream message 40 due to a current sampling function excluding them.
  • Timing parameters 48 may indicate the relevant period over which the event stream message 40 is current.
  • a user navigates the web page 111 and may enter content where appropriate, such as in the HTML form elements.
  • events are generated and recorded by the event observer module 126 .
  • the event observer module 126 formulates an event stream message 123 preceded by an event header message 122 if one has not yet been sent.
  • the event observer module 126 passes the event stream messages 123 to an event module 125 of the event server 112 .
  • the event stream 121 is provided directly to the event module 125 .
  • the event stream 121 may also be provided indirectly, e.g. via the web server 114 .
  • the event server 112 processes the event stream 121 in the event module 125 or an equivalent component, to analyze the event stream data. Analyzed data may be stored with the raw event stream messages in a content data store 128 . Additional modules of the event server may include an attention analysis module 139 as described in the Applicant's co-pending application HAUSER008 reference above, and a content interest processing module 138 as described in the Applicant's co-pending application HAUSER009 referenced above. In one embodiment, the event stream data can be analyzed to determine the probability that the interaction that created the event stream at the client is a human dependent interaction, for example as described in the Applicant's co-pending patent application Attorney Docket No. HAUSER001 referenced above.
  • the existence of any human interaction within the content areas of the web page may be used to indicate the validity of a URL, and such statistics may be loaded into the interaction data store 19 .
  • the web crawler 12 may include the event server 112 such that the web crawler is self contained.
  • human interaction data may be provided to the interaction data store as a third party service by an event server operator.
  • the event server 112 may maintain its own interaction data store and provide access to the interaction data store as a service.
  • the interaction data store 19 may store raw event streams with processing of the event streams being performed by the URL selection module 18 , for example to rank the URLs according.
  • the interaction data store may have an associated processing module (not shown) that pre-processes the interaction data so that the interaction data store stores the URLs in a ranked form.
  • a processing module may process the event streams to determine an event generator type (e.g. human, non-human, computer assisted human, etc) as described in the Applicant's co-pending patent application HAUSER001 and HAUSER006 referenced above.
  • an event generator type e.g. human, non-human, computer assisted human, etc
  • the event streams may be processed to select those events streams containing out-click events, i.e. events that a user produces to exit a web page.
  • the event streams and/or the page content may also be analyzed to determine additional preferred behavior, such as a breadth-first traversal of the web site, backlink count, partial page-rank calculations, page-rank calculations using a link graph with URLs only if those URLs have sufficient human interaction, etc.
  • the interaction pattern for parked pages, link farms, auto generated “spam” pages may be identified and used to remove these URLs from the crawl graph (not pursue the links) and/or remove such URLs from page-rank calculations.
  • a summary of the event statistics including any data used to rank the web pages may be stored in the interaction data store 19 .
  • the web crawler 212 is modified to include a content interest data store 218 , which may be the same as the content interest data store described in the Applicant's co-pending application Attorney Docket No. HAUSER009 referenced above.
  • the content interest data store 218 may store content interest data including a content interest score that ranks the various elements of a web page by the interest they receive during interactions between users and the respective web page.
  • the elements are document object model (DOM) elements of the web page.
  • Content interest may be derived from an attention analysis of the event streams to determine where a user's attention focus was directed during an interaction, as described in the Applicant's co-pending application Attorney Docket No. HAUSER008 referenced above.
  • Steps 401 - 405 are equivalent to steps 201 - 205 of the download module 14 described with reference to FIG. 3 above.
  • the content interest data store 217 may be queried (step 406 ) to determine if the web page being downloaded has content interest data. If no content interest data is available, the process proceeds as before by storing the web page content into the web page data store 15 (step 407 ). If content interest data is available, then the page elements may be ranked by their respective content interest score (step 408 ). At step 409 , a filter policy may be applied to the content elements.
  • content elements may be filtered for the most interesting content or for content above a certain threshold content interest score.
  • content elements such as DOM elements, may be grouped by similar content interest scores for an indexer or search engine. After filtering, the content elements of the web page, or at least those elements that pass the filter, may be stored in the web page data store 15 (step 410 ).
  • the modified web crawler 212 of FIG. 8 may be used to apply alternative URL selection policies in the URL selection module 18 .
  • the URL selection module may select only URLs having human out-clicks, where the source element, i.e. the content element where a user's attention was directed prior to the out-click event, is a content element with a high content interest score.
  • This selection policy requires a data correlation between the last content element to have the focus of the user's attention and the link (URL) of a human out-click. Such a data correlation may be built from the event stream and attention analysis data.
  • An alternative URL selection policy may specify that URLs (or human out-click URLs) will only be followed if there is some form of human area of interest within the page where the URL was found, e.g. a content element with a high enough content interest score.
  • a further alternative URL selection policy may specify that URLs (or human out-click URLs) will only be followed if they are found within a content element with high enough content interest.
  • the URL selection policies followed by the URL selection module focus the web crawlers resources towards those web pages that are actively used by humans and thus generate particular attention events. Using the selection policies may significantly increase the efficiency of the web crawler and assist in providing higher quality page ranking statistics. Furthermore, as described above, common human browsing patterns, can be recognized via attention analysis for link farm pages, parked pages where the most interesting content is advertisements, and auto-generated “spam” pages. Human outclicks on pages that have no content of interest other than ads can be ignored by the URL selection module.
  • the embodiments described herein provide an enhanced system and method for web crawling that avoids spending resources collecting web pages that are not useful to humans.
  • the effect of these embodiments is to reduce or eliminate the advantages of a link farm and to remove search engine spam.
  • the requirement to crawl less of the internet can provide large resource savings as well as making page ranking of web pages more efficient and useful for humans.
  • the web crawler 12 may be embodied in hardware, software, firmware or a combination of hardware, software and/or firmware.
  • components of the web crawler 12 may be embodied in a device, such as server hardware, computer, etc.
  • the URL selection module 18 may include a processor 61 operatively associated with a memory 62 as shown in FIG. 10 .
  • the memory 62 may store instructions that are executable on the processor 61 .
  • the memory 62 may provide elements of the URL data store 16 and/or interaction data store 19 .
  • An instruction set 500 that may be executed on the URL selection module processor 61 is depicted in the flowchart of FIG. 11 .
  • the instruction set 500 allows the processor to select (step 501 ) a URL from the URL data store and look up the URL in the interaction data store to determine if interaction data for the URL exists (step 502 ). If interaction data does exist, the processor 61 provides the selected URL to the download module.
  • the download module may also be embodied in hardware and have a processor 71 and operatively associated memory 72 as shown in FIG. 12 .
  • the download module processor 71 may communicate with the URL selection module processor 61 by an appropriate communication link. If appropriate, aspects of the URL selection module may be performed by the download module. For example, the download module may perform ranking of the URLs to be downloaded or may choose to ignore URLs provided by the URL selection module if content interest data for a URL is unavailable or indicates an insufficient content interest score.
  • the information sent between various modules can be sent between the modules via at least one of a data network, the Internet, an Internet Protocol network, a wireless source, and a wired source and via plurality of protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

In a web crawler, a URL selection module selects URLs for pages to be downloaded. The URL selection module accesses an interaction data store that stores interaction data for web pages, including interaction data that indicates human interactions with the pages. To reduce the effects of link farms, the URL selection module filters the URLs to select only those URLs that have human interaction histories and provides the selected URLs to a download module for web page downloading.

Description

    FIELD OF THE INVENTION
  • This invention relates to a system, method and computer medium for crawling the web to find relevant internet content.
  • BACKGROUND OF THE INVENTION
  • In internet technology, web crawlers are used to find new web pages by collecting and following URLs (Uniform Resource Locators). By following an URL and downloading the corresponding web page the links within that web page can be added to the web crawler's URL collection. The web pages are stored for indexing and ranking by internet search engines. Internet search engines use web page ranking algorithms that relate the links within a web page to the relevance of the web page.
  • The use of link popularity algorithms to rank web pages has lead to the problem of “link farms”. In order to manipulate a web page's ranking, a large sub-web of interlinked web pages is created and linked to a web page so that the page receives a high search engine ranking. In addition to distortion of web page rankings, a problem with link farms is that a web crawler spends a lot of resources following links and collecting web pages for eventual indexing into a search engine, even though many of these pages are created only for page ranking and are not otherwise used by, nor useful for humans.
  • What is required is a system, method and computer readable medium that provides enhanced web crawling.
  • SUMMARY OF THE INVENTION
  • In one aspect of the disclosure, there is provided a method for web crawling comprising determining a plurality of Uniform Resource Locators (URL)s, determining a subset of the plurality of URLs that have associated interaction data, selecting at least one URL of the subset, and downloading a web page corresponding to the at least one selected URL.
  • In one aspect of the disclosure, there is provided a web crawler comprising at least one Uniform Resource Locator (URL) data store that stores a plurality of URLs, at least one interaction data store that stores interaction data for a plurality of web pages, at least one download module that downloads web page content corresponding to a URL, and at least one URL selection module in communication with the at least one URL data store and the at least one interaction data store. The interaction data indicates an interaction between a human and a web page corresponding to a URL. The at least one URL selection module selects at least one URL from the at least one URL data store that has interaction data in the at least one interaction data store. The at least one URL selection module provides the at least one selected URL to the at least one download module.
  • In one aspect of the disclosure, there is provided a computer-readable medium comprising computer-executable instructions for execution by a processor, that, when executed, cause the processor to select a Uniform Resource Locator (URL) from a URL data store, look up the selected URL in an interaction data store to determine if interaction data exists for the selected URL in the interaction data store, and if interaction data exists for the selected URL, provide the selected URL to a download module.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference will now be made, by way of example only, to specific embodiments and to the accompanying drawings in which:
  • FIG. 1 illustrates a web crawler in accordance with an embodiment of the disclosure;
  • FIG. 2 illustrates a method for web crawling;
  • FIG. 3 illustrates a method for downloading web pages in the web crawler of FIG. 1;
  • FIG. 4 illustrates a method of a URL selection module;
  • FIG. 5 illustrates a system for recording and analyzing event data;
  • FIG. 6 illustrates an event header message;
  • FIG. 7 illustrates an event stream message;
  • FIG. 8 illustrates an alternative web crawler embodiment;
  • FIG. 9 illustrates an alternative method of the URL selection module;
  • FIG. 10 illustrates a processor and memory of a URL selection module;
  • FIG. 11 illustrates an instruction set that may be executed on the processor and memory of FIG. 10; and
  • FIG. 12 illustrates the processor and memory of FIG. 10 in association with a processor and memory of an download module.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • A system 10 for providing web crawling in accordance with an embodiment of the disclosure is illustrated in FIG. 1. In the system 10, a web crawler 12 provides URL requests 21 to the internet 20 and downloads web pages 22 corresponding to the URL requests. The web crawler 12 includes a download module 14 that downloads the web pages 22 and provides the web pages 22 to a web page data store 15. The web crawler 12 also includes a URL data store 16, a URL selection module 18 and an interaction data store 19. While the components of the web crawler are shown within the web crawler 12, a person skilled in the art will readily understand that these components may be provided in a distributed form. For example, the various data stores may be co-located with processing modules such as the download module 14 or URL selection module 18. Alternatively, the various data stores may be located offsite with data retrieval occurring through appropriate communication links.
  • A web crawling method using the system 10 of FIG. 1 is illustrated in the flowchart 100 of FIG. 2. At step 101, the URL selection module 18 determines from the URL data store 16 a plurality of URLs for which web page content is to be downloaded. The URLs may represent new web pages or web pages for which web page content, ranking statistics etc have not been updated for a period of time. At step 102, the URL selection module 18 accesses the interaction data store 19 to determine which URLs have interaction data associated with them. URLs for which interaction data exist are formed into a subset. At least one URL is selected from the subset (step 103) and provided to the download module 14 so that the web page corresponding to the URL can be downloaded (step 104).
  • The download module 14 downloads web pages 22 from the internet 20 and extracts linked URLs 13 from the download pages. The operation of the download module in accordance with an embodiment of the disclosure is illustrated in the flowchart 200 of FIG. 3. The download module receives a URL 11 to fetch from the URL selection module 18 at step 201. The download module 14 sends a URL request 21 to an appropriate web server within the internet 20 (step 202) and downloads the web page 22 corresponding to the URL request 21 from the internet 20 (step 203). At step 204, the download module 14 extracts any URLs 13 found within the web page 22. These URLs are added to the URL data store 16 (step 205). As is known, duplicate URLs are not stored multiple times and links extracted from web pages may need to be normalized into their respective URLs. The web page 22 is also loaded into the web page data store 15 (step 206).
  • The operation of the URL selection module 18 in accordance with an embodiment of the disclosure is shown in the flowchart 300 of FIG. 4. At step 301, the URL selection module 18 reviews the URL data store 16 for URLs that have not yet been submitted to the download module 14. At step 302, the URL selection module 18 accesses the interaction data store 19 to determine the subset of the selected URLs that have interaction data records. The URL selection module then selects the highest ranked URLs according to human interaction behavior (step 303). In general, there are at least two types of human interaction behaviour that may be considered. There is a first type of human interaction in selecting a link (URL) that corresponds to a web page, even though the selected linked URL/web page may not have been downloaded and may not have any interaction data. This “human interaction” uses the analysis of the source element ranking and attention shift that happens in the various web pages that link to the URL/web-page-of-interest. Another case of “human interaction” utilizes the content of interest ranking within the URL/web-page-of-interest. This helps rank the importance of this URL in the link-graph. That is, how much, if any, content on the web-page/URL gets human attention time (independent of any links within the page). In ranking the URLs, a specific human behavior is an out-click of the URL on web pages that have the URL as a link. One ranking measure for human out-clicks may be the ratio of human out-clicks to total interaction exits per web page that display the URL as a link. Another ranking could rely on the attention ranking of the content area containing the URL/link (the location of the URL/link within human attentive areas of the web pages containing the URL as a link). Within the web page corresponding to a URL, the most preferred URLs have corresponding web pages that have highly ranked content areas, ranked by the amount of human attention, e.g time, that those content areas receive. Other ranking and selection policies may be applied to filter the URLs at step 304 and a filtered set of the URLs is sent to the download module at step 305, returning the cycle to step 201 of FIG. 3.
  • The interaction data in the interaction data store 19 may be derived from interactions between users and the web page at client browsers, for example as described in any of the Applicant's co-pending patent applications Attorney Docket Nos. HAUSER001, HAUSER002, HAUSER006, HAUSER007, HAUSER007B, HAUSER008, HAUSER009, HAUSER010, the entire contents of each of which are explicitly incorporated herein by reference. In particular, event recorders provided within the web pages may record event data during these interactions and provide event streams to an event server. An example of an event data processing system is illustrated in FIG. 5. In the system 110, a client 118 provides web page requests 113 to a web server 114, in response to which, the web server 114 provides page content 111 for display in a browser 115 of the client 118. Typically, the web page 111 will include visible content 127 as well as javascript applications.
  • The web server 114 may be modified such that the web page content provided to the client 118 includes an event observer module 126 which may be provided as appropriate code or scripts that run in the background of the client's browser 115. In one embodiment, code for providing the event observer module 126 is provided to the web server 114 by a third party service, such as provided from an event server 112, described in greater detail below.
  • The event observer module 126 observes events generated in a user interaction with the web page 111 at the client 118. The event observer module 126 records events generated within the web browser 115, such as mouse clicks, mouse moves, text entries etc., and generates event streams 121 including an event header message 122 and one or more event stream messages 123. It will be apparent to a person skilled in the art that terms used to describe mouse movements are to be considered broadly and to encompass all such cursor manipulation devices and will include a plug-in mouse, on board mouse, touch pad, pixel pen, eye-tracker, etc.
  • The event observer module 126 provides the event streams 121 to the event server 112. An example of an event header message 30 is illustrated in FIG. 6 and an example of an event stream message 40 is illustrated in FIG. 7. The messages 30, 40 show a number of components that can be included, though in various embodiments, not all of these components may be required and additional components may be added. Primarily, an Interaction_ID 32, 42 uniquely identifies an interaction between the client 18 and the web server 14 and aids to identify the particular event stream 121. The event header message 30 and the event stream message 40 may also identify the Uniform Resource Locator (URL) 31, 41. Fixed parameters such as the operating system 33 and browser type 34 may form part of the event header message 30. Screen parameters 36, 46 such as the screen size, depth and orientation may be included in either or both of the event header message 30 or the event stream message 40. A capture event stream 43 and a bubble event stream 44 specifies the events recorded in respective event capture and bubbling phases during the web page interaction. Each event may be indicated by the event type, time and x/y location relative to the viewport. Not all web browser types support event capture, and thus the capture event stream 43 may be empty. Where required, events missing from the event bubble stream may be inferred, for example as described in the Applicant's co-pending application Attorney Docket No. HAUSER002, referenced above. An event_count field 45 may indicate the total number of unique events observed by the event observer module including those events not included in the event stream message 40 due to a current sampling function excluding them. Timing parameters 48 may indicate the relevant period over which the event stream message 40 is current.
  • During an interaction with the web page 111, a user navigates the web page 111 and may enter content where appropriate, such as in the HTML form elements. During this interaction events are generated and recorded by the event observer module 126. Periodically, the event observer module 126 formulates an event stream message 123 preceded by an event header message 122 if one has not yet been sent. The event observer module 126 passes the event stream messages 123 to an event module 125 of the event server 112. In the embodiment illustrated in FIG. 5, the event stream 121 is provided directly to the event module 125. However, the event stream 121 may also be provided indirectly, e.g. via the web server 114.
  • The event server 112 processes the event stream 121 in the event module 125 or an equivalent component, to analyze the event stream data. Analyzed data may be stored with the raw event stream messages in a content data store 128. Additional modules of the event server may include an attention analysis module 139 as described in the Applicant's co-pending application HAUSER008 reference above, and a content interest processing module 138 as described in the Applicant's co-pending application HAUSER009 referenced above. In one embodiment, the event stream data can be analyzed to determine the probability that the interaction that created the event stream at the client is a human dependent interaction, for example as described in the Applicant's co-pending patent application Attorney Docket No. HAUSER001 referenced above. In the present embodiment, the existence of any human interaction within the content areas of the web page, such as hints, lingers or clicks within the content areas, may be used to indicate the validity of a URL, and such statistics may be loaded into the interaction data store 19. In one embodiment, the web crawler 12 may include the event server 112 such that the web crawler is self contained. In an alternative embodiment, human interaction data may be provided to the interaction data store as a third party service by an event server operator. Alternatively, the event server 112 may maintain its own interaction data store and provide access to the interaction data store as a service.
  • The interaction data store 19 may store raw event streams with processing of the event streams being performed by the URL selection module 18, for example to rank the URLs according. Alternatively, the interaction data store may have an associated processing module (not shown) that pre-processes the interaction data so that the interaction data store stores the URLs in a ranked form. For example, a processing module may process the event streams to determine an event generator type (e.g. human, non-human, computer assisted human, etc) as described in the Applicant's co-pending patent application HAUSER001 and HAUSER006 referenced above. Once an interaction with a webpage has been classified as a human interaction, the data may be further processed to rank the particular behavior of the interactions. For example, the event streams may be processed to select those events streams containing out-click events, i.e. events that a user produces to exit a web page. The event streams and/or the page content may also be analyzed to determine additional preferred behavior, such as a breadth-first traversal of the web site, backlink count, partial page-rank calculations, page-rank calculations using a link graph with URLs only if those URLs have sufficient human interaction, etc. In one embodiment, the interaction pattern for parked pages, link farms, auto generated “spam” pages (that use random snippets from a variety of authentic web pages just to get high search engine ranking based on the keywords in the snippets) may be identified and used to remove these URLs from the crawl graph (not pursue the links) and/or remove such URLs from page-rank calculations.
  • A summary of the event statistics including any data used to rank the web pages may be stored in the interaction data store 19.
  • An alternative embodiment is illustrated in FIG. 8. In this embodiment, the web crawler 212 is modified to include a content interest data store 218, which may be the same as the content interest data store described in the Applicant's co-pending application Attorney Docket No. HAUSER009 referenced above. The content interest data store 218 may store content interest data including a content interest score that ranks the various elements of a web page by the interest they receive during interactions between users and the respective web page. In one particular embodiment, the elements are document object model (DOM) elements of the web page. Content interest may be derived from an attention analysis of the event streams to determine where a user's attention focus was directed during an interaction, as described in the Applicant's co-pending application Attorney Docket No. HAUSER008 referenced above.
  • An operation of the download module 214 is illustrated in the flowchart 400 of FIG. 9. Steps 401-405 are equivalent to steps 201-205 of the download module 14 described with reference to FIG. 3 above. Once the URLs found within a web page are added to the URL data store 16 at step 405, the content interest data store 217 may be queried (step 406) to determine if the web page being downloaded has content interest data. If no content interest data is available, the process proceeds as before by storing the web page content into the web page data store 15 (step 407). If content interest data is available, then the page elements may be ranked by their respective content interest score (step 408). At step 409, a filter policy may be applied to the content elements. For example, content elements may be filtered for the most interesting content or for content above a certain threshold content interest score. Alternatively, content elements, such as DOM elements, may be grouped by similar content interest scores for an indexer or search engine. After filtering, the content elements of the web page, or at least those elements that pass the filter, may be stored in the web page data store 15 (step 410).
  • In a further embodiment, the modified web crawler 212 of FIG. 8 may be used to apply alternative URL selection policies in the URL selection module 18. In one embodiment, the URL selection module may select only URLs having human out-clicks, where the source element, i.e. the content element where a user's attention was directed prior to the out-click event, is a content element with a high content interest score. This selection policy requires a data correlation between the last content element to have the focus of the user's attention and the link (URL) of a human out-click. Such a data correlation may be built from the event stream and attention analysis data.
  • An alternative URL selection policy may specify that URLs (or human out-click URLs) will only be followed if there is some form of human area of interest within the page where the URL was found, e.g. a content element with a high enough content interest score. A further alternative URL selection policy may specify that URLs (or human out-click URLs) will only be followed if they are found within a content element with high enough content interest.
  • The URL selection policies followed by the URL selection module focus the web crawlers resources towards those web pages that are actively used by humans and thus generate particular attention events. Using the selection policies may significantly increase the efficiency of the web crawler and assist in providing higher quality page ranking statistics. Furthermore, as described above, common human browsing patterns, can be recognized via attention analysis for link farm pages, parked pages where the most interesting content is advertisements, and auto-generated “spam” pages. Human outclicks on pages that have no content of interest other than ads can be ignored by the URL selection module.
  • The embodiments described herein provide an enhanced system and method for web crawling that avoids spending resources collecting web pages that are not useful to humans. The effect of these embodiments is to reduce or eliminate the advantages of a link farm and to remove search engine spam. At current internet growth rates, the requirement to crawl less of the internet can provide large resource savings as well as making page ranking of web pages more efficient and useful for humans. By focusing crawling to the web pages relevant to and used by humans, the ability of artificially manipulate search engine rankings is reduced.
  • The web crawler 12 may be embodied in hardware, software, firmware or a combination of hardware, software and/or firmware. In a hardware embodiment, components of the web crawler 12 may be embodied in a device, such as server hardware, computer, etc. For example, the URL selection module 18 may include a processor 61 operatively associated with a memory 62 as shown in FIG. 10. The memory 62 may store instructions that are executable on the processor 61. In addition, the memory 62 may provide elements of the URL data store 16 and/or interaction data store 19. An instruction set 500 that may be executed on the URL selection module processor 61 is depicted in the flowchart of FIG. 11. Specifically, when executed, the instruction set 500 allows the processor to select (step 501) a URL from the URL data store and look up the URL in the interaction data store to determine if interaction data for the URL exists (step 502). If interaction data does exist, the processor 61 provides the selected URL to the download module. The download module may also be embodied in hardware and have a processor 71 and operatively associated memory 72 as shown in FIG. 12. The download module processor 71 may communicate with the URL selection module processor 61 by an appropriate communication link. If appropriate, aspects of the URL selection module may be performed by the download module. For example, the download module may perform ranking of the URLs to be downloaded or may choose to ignore URLs provided by the URL selection module if content interest data for a URL is unavailable or indicates an insufficient content interest score.
  • Although embodiments of the present invention have been illustrated in the accompanied drawings and described in the foregoing description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications, and substitutions without departing from the spirit of the invention as set forth and defined by the following claims. For example, the capabilities of the invention can be performed fully and/or partially by one or more of the blocks, modules, processors or memories. Also, these capabilities may be performed in the current manner or in a distributed manner and on, or via, any device able to provide and/or receive information. Further, although depicted in a particular manner, various modules or blocks may be repositioned without departing from the scope of the current invention. Still further, although depicted in a particular manner, a greater or lesser number of modules and connections can be utilized with the present invention in order to accomplish the present invention, to provide additional known features to the present invention, and/or to make the present invention more efficient. Also, the information sent between various modules can be sent between the modules via at least one of a data network, the Internet, an Internet Protocol network, a wireless source, and a wired source and via plurality of protocols.

Claims (20)

1. A method for web crawling comprising:
determining a plurality of Uniform Resource Locators (URL)s;
determining a subset of the plurality of URLs that have associated interaction data;
selecting at least one URL of the subset; and
downloading a web page corresponding to the at least one selected URL.
2. The method according to claim 1 wherein determining the subset comprises:
accessing an interaction data store that stores interaction data that associates a URL with an interaction with a web page corresponding to the respective URL; and
selecting a URL into the subset if a web page corresponding to the URL has interaction data.
3. The method according to claim 2 comprising ranking the subset of URLs using the interaction data.
4. The method according to claim 3 wherein the interaction data indicates one or more out-click events from the corresponding web page of an associated URL and wherein ranking the subset of URLs comprises ranking the URLs dependent on the one or more out-click events.
5. The method according to claim 4 wherein ranking a URL is dependent on a source content element of the web page prior to an out-click event.
6. The method according to claim 5 wherein ranking a URL is dependent on an attention analysis ranking of the source content element.
7. The method according to claim 3 wherein selecting at least one URL comprises selecting a highest ranked URL.
8. The method according to claim 2 comprising selecting a URL into the subset if a web page corresponding to the URL has interaction data that indicates at least one human dependent interaction with a web page associated with the URL.
9. The method according to claim 1 wherein downloading a web page comprises determining content interest of one or more content elements of the web page.
10. The method according to claim 9 comprising storing content elements that satisfy a threshold content interest requirement.
11. The method according to claim 1 wherein said downloading comprises providing the subset of URLs to a download module.
12. The method according to claim 1 further comprising storing the interaction data comprising:
receiving an event stream from an interaction between a user and a web page;
analyzing the event stream; and
storing the analyzed event stream in association with a URL for the respective web page.
13. A web crawler comprising:
at least one Uniform Resource Locator (URL) data store that stores a plurality of URLs;
at least one interaction data store that stores interaction data for a plurality of web pages, the interaction data indicating an interaction between a human and a web page corresponding to a URL;
at least one download module that downloads web page content corresponding to a URL; and
at least one URL selection module in communication with the at least one URL data store and the at least one interaction data store;
wherein the at least one URL selection module selects at least one URL from the at least one URL data store that has interaction data in the at least one interaction data store; and
wherein the at least one URL selection module provides the at least one selected URL to the at least one download module.
14. The web crawler according to claim 13 further comprising:
at least one content interest data store that stores an attention ranking of one or more content elements of a web page; and
at least one web page data store;
wherein the download module is configured to:
utilize the at least one content interest data store to determine a content interest score of one or more content elements of a downloaded web page; and
store the one or more content elements of the downloaded web page in the at least one web page data store dependent on the respective content interest score.
15. The web crawler according to claim 14 wherein the at least one web page data store is configured to group content elements of a plurality of web pages according to their content interest score.
16. The web crawler according to claim 13 comprising an event server that:
receives at least one event stream generated during an interaction with a web page on a client browser;
analyzes the event stream; and
stores the analyzed event stream in the interaction data store.
17. The web crawler according to claim 16 wherein the event server analyzes the at least one event stream to determine an event generator type of the event stream.
18. The web crawler according to claim 13 wherein the at least one interaction data store receives interaction data from an event server.
19. A computer-readable medium comprising computer-executable instructions for execution by a processor, that, when executed, cause the processor to:
select a Uniform Resource Locator (URL) from a URL data store;
look up the selected URL in an interaction data store to determine if interaction data exists for the selected URL in the interaction data store; and
if interaction data exists for the selected URL, provide the selected URL to a download module.
20. The computer readable medium according to claim 19 comprising computer-executable instructions for execution by the processor, that, when executed, cause the processor to:
select a plurality of URLs from the URL data store that have corresponding interaction data in the interaction data store;
rank the plurality of URLs according to out-click event data of the interaction data;
provide at least one of the plurality of URLs to the download module;
wherein the at least one URL provided to the download module is provided depending on the rank.
US12/435,774 2009-05-05 2009-05-05 System, method and computer readable medium for web crawling Abandoned US20100287152A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/435,774 US20100287152A1 (en) 2009-05-05 2009-05-05 System, method and computer readable medium for web crawling
US13/287,535 US9940391B2 (en) 2009-05-05 2011-11-02 System, method and computer readable medium for web crawling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/435,774 US20100287152A1 (en) 2009-05-05 2009-05-05 System, method and computer readable medium for web crawling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/287,535 Continuation US9940391B2 (en) 2009-05-05 2011-11-02 System, method and computer readable medium for web crawling

Publications (1)

Publication Number Publication Date
US20100287152A1 true US20100287152A1 (en) 2010-11-11

Family

ID=43062955

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/435,774 Abandoned US20100287152A1 (en) 2009-05-05 2009-05-05 System, method and computer readable medium for web crawling
US13/287,535 Active US9940391B2 (en) 2009-05-05 2011-11-02 System, method and computer readable medium for web crawling

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/287,535 Active US9940391B2 (en) 2009-05-05 2011-11-02 System, method and computer readable medium for web crawling

Country Status (1)

Country Link
US (2) US20100287152A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120284332A1 (en) * 2010-11-03 2012-11-08 Anantha Pradeep Systems and methods for formatting a presentation in webpage based on neuro-response data
US20130174050A1 (en) * 2011-12-30 2013-07-04 Nokia Corporation Method and apparatus for downloading third party content within the same web page context
US8799455B1 (en) * 2011-03-18 2014-08-05 Amazon Technologies, Inc. Addressable network resource selection management
US9280268B2 (en) 2012-08-16 2016-03-08 International Business Machines Corporation Identifying equivalent javascript events
US9454646B2 (en) 2010-04-19 2016-09-27 The Nielsen Company (Us), Llc Short imagery task (SIT) research method
US9495453B2 (en) 2011-05-24 2016-11-15 Microsoft Technology Licensing, Llc Resource download policies based on user browsing statistics
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US9940391B2 (en) 2009-05-05 2018-04-10 Oracle America, Inc. System, method and computer readable medium for web crawling
US10079738B1 (en) * 2015-11-19 2018-09-18 Amazon Technologies, Inc. Using a network crawler to test objects of a network document
US20190057163A1 (en) * 2017-08-18 2019-02-21 Sap Se Classification of log entry types
US10303722B2 (en) 2009-05-05 2019-05-28 Oracle America, Inc. System and method for content selection for web page indexing
US10311362B1 (en) * 2014-12-12 2019-06-04 Amazon Technologies, Inc. Identification of trending content using social network activity and user interests
CN109862018A (en) * 2019-02-21 2019-06-07 中国工商银行股份有限公司 Anti- crawler method and system based on user access activity
US10565588B2 (en) * 2015-03-12 2020-02-18 International Business Machines Corporation Cryptographic methods implementing proofs of work in systems of interconnected nodes
US10987015B2 (en) 2009-08-24 2021-04-27 Nielsen Consumer Llc Dry electrodes for electroencephalography
US11303714B2 (en) * 2016-12-14 2022-04-12 Rewardstyle, Inc. System and method for application traffic control
US11481788B2 (en) 2009-10-29 2022-10-25 Nielsen Consumer Llc Generating ratings predictions using neuro-response data
US11704681B2 (en) 2009-03-24 2023-07-18 Nielsen Consumer Llc Neurological profiles for market matching and stimulus presentation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171156B2 (en) * 2008-07-25 2012-05-01 JumpTime, Inc. Method and system for determining overall content values for content elements in a web network and for optimizing internet traffic flow through the web network
US8832257B2 (en) 2009-05-05 2014-09-09 Suboti, Llc System, method and computer readable medium for determining an event generator type
US8862569B2 (en) * 2012-01-11 2014-10-14 Google Inc. Method and techniques for determining crawling schedule
US20140280554A1 (en) * 2013-03-15 2014-09-18 Yahoo! Inc. Method and system for dynamic discovery and adaptive crawling of content from the internet
US11829423B2 (en) * 2021-06-25 2023-11-28 Microsoft Technology Licensing, Llc Determining that a resource is spam based upon a uniform resource locator of the webpage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848108B1 (en) * 1998-06-30 2005-01-25 Microsoft Corporation Method and apparatus for creating, sending, and using self-descriptive objects as messages over a message queuing network
US7051042B2 (en) * 2003-05-01 2006-05-23 Oracle International Corporation Techniques for transferring a serialized image of XML data
US20070050338A1 (en) * 2005-08-29 2007-03-01 Strohm Alan C Mobile sitemaps
US20070239701A1 (en) * 2006-03-29 2007-10-11 International Business Machines Corporation System and method for prioritizing websites during a webcrawling process
US20090106221A1 (en) * 2007-10-18 2009-04-23 Microsoft Corporation Ranking and Providing Search Results Based In Part On A Number Of Click-Through Features
US20090276399A1 (en) * 2008-04-30 2009-11-05 Yahoo! Inc. Ranking documents through contextual shortcuts
US20090287645A1 (en) * 2008-05-15 2009-11-19 Yahoo! Inc. Search results with most clicked next objects

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696731B2 (en) 1998-04-30 2005-09-21 株式会社日立製作所 Structured document search method and apparatus, and computer-readable recording medium recording a structured document search program
EP1141811A2 (en) 1998-12-08 2001-10-10 Mediadna, Inc. A system and method of obfuscating data
US6981040B1 (en) 1999-12-28 2005-12-27 Utopy, Inc. Automatic, personalized online information and product services
US6581072B1 (en) 2000-05-18 2003-06-17 Rakesh Mathur Techniques for identifying and accessing information of interest to a user in a network environment without compromising the user's privacy
US7877421B2 (en) 2001-05-25 2011-01-25 International Business Machines Corporation Method and system for mapping enterprise data assets to a semantic information model
JP2005526314A (en) 2002-05-20 2005-09-02 タタ インフォテック リミティド Document structure identifier
US7111000B2 (en) 2003-01-06 2006-09-19 Microsoft Corporation Retrieval of structured documents
US7289983B2 (en) 2003-06-19 2007-10-30 International Business Machines Corporation Personalized indexing and searching for information in a distributed data processing system
US7363582B2 (en) 2003-11-14 2008-04-22 Research In Motion Limited System and method of retrieving and presenting partial (skipped) document content
US7991786B2 (en) 2003-11-25 2011-08-02 International Business Machines Corporation Using intra-document indices to improve XQuery processing over XML streams
US20060004725A1 (en) 2004-06-08 2006-01-05 Abraido-Fandino Leonor M Automatic generation of a search engine for a structured document
WO2006011819A1 (en) 2004-07-30 2006-02-02 Eurekster, Inc. Adaptive search engine
US7702671B2 (en) 2005-04-29 2010-04-20 Microsoft Corporation Systems and methods for discovery of data that needs improving or authored using user search results diagnostics
US7693817B2 (en) 2005-06-29 2010-04-06 Microsoft Corporation Sensing, storing, indexing, and retrieving data leveraging measures of user activity, attention, and interest
US20100153836A1 (en) 2008-12-16 2010-06-17 Rich Media Club, Llc Content rendering control system and method
US7555480B2 (en) 2006-07-11 2009-06-30 Microsoft Corporation Comparatively crawling web page data records relative to a template
US20080046218A1 (en) 2006-08-16 2008-02-21 Microsoft Corporation Visual summarization of activity data of a computing session
FR2907934B1 (en) 2006-10-27 2009-02-06 Inst Nat Rech Inf Automat COMPUTER TOOL FOR MANAGING DIGITAL DOCUMENTS
US20080228910A1 (en) 2007-03-12 2008-09-18 International Business Machines Corporation Method for monitoring user interaction to maximize internet web page real estate
US20080270375A1 (en) * 2007-04-27 2008-10-30 France Telecom Local news search engine
US7765236B2 (en) 2007-08-31 2010-07-27 Microsoft Corporation Extracting data content items using template matching
US8078624B2 (en) 2007-12-20 2011-12-13 International Business Machines Corporation Content searching for portals having secure content
US20120191691A1 (en) 2008-04-07 2012-07-26 Robert Hansen Method for assessing and improving search engine value and site layout based on passive sniffing and content modification
US8156120B2 (en) 2008-10-22 2012-04-10 James Brady Information retrieval using user-generated metadata
US20100114706A1 (en) 2008-11-04 2010-05-06 Nokia Corporation Linked Hierarchical Advertisements
US10303722B2 (en) 2009-05-05 2019-05-28 Oracle America, Inc. System and method for content selection for web page indexing
US9442621B2 (en) 2009-05-05 2016-09-13 Suboti, Llc System, method and computer readable medium for determining user attention area from user interface events
US8832257B2 (en) 2009-05-05 2014-09-09 Suboti, Llc System, method and computer readable medium for determining an event generator type
US8327385B2 (en) 2009-05-05 2012-12-04 Suboti, Llc System and method for recording web page events
US9330395B2 (en) 2009-05-05 2016-05-03 Suboti, Llc System, method and computer readable medium for determining attention areas of a web page
US20100287152A1 (en) 2009-05-05 2010-11-11 Paul A. Lipari System, method and computer readable medium for web crawling
US8751628B2 (en) 2009-05-05 2014-06-10 Suboti, Llc System and method for processing user interface events
US9507870B2 (en) 2009-05-05 2016-11-29 Suboti, Llc System, method and computer readable medium for binding authored content to the events used to generate the content
US9336191B2 (en) 2009-05-05 2016-05-10 Suboti, Llc System, method and computer readable medium for recording authoring events with web page content
US10699235B2 (en) 2009-05-05 2020-06-30 Oracle America, Inc. System, method and computer readable medium for placing advertisements into web pages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848108B1 (en) * 1998-06-30 2005-01-25 Microsoft Corporation Method and apparatus for creating, sending, and using self-descriptive objects as messages over a message queuing network
US7051042B2 (en) * 2003-05-01 2006-05-23 Oracle International Corporation Techniques for transferring a serialized image of XML data
US20070050338A1 (en) * 2005-08-29 2007-03-01 Strohm Alan C Mobile sitemaps
US20070239701A1 (en) * 2006-03-29 2007-10-11 International Business Machines Corporation System and method for prioritizing websites during a webcrawling process
US20090106221A1 (en) * 2007-10-18 2009-04-23 Microsoft Corporation Ranking and Providing Search Results Based In Part On A Number Of Click-Through Features
US20090276399A1 (en) * 2008-04-30 2009-11-05 Yahoo! Inc. Ranking documents through contextual shortcuts
US20090287645A1 (en) * 2008-05-15 2009-11-19 Yahoo! Inc. Search results with most clicked next objects

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11704681B2 (en) 2009-03-24 2023-07-18 Nielsen Consumer Llc Neurological profiles for market matching and stimulus presentation
US9940391B2 (en) 2009-05-05 2018-04-10 Oracle America, Inc. System, method and computer readable medium for web crawling
US10324984B2 (en) 2009-05-05 2019-06-18 Oracle America, Inc. System and method for content selection for web page indexing
US10303722B2 (en) 2009-05-05 2019-05-28 Oracle America, Inc. System and method for content selection for web page indexing
US10987015B2 (en) 2009-08-24 2021-04-27 Nielsen Consumer Llc Dry electrodes for electroencephalography
US11669858B2 (en) 2009-10-29 2023-06-06 Nielsen Consumer Llc Analysis of controlled and automatic attention for introduction of stimulus material
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US11481788B2 (en) 2009-10-29 2022-10-25 Nielsen Consumer Llc Generating ratings predictions using neuro-response data
US11170400B2 (en) 2009-10-29 2021-11-09 Nielsen Consumer Llc Analysis of controlled and automatic attention for introduction of stimulus material
US10068248B2 (en) 2009-10-29 2018-09-04 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US10269036B2 (en) 2009-10-29 2019-04-23 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US10248195B2 (en) 2010-04-19 2019-04-02 The Nielsen Company (Us), Llc. Short imagery task (SIT) research method
US11200964B2 (en) 2010-04-19 2021-12-14 Nielsen Consumer Llc Short imagery task (SIT) research method
US9454646B2 (en) 2010-04-19 2016-09-27 The Nielsen Company (Us), Llc Short imagery task (SIT) research method
US20120284332A1 (en) * 2010-11-03 2012-11-08 Anantha Pradeep Systems and methods for formatting a presentation in webpage based on neuro-response data
US10089405B2 (en) * 2011-03-18 2018-10-02 Amazon Technologies, Inc. Addressable network resource selection management
US20140344290A1 (en) * 2011-03-18 2014-11-20 Amazon Technologies, Inc. Addressable network resource selection management
US8799455B1 (en) * 2011-03-18 2014-08-05 Amazon Technologies, Inc. Addressable network resource selection management
US9495453B2 (en) 2011-05-24 2016-11-15 Microsoft Technology Licensing, Llc Resource download policies based on user browsing statistics
US20130174050A1 (en) * 2011-12-30 2013-07-04 Nokia Corporation Method and apparatus for downloading third party content within the same web page context
US10881348B2 (en) 2012-02-27 2021-01-05 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US10901730B2 (en) 2012-08-16 2021-01-26 International Business Machines Corporation Identifying equivalent javascript events
US10169037B2 (en) 2012-08-16 2019-01-01 International Business Machines Coproration Identifying equivalent JavaScript events
US9280268B2 (en) 2012-08-16 2016-03-08 International Business Machines Corporation Identifying equivalent javascript events
US10311362B1 (en) * 2014-12-12 2019-06-04 Amazon Technologies, Inc. Identification of trending content using social network activity and user interests
US10565588B2 (en) * 2015-03-12 2020-02-18 International Business Machines Corporation Cryptographic methods implementing proofs of work in systems of interconnected nodes
US10771844B2 (en) 2015-05-19 2020-09-08 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US11290779B2 (en) 2015-05-19 2022-03-29 Nielsen Consumer Llc Methods and apparatus to adjust content presented to an individual
US10079738B1 (en) * 2015-11-19 2018-09-18 Amazon Technologies, Inc. Using a network crawler to test objects of a network document
US11979469B2 (en) 2016-12-14 2024-05-07 Rewardstyle, Inc. System and method for application traffic control
US11303714B2 (en) * 2016-12-14 2022-04-12 Rewardstyle, Inc. System and method for application traffic control
US11785108B2 (en) 2016-12-14 2023-10-10 Rewardstyle, Inc. System and method for application traffic control
US11528335B2 (en) 2016-12-14 2022-12-13 Rewardstyle, Inc. System and method for application traffic control
US20190057163A1 (en) * 2017-08-18 2019-02-21 Sap Se Classification of log entry types
US10726069B2 (en) * 2017-08-18 2020-07-28 Sap Se Classification of log entry types
CN109862018A (en) * 2019-02-21 2019-06-07 中国工商银行股份有限公司 Anti- crawler method and system based on user access activity

Also Published As

Publication number Publication date
US20120047122A1 (en) 2012-02-23
US9940391B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
US9940391B2 (en) System, method and computer readable medium for web crawling
US20240176831A1 (en) Auto-refinement of search results based on monitored search activities of users
KR101298888B1 (en) Mobile sitemaps
CN106503134B (en) Browser jumps to the method for data synchronization and device of application program
CN107609135B (en) Page element determining method and device, and user behavior path determining method and device
US8775550B2 (en) Caching HTTP request and response streams
US8756224B2 (en) Methods, systems, and media for content ranking using real-time data
CN102932207B (en) The method of monitoring website access information and server
CN104750471B (en) WEB page performance detection, acquisition and analysis plug-in and method based on browser
CN102932206B (en) The method and system of monitoring website access information
US8239257B2 (en) Displaying online advertisements
Qiu et al. Analysis of user web traffic with a focus on search activities.
US7631263B2 (en) Methods, systems, and computer program products for characterizing links to resources not activated
US20090327863A1 (en) Referrer-based website personalization
CN102521251A (en) Method for directly realizing personalized search, device for realizing method, and search server
CN103412890A (en) Webpage loading method and device
US20130046747A1 (en) Synthesizing directories, domains, and subdomains
CN101127038A (en) System and method for downloading website static web page
CN106776983B (en) Search engine optimization device and method
US20120166961A1 (en) Method and system for presenting a navigation path for enabling retrieval of content
CN103559203A (en) Method, device and system for web page sorting
KR20190131778A (en) Web Crawler System for Collecting a Structured and Unstructured Data in Hidden URL
CN103123640A (en) Method and device for searching novel
CN104468720B (en) A kind of determining preview link simultaneously provides it method of dynamic previewing information
CN103460205A (en) Method and apparatus for web page prefetching

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIPARI, PAUL A, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUSER, ROBERT R;REEL/FRAME:022656/0430

Effective date: 20090501

Owner name: SUBOTI, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUSER, ROBERT R;REEL/FRAME:022656/0430

Effective date: 20090501

AS Assignment

Owner name: SUBOTI LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUSER, ROBERT R.;REEL/FRAME:042120/0547

Effective date: 20170417

Owner name: LIPARI, PAUL, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAUSER, ROBERT R.;REEL/FRAME:042120/0547

Effective date: 20170417

Owner name: APRFSH17, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUBOTI LLC;LIPARI, PAUL;REEL/FRAME:042120/0590

Effective date: 20170417

AS Assignment

Owner name: MOAT, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:APRFSH17, LLC;REEL/FRAME:043268/0275

Effective date: 20170717

AS Assignment

Owner name: ORACLE AMERICA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOAT, INC.;REEL/FRAME:043288/0748

Effective date: 20170719

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION