US20100215691A1 - Recombinant viral vectors - Google Patents
Recombinant viral vectors Download PDFInfo
- Publication number
- US20100215691A1 US20100215691A1 US12/708,940 US70894010A US2010215691A1 US 20100215691 A1 US20100215691 A1 US 20100215691A1 US 70894010 A US70894010 A US 70894010A US 2010215691 A1 US2010215691 A1 US 2010215691A1
- Authority
- US
- United States
- Prior art keywords
- vsv
- env
- hiv
- stem
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000013603 viral vector Substances 0.000 title description 7
- 241000711975 Vesicular stomatitis virus Species 0.000 claims abstract description 216
- 210000004027 cell Anatomy 0.000 claims description 80
- 239000013598 vector Substances 0.000 claims description 80
- 108090000623 proteins and genes Proteins 0.000 claims description 67
- 241000700605 Viruses Species 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 57
- 102000004169 proteins and genes Human genes 0.000 claims description 50
- 239000002245 particle Substances 0.000 claims description 35
- 230000003472 neutralizing effect Effects 0.000 claims description 33
- 208000015181 infectious disease Diseases 0.000 claims description 29
- 239000012528 membrane Substances 0.000 claims description 25
- 239000013638 trimer Substances 0.000 claims description 23
- 230000028993 immune response Effects 0.000 claims description 20
- 210000005220 cytoplasmic tail Anatomy 0.000 claims description 19
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 17
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 14
- 229920001184 polypeptide Polymers 0.000 claims description 12
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 claims description 11
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 claims description 11
- 230000003389 potentiating effect Effects 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 6
- 102000012750 Membrane Glycoproteins Human genes 0.000 claims description 5
- 108010090054 Membrane Glycoproteins Proteins 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 230000003362 replicative effect Effects 0.000 claims description 4
- 230000002163 immunogen Effects 0.000 abstract description 45
- 239000000203 mixture Substances 0.000 abstract description 34
- 229960005486 vaccine Drugs 0.000 abstract description 24
- 208000030507 AIDS Diseases 0.000 abstract description 12
- 230000000069 prophylactic effect Effects 0.000 abstract description 4
- 229940021993 prophylactic vaccine Drugs 0.000 abstract description 3
- 229940021747 therapeutic vaccine Drugs 0.000 abstract description 3
- 208000035473 Communicable disease Diseases 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000000746 purification Methods 0.000 abstract 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 84
- 235000018102 proteins Nutrition 0.000 description 47
- 239000000427 antigen Substances 0.000 description 42
- 108091007433 antigens Proteins 0.000 description 38
- 102000036639 antigens Human genes 0.000 description 38
- 230000014509 gene expression Effects 0.000 description 35
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 29
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 25
- 230000003612 virological effect Effects 0.000 description 23
- 108020004705 Codon Proteins 0.000 description 21
- 238000003780 insertion Methods 0.000 description 20
- 230000037431 insertion Effects 0.000 description 20
- 150000007523 nucleic acids Chemical group 0.000 description 20
- 108091006027 G proteins Proteins 0.000 description 19
- 102000030782 GTP binding Human genes 0.000 description 19
- 108091000058 GTP-Binding Proteins 0.000 description 19
- 108091028043 Nucleic acid sequence Proteins 0.000 description 19
- 235000001014 amino acid Nutrition 0.000 description 19
- 102000039446 nucleic acids Human genes 0.000 description 19
- 108020004707 nucleic acids Proteins 0.000 description 19
- 229940024606 amino acid Drugs 0.000 description 18
- 210000004379 membrane Anatomy 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 18
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 16
- 230000003053 immunization Effects 0.000 description 16
- 238000002649 immunization Methods 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 102000053602 DNA Human genes 0.000 description 15
- 241000713666 Lentivirus Species 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 15
- 239000013604 expression vector Substances 0.000 description 15
- 239000012634 fragment Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 241000282414 Homo sapiens Species 0.000 description 12
- 102100034349 Integrase Human genes 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 11
- 238000001262 western blot Methods 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 10
- 102000037865 fusion proteins Human genes 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 102000003886 Glycoproteins Human genes 0.000 description 9
- 108090000288 Glycoproteins Proteins 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 108060001084 Luciferase Proteins 0.000 description 8
- 239000005089 Luciferase Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 8
- 238000005457 optimization Methods 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 7
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 7
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- -1 aromatic amino acids Chemical class 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 210000003501 vero cell Anatomy 0.000 description 7
- 210000002845 virion Anatomy 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 208000031886 HIV Infections Diseases 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 230000002458 infectious effect Effects 0.000 description 6
- 230000037452 priming Effects 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 108010046722 Thrombospondin 1 Proteins 0.000 description 5
- 102100036034 Thrombospondin-1 Human genes 0.000 description 5
- 108700019146 Transgenes Proteins 0.000 description 5
- 108020000999 Viral RNA Proteins 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920002477 rna polymer Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- QQHITEBEBQNARV-UHFFFAOYSA-N 3-[[2-carboxy-2-(2,5-dioxopyrrolidin-1-yl)-2-sulfoethyl]disulfanyl]-2-(2,5-dioxopyrrolidin-1-yl)-2-sulfopropanoic acid Chemical compound O=C1CCC(=O)N1C(S(O)(=O)=O)(C(=O)O)CSSCC(S(O)(=O)=O)(C(O)=O)N1C(=O)CCC1=O QQHITEBEBQNARV-UHFFFAOYSA-N 0.000 description 4
- 101710121417 Envelope glycoprotein Proteins 0.000 description 4
- 101710091045 Envelope protein Proteins 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 241001183012 Modified Vaccinia Ankara virus Species 0.000 description 4
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 4
- 101710188315 Protein X Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000007910 cell fusion Effects 0.000 description 4
- 241001493065 dsRNA viruses Species 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 239000007764 o/w emulsion Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 229940125575 vaccine candidate Drugs 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 3
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical class CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108010041397 CD4 Antigens Proteins 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 208000037357 HIV infectious disease Diseases 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 108010067390 Viral Proteins Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 108010078428 env Gene Products Proteins 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 235000004554 glutamine Nutrition 0.000 description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- 230000029812 viral genome replication Effects 0.000 description 3
- 241000710929 Alphavirus Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000711404 Avian avulavirus 1 Species 0.000 description 2
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 2
- 241000712083 Canine morbillivirus Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000011510 Elispot assay Methods 0.000 description 2
- 101150082239 G gene Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108010061833 Integrases Proteins 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 241000712079 Measles morbillivirus Species 0.000 description 2
- 241000711408 Murine respirovirus Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 241000711931 Rhabdoviridae Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000710959 Venezuelan equine encephalitis virus Species 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 230000036436 anti-hiv Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-M decanoate Chemical compound CCCCCCCCCC([O-])=O GHVNFZFCNZKVNT-UHFFFAOYSA-M 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 2
- 108700004028 nef Genes Proteins 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 2
- AQIXEPGDORPWBJ-UHFFFAOYSA-N pentan-3-ol Chemical compound CCC(O)CC AQIXEPGDORPWBJ-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- KMXFZRSJMDYPPG-UHFFFAOYSA-N tetratetracontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC KMXFZRSJMDYPPG-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 238000005829 trimerization reaction Methods 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-KVTDHHQDSA-N (2r,3r,4r)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@@H](O)[C@H]1O JNYAEWCLZODPBN-KVTDHHQDSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- YUXKOWPNKJSTPQ-AXWWPMSFSA-N (2s,3r)-2-amino-3-hydroxybutanoic acid;(2s)-2-amino-3-hydroxypropanoic acid Chemical compound OC[C@H](N)C(O)=O.C[C@@H](O)[C@H](N)C(O)=O YUXKOWPNKJSTPQ-AXWWPMSFSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- VQFKFAKEUMHBLV-BYSUZVQFSA-N 1-O-(alpha-D-galactosyl)-N-hexacosanoylphytosphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)[C@H](O)CCCCCCCCCCCCCC)CO[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQFKFAKEUMHBLV-BYSUZVQFSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- UMHYVXGZRGOICM-AUYXYSRISA-N 2-[(z)-octadec-9-enoyl]oxypropyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C)OC(=O)CCCCCCC\C=C/CCCCCCCC UMHYVXGZRGOICM-AUYXYSRISA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000700663 Avipoxvirus Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000713704 Bovine immunodeficiency virus Species 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000711969 Chandipura virus Species 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 101000709520 Chlamydia trachomatis serovar L2 (strain 434/Bu / ATCC VR-902B) Atypical response regulator protein ChxR Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241000501789 Cocal virus Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 101710126503 Envelope glycoprotein G Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000713800 Feline immunodeficiency virus Species 0.000 description 1
- 108010040721 Flagellin Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 230000037060 G2 phase arrest Effects 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 229940033330 HIV vaccine Drugs 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 108010048209 Human Immunodeficiency Virus Proteins Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102100034353 Integrase Human genes 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 241001109688 Isfahan virus Species 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 101150096038 PTH1R gene Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 101710149136 Protein Vpr Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 102000008234 Toll-like receptor 5 Human genes 0.000 description 1
- 108010060812 Toll-like receptor 5 Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241001517166 Vesicular stomatitis Alagoas virus Species 0.000 description 1
- 241000711973 Vesicular stomatitis Indiana virus Species 0.000 description 1
- 241000711959 Vesicular stomatitis New Jersey virus Species 0.000 description 1
- 241000711970 Vesiculovirus Species 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 101710201961 Virion infectivity factor Proteins 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 208000010399 Wasting Syndrome Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229940060265 aldara Drugs 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- HUTDDBSSHVOYJR-UHFFFAOYSA-H bis[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphaplumbetan-2-yl)oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O HUTDDBSSHVOYJR-UHFFFAOYSA-H 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N butyl alcohol Substances CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 101150030339 env gene Proteins 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 108700004026 gag Genes Proteins 0.000 description 1
- 101150098622 gag gene Proteins 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 229940042743 immune sera Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 101150023385 nef gene Proteins 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000030147 nuclear export Effects 0.000 description 1
- 230000012223 nuclear import Effects 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N p-hydroxybenzoic acid methyl ester Natural products COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 108010025356 pTHr.HIVA Proteins 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 108700004029 pol Genes Proteins 0.000 description 1
- 101150088264 pol gene Proteins 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229940010310 propylene glycol dioleate Drugs 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 108700004030 rev Genes Proteins 0.000 description 1
- 101150098213 rev gene Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- ZZIZZTHXZRDOFM-XFULWGLBSA-N tamsulosin hydrochloride Chemical compound [H+].[Cl-].CCOC1=CC=CC=C1OCCN[C@H](C)CC1=CC=C(OC)C(S(N)(=O)=O)=C1 ZZIZZTHXZRDOFM-XFULWGLBSA-N 0.000 description 1
- 108700004027 tat Genes Proteins 0.000 description 1
- 101150098170 tat gene Proteins 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 208000005925 vesicular stomatitis Diseases 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000029302 virus maturation Effects 0.000 description 1
- 108700026222 vpu Genes Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/21—Retroviridae, e.g. equine infectious anemia virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16051—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20241—Use of virus, viral particle or viral elements as a vector
- C12N2760/20243—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20251—Methods of production or purification of viral material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/15—Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, feline leukaemia virus, human T-cell leukaemia-lymphoma virus
- G01N2333/155—Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
- G01N2333/16—HIV-1, HIV-2
- G01N2333/162—HIV-1, HIV-2 env, e.g. gp160, gp110/120, gp41, V3, peptid T, DC4-Binding site
Definitions
- the present invention relates to recombinant vesicular stomatitis virus for use as prophylactic and therapeutic vaccines for infectious diseases of AIDS.
- HIV human immunodeficiency virus
- SIV simian immunodeficiency viruses
- An infectious HIV particle consists of two identical strands of RNA, each approximately 9.2 kb long, packaged within a core of viral proteins. This core structure is surrounded by a phospholipid bilayer envelope derived from the host cell membrane that also includes virally-encoded membrane proteins (Abbas et al., Cellular and Molecular Immunology, 4th edition, W.B. Saunders Company, 2000, p. 454).
- the HIV genome has the characteristic 5′-LTR-Gag-Pol-Env-LTR-3′ organization of the retrovirus family. Long terminal repeats (LTRs) at each end of the viral genome serve as binding sites for transcriptional regulatory proteins from the host and regulate viral integration into the host genome, viral gene expression, and viral replication.
- LTRs Long terminal repeats
- the HIV genome encodes several structural proteins.
- the gag gene encodes structural proteins of the nucleocapsid core and matrix.
- the pol gene encodes reverse transcriptase (RT), integrase (IN), and viral protease (PR) enzymes required for viral replication.
- the tat gene encodes a protein that is required for elongation of viral transcripts.
- the rev gene encodes a protein that promotes the nuclear export of incompletely spliced or unspliced viral RNAs.
- the vif gene product enhances the infectivity of viral particles.
- the vpr gene product promotes the nuclear import of viral DNA and regulates G2 cell cycle arrest.
- the vpu and nef genes encode proteins that down regulate host cell CD4 expression and enhance release of virus from infected cells.
- the env gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41), which are required for the infection of cells (Abbas, pp. 454-456).
- gp140 is a modified form of the Env glycoprotein, which contains the external 120-kDa envelope glycoprotein portion and the extracellular part of the gp41 portion of Env and has characteristics of both gp120 and gp41.
- the nef gene is conserved among primate lentiviruses and is one of the first viral genes that is transcribed following infection. In vitro, several functions have been described, including down-regulation of CD4 and MHC class I surface expression, altered T-cell signaling and activation, and enhanced viral infectivity.
- HIV infection initiates with gp120 on the viral particle binding to the CD4 and chemokine receptor molecules (e.g., CXCR4, CCR5) on the cell membrane of target cells such as CD4 + T-cells, macrophages and dendritic cells.
- CD4 and chemokine receptor molecules e.g., CXCR4, CCR5
- target cells such as CD4 + T-cells, macrophages and dendritic cells.
- the bound virus fuses with the target cell and reverse transcribes the RNA genome.
- the resulting viral DNA integrates into the cellular genome, where it directs the production of new viral RNA, and thereby viral proteins and new virions. These virions bud from the infected cell membrane and establish productive infections in other cells. This process also kills the originally infected cell.
- HIV can also kill cells indirectly because the CD4 receptor on uninfected T-cells has a strong affinity for gp120 expressed on the surface of infected cells.
- the uninfected cells bind, via the CD4 receptor-gp120 interaction, to infected cells and fuse to form a syncytium, which cannot survive.
- Destruction of CD4 + T-lymphocytes, which are critical to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of AIDS disease progression.
- the loss of CD4 + T cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.
- HIV-1 uses a trimeric Env complex containing gp120 and gp41 subunits (Burton et al., Nat Immunol. 2004 March; 5(3):233-6).
- the fusion potential of the Env complex is triggered by engagement of the CD4 receptor and a coreceptor, usually CCR5 or CXCR4.
- Neutralizing antibodies seem to work either by binding to the mature trimer on the virion surface and preventing initial receptor engagement events, or by binding after virion attachment and inhibiting the fusion process (Parren & Burton, Adv Immunol. 2001; 77:195-262). In the latter case, neutralizing antibodies may bind to epitopes whose exposure is enhanced or triggered by receptor binding. However, given the potential antiviral effects of neutralizing antibodies, it is not unexpected that HIV-1 has evolved multiple mechanisms to protect it from antibody binding (Johnson & Desrosiers, Annu Rev Med. 2002; 53:499-518).
- the current invention is based, in part, on Applicant's discovery that HIV gp41 epitopes known to elicit broadly neutralizing antibodies inserted into a viral glycoprotein are recognized by such broadly neutralizing antibodies in cells infected with the recombinant virus expressing the viral glycoprotein.
- Recombinant viruses are viruses generated by introducing foreign genetic material into the genome of the virus.
- the genome of a virus can comprise either DNA or RNA.
- the genome of an RNA virus can be further characterized to be either positive-sense (plus-strand) or negative-sense (minus-strand).
- a plus-strand (5′ to 3′) viral RNA indicates that a particular viral RNA sequence can be directly translated into the desired viral proteins whereas a minus-strand (3′ to 5′) viral RNA must be first converted to a positive-sense by an RNA polymerase prior to translation.
- the invention relates to a recombinant vesicular stomatitis virus (VSV) vector wherein the gene encoding the VSV surface glycoprotein G (VSV G) may be functionally replaced by HIV Env.
- VSV G VSV surface glycoprotein G
- the HIV Env may be recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10 or Z13 or other antibodies, including potent broadly neutralizing trimer-specific antibodies.
- VSV is a minus-strand RNA virus that can infect insects and mammals.
- the invention in a second embodiment, relates to a recombinant vesicular stomatitis virus (VSV) vector encoding a modified form of VSV G, wherein the modified form of VSV G may harbor epitopes from the HIV Env membrane proximal external region (MPER).
- VSV vesicular stomatitis virus
- MPER HIV Env membrane proximal external region
- the MPER sequence may be inserted into the membrane proximal region or other domains of VSV G.
- the G-MPER protein may bind with high avidity to 2F5, 4E10 or other monoclonal antibodies.
- the invention in a third embodiment, relates to a recombinant vesicular stomatitis virus (VSV) vector encoding a an N-terminally truncated form of VSV G (G/Stem), wherein the G/Stem may display Env epitope sequences on the surface of VSV particles.
- the G/Stem may contain a cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G, a 16- to 68-amino acid membrane proximal extracellular polypeptide (the Stem), wherein HIV Env epitopes are appended to or inserted into the Stem.
- the HIV Env epitopes may be derived from the gp41 MPER or other regions of Env.
- the G/Stem-HIV Env epitope molecules may bind to 2F5, 4E10 or other monoclonal antibodies with high affinity.
- the invention relates to a method of generating novel chimeric HIV Env-VSV G (EnvG) molecules expressed and incorporated into VSV which may comprise:
- the cells may be CD4/CCR5+ cells.
- the novel mutations may escalate trimer abundance on the virus particle and/or increase the stability of the functional trimeric form of Env or EnvG.
- the method may further comprise determining whether the Env or EnvG immunogens elicit broadly neutralizing anti-Env antibodies.
- the invention relates to method of applying selective pressure to generate novel Env, EnvG, or G/Stem-antigen chimeras molecules expressed and incorporated into VSV, wherein the selective pressure may be binding to an antibody of interest, thereby enriching for molecules that may be more immunogenic.
- the antibody may be 2F5, 4E10, or other Env-specific antibodies.
- the present invention also encompasses methods of producing or eliciting an immune response which may comprise administering to a mammal any one of the herein disclosed recombinant VSV vectors.
- the present invention also encompasses other plus and minus strand viruses which can be used as recombinant viral vectors in the method of the invention.
- viruses include but are not limited to: Measles virus, Canine distemper virus, Parainfluenza viruses, Sendai virus, Newcastle disease virus, Venezuelan equine encephalitis virus, Sindbis virus, Semliki Forrest virus etc.
- FIGS. 1A and 1B depict the HIV-1 envelope protein.
- A Illustration of the gp160 precursor, which is post-translationally cleaved into the gp120 and gp41 subunits. The locations of the signal and fusion peptides, the Membrane-Proximal External Region (MPER) and the transmembrane (TM) segment are indicated. The ruler denotes amino acid numbering.
- MPER Membrane-Proximal External Region
- TM transmembrane
- PG9 and PG16 interacts with conserved residues in the V2 and V3 loops and present an accessible target on gp120; 2G12 binds to oligosaccharides at the tip of gp120; b12 interacts with the CD4 binding site; 2F5 and 4E10 bind adjacent linear epitopes in the gp41 MPER.
- FIG. 2 depicts vesicular stomatitis virus.
- the negative-sense RNA genome (schematically depicted at the top) encodes five genes in the order 3′-N-P-M-G-L-5′.
- the surface of the virus particle (bottom) is decorated with approximately 1,200 copies of the glycoprotein (G), which is arranged as trimers.
- the matrix protein (M) lines the inner surface of the virus particle between the membrane and the nucleocapsid, probably making contact with G as well as the nucleocapsid (N) protein and giving the virus particles their characteristic rod- or bullet-shaped morphology.
- the polymerase (L) and phosphoprotein (P) are subunits of the RNA-dependent RNA polymerase complex.
- FIG. 3 depicts the VSV glycoprotein.
- the model on the left side is the soluble G ectodomain solved by Roche et al (Roche et al., Science 2007 315, 843-848), which is composed of a number of structural elements including an elongated ⁇ -sheet that contains the fusion peptide.
- a graphic approximation (in pink) of amino acid residues not included in the crystal structure was inserted, which includes the cytoplasmic tail (CT), the transmembrane (TM) domain, and the short membrane-proximal ectodomain (Stem).
- CT cytoplasmic tail
- TM transmembrane
- Stem short membrane-proximal ectodomain
- G-Stem polypeptide which is drawn at the right side of the Figure.
- the G-Stem protein can be incorporated into virions and can be used as a presentation platform for foreign epitopes.
- FIG. 4 depicts HIV Env Immunogens presented on the VSV vector platform.
- the different chimeric envelope proteins are illustrated from top to bottom: i) the native VSV G trimer, ii) a G trimer with the gp41 MPER inserted into the stem region of G; iii) the G/Stem displaying MPER epitopes; and iv) the Env ectodomain including the MPER, which is incorporated into the VSV particle via the transmembrane segment and cytoplasmic tail of G.
- FIG. 5 depicts insertion of the HIV gp41-derived 2F5 and/or 4E10 epitope into the ‘stem’ region of VSV G, which shares sequence similarities with the gp41 MPER.
- FIG. 6 depicts HIV-1 Env MPER and VSV G stem sequence alignment and insertion/substitution strategies.
- the MPER of HIV-1 gp41 (JRFL strain) and the Stem region of VSV G (Indiana strain) share sequence similarities, which guided the selection of insertion or substitution points in the Stem region for the 2F5 and 4E10 epitopes.
- the transmembrane domains and the first two residues of the cytoplasmic tails are depicted on the right. Hydrophobic residues are shown in blue.
- Middle Generation of the VSV G-2F5-Ins construct by insertion of the 2F5 epitope into the G stem region. Flanking linker residues are shown in green.
- FIG. 7 depicts insertion points for the 2F5 and 4E10 epitopes in the context of full-length VSV G.
- the leader peptide, ectodomain, Stem, TM and CT of VSV G are illustrated.
- the arrow denotes insertion of the 2F5 epitope, while the orange and blue boxes indicate substitution of the 2F5 and 4E10 epitopes, respectively.
- FIG. 8 depicts the expression and antibody detection of the VSV G constructs.
- Mock denotes a transfection with an “empty” plasmid vector.
- the antibody used for detection is shown under each panel. Molecular weight standards are indicated on the right of each gel.
- FIG. 9 depicts the trimerization of the VSV G constructs.
- DTSSP 3,3′-Dithiobis-[sulfosuccinimidylpropionate]
- FIG. 10 depicts cell surface expression of VSV G constructs. 293T cells transfected with VSV G constructs were stained with an antibody specific for the ectodomain of VSV G, or with 2F5 or 4E10 antibodies, followed by analysis of the samples by flow cytometry.
- FIG. 11 depicts cell-cell fusion mediated by VSV G.
- 293T cells transfected with VSV G constructs were exposed briefly to a medium with pH 5.2. After 6-8 hours, formation of syncitia was monitored using a light microscope.
- the inset in the panel for VSV G-2F5-4E10 at the bottom right shows a small syncitium, which occurs rarely for this construct.
- FIG. 12 depicts a reporter assay for functional analysis of modified VSV G proteins.
- a reporter lentivirus coding for green fluorescent protein (GFP) or luciferase (Luc) was packaged with Gag-Pol and pseudotyped with the VSV G variants and subsequently used to infect na ⁇ ve 293T cells. GFP or luciferase expression was analyzed 72 hours post-infection.
- GFP green fluorescent protein
- Luc luciferase
- FIG. 13 depicts infectivity of lentiviral particles pseudotyped with VSV G constructs.
- GFP reporter lentiviruses pseudotyped with VSV G variants were generated in 293T cells and used subsequently to infect na ⁇ ve 293T cells. GFP expression was monitored 72 hours post-infection.
- FIG. 14 depicts quantification of infectivity of lentiviral particles pseudotyped with VSV G constructs.
- Na ⁇ ve 293T cells were infected with luciferase reporter lentiviruses pseudotyped with VSV G variants, followed by quantification of luciferase expression 48 hours post-infection.
- FIG. 15 depicts neutralization of lentiviral particles pseudotyped with VSV G constructs with the 2F5 or 4E10 antibodies.
- Luciferase reporter lentiviruses pseudotyped with VSV G, VSV G-2F5-Sub or VSV G-4E10-Sub were incubated with various concentrations of 2F5 (left panel) or 4E10 antibody (right panel) prior to infection of na ⁇ ve cells. Luciferase expression was quantified 48 hours post-infection.
- FIG. 16 depicts growth curves of recombinant VSV in Vero cells.
- Recombinant VSV containing the gene for wild-type G, G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub rescued in 293T cells was used to infect Vero cells at a multiplicity of infection (m.o.i.) of 5. Aliquots of the supernatant were taken at various times post-infection. Subsequently, na ⁇ ve Vero cells were infected with the samples, followed by a standard plaque assay to determine the viral titer for each time point.
- m.o.i. multiplicity of infection
- FIG. 17 depicts neutralization of recombinant VSV with 2F5 and 4E10 antibodies.
- Recombinant VSV containing wild-type G, G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub was incubated with various concentrations of the broadly neutralizing monoclonal antibodies VI-10 (which reacts with the ectodomain of G), 2F5 or 4E10 before addition to na ⁇ ve Vero cells.
- a standard plaque assay was used to determine the extent of neutralization for each antibody and concentration.
- FIGS. 18A and 18B depict a VSV G-Stem platform for expression of fusion proteins.
- A Schematic illustration of the VSV genome, the G gene, and the primary structures of the G and G-Stem proteins.
- B Foreign gene sequences are fused to the G-Stem via a NheI restriction site, which facilitates incorporation of immunogen coding sequences.
- FIGS. 19A-19C depict a schematic illustrating the membrane topology of G and G-Stem proteins.
- Four different G-Stem constructs were generated: no stem, short stem, middle stem, and long stem.
- FIG. 20 depicts VSV Vector Design.
- the gene encoding G-Stem variants was inserted into the VSV genome upstream of the N protein near the 3′ end.
- the full-length G protein is present in the genome.
- both the G-Stem and full-length G will be incorporated into virus particles as illustrated below the vector genome map.
- FIGS. 21A-21D depict analysis of G-Stem-MPER Expression.
- A Western Blot analysis of rVSV containing the G-Stem-MPER variants (rVSV-GS-MPER) from the supernatant of infected cells using an anti-VSV-G antibody that reacts with the cyoplasmic tail.
- LS long stem
- MS medium stem
- SS short stem
- NS no stem.
- B Western Blot analysis of rVSV-GS-MPER from infected cells using an anti-VSV-G antibody.
- C Western Blot analysis of rVSV-GS-MPER with the 2F5 antibody.
- D Western Blot analysis of rVSV-GS-MPER with the 4E10 antibody.
- FIG. 22 depicts various VSV G-HIV Env chimeras.
- the VSV glycoprotein G is shown at the top with features labeled including the signal peptide (SP), the soluble extracellular domain, the Stem, transmembrane (TM) segment and cytoplasmic tail (CT).
- the HIV-1 Envelope (Env) protein illustrated below G, is proteolytically processed into the extracellular gp120 and the gp41 domains, the latter containing the MPER, TM segment and CT domains.
- Various chimeric EnvG proteins are shown at the bottom.
- Transition points between HIV gp41 and VSV G are be located i) before the CT, ii) before the TM domain, iii) before the MPER, or iv) N-terminal to the complete VSV G-Stem.
- Translocation of the protein into the lumen of the endoplasmic reticulum can be driven by either the Env or the G signal peptide, although the efficiency and destination vary with the two signals.
- the ruler at the top denotes the number of amino acid residues.
- FIG. 23 depicts infectivity of rVSV-EnvG.
- a Uninfected GHOST cells (expressing the HIV co-receptors CD4 and CCR5; Cecilia D., et al J. Virol. 1998 September; 7:6988-96) near full confluency.
- b GHOST cells infected with rVSV-EnvG virus at 48 hours post-infection. The cytopathic effect (CPE) is clearly visible.
- CPE cytopathic effect
- FIG. 24 depicts evolution of Env or EnvG proteins expressed by recombinant VSV.
- Recombinant VSV encoding a chimeric EnvG molecule are subjected to serial passage and selective pressure.
- Virus particles that bind with high avidity to 2F5 antibody, for example, are isolated after stringent washing of the antibody beads.
- Infectious nucleocapsid is liberated from the antibody beads and transfected into CD4/CCR5-positive cells, which initiates a new round of infection.
- the new generation of recombinant virus undergoes further rounds of selection with increased stringency, which enrich new variants of recombinant viruses that may have improved immunogenic properties.
- FIG. 25 depicts rabbit immunogenicity testing. Vaccination and blood collection schedules are listed along a timeline (M, months; W, weeks) at the top. Analysis of antibody reactivity is illustrated in the flow diagram at the left side. The chart on the right side outlines a typical rabbit study.
- FIG. 26 depicts a plan for vaccination, sampling, and SHIV Challenge. rVSV vaccine candidates are administered 3 times at 6-week intervals after which IV SHIV 162P3 challenge is conducted using a challenge stock obtained from the NIH AIDS Research & Reference Reagent Program.
- FIGS. 27A-27B depicts the plasmid sequence of pCINeo-VSV-G that encodes the G protein from the vesicular stomatitis Indiana virus. Applicants have optimized the gene sequence.
- FIGS. 28A-28B depicts the unique XhoI and NotI sites (highlighted) added to the 5′ and 3′ termini respectively of the VSV G coding sequence as per the Optimization Strategy detailed in Example 5.
- protein protein
- peptide polypeptide
- amino acid sequence amino acid sequence
- the terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.
- the terms “antigen” or “immunogen” are used interchangeably to refer to a substance, typically a protein, which is capable of inducing an immune response in a subject.
- the term also refers to proteins that are immunologically active in the sense that once administered to a subject (either directly or by administering to the subject a nucleotide sequence or vector that encodes the protein) is able to evoke an immune response of the humoral and/or cellular type directed against that protein.
- antibody includes intact molecules as well as fragments thereof, such as Fab, F(ab′) 2 , Fv and scFv which are capable of binding the epitope determinant. These antibody fragments retain some ability to selectively bind with its antigen or receptor and include, for example:
- Fab fragment which contains a monovalent antigen-binding fragment of an antibody molecule can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain;
- Fab′ the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab′ fragments are obtained per antibody molecule;
- F(ab′) 2 the fragment of the antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction;
- F(ab′) 2 is a dimer of two Fab′ fragments held together by two disulfide bonds;
- scFv including a genetically engineered fragment containing the variable region of a heavy and a light chain as a fused single chain molecule.
- proteins including the antibodies and/or antigens of the invention may differ from the exact sequences illustrated and described herein.
- the invention contemplates deletions, additions and substitutions to the sequences shown, so long as the sequences function in accordance with the methods of the invention.
- particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids.
- amino acids are generally divided into four families: (1) acidic—aspartate and glutamate; (2) basic—lysine, arginine, histidine; (3) non-polar—alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar—glycine, asparagine, glutamine, cysteine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids.
- nucleotide sequences and “nucleic acid sequences” refer to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences, including, without limitation, messenger RNA (mRNA), DNA/RNA hybrids, or synthetic nucleic acids.
- the nucleic acid can be single-stranded, or partially or completely double-stranded (duplex).
- Duplex nucleic acids can be homoduplex or heteroduplex.
- transgene may used to refer to “recombinant” nucleotide sequences that may be derived from any of the nucleotide sequences encoding the proteins of the present invention.
- the term “recombinant” means a nucleotide sequence that has been manipulated “by man” and which does not occur in nature, or is linked to another nucleotide sequence or found in a different arrangement in nature. It is understood that manipulated “by man” means manipulated by some artificial means, including by use of machines, codon optimization, restriction enzymes, etc.
- nucleotide sequences may be mutated such that the activity of the encoded proteins in vivo is abrogated.
- nucleotide sequences may be codon optimized, for example the codons may be optimized for human use.
- nucleotide sequences of the invention are both mutated to abrogate the normal in vivo function of the encoded proteins, and codon optimized for human use. For example, each of the Gag, Pol, Env, Nef, RT, and Int sequences of the invention may be altered in these ways.
- the nucleic acid molecules of the invention have a nucleotide sequence that encodes the antigens of the invention and can be designed to employ codons that are used in the genes of the subject in which the antigen is to be produced.
- Many viruses including HIV and other lentiviruses, use a large number of rare codons and, by altering these codons to correspond to codons commonly used in the desired subject, enhanced expression of the antigens can be achieved.
- the codons used are “humanized” codons, i.e., the codons are those that appear frequently in highly expressed human genes (Andre et al., J. Virol.
- codon usage provides for efficient expression of the transgenic HIV proteins in human cells. Any suitable method of codon optimization may be used. Such methods, and the selection of such methods, are well known to those of skill in the art. In addition, there are several companies that will optimize codons of sequences, such as Geneart (geneart.com). Thus, the nucleotide sequences of the invention can readily be codon optimized.
- the invention further encompasses nucleotide sequences encoding functionally and/or antigenically equivalent variants and derivatives of the antigens of the invention and functionally equivalent fragments thereof.
- These functionally equivalent variants, derivatives, and fragments display the ability to retain antigenic activity. For instance, changes in a DNA sequence that do not change the encoded amino acid sequence, as well as those that result in conservative substitutions of amino acid residues, one or a few amino acid deletions or additions, and substitution of amino acid residues by amino acid analogs are those which will not significantly affect properties of the encoded polypeptide.
- Conservative amino acid substitutions are glycine/alanine; valine/isoleucine/leucine; asparagine/glutamine; aspartic acid/glutamic acid; serine/threonine/methionine; lysine/arginine; and phenylalanine/tyrosine/tryptophan.
- the variants have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology or identity to the antigen, epitope, immunogen, peptide or polypeptide of interest.
- sequence identity or homology is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps.
- sequence identity may be determined using any of a number of mathematical algorithms.
- a nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1990; 87: 2264-2268, modified as in Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1993; 90: 5873-5877.
- Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers & Miller, CABIOS1988; 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson & Lipman, Proc. Natl. Acad. Sci. USA 1988; 85: 2444-2448.
- WU-BLAST Woodington University BLAST
- WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp://blast.wustl.edu/blast/executables.
- the nucleotide sequences of the present invention may be inserted into “vectors.”
- vehicle is widely used and understood by those of skill in the art, and as used herein the term “vector” is used consistent with its meaning to those of skill in the art.
- vector is commonly used by those skilled in the art to refer to a vehicle that allows or facilitates the transfer of nucleic acid molecules from one environment to another or that allows or facilitates the manipulation of a nucleic acid molecule.
- any vector that allows expression of the antibodies and/or antigens of the present invention may be used in accordance with the present invention.
- the antigens and/or antibodies of the present invention may be used in vitro (such as using cell-free expression systems) and/or in cultured cells grown in vitro in order to produce the encoded HIV-antigens and/or antibodies which may then be used for various applications such as in the production of proteinaceous vaccines.
- any vector that allows expression of the antigens and/or antibodies in vitro and/or in cultured cells may be used.
- any vector that allows for the expression of the antibodies and/or antigens of the present invention and is safe for use in vivo may be used.
- the vectors used are safe for use in humans, mammals and/or laboratory animals.
- the protein coding sequence should be “operably linked” to regulatory or nucleic acid control sequences that direct transcription and translation of the protein.
- a coding sequence and a nucleic acid control sequence or promoter are said to be “operably linked” when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the nucleic acid control sequence.
- nucleic acid control sequence can be any nucleic acid element, such as, but not limited to promoters, enhancers, IRES, introns, and other elements described herein that direct the expression of a nucleic acid sequence or coding sequence that is operably linked thereto.
- promoter will be used herein to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II and that when operationally linked to the protein coding sequences of the invention lead to the expression of the encoded protein.
- the expression of the transgenes of the present invention can be under the control of a constitutive promoter or of an inducible promoter, which initiates transcription only when exposed to some particular external stimulus, such as, without limitation, antibiotics such as tetracycline, hormones such as ecdysone, or heavy metals.
- the promoter can also be specific to a particular cell-type, tissue or organ.
- suitable promoters and enhancers are known in the art, and any such suitable promoter or enhancer may be used for expression of the transgenes of the invention.
- suitable promoters and/or enhancers can be selected from the Eukaryotic Promoter Database (EPDB).
- the present invention relates to a recombinant vesicular stomatitis virus (VSV) vector expressing a foreign epitope.
- the epitope is an HIV epitope. Any HIV epitope may be expressed in a VSV vector.
- the HIV epitope is an HIV antigen, HIV epitope or an HIV immunogen, such as, but not limited to, the HIV antigens, HIV epitopes or HIV immunogens of U.S. Pat. Nos.
- the HIV epitope may be an Env precursor or gp160 epitope.
- the Env precursor or gp160 epitope may be recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10, Z13, or other broad potent neutralizing antibodies.
- HIV, or immunogenic fragments thereof may be utilized as the HIV epitope.
- any epitope recognized by an HIV antibody may be used in the present invention.
- the anti-HIV antibodies of U.S. Pat. Nos. 6,949,337, 6,900,010, 6,821,744, 6,768,004, 6,613,743, 6,534,312, 6,511,830, 6,489,131, 6,242,197, 6,114,143, 6,074,646, 6,063,564, 6,060,254, 5,919,457, 5,916,806, 5,871,732, 5,824,304, 5,773,247, 5,736,320, 5,637,455, 5,587,285, 5,514,541, 5,317,009, 4,983,529, 4,886,742, 4,870,003 and 4,795,739 are useful for the present invention.
- the vectors used in accordance with the present invention should typically be chosen such that they contain a suitable gene regulatory region, such as a promoter or enhancer, such that the antigens and/or antibodies of the invention can be expressed.
- any suitable vector can be used depending on the application.
- plasmids, viral vectors, bacterial vectors, protozoal vectors, insect vectors, baculovirus expression vectors, yeast vectors, mammalian cell vectors, and the like can be used.
- Suitable vectors can be selected by the skilled artisan taking into consideration the characteristics of the vector and the requirements for expressing the antibodies and/or antigens under the identified circumstances.
- expression vectors that are suitable for expression on that subject, and that are safe for use in vivo, should be chosen.
- any vectors that are suitable for such uses can be employed, and it is well within the capabilities of the skilled artisan to select a suitable vector.
- the vectors used for these in vivo applications are attenuated to vector from amplifying in the subject.
- plasmid vectors preferably they will lack an origin of replication that functions in the subject so as to enhance safety for in vivo use in the subject.
- viral vectors preferably they are attenuated or replication-defective in the subject, again, so as to enhance safety for in vivo use in the subject.
- viral vectors are used.
- Viral expression vectors are well known to those skilled in the art and include, for example, viruses such as adenoviruses, adeno-associated viruses (AAV), alphaviruses, herpesviruses, retroviruses and poxviruses, including avipox viruses, attenuated poxviruses, vaccinia viruses, and particularly, the modified vaccinia Ankara virus (MVA; ATCC Accession No. VR-1566).
- viruses when used as expression vectors are innately non-pathogenic in the selected subjects such as humans or have been modified to render them non-pathogenic in the selected subjects.
- replication-defective adenoviruses and alphaviruses are well known and can be used as gene delivery vectors.
- the present invention relates to recombinant vesicular stomatitis (VSV) vectors, however, other vectors may be contemplated in other embodiments of the invention such as, but not limited to, prime boost administration comprising administration of a recombinant VSV vector in combination with another recombinant vector expressing one or more HIV epitopes.
- VSV vesicular stomatitis
- VSV is a very practical, safe, and immunogenic vector for conducting animal studies, and an attractive candidate for developing vaccines for use in humans.
- VSV is a member of the Rhabdoviridae family of enveloped viruses containing a nonsegmented, negative-sense RNA genome.
- the genome is composed of 5 genes arranged sequentially 3′-N-P-M-G-L-S′, each encoding a polypeptide found in mature virions.
- the surface glycoprotein G is a transmembrane polypeptide that is present in the viral envelope as a homotrimer, and like Env, it mediates cell attachment and infection.
- the VSV G is replaced by HIV Env or fragments thereof.
- the latter will generate chimeric EnvG proteins (see, e.g. FIG. 22 ).
- VSV G is a carrier or scaffold advantageously for Env MPER epitopes, however, VSV G as a carrier or scaffold may be extended to any foreign epitope (see, e.g., FIGS. 5-7 ).
- Env MPER epitopes are fused to the VSV G-Stem molecule, however, any foreign epitope may be fused to the VSV G-Stem molecule (see, e.g, FIGS. 18-19 ).
- the invention pertains to the evolutionary potential of RNA viruses.
- viruses include but are not limited to: VSV, Measles virus, Canine distemper virus, Parainfluenza viruses, Sendai virus, Newcastle disease virus, Venezuelan equine encephalitis virus, Sindbis virus, Semliki Forrest virus etc.
- VSV the evolutionary potential of viruses
- Measles virus the virus
- Canine distemper virus Parainfluenza viruses
- Sendai virus Newcastle disease virus
- Venezuelan equine encephalitis virus Venezuelan equine encephalitis virus
- Sindbis virus Venezuelan equine encephalitis virus
- Semliki Forrest virus etc.
- a small panel of genes encoding different forms of EnvG molecules will be produced to determine which motifs from G will optimize expression.
- VSV-HIV viruses that lack the capacity to encode wild-type G and are dependent on EnvG for infection and propagation, which are then utilized to direct the evolution of new EnvG molecules that are expressed and incorporated into the virus with greater efficiency.
- the invention pertains to application of selective pressure to enrich for molecules that are more immunogenic.
- the evolution process will occur primarily through nucleotide substitution, followed by selection using a broadly neutralizing antibody against HIV Env, e.g. 2F5 or 4E10, or a broad potent antibody specific for trimeric Env. Due to the nature of negative-strand virus replication, base changes are far more frequent than deletions or insertions, consequently the immunogen will evolve with amino acid substitutions. (see, e.g. FIG. 24 )
- the nucleotide sequences and vectors of the invention can be delivered to cells, for example if aim is to express and the HIV-1 antigens in cells in order to produce and isolate the expressed proteins, such as from cells grown in culture.
- any suitable transfection, transformation, or gene delivery methods can be used. Such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used. For example, transfection, transformation, microinjection, infection, electroporation, lipofection, or liposome-mediated delivery could be used.
- antibodies and/or antigens can be carried out in any suitable type of host cells, such as bacterial cells, yeast, insect cells, and mammalian cells.
- the antibodies and/or antigens of the invention can also be expressed using including in vitro transcription/translation systems. All of such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used.
- the nucleotide sequences, antibodies and/or antigens of the invention are administered in vivo, for example where the aim is to produce an immunogenic response in a subject.
- a “subject” in the context of the present invention may be any animal.
- the subject is a human, for example a human that is infected with, or is at risk of infection with, HIV-1.
- the nucleotide sequences, antibodies and/or antigens of the invention_are preferably administered as a component of an immunogenic composition comprising the nucleotide sequences and/or antigens of the invention in admixture with a pharmaceutically acceptable carrier.
- the immunogenic compositions of the invention are useful to stimulate an immune response against HIV-1 and may be used as one or more components of a prophylactic or therapeutic vaccine against HIV-1 for the prevention, amelioration or treatment of AIDS.
- the nucleic acids and vectors of the invention are particularly useful for providing genetic vaccines, i.e. vaccines for delivering the nucleic acids encoding the antibodies and/or antigens of the invention to a subject, such as a human, such that the antibodies and/or antigens are then expressed in the subject to elicit an immune response.
- compositions of the invention may be injectable suspensions, solutions, sprays, lyophilized powders, syrups, elixirs and the like. Any suitable form of composition may be used.
- a nucleic acid or vector of the invention having the desired degree of purity, is mixed with one or more pharmaceutically acceptable carriers and/or excipients.
- the carriers and excipients must be “acceptable” in the sense of being compatible with the other ingredients of the composition.
- Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to, water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, or combinations thereof, buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobul
- An immunogenic or immunological composition can also be formulated in the form of an oil-in-water emulsion.
- the oil-in-water emulsion can be based, for example, on light liquid paraffin oil (European Pharmacopea type); isoprenoid oil such as squalane, squalene, EICOSANETM or tetratetracontane; oil resulting from the oligomerization of alkene(s), e.g., isobutene or decene; esters of acids or of alcohols containing a linear alkyl group, such as plant oils, ethyl oleate, propylene glycol di(caprylate/caprate), glyceryl tri(caprylate/caprate) or propylene glycol dioleate; esters of branched fatty acids or alcohols, e.g., isostearic acid esters.
- the oil advantageously is used in combination with emulsifiers to form the emulsion.
- the emulsifiers can be nonionic surfactants, such as esters of sorbitan, mannide (e.g., anhydromannitol oleate), glycerol, polyglycerol, propylene glycol, and oleic, isostearic, ricinoleic, or hydroxystearic acid, which are optionally ethoxylated, and polyoxypropylene-polyoxyethylene copolymer blocks, such as the Pluronic® products, e.g., L121.
- the adjuvant can be a mixture of emulsifier(s), micelle-forming agent, and oil such as that which is commercially available under the name Provax® (IDEC Pharmaceuticals, San Diego, Calif.).
- the immunogenic compositions of the invention can contain additional substances, such as wetting or emulsifying agents, buffering agents, or adjuvants to enhance the effectiveness of the vaccines (Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, (ed.) 1980).
- Adjuvants may also be included.
- Adjuvants include, but are not limited to, mineral salts (e.g., AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , AlNH(SO 4 ) 2 , silica, alum, Al(OH) 3 , Ca 3 (PO 4 ) 2 , kaolin, or carbon), polynucleotides with or without immune stimulating complexes (ISCOMs) (e.g., CpG oligonucleotides, such as those described in Chuang, T. H. et al, (2002) J. Leuk. Biol. 71(3): 538-44; Ahmad-Nejad, P. et al (2002) Eur. J. Immunol.
- mineral salts e.g., AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , AlNH(SO 4 ) 2 , silica, alum, Al(OH) 3 , Ca 3 (PO
- monophosphoryl lipid A in particular, 3-de-O-acylated monophosphoryl lipid A (3D-MPL), imiquimod (also known in the art as IQM and commercially available as Aldara®; U.S. Pat. Nos. 4,689,338; 5,238,944; Zuber, A. K. et al (2004) 22(13-14): 1791-8), and the CCR5 inhibitor CMPD167 (see Veazey, R. S. et al (2003) J. Exp. Med. 198: 1551-1562).
- 3D-MPL 3-de-O-acylated monophosphoryl lipid A
- imiquimod also known in the art as IQM and commercially available as Aldara®; U.S. Pat. Nos. 4,689,338; 5,238,944; Zuber, A. K. et al (2004) 22(13-14): 1791-8
- CMPD167 see Veazey, R. S. et al (2003) J. Exp. Med
- Aluminum hydroxide or phosphate (alum) are commonly used at 0.05 to 0.1% solution in phosphate buffered saline.
- Other adjuvants that can be used, especially with DNA vaccines, are cholera toxin, especially CTA1-DD/ISCOMs (see Mowat, A. M. et al (2001) J. Immunol. 167(6): 3398-405), polyphosphazenes (Allcock, H.R. (1998) App. Organometallic Chem. 12(10-11): 659-666; Payne, L. G. et al (1995) Pharm. Biotechnol.
- cytokines such as, but not limited to, IL-2, IL-4, GM-CSF, IL-12, IL-15 IGF-1, IFN- ⁇ , IFN- ⁇ , and IFN- ⁇
- immunoregulatory proteins such as CD40L (ADX40; see, for example, WO03/063899)
- CD1a ligand of natural killer cells also known as CRONY or ⁇ -galactosyl ceramide; see Green, T. D. et al, (2003) J. Virol.
- immunostimulatory fusion proteins such as IL-2 fused to the Fc fragment of immunoglobulins (Barouch et al., Science 290:486-492, 2000) and co-stimulatory molecules B7.1 and B7.2 (Boyer), all of which can be administered either as proteins or in the form of DNA, on the same expression vectors as those encoding the antigens of the invention or on separate expression vectors.
- the adjuvants may be lecithin is combined with an acrylic polymer (Adjuplex-LAP), lecithin coated oil droplets in an oil-in-water emulsion (Adjuplex-LE) or lecithin and acrylic polymer in an oil-in-water emulsion (Adjuplex-LAO) (Advanced BioAdjuvants (ABA)).
- Adjuplex-LAP acrylic polymer
- Adjuplex-LE lecithin coated oil droplets in an oil-in-water emulsion
- Adjuplex-LAO Advanced BioAdjuvants
- the immunogenic compositions can be designed to introduce the nucleic acids or expression vectors to a desired site of action and release it at an appropriate and controllable rate.
- Methods of preparing controlled-release formulations are known in the art.
- controlled release preparations can be produced by the use of polymers to complex or absorb the immunogen and/or immunogenic composition.
- a controlled-release formulations can be prepared using appropriate macromolecules (for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine sulfate) known to provide the desired controlled release characteristics or release profile.
- Another possible method to control the duration of action by a controlled-release preparation is to incorporate the active ingredients into particles of a polymeric material such as, for example, polyesters, polyamino acids, hydrogels, polylactic acid, polyglycolic acid, copolymers of these acids, or ethylene vinylacetate copolymers.
- a polymeric material such as, for example, polyesters, polyamino acids, hydrogels, polylactic acid, polyglycolic acid, copolymers of these acids, or ethylene vinylacetate copolymers.
- microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacrylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
- Suitable dosages of the nucleic acids and expression vectors of the invention (collectively, the immunogens) in the immunogenic composition of the invention can be readily determined by those of skill in the art.
- the dosage of the immunogens can vary depending on the route of administration and the size of the subject.
- Suitable doses can be determined by those of skill in the art, for example by measuring the immune response of a subject, such as a laboratory animal, using conventional immunological techniques, and adjusting the dosages as appropriate.
- Such techniques for measuring the immune response of the subject include but are not limited to, chromium release assays, tetramer binding assays, IFN- ⁇ ELISPOT assays, IL-2 ELISPOT assays, intracellular cytokine assays, and other immunological detection assays, e.g., as detailed in the text “Antibodies: A Laboratory Manual” by Ed Harlow and David Lane.
- the immunogenic compositions of the invention are ideally administered to a subject in advance of HIV infection, or evidence of HIV infection, or in advance of any symptom due to AIDS, especially in high-risk subjects.
- the prophylactic administration of the immunogenic compositions can serve to provide protective immunity of a subject against HIV-1 infection or to prevent or attenuate the progression of AIDS in a subject already infected with HIV-1.
- the immunogenic compositions can serve to ameliorate and treat AIDS symptoms and are advantageously used as soon after infection as possible, preferably before appearance of any symptoms of AIDS but may also be used at (or after) the onset of the disease symptoms.
- the immunogenic compositions can be administered using any suitable delivery method including, but not limited to, intramuscular, intravenous, intradermal, mucosal, and topical delivery. Such techniques are well known to those of skill in the art. More specific examples of delivery methods are intramuscular injection, intradermal injection, and subcutaneous injection. However, delivery need not be limited to injection methods. Further, delivery of DNA to animal tissue has been achieved by cationic liposomes (Watanabe et al., (1994) Mol. Reprod. Dev.
- delivery routes can be oral, intranasal or by any other suitable route. Delivery also be accomplished via a mucosal surface such as the anal, vaginal or oral mucosa.
- Immunization schedules are well known for animals (including humans) and can be readily determined for the particular subject and immunogenic composition.
- the immunogens can be administered one or more times to the subject.
- there is a set time interval between separate administrations of the immunogenic composition typically it ranges from 10 days to several weeks, and is often 2, 4, 6 or 8 weeks.
- the interval is typically from 2 to 6 weeks.
- the immunization regimes typically have from 1 to 6 administrations of the immunogenic composition, but may have as few as one or two or four.
- the methods of inducing an immune response can also include administration of an adjuvant with the immunogens. In some instances, annual, biannual or other long interval (5-10 years) booster immunization can supplement the initial immunization protocol.
- the present methods also include a variety of prime-boost regimens, for example DNA prime-Adenovirus boost regimens.
- one or more priming immunizations are followed by one or more boosting immunizations.
- the actual immunogenic composition can be the same or different for each immunization and the type of immunogenic composition (e.g., containing protein or expression vector), the route, and formulation of the immunogens can also be varied.
- an expression vector is used for the priming and boosting steps, it can either be of the same or different type (e.g., DNA or bacterial or viral expression vector).
- Prime-boost regimen provides for two priming immunizations, four weeks apart, followed by two boosting immunizations at 4 and 8 weeks after the last priming immunization. It should also be readily apparent to one of skill in the art that there are several permutations and combinations that are encompassed using the DNA, bacterial and viral expression vectors of the invention to provide priming and boosting regimens.
- the prime-boost regimen can also include VSV vectors that derive their G protein or G/Stem protein from different serotype vesicular stomatitis viruses (Rose N F, Roberts A, Buonocore L, Rose J K. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol. 2000 December; 74(23):10903-10).
- the VSV vectors used in these examples contain a G or G/Stem protein derived from the Indiana serotype of VSV.
- Vectors can also be constructed to express epitopes in the context of G or G/Stem molecules derived from other VSV serotypes (i.e. vesicular stomatitis New Jersey virus or vesicular stomatitis Alagoas virus) or other vesiculoviruses (i.e. Chandipura virus, Cocal virus, Isfahan virus).
- VSV serotypes i.e. vesicular stomatitis New Jersey virus or vesicular stomatitis Alagoas virus
- other vesiculoviruses i.e. Chandipura virus, Cocal virus, Isfahan virus.
- an epitope like the HIV MPER can be delivered in a prime in the context of an G or G/Stem molecule that is from the Indiana serotype and the immune system can be boosted with a vector that expresses epitopes in the context of second serotype like New Jersey. This circumvents
- a specific embodiment of the invention provides methods of inducing an immune response against HIV in a subject by administering an immunogenic composition of the invention, preferably comprising an adenovirus vector containing DNA encoding one or more of the epitopes of the invention, one or more times to a subject wherein the epitopes are expressed at a level sufficient to induce a specific immune response in the subject.
- an immunogenic composition of the invention preferably comprising an adenovirus vector containing DNA encoding one or more of the epitopes of the invention, one or more times to a subject wherein the epitopes are expressed at a level sufficient to induce a specific immune response in the subject.
- Such immunizations can be repeated multiple times at time intervals of at least 2, 4 or 6 weeks (or more) in accordance with a desired immunization regime.
- the immunogenic compositions of the invention can be administered alone, or can be co-administered, or sequentially administered, with other HIV immunogens and/or HIV immunogenic compositions, e.g., with “other” immunological, antigenic or vaccine or therapeutic compositions thereby providing multivalent or “cocktail” or combination compositions of the invention and methods of employing them.
- the ingredients and manner (sequential or co-administration) of administration, as well as dosages can be determined taking into consideration such factors as the age, sex, weight, species and condition of the particular subject, and the route of administration.
- the other HIV immunogens can be administered at the same time or at different times as part of an overall immunization regime, e.g., as part of a prime-boost regimen or other immunization protocol.
- the other HIV immunogen is env, preferably the HIV env trimer.
- HIVA (described in WO 01/47955), which can be administered as a protein, on a plasmid (e.g., pTHr.HIVA) or in a viral vector (e.g., MVA.HIVA).
- RENTA (described in PCT/US2004/037699), which can also be administered as a protein, on a plasmid (e.g., pTHr.RENTA) or in a viral vector (e.g., MVA.RENTA).
- one method of inducing an immune response against HIV in a human subject comprises administering at least one priming dose of an HIV immunogen and at least one boosting dose of an HIV immunogen, wherein the immunogen in each dose can be the same or different, provided that at least one of the immunogens is an epitope of the present invention, a nucleic acid encoding an epitope of the invention or an expression vector, preferably a VSV vector, encoding an epitope of the invention, and wherein the immunogens are administered in an amount or expressed at a level sufficient to induce an HIV-specific immune response in the subject.
- the HIV-specific immune response can include an HIV-specific T-cell immune response or an HIV-specific B-cell immune response.
- Such immunizations can be done at intervals, preferably of at least 2-6 or more weeks.
- VSV Vesicular Stomatitis Virus
- VSV G The “stem” region of VSV G, which lies immediately N-terminal of its single transmembrane segment, shares sequence similarities with the gp41 MPER. Applicants inserted the gp41 sequences corresponding to the 2F5 and 4E10 neutralizing epitopes into the stem region of VSV G and evaluated the function and antibody reactivity of the chimeric polypeptides. VSV-G-2F5 and VSV-G-4E10 formed trimers and were transported to the cell surface, where they were detected by the 2F5 and 4E10 monoclonal antibodies, respectively. Reporter lentiviruses pseudotyped with VSV G-2F5 or VSV-G-4E10 were infectious, and they were efficiently neutralized by the 2F5 or 4E10 monoclonal antibodies.
- Recombinant VSV containing G-2F5, G-4E10 or G-2F5-4E10 on the viral surface was infectious, replication-competent, and sensitive to neutralization by the 2F5 or 4E10 monoclonal antibodies.
- Applicants are currently determining if the recombinant VSVs encoding MPER epitopes elicit neutralizing antibodies specific for the HIV gp41 epitopes in a small animal model. Taken together, Applicants' approach represents a novel strategy to develop a vaccine that induces a humoral immune response against HIV.
- the goal of this Example is to design and develop novel HIV-1 envelope protein (Env) immunogens capable of eliciting broadly protective neutralizing antibody responses for use as vaccine candidates.
- Env HIV-1 envelope protein
- Applicants take advantage of the unique biological properties of vesicular stomatitis virus (VSV) as vaccine delivery vehicle to present and effectively deliver HIV Env immunogens.
- VSV vesicular stomatitis virus
- Applicants use the high evolutionary potential of VSV to biologically derive unique mutant HIV Envs with enhanced immunogenicity. Novel candidates are used to vaccinate rabbits to determine their capacity to elicit antibodies with enhanced HIV neutralizing activity, and those VSV-vectored vaccines that evoke responses with increased breadth of neutralization are tested in macaques.
- Applicants achieve these goals by completing the Specific Aims below:
- VSV vesicular stomatitis virus
- G-Stem FIG. 18A
- G-Stem retains amino acid sequences that are essential for directing insertion of the molecule into the membrane (the signal peptide), anchoring the protein in the viral envelop or cellular lipid bilayer (the transmembrane domain; TM), and promoting incorporation into the budding viral particle (C-terminal domain).
- a small membrane proximal region of the external domain of G (the Stem) is retained in most constructs because it provides a short stalk on which to append epitopes ( FIG. 18B ), and importantly, sequences in the Stem are known to promote efficient assembly of VSV particles [Robison & Whitt, J Virol 2000; 74:2239-2246].
- the Stem domain plays at least two significant roles in Applicants' epitope display vectors—it serves as the platform on which epitopes are attached and displayed, and it plays a role in VSV maturation—Applicants anticipated that it might be necessary to empirically determine the optimal Stem sequence needed for expression and membrane incorporation of G-Stem-Epitope fusion proteins.
- the 4 G-Stem-MPER (GS-MPER) molecules were expressed using a novel replication-competent VSV vector that retains a functional G protein and expresses the GS-MPER fusion proteins from an added transcription unit inserted in the highly-transcribed promoter proximal position in the viral genome ( FIG. 20 ). Consequently, the MPER expression vectors express GS-MPER fusion proteins as well as wild-type G protein. Expression of native G protein confers a replication-competent phenotype of these recombinant viruses, and importantly, this also means that infected cells will produce wild-type G and GS-MPER proteins and that both proteins can be inserted into cell membrane and viral envelop (right side of FIG. 20B ).
- FIG. 21 shows a Western blot that was used to analyze G and G-Stem-MPER proteins found in the medium supernatant of infected cells.
- the source of G and GS-MPER fusion proteins in the supernatant primarily should be virus that has budded out of infected cells; therefore, the proteins visualized in Panel A provide an estimate of the relative G and GS-MPER abundance in progeny virus particles.
- the blot in Panel A was reacted with antibody that recognizes the C-terminus of VSV G, which is present on both the native G protein the G-Stem-MPER molecules.
- the results indicate that NS-MPER and SS-MPER are present at higher levels in the virus particle than MS-MPER or LS-MPER, and that none of the G-Stem-MPERs are as abundant as the native G protein. It is important to note that a proteolytic fragment of G comigrates with the NS-MPER at the top of the gel (Lane 6) making it difficult to estimate its abundance.
- antibodies against the HIV Env protein may bind epitopes on gp120 and gp41 (see, e.g., FIG. 1B ).
- Such antibodies include, but are not limited to, PG9 and PG16 (which bind the base of V1/V2 loops and are trimer-specific), 2G12 (which binds carbohydrates), b12 (which binds the CD4-binding site) and 2F5, 4E10 and Z13 (which bind the membrane-proximal external region (MPER)).
- VSV is an enveloped, negative-strand RNA virus of the Rhabdoviridae family. VSV infects human cells, but is not pathogenic and propagates robustly in vitro and is a safe and immunogenic vector for conducting animal studies.
- VSV glycoprotein G is a single envelope glycoprotein on the viral surface that forms trimers (ca. 1,200 molecules arranged as 400 trimers). VSV glycoprotein G mediates attachment, fusion, and entry of VSV into host cell, accepts insertion of short amino acid sequences at certain positions and has a membrane-proximal ‘stem’ region that shares similarities with the MPER of HIV-1 gp41.
- Glycoprotein G is envisioned as an insertion site.
- epitope sequences in particular HIV epitope sequences, more preferably HIV gp41 2F5 and 4E10 epitope sequences may be inserted into the stem region of VSV G. Replication-competent, recombinant VSV containing the modified G protein may be generated for use as an immunogen.
- FIG. 5 presents a schematic of insertion and substitution of HIV gp41 2F5 and 4E10 epitopes.
- FIG. 6 depicts insertion and substitution of the 2F5 and 4E10 epitopes. For an insertion, the 2F5 epitope and flanking residues was added to the VSV G stem region.
- VSV G stem region residues in the VSV G stem region were replaced by the 2F5 and/or 4E10 epitopes.
- FIG. 7 A summary of the VSV G constructs are presented in FIG. 7 .
- the expression vector was pCI-Neo (deltaT7).
- FIG. 8 A Western blot demonstrating the expression and antibody recognition of VSV G proteins expressed from plasmid DNA constructs is presented in FIG. 8 .
- VSV constructs were expressed transiently in 293T cells and the Western blot was performed with lysates (2% CHAPS). The Western blot showed that the stem region of VSV G tolerated the insertion of the 2F5 and/or 4E10 epitope, and that modified VSV G constructs were detected by the 2F5 and 4E10 antibodies.
- VSV G Trimerization of VSV G on the cell surface is presented in FIG. 9 .
- the VSV G plasmid DNA constructs were expressed in 293T cells, chemical crosslinking was performed with DTSSP (3,3′-Dithiobis-[sulfosuccinimidyl-propionate]) on intact cells and western blot with cell lysates was performed. As shown in FIG. 9 , all VSV G variants form trimers on the surface of 293T cells.
- VSV G constructs Cell surface expression of VSV G constructs is presented in FIG. 10 .
- the VSV G constructs were transiently expressed in 293T cells, and flow cytometry was performed 24 hours post-transfection.
- the modified VSV G constructs were expressed on the cell surface and detected by the 2F5 and 4E10 antibodies.
- VSV G mediated cell-cell fusion is presented in FIG. 11 .
- 293T cells were transfected with plasmid encoding VSV G, briefly exposed to pH 5.2 after 24 hours, and syncitia formation was observed.
- VSV G-2F5-Sub and VSV G-4E10-Sub both induced cell-cell fusion.
- VSV G-2F5-4E10-Sub showed small areas of cell-cell fusion in rare cases. It was postulated that the modified G proteins may confer virus entry. To answer this question, a lentivirus reporter system was developed.
- FIG. 12 A lentivirus reporter system is presented in FIG. 12 .
- 293T cells were co-transfected with reporter plasmids pV1-GFP or pV1-Luc (HIV provirus with 5′ and 3′ LTR), and plasmids coding for Gag-Pol and VSV-G.
- Supernatants containing GFP or luciferase-encoding lentiviruses pseutodypted with VSV G were harvested, followed by infection of na ⁇ ve 293T cells. If VSV G mediates entry, cells will express GFP or luciferase.
- FIG. 13 Infectivity of lenviruses pseudotyped with VSV G is presented in FIG. 13 .
- 293T cells were infected with recombinant GFP-lentiviruses pseudotyped with VSV G variants.
- the infectivity of VSV G-2F5-Sub and VSV G-4E10-Sub was similar to wild-type G.
- FIG. 14 Infectivity of reporter lentiviruses pseudotyped with VSV G is presented in FIG. 14 .
- 293T cells were infected with recombinant Luc-lentiviruses pseudotyped with VSV G variants.
- Lentiviruses pseudotyped with VSV G-2F5-Sub and VSV G-4E10-Sub retained 33% and 35% of infectivity compared to wild-type VSV G. It was postulated that these viruses be neutralized with the 2F5 and 4E10 antibodies.
- Luc-lentiviruses pseudotyped with VSV G-2F5-Sub or VSV G-4E10-Sub were incubated with 2F5 or 4E10 antibody at various concentrations. Subsequently, 293T cells were infected with the Luc-lentiviruses, followed by assaying luciferase activity at 3 days post-infection. Luc-lentiviruses pseudotyped with VSV G-2F5-Sub and VSV G-4E10-Sub were efficiently neutralized with the 2F5 and 4E10 antibody, respectively. It was then postulated that modified G proteins could be incorporated into recombinant VSV.
- VSV containing the gene coding for G-2F5-Sub, G-4E10-Sub and G-2F5-4E10-Sub were rescued.
- a growth curve analysis by plaque assay on Vero cells (m.o.i of 5) is shown in FIG. 16 .
- the growth kinetics of rVSV containing G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub were similar to wild-type. It was then postulated that rVSV G-2F5-Sub, rVSV G-4E10-Sub and rVSV G-2F5-4E10-Sub could be neutralized with the 2F5 and 4E10 antibodies.
- FIG. 17 Neutralization of recombinant VSV with various antibodies is shown in FIG. 17 .
- VI-10 control antibody against the ectodomain of VSV G, i.e. it should neutralize all viruses with G
- 2F5 or 4E10 at various concentrations
- rVSV containing G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub was efficiently neutralized by the 2F5 and/or 4E10 antibodies.
- VSV Vesicular Stomatitis Virus
- the modified VSV G proteins were expressed on the cell surface and detected by the respective HIV broadly neutralizing antibodies
- lentiviruses pseudotyped with VSV G-2F5-Sub or VSV G-4E10-Sub were infectious and could be neutralized with the 2F5 and 4E10 antibody, respectively
- recombinant VSVs with G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub were infectious, had similar growth kinetics like wild-type rVSV, and could be efficiently neutralized with the 2F5 and 4E10 antibodies.
- Applicants conclude that the HIV-1 gp41 2F5 and 4E10 epitope sequences were presented in a native-like conformation in the ‘stem’ region of the VSV glycoprotein.
- the gene was optimized for expression in eukaryotic cells using the following steps: 1. Started with amino acid sequence for VSV G serotype Indiana, strain Orsay (Genbank M11048.1) 2. The amino acid sequence was reverse-translated using the OPTIMIZER webtool (available on the OPTIMIZER website associated with Universitat Rovira i Virgili (URV)) and a human codon frequency table [Puigb ⁇ P et al. Nucleic Acids Res. 2007 July; 35 (Web Server issue):W126-31] 3.
- the DNA sequence obtained from reverse-translation was scanned for potential mRNA splice donor and acceptor sequences using the Splice Site Prediction webtool available on the fruitfly.org website [Reese M G et al. J Comput Biol. 1997 Fall; 4(3):311-23].
- Potential splicing signals were disrupted subsequently by introducing one or two synonymous codons, which altered key elements in the donor or acceptor site. Synonymous codons were selected based on frequencies found in the Codon Table published by Zhang et al [Hum Mol. Genet. 1998 May; 7 (5):919-32] for GC-rich transcripts. 4.
- the reverse-translated sequence also was scanned for homopolymeric sequences ⁇ 5 nucleotides.
- VSV vesicular stomatitis virus
- VSV vesicular stomatitis virus
- VSV vesicular stomatitis virus
- G/Stem contains a cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G, a membrane proximal extracellular polypeptide (the Stem) that can be 0 to 16 to 68 amino acids in, wherein HIV Env epitopes are appended to the Stem.
- CT cytoplasmic tail
- TM trans-membrane
- Stem membrane proximal extracellular polypeptide
- a method of generating novel chimeric EnvG molecules expressed and incorporated into VSV comprising:
- a method of producing an immune response comprising administering to a mammal the vector of any one of paragraphs 1-10.
- a method of eliciting an immune response comprising administering to a mammal the vector of any one of paragraphs 1-10.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Communicable Diseases (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
Abstract
The present relation relates to recombinant vesicular stomatitis virus for use as prophylactic and therapeutic vaccines for infectious diseases of AIDS. The present invention encompasses the preparation and purification of immunogenic compositions which are formulated into the vaccines of the present invention.
Description
- This application claims priority to U.S. provisional patent application Ser. No. 61/154,190 filed Feb. 20, 2009.
- The foregoing applications, and all documents cited therein or during their prosecution (“appln cited documents”) and all documents cited or referenced herein (“herein cited documents”), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.
- This invention was supported, in part, by NIH grant number: R01-AI084840. The federal government may have certain rights to this invention.
- The present invention relates to recombinant vesicular stomatitis virus for use as prophylactic and therapeutic vaccines for infectious diseases of AIDS.
- AIDS, or Acquired Immunodeficiency Syndrome, is caused by human immunodeficiency virus (HIV) and is characterized by several clinical features including wasting syndromes, central nervous system degeneration and profound immunosuppression that results in opportunistic infections and malignancies. HIV is a member of the lentivirus family of animal retroviruses, which include the visna virus of sheep and the bovine, feline, and simian immunodeficiency viruses (SIV). Two closely related types of HIV, designated HIV-1 and HIV-2, have been identified thus far, of which HIV-1 is by far the most common cause of AIDS. However, HIV-2, which differs in genomic structure and antigenicity, causes a similar clinical syndrome.
- An infectious HIV particle consists of two identical strands of RNA, each approximately 9.2 kb long, packaged within a core of viral proteins. This core structure is surrounded by a phospholipid bilayer envelope derived from the host cell membrane that also includes virally-encoded membrane proteins (Abbas et al., Cellular and Molecular Immunology, 4th edition, W.B. Saunders Company, 2000, p. 454). The HIV genome has the characteristic 5′-LTR-Gag-Pol-Env-LTR-3′ organization of the retrovirus family. Long terminal repeats (LTRs) at each end of the viral genome serve as binding sites for transcriptional regulatory proteins from the host and regulate viral integration into the host genome, viral gene expression, and viral replication.
- The HIV genome encodes several structural proteins. The gag gene encodes structural proteins of the nucleocapsid core and matrix. The pol gene encodes reverse transcriptase (RT), integrase (IN), and viral protease (PR) enzymes required for viral replication. The tat gene encodes a protein that is required for elongation of viral transcripts. The rev gene encodes a protein that promotes the nuclear export of incompletely spliced or unspliced viral RNAs. The vif gene product enhances the infectivity of viral particles. The vpr gene product promotes the nuclear import of viral DNA and regulates G2 cell cycle arrest. The vpu and nef genes encode proteins that down regulate host cell CD4 expression and enhance release of virus from infected cells. The env gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41), which are required for the infection of cells (Abbas, pp. 454-456). gp140 is a modified form of the Env glycoprotein, which contains the external 120-kDa envelope glycoprotein portion and the extracellular part of the gp41 portion of Env and has characteristics of both gp120 and gp41. The nef gene is conserved among primate lentiviruses and is one of the first viral genes that is transcribed following infection. In vitro, several functions have been described, including down-regulation of CD4 and MHC class I surface expression, altered T-cell signaling and activation, and enhanced viral infectivity.
- HIV infection initiates with gp120 on the viral particle binding to the CD4 and chemokine receptor molecules (e.g., CXCR4, CCR5) on the cell membrane of target cells such as CD4+ T-cells, macrophages and dendritic cells. The bound virus fuses with the target cell and reverse transcribes the RNA genome. The resulting viral DNA integrates into the cellular genome, where it directs the production of new viral RNA, and thereby viral proteins and new virions. These virions bud from the infected cell membrane and establish productive infections in other cells. This process also kills the originally infected cell. HIV can also kill cells indirectly because the CD4 receptor on uninfected T-cells has a strong affinity for gp120 expressed on the surface of infected cells. In this case, the uninfected cells bind, via the CD4 receptor-gp120 interaction, to infected cells and fuse to form a syncytium, which cannot survive. Destruction of CD4+ T-lymphocytes, which are critical to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of AIDS disease progression. The loss of CD4+ T cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.
- Research on the Env glycoprotein has shown that the virus has many effective protective mechanisms with few vulnerabilities (Wyatt & Sodroski, Science. 1998 Jun. 19; 280(5371):1884-8). For fusion with its target cells, HIV-1 uses a trimeric Env complex containing gp120 and gp41 subunits (Burton et al., Nat Immunol. 2004 March; 5(3):233-6). The fusion potential of the Env complex is triggered by engagement of the CD4 receptor and a coreceptor, usually CCR5 or CXCR4. Neutralizing antibodies seem to work either by binding to the mature trimer on the virion surface and preventing initial receptor engagement events, or by binding after virion attachment and inhibiting the fusion process (Parren & Burton, Adv Immunol. 2001; 77:195-262). In the latter case, neutralizing antibodies may bind to epitopes whose exposure is enhanced or triggered by receptor binding. However, given the potential antiviral effects of neutralizing antibodies, it is not unexpected that HIV-1 has evolved multiple mechanisms to protect it from antibody binding (Johnson & Desrosiers, Annu Rev Med. 2002; 53:499-518).
- There remains a need to express immunogens that elicit broadly neutralizing antibodies. Strategies include producing molecules that mimic the mature trimer on the virion surface, producing Env molecules engineered to better present neutralizing antibody epitopes than wild-type molecules, generating stable intermediates of the entry process to expose conserved epitopes to which antibodies could gain access during entry and producing epitope mimics of the broadly neutralizing monoclonal antibodies determined from structural studies of the antibody-antigen complexes (Burton et al., Nat Immunol. 2004 March; 5(3):233-6). However, none of these approaches have yet efficiently elicited neutralizing antibodies with broad specificity.
- Citation or identification of any document in this application is not an admission that such document is available as prior art to the present application.
- The current invention is based, in part, on Applicant's discovery that HIV gp41 epitopes known to elicit broadly neutralizing antibodies inserted into a viral glycoprotein are recognized by such broadly neutralizing antibodies in cells infected with the recombinant virus expressing the viral glycoprotein.
- Recombinant viruses are viruses generated by introducing foreign genetic material into the genome of the virus. The genome of a virus can comprise either DNA or RNA. The genome of an RNA virus can be further characterized to be either positive-sense (plus-strand) or negative-sense (minus-strand). A plus-strand (5′ to 3′) viral RNA indicates that a particular viral RNA sequence can be directly translated into the desired viral proteins whereas a minus-strand (3′ to 5′) viral RNA must be first converted to a positive-sense by an RNA polymerase prior to translation.
- In a first embodiment, the invention relates to a recombinant vesicular stomatitis virus (VSV) vector wherein the gene encoding the VSV surface glycoprotein G (VSV G) may be functionally replaced by HIV Env. The HIV Env may be recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10 or Z13 or other antibodies, including potent broadly neutralizing trimer-specific antibodies. VSV is a minus-strand RNA virus that can infect insects and mammals.
- In a second embodiment, the invention relates to a recombinant vesicular stomatitis virus (VSV) vector encoding a modified form of VSV G, wherein the modified form of VSV G may harbor epitopes from the HIV Env membrane proximal external region (MPER). The MPER sequence may be inserted into the membrane proximal region or other domains of VSV G. The G-MPER protein may bind with high avidity to 2F5, 4E10 or other monoclonal antibodies.
- In a third embodiment, the invention relates to a recombinant vesicular stomatitis virus (VSV) vector encoding a an N-terminally truncated form of VSV G (G/Stem), wherein the G/Stem may display Env epitope sequences on the surface of VSV particles. The G/Stem may contain a cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G, a 16- to 68-amino acid membrane proximal extracellular polypeptide (the Stem), wherein HIV Env epitopes are appended to or inserted into the Stem. The HIV Env epitopes may be derived from the gp41 MPER or other regions of Env. The G/Stem-HIV Env epitope molecules may bind to 2F5, 4E10 or other monoclonal antibodies with high affinity.
- In a fourth embodiment, the invention relates to a method of generating novel chimeric HIV Env-VSV G (EnvG) molecules expressed and incorporated into VSV which may comprise:
- (a) serially passaging replication-competent chimeric VSV-HIV viruses that lack the capacity to encode wild-type G and are dependent on Env or chimeric EnvG molecules for infection and propagation on cells to promote emergence of viruses with greater replicative fitness and
- (b) identifying novel mutations that enhance Env or EnvG function in VSV-HIV viruses.
- The cells may be CD4/CCR5+ cells. The novel mutations may escalate trimer abundance on the virus particle and/or increase the stability of the functional trimeric form of Env or EnvG. The method may further comprise determining whether the Env or EnvG immunogens elicit broadly neutralizing anti-Env antibodies.
- In a fifth embodiment, the invention relates to method of applying selective pressure to generate novel Env, EnvG, or G/Stem-antigen chimeras molecules expressed and incorporated into VSV, wherein the selective pressure may be binding to an antibody of interest, thereby enriching for molecules that may be more immunogenic. The antibody may be 2F5, 4E10, or other Env-specific antibodies.
- The present invention also encompasses methods of producing or eliciting an immune response which may comprise administering to a mammal any one of the herein disclosed recombinant VSV vectors.
- The present invention also encompasses other plus and minus strand viruses which can be used as recombinant viral vectors in the method of the invention. Such viruses include but are not limited to: Measles virus, Canine distemper virus, Parainfluenza viruses, Sendai virus, Newcastle disease virus, Venezuelan equine encephalitis virus, Sindbis virus, Semliki Forrest virus etc.
- Accordingly, it is an object of the invention to not encompass within the invention any previously known product, process of making the product, or method of using the product such that Applicants reserve the right and hereby disclose a disclaimer of any previously known product, process, or method. It is further noted that the invention does not intend to encompass within the scope of the invention any product, process, or making of the product or method of using the product, which does not meet the written description and enablement requirements of the USPTO (35 U.S.C. §112, first paragraph) or the EPO (Article 83 of the EPC), such that Applicants reserve the right and hereby disclose a disclaimer of any previously described product, process of making the product, or method of using the product.
- It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as “comprises”, “comprised”, “comprising” and the like can have the meaning attributed to it in U.S. patent law; e.g., they can mean “includes”, “included”, “including”, and the like; and that terms such as “consisting essentially of” and “consists essentially of” have the meaning ascribed to them in U.S. patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.
- These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.
- The following detailed description, given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:
-
FIGS. 1A and 1B depict the HIV-1 envelope protein. A. Illustration of the gp160 precursor, which is post-translationally cleaved into the gp120 and gp41 subunits. The locations of the signal and fusion peptides, the Membrane-Proximal External Region (MPER) and the transmembrane (TM) segment are indicated. The ruler denotes amino acid numbering. B. Broadly neutralizing antibodies directed against Env: PG9 and PG16 interacts with conserved residues in the V2 and V3 loops and present an accessible target on gp120; 2G12 binds to oligosaccharides at the tip of gp120; b12 interacts with the CD4 binding site; 2F5 and 4E10 bind adjacent linear epitopes in the gp41 MPER. -
FIG. 2 depicts vesicular stomatitis virus. The negative-sense RNA genome (schematically depicted at the top) encodes five genes in theorder 3′-N-P-M-G-L-5′. The surface of the virus particle (bottom) is decorated with approximately 1,200 copies of the glycoprotein (G), which is arranged as trimers. The matrix protein (M) lines the inner surface of the virus particle between the membrane and the nucleocapsid, probably making contact with G as well as the nucleocapsid (N) protein and giving the virus particles their characteristic rod- or bullet-shaped morphology. The polymerase (L) and phosphoprotein (P) are subunits of the RNA-dependent RNA polymerase complex. -
FIG. 3 depicts the VSV glycoprotein. The model on the left side is the soluble G ectodomain solved by Roche et al (Roche et al., Science 2007 315, 843-848), which is composed of a number of structural elements including an elongated β-sheet that contains the fusion peptide. In the middle portion of the Figure, a graphic approximation (in pink) of amino acid residues not included in the crystal structure was inserted, which includes the cytoplasmic tail (CT), the transmembrane (TM) domain, and the short membrane-proximal ectodomain (Stem). Three epitope insertion points were used for preliminary studies: an α-helix at the tip (T), a loop (L) on the side, and a region in the Stem (S). The Stem, together with the TM and CT domains, but without the remainder of the ectodomain, forms the G-Stem polypeptide, which is drawn at the right side of the Figure. The G-Stem protein can be incorporated into virions and can be used as a presentation platform for foreign epitopes. -
FIG. 4 depicts HIV Env Immunogens presented on the VSV vector platform. The different chimeric envelope proteins are illustrated from top to bottom: i) the native VSV G trimer, ii) a G trimer with the gp41 MPER inserted into the stem region of G; iii) the G/Stem displaying MPER epitopes; and iv) the Env ectodomain including the MPER, which is incorporated into the VSV particle via the transmembrane segment and cytoplasmic tail of G. -
FIG. 5 depicts insertion of the HIV gp41-derived 2F5 and/or 4E10 epitope into the ‘stem’ region of VSV G, which shares sequence similarities with the gp41 MPER. -
FIG. 6 depicts HIV-1 Env MPER and VSV G stem sequence alignment and insertion/substitution strategies. Top, The MPER of HIV-1 gp41 (JRFL strain) and the Stem region of VSV G (Indiana strain) share sequence similarities, which guided the selection of insertion or substitution points in the Stem region for the 2F5 and 4E10 epitopes. The transmembrane domains and the first two residues of the cytoplasmic tails are depicted on the right. Hydrophobic residues are shown in blue. Middle, Generation of the VSV G-2F5-Ins construct by insertion of the 2F5 epitope into the G stem region. Flanking linker residues are shown in green. Bottom, Substitution of residues in the G stem region with the 2F5 and/or 4E10 epitopes, resulting in the VSV G-2F5-Sub, VSV G-4E10-Sub, and VSV G-2F5-4E10-Sub constructs. Sequences similarities between HIV gp41 and VSV G are shown in red. -
FIG. 7 depicts insertion points for the 2F5 and 4E10 epitopes in the context of full-length VSV G. The leader peptide, ectodomain, Stem, TM and CT of VSV G are illustrated. The arrow denotes insertion of the 2F5 epitope, while the orange and blue boxes indicate substitution of the 2F5 and 4E10 epitopes, respectively. -
FIG. 8 depicts the expression and antibody detection of the VSV G constructs. Western blot using VSV-G, 2F5 and 4E10 antibodies to detect the G protein in lysates from 293T cells transfected with plasmids coding for unmodified VSV G, VSV G-2F5-Ins, VSV G-2F5-Sub, VSV G-4E10-Sub, or VSV G-2F5-4E10-Sub. Mock denotes a transfection with an “empty” plasmid vector. The antibody used for detection is shown under each panel. Molecular weight standards are indicated on the right of each gel. -
FIG. 9 depicts the trimerization of the VSV G constructs. Western blot using VSV-G antibody to detect oligomeric G protein on the surface of 293T cells transfected with VSV G constructs, followed by incubation with thechemical crosslinker -
FIG. 10 depicts cell surface expression of VSV G constructs. 293T cells transfected with VSV G constructs were stained with an antibody specific for the ectodomain of VSV G, or with 2F5 or 4E10 antibodies, followed by analysis of the samples by flow cytometry. -
FIG. 11 depicts cell-cell fusion mediated by VSV G. 293T cells transfected with VSV G constructs were exposed briefly to a medium with pH 5.2. After 6-8 hours, formation of syncitia was monitored using a light microscope. The inset in the panel for VSV G-2F5-4E10 at the bottom right shows a small syncitium, which occurs rarely for this construct. -
FIG. 12 depicts a reporter assay for functional analysis of modified VSV G proteins. A reporter lentivirus coding for green fluorescent protein (GFP) or luciferase (Luc) was packaged with Gag-Pol and pseudotyped with the VSV G variants and subsequently used to infect naïve 293T cells. GFP or luciferase expression was analyzed 72 hours post-infection. -
FIG. 13 depicts infectivity of lentiviral particles pseudotyped with VSV G constructs. GFP reporter lentiviruses pseudotyped with VSV G variants were generated in 293T cells and used subsequently to infect naïve 293T cells. GFP expression was monitored 72 hours post-infection. -
FIG. 14 depicts quantification of infectivity of lentiviral particles pseudotyped with VSV G constructs. Naïve 293T cells were infected with luciferase reporter lentiviruses pseudotyped with VSV G variants, followed by quantification of luciferase expression 48 hours post-infection. -
FIG. 15 depicts neutralization of lentiviral particles pseudotyped with VSV G constructs with the 2F5 or 4E10 antibodies. Luciferase reporter lentiviruses pseudotyped with VSV G, VSV G-2F5-Sub or VSV G-4E10-Sub were incubated with various concentrations of 2F5 (left panel) or 4E10 antibody (right panel) prior to infection of naïve cells. Luciferase expression was quantified 48 hours post-infection. -
FIG. 16 depicts growth curves of recombinant VSV in Vero cells. Recombinant VSV (rVSV) containing the gene for wild-type G, G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub rescued in 293T cells was used to infect Vero cells at a multiplicity of infection (m.o.i.) of 5. Aliquots of the supernatant were taken at various times post-infection. Subsequently, naïve Vero cells were infected with the samples, followed by a standard plaque assay to determine the viral titer for each time point. -
FIG. 17 depicts neutralization of recombinant VSV with 2F5 and 4E10 antibodies. Recombinant VSV containing wild-type G, G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub was incubated with various concentrations of the broadly neutralizing monoclonal antibodies VI-10 (which reacts with the ectodomain of G), 2F5 or 4E10 before addition to naïve Vero cells. A standard plaque assay was used to determine the extent of neutralization for each antibody and concentration. -
FIGS. 18A and 18B depict a VSV G-Stem platform for expression of fusion proteins. A. Schematic illustration of the VSV genome, the G gene, and the primary structures of the G and G-Stem proteins. B. Foreign gene sequences are fused to the G-Stem via a NheI restriction site, which facilitates incorporation of immunogen coding sequences. -
FIGS. 19A-19C depict a schematic illustrating the membrane topology of G and G-Stem proteins. A. Topology of the full-length G protein with the extracellular region, the stem, the transmembrane segment, and the cytoplasmic tail. Four different G-Stem constructs were generated: no stem, short stem, middle stem, and long stem. B. The gp41 MPER was fused to the four G-Stem constructs (GS-MPER fusions) C. Amino acid sequence of the G-Stem. The starting position for each GS variant (no, short, medium, long) is shown. The N-terminal signal sequence is shown in purple, whereas the transmembrane segment is colored red. -
FIG. 20 depicts VSV Vector Design. The gene encoding G-Stem variants was inserted into the VSV genome upstream of the N protein near the 3′ end. In addition, the full-length G protein is present in the genome. Upon expression, both the G-Stem and full-length G will be incorporated into virus particles as illustrated below the vector genome map. -
FIGS. 21A-21D depict analysis of G-Stem-MPER Expression. A. Western Blot analysis of rVSV containing the G-Stem-MPER variants (rVSV-GS-MPER) from the supernatant of infected cells using an anti-VSV-G antibody that reacts with the cyoplasmic tail. LS, long stem; MS, medium stem; SS, short stem; NS, no stem. B. Western Blot analysis of rVSV-GS-MPER from infected cells using an anti-VSV-G antibody. C. Western Blot analysis of rVSV-GS-MPER with the 2F5 antibody. D. Western Blot analysis of rVSV-GS-MPER with the 4E10 antibody. -
FIG. 22 depicts various VSV G-HIV Env chimeras. The VSV glycoprotein G is shown at the top with features labeled including the signal peptide (SP), the soluble extracellular domain, the Stem, transmembrane (TM) segment and cytoplasmic tail (CT). The HIV-1 Envelope (Env) protein, illustrated below G, is proteolytically processed into the extracellular gp120 and the gp41 domains, the latter containing the MPER, TM segment and CT domains. Various chimeric EnvG proteins are shown at the bottom. Transition points between HIV gp41 and VSV G are be located i) before the CT, ii) before the TM domain, iii) before the MPER, or iv) N-terminal to the complete VSV G-Stem. Translocation of the protein into the lumen of the endoplasmic reticulum can be driven by either the Env or the G signal peptide, although the efficiency and destination vary with the two signals. The ruler at the top denotes the number of amino acid residues. -
FIG. 23 depicts infectivity of rVSV-EnvG. a, Uninfected GHOST cells (expressing the HIV co-receptors CD4 and CCR5; Cecilia D., et al J. Virol. 1998 September; 7:6988-96) near full confluency. b, GHOST cells infected with rVSV-EnvG virus at 48 hours post-infection. The cytopathic effect (CPE) is clearly visible. -
FIG. 24 depicts evolution of Env or EnvG proteins expressed by recombinant VSV. Recombinant VSV encoding a chimeric EnvG molecule are subjected to serial passage and selective pressure. Virus particles that bind with high avidity to 2F5 antibody, for example, are isolated after stringent washing of the antibody beads. Infectious nucleocapsid is liberated from the antibody beads and transfected into CD4/CCR5-positive cells, which initiates a new round of infection. The new generation of recombinant virus undergoes further rounds of selection with increased stringency, which enrich new variants of recombinant viruses that may have improved immunogenic properties. -
FIG. 25 depicts rabbit immunogenicity testing. Vaccination and blood collection schedules are listed along a timeline (M, months; W, weeks) at the top. Analysis of antibody reactivity is illustrated in the flow diagram at the left side. The chart on the right side outlines a typical rabbit study. -
FIG. 26 depicts a plan for vaccination, sampling, and SHIV Challenge. rVSV vaccine candidates are administered 3 times at 6-week intervals after which IV SHIV 162P3 challenge is conducted using a challenge stock obtained from the NIH AIDS Research & Reference Reagent Program. -
FIGS. 27A-27B depicts the plasmid sequence of pCINeo-VSV-G that encodes the G protein from the vesicular stomatitis Indiana virus. Applicants have optimized the gene sequence. -
FIGS. 28A-28B depicts the unique XhoI and NotI sites (highlighted) added to the 5′ and 3′ termini respectively of the VSV G coding sequence as per the Optimization Strategy detailed in Example 5. - The terms “protein”, “peptide”, “polypeptide”, and “amino acid sequence” are used interchangeably herein to refer to polymers of amino acid residues of any length. The polymer may be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.
- As used herein, the terms “antigen” or “immunogen” are used interchangeably to refer to a substance, typically a protein, which is capable of inducing an immune response in a subject. The term also refers to proteins that are immunologically active in the sense that once administered to a subject (either directly or by administering to the subject a nucleotide sequence or vector that encodes the protein) is able to evoke an immune response of the humoral and/or cellular type directed against that protein.
- The term “antibody” includes intact molecules as well as fragments thereof, such as Fab, F(ab′)2, Fv and scFv which are capable of binding the epitope determinant. These antibody fragments retain some ability to selectively bind with its antigen or receptor and include, for example:
- (i) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain;
- (ii) Fab′, the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab′ fragments are obtained per antibody molecule;
- (iii) F(ab′)2, the fragment of the antibody that can be obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; F(ab′)2 is a dimer of two Fab′ fragments held together by two disulfide bonds;
- (iv) scFv, including a genetically engineered fragment containing the variable region of a heavy and a light chain as a fused single chain molecule.
- General methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988), which is incorporated herein by reference).
- It should be understood that the proteins, including the antibodies and/or antigens of the invention may differ from the exact sequences illustrated and described herein. Thus, the invention contemplates deletions, additions and substitutions to the sequences shown, so long as the sequences function in accordance with the methods of the invention. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic—aspartate and glutamate; (2) basic—lysine, arginine, histidine; (3) non-polar—alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar—glycine, asparagine, glutamine, cysteine, serine threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. It is reasonably predictable that an isolated replacement of leucine with isoleucine or valine, or vice versa; an aspartate with a glutamate or vice versa; a threonine with a serine or vice versa; or a similar conservative replacement of an amino acid with a structurally related amino acid, will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the sequences illustrated and described but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the scope of the invention.
- As used herein the terms “nucleotide sequences” and “nucleic acid sequences” refer to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences, including, without limitation, messenger RNA (mRNA), DNA/RNA hybrids, or synthetic nucleic acids. The nucleic acid can be single-stranded, or partially or completely double-stranded (duplex). Duplex nucleic acids can be homoduplex or heteroduplex.
- As used herein the term “transgene” may used to refer to “recombinant” nucleotide sequences that may be derived from any of the nucleotide sequences encoding the proteins of the present invention. The term “recombinant” means a nucleotide sequence that has been manipulated “by man” and which does not occur in nature, or is linked to another nucleotide sequence or found in a different arrangement in nature. It is understood that manipulated “by man” means manipulated by some artificial means, including by use of machines, codon optimization, restriction enzymes, etc.
- For example, in one embodiment the nucleotide sequences may be mutated such that the activity of the encoded proteins in vivo is abrogated. In another embodiment the nucleotide sequences may be codon optimized, for example the codons may be optimized for human use. In preferred embodiments the nucleotide sequences of the invention are both mutated to abrogate the normal in vivo function of the encoded proteins, and codon optimized for human use. For example, each of the Gag, Pol, Env, Nef, RT, and Int sequences of the invention may be altered in these ways.
- As regards codon optimization, the nucleic acid molecules of the invention have a nucleotide sequence that encodes the antigens of the invention and can be designed to employ codons that are used in the genes of the subject in which the antigen is to be produced. Many viruses, including HIV and other lentiviruses, use a large number of rare codons and, by altering these codons to correspond to codons commonly used in the desired subject, enhanced expression of the antigens can be achieved. In a preferred embodiment, the codons used are “humanized” codons, i.e., the codons are those that appear frequently in highly expressed human genes (Andre et al., J. Virol. 72:1497-1503, 1998) instead of those codons that are frequently used by HIV. Such codon usage provides for efficient expression of the transgenic HIV proteins in human cells. Any suitable method of codon optimization may be used. Such methods, and the selection of such methods, are well known to those of skill in the art. In addition, there are several companies that will optimize codons of sequences, such as Geneart (geneart.com). Thus, the nucleotide sequences of the invention can readily be codon optimized.
- The invention further encompasses nucleotide sequences encoding functionally and/or antigenically equivalent variants and derivatives of the antigens of the invention and functionally equivalent fragments thereof. These functionally equivalent variants, derivatives, and fragments display the ability to retain antigenic activity. For instance, changes in a DNA sequence that do not change the encoded amino acid sequence, as well as those that result in conservative substitutions of amino acid residues, one or a few amino acid deletions or additions, and substitution of amino acid residues by amino acid analogs are those which will not significantly affect properties of the encoded polypeptide. Conservative amino acid substitutions are glycine/alanine; valine/isoleucine/leucine; asparagine/glutamine; aspartic acid/glutamic acid; serine/threonine/methionine; lysine/arginine; and phenylalanine/tyrosine/tryptophan. In one embodiment, the variants have at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% homology or identity to the antigen, epitope, immunogen, peptide or polypeptide of interest.
- For the purposes of the present invention, sequence identity or homology is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical algorithms. A nonlimiting example of a mathematical algorithm used for comparison of two sequences is the algorithm of Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1990; 87: 2264-2268, modified as in Karlin & Altschul, Proc. Natl. Acad. Sci. USA 1993; 90: 5873-5877.
- Another example of a mathematical algorithm used for comparison of sequences is the algorithm of Myers & Miller, CABIOS1988; 4: 11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson & Lipman, Proc. Natl. Acad. Sci. USA 1988; 85: 2444-2448.
- Advantageous for use according to the present invention is the WU-BLAST (Washington University BLAST) version 2.0 software. WU-BLAST version 2.0 executable programs for several UNIX platforms can be downloaded from ftp://blast.wustl.edu/blast/executables. This program is based on WU-BLAST version 1.4, which in turn is based on the public domain NCBI-BLAST version 1.4 (Altschul & Gish, 1996, Local alignment statistics, Doolittle ed., Methods in Enzymology 266: 460-480; Altschul et al., Journal of Molecular Biology 1990; 215: 403-410; Gish & States, 1993; Nature Genetics 3: 266-272; Karlin & Altschul, 1993; Proc. Natl. Acad. Sci. USA 90: 5873-5877; all of which are incorporated by reference herein).
- The various recombinant nucleotide sequences and antibodies and/or antigens of the invention are made using standard recombinant DNA and cloning techniques. Such techniques are well known to those of skill in the art. See for example, “Molecular Cloning: A Laboratory Manual”, second edition (Sambrook et al. 1989).
- The nucleotide sequences of the present invention may be inserted into “vectors.” The term “vector” is widely used and understood by those of skill in the art, and as used herein the term “vector” is used consistent with its meaning to those of skill in the art. For example, the term “vector” is commonly used by those skilled in the art to refer to a vehicle that allows or facilitates the transfer of nucleic acid molecules from one environment to another or that allows or facilitates the manipulation of a nucleic acid molecule.
- Any vector that allows expression of the antibodies and/or antigens of the present invention may be used in accordance with the present invention. In certain embodiments, the antigens and/or antibodies of the present invention may be used in vitro (such as using cell-free expression systems) and/or in cultured cells grown in vitro in order to produce the encoded HIV-antigens and/or antibodies which may then be used for various applications such as in the production of proteinaceous vaccines. For such applications, any vector that allows expression of the antigens and/or antibodies in vitro and/or in cultured cells may be used.
- For applications where it is desired that the antibodies and/or antigens be expressed in vivo, for example when the transgenes of the invention are used in DNA or DNA-containing vaccines, any vector that allows for the expression of the antibodies and/or antigens of the present invention and is safe for use in vivo may be used. In preferred embodiments the vectors used are safe for use in humans, mammals and/or laboratory animals.
- For the antibodies and/or antigens of the present invention to be expressed, the protein coding sequence should be “operably linked” to regulatory or nucleic acid control sequences that direct transcription and translation of the protein. As used herein, a coding sequence and a nucleic acid control sequence or promoter are said to be “operably linked” when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the nucleic acid control sequence. The “nucleic acid control sequence” can be any nucleic acid element, such as, but not limited to promoters, enhancers, IRES, introns, and other elements described herein that direct the expression of a nucleic acid sequence or coding sequence that is operably linked thereto. The term “promoter” will be used herein to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II and that when operationally linked to the protein coding sequences of the invention lead to the expression of the encoded protein. The expression of the transgenes of the present invention can be under the control of a constitutive promoter or of an inducible promoter, which initiates transcription only when exposed to some particular external stimulus, such as, without limitation, antibiotics such as tetracycline, hormones such as ecdysone, or heavy metals. The promoter can also be specific to a particular cell-type, tissue or organ. Many suitable promoters and enhancers are known in the art, and any such suitable promoter or enhancer may be used for expression of the transgenes of the invention. For example, suitable promoters and/or enhancers can be selected from the Eukaryotic Promoter Database (EPDB).
- The present invention relates to a recombinant vesicular stomatitis virus (VSV) vector expressing a foreign epitope. Advantageously, the epitope is an HIV epitope. Any HIV epitope may be expressed in a VSV vector. Advantageously, the HIV epitope is an HIV antigen, HIV epitope or an HIV immunogen, such as, but not limited to, the HIV antigens, HIV epitopes or HIV immunogens of U.S. Pat. Nos. 7,341,731; 7,335,364; 7,329,807; 7,323,553; 7,320,859; 7,311,920; 7,306,798; 7,285,646; 7,285,289; 7,285,271; 7,282,364; 7,273,695; 7,270,997; 7,262,270; 7,244,819; 7,244,575; 7,232,567; 7,232,566; 7,223,844; 7,223,739; 7,223,534; 7,223,368; 7,220,554; 7,214,530; 7,211,659; 7,211,432; 7,205,159; 7,198,934; 7,195,768; 7,192,555; 7,189,826; 7,189,522; 7,186,507; 7,179,645; 7,175,843; 7,172,761; 7,169,550; 7,157,083; 7,153,509; 7,147,862; 7,141,550; 7,129,219; 7,122,188; 7,118,859; 7,118,855; 7,118,751; 7,118,742; 7,105,655; 7,101,552; 7,097,971 7,097,842; 7,094,405; 7,091,049; 7,090,648; 7,087,377; 7,083,787; 7,070,787; 7,070,781; 7,060,273; 7,056,521; 7,056,519; 7,049,136; 7,048,929; 7,033,593; 7,030,094; 7,022,326; 7,009,037; 7,008,622; 7,001,759; 6,997,863; 6,995,008; 6,979,535; 6,974,574; 6,972,126; 6,969,609; 6,964,769; 6,964,762; 6,958,158; 6,956,059; 6,953,689; 6,951,648; 6,946,075; 6,927,031; 6,919,319; 6,919,318; 6,919,077; 6,913,752; 6,911,315; 6,908,617; 6,908,612; 6,902,743; 6,900,010; 6,893,869; 6,884,785; 6,884,435; 6,875,435; 6,867,005; 6,861,234; 6,855,539; 6,841,381 6,841,345; 6,838,477; 6,821,955; 6,818,392; 6,818,222; 6,815,217; 6,815,201; 6,812,026; 6,812,025; 6,812,024; 6,808,923; 6,806,055; 6,803,231; 6,800,613; 6,800,288; 6,797,811; 6,780,967; 6,780,598; 6,773,920; 6,764,682; 6,761,893; 6,753,015; 6,750,005; 6,737,239; 6,737,067; 6,730,304; 6,720,310; 6,716,823; 6,713,301; 6,713,070; 6,706,859; 6,699,722; 6,699,656; 6,696,291; 6,692,745; 6,670,181; 6,670,115; 6,664,406; 6,657,055; 6,657,050; 6,656,471; 6,653,066; 6,649,409; 6,649,372; 6,645,732; 6,641,816; 6,635,469; 6,613,530; 6,605,427; 6,602,709 6,602,705; 6,600,023; 6,596,477; 6,596,172; 6,593,103; 6,593,079; 6,579,673; 6,576,758; 6,573,245; 6,573,040; 6,569,418; 6,569,340; 6,562,800; 6,558,961; 6,551,828; 6,551,824; 6,548,275; 6,544,780; 6,544,752; 6,544,728; 6,534,482; 6,534,312; 6,534,064; 6,531,572; 6,531,313; 6,525,179; 6,525,028; 6,524,582; 6,521,449; 6,518,030; 6,518,015; 6,514,691; 6,514,503; 6,511,845; 6,511,812; 6,511,801; 6,509,313; 6,506,384; 6,503,882; 6,495,676; 6,495,526; 6,495,347; 6,492,123; 6,489,131; 6,489,129; 6,482,614; 6,479,286; 6,479,284; 6,465,634; 6,461,615 6,458,560; 6,458,527; 6,458,370; 6,451,601; 6,451,592; 6,451,323; 6,436,407; 6,432,633; 6,428,970; 6,428,952; 6,428,790; 6,420,139; 6,416,997; 6,410,318; 6,410,028; 6,410,014; 6,407,221; 6,406,710; 6,403,092; 6,399,295; 6,392,013; 6,391,657; 6,384,198; 6,380,170; 6,376,170; 6,372,426; 6,365,187; 6,358,739; 6,355,248; 6,355,247; 6,348,450; 6,342,372; 6,342,228; 6,338,952; 6,337,179; 6,335,183; 6,335,017; 6,331,404; 6,329,202; 6,329,173; 6,328,976; 6,322,964; 6,319,666; 6,319,665; 6,319,500; 6,319,494; 6,316,205; 6,316,003; 6,309,633; 6,306,625 6,296,807; 6,294,322; 6,291,239; 6,291,157; 6,287,568; 6,284,456; 6,284,194; 6,274,337; 6,270,956; 6,270,769; 6,268,484; 6,265,562; 6,265,149; 6,262,029; 6,261,762; 6,261,571; 6,261,569; 6,258,599; 6,258,358; 6,248,332; 6,245,331; 6,242,461; 6,241,986; 6,235,526; 6,235,466; 6,232,120; 6,228,361; 6,221,579; 6,214,862; 6,214,804; 6,210,963; 6,210,873; 6,207,185; 6,203,974; 6,197,755; 6,197,531; 6,197,496; 6,194,142; 6,190,871; 6,190,666; 6,168,923; 6,156,302; 6,153,408; 6,153,393; 6,153,392; 6,153,378; 6,153,377; 6,146,635; 6,146,614; 6,143,876 6,140,059; 6,140,043; 6,139,746; 6,132,992; 6,124,306; 6,124,132; 6,121,006; 6,120,990; 6,114,507; 6,114,143; 6,110,466; 6,107,020; 6,103,521; 6,100,234; 6,099,848; 6,099,847; 6,096,291; 6,093,405; 6,090,392; 6,087,476; 6,083,903; 6,080,846; 6,080,725; 6,074,650; 6,074,646; 6,070,126; 6,063,905; 6,063,564; 6,060,256; 6,060,064; 6,048,530; 6,045,788; 6,043,347; 6,043,248; 6,042,831; 6,037,165; 6,033,672; 6,030,772; 6,030,770; 6,030,618; 6,025,141; 6,025,125; 6,020,468; 6,019,979; 6,017,543; 6,017,537; 6,015,694; 6,015,661; 6,013,484; 6,013,432 6,007,838; 6,004,811; 6,004,807; 6,004,763; 5,998,132; 5,993,819; 5,989,806; 5,985,926; 5,985,641; 5,985,545; 5,981,537; 5,981,505; 5,981,170; 5,976,551; 5,972,339; 5,965,371; 5,962,428; 5,962,318; 5,961,979; 5,961,970; 5,958,765; 5,958,422; 5,955,647; 5,955,342; 5,951,986; 5,951,975; 5,942,237; 5,939,277; 5,939,074; 5,935,580; 5,928,930; 5,928,913; 5,928,644; 5,928,642; 5,925,513; 5,922,550; 5,922,325; 5,919,458; 5,916,806; 5,916,563; 5,914,395; 5,914,109; 5,912,338; 5,912,176; 5,912,170; 5,906,936; 5,895,650; 5,891,623; 5,888,726; 5,885,580 5,885,578; 5,879,685; 5,876,731; 5,876,716; 5,874,226; 5,872,012; 5,871,747; 5,869,058; 5,866,694; 5,866,341; 5,866,320; 5,866,319; 5,866,137; 5,861,290; 5,858,740; 5,858,647; 5,858,646; 5,858,369; 5,858,368; 5,858,366; 5,856,185; 5,854,400; 5,853,736; 5,853,725; 5,853,724; 5,852,186; 5,851,829; 5,851,529; 5,849,475; 5,849,288; 5,843,728; 5,843,723; 5,843,640; 5,843,635; 5,840,480; 5,837,510; 5,837,250; 5,837,242; 5,834,599; 5,834,441; 5,834,429; 5,834,256; 5,830,876; 5,830,641; 5,830,475; 5,830,458; 5,830,457; 5,827,749; 5,827,723; 5,824,497 5,824,304; 5,821,047; 5,817,767; 5,817,754; 5,817,637; 5,817,470; 5,817,318; 5,814,482; 5,807,707; 5,804,604; 5,804,371; 5,800,822; 5,795,955; 5,795,743; 5,795,572; 5,789,388; 5,780,279; 5,780,038; 5,776,703; 5,773,260; 5,770,572; 5,766,844; 5,766,842; 5,766,625; 5,763,574; 5,763,190; 5,762,965; 5,759,769; 5,756,666; 5,753,258; 5,750,373; 5,747,641; 5,747,526; 5,747,028; 5,736,320; 5,736,146; 5,733,760; 5,731,189; 5,728,385; 5,721,095; 5,716,826; 5,716,637; 5,716,613; 5,714,374; 5,709,879; 5,709,860; 5,709,843; 5,705,331; 5,703,057; 5,702,707 5,698,178; 5,688,914; 5,686,078; 5,681,831; 5,679,784; 5,674,984; 5,672,472; 5,667,964; 5,667,783; 5,665,536; 5,665,355; 5,660,990; 5,658,745; 5,658,569; 5,643,756; 5,641,624; 5,639,854; 5,639,598; 5,637,677; 5,637,455; 5,633,234; 5,629,153; 5,627,025; 5,622,705; 5,614,413; 5,610,035; 5,607,831; 5,606,026; 5,601,819; 5,597,688; 5,593,972; 5,591,829; 5,591,823; 5,589,466; 5,587,285; 5,585,254; 5,585,250; 5,580,773; 5,580,739; 5,580,563; 5,573,916; 5,571,667; 5,569,468; 5,558,865; 5,556,745; 5,550,052; 5,543,328; 5,541,100; 5,541,057; 5,534,406 5,529,765; 5,523,232; 5,516,895; 5,514,541; 5,510,264; 5,500,161; 5,480,967; 5,480,966; 5,470,701; 5,468,606; 5,462,852; 5,459,127; 5,449,601; 5,447,838; 5,447,837; 5,439,809; 5,439,792; 5,418,136; 5,399,501; 5,397,695; 5,391,479; 5,384,240; 5,374,519; 5,374,518; 5,374,516; 5,364,933; 5,359,046; 5,356,772; 5,354,654; 5,344,755; 5,335,673; 5,332,567; 5,320,940; 5,317,009; 5,312,902; 5,304,466; 5,296,347; 5,286,852; 5,268,265; 5,264,356; 5,264,342; 5,260,308; 5,256,767; 5,256,561; 5,252,556; 5,230,998; 5,230,887; 5,227,159; 5,225,347; 5,221,610 5,217,861; 5,208,321; 5,206,136; 5,198,346; 5,185,147; 5,178,865; 5,173,400; 5,173,399; 5,166,050; 5,156,951; 5,135,864; 5,122,446; 5,120,662; 5,103,836; 5,100,777; 5,100,662; 5,093,230; 5,077,284; 5,070,010; 5,068,174; 5,066,782; 5,055,391; 5,043,262; 5,039,604; 5,039,522; 5,030,718; 5,030,555; 5,030,449; 5,019,387; 5,013,556; 5,008,183; 5,004,697; 4,997,772; 4,983,529; 4,983,387; 4,965,069; 4,945,082; 4,921,787; 4,918,166; 4,900,548; 4,888,290; 4,886,742; 4,885,235; 4,870,003; 4,869,903; 4,861,707; 4,853,326; 4,839,288; 4,833,072 and 4,795,739.
- Advantageously, the HIV epitope may be an Env precursor or gp160 epitope. The Env precursor or gp160 epitope may be recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10, Z13, or other broad potent neutralizing antibodies.
- In another embodiment, HIV, or immunogenic fragments thereof, may be utilized as the HIV epitope. For example, the HIV nucleotides of U.S. Pat. Nos. 7,393,949, 7,374,877, 7,306,901, 7,303,754, 7,173,014, 7,122,180, 7,078,516, 7,022,814, 6,974,866, 6,958,211, 6,949,337, 6,946,254, 6,896,900, 6,887,977, 6,870,045, 6,803,187, 6,794,129, 6,773,915, 6,768,004, 6,706,268, 6,696,291, 6,692,955, 6,656,706, 6,649,409, 6,627,442, 6,610,476, 6,602,705, 6,582,920, 6,557,296, 6,531,587, 6,531,137, 6,500,623, 6,448,078, 6,429,306, 6,420,545, 6,410,013, 6,407,077, 6,395,891, 6,355,789, 6,335,158, 6,323,185, 6,316,183, 6,303,293, 6,300,056, 6,277,561, 6,270,975, 6,261,564, 6,225,045, 6,222,024, 6,194,391, 6,194,142, 6,162,631, 6,114,167, 6,114,109, 6,090,392, 6,060,587, 6,057,102, 6,054,565, 6,043,081, 6,037,165, 6,034,233, 6,033,902, 6,030,769, 6,020,123, 6,015,661, 6,010,895, 6,001,555, 5,985,661, 5,980,900, 5,972,596, 5,939,538, 5,912,338, 5,869,339, 5,866,701, 5,866,694, 5,866,320, 5,866,137, 5,864,027, 5,861,242, 5,858,785, 5,858,651, 5,849,475, 5,843,638, 5,840,480, 5,821,046, 5,801,056, 5,786,177, 5,786,145, 5,773,247, 5,770,703, 5,756,674, 5,741,706, 5,705,612, 5,693,752, 5,688,637, 5,688,511, 5,684,147, 5,665,577, 5,585,263, 5,578,715, 5,571,712, 5,567,603, 5,554,528, 5,545,726, 5,527,895, 5,527,894, 5,223,423, 5,204,259, 5,144,019, 5,051,496 and 4,942,122 are useful for the present invention.
- Any epitope recognized by an HIV antibody may be used in the present invention. For example, the anti-HIV antibodies of U.S. Pat. Nos. 6,949,337, 6,900,010, 6,821,744, 6,768,004, 6,613,743, 6,534,312, 6,511,830, 6,489,131, 6,242,197, 6,114,143, 6,074,646, 6,063,564, 6,060,254, 5,919,457, 5,916,806, 5,871,732, 5,824,304, 5,773,247, 5,736,320, 5,637,455, 5,587,285, 5,514,541, 5,317,009, 4,983,529, 4,886,742, 4,870,003 and 4,795,739 are useful for the present invention. Furthermore, monoclonal anti-HIV antibodies of U.S. Pat. Nos. 7,074,556, 7,074,554, 7,070,787, 7,060,273, 7,045,130, 7,033,593, RE39,057, 7,008,622, 6,984,721, 6,972,126, 6,949,337, 6,946,465, 6,919,077, 6,916,475, 6,911,315, 6,905,680, 6,900,010, 6,825,217, 6,824,975, 6,818,392, 6,815,201, 6,812,026, 6,812,024, 6,797,811, 6,768,004, 6,703,019, 6,689,118, 6,657,050, 6,608,179, 6,600,023, 6,596,497, 6,589,748, 6,569,143, 6,548,275, 6,525,179, 6,524,582, 6,506,384, 6,498,006, 6,489,131, 6,465,173, 6,461,612, 6,458,933, 6,432,633, 6,410,318, 6,406,701, 6,395,275, 6,391,657, 6,391,635, 6,384,198, 6,376,170, 6,372,217, 6,344,545, 6,337,181, 6,329,202, 6,319,665, 6,319,500, 6,316,003, 6,312,931, 6,309,880, 6,296,807, 6,291,239, 6,261,558, 6,248,514, 6,245,331, 6,242,197, 6,241,986, 6,228,361, 6,221,580, 6,190,871, 6,177,253, 6,146,635, 6,146,627, 6,146,614, 6,143,876, 6,132,992, 6,124,132, RE36,866, 6,114,143, 6,103,238, 6,060,254, 6,039,684, 6,030,772, 6,020,468, 6,013,484, 6,008,044, 5,998,132, 5,994,515, 5,993,812, 5,985,545, 5,981,278, 5,958,765, 5,939,277, 5,928,930, 5,922,325, 5,919,457, 5,916,806, 5,914,109, 5,911,989, 5,906,936, 5,889,158, 5,876,716, 5,874,226, 5,872,012, 5,871,732, 5,866,694, 5,854,400, 5,849,583, 5,849,288, 5,840,480, 5,840,305, 5,834,599, 5,831,034, 5,827,723, 5,821,047, 5,817,767, 5,817,458, 5,804,440, 5,795,572, 5,783,670, 5,776,703, 5,773,225, 5,766,944, 5,753,503, 5,750,373, 5,747,641, 5,736,341, 5,731,189, 5,707,814, 5,702,707, 5,698,178, 5,695,927, 5,665,536, 5,658,745, 5,652,138, 5,645,836, 5,635,345, 5,618,922, 5,610,035, 5,607,847, 5,604,092, 5,601,819, 5,597,896, 5,597,688, 5,591,829, 5,558,865, 5,514,541, 5,510,264, 5,478,753, 5,374,518, 5,374,516, 5,344,755, 5,332,567, 5,300,433, 5,296,347, 5,286,852, 5,264,221, 5,260,308, 5,256,561, 5,254,457, 5,230,998, 5,227,159, 5,223,408, 5,217,895, 5,180,660, 5,173,399, 5,169,752, 5,166,050, 5,156,951, 5,140,105, 5,135,864, 5,120,640, 5,108,904, 5,104,790, 5,049,389, 5,030,718, 5,030,555, 5,004,697, 4,983,529, 4,888,290, 4,886,742 and 4,853,326, are also useful for the present invention.
- The vectors used in accordance with the present invention should typically be chosen such that they contain a suitable gene regulatory region, such as a promoter or enhancer, such that the antigens and/or antibodies of the invention can be expressed.
- For example, when the aim is to express the antibodies and/or antigens of the invention in vitro, or in cultured cells, or in any prokaryotic or eukaryotic system for the purpose of producing the protein(s) encoded by that antibody and/or antigen, then any suitable vector can be used depending on the application. For example, plasmids, viral vectors, bacterial vectors, protozoal vectors, insect vectors, baculovirus expression vectors, yeast vectors, mammalian cell vectors, and the like, can be used. Suitable vectors can be selected by the skilled artisan taking into consideration the characteristics of the vector and the requirements for expressing the antibodies and/or antigens under the identified circumstances.
- When the aim is to express the antibodies and/or antigens of the invention in vivo in a subject, for example in order to generate an immune response against an HIV-1 antigen and/or protective immunity against HIV-1, expression vectors that are suitable for expression on that subject, and that are safe for use in vivo, should be chosen. For example, in some embodiments it may be desired to express the antibodies and/or antigens of the invention in a laboratory animal, such as for pre-clinical testing of the HIV-1 immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the antibodies and/or antigens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. Any vectors that are suitable for such uses can be employed, and it is well within the capabilities of the skilled artisan to select a suitable vector. In some embodiments it may be preferred that the vectors used for these in vivo applications are attenuated to vector from amplifying in the subject. For example, if plasmid vectors are used, preferably they will lack an origin of replication that functions in the subject so as to enhance safety for in vivo use in the subject. If viral vectors are used, preferably they are attenuated or replication-defective in the subject, again, so as to enhance safety for in vivo use in the subject.
- In preferred embodiments of the present invention viral vectors are used. Viral expression vectors are well known to those skilled in the art and include, for example, viruses such as adenoviruses, adeno-associated viruses (AAV), alphaviruses, herpesviruses, retroviruses and poxviruses, including avipox viruses, attenuated poxviruses, vaccinia viruses, and particularly, the modified vaccinia Ankara virus (MVA; ATCC Accession No. VR-1566). Such viruses, when used as expression vectors are innately non-pathogenic in the selected subjects such as humans or have been modified to render them non-pathogenic in the selected subjects. For example, replication-defective adenoviruses and alphaviruses are well known and can be used as gene delivery vectors.
- The present invention relates to recombinant vesicular stomatitis (VSV) vectors, however, other vectors may be contemplated in other embodiments of the invention such as, but not limited to, prime boost administration comprising administration of a recombinant VSV vector in combination with another recombinant vector expressing one or more HIV epitopes.
- VSV is a very practical, safe, and immunogenic vector for conducting animal studies, and an attractive candidate for developing vaccines for use in humans. VSV is a member of the Rhabdoviridae family of enveloped viruses containing a nonsegmented, negative-sense RNA genome. The genome is composed of 5 genes arranged sequentially 3′-N-P-M-G-L-S′, each encoding a polypeptide found in mature virions. Notably, the surface glycoprotein G is a transmembrane polypeptide that is present in the viral envelope as a homotrimer, and like Env, it mediates cell attachment and infection.
- In a first advantageous embodiment, the VSV G is replaced by HIV Env or fragments thereof. The latter will generate chimeric EnvG proteins (see, e.g.
FIG. 22 ). - In a second advantageous embodiment, VSV G is a carrier or scaffold advantageously for Env MPER epitopes, however, VSV G as a carrier or scaffold may be extended to any foreign epitope (see, e.g.,
FIGS. 5-7 ). - In a third advantageous embodiment, Env MPER epitopes are fused to the VSV G-Stem molecule, however, any foreign epitope may be fused to the VSV G-Stem molecule (see, e.g,
FIGS. 18-19 ). - In a fourth embodiment, the invention pertains to the evolutionary potential of RNA viruses. Such viruses include but are not limited to: VSV, Measles virus, Canine distemper virus, Parainfluenza viruses, Sendai virus, Newcastle disease virus, Venezuelan equine encephalitis virus, Sindbis virus, Semliki Forrest virus etc. Pertaining to the evolutionary potential of VSV, in the first step of EnvG construction, a small panel of genes encoding different forms of EnvG molecules will be produced to determine which motifs from G will optimize expression. Replication-competent ‘chimeric’ VSV-HIV viruses that lack the capacity to encode wild-type G and are dependent on EnvG for infection and propagation, which are then utilized to direct the evolution of new EnvG molecules that are expressed and incorporated into the virus with greater efficiency.
- In a fifth embodiment, the invention pertains to application of selective pressure to enrich for molecules that are more immunogenic. The evolution process will occur primarily through nucleotide substitution, followed by selection using a broadly neutralizing antibody against HIV Env, e.g. 2F5 or 4E10, or a broad potent antibody specific for trimeric Env. Due to the nature of negative-strand virus replication, base changes are far more frequent than deletions or insertions, consequently the immunogen will evolve with amino acid substitutions. (see, e.g.
FIG. 24 ) - The VSVs of U.S. Pat. Nos. 7,468,274; 7,419,829; 7,419,674; 7,344,838; 7,332,316; 7,329,807; 7,323,337; 7,259,015; 7,244,818; 7,226,786; 7,211,247; 7,202,079; 7,198,793; 7,198,784; 7,153,510; 7,070,994; 6,969,598; 6,958,226; RE38,824; PP15,957; 6,890,735; 6,887,377; 6,867,326; 6,867,036; 6,858,205; 6,835,568; 6,830,892; 6,818,209; 6,790,641; 6,787,520; 6,743,620; 6,740,764; 6,740,635; 6,740,320; 6,682,907; 6,673,784; 6,673,572; 6,669,936; 6,653,103; 6,607,912; 6,558,923; 6,555,107; 6,533,855; 6,531,123; 6,506,604; 6,500,623; 6,497,873; 6,489,142; 6,410,316; 6,410,313; 6,365,713; 6,348,312; 6,326,487; 6,312,682; 6,303,331; 6,277,633; 6,207,455; 6,200,811; 6,190,650; 6,171,862; 6,143,290; 6,133,027; 6,121,434; 6,103,462; 6,069,134; 6,054,127; 6,034,073; 5,969,211; 5,935,822; 5,888,727; 5,883,081; 5,876,727; 5,858,740; 5,843,723; 5,834,256; 5,817,491; 5,792,604; 5,789,229; 5,773,003; 5,763,406; 5,760,184; 5,750,396; 5,739,018; 5,698,446; 5,686,279; 5,670,354; 5,540,923; 5,512,421; 5,090,194; 4,939,176; 4,738,846; 4,622,292; 4,556,556 and 4,396,628 may be contemplated by the present invention.
- The nucleotide sequences and vectors of the invention can be delivered to cells, for example if aim is to express and the HIV-1 antigens in cells in order to produce and isolate the expressed proteins, such as from cells grown in culture. For expressing the antibodies and/or antigens in cells any suitable transfection, transformation, or gene delivery methods can be used. Such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used. For example, transfection, transformation, microinjection, infection, electroporation, lipofection, or liposome-mediated delivery could be used. Expression of the antibodies and/or antigens can be carried out in any suitable type of host cells, such as bacterial cells, yeast, insect cells, and mammalian cells. The antibodies and/or antigens of the invention can also be expressed using including in vitro transcription/translation systems. All of such methods are well known by those skilled in the art, and one of skill in the art would readily be able to select a suitable method depending on the nature of the nucleotide sequences, vectors, and cell types used.
- In preferred embodiments, the nucleotide sequences, antibodies and/or antigens of the invention are administered in vivo, for example where the aim is to produce an immunogenic response in a subject. A “subject” in the context of the present invention may be any animal. For example, in some embodiments it may be desired to express the transgenes of the invention in a laboratory animal, such as for pre-clinical testing of the HIV-1 immunogenic compositions and vaccines of the invention. In other embodiments, it will be desirable to express the antibodies and/or antigens of the invention in human subjects, such as in clinical trials and for actual clinical use of the immunogenic compositions and vaccine of the invention. In preferred embodiments the subject is a human, for example a human that is infected with, or is at risk of infection with, HIV-1.
- For such in vivo applications the nucleotide sequences, antibodies and/or antigens of the invention_are preferably administered as a component of an immunogenic composition comprising the nucleotide sequences and/or antigens of the invention in admixture with a pharmaceutically acceptable carrier. The immunogenic compositions of the invention are useful to stimulate an immune response against HIV-1 and may be used as one or more components of a prophylactic or therapeutic vaccine against HIV-1 for the prevention, amelioration or treatment of AIDS. The nucleic acids and vectors of the invention are particularly useful for providing genetic vaccines, i.e. vaccines for delivering the nucleic acids encoding the antibodies and/or antigens of the invention to a subject, such as a human, such that the antibodies and/or antigens are then expressed in the subject to elicit an immune response.
- The compositions of the invention may be injectable suspensions, solutions, sprays, lyophilized powders, syrups, elixirs and the like. Any suitable form of composition may be used. To prepare such a composition, a nucleic acid or vector of the invention, having the desired degree of purity, is mixed with one or more pharmaceutically acceptable carriers and/or excipients. The carriers and excipients must be “acceptable” in the sense of being compatible with the other ingredients of the composition. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to, water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, or combinations thereof, buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).
- An immunogenic or immunological composition can also be formulated in the form of an oil-in-water emulsion. The oil-in-water emulsion can be based, for example, on light liquid paraffin oil (European Pharmacopea type); isoprenoid oil such as squalane, squalene, EICOSANE™ or tetratetracontane; oil resulting from the oligomerization of alkene(s), e.g., isobutene or decene; esters of acids or of alcohols containing a linear alkyl group, such as plant oils, ethyl oleate, propylene glycol di(caprylate/caprate), glyceryl tri(caprylate/caprate) or propylene glycol dioleate; esters of branched fatty acids or alcohols, e.g., isostearic acid esters. The oil advantageously is used in combination with emulsifiers to form the emulsion. The emulsifiers can be nonionic surfactants, such as esters of sorbitan, mannide (e.g., anhydromannitol oleate), glycerol, polyglycerol, propylene glycol, and oleic, isostearic, ricinoleic, or hydroxystearic acid, which are optionally ethoxylated, and polyoxypropylene-polyoxyethylene copolymer blocks, such as the Pluronic® products, e.g., L121. The adjuvant can be a mixture of emulsifier(s), micelle-forming agent, and oil such as that which is commercially available under the name Provax® (IDEC Pharmaceuticals, San Diego, Calif.).
- The immunogenic compositions of the invention can contain additional substances, such as wetting or emulsifying agents, buffering agents, or adjuvants to enhance the effectiveness of the vaccines (Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, (ed.) 1980).
- Adjuvants may also be included. Adjuvants include, but are not limited to, mineral salts (e.g., AlK(SO4)2, AlNa(SO4)2, AlNH(SO4)2, silica, alum, Al(OH)3, Ca3(PO4)2, kaolin, or carbon), polynucleotides with or without immune stimulating complexes (ISCOMs) (e.g., CpG oligonucleotides, such as those described in Chuang, T. H. et al, (2002) J. Leuk. Biol. 71(3): 538-44; Ahmad-Nejad, P. et al (2002) Eur. J. Immunol. 32(7): 1958-68; poly IC or poly AU acids, polyarginine with or without CpG (also known in the art as IC31; see Schellack, C. et al (2003) Proceedings of the 34th Annual Meeting of the German Society of Immunology; Lingnau, K. et al (2002) Vaccine 20(29-30): 3498-508), JuvaVax™ (U.S. Pat. No. 6,693,086), certain natural substances (e.g., wax D from Mycobacterium tuberculosis, substances found in Cornyebacterium parvum, Bordetella pertussis, or members of the genus Brucella), flagellin (Toll-
like receptor 5 ligand; see McSorley, S. J. et al (2002) J. Immunol. 169(7): 3914-9), saponins such as QS21, QS17, and QS7 (U.S. Pat. Nos. 5,057,540; 5,650,398; 6,524,584; 6,645,495), monophosphoryl lipid A, in particular, 3-de-O-acylated monophosphoryl lipid A (3D-MPL), imiquimod (also known in the art as IQM and commercially available as Aldara®; U.S. Pat. Nos. 4,689,338; 5,238,944; Zuber, A. K. et al (2004) 22(13-14): 1791-8), and the CCR5 inhibitor CMPD167 (see Veazey, R. S. et al (2003) J. Exp. Med. 198: 1551-1562). - Aluminum hydroxide or phosphate (alum) are commonly used at 0.05 to 0.1% solution in phosphate buffered saline. Other adjuvants that can be used, especially with DNA vaccines, are cholera toxin, especially CTA1-DD/ISCOMs (see Mowat, A. M. et al (2001) J. Immunol. 167(6): 3398-405), polyphosphazenes (Allcock, H.R. (1998) App. Organometallic Chem. 12(10-11): 659-666; Payne, L. G. et al (1995) Pharm. Biotechnol. 6: 473-93), cytokines such as, but not limited to, IL-2, IL-4, GM-CSF, IL-12, IL-15 IGF-1, IFN-α, IFN-β, and IFN-γ (Boyer et al., (2002) J. Liposome Res. 121:137-142; WO01/095919), immunoregulatory proteins such as CD40L (ADX40; see, for example, WO03/063899), and the CD1a ligand of natural killer cells (also known as CRONY or α-galactosyl ceramide; see Green, T. D. et al, (2003) J. Virol. 77(3): 2046-2055), immunostimulatory fusion proteins such as IL-2 fused to the Fc fragment of immunoglobulins (Barouch et al., Science 290:486-492, 2000) and co-stimulatory molecules B7.1 and B7.2 (Boyer), all of which can be administered either as proteins or in the form of DNA, on the same expression vectors as those encoding the antigens of the invention or on separate expression vectors.
- In an advantageous embodiment, the adjuvants may be lecithin is combined with an acrylic polymer (Adjuplex-LAP), lecithin coated oil droplets in an oil-in-water emulsion (Adjuplex-LE) or lecithin and acrylic polymer in an oil-in-water emulsion (Adjuplex-LAO) (Advanced BioAdjuvants (ABA)).
- The immunogenic compositions can be designed to introduce the nucleic acids or expression vectors to a desired site of action and release it at an appropriate and controllable rate. Methods of preparing controlled-release formulations are known in the art. For example, controlled release preparations can be produced by the use of polymers to complex or absorb the immunogen and/or immunogenic composition. A controlled-release formulations can be prepared using appropriate macromolecules (for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine sulfate) known to provide the desired controlled release characteristics or release profile. Another possible method to control the duration of action by a controlled-release preparation is to incorporate the active ingredients into particles of a polymeric material such as, for example, polyesters, polyamino acids, hydrogels, polylactic acid, polyglycolic acid, copolymers of these acids, or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these active ingredients into polymeric particles, it is possible to entrap these materials into microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacrylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in New Trends and Developments in Vaccines, Voller et al. (eds.), University Park Press, Baltimore, Md., 1978 and Remington's Pharmaceutical Sciences, 16th edition.
- Suitable dosages of the nucleic acids and expression vectors of the invention (collectively, the immunogens) in the immunogenic composition of the invention can be readily determined by those of skill in the art. For example, the dosage of the immunogens can vary depending on the route of administration and the size of the subject. Suitable doses can be determined by those of skill in the art, for example by measuring the immune response of a subject, such as a laboratory animal, using conventional immunological techniques, and adjusting the dosages as appropriate. Such techniques for measuring the immune response of the subject include but are not limited to, chromium release assays, tetramer binding assays, IFN-γ ELISPOT assays, IL-2 ELISPOT assays, intracellular cytokine assays, and other immunological detection assays, e.g., as detailed in the text “Antibodies: A Laboratory Manual” by Ed Harlow and David Lane.
- When provided prophylactically, the immunogenic compositions of the invention are ideally administered to a subject in advance of HIV infection, or evidence of HIV infection, or in advance of any symptom due to AIDS, especially in high-risk subjects. The prophylactic administration of the immunogenic compositions can serve to provide protective immunity of a subject against HIV-1 infection or to prevent or attenuate the progression of AIDS in a subject already infected with HIV-1. When provided therapeutically, the immunogenic compositions can serve to ameliorate and treat AIDS symptoms and are advantageously used as soon after infection as possible, preferably before appearance of any symptoms of AIDS but may also be used at (or after) the onset of the disease symptoms.
- The immunogenic compositions can be administered using any suitable delivery method including, but not limited to, intramuscular, intravenous, intradermal, mucosal, and topical delivery. Such techniques are well known to those of skill in the art. More specific examples of delivery methods are intramuscular injection, intradermal injection, and subcutaneous injection. However, delivery need not be limited to injection methods. Further, delivery of DNA to animal tissue has been achieved by cationic liposomes (Watanabe et al., (1994) Mol. Reprod. Dev. 38:268-274; and WO 96/20013), direct injection of naked DNA into animal muscle tissue (Robinson et al., (1993) Vaccine 11:957-960; Hoffman et al., (1994) Vaccine 12: 1529-1533; Xiang et al., (1994) Virology 199: 132-140; Webster et al., (1994) Vaccine 12: 1495-1498; Davis et al., (1994) Vaccine 12: 1503-1509; and Davis et al., (1993) Hum. Mol. Gen. 2: 1847-1851), or intradermal injection of DNA using “gene gun” technology (Johnston et al., (1994) Meth. Cell Biol. 43:353-365). Alternatively, delivery routes can be oral, intranasal or by any other suitable route. Delivery also be accomplished via a mucosal surface such as the anal, vaginal or oral mucosa.
- Immunization schedules (or regimens) are well known for animals (including humans) and can be readily determined for the particular subject and immunogenic composition. Hence, the immunogens can be administered one or more times to the subject. Preferably, there is a set time interval between separate administrations of the immunogenic composition. While this interval varies for every subject, typically it ranges from 10 days to several weeks, and is often 2, 4, 6 or 8 weeks. For humans, the interval is typically from 2 to 6 weeks. The immunization regimes typically have from 1 to 6 administrations of the immunogenic composition, but may have as few as one or two or four. The methods of inducing an immune response can also include administration of an adjuvant with the immunogens. In some instances, annual, biannual or other long interval (5-10 years) booster immunization can supplement the initial immunization protocol.
- The present methods also include a variety of prime-boost regimens, for example DNA prime-Adenovirus boost regimens. In these methods, one or more priming immunizations are followed by one or more boosting immunizations. The actual immunogenic composition can be the same or different for each immunization and the type of immunogenic composition (e.g., containing protein or expression vector), the route, and formulation of the immunogens can also be varied. For example, if an expression vector is used for the priming and boosting steps, it can either be of the same or different type (e.g., DNA or bacterial or viral expression vector). One useful prime-boost regimen provides for two priming immunizations, four weeks apart, followed by two boosting immunizations at 4 and 8 weeks after the last priming immunization. It should also be readily apparent to one of skill in the art that there are several permutations and combinations that are encompassed using the DNA, bacterial and viral expression vectors of the invention to provide priming and boosting regimens.
- The prime-boost regimen can also include VSV vectors that derive their G protein or G/Stem protein from different serotype vesicular stomatitis viruses (Rose N F, Roberts A, Buonocore L, Rose J K. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human
immunodeficiency virus type 1. J Virol. 2000 December; 74(23):10903-10). The VSV vectors used in these examples contain a G or G/Stem protein derived from the Indiana serotype of VSV. Vectors can also be constructed to express epitopes in the context of G or G/Stem molecules derived from other VSV serotypes (i.e. vesicular stomatitis New Jersey virus or vesicular stomatitis Alagoas virus) or other vesiculoviruses (i.e. Chandipura virus, Cocal virus, Isfahan virus). Thus an epitope like the HIV MPER can be delivered in a prime in the context of an G or G/Stem molecule that is from the Indiana serotype and the immune system can be boosted with a vector that expresses epitopes in the context of second serotype like New Jersey. This circumvents anti-G immunity elicited by the prime, and helps focus the boost response against the foreign epitope. - A specific embodiment of the invention provides methods of inducing an immune response against HIV in a subject by administering an immunogenic composition of the invention, preferably comprising an adenovirus vector containing DNA encoding one or more of the epitopes of the invention, one or more times to a subject wherein the epitopes are expressed at a level sufficient to induce a specific immune response in the subject. Such immunizations can be repeated multiple times at time intervals of at least 2, 4 or 6 weeks (or more) in accordance with a desired immunization regime.
- The immunogenic compositions of the invention can be administered alone, or can be co-administered, or sequentially administered, with other HIV immunogens and/or HIV immunogenic compositions, e.g., with “other” immunological, antigenic or vaccine or therapeutic compositions thereby providing multivalent or “cocktail” or combination compositions of the invention and methods of employing them. Again, the ingredients and manner (sequential or co-administration) of administration, as well as dosages can be determined taking into consideration such factors as the age, sex, weight, species and condition of the particular subject, and the route of administration.
- When used in combination, the other HIV immunogens can be administered at the same time or at different times as part of an overall immunization regime, e.g., as part of a prime-boost regimen or other immunization protocol. In an advantageous embodiment, the other HIV immunogen is env, preferably the HIV env trimer.
- Many other HIV immunogens are known in the art, one such preferred immunogen is HIVA (described in WO 01/47955), which can be administered as a protein, on a plasmid (e.g., pTHr.HIVA) or in a viral vector (e.g., MVA.HIVA). Another such HIV immunogen is RENTA (described in PCT/US2004/037699), which can also be administered as a protein, on a plasmid (e.g., pTHr.RENTA) or in a viral vector (e.g., MVA.RENTA).
- For example, one method of inducing an immune response against HIV in a human subject comprises administering at least one priming dose of an HIV immunogen and at least one boosting dose of an HIV immunogen, wherein the immunogen in each dose can be the same or different, provided that at least one of the immunogens is an epitope of the present invention, a nucleic acid encoding an epitope of the invention or an expression vector, preferably a VSV vector, encoding an epitope of the invention, and wherein the immunogens are administered in an amount or expressed at a level sufficient to induce an HIV-specific immune response in the subject. The HIV-specific immune response can include an HIV-specific T-cell immune response or an HIV-specific B-cell immune response. Such immunizations can be done at intervals, preferably of at least 2-6 or more weeks.
- It is to be understood and expected that variations in the principles of invention as described above may be made by one skilled in the art and it is intended that such modifications, changes, and substitutions are to be included within the scope of the present invention.
- The invention will now be further described by way of the following non-limiting examples.
- The membrane-proximal external region (MPER) of HIV-1 gp41, which is recognized by the broadly neutralizing monoclonal antibodies 2F5 and 4E10, is an important target for an HIV vaccine. However, efforts to mimic the 2F5 and 4E10 epitopes outside the context of the gp41 MPER have had minimal success so far. In this study, Applicants used the envelope glycoprotein G of Vesicular Stomatitis Virus (VSV) as a scaffold. VSV G, which forms homotrimeric spikes on the viral surface, is responsible for binding of the virus to cells and promotes fusion of the viral and cellular membranes. The “stem” region of VSV G, which lies immediately N-terminal of its single transmembrane segment, shares sequence similarities with the gp41 MPER. Applicants inserted the gp41 sequences corresponding to the 2F5 and 4E10 neutralizing epitopes into the stem region of VSV G and evaluated the function and antibody reactivity of the chimeric polypeptides. VSV-G-2F5 and VSV-G-4E10 formed trimers and were transported to the cell surface, where they were detected by the 2F5 and 4E10 monoclonal antibodies, respectively. Reporter lentiviruses pseudotyped with VSV G-2F5 or VSV-G-4E10 were infectious, and they were efficiently neutralized by the 2F5 or 4E10 monoclonal antibodies. Recombinant VSV containing G-2F5, G-4E10 or G-2F5-4E10 on the viral surface was infectious, replication-competent, and sensitive to neutralization by the 2F5 or 4E10 monoclonal antibodies. Applicants are currently determining if the recombinant VSVs encoding MPER epitopes elicit neutralizing antibodies specific for the HIV gp41 epitopes in a small animal model. Taken together, Applicants' approach represents a novel strategy to develop a vaccine that induces a humoral immune response against HIV.
- The goal of this Example is to design and develop novel HIV-1 envelope protein (Env) immunogens capable of eliciting broadly protective neutralizing antibody responses for use as vaccine candidates. Applicants take advantage of the unique biological properties of vesicular stomatitis virus (VSV) as vaccine delivery vehicle to present and effectively deliver HIV Env immunogens. In addition, Applicants use the high evolutionary potential of VSV to biologically derive unique mutant HIV Envs with enhanced immunogenicity. Novel candidates are used to vaccinate rabbits to determine their capacity to elicit antibodies with enhanced HIV neutralizing activity, and those VSV-vectored vaccines that evoke responses with increased breadth of neutralization are tested in macaques. Applicants achieve these goals by completing the Specific Aims below:
-
- 1. Vaccine Platform 1: Optimize HIV Env (derived from SHIVSF162P3) for expression as functional stable trimers on the surface of VSV particles, and produce ‘chimeric viruses’, in which the gene encoding the VSV surface glycoprotein (G) are functionally replaced by HIV Env. Env modifications described below are investigated to identify the optimal form for expressing abundant functional trimers on VSV particles that specifically direct infection of cells expressing the CD4 and CCR5 coreceptors (CD4/CCR5+ cells). Additionally, Applicants take advantage of the innate ability of VSV to rapidly accrue adaptive mutations to further optimize expression of functional Env trimers by subjecting replication-competent VSV-Env chimeric viruses to serial passage on CD4/CCR5+ cell lines to biologically select for Env mutations that improve replicative fitness. Moreover, to develop additional novel Env immunogens, methods to apply selective pressure during serial passage are developed using the broadly neutralizing antibodies against Env (e.g. monoclonal antibodies 2F5, 4E10, 2G12, b12, PG9, PG16 and other antibodies, including broad potent neutralizing trimer-specific antibodies).
- 2. Vaccine Platform 2: Produce recombinant VSV (rVSV) vectors that encode modified forms of VSV G, which harbor epitopes from the HIV Env membrane proximal external region (MPER). This takes advantage of several G protein properties including: i) it is a glycosylated transmembrane protein abundantly expressed on the VSV particle; ii) it is a potent immunogen; iii) it contains a hydrophobic membrane-proximal region that resembles the Env MPER, and iv) G trimerizes and provides a platform for multimeric configurations of MPER epitopes. Although several domains in G are tested as sites for insertion of MPER sequences, Applicants focus on the membrane proximal region of G, which provides a similar membrane-associated environment for the most authentic presentation of MPER epitopes. Env MPER insertions that do not abolish the function of VSV G are delivered using VSV vectors and advanced into rabbit immunogenicity studies. Additionally, VSV encoding G-MPER hybrids are subjected to serial passage to determine whether virus expressing a fitness advantage emerges with unique mutations that affect the MPER epitope configuration. Moreover, serial passage also are conducted using conditions that select virus expressing G-MPER proteins that bind with high avidity to the 2F5 and 4E10 mAbs to derive unique immunogens.
- 3. Vaccine Platform 3: An N-terminally truncated form of VSV G (called G/Stem) are used to present Env epitope sequences on the surface of VSV particles. The G/Stem molecule contains the cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G as well as a short 16- to 68-amino acid membrane proximal extracellular polypeptide (the Stem) to which HIV Env epitopes are appended. Several forms of G/Stem, which vary in length and amino acid sequence, are investigated to determine the optimal form for display of MPER epitopes on the surface of VSV particles and the plasma membrane of infected cells. VSV encoding G/Stem fusion proteins can be propagated using G trans-complementation or by generating recombinant virus that contains a functional G gene in addition to the G/Stem coding sequence. Novel G/Stem-MPER molecules are evolved by serial passage under conditions that select for vectors encoding mutant molecules that bind to the 2F5 and 4E10 mAbs with high affinity.
- 4. In Vivo Studies: After validating their in vitro properties, promising vaccine candidates developed in Aims 1-3 are evaluated by vaccinating rabbits. Enzyme-linked immunosorbent assays (ELISAs) are conducted first to screen for serum antibodies that react with HIV Env, and those immune sera that contain significant titers are evaluated in HIV neutralization assays using virus-like particles pseudotyped with Env from various HIV strains. The top rVSV-Env vaccine candidates that evoke production of broadly neutralizing antibodies in vaccinated rabbits are advanced into nonhuman primate studies. Rhesus macaques are vaccinated to determine whether immunization protects macaques from subsequent intravenous challenge with the SIV-HIV chimeric virus SHIVSF162P3, which expresses an HIV envelope protein.
- To develop a platform that can be used to display immunogens on the surface of virus particles or infected cells, Applicants have engineered vesicular stomatitis virus (VSV) vectors to encode a truncated form of the viral transmembrane glycoprotein protein (G) that can be modified to express foreign epitopes anchored to virus envelop or cell membrane. The truncated form of G, called G-Stem (
FIG. 18A ), retains amino acid sequences that are essential for directing insertion of the molecule into the membrane (the signal peptide), anchoring the protein in the viral envelop or cellular lipid bilayer (the transmembrane domain; TM), and promoting incorporation into the budding viral particle (C-terminal domain). Additionally, a small membrane proximal region of the external domain of G (the Stem) is retained in most constructs because it provides a short stalk on which to append epitopes (FIG. 18B ), and importantly, sequences in the Stem are known to promote efficient assembly of VSV particles [Robison & Whitt, J Virol 2000; 74:2239-2246]. - Because the Stem domain plays at least two significant roles in Applicants' epitope display vectors—it serves as the platform on which epitopes are attached and displayed, and it plays a role in VSV maturation—Applicants anticipated that it might be necessary to empirically determine the optimal Stem sequence needed for expression and membrane incorporation of G-Stem-Epitope fusion proteins. Applicants tested this assumption by constructing 4 different G-Stem fusion proteins that contained the HIV Env membrane proximal external region (MPER) [Montero et al., Microbiol Mol Biol Rev 2008; 72:54-84] fused to Stem domains that were 68, 42, 16 or 0 amino acids in length, referred to as long stem (LS), medium stem (MS), short stem (SS), and no stem (NS), respectively (
FIGS. 19A-C ). - The 4 G-Stem-MPER (GS-MPER) molecules were expressed using a novel replication-competent VSV vector that retains a functional G protein and expresses the GS-MPER fusion proteins from an added transcription unit inserted in the highly-transcribed promoter proximal position in the viral genome (
FIG. 20 ). Consequently, the MPER expression vectors express GS-MPER fusion proteins as well as wild-type G protein. Expression of native G protein confers a replication-competent phenotype of these recombinant viruses, and importantly, this also means that infected cells will produce wild-type G and GS-MPER proteins and that both proteins can be inserted into cell membrane and viral envelop (right side ofFIG. 20B ). - After the recombinant VSV-G-Stem-MPER vectors were constructed, they were used to infect Vero cells and assess expression of the GS-MPER fusion proteins and determine their relative abundance in virus particles (
FIG. 21 ).FIG. 21 shows a Western blot that was used to analyze G and G-Stem-MPER proteins found in the medium supernatant of infected cells. The source of G and GS-MPER fusion proteins in the supernatant primarily should be virus that has budded out of infected cells; therefore, the proteins visualized in Panel A provide an estimate of the relative G and GS-MPER abundance in progeny virus particles. The blot in Panel A was reacted with antibody that recognizes the C-terminus of VSV G, which is present on both the native G protein the G-Stem-MPER molecules. The results indicate that NS-MPER and SS-MPER are present at higher levels in the virus particle than MS-MPER or LS-MPER, and that none of the G-Stem-MPERs are as abundant as the native G protein. It is important to note that a proteolytic fragment of G comigrates with the NS-MPER at the top of the gel (Lane 6) making it difficult to estimate its abundance. The relative amount of the 4 MPER-containing molecules is more clearly shown in Panels C and D where the GS-MPER proteins are reacted with MPER-Specific monoclonal antibodies 2F5 and 4E10. In Panel C for example, the relative amounts of NS-MPER (Lane 6) and SS-MPER (Lane 5) are clearly greater than MS- and LS-MPER (Lanes 3 and 4) in virus particles found in the supernatant. It is worth noting that the LS-MPER molecule is expressed at relatively high levels in infected cells as shown in Panel B (Lane 2) suggesting that this form of G-Stem-MPER is expressed but not efficiently incorporated into virus particles. The MS-MPER protein is evident in the infected cells (Panel B, Lane 3) but at low levels indicating that it is expressed poorly or it is unstable compared to the other GS-MPERS. Finally, it is notable that the NS-MPER protein, which lacks the Stem completely, seems to be incorporated at the highest levels of all of the G-Stem-MPERs (FIGS. 21C and D,Lanes 5 and 6). This finding seems to be contrary to the known role of Stem in virus particle maturation [Robison & Whitt, J Virol 2000; 74:2239-2246], but it is consistent with Applicants' results that show that the MPER and smaller peptides from the MPER regions can functionally substitute for the Stem (see, e.g.FIG. 14 ). - Taken together, these results show that achieving significant expression of G-Stem fusion proteins in infected cells and on virus particles requires optimization of the Stem domain. Applicants' finding that the NS Stem domain is perhaps optimal for expression of HIV MPER probably reflects the fact that the MPER has Stem-like properties. Other antigens expressed as G-Stem-antigen fusions may require different lengths of Stem to be incorporated efficiently into cellular or viral membranes.
- Broadly neutralizing antibodies against the HIV Env protein may bind epitopes on gp120 and gp41 (see, e.g.,
FIG. 1B ). Such antibodies include, but are not limited to, PG9 and PG16 (which bind the base of V1/V2 loops and are trimer-specific), 2G12 (which binds carbohydrates), b12 (which binds the CD4-binding site) and 2F5, 4E10 and Z13 (which bind the membrane-proximal external region (MPER)). - A schematic of VSV is presented in
FIG. 2 . VSV is an enveloped, negative-strand RNA virus of the Rhabdoviridae family. VSV infects human cells, but is not pathogenic and propagates robustly in vitro and is a safe and immunogenic vector for conducting animal studies. - A schematic of the VSV glycoprotein G is presented in
FIG. 3 . VSV glycoprotein G is a single envelope glycoprotein on the viral surface that forms trimers (ca. 1,200 molecules arranged as 400 trimers). VSV glycoprotein G mediates attachment, fusion, and entry of VSV into host cell, accepts insertion of short amino acid sequences at certain positions and has a membrane-proximal ‘stem’ region that shares similarities with the MPER of HIV-1 gp41. - Glycoprotein G is envisioned as an insertion site. In particular, epitope sequences, in particular HIV epitope sequences, more preferably HIV gp41 2F5 and 4E10 epitope sequences may be inserted into the stem region of VSV G. Replication-competent, recombinant VSV containing the modified G protein may be generated for use as an immunogen.
FIG. 5 presents a schematic of insertion and substitution of HIV gp41 2F5 and 4E10 epitopes.FIG. 6 depicts insertion and substitution of the 2F5 and 4E10 epitopes. For an insertion, the 2F5 epitope and flanking residues was added to the VSV G stem region. For a substitution, residues in the VSV G stem region were replaced by the 2F5 and/or 4E10 epitopes. A summary of the VSV G constructs are presented inFIG. 7 . The expression vector was pCI-Neo (deltaT7). - A Western blot demonstrating the expression and antibody recognition of VSV G proteins expressed from plasmid DNA constructs is presented in
FIG. 8 . VSV constructs were expressed transiently in 293T cells and the Western blot was performed with lysates (2% CHAPS). The Western blot showed that the stem region of VSV G tolerated the insertion of the 2F5 and/or 4E10 epitope, and that modified VSV G constructs were detected by the 2F5 and 4E10 antibodies. - Trimerization of VSV G on the cell surface is presented in
FIG. 9 . The VSV G plasmid DNA constructs were expressed in 293T cells, chemical crosslinking was performed with DTSSP (3,3′-Dithiobis-[sulfosuccinimidyl-propionate]) on intact cells and western blot with cell lysates was performed. As shown inFIG. 9 , all VSV G variants form trimers on the surface of 293T cells. - Cell surface expression of VSV G constructs is presented in
FIG. 10 . The VSV G constructs were transiently expressed in 293T cells, and flow cytometry was performed 24 hours post-transfection. The modified VSV G constructs were expressed on the cell surface and detected by the 2F5 and 4E10 antibodies. - VSV G mediated cell-cell fusion is presented in
FIG. 11 . 293T cells were transfected with plasmid encoding VSV G, briefly exposed to pH 5.2 after 24 hours, and syncitia formation was observed. As shown inFIG. 11 , VSV G-2F5-Sub and VSV G-4E10-Sub both induced cell-cell fusion. In addition, VSV G-2F5-4E10-Sub showed small areas of cell-cell fusion in rare cases. It was postulated that the modified G proteins may confer virus entry. To answer this question, a lentivirus reporter system was developed. - A lentivirus reporter system is presented in
FIG. 12 . 293T cells were co-transfected with reporter plasmids pV1-GFP or pV1-Luc (HIV provirus with 5′ and 3′ LTR), and plasmids coding for Gag-Pol and VSV-G. Supernatants containing GFP or luciferase-encoding lentiviruses pseutodypted with VSV G were harvested, followed by infection of naïve 293T cells. If VSV G mediates entry, cells will express GFP or luciferase. - Infectivity of lenviruses pseudotyped with VSV G is presented in
FIG. 13 . 293T cells were infected with recombinant GFP-lentiviruses pseudotyped with VSV G variants. As shown inFIG. 13 , the infectivity of VSV G-2F5-Sub and VSV G-4E10-Sub was similar to wild-type G. - Infectivity of reporter lentiviruses pseudotyped with VSV G is presented in
FIG. 14 . 293T cells were infected with recombinant Luc-lentiviruses pseudotyped with VSV G variants. Lentiviruses pseudotyped with VSV G-2F5-Sub and VSV G-4E10-Sub retained 33% and 35% of infectivity compared to wild-type VSV G. It was postulated that these viruses be neutralized with the 2F5 and 4E10 antibodies. - Neutralization of lentiviruses pseudotyped with VSV G is depicted in
FIG. 15 . Luc-lentiviruses pseudotyped with VSV G-2F5-Sub or VSV G-4E10-Sub were incubated with 2F5 or 4E10 antibody at various concentrations. Subsequently, 293T cells were infected with the Luc-lentiviruses, followed by assaying luciferase activity at 3 days post-infection. Luc-lentiviruses pseudotyped with VSV G-2F5-Sub and VSV G-4E10-Sub were efficiently neutralized with the 2F5 and 4E10 antibody, respectively. It was then postulated that modified G proteins could be incorporated into recombinant VSV. - Recombinant VSV containing the gene coding for G-2F5-Sub, G-4E10-Sub and G-2F5-4E10-Sub were rescued. A growth curve analysis by plaque assay on Vero cells (m.o.i of 5) is shown in
FIG. 16 . The growth kinetics of rVSV containing G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub were similar to wild-type. It was then postulated that rVSV G-2F5-Sub, rVSV G-4E10-Sub and rVSV G-2F5-4E10-Sub could be neutralized with the 2F5 and 4E10 antibodies. - Neutralization of recombinant VSV with various antibodies is shown in
FIG. 17 . 5000 pfu rVSV G-2F5-Sub, rVSV G-4E10-Sub or rVSV G-2F5-4E10-Sub were incubated with VI-10 (control antibody against the ectodomain of VSV G, i.e. it should neutralize all viruses with G), 2F5 or 4E10 at various concentrations, followed by a plaque assay on Vero cells. As shown inFIG. 17 , rVSV containing G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub was efficiently neutralized by the 2F5 and/or 4E10 antibodies. - To summarize this Example: (1) the ‘stem’ region of the Vesicular Stomatitis Virus (VSV) glycoprotein tolerated the insertion of the HIV-1 gp41 2F5 and 4E10 epitope sequences, (2) the modified VSV G proteins were expressed on the cell surface and detected by the respective HIV broadly neutralizing antibodies, (3) lentiviruses pseudotyped with VSV G-2F5-Sub or VSV G-4E10-Sub were infectious and could be neutralized with the 2F5 and 4E10 antibody, respectively and (4) recombinant VSVs with G-2F5-Sub, G-4E10-Sub or G-2F5-4E10-Sub were infectious, had similar growth kinetics like wild-type rVSV, and could be efficiently neutralized with the 2F5 and 4E10 antibodies. Applicants conclude that the HIV-1 gp41 2F5 and 4E10 epitope sequences were presented in a native-like conformation in the ‘stem’ region of the VSV glycoprotein.
- The gene was optimized for expression in eukaryotic cells using the following steps:
1. Started with amino acid sequence for VSV G serotype Indiana, strain Orsay (Genbank M11048.1)
2. The amino acid sequence was reverse-translated using the OPTIMIZER webtool (available on the OPTIMIZER website associated with Universitat Rovira i Virgili (URV)) and a human codon frequency table [Puigbò P et al. Nucleic Acids Res. 2007 July; 35 (Web Server issue):W126-31]
3. The DNA sequence obtained from reverse-translation was scanned for potential mRNA splice donor and acceptor sequences using the Splice Site Prediction webtool available on the fruitfly.org website [Reese M G et al. J Comput Biol. 1997 Fall; 4(3):311-23]. Potential splicing signals were disrupted subsequently by introducing one or two synonymous codons, which altered key elements in the donor or acceptor site. Synonymous codons were selected based on frequencies found in the Codon Table published by Zhang et al [Hum Mol. Genet. 1998 May; 7 (5):919-32] for GC-rich transcripts.
4. The reverse-translated sequence also was scanned for homopolymeric sequences ≧5 nucleotides. Those that were ≧5 were interrupted by substitution of sequence with a synonymous codon as described in the step above.
5. The sequence was scanned for the presence of mRNA instability elements [Zubiaga A M et al. 1995, Mol. Cell. Biol. 15: 2219-2230]. None were found.
6. Optimal translation initiation (Kozak element [Kozak M. J Biol Chem. 1991 25; 266 (30):19867-70]) and termination signals [Kochetov A V et al. FEBS Lett. 1998 4; 440(3):351-5] were introduced.
7. Unique XhoI and NotI sites were added to the 5′ and 3′ termini, respectively, as presented inFIGS. 28 A and 28B. - The invention is further described by the following numbered paragraphs:
- 1. A recombinant vesicular stomatitis virus (VSV) vector wherein the gene encoding the VSV surface glycoprotein G (VSV G) is functionally replaced by HIV Env.
- 2. The vector of
paragraph 1 wherein the HIV Env is recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10 or Z13, or other Env-specific antibodies, including broad potent neutralizing trimer-specific antibodies. - 3. A recombinant vesicular stomatitis virus (VSV) vector encoding a modified form of VSV G, wherein the modified form of VSV G harbors epitopes from the HIV Env membrane proximal external region (MPER).
- 4. The vector of
paragraph 3 wherein the MPER sequence is inserted into the membrane proximal region of VSV G. - 5. The vector of
paragraph - 6. A recombinant vesicular stomatitis virus (VSV) vector encoding a an N-terminally truncated form of VSV G (G/Stem), wherein the G/Stem presents Env epitope sequences on the surface of VSV particles.
- 7. The vector of
paragraph 6 wherein G/Stem contains a cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G, a membrane proximal extracellular polypeptide (the Stem) that can be 0 to 16 to 68 amino acids in, wherein HIV Env epitopes are appended to the Stem. - 8. The vector of
paragraph 7 wherein the HIV Env epitopes are MPER epitopes. - 9. The vector of
paragraph 8 wherein the G/Stem-MPER molecules bind to 2F5 and 4E10 monoclonal antibodies with high affinity. - 10. The vector of any one of paragraphs 1-9 wherein the HIV Env is a mutant HIV Env.
- 11. A method of generating novel chimeric EnvG molecules expressed and incorporated into VSV comprising:
- (a) serially passaging replication-competent chimeric VSV-HIV viruses that lack the capacity to encode wild-type G and are dependent on EnvG for infection and propagation on cells to promote emergence of viruses with greater replicative fitness and
- (b) identifying novel mutations that enhance Env or EnvG function.
- 12. The method of
paragraph 11, wherein the cells are CD4/CCR5+ cells. - 13. The method of
paragraph - 14. The method of
paragraph - 15. The method of
paragraph - 16. The method of paragraph 15 wherein the antibody is PG9, PG16, b12, 2G12, 2F5 or 4E10 or any other broad potent neutralizing Env trimer specific antibody.
- 17. A method of producing an immune response comprising administering to a mammal the vector of any one of paragraphs 1-10.
- 18. A method of eliciting an immune response comprising administering to a mammal the vector of any one of paragraphs 1-10.
- Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.
Claims (16)
1. A recombinant vesicular stomatitis virus (VSV) vector wherein the gene encoding the VSV surface glycoprotein G (VSV G) is functionally replaced by HIV Env.
2. The vector of claim 1 wherein the HIV Env is recognized by antibodies PG9, PG16, 2G12, b12, 2F5, 4E10 or Z13, or other Env-specific antibodies, including broad potent neutralizing trimer-specific antibodies.
3. A recombinant vesicular stomatitis virus (VSV) vector encoding a modified form of VSV G, wherein the modified form of VSV G harbors natural or modified epitopes from the HIV Env membrane proximal external region (MPER).
4. The vector of claim 3 wherein the MPER sequence is inserted into the membrane proximal region of VSV G.
5. The vector of claim 3 wherein a G-MPER protein binds with high avidity to 2F5 and 4E10 monoclonal antibodies.
6. A recombinant vesicular stomatitis virus (VSV) vector encoding a an N-terminally truncated form of VSV G (G/Stem), wherein the G/Stem presents Env epitope sequences on the surface of VSV particles.
7. The vector of claim 6 wherein G/Stem contains a cytoplasmic tail (CT) and trans-membrane (TM) spanning domains of G, a 16- to 68-amino acid membrane proximal extracellular polypeptide (the Stem), wherein HIV Env epitopes are appended to the Stem.
8. The vector of claim 7 wherein the HIV Env epitopes are MPER epitopes.
9. The vector of claim 8 wherein the G/Stem-MPER molecules bind to 2F5 and 4E10 monoclonal antibodies with high affinity.
10. A method of generating novel chimeric EnvG molecules expressed and incorporated into VSV comprising:
(a) serially passaging replication-competent chimeric VSV-HIV viruses that lack the capacity to encode wild-type G and are dependent on Env or EnvG for infection and propagation on cells to promote emergence of viruses with greater replicative fitness and
(b) identifying novel mutations that enhance Env or EnvG function.
11. The method of claim 10 , wherein the cells are CD4/CCR5+ cells.
12. The method of claim 10 wherein the novel mutations escalate trimer abundance on the virus particle and/or increase the stability of the functional trimeric form of Env or EnvG.
13. The method of claim 10 further comprising determining whether the Env or EnvG immunogens bind and elicit broadly neutralizing anti-Env antibodies.
14. The method of claim 10 further comprising applying selective pressure to generate novel Env or EnvG molecules expressed and incorporated into VSV, wherein the selective pressure is binding to broad and potent neutralizing antibodies.
15. The method of claim 14 wherein the antibody is PG9, PG16, b12, 2G12, 2F5 or 4E10 or any other broad potent neutralizing Env trimer specific antibody.
16. A method of producing an immune response or eliciting an immune response comprising administering to a mammal the vector of any one of claim 1 , 3 or 6 .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/708,940 US20100215691A1 (en) | 2009-02-20 | 2010-02-19 | Recombinant viral vectors |
US14/972,272 US9802986B2 (en) | 2009-02-20 | 2015-12-17 | Recombinant viral vectors |
US15/663,867 US10202424B2 (en) | 2009-02-20 | 2017-07-31 | Recombinant viral vectors |
US16/267,058 US10844095B2 (en) | 2009-02-20 | 2019-02-04 | Recombinant viral vectors |
US17/074,358 US11891416B2 (en) | 2009-02-20 | 2020-10-19 | Recombinant viral vectors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15419009P | 2009-02-20 | 2009-02-20 | |
US12/708,940 US20100215691A1 (en) | 2009-02-20 | 2010-02-19 | Recombinant viral vectors |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/972,272 Continuation US9802986B2 (en) | 2009-02-20 | 2015-12-17 | Recombinant viral vectors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100215691A1 true US20100215691A1 (en) | 2010-08-26 |
Family
ID=42262391
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/708,940 Abandoned US20100215691A1 (en) | 2009-02-20 | 2010-02-19 | Recombinant viral vectors |
US14/972,272 Active US9802986B2 (en) | 2009-02-20 | 2015-12-17 | Recombinant viral vectors |
US15/663,867 Active US10202424B2 (en) | 2009-02-20 | 2017-07-31 | Recombinant viral vectors |
US16/267,058 Active US10844095B2 (en) | 2009-02-20 | 2019-02-04 | Recombinant viral vectors |
US17/074,358 Active 2030-09-08 US11891416B2 (en) | 2009-02-20 | 2020-10-19 | Recombinant viral vectors |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/972,272 Active US9802986B2 (en) | 2009-02-20 | 2015-12-17 | Recombinant viral vectors |
US15/663,867 Active US10202424B2 (en) | 2009-02-20 | 2017-07-31 | Recombinant viral vectors |
US16/267,058 Active US10844095B2 (en) | 2009-02-20 | 2019-02-04 | Recombinant viral vectors |
US17/074,358 Active 2030-09-08 US11891416B2 (en) | 2009-02-20 | 2020-10-19 | Recombinant viral vectors |
Country Status (5)
Country | Link |
---|---|
US (5) | US20100215691A1 (en) |
EP (1) | EP2398496B1 (en) |
AU (1) | AU2010215872A1 (en) |
CA (1) | CA2753082A1 (en) |
WO (1) | WO2010096678A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012030904A2 (en) * | 2010-08-31 | 2012-03-08 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv)-neutralizing antibodies |
EP2568289A3 (en) * | 2011-09-12 | 2013-04-03 | International AIDS Vaccine Initiative | Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies |
US20130266989A1 (en) * | 2012-03-29 | 2013-10-10 | International Aids Vaccine Initiative | Methods to improve vector expression and genetic stability |
US10239935B2 (en) | 2015-12-15 | 2019-03-26 | Gilead Sciences, Inc. | Human immunodeficiency virus neutralizing antibodies |
US10882907B2 (en) | 2017-06-21 | 2021-01-05 | Gilead Sciences, Inc. | Multispecific antibodies that target HIV GP120 and CD3 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2586461A1 (en) * | 2011-10-27 | 2013-05-01 | Christopher L. Parks | Viral particles derived from an enveloped virus |
US9610346B2 (en) | 2012-03-23 | 2017-04-04 | International Aids Vaccine Initiative | Recombinant viral vectors |
US10279027B2 (en) | 2015-10-02 | 2019-05-07 | International Aids Vaccine Initiative | Transgenic Vero-CD4/CCR5 cell line |
US9925258B2 (en) | 2015-10-02 | 2018-03-27 | International Aids Vaccine Initiative | Replication-competent VSV-HIV Env vaccines |
US20240191208A1 (en) * | 2022-11-16 | 2024-06-13 | The General Hospital Corporation | Minimal Virus-Like Particles and Methods of Use Thereof for Delivery of Biomolecules |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2316033A1 (en) * | 1997-12-22 | 1999-07-01 | The University Of Tennessee Research Corporation | Recombinant rhabdovirus containing a heterologous fusion protein |
-
2010
- 2010-02-19 CA CA2753082A patent/CA2753082A1/en not_active Abandoned
- 2010-02-19 WO PCT/US2010/024775 patent/WO2010096678A2/en active Application Filing
- 2010-02-19 EP EP10706839.7A patent/EP2398496B1/en not_active Not-in-force
- 2010-02-19 AU AU2010215872A patent/AU2010215872A1/en not_active Abandoned
- 2010-02-19 US US12/708,940 patent/US20100215691A1/en not_active Abandoned
-
2015
- 2015-12-17 US US14/972,272 patent/US9802986B2/en active Active
-
2017
- 2017-07-31 US US15/663,867 patent/US10202424B2/en active Active
-
2019
- 2019-02-04 US US16/267,058 patent/US10844095B2/en active Active
-
2020
- 2020-10-19 US US17/074,358 patent/US11891416B2/en active Active
Non-Patent Citations (11)
Title |
---|
Boritz et al. Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. J Virol. 1999. 73(8):6937-45. * |
Dey AK et al. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus. Virology. 2008 Mar 1;372(1):187-200. * |
Eggink D et al. Selection of T1249-resistant human immunodeficiency virus type 1 variants. J Virol. 2008 Jul;82(13):6678-88. * |
Eggink D et al. Selection of T1249-resistant human immunodeficiency virus type 1 variants. J Virol. 2008. 82(13):6678-88. * |
Hammonds J et al. Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core. Virology. 2003 Sep 30;314(2):636-49. * |
J Virol. 1999 Aug;73(8):6937-45.Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway.Boritz E, Gerlach J, Johnson JE, Rose JK. * |
Khare et al. Epitope selection from an uncensored peptide library displayed on avian leukosis virus. Virology 315 (2003) 313-321. * |
Llewellyn ZN et al. Growth and molecular evolution of vesicular stomatitis serotype New Jersey in cells derived from its natural insect-host: evidence for natural adaptation. Virus Res. 2002 Oct;89(1):65-73. * |
Llewellyn ZN et al. Growth and molecular evolution of vesicular stomatitis serotype New Jersey in cells derived from its natural insect-host: evidence for natural adaptation. Virus Res. 2002. 89(1):65-73. * |
Ooi et al. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus. J Virol Methods. 2006 Sep;136(1-2):160-5. Epub 2006 Jun 16. * |
Riedel et al. Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA. EMBO J. 1984 Jul;3(7):1477-83. * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10836811B2 (en) | 2010-08-31 | 2020-11-17 | Theraclone Sciences, Inc. | Broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibody |
WO2012030904A3 (en) * | 2010-08-31 | 2012-05-31 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv)-neutralizing antibodies |
US11845789B2 (en) | 2010-08-31 | 2023-12-19 | Theraclone Sciences, Inc. | Methods of treating HIV-1 infection utilizing broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibodies |
WO2012030904A2 (en) * | 2010-08-31 | 2012-03-08 | Theraclone Sciences, Inc. | Human immunodeficiency virus (hiv)-neutralizing antibodies |
US9464131B2 (en) | 2010-08-31 | 2016-10-11 | Theraclone Sciences, Inc. | Broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibody |
US11319362B2 (en) | 2010-08-31 | 2022-05-03 | International Aids Vaccine Initiative | Methods of treating HIV-1 infection utilizing broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibodies |
US10087239B2 (en) | 2010-08-31 | 2018-10-02 | Theraclone Sciences, Inc. | Broadly neutralizing human immunodeficiency virus type 1 (HIV-1) GP120-specific monoclonal antibody |
EP2568289A3 (en) * | 2011-09-12 | 2013-04-03 | International AIDS Vaccine Initiative | Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies |
US9347065B2 (en) * | 2012-03-29 | 2016-05-24 | International Aids Vaccine Initiative | Methods to improve vector expression and genetic stability |
US9944935B2 (en) | 2012-03-29 | 2018-04-17 | International Aids Vaccine Initiative | Methods to improve vector expression and genetic stability |
US20130266989A1 (en) * | 2012-03-29 | 2013-10-10 | International Aids Vaccine Initiative | Methods to improve vector expression and genetic stability |
US10239935B2 (en) | 2015-12-15 | 2019-03-26 | Gilead Sciences, Inc. | Human immunodeficiency virus neutralizing antibodies |
US10882898B2 (en) | 2015-12-15 | 2021-01-05 | Gilead Sciences, Inc. | Human immunodeficiency virus neutralizing antibodies |
US11655285B2 (en) | 2015-12-15 | 2023-05-23 | Gilead Sciences, Inc. | Human immunodeficiency virus neutralizing antibodies |
US10882907B2 (en) | 2017-06-21 | 2021-01-05 | Gilead Sciences, Inc. | Multispecific antibodies that target HIV GP120 and CD3 |
US11597759B2 (en) | 2017-06-21 | 2023-03-07 | Gilead Sciences, Inc. | Multispecific antibodies that target HIV GP120 and CD3 |
Also Published As
Publication number | Publication date |
---|---|
EP2398496B1 (en) | 2015-08-05 |
EP2398496A2 (en) | 2011-12-28 |
WO2010096678A2 (en) | 2010-08-26 |
AU2010215872A1 (en) | 2011-09-01 |
CA2753082A1 (en) | 2010-08-26 |
US20160152666A1 (en) | 2016-06-02 |
US10202424B2 (en) | 2019-02-12 |
US10844095B2 (en) | 2020-11-24 |
US20190153043A1 (en) | 2019-05-23 |
US20210040158A1 (en) | 2021-02-11 |
US11891416B2 (en) | 2024-02-06 |
US20170327544A1 (en) | 2017-11-16 |
WO2010096678A3 (en) | 2010-12-02 |
US9802986B2 (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11891416B2 (en) | Recombinant viral vectors | |
US9610346B2 (en) | Recombinant viral vectors | |
US20130189754A1 (en) | Immunoselection of recombinant vesicular stomatitis virus expressing hiv-1 proteins by broadly neutralizing antibodies | |
US9944935B2 (en) | Methods to improve vector expression and genetic stability | |
JP2021013384A (en) | Genetically stable replication competent sendai virus vectors containing and expressing optimized hiv genes | |
AU2008318677A1 (en) | Antigen-antibody complexes as HIV-1 vaccines | |
US20110217338A1 (en) | HIV-1 Envelope Based Fragments | |
US20080102073A1 (en) | Antigen-Antibody Complexes as HIV-1 Vaccines | |
US9402894B2 (en) | Viral particles derived from an enveloped virus | |
US8105600B2 (en) | Method of inducing high-titer neutralizing antibody responses in a host by administering immune complexes comprising anti-HIV-1 Env antibodies and the HIV-1 Env |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL AIDS VACCINE INITIATIVE, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARKS, CHRISTOPHER L.;LORENZ, IVO;PHOGAT, SANJAY K.;AND OTHERS;SIGNING DATES FROM 20100305 TO 20100310;REEL/FRAME:026171/0105 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |