US20100194789A1 - Partial image update for electrophoretic displays - Google Patents
Partial image update for electrophoretic displays Download PDFInfo
- Publication number
- US20100194789A1 US20100194789A1 US12/695,830 US69583010A US2010194789A1 US 20100194789 A1 US20100194789 A1 US 20100194789A1 US 69583010 A US69583010 A US 69583010A US 2010194789 A1 US2010194789 A1 US 2010194789A1
- Authority
- US
- United States
- Prior art keywords
- lookup table
- image
- waveform
- driving
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3655—Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3433—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
- G09G3/344—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/04—Partial updating of the display screen
Definitions
- the present invention is directed to methods useful for partial image update of electrophoretic displays.
- An electrophoretic display is a non-emissive device based on the electrophoresis phenomenon of charged pigment particles suspended in a solvent.
- the display usually comprises two plates with electrodes placed opposing each other. One of the electrodes is usually transparent. A suspension composed of a colored solvent and charged pigment particles is enclosed between the two plates. When a voltage difference is imposed between the two electrodes, the pigment particles migrate to one side or the other, according to the polarity of the voltage difference. As a result, either the color of the pigment particles or the color of the solvent may be seen at the viewing side.
- Previous driving schemes for electrophoretic displays use full image frame updates where a waveform is chosen by a display controller for the entire image frame. This requires all pixels of the display to be refreshed even for those pixels which remain unchanged. For example, if a small section of an image needed to be refreshed with a blanking of the section and then driving to the next image, the entire image would be blanked and refreshed, even if the data remain unchanged for the majority of sections.
- previous driving schemes perform a calculation between the current image and the next image in order to select an appropriate waveform to be used. This comparison utilizes a significant amount of memory and processing cycles in the display controller or processor.
- the driving schemes also do not allow for multiple waveforms to be used during an image frame update, i.e., each pixel on the image frame uses the same waveform. This limits the capability of the display to a single waveform per image update. For example, a fast black and white waveform may have a faster transition time than a grayscale waveform; but by using the previous driving schemes, if an image has both black/white and grayscale, the slower grayscale waveform would have to be used.
- the present invention is directed to methods for partial image updates. Such methods provide the display controller the ability to update selected areas of an image that require updating and leave other areas unchanged. The methods also allow for multiple waveforms to be used for specific regions, giving the display the capability of updating each region with its own waveform. The methods of the invention can also reduce the memory required for image updates, especially if only a small percentage of the image is changing. In practice, the methods may be implemented by a uni-polar driving scheme, a bi-polar driving scheme or a combination of both.
- the partial image update method comprises
- the method further comprises outputting the data for the initial image from the microcontroller unit to the integrated circuit unit in step (a).
- the region definition is pre-determined or fixed.
- the region definition is generated real time.
- the lookup table information comprises a lookup table of black/white driving waveforms.
- the lookup table information comprises a lookup table of grayscale driving waveforms.
- the lookup table information comprises a no change waveform.
- the driving information comprises waveforms for individual pixels.
- the waveform is a multiple voltage level driving waveform.
- the multiple voltage level driving waveform comprises 0V, at least two positive voltage levels and at least two negative voltage levels.
- the multiple voltage levels are ⁇ 15V, ⁇ 10V, ⁇ 5V, 0V, +5V, +10V and +15V.
- only pixel electrodes are driven by the multiple voltage level driving waveform. In another embodiment, both common electrode and pixel electrodes are driven by the multiple voltage driving waveform.
- the waveform comprises a positive voltage, 0V and a negative voltage.
- the display device is an electrophoretic display device.
- FIG. 1 illustrates the feature of partial image update.
- FIG. 2 shows an example of region definition
- FIG. 3 illustrates assignment of regions to lookup tables.
- FIG. 4 shows how each pixel may be assigned to a lookup table.
- FIG. 5 is a diagram illustrating how the partial image update is operated.
- FIG. 6 shows a typical display cell of an electrophoretic display.
- FIGS. 7 and 8 are examples of driving waveforms for partial image updating.
- FIG. 9 is a table which shows the possible voltage combinations in a multiple voltage level driving method.
- FIG. 1 illustrates the term “partial image update”. As shown, Image 1 is the original image and Image 2 is an updated image. Between the two images, only the drawing at the bottom of the page has changed while other sections remain unchanged.
- the present invention is directed to methods which would only update the portions of the image that are changing; but not the remaining portions of the image which would remain unchanged.
- regions have to be defined first.
- the regions can be of any size from the entire display screen down to the size of a single pixel.
- An image may be divided into any number of regions.
- the regions may also overlap, with a region order of precedence defined. Regions may also be of any shape and in any location on the display screen.
- FIG. 2 is an abbreviated version demonstrating the concept of regions.
- a display screen has 11 ⁇ 11 pixels and five defined regions (R 0 , R 1 , R 2 , R 3 and R 4 ). The entire screen is defined as region R 0 .
- Region R 1 overlaps with R 0 and since R 1 is the region defined after R 0 , R 1 has precedence over R 0 .
- regions R 3 and R 4 have precedence over R 0 and region R 2 has precedence over R 1 which has precedence over R 0 .
- Each region is assigned to a lookup table (LUT), as shown in FIG. 3 .
- LUT lookup table
- the details of the lookup tables are given in a section below. It is noted that more than one region may share one lookup table.
- a region for clarity, may be defined as ⁇ location, size, LUT ⁇ .
- the location is the location (x.y) of the starting pixel of the region.
- the size is the size (width.length) of the region, defined by the pixels.
- the LUT is the specific LUT assigned to the region. For example regions R 0 -R 4 in FIG. 2 may be expressed as follows:
- each pixel is then associated with a lookup table and is driven accordingly. This is shown in FIG. 4 .
- lookup tables there is no limitation on the number of lookup tables a display device may have.
- the following are a few examples of lookup tables.
- lookup table comprising only black/white driving waveforms.
- Such a lookup table may have at least four independent driving waveforms to drive pixels from black to black, from black to white, from white to white and from white to black.
- each of levels 0-15 may be driven to level 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.
- lookup table comprising 8 levels of grayscale.
- lookup table comprising 4 levels of grayscale.
- the regions may be pre-determined and fixed.
- regions may be determined by an algorithm embedded in a microcontroller unit, and in this case the division of the regions may be generated real time.
- the region/LUT assignment is not fixed. For example, a region may be initially assigned to one lookup table and reassigned to other lookup tables, as needed.
- the assignment of regions to lookup tables is a real time function and is dictated by an algorithm also stored in the microcontroller unit.
- FIG. 5 is a diagram which illustrates how the partial image update of the present invention is operated.
- the microcontroller unit (MCU) outputs the region definition and the region/LUT assignment along with image # 1 (the initial image) and image # 2 (the next image to be displayed) to a field programmed gate array (FPGA).
- FPGA field programmed gate array
- the LUT information is also fed into the FPGA.
- the initial image (image # 1 ) may be stored in a memory that the FPGA has access to.
- the MCU only needs to feed the data for image # 2 to the FPGA.
- the FPGA processes the information received and sends the driving information (i.e., which waveform is used for which pixel) to driver IC(s) to drive from image # 1 to image # 2 .
- FPGA is used in the diagram, it is understood for the partial image update method of the present invention, the FPGA may be replaced with any customized IC unit.
- the driving of the pixels may be accomplished by a uni-polar approach, a bipolar approach or a combination of both.
- one lookup table in the present invention may preferably comprise a multiple voltage level driving method.
- the method comprises applying different voltages selected from multiple voltage levels, to pixel electrodes and optionally also to the common electrodes.
- the method allows for multiple voltage levels, specifically, 0 volt, at least two levels of positive voltage and at least two levels of negative voltage.
- the method can provide finer control over the driving waveforms and produce a better grayscale resolution.
- FIG. 6 is used to illustrate a typical display cell ( 60 ) of an electrophoretic display.
- the display cell is sandwiched between a common electrode ( 61 ) and a pixel electrode ( 62 ).
- the pixel electrode defines an individual pixel of a multi-pixel electrophoretic display.
- a plurality of display cells (as a pixel) may be associated with one discrete pixel electrode.
- the pixel electrode may be segmented in nature rather than pixilated, defining regions of an image to be displayed rather than individual pixels.
- An electrophoretic fluid ( 63 ) is filled in the display cell.
- the display cell is surrounded by partition walls ( 64 ). In other words, the display cells are separated by the partition walls.
- the movement of the charged particles in the display cell is determined by the voltage potential difference applied to the common electrode and the pixel electrode associated with the display cell.
- the charged particles ( 65 ) may be positively charged so that they will be drawn to the pixel electrode ( 62 ) or the common electrode ( 61 ), whichever is at an opposite voltage potential from that of charged particles ( 65 ). If the same polarity is applied to the pixel electrode and the common electrode in a display cell, the positively charged pigment particles will then be drawn to the electrode which has a lower voltage potential. Alternatively, the charged pigment particles ( 65 ) may be negatively charged.
- FIG. 7 shows a multiple voltage level driving method.
- the voltage applied to the common electrode remains constant at the 0 volt.
- the voltages applied to the pixel electrode fluctuates between ⁇ 15V, ⁇ 10V, ⁇ 5V, 0V, +5V, +10V and +15V.
- the charged particles associated with the pixel electrode would sense a voltage potential of ⁇ 15V, ⁇ 10V, ⁇ 5V, 0V, +5V, +10V or +15V.
- FIG. 8 shows an alternative driving method comprising multiple voltage levels.
- the voltage on the common electrode is also modulated.
- the charged particles associated with the pixel electrodes will sense even more levels of potential difference, ⁇ 30V, ⁇ 25V, ⁇ 20V, ⁇ 15V, ⁇ 10V, ⁇ 5V, 0V, +5V, +10V, +15V, +20V, +25V and +30V (see FIG. 9 ). While more levels of potential difference are sensed by the charged particles, more levels of grayscale may be achieved, thus providing a finer resolution of the images displayed.
- the driving waveform may be a standard driving waveform which comprises only three levels of voltage: a positive voltage, 0V and a negative voltage (e.g., +15V, 0V and ⁇ 15V).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
The present invention is directed to methods for partial image updates. Such methods provide the display controller the ability to update selected areas of an image that require updating and leave other areas unchanged. The methods also allow for multiple waveforms to be used for specific regions, giving the display the capability of updating each region with its own waveform.
Description
- This application claims priority to U.S. Provisional Application No. 61/148,735, filed Jan. 30, 2009; the content of which is incorporated herein by reference in its entirety.
- The present invention is directed to methods useful for partial image update of electrophoretic displays.
- An electrophoretic display (EPD) is a non-emissive device based on the electrophoresis phenomenon of charged pigment particles suspended in a solvent. The display usually comprises two plates with electrodes placed opposing each other. One of the electrodes is usually transparent. A suspension composed of a colored solvent and charged pigment particles is enclosed between the two plates. When a voltage difference is imposed between the two electrodes, the pigment particles migrate to one side or the other, according to the polarity of the voltage difference. As a result, either the color of the pigment particles or the color of the solvent may be seen at the viewing side.
- Previous driving schemes for electrophoretic displays use full image frame updates where a waveform is chosen by a display controller for the entire image frame. This requires all pixels of the display to be refreshed even for those pixels which remain unchanged. For example, if a small section of an image needed to be refreshed with a blanking of the section and then driving to the next image, the entire image would be blanked and refreshed, even if the data remain unchanged for the majority of sections.
- In addition, previous driving schemes perform a calculation between the current image and the next image in order to select an appropriate waveform to be used. This comparison utilizes a significant amount of memory and processing cycles in the display controller or processor. The driving schemes also do not allow for multiple waveforms to be used during an image frame update, i.e., each pixel on the image frame uses the same waveform. This limits the capability of the display to a single waveform per image update. For example, a fast black and white waveform may have a faster transition time than a grayscale waveform; but by using the previous driving schemes, if an image has both black/white and grayscale, the slower grayscale waveform would have to be used.
- The present invention is directed to methods for partial image updates. Such methods provide the display controller the ability to update selected areas of an image that require updating and leave other areas unchanged. The methods also allow for multiple waveforms to be used for specific regions, giving the display the capability of updating each region with its own waveform. The methods of the invention can also reduce the memory required for image updates, especially if only a small percentage of the image is changing. In practice, the methods may be implemented by a uni-polar driving scheme, a bi-polar driving scheme or a combination of both.
- More specifically, the partial image update method comprises
- a) outputting region definition, region and lookup table assignment, and data for the new image to be displayed from a microcontroller unit to an integrated circuit unit;
- b) feeding lookup table information into said integrated circuit unit;
- c) sending driving information by said integrated circuit unit to a driver integrated circuit to drive the display device from said first image to said second image.
- In one embodiment, the method further comprises outputting the data for the initial image from the microcontroller unit to the integrated circuit unit in step (a).
- In one embodiment, the region definition is pre-determined or fixed.
- In one embodiment, the region definition is generated real time.
- In one embodiment, the lookup table information comprises a lookup table of black/white driving waveforms.
- In one embodiment, the lookup table information comprises a lookup table of grayscale driving waveforms.
- In one embodiment, the lookup table information comprises a no change waveform.
- In one embodiment, the driving information comprises waveforms for individual pixels.
- In one embodiment, the waveform is a multiple voltage level driving waveform.
- In one embodiment, the multiple voltage level driving waveform comprises 0V, at least two positive voltage levels and at least two negative voltage levels.
- In one embodiment, the multiple voltage levels are −15V, −10V, −5V, 0V, +5V, +10V and +15V.
- In one embodiment, only pixel electrodes are driven by the multiple voltage level driving waveform. In another embodiment, both common electrode and pixel electrodes are driven by the multiple voltage driving waveform.
- In one embodiment, the waveform comprises a positive voltage, 0V and a negative voltage.
- In one embodiment, the display device is an electrophoretic display device.
-
FIG. 1 illustrates the feature of partial image update. -
FIG. 2 shows an example of region definition. -
FIG. 3 illustrates assignment of regions to lookup tables. -
FIG. 4 shows how each pixel may be assigned to a lookup table. -
FIG. 5 is a diagram illustrating how the partial image update is operated. -
FIG. 6 shows a typical display cell of an electrophoretic display. -
FIGS. 7 and 8 are examples of driving waveforms for partial image updating. -
FIG. 9 is a table which shows the possible voltage combinations in a multiple voltage level driving method. -
FIG. 1 illustrates the term “partial image update”. As shown,Image 1 is the original image andImage 2 is an updated image. Between the two images, only the drawing at the bottom of the page has changed while other sections remain unchanged. - The present invention is directed to methods which would only update the portions of the image that are changing; but not the remaining portions of the image which would remain unchanged.
- In the methods, regions have to be defined first. The regions can be of any size from the entire display screen down to the size of a single pixel. An image may be divided into any number of regions. The regions may also overlap, with a region order of precedence defined. Regions may also be of any shape and in any location on the display screen.
-
FIG. 2 is an abbreviated version demonstrating the concept of regions. As shown, a display screen has 11×11 pixels and five defined regions (R0, R1, R2, R3 and R4). The entire screen is defined as region R0. Region R1 overlaps with R0 and since R1 is the region defined after R0, R1 has precedence over R0. Similarly, regions R3 and R4 have precedence over R0 and region R2 has precedence over R1 which has precedence over R0. - Each region is assigned to a lookup table (LUT), as shown in
FIG. 3 . The details of the lookup tables are given in a section below. It is noted that more than one region may share one lookup table. - A region, for clarity, may be defined as {location, size, LUT}. The location is the location (x.y) of the starting pixel of the region. The size is the size (width.length) of the region, defined by the pixels. The LUT is the specific LUT assigned to the region. For example regions R0-R4 in
FIG. 2 may be expressed as follows: - R0: {0.0, 11.11, LUT#0}
- R1: {0.0, 6.6, LUT#0}
- R2: {4.4, 4.3, LUT#5}
- R3: {2.8, 3.2, LUT#1}
- R4: {6.8, 4.2, LUT#0}
- Taking
FIGS. 2 and 3 together, each pixel is then associated with a lookup table and is driven accordingly. This is shown inFIG. 4 . - As to the lookup tables, there is no limitation on the number of lookup tables a display device may have. The following are a few examples of lookup tables.
- There may be a lookup table comprising only black/white driving waveforms. Such a lookup table may have at least four independent driving waveforms to drive pixels from black to black, from black to white, from white to white and from white to black.
- There may be a lookup table comprising 16 levels of grayscale. In such a lookup table, there would be 256 independent waveforms to drive pixels from level 0-level 15 to level 0-level 15. In other words, by selecting one of the 256 waveforms, each of levels 0-15 may be driven to
level - There may be a lookup table comprising 8 levels of grayscale. In such a lookup table, there would be 64 independent waveforms to drive pixels from level 0-
level 7 to level 0-level 7. - There may also be a lookup table comprising 4 levels of grayscale. In such a lookup table, there would be 16 independent waveforms to drive pixels from level 0-
level 3 to level 0-level 3. - There may be a lookup table for “animation” where no bistability feature is required.
- There may be a lookup table for typing. In such a lookup table, only the alphabet key(s) which has/have been tapped will undergo an image change.
- There may also be a handwriting lookup table. In such a lookup table, only the regions where handwriting is displayed undergo image changes.
- There also must be a “no image change” lookup table. When a region undergoes no image changes, that region is assigned to this lookup table.
- It is noted that when the uni-polar driving approach is used, the driving waveforms would share the same waveform for the common electrode.
- The regions may be pre-determined and fixed. Alternatively, regions may be determined by an algorithm embedded in a microcontroller unit, and in this case the division of the regions may be generated real time.
- The region/LUT assignment is not fixed. For example, a region may be initially assigned to one lookup table and reassigned to other lookup tables, as needed. The assignment of regions to lookup tables is a real time function and is dictated by an algorithm also stored in the microcontroller unit.
-
FIG. 5 is a diagram which illustrates how the partial image update of the present invention is operated. The microcontroller unit (MCU) outputs the region definition and the region/LUT assignment along with image #1 (the initial image) and image #2 (the next image to be displayed) to a field programmed gate array (FPGA). The LUT information is also fed into the FPGA. - Alternatively, the initial image (image #1) may be stored in a memory that the FPGA has access to. In this case, the MCU only needs to feed the data for
image # 2 to the FPGA. - The FPGA processes the information received and sends the driving information (i.e., which waveform is used for which pixel) to driver IC(s) to drive from
image # 1 toimage # 2. - While FPGA is used in the diagram, it is understood for the partial image update method of the present invention, the FPGA may be replaced with any customized IC unit.
- As stated above, the driving of the pixels may be accomplished by a uni-polar approach, a bipolar approach or a combination of both.
- The driving methods currently available, however, pose a restriction on the number of grayscale output. This is due to the fact that display driver ICs and display controllers are limited in speed on the minimum pulse length that a waveform can have. While current active matrix display architectures utilize ICs that can generate pulse lengths down to 8 msec leading to electrophoretic displays which have shortened their response time, even below 150 msec, the grayscale resolution seems to diminish due to the incapability of the system to generate shorter pulse lengths.
- To remedy this shortcoming, one lookup table in the present invention may preferably comprise a multiple voltage level driving method. The method comprises applying different voltages selected from multiple voltage levels, to pixel electrodes and optionally also to the common electrodes.
- The method allows for multiple voltage levels, specifically, 0 volt, at least two levels of positive voltage and at least two levels of negative voltage.
- The method can provide finer control over the driving waveforms and produce a better grayscale resolution.
-
FIG. 6 is used to illustrate a typical display cell (60) of an electrophoretic display. The display cell is sandwiched between a common electrode (61) and a pixel electrode (62). The pixel electrode defines an individual pixel of a multi-pixel electrophoretic display. However, in practice, a plurality of display cells (as a pixel) may be associated with one discrete pixel electrode. The pixel electrode may be segmented in nature rather than pixilated, defining regions of an image to be displayed rather than individual pixels. - An electrophoretic fluid (63) is filled in the display cell. The display cell is surrounded by partition walls (64). In other words, the display cells are separated by the partition walls.
- The movement of the charged particles in the display cell is determined by the voltage potential difference applied to the common electrode and the pixel electrode associated with the display cell.
- As an example, the charged particles (65) may be positively charged so that they will be drawn to the pixel electrode (62) or the common electrode (61), whichever is at an opposite voltage potential from that of charged particles (65). If the same polarity is applied to the pixel electrode and the common electrode in a display cell, the positively charged pigment particles will then be drawn to the electrode which has a lower voltage potential. Alternatively, the charged pigment particles (65) may be negatively charged.
-
FIG. 7 shows a multiple voltage level driving method. In this example, the voltage applied to the common electrode remains constant at the 0 volt. The voltages applied to the pixel electrode, however, fluctuates between −15V, −10V, −5V, 0V, +5V, +10V and +15V. As a result, the charged particles associated with the pixel electrode would sense a voltage potential of −15V, −10V, −5V, 0V, +5V, +10V or +15V. -
FIG. 8 shows an alternative driving method comprising multiple voltage levels. In this example, the voltage on the common electrode is also modulated. - As a result, the charged particles associated with the pixel electrodes will sense even more levels of potential difference, −30V, −25V, −20V, −15V, −10V, −5V, 0V, +5V, +10V, +15V, +20V, +25V and +30V (see
FIG. 9 ). While more levels of potential difference are sensed by the charged particles, more levels of grayscale may be achieved, thus providing a finer resolution of the images displayed. - In one embodiment, the driving waveform may be a standard driving waveform which comprises only three levels of voltage: a positive voltage, 0V and a negative voltage (e.g., +15V, 0V and −15V).
- While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
Claims (16)
1. A partial image update method for a display device, comprising
a) outputting region definition, region and lookup table assignment, and data for the new image to be displayed from a microcontroller unit to an integrated circuit unit;
b) feeding lookup table information into said integrated circuit unit; and
c) sending driving information by said integrated circuit unit to a driver integrated circuit to drive the display device from said first image to said second image.
2. The method of claim 1 , further comprising outputting the data for the initial image from the microcontroller unit to the integrated circuit unit in step (a).
3. The method of claim 1 , wherein said region definition is pre-determined or fixed.
4. The method of claim 1 , wherein said region definition is generated real time.
5. The method of claim 1 , wherein said lookup table information comprises a lookup table of black/white driving waveforms.
6. The method of claim 1 , wherein said lookup table information comprises a lookup table of grayscale driving waveforms.
7. The method of claim 1 , wherein said lookup table information comprises a no change waveform.
8. The method of claim 1 , wherein said driving information comprises waveforms for individual pixels.
9. The method of claim 8 , wherein said waveform is a multiple voltage level driving waveform.
10. The method of claim 9 , wherein said multiple voltage level driving waveform comprises 0V, at least two positive voltage levels and at least two negative voltage levels.
11. The method of claim 10 , wherein said multiple voltage levels are −15V, −10V, −5V, 0V, +5V, +10V and +15V.
12. The method of claim 10 , wherein only pixel electrodes are driven by the multiple voltage level driving waveform.
13. The method of claim 10 , wherein both common electrode and pixel electrodes are driven by the multiple voltage driving waveform.
14. The method of claim 8 , wherein said waveform comprises a positive voltage, 0V and a negative voltage.
15. The method of claim 1 , wherein said display device is an electrophoretic display device.
16. The method of claim 1 , wherein said integrated circuit unit is field programmed gate array.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/695,830 US20100194789A1 (en) | 2009-01-30 | 2010-01-28 | Partial image update for electrophoretic displays |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14873509P | 2009-01-30 | 2009-01-30 | |
US12/695,830 US20100194789A1 (en) | 2009-01-30 | 2010-01-28 | Partial image update for electrophoretic displays |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100194789A1 true US20100194789A1 (en) | 2010-08-05 |
Family
ID=42397314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/695,830 Abandoned US20100194789A1 (en) | 2009-01-30 | 2010-01-28 | Partial image update for electrophoretic displays |
Country Status (2)
Country | Link |
---|---|
US (1) | US20100194789A1 (en) |
TW (1) | TWI431581B (en) |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070070032A1 (en) * | 2004-10-25 | 2007-03-29 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US20080303780A1 (en) * | 2007-06-07 | 2008-12-11 | Sipix Imaging, Inc. | Driving methods and circuit for bi-stable displays |
US20090096745A1 (en) * | 2007-10-12 | 2009-04-16 | Sprague Robert A | Approach to adjust driving waveforms for a display device |
US20090267970A1 (en) * | 2008-04-25 | 2009-10-29 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US20100134538A1 (en) * | 2008-10-24 | 2010-06-03 | Sprague Robert A | Driving methods for electrophoretic displays |
US20100194733A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Multiple voltage level driving for electrophoretic displays |
US20100283804A1 (en) * | 2009-05-11 | 2010-11-11 | Sipix Imaging, Inc. | Driving Methods And Waveforms For Electrophoretic Displays |
US20100295880A1 (en) * | 2008-10-24 | 2010-11-25 | Sprague Robert A | Driving methods for electrophoretic displays |
US20110096104A1 (en) * | 2009-10-26 | 2011-04-28 | Sprague Robert A | Spatially combined waveforms for electrophoretic displays |
US20110175875A1 (en) * | 2010-01-15 | 2011-07-21 | Craig Lin | Driving methods with variable frame time |
US20110175945A1 (en) * | 2010-01-20 | 2011-07-21 | Craig Lin | Driving methods for electrophoretic displays |
US20110216104A1 (en) * | 2010-03-08 | 2011-09-08 | Bryan Hans Chan | Driving methods for electrophoretic displays |
US20120019508A1 (en) * | 2010-07-23 | 2012-01-26 | Fitipower Integrated Technology Inc. | Electrophoretic display and picture update method thereof |
US20120062547A1 (en) * | 2010-09-15 | 2012-03-15 | Seiko Epson Corporation | Control device, display device and method for controlling display device |
US8243013B1 (en) | 2007-05-03 | 2012-08-14 | Sipix Imaging, Inc. | Driving bistable displays |
US8274472B1 (en) | 2007-03-12 | 2012-09-25 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US20120242715A1 (en) * | 2011-03-22 | 2012-09-27 | Seiko Epson Corporation | Control device, display apparatus, and electronic apparatus |
US20140146036A1 (en) * | 2012-11-23 | 2014-05-29 | Texas Instruments Incorporated | Electrophoretic display and method of operating |
US9013394B2 (en) | 2010-06-04 | 2015-04-21 | E Ink California, Llc | Driving method for electrophoretic displays |
US9251736B2 (en) | 2009-01-30 | 2016-02-02 | E Ink California, Llc | Multiple voltage level driving for electrophoretic displays |
US9299294B2 (en) | 2010-11-11 | 2016-03-29 | E Ink California, Llc | Driving method for electrophoretic displays with different color states |
WO2017049020A1 (en) | 2015-09-16 | 2017-03-23 | E Ink Corporation | Apparatus and methods for driving displays |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US10115354B2 (en) | 2009-09-15 | 2018-10-30 | E Ink California, Llc | Display controller system |
US10163406B2 (en) | 2015-02-04 | 2018-12-25 | E Ink Corporation | Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US10339876B2 (en) | 2013-10-07 | 2019-07-02 | E Ink California, Llc | Driving methods for color display device |
WO2019144097A1 (en) | 2018-01-22 | 2019-07-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10380931B2 (en) | 2013-10-07 | 2019-08-13 | E Ink California, Llc | Driving methods for color display device |
US10388233B2 (en) | 2015-08-31 | 2019-08-20 | E Ink Corporation | Devices and techniques for electronically erasing a drawing device |
WO2020018508A1 (en) | 2018-07-17 | 2020-01-23 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10726799B2 (en) * | 2017-06-21 | 2020-07-28 | Seiko Epson Corporation | Wearable device and control method |
US10726760B2 (en) | 2013-10-07 | 2020-07-28 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US10795233B2 (en) | 2015-11-18 | 2020-10-06 | E Ink Corporation | Electro-optic displays |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
US10832622B2 (en) | 2017-04-04 | 2020-11-10 | E Ink Corporation | Methods for driving electro-optic displays |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US11062663B2 (en) | 2018-11-30 | 2021-07-13 | E Ink California, Llc | Electro-optic displays and driving methods |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US11257445B2 (en) | 2019-11-18 | 2022-02-22 | E Ink Corporation | Methods for driving electro-optic displays |
US11289036B2 (en) | 2019-11-14 | 2022-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
WO2022094443A1 (en) | 2020-11-02 | 2022-05-05 | E Ink Corporation | Method and apparatus for rendering color images |
WO2022103687A1 (en) * | 2020-11-11 | 2022-05-19 | Amazon Technologies, Inc. | Content presentation on display screens |
US11353759B2 (en) | 2018-09-17 | 2022-06-07 | Nuclera Nucleics Ltd. | Backplanes with hexagonal and triangular electrodes |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US11423852B2 (en) | 2017-09-12 | 2022-08-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
US11450262B2 (en) | 2020-10-01 | 2022-09-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11520202B2 (en) | 2020-06-11 | 2022-12-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11568786B2 (en) | 2020-05-31 | 2023-01-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11620959B2 (en) | 2020-11-02 | 2023-04-04 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11657772B2 (en) | 2020-12-08 | 2023-05-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
US11686989B2 (en) | 2020-09-15 | 2023-06-27 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
WO2023122142A1 (en) | 2021-12-22 | 2023-06-29 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023129533A1 (en) | 2021-12-27 | 2023-07-06 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
WO2023129692A1 (en) | 2021-12-30 | 2023-07-06 | E Ink California, Llc | Methods for driving electro-optic displays |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11756494B2 (en) | 2020-11-02 | 2023-09-12 | E Ink Corporation | Driving sequences to remove prior state information from color electrophoretic displays |
US11776496B2 (en) | 2020-09-15 | 2023-10-03 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024091547A1 (en) | 2022-10-25 | 2024-05-02 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024158855A1 (en) | 2023-01-27 | 2024-08-02 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
WO2024182264A1 (en) | 2023-02-28 | 2024-09-06 | E Ink Corporation | Drive scheme for improved color gamut in color electrophoretic displays |
US12125449B2 (en) | 2021-02-09 | 2024-10-22 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8248358B2 (en) * | 2009-03-27 | 2012-08-21 | Qualcomm Mems Technologies, Inc. | Altering frame rates in a MEMS display by selective line skipping |
TWI550580B (en) | 2012-09-26 | 2016-09-21 | 達意科技股份有限公司 | Electro-phoretic display and driving method thereof |
TWI638217B (en) * | 2015-12-31 | 2018-10-11 | 達意科技股份有限公司 | Electronic paper display apparatus and a driving method thereof |
Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4143947A (en) * | 1976-06-21 | 1979-03-13 | General Electric Company | Method for improving the response time of a display device utilizing a twisted nematic liquid crystal composition |
US4259694A (en) * | 1979-08-24 | 1981-03-31 | Xerox Corporation | Electronic rescreen technique for halftone pictures |
US4443108A (en) * | 1981-03-30 | 1984-04-17 | Pacific Scientific Instruments Company | Optical analyzing instrument with equal wavelength increment indexing |
US4568975A (en) * | 1984-08-02 | 1986-02-04 | Visual Information Institute, Inc. | Method for measuring the gray scale characteristics of a CRT display |
US4575124A (en) * | 1982-04-05 | 1986-03-11 | Ampex Corporation | Reproducible gray scale test chart for television cameras |
US5054253A (en) * | 1989-12-18 | 1991-10-08 | Pawling Corporation | Rigid grating mat with unidirectional elements |
US5266937A (en) * | 1991-11-25 | 1993-11-30 | Copytele, Inc. | Method for writing data to an electrophoretic display panel |
US5298993A (en) * | 1992-06-15 | 1994-03-29 | International Business Machines Corporation | Display calibration |
US5754584A (en) * | 1994-09-09 | 1998-05-19 | Omnipoint Corporation | Non-coherent spread-spectrum continuous-phase modulation communication system |
US5831697A (en) * | 1995-06-27 | 1998-11-03 | Silicon Graphics, Inc. | Flat panel display screen apparatus with optical junction and removable backlighting assembly |
US5923315A (en) * | 1996-05-14 | 1999-07-13 | Brother Kogyo Kabushiki Kaisha | Display characteristic determining device |
US5926617A (en) * | 1996-05-16 | 1999-07-20 | Brother Kogyo Kabushiki Kaisha | Method of determining display characteristic function |
US6045756A (en) * | 1996-10-01 | 2000-04-04 | Texas Instruments Incorporated | Miniaturized integrated sensor platform |
US6069971A (en) * | 1996-12-18 | 2000-05-30 | Mitsubishi Denki Kabushiki Kaisha | Pattern comparison inspection system and method employing gray level bit map |
US6075506A (en) * | 1996-02-20 | 2000-06-13 | Sharp Kabushiki Kaisha | Display and method of operating a display |
US6111248A (en) * | 1996-10-01 | 2000-08-29 | Texas Instruments Incorporated | Self-contained optical sensor system |
US6154309A (en) * | 1997-09-19 | 2000-11-28 | Anritsu Corporation | Complementary optical sampling waveform measuring apparatus and polarization beam splitter which can be assembled therein |
US6243499B1 (en) * | 1998-03-23 | 2001-06-05 | Xerox Corporation | Tagging of antialiased images |
US20020021483A1 (en) * | 2000-06-22 | 2002-02-21 | Seiko Epson Corporation | Method and circuit for driving electrophoretic display and electronic device using same |
US20020033792A1 (en) * | 2000-08-31 | 2002-03-21 | Satoshi Inoue | Electrophoretic display |
US20020095090A1 (en) * | 1994-04-15 | 2002-07-18 | Caro Richard G. | System and method of determining whether to recalibrate a blood pressure monitor |
US20020196369A1 (en) * | 2001-06-01 | 2002-12-26 | Peter Rieder | Method and device for displaying at least two images within one combined picture |
US6504524B1 (en) * | 2000-03-08 | 2003-01-07 | E Ink Corporation | Addressing methods for displays having zero time-average field |
US6531997B1 (en) * | 1999-04-30 | 2003-03-11 | E Ink Corporation | Methods for addressing electrophoretic displays |
US20030137521A1 (en) * | 1999-04-30 | 2003-07-24 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20030193565A1 (en) * | 2002-04-10 | 2003-10-16 | Senfar Wen | Method and apparatus for visually measuring the chromatic characteristics of a display |
US6639580B1 (en) * | 1999-11-08 | 2003-10-28 | Canon Kabushiki Kaisha | Electrophoretic display device and method for addressing display device |
US6674561B2 (en) * | 2001-10-02 | 2004-01-06 | Sony Corporation | Optical state modulation method and system, and optical state modulation apparatus |
US6686953B1 (en) * | 2000-03-01 | 2004-02-03 | Joseph Holmes | Visual calibration target set method |
US6796698B2 (en) * | 2002-04-01 | 2004-09-28 | Gelcore, Llc | Light emitting diode-based signal light |
US20050001812A1 (en) * | 1999-04-30 | 2005-01-06 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US6903716B2 (en) * | 2002-03-07 | 2005-06-07 | Hitachi, Ltd. | Display device having improved drive circuit and method of driving same |
US6914713B2 (en) * | 2002-04-23 | 2005-07-05 | Sipix Imaging, Inc. | Electro-magnetophoresis display |
US6927755B2 (en) * | 2001-02-15 | 2005-08-09 | Unipac Optoelectronics Corporation | Device for eliminating the flickering phenomenon of TFT-LCD |
US20050179642A1 (en) * | 2001-11-20 | 2005-08-18 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US20050185003A1 (en) * | 2004-02-24 | 2005-08-25 | Nele Dedene | Display element array with optimized pixel and sub-pixel layout for use in reflective displays |
US20050210405A1 (en) * | 2001-09-13 | 2005-09-22 | Pixia Corp. | Image display system |
US6970155B2 (en) * | 2002-08-14 | 2005-11-29 | Light Modulation, Inc. | Optical resonant gel display |
US6995550B2 (en) * | 1998-07-08 | 2006-02-07 | E Ink Corporation | Method and apparatus for determining properties of an electrophoretic display |
US20060050361A1 (en) * | 2002-10-16 | 2006-03-09 | Koninklijke Philips Electroinics, N.V. | Display apparatus with a display device and method of driving the display device |
US7046228B2 (en) * | 2001-08-17 | 2006-05-16 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US20060132426A1 (en) * | 2003-01-23 | 2006-06-22 | Koninklijke Philips Electronics N.V. | Driving an electrophoretic display |
US20060139309A1 (en) * | 2004-12-28 | 2006-06-29 | Seiko Epson Corporation | Electrophoretic device, electronic apparatus, and method for driving the electrophoretic device |
US20060139305A1 (en) * | 2003-01-23 | 2006-06-29 | Koninkiljke Phillips Electronics N.V. | Driving a bi-stable matrix display device |
US20060164405A1 (en) * | 2003-07-11 | 2006-07-27 | Guofu Zhou | Driving scheme for a bi-stable display with improved greyscale accuracy |
US20060187186A1 (en) * | 2003-03-07 | 2006-08-24 | Guofu Zhou | Electrophoretic display panel |
US20060192751A1 (en) * | 2005-02-28 | 2006-08-31 | Seiko Epson Corporation | Method of driving an electrophoretic display |
US20060232547A1 (en) * | 2003-07-15 | 2006-10-19 | Koninklijke Philips Electronics N.V. | Electrophoretic display panel with reduced power consumption |
US20060262384A1 (en) * | 2003-10-07 | 2006-11-23 | Jerry Chung | Electrophoretic display with thermal control |
US7177066B2 (en) * | 2003-10-24 | 2007-02-13 | Sipix Imaging, Inc. | Electrophoretic display driving scheme |
US20070035510A1 (en) * | 2003-09-30 | 2007-02-15 | Koninklijke Philips Electronics N.V. | Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states |
US7184196B2 (en) * | 2003-01-29 | 2007-02-27 | Canon Kabushiki Kaisha | Process for producing electrophoretic display |
US20070046625A1 (en) * | 2005-08-31 | 2007-03-01 | Microsoft Corporation | Input method for surface of interactive display |
US20070046621A1 (en) * | 2005-08-23 | 2007-03-01 | Fuji Xerox Co., Ltd. | Image display device and method |
US20070052668A1 (en) * | 2003-10-07 | 2007-03-08 | Koninklijke Philips Electronics N.V. | Electrophoretic display panel |
US20070070032A1 (en) * | 2004-10-25 | 2007-03-29 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US7202847B2 (en) * | 2002-06-28 | 2007-04-10 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US20070080926A1 (en) * | 2003-11-21 | 2007-04-12 | Koninklijke Philips Electronics N.V. | Method and apparatus for driving an electrophoretic display device with reduced image retention |
US20070091117A1 (en) * | 2003-11-21 | 2007-04-26 | Koninklijke Philips Electronics N.V. | Electrophoretic display device and a method and apparatus for improving image quality in an electrophoretic display device |
US20070103427A1 (en) * | 2003-11-25 | 2007-05-10 | Koninklijke Philips Electronice N.V. | Display apparatus with a display device and a cyclic rail-stabilized method of driving the display device |
US20070109274A1 (en) * | 2005-11-15 | 2007-05-17 | Synaptics Incorporated | Methods and systems for detecting a position-based attribute of an object using digital codes |
US20070132687A1 (en) * | 2003-10-24 | 2007-06-14 | Koninklijke Philips Electronics N.V. | Electrophoretic display device |
US20070146306A1 (en) * | 2004-03-01 | 2007-06-28 | Koninklijke Philips Electronics, N.V. | Transition between grayscale an dmonochrome addressing of an electrophoretic display |
US20070159682A1 (en) * | 2004-03-16 | 2007-07-12 | Norio Tanaka | Optically controlled optical-path-switching-type data distribution apparatus and distribution method |
US20070182402A1 (en) * | 2004-02-19 | 2007-08-09 | Advantest Corporation | Skew adjusting method, skew adjusting apparatus, and test apparatus |
US20070188439A1 (en) * | 2006-02-16 | 2007-08-16 | Sanyo Epson Imaging Devices Corporation | Electrooptic device, driving circuit, and electronic device |
US7277074B2 (en) * | 2003-05-01 | 2007-10-02 | Hannstar Display Corporation | Control circuit for a common line |
US7283119B2 (en) * | 2002-06-14 | 2007-10-16 | Canon Kabushiki Kaisha | Color electrophoretic display device |
US20070247417A1 (en) * | 2006-04-25 | 2007-10-25 | Seiko Epson Corporation | Electrophoresis display device, method of driving electrophoresis display device, and electronic apparatus |
US20070262949A1 (en) * | 2003-07-03 | 2007-11-15 | Guofu Zhou | Electrophoretic display with reduction of remnant voltages by selection of characteristics of inter-picture potential differences |
US20070276615A1 (en) * | 2006-05-26 | 2007-11-29 | Ensky Technology (Shenzhen) Co., Ltd. | Reflective display device testing system, apparatus, and method |
US7349146B1 (en) * | 2006-08-29 | 2008-03-25 | Texas Instruments Incorporated | System and method for hinge memory mitigation |
US20080150886A1 (en) * | 2004-02-19 | 2008-06-26 | Koninklijke Philips Electronic, N.V. | Electrophoretic Display Panel |
US20080158142A1 (en) * | 2004-03-01 | 2008-07-03 | Koninklijke Philips Electronics, N.V. | Method of Increasing Image Bi-Stability and Grayscale Acuracy in an Electrophoretic Display |
US20080211833A1 (en) * | 2007-01-29 | 2008-09-04 | Seiko Epson Corporation | Drive Method For A Display Device, Drive Device, Display Device, And Electronic Device |
US20080273022A1 (en) * | 2007-03-07 | 2008-11-06 | Seiko Epson Corporation | Electrophoresis display device, driving method of electrophoresis display device, and electronic apparatus |
US7504050B2 (en) * | 2004-02-23 | 2009-03-17 | Sipix Imaging, Inc. | Modification of electrical properties of display cells for improving electrophoretic display performance |
US20090096745A1 (en) * | 2007-10-12 | 2009-04-16 | Sprague Robert A | Approach to adjust driving waveforms for a display device |
US7528822B2 (en) * | 2001-11-20 | 2009-05-05 | E Ink Corporation | Methods for driving electro-optic displays |
US20090256868A1 (en) * | 2008-04-11 | 2009-10-15 | Yun Shon Low | Time-Overlapping Partial-Panel Updating Of A Bistable Electro-Optic Display |
US20090256799A1 (en) * | 2008-04-11 | 2009-10-15 | E Ink Corporation | Methods for driving electro-optic displays |
US20090267970A1 (en) * | 2008-04-25 | 2009-10-29 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US20100085361A1 (en) * | 2008-10-08 | 2010-04-08 | Korea Advanced Institute Of Science And Technology | Apparatus and method for enhancing images in consideration of region characteristics |
US7705823B2 (en) * | 2002-02-15 | 2010-04-27 | Bridgestone Corporation | Image display unit |
US20100134538A1 (en) * | 2008-10-24 | 2010-06-03 | Sprague Robert A | Driving methods for electrophoretic displays |
US20100194733A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Multiple voltage level driving for electrophoretic displays |
US7800590B2 (en) * | 2002-12-12 | 2010-09-21 | Sony Corporation | Input device, portable electronic apparatus, remote control device, and piezoelectric actuator driving/controlling method in input device |
US20100238203A1 (en) * | 2007-11-08 | 2010-09-23 | Koninklijke Philips Electronics N.V. | Driving pixels of a display |
US7804483B2 (en) * | 2004-04-13 | 2010-09-28 | Koninklijke Philips Electronics N.V. | Electrophoretic display with rapid drawing mode waveform |
US7816440B2 (en) * | 2005-10-25 | 2010-10-19 | Konoshima Chemical Co., Ltd. | Flame retardant, flame-retardant resin composition and molded body |
US20100283804A1 (en) * | 2009-05-11 | 2010-11-11 | Sipix Imaging, Inc. | Driving Methods And Waveforms For Electrophoretic Displays |
US20100295880A1 (en) * | 2008-10-24 | 2010-11-25 | Sprague Robert A | Driving methods for electrophoretic displays |
US20110096104A1 (en) * | 2009-10-26 | 2011-04-28 | Sprague Robert A | Spatially combined waveforms for electrophoretic displays |
US7952558B2 (en) * | 2006-09-29 | 2011-05-31 | Samsung Electronics Co., Ltd. | Methods for driving electrophoretic display so as to avoid persistent unidirectional current through TFT switches |
US20110175945A1 (en) * | 2010-01-20 | 2011-07-21 | Craig Lin | Driving methods for electrophoretic displays |
US7999787B2 (en) * | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20110216104A1 (en) * | 2010-03-08 | 2011-09-08 | Bryan Hans Chan | Driving methods for electrophoretic displays |
US8035611B2 (en) * | 2005-12-15 | 2011-10-11 | Nec Lcd Technologies, Ltd | Electrophoretic display device and driving method for same |
US20120012012A1 (en) * | 2010-07-16 | 2012-01-19 | Maschinenfabrik Bernard Krone Gmbh | Baler |
US8102363B2 (en) * | 2007-08-30 | 2012-01-24 | Seiko Epson Corporation | Electrophoresis display device, electrophoresis display device driving method, and electronic apparatus |
US8125501B2 (en) * | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US20120188272A1 (en) * | 2011-01-25 | 2012-07-26 | Freescale Semiconductor, Inc. | Method and apparatus for processing temporal and spatial overlapping updates for an electronic display |
-
2010
- 2010-01-28 US US12/695,830 patent/US20100194789A1/en not_active Abandoned
- 2010-01-29 TW TW099102554A patent/TWI431581B/en active
Patent Citations (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4143947A (en) * | 1976-06-21 | 1979-03-13 | General Electric Company | Method for improving the response time of a display device utilizing a twisted nematic liquid crystal composition |
US4259694A (en) * | 1979-08-24 | 1981-03-31 | Xerox Corporation | Electronic rescreen technique for halftone pictures |
US4443108A (en) * | 1981-03-30 | 1984-04-17 | Pacific Scientific Instruments Company | Optical analyzing instrument with equal wavelength increment indexing |
US4575124A (en) * | 1982-04-05 | 1986-03-11 | Ampex Corporation | Reproducible gray scale test chart for television cameras |
US4568975A (en) * | 1984-08-02 | 1986-02-04 | Visual Information Institute, Inc. | Method for measuring the gray scale characteristics of a CRT display |
US5054253A (en) * | 1989-12-18 | 1991-10-08 | Pawling Corporation | Rigid grating mat with unidirectional elements |
US5266937A (en) * | 1991-11-25 | 1993-11-30 | Copytele, Inc. | Method for writing data to an electrophoretic display panel |
US5298993A (en) * | 1992-06-15 | 1994-03-29 | International Business Machines Corporation | Display calibration |
US20020095090A1 (en) * | 1994-04-15 | 2002-07-18 | Caro Richard G. | System and method of determining whether to recalibrate a blood pressure monitor |
US5754584A (en) * | 1994-09-09 | 1998-05-19 | Omnipoint Corporation | Non-coherent spread-spectrum continuous-phase modulation communication system |
US5831697A (en) * | 1995-06-27 | 1998-11-03 | Silicon Graphics, Inc. | Flat panel display screen apparatus with optical junction and removable backlighting assembly |
US7999787B2 (en) * | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US6075506A (en) * | 1996-02-20 | 2000-06-13 | Sharp Kabushiki Kaisha | Display and method of operating a display |
US5923315A (en) * | 1996-05-14 | 1999-07-13 | Brother Kogyo Kabushiki Kaisha | Display characteristic determining device |
US5926617A (en) * | 1996-05-16 | 1999-07-20 | Brother Kogyo Kabushiki Kaisha | Method of determining display characteristic function |
US6045756A (en) * | 1996-10-01 | 2000-04-04 | Texas Instruments Incorporated | Miniaturized integrated sensor platform |
US6111248A (en) * | 1996-10-01 | 2000-08-29 | Texas Instruments Incorporated | Self-contained optical sensor system |
US6069971A (en) * | 1996-12-18 | 2000-05-30 | Mitsubishi Denki Kabushiki Kaisha | Pattern comparison inspection system and method employing gray level bit map |
US6154309A (en) * | 1997-09-19 | 2000-11-28 | Anritsu Corporation | Complementary optical sampling waveform measuring apparatus and polarization beam splitter which can be assembled therein |
US6243499B1 (en) * | 1998-03-23 | 2001-06-05 | Xerox Corporation | Tagging of antialiased images |
US6995550B2 (en) * | 1998-07-08 | 2006-02-07 | E Ink Corporation | Method and apparatus for determining properties of an electrophoretic display |
US20050219184A1 (en) * | 1999-04-30 | 2005-10-06 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US20050001812A1 (en) * | 1999-04-30 | 2005-01-06 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US6531997B1 (en) * | 1999-04-30 | 2003-03-11 | E Ink Corporation | Methods for addressing electrophoretic displays |
US20030137521A1 (en) * | 1999-04-30 | 2003-07-24 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US6639580B1 (en) * | 1999-11-08 | 2003-10-28 | Canon Kabushiki Kaisha | Electrophoretic display device and method for addressing display device |
US6686953B1 (en) * | 2000-03-01 | 2004-02-03 | Joseph Holmes | Visual calibration target set method |
US6504524B1 (en) * | 2000-03-08 | 2003-01-07 | E Ink Corporation | Addressing methods for displays having zero time-average field |
US20020021483A1 (en) * | 2000-06-22 | 2002-02-21 | Seiko Epson Corporation | Method and circuit for driving electrophoretic display and electronic device using same |
US20020033792A1 (en) * | 2000-08-31 | 2002-03-21 | Satoshi Inoue | Electrophoretic display |
US6927755B2 (en) * | 2001-02-15 | 2005-08-09 | Unipac Optoelectronics Corporation | Device for eliminating the flickering phenomenon of TFT-LCD |
US20020196369A1 (en) * | 2001-06-01 | 2002-12-26 | Peter Rieder | Method and device for displaying at least two images within one combined picture |
US7046228B2 (en) * | 2001-08-17 | 2006-05-16 | Sipix Imaging, Inc. | Electrophoretic display with dual mode switching |
US20050210405A1 (en) * | 2001-09-13 | 2005-09-22 | Pixia Corp. | Image display system |
US6674561B2 (en) * | 2001-10-02 | 2004-01-06 | Sony Corporation | Optical state modulation method and system, and optical state modulation apparatus |
US20050179642A1 (en) * | 2001-11-20 | 2005-08-18 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US8125501B2 (en) * | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US7528822B2 (en) * | 2001-11-20 | 2009-05-05 | E Ink Corporation | Methods for driving electro-optic displays |
US7705823B2 (en) * | 2002-02-15 | 2010-04-27 | Bridgestone Corporation | Image display unit |
US6903716B2 (en) * | 2002-03-07 | 2005-06-07 | Hitachi, Ltd. | Display device having improved drive circuit and method of driving same |
US6796698B2 (en) * | 2002-04-01 | 2004-09-28 | Gelcore, Llc | Light emitting diode-based signal light |
US20030193565A1 (en) * | 2002-04-10 | 2003-10-16 | Senfar Wen | Method and apparatus for visually measuring the chromatic characteristics of a display |
US6914713B2 (en) * | 2002-04-23 | 2005-07-05 | Sipix Imaging, Inc. | Electro-magnetophoresis display |
US7283119B2 (en) * | 2002-06-14 | 2007-10-16 | Canon Kabushiki Kaisha | Color electrophoretic display device |
US7202847B2 (en) * | 2002-06-28 | 2007-04-10 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US6970155B2 (en) * | 2002-08-14 | 2005-11-29 | Light Modulation, Inc. | Optical resonant gel display |
US20060050361A1 (en) * | 2002-10-16 | 2006-03-09 | Koninklijke Philips Electroinics, N.V. | Display apparatus with a display device and method of driving the display device |
US7800590B2 (en) * | 2002-12-12 | 2010-09-21 | Sony Corporation | Input device, portable electronic apparatus, remote control device, and piezoelectric actuator driving/controlling method in input device |
US20060139305A1 (en) * | 2003-01-23 | 2006-06-29 | Koninkiljke Phillips Electronics N.V. | Driving a bi-stable matrix display device |
US20060132426A1 (en) * | 2003-01-23 | 2006-06-22 | Koninklijke Philips Electronics N.V. | Driving an electrophoretic display |
US7184196B2 (en) * | 2003-01-29 | 2007-02-27 | Canon Kabushiki Kaisha | Process for producing electrophoretic display |
US20060187186A1 (en) * | 2003-03-07 | 2006-08-24 | Guofu Zhou | Electrophoretic display panel |
US7277074B2 (en) * | 2003-05-01 | 2007-10-02 | Hannstar Display Corporation | Control circuit for a common line |
US20070262949A1 (en) * | 2003-07-03 | 2007-11-15 | Guofu Zhou | Electrophoretic display with reduction of remnant voltages by selection of characteristics of inter-picture potential differences |
US20060164405A1 (en) * | 2003-07-11 | 2006-07-27 | Guofu Zhou | Driving scheme for a bi-stable display with improved greyscale accuracy |
US20060232547A1 (en) * | 2003-07-15 | 2006-10-19 | Koninklijke Philips Electronics N.V. | Electrophoretic display panel with reduced power consumption |
US20070035510A1 (en) * | 2003-09-30 | 2007-02-15 | Koninklijke Philips Electronics N.V. | Reset pulse driving for reducing flicker in an electrophoretic display having intermediate optical states |
US20070052668A1 (en) * | 2003-10-07 | 2007-03-08 | Koninklijke Philips Electronics N.V. | Electrophoretic display panel |
US20060262384A1 (en) * | 2003-10-07 | 2006-11-23 | Jerry Chung | Electrophoretic display with thermal control |
US20070132687A1 (en) * | 2003-10-24 | 2007-06-14 | Koninklijke Philips Electronics N.V. | Electrophoretic display device |
US7177066B2 (en) * | 2003-10-24 | 2007-02-13 | Sipix Imaging, Inc. | Electrophoretic display driving scheme |
US20070080926A1 (en) * | 2003-11-21 | 2007-04-12 | Koninklijke Philips Electronics N.V. | Method and apparatus for driving an electrophoretic display device with reduced image retention |
US20070091117A1 (en) * | 2003-11-21 | 2007-04-26 | Koninklijke Philips Electronics N.V. | Electrophoretic display device and a method and apparatus for improving image quality in an electrophoretic display device |
US20070103427A1 (en) * | 2003-11-25 | 2007-05-10 | Koninklijke Philips Electronice N.V. | Display apparatus with a display device and a cyclic rail-stabilized method of driving the display device |
US20080150886A1 (en) * | 2004-02-19 | 2008-06-26 | Koninklijke Philips Electronic, N.V. | Electrophoretic Display Panel |
US20070182402A1 (en) * | 2004-02-19 | 2007-08-09 | Advantest Corporation | Skew adjusting method, skew adjusting apparatus, and test apparatus |
US7504050B2 (en) * | 2004-02-23 | 2009-03-17 | Sipix Imaging, Inc. | Modification of electrical properties of display cells for improving electrophoretic display performance |
US20050185003A1 (en) * | 2004-02-24 | 2005-08-25 | Nele Dedene | Display element array with optimized pixel and sub-pixel layout for use in reflective displays |
US20070146306A1 (en) * | 2004-03-01 | 2007-06-28 | Koninklijke Philips Electronics, N.V. | Transition between grayscale an dmonochrome addressing of an electrophoretic display |
US20080158142A1 (en) * | 2004-03-01 | 2008-07-03 | Koninklijke Philips Electronics, N.V. | Method of Increasing Image Bi-Stability and Grayscale Acuracy in an Electrophoretic Display |
US20070159682A1 (en) * | 2004-03-16 | 2007-07-12 | Norio Tanaka | Optically controlled optical-path-switching-type data distribution apparatus and distribution method |
US7804483B2 (en) * | 2004-04-13 | 2010-09-28 | Koninklijke Philips Electronics N.V. | Electrophoretic display with rapid drawing mode waveform |
US20070070032A1 (en) * | 2004-10-25 | 2007-03-29 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US20060139309A1 (en) * | 2004-12-28 | 2006-06-29 | Seiko Epson Corporation | Electrophoretic device, electronic apparatus, and method for driving the electrophoretic device |
US20060192751A1 (en) * | 2005-02-28 | 2006-08-31 | Seiko Epson Corporation | Method of driving an electrophoretic display |
US20070046621A1 (en) * | 2005-08-23 | 2007-03-01 | Fuji Xerox Co., Ltd. | Image display device and method |
US20070046625A1 (en) * | 2005-08-31 | 2007-03-01 | Microsoft Corporation | Input method for surface of interactive display |
US7816440B2 (en) * | 2005-10-25 | 2010-10-19 | Konoshima Chemical Co., Ltd. | Flame retardant, flame-retardant resin composition and molded body |
US20070109274A1 (en) * | 2005-11-15 | 2007-05-17 | Synaptics Incorporated | Methods and systems for detecting a position-based attribute of an object using digital codes |
US8035611B2 (en) * | 2005-12-15 | 2011-10-11 | Nec Lcd Technologies, Ltd | Electrophoretic display device and driving method for same |
US20070188439A1 (en) * | 2006-02-16 | 2007-08-16 | Sanyo Epson Imaging Devices Corporation | Electrooptic device, driving circuit, and electronic device |
US20070247417A1 (en) * | 2006-04-25 | 2007-10-25 | Seiko Epson Corporation | Electrophoresis display device, method of driving electrophoresis display device, and electronic apparatus |
US20070276615A1 (en) * | 2006-05-26 | 2007-11-29 | Ensky Technology (Shenzhen) Co., Ltd. | Reflective display device testing system, apparatus, and method |
US7349146B1 (en) * | 2006-08-29 | 2008-03-25 | Texas Instruments Incorporated | System and method for hinge memory mitigation |
US7952558B2 (en) * | 2006-09-29 | 2011-05-31 | Samsung Electronics Co., Ltd. | Methods for driving electrophoretic display so as to avoid persistent unidirectional current through TFT switches |
US8044927B2 (en) * | 2007-01-29 | 2011-10-25 | Seiko Epson Corporation | Drive method for a display device, drive device, display device, and electronic device |
US20080211833A1 (en) * | 2007-01-29 | 2008-09-04 | Seiko Epson Corporation | Drive Method For A Display Device, Drive Device, Display Device, And Electronic Device |
US20080273022A1 (en) * | 2007-03-07 | 2008-11-06 | Seiko Epson Corporation | Electrophoresis display device, driving method of electrophoresis display device, and electronic apparatus |
US8102363B2 (en) * | 2007-08-30 | 2012-01-24 | Seiko Epson Corporation | Electrophoresis display device, electrophoresis display device driving method, and electronic apparatus |
US20090096745A1 (en) * | 2007-10-12 | 2009-04-16 | Sprague Robert A | Approach to adjust driving waveforms for a display device |
US20100238203A1 (en) * | 2007-11-08 | 2010-09-23 | Koninklijke Philips Electronics N.V. | Driving pixels of a display |
US20090256799A1 (en) * | 2008-04-11 | 2009-10-15 | E Ink Corporation | Methods for driving electro-optic displays |
US20090256868A1 (en) * | 2008-04-11 | 2009-10-15 | Yun Shon Low | Time-Overlapping Partial-Panel Updating Of A Bistable Electro-Optic Display |
US20090267970A1 (en) * | 2008-04-25 | 2009-10-29 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US20100085361A1 (en) * | 2008-10-08 | 2010-04-08 | Korea Advanced Institute Of Science And Technology | Apparatus and method for enhancing images in consideration of region characteristics |
US20100295880A1 (en) * | 2008-10-24 | 2010-11-25 | Sprague Robert A | Driving methods for electrophoretic displays |
US20100134538A1 (en) * | 2008-10-24 | 2010-06-03 | Sprague Robert A | Driving methods for electrophoretic displays |
US20100194733A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Multiple voltage level driving for electrophoretic displays |
US20100283804A1 (en) * | 2009-05-11 | 2010-11-11 | Sipix Imaging, Inc. | Driving Methods And Waveforms For Electrophoretic Displays |
US20110096104A1 (en) * | 2009-10-26 | 2011-04-28 | Sprague Robert A | Spatially combined waveforms for electrophoretic displays |
US20110175945A1 (en) * | 2010-01-20 | 2011-07-21 | Craig Lin | Driving methods for electrophoretic displays |
US20110216104A1 (en) * | 2010-03-08 | 2011-09-08 | Bryan Hans Chan | Driving methods for electrophoretic displays |
US20120012012A1 (en) * | 2010-07-16 | 2012-01-19 | Maschinenfabrik Bernard Krone Gmbh | Baler |
US20120188272A1 (en) * | 2011-01-25 | 2012-07-26 | Freescale Semiconductor, Inc. | Method and apparatus for processing temporal and spatial overlapping updates for an electronic display |
Cited By (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070070032A1 (en) * | 2004-10-25 | 2007-03-29 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US8643595B2 (en) | 2004-10-25 | 2014-02-04 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US8274472B1 (en) | 2007-03-12 | 2012-09-25 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US9171508B2 (en) | 2007-05-03 | 2015-10-27 | E Ink California, Llc | Driving bistable displays |
US8243013B1 (en) | 2007-05-03 | 2012-08-14 | Sipix Imaging, Inc. | Driving bistable displays |
US8730153B2 (en) | 2007-05-03 | 2014-05-20 | Sipix Imaging, Inc. | Driving bistable displays |
US20080303780A1 (en) * | 2007-06-07 | 2008-12-11 | Sipix Imaging, Inc. | Driving methods and circuit for bi-stable displays |
US10002575B2 (en) | 2007-06-07 | 2018-06-19 | E Ink California, Llc | Driving methods and circuit for bi-stable displays |
US9373289B2 (en) | 2007-06-07 | 2016-06-21 | E Ink California, Llc | Driving methods and circuit for bi-stable displays |
US10535312B2 (en) | 2007-06-07 | 2020-01-14 | E Ink California, Llc | Driving methods and circuit for bi-stable displays |
US20090096745A1 (en) * | 2007-10-12 | 2009-04-16 | Sprague Robert A | Approach to adjust driving waveforms for a display device |
US9224342B2 (en) | 2007-10-12 | 2015-12-29 | E Ink California, Llc | Approach to adjust driving waveforms for a display device |
US8462102B2 (en) | 2008-04-25 | 2013-06-11 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US20090267970A1 (en) * | 2008-04-25 | 2009-10-29 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US9019318B2 (en) | 2008-10-24 | 2015-04-28 | E Ink California, Llc | Driving methods for electrophoretic displays employing grey level waveforms |
US20100134538A1 (en) * | 2008-10-24 | 2010-06-03 | Sprague Robert A | Driving methods for electrophoretic displays |
US20100295880A1 (en) * | 2008-10-24 | 2010-11-25 | Sprague Robert A | Driving methods for electrophoretic displays |
US8558855B2 (en) | 2008-10-24 | 2013-10-15 | Sipix Imaging, Inc. | Driving methods for electrophoretic displays |
US9251736B2 (en) | 2009-01-30 | 2016-02-02 | E Ink California, Llc | Multiple voltage level driving for electrophoretic displays |
US20100194733A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Multiple voltage level driving for electrophoretic displays |
US9460666B2 (en) | 2009-05-11 | 2016-10-04 | E Ink California, Llc | Driving methods and waveforms for electrophoretic displays |
US20100283804A1 (en) * | 2009-05-11 | 2010-11-11 | Sipix Imaging, Inc. | Driving Methods And Waveforms For Electrophoretic Displays |
US10115354B2 (en) | 2009-09-15 | 2018-10-30 | E Ink California, Llc | Display controller system |
US20110096104A1 (en) * | 2009-10-26 | 2011-04-28 | Sprague Robert A | Spatially combined waveforms for electrophoretic displays |
US8576164B2 (en) | 2009-10-26 | 2013-11-05 | Sipix Imaging, Inc. | Spatially combined waveforms for electrophoretic displays |
US11049463B2 (en) | 2010-01-15 | 2021-06-29 | E Ink California, Llc | Driving methods with variable frame time |
US20110175875A1 (en) * | 2010-01-15 | 2011-07-21 | Craig Lin | Driving methods with variable frame time |
US8558786B2 (en) | 2010-01-20 | 2013-10-15 | Sipix Imaging, Inc. | Driving methods for electrophoretic displays |
US20110175945A1 (en) * | 2010-01-20 | 2011-07-21 | Craig Lin | Driving methods for electrophoretic displays |
US20110216104A1 (en) * | 2010-03-08 | 2011-09-08 | Bryan Hans Chan | Driving methods for electrophoretic displays |
US9224338B2 (en) | 2010-03-08 | 2015-12-29 | E Ink California, Llc | Driving methods for electrophoretic displays |
US9013394B2 (en) | 2010-06-04 | 2015-04-21 | E Ink California, Llc | Driving method for electrophoretic displays |
US20120019508A1 (en) * | 2010-07-23 | 2012-01-26 | Fitipower Integrated Technology Inc. | Electrophoretic display and picture update method thereof |
US8723858B2 (en) * | 2010-09-15 | 2014-05-13 | Seiko Epson Corporation | Control device, display device and method for controlling display device |
US20120062547A1 (en) * | 2010-09-15 | 2012-03-15 | Seiko Epson Corporation | Control device, display device and method for controlling display device |
US9299294B2 (en) | 2010-11-11 | 2016-03-29 | E Ink California, Llc | Driving method for electrophoretic displays with different color states |
US8786644B2 (en) * | 2011-03-22 | 2014-07-22 | Seiko Epson Corporation | Control device, display apparatus, and electronic apparatus |
US20120242715A1 (en) * | 2011-03-22 | 2012-09-27 | Seiko Epson Corporation | Control device, display apparatus, and electronic apparatus |
US9123300B2 (en) * | 2012-11-23 | 2015-09-01 | Texas Instruments Incorporated | Electrophoretic display with software recognizing first and second operating formats |
US20140146036A1 (en) * | 2012-11-23 | 2014-05-29 | Texas Instruments Incorporated | Electrophoretic display and method of operating |
US11217145B2 (en) | 2013-10-07 | 2022-01-04 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US10726760B2 (en) | 2013-10-07 | 2020-07-28 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US11004409B2 (en) | 2013-10-07 | 2021-05-11 | E Ink California, Llc | Driving methods for color display device |
US10380931B2 (en) | 2013-10-07 | 2019-08-13 | E Ink California, Llc | Driving methods for color display device |
US10339876B2 (en) | 2013-10-07 | 2019-07-02 | E Ink California, Llc | Driving methods for color display device |
US10163406B2 (en) | 2015-02-04 | 2018-12-25 | E Ink Corporation | Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US10388233B2 (en) | 2015-08-31 | 2019-08-20 | E Ink Corporation | Devices and techniques for electronically erasing a drawing device |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
WO2017049020A1 (en) | 2015-09-16 | 2017-03-23 | E Ink Corporation | Apparatus and methods for driving displays |
US11450286B2 (en) | 2015-09-16 | 2022-09-20 | E Ink Corporation | Apparatus and methods for driving displays |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
US10795233B2 (en) | 2015-11-18 | 2020-10-06 | E Ink Corporation | Electro-optic displays |
US11030965B2 (en) | 2016-03-09 | 2021-06-08 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US11404012B2 (en) | 2016-03-09 | 2022-08-02 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US10554854B2 (en) | 2016-05-24 | 2020-02-04 | E Ink Corporation | Method for rendering color images |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US10771652B2 (en) | 2016-05-24 | 2020-09-08 | E Ink Corporation | Method for rendering color images |
US11265443B2 (en) | 2016-05-24 | 2022-03-01 | E Ink Corporation | System for rendering color images |
US12100369B2 (en) | 2017-03-06 | 2024-09-24 | E Ink Corporation | Method for rendering color images |
US11094288B2 (en) | 2017-03-06 | 2021-08-17 | E Ink Corporation | Method and apparatus for rendering color images |
US11527216B2 (en) | 2017-03-06 | 2022-12-13 | E Ink Corporation | Method for rendering color images |
US10467984B2 (en) | 2017-03-06 | 2019-11-05 | E Ink Corporation | Method for rendering color images |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US10832622B2 (en) | 2017-04-04 | 2020-11-10 | E Ink Corporation | Methods for driving electro-optic displays |
US11398196B2 (en) | 2017-04-04 | 2022-07-26 | E Ink Corporation | Methods for driving electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10825405B2 (en) | 2017-05-30 | 2020-11-03 | E Ink Corporatior | Electro-optic displays |
US11107425B2 (en) | 2017-05-30 | 2021-08-31 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10726799B2 (en) * | 2017-06-21 | 2020-07-28 | Seiko Epson Corporation | Wearable device and control method |
US11935496B2 (en) | 2017-09-12 | 2024-03-19 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11423852B2 (en) | 2017-09-12 | 2022-08-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11568827B2 (en) | 2017-09-12 | 2023-01-31 | E Ink Corporation | Methods for driving electro-optic displays to minimize edge ghosting |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US12130530B2 (en) | 2017-12-19 | 2024-10-29 | E Ink Corporation | Applications of electro-optic displays |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
WO2019144097A1 (en) | 2018-01-22 | 2019-07-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11789330B2 (en) | 2018-07-17 | 2023-10-17 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020018508A1 (en) | 2018-07-17 | 2020-01-23 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
US11397366B2 (en) | 2018-08-10 | 2022-07-26 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11435606B2 (en) | 2018-08-10 | 2022-09-06 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
US11719953B2 (en) | 2018-08-10 | 2023-08-08 | E Ink California, Llc | Switchable light-collimating layer with reflector |
US11656526B2 (en) | 2018-08-10 | 2023-05-23 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11353759B2 (en) | 2018-09-17 | 2022-06-07 | Nuclera Nucleics Ltd. | Backplanes with hexagonal and triangular electrodes |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11062663B2 (en) | 2018-11-30 | 2021-07-13 | E Ink California, Llc | Electro-optic displays and driving methods |
US11380274B2 (en) | 2018-11-30 | 2022-07-05 | E Ink California, Llc | Electro-optic displays and driving methods |
US11735127B2 (en) | 2018-11-30 | 2023-08-22 | E Ink California, Llc | Electro-optic displays and driving methods |
US11289036B2 (en) | 2019-11-14 | 2022-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11257445B2 (en) | 2019-11-18 | 2022-02-22 | E Ink Corporation | Methods for driving electro-optic displays |
US11568786B2 (en) | 2020-05-31 | 2023-01-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11520202B2 (en) | 2020-06-11 | 2022-12-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11837184B2 (en) | 2020-09-15 | 2023-12-05 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11948523B1 (en) | 2020-09-15 | 2024-04-02 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11686989B2 (en) | 2020-09-15 | 2023-06-27 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
US11776496B2 (en) | 2020-09-15 | 2023-10-03 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US12044945B2 (en) | 2020-09-15 | 2024-07-23 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
US11450262B2 (en) | 2020-10-01 | 2022-09-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2022094443A1 (en) | 2020-11-02 | 2022-05-05 | E Ink Corporation | Method and apparatus for rendering color images |
US11721296B2 (en) | 2020-11-02 | 2023-08-08 | E Ink Corporation | Method and apparatus for rendering color images |
US12087244B2 (en) | 2020-11-02 | 2024-09-10 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11620959B2 (en) | 2020-11-02 | 2023-04-04 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11756494B2 (en) | 2020-11-02 | 2023-09-12 | E Ink Corporation | Driving sequences to remove prior state information from color electrophoretic displays |
US11798506B2 (en) | 2020-11-02 | 2023-10-24 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11587532B2 (en) | 2020-11-11 | 2023-02-21 | Amazon Technologies, Inc. | Content presentation on display screens |
WO2022103687A1 (en) * | 2020-11-11 | 2022-05-19 | Amazon Technologies, Inc. | Content presentation on display screens |
US11657772B2 (en) | 2020-12-08 | 2023-05-23 | E Ink Corporation | Methods for driving electro-optic displays |
US12125449B2 (en) | 2021-02-09 | 2024-10-22 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
US12131713B2 (en) | 2021-02-09 | 2024-10-29 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
WO2023122142A1 (en) | 2021-12-22 | 2023-06-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
US11854448B2 (en) | 2021-12-27 | 2023-12-26 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
WO2023129533A1 (en) | 2021-12-27 | 2023-07-06 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
US12085829B2 (en) | 2021-12-30 | 2024-09-10 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023129692A1 (en) | 2021-12-30 | 2023-07-06 | E Ink California, Llc | Methods for driving electro-optic displays |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
US11984088B2 (en) | 2022-04-27 | 2024-05-14 | E Ink Corporation | Color displays configured to convert RGB image data for display on advanced color electronic paper |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
WO2024091547A1 (en) | 2022-10-25 | 2024-05-02 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024158855A1 (en) | 2023-01-27 | 2024-08-02 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
WO2024182264A1 (en) | 2023-02-28 | 2024-09-06 | E Ink Corporation | Drive scheme for improved color gamut in color electrophoretic displays |
Also Published As
Publication number | Publication date |
---|---|
TWI431581B (en) | 2014-03-21 |
TW201033968A (en) | 2010-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100194789A1 (en) | Partial image update for electrophoretic displays | |
US20210312874A1 (en) | Driving methods with variable frame time | |
US9514667B2 (en) | Driving system for electrophoretic displays | |
US9019197B2 (en) | Driving system for electrophoretic displays | |
US10115354B2 (en) | Display controller system | |
US8558786B2 (en) | Driving methods for electrophoretic displays | |
KR101555714B1 (en) | Driving method for driving electrophoretic display apparatus electrophoretic display apparatus and electronic device | |
CN101681594B (en) | Sequential addressing of displays | |
TWI415080B (en) | Variable common electrode | |
US20100194733A1 (en) | Multiple voltage level driving for electrophoretic displays | |
JP2007530984A (en) | Electrophoretic display panel with reduced power consumption | |
US20110063314A1 (en) | Display controller system | |
KR20110027601A (en) | Electrophoretic displaying apparatus and method of driving the same | |
JP2009175492A (en) | Electrophoresis display device, method of driving the same, and electronic apparatus | |
KR20100042019A (en) | Display device and method of driving the display device | |
CN102262857A (en) | Electro-optical device, method for driving electro-optical device, control circuit and electronic device | |
CN1742312A (en) | Driving a bi-stable matrix display device | |
KR101376753B1 (en) | Electrophoretic display apparatus and method of driving the same | |
US10540935B2 (en) | Display device and method of driving the same | |
US20050104845A1 (en) | Driving apparatus of electronic ink display device and method therefor | |
US20150269891A1 (en) | Electrophoretic device and electronic apparatus | |
JP5445310B2 (en) | Electrophoretic display device, control circuit, electronic apparatus, and driving method | |
JP5304556B2 (en) | Electrophoretic display device and driving method thereof | |
KR20060115942A (en) | Flat panel display | |
JP5527020B2 (en) | Electrophoresis device, electronic apparatus, driving method and control circuit of electrophoresis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIPIX IMAGING, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, CRAIG;PHAM, TIN;PERI, MANASA;AND OTHERS;SIGNING DATES FROM 20100224 TO 20100304;REEL/FRAME:024097/0174 |
|
AS | Assignment |
Owner name: E INK CALIFORNIA, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SIPIX IMAGING, INC.;REEL/FRAME:033280/0408 Effective date: 20140701 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |