US20100152078A1 - Environmentally-friendly lubricant compositions - Google Patents
Environmentally-friendly lubricant compositions Download PDFInfo
- Publication number
- US20100152078A1 US20100152078A1 US12/704,656 US70465610A US2010152078A1 US 20100152078 A1 US20100152078 A1 US 20100152078A1 US 70465610 A US70465610 A US 70465610A US 2010152078 A1 US2010152078 A1 US 2010152078A1
- Authority
- US
- United States
- Prior art keywords
- test
- long
- canceled
- amines
- chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 137
- 239000000314 lubricant Substances 0.000 title claims description 51
- 239000000463 material Substances 0.000 claims abstract description 49
- 231100000693 bioaccumulation Toxicity 0.000 claims abstract description 28
- 239000003879 lubricant additive Substances 0.000 claims abstract description 23
- 230000002085 persistent effect Effects 0.000 claims abstract description 18
- 231100000252 nontoxic Toxicity 0.000 claims abstract description 10
- 230000003000 nontoxic effect Effects 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims description 189
- -1 alkyl dicarboxylic acid Chemical compound 0.000 claims description 97
- 238000000034 method Methods 0.000 claims description 53
- 239000000654 additive Substances 0.000 claims description 45
- 239000002199 base oil Substances 0.000 claims description 40
- 230000000996 additive effect Effects 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 29
- 230000005540 biological transmission Effects 0.000 claims description 29
- 239000003112 inhibitor Substances 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 239000010802 sludge Substances 0.000 claims description 25
- 241000251468 Actinopterygii Species 0.000 claims description 23
- 238000006065 biodegradation reaction Methods 0.000 claims description 21
- 230000001050 lubricating effect Effects 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 231100000704 bioconcentration Toxicity 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 16
- 239000003599 detergent Substances 0.000 claims description 16
- 239000002270 dispersing agent Substances 0.000 claims description 16
- 230000002588 toxic effect Effects 0.000 claims description 16
- 231100000331 toxic Toxicity 0.000 claims description 15
- 150000001412 amines Chemical class 0.000 claims description 14
- 241000238578 Daphnia Species 0.000 claims description 12
- 150000003973 alkyl amines Chemical class 0.000 claims description 12
- 230000005764 inhibitory process Effects 0.000 claims description 12
- 230000007059 acute toxicity Effects 0.000 claims description 11
- 231100000403 acute toxicity Toxicity 0.000 claims description 11
- 239000005077 polysulfide Substances 0.000 claims description 11
- 229920001021 polysulfide Polymers 0.000 claims description 11
- 150000008117 polysulfides Polymers 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 230000007797 corrosion Effects 0.000 claims description 10
- 238000005260 corrosion Methods 0.000 claims description 10
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 10
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 10
- 239000003963 antioxidant agent Substances 0.000 claims description 9
- 239000003085 diluting agent Substances 0.000 claims description 9
- 239000003607 modifier Substances 0.000 claims description 9
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 7
- 238000012216 screening Methods 0.000 claims description 7
- 231100000820 toxicity test Toxicity 0.000 claims description 7
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 150000004982 aromatic amines Chemical class 0.000 claims description 6
- 229920000768 polyamine Polymers 0.000 claims description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 5
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- 150000008064 anhydrides Chemical class 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- HEORQRHVQJVWEH-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) dihydrogen phosphate Chemical compound OCC(C)(C)COP(O)(O)=O HEORQRHVQJVWEH-UHFFFAOYSA-N 0.000 claims description 4
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 claims description 4
- 125000004946 alkenylalkyl group Chemical group 0.000 claims description 4
- 239000000178 monomer Substances 0.000 claims description 4
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 claims description 4
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 claims description 4
- 229920013639 polyalphaolefin Polymers 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 239000013049 sediment Substances 0.000 claims description 4
- 238000004088 simulation Methods 0.000 claims description 4
- 229960002317 succinimide Drugs 0.000 claims description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002689 soil Substances 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims description 2
- 239000004519 grease Substances 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims 1
- 239000008158 vegetable oil Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 description 121
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- 239000012530 fluid Substances 0.000 description 20
- 229910052760 oxygen Inorganic materials 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- 239000011574 phosphorus Substances 0.000 description 13
- 239000012085 test solution Substances 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 238000006731 degradation reaction Methods 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 239000010865 sewage Substances 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 239000012141 concentrate Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000002054 inoculum Substances 0.000 description 9
- 230000001988 toxicity Effects 0.000 description 9
- 231100000419 toxicity Toxicity 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 230000002688 persistence Effects 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000007003 mineral medium Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 6
- 239000005069 Extreme pressure additive Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000005864 Sulphur Substances 0.000 description 5
- 238000005273 aeration Methods 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000007866 anti-wear additive Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 150000002989 phenols Chemical class 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 150000005690 diesters Chemical class 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 239000002068 microbial inoculum Substances 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 239000013558 reference substance Substances 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 239000004034 viscosity adjusting agent Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- YUWBVKYVJWNVLE-UHFFFAOYSA-N [N].[P] Chemical compound [N].[P] YUWBVKYVJWNVLE-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 235000011044 succinic acid Nutrition 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000009182 swimming Effects 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 2
- 150000004869 1,3,4-thiadiazoles Chemical class 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- NYLJHRUQFXQNPN-UHFFFAOYSA-N 2-(tert-butyltrisulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSC(C)(C)C NYLJHRUQFXQNPN-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 150000003819 basic metal compounds Chemical class 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 231100000636 lethal dose Toxicity 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000706 no observed effect level Toxicity 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 125000005498 phthalate group Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003902 salicylic acid esters Chemical class 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 150000003463 sulfur Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 1
- FNRUPAPVAOLCEM-UHFFFAOYSA-N 1-(nonyltrisulfanyl)nonane Chemical compound CCCCCCCCCSSSCCCCCCCCC FNRUPAPVAOLCEM-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical class CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical compound CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 description 1
- DRHABPMHZRIRAH-UHFFFAOYSA-N 2,4,4,6,6-pentamethylhept-2-ene Chemical group CC(C)=CC(C)(C)CC(C)(C)C DRHABPMHZRIRAH-UHFFFAOYSA-N 0.000 description 1
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical group CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- CZVOXOJHCICATK-UHFFFAOYSA-N 2-(tert-butylpentasulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSSSC(C)(C)C CZVOXOJHCICATK-UHFFFAOYSA-N 0.000 description 1
- NHHSUCWHDQEHTJ-UHFFFAOYSA-N 2-(tert-butyltetrasulfanyl)-2-methylpropane Chemical compound CC(C)(C)SSSSC(C)(C)C NHHSUCWHDQEHTJ-UHFFFAOYSA-N 0.000 description 1
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Chemical class CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 description 1
- PFBBCIYIKJWDIN-BUHFOSPRSA-N 2-[(e)-tetradec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O PFBBCIYIKJWDIN-BUHFOSPRSA-N 0.000 description 1
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 1
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- VPOMSPZBQMDLTM-UHFFFAOYSA-N 3,5-dichlorophenol Chemical compound OC1=CC(Cl)=CC(Cl)=C1 VPOMSPZBQMDLTM-UHFFFAOYSA-N 0.000 description 1
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- RSPWVGZWUBNLQU-FOCLMDBBSA-N 3-[(e)-hexadec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCCCCCC\C=C\C1CC(=O)OC1=O RSPWVGZWUBNLQU-FOCLMDBBSA-N 0.000 description 1
- URVNZJUYUMEJFZ-UHFFFAOYSA-N 3-tetradec-1-enyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC=CC1CC(=O)OC1=O URVNZJUYUMEJFZ-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- OUNGEYCHISFUEC-UHFFFAOYSA-N 4-decyl-2h-triazole Chemical compound CCCCCCCCCCC=1C=NNN=1 OUNGEYCHISFUEC-UHFFFAOYSA-N 0.000 description 1
- JATLSJIWVNJRMN-UHFFFAOYSA-N 4-dodecyl-2h-triazole Chemical compound CCCCCCCCCCCCC1=CNN=N1 JATLSJIWVNJRMN-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001494246 Daphnia magna Species 0.000 description 1
- 241000238576 Daphnia pulex Species 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- AAHZZGHPCKJNNZ-UHFFFAOYSA-N Hexadecenylsuccinicacid Chemical compound CCCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O AAHZZGHPCKJNNZ-UHFFFAOYSA-N 0.000 description 1
- 231100000111 LD50 Toxicity 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical class [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- OUBMGJOQLXMSNT-UHFFFAOYSA-N N-isopropyl-N'-phenyl-p-phenylenediamine Chemical compound C1=CC(NC(C)C)=CC=C1NC1=CC=CC=C1 OUBMGJOQLXMSNT-UHFFFAOYSA-N 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- JPYPZXAFEOFGSM-UHFFFAOYSA-N O.[B]=O Chemical compound O.[B]=O JPYPZXAFEOFGSM-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- MASBWURJQFFLOO-UHFFFAOYSA-N ammeline Chemical compound NC1=NC(N)=NC(O)=N1 MASBWURJQFFLOO-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- VAWGWGFDTNSNGL-UHFFFAOYSA-L barium(2+);octadecanoate;acetate Chemical compound [Ba+2].CC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O VAWGWGFDTNSNGL-UHFFFAOYSA-L 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 231100000209 biodegradability test Toxicity 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- HRPZQBIESQCGRM-UHFFFAOYSA-L calcium octadecanoic acid octanoate acetate Chemical class C(C)(=O)[O-].C(CCCCCCC)(=O)[O-].C(CCCCCCCCCCCCCCCCC)(=O)O.[Ca+2] HRPZQBIESQCGRM-UHFFFAOYSA-L 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- VMHDCBGLCDWDMQ-UHFFFAOYSA-L calcium;octadecanoate;acetate Chemical compound [Ca+2].CC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O VMHDCBGLCDWDMQ-UHFFFAOYSA-L 0.000 description 1
- JHVJHCOGRSPCSN-UHFFFAOYSA-L calcium;octanoate;acetate Chemical compound [Ca+2].CC([O-])=O.CCCCCCCC([O-])=O JHVJHCOGRSPCSN-UHFFFAOYSA-L 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 231100000132 chronic toxicity testing Toxicity 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Chemical class 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960002523 mercuric chloride Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HGASFNYMVGEKTF-UHFFFAOYSA-N octan-1-ol;hydrate Chemical compound O.CCCCCCCCO HGASFNYMVGEKTF-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003870 salicylic acids Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003582 thiophosphoric acids Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/127—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
- C10M2219/106—Thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/081—Biodegradable compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/64—Environmental friendly compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/045—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/24—Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
Definitions
- the present disclosure relates to the field of lubricants and lubricant compositions, specifically lubricant compositions having environmentally-friendly characteristics.
- the additive composition may contain four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- the composition may contain a major amount of a base oil and a minor amount of an additive composition.
- the additive composition may include four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- Another embodiment provides a method of lubricating a machine part comprising lubricating said machine part with a lubricant composition as disclosed herein.
- an environmentally compatible lubricating composition comprising a) a major amount of a base oil; and b) a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component comprises at least one of: an acceptable level biodegradation as determined by a biodegradation test, a bioconcentration factor below 2000, or is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test.
- Another embodiment provides a method of making an environmentally compatible lubricant composition, comprising combining a major amount of a base oil and a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component is selected from: a material having an acceptable level of biodegradation, a material having a bioconcentration factor below 2000, and a material that is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test, wherein the lubricant composition complies with European Council Directive 67/548/EEC.
- a further embodiment of the present disclosure may provide a method of making an environmentally compatible lubricant composition.
- the method may include combining a major amount of a base oil and a minor amount of an additive composition, having four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- An advantage of embodiments of the disclosure is that an impact on the environmental by the use of materials disclosed herein is perceived to be lessened.
- a further advantage is that accidental or inadvertent spills of the compositions and lubricants may not pose long term threats to humans and wildlife.
- Still further advantages of the compositions and methods described herein may be acceptable to national and state regulatory agencies.
- oil composition As used herein, the terms “oil composition,” “lubrication composition,” “lubricating oil composition,” “lubricating oil,” “lubricant composition,” “fully formulated lubricant composition,” and “lubricant” are considered synonymous, fully interchangeable terminology referring to the finished lubrication product comprising a major amount of a base oil plus a minor amount of an additive composition.
- additive package As used herein, the terms “additive package,” “additive concentrate,” and “additive composition” are considered synonymous, fully interchangeable terminology referring to the portion of the lubricating composition excluding the major amount of base oil stock mixture.
- tribologically and tribological are considered terms that relate to the science and mechanism of friction, lubrication, and wear of interacting surfaces and fluids for lubricating such surfaces.
- a “tribologically functional” component means a component that is used in a lubricating formulation to provide a measurable change in a characteristic or property of a fluid containing the component including those properties not necessarily associated directly with the surface such as oxidation inhibitors, dispersants, detergents, and the like.
- agent and “additive” are considered synonymous, fully interchangeable terminology referring to any single component of a lubricating composition excluding the major amount of base oil stock mixture.
- European Council Directive 76/548/EEC incorporated herein by reference, provides regulatory guidance for the registration and evaluation of chemical substances that may be exposed to the environment during the normal course of use. Guidelines and testing procedures are enumerated therein, so that the potential environmental impact of any substance may be quantified.
- a number of diagnostic tests have been developed to measure the effects of certain chemical substances upon various aspects of the environment.
- three main parameters are used to classify such substances: namely, persistence, bioaccumulation, and toxicity.
- the persistence of a substance in the environment may be inversely related to the biodegradability of the substance.
- Biodegradability is the ability of microbes occurring in an environment to break down a substance into simpler substances.
- the persistence, or biodegradability, criterion is defined in European Council Directive 76/548/EEC Annex XIII section 1.1, which is herein incorporated by reference, as a substance fulfilling one of the following criteria: having a half-life in marine water longer than 60 days, having a half-life in fresh or estuarine water longer than 40 days, having a half-life in marine sediment longer than 180 days, having a half-life in fresh or estuarine water sediment longer than 120 days, or having a half-life in soil longer than 120 days.
- a material's persistence in the environment may be determined by a number of different test procedures, including the following tests: a dissolved organic carbon (DOC) die-away test, a modified OECD screening dissolved organic carbon die-away test, a carbon dioxide evolution test, a manometric respirometry test, a closed bottle test, a MITI test, a Zahn-Wellens test, an activated sludge simulation test, an activated sludge respiration inhibition test, and a modified SCAS test.
- DOC dissolved organic carbon
- a solution, or suspension, of the test substance in a mineral medium is introduced into an inoculum and incubated under aerobic conditions in the dark or in diffuse light.
- the amount of dissolved organic carbon (DOC) in the test solution due to microbial inoculum should be kept as low as possible compared to the amount of DOC due to the test substance. Allowance is made for the endogenous activity of the inoculum by running parallel blank tests with inoculum but without test substance, although the endogenous activity of cells in the presence of the substance will not exactly match that in the endogenous control. A reference substance is run in parallel to check the operation of the procedures.
- degradation is followed by the determination of parameters, such as DOC, CO 2 production, and oxygen uptake, and measurements are taken at sufficiently frequent intervals to allow the identification of the beginning and end of biodegradation. With automatic respirometers the measurement is continuous. DOC is sometimes measured in addition to another parameter but this is usually done only at the beginning and the end of the test. Specific chemical analysis may also be used to assess primary degradation of the test substance, and to determine the concentration of any intermediate substances formed (obligatory in the MITI test).
- parameters such as DOC, CO 2 production, and oxygen uptake
- test Normally, the tests last for 28 days. Tests however may be ended before 28 days, i.e., as soon as the biodegradation curve has reached a plateau for at least 3 determinations. Tests may also be prolonged beyond 28 days when the curve shows that biodegradation has started but that the plateau has not been reached by day 28.
- the inoculum may be derived from a variety of sources: activated sludge, unchlorinated sewage effluents, surface waters and soils, or from a mixture of these.
- a measured volume of inoculated mineral medium containing a known concentration of the test substance (10-40 mg DOC/l) as the nominal sole source of organic carbon is aerated in the dark or diffused light at 22 ⁇ 2° C.
- Degradation is followed by DOC analysis at frequent intervals over a 28-day period.
- the degree of biodegradation is calculated by expressing the concentration of DOC removed (corrected for that in the blank inoculum control) as a percentage of the concentration initially present.
- the degree of primary biodegradation may also be calculated from supplemental chemical analysis made at the beginning and end of incubation.
- the percentage degradation may be calculated by:
- a measured volume of inoculated mineral medium containing a known concentration of test chemical (100 mg/liter of the test substance, to give at least 50-100 mg theoretical oxygen demand/liter) as the nominal sole source of organic carbon, is stirred in a closed flask at a constant temperature ( ⁇ 1° C. or closer) for up to 28 days.
- the consumption of oxygen may be determined either by measuring the quantity of oxygen (produced electrolytically) required to maintain constant gas volume in the respirometer flask, or from the change in volume or pressure (or a combination of the two) in the apparatus.
- Evolved carbon dioxide is absorbed in a solution of potassium hydroxide or another suitable absorbent.
- the amount of oxygen taken up by the test chemical is expressed as a percentage of ThOD (theoretical oxygen demand) or COD (chemical oxygen demand).
- ThOD theoretical oxygen demand
- COD chemical oxygen demand
- primary biodegradation may also be calculated from supplemental specific analysis made at the beginning and end of incubation, and ultimate biodegradation by DOC analysis.
- the oxygen uptake by a stirred solution, or suspension, of the test chemical in a mineral medium, inoculated with specially grown, unadapted micro-organisms is measured automatically over a period of 28 days in a darkened, enclosed respirometer at 25 ⁇ 1° C. Evolved carbon dioxide is absorbed by soda lime. Biodegradability is expressed as the percentage oxygen uptake (corrected for blank uptake) of the theoretical oxygen uptake (ThOD). The percentage of primary biodegradability is also calculated from supplemental specific chemical analysis made at the beginning and end of incubation and, optionally, by DOC analysis.
- the purpose of the Zahn-Wellens Test is the evaluation of the potential ultimate biodegradability of water-soluble, non-volatile organic substances when exposed to relatively high concentrations of micro-organisms in a static test.
- DOC dissolved organic carbon
- COD chemical oxygen demand
- a simultaneous use of a specific analytical method may allow the assessment of the primary biodegradation of the substance (disappearance of the parent chemical structure).
- the method is applicable only to those organic test substances which, at the concentration used in the test are soluble in water under the test conditions, have negligible vapor pressure under the test conditions, are not inhibitory to bacteria, are adsorbed within the test system only to a limited extent, and are not lost by foaming from the test solution.
- Activated sludge, mineral nutrients and the test material as the sole carbon source in an aqueous solution are placed together in a one to four liter glass vessel equipped with an agitator and an aerator.
- the mixture is agitated and aerated at 20 to 25° C. under diffuse illumination or in a dark room for up to 28 days.
- the degradation process is monitored by determination of the DOC (or COD) values in the filtered solution at daily or other appropriate regular time intervals.
- the ratio of eliminated DOC (or COD) after each interval to the value three hours after the start is expressed as percentage biodegradation and serves as the measure of the extent of degradation at this time. The result is plotted versus time to give the biodegradation curve.
- the activated sludge simulation test is used to determine the primary biodegradability of a substance in an activated sludge plant model, at a concentration of about 20 mg/liter. This allows the assessment of the primary biodegradability of the substance (disappearance of the parent chemical structure). Another purpose of the method is the determination of ultimate biodegradability by the measurement of the removal of the substance and any metabolites in an activated sludge plant model at a concentration corresponding to >12 mg DOC/liter (or approximately 40 mg COD/liter); wherein 20 mg DOC/liter seems to be optimal.
- test substance is added to the influent (synthetic or domestic sewage) of one of the units, while the other blank unit receives the sewage alone.
- influent synthetic or domestic sewage
- blank unit receives the sewage alone.
- primary biodegradation with specific analysis in the influent and effluent, only one unit may be used.
- the sludge growth/stabilization period is the period during which the concentration of the activated sludge suspended solids and the performance of the units' progress to a steady state under the operating conditions used.
- the running-in period is the period which lasts from the time the test substance is first added to the time when its removal reaches a plateau (relatively constant value). This period must not exceed six weeks.
- the evaluation period is a three week period, i.e., three weeks from the time that the removal of the test substance reaches a relatively constant, and usually high, value. For those substances which show little or no degradation in the first six weeks, the evaluation period is taken as the following three weeks.
- Influent without substance to be tested must pass through an aeration vessel either at the rate of one liter per hour or a rate of one-half liter per hour thereby providing a mean retention time of either three or six hours.
- the rate of aeration should be regulated so that the content of the vessel is kept constantly in suspension while the dissolved oxygen content is at least 2 mg/liter.
- the sludge which has accumulated around the top of the aeration vessel must be returned to the mixed liquor at least once each day by brushing or some other appropriate means.
- the effluent is collected in a second vessel for 20 to 24 hours, and a sample is taken after thorough mixing.
- the chemical oxygen demand (COD) or the dissolved organic carbon (DOC) of the filtrate of the accumulated effluent is measured at least twice weekly, as well as that of the filtered influent (using a membrane of pore size 0.451 m, wherein the first 20 ml (approximately) of the filtrate are discarded).
- COD or DOC dissolved organic carbon
- test material approximately 10 to 20 mg DOC/liter or 40 mg COD/liter
- concentration approximately 10 to 20 mg DOC/liter or 40 mg COD/liter
- This concentration may be reached progressively. If there are no toxic effects of the test substance on the activated sludge, higher concentrations may also be tested.
- the blank unit is fed only with influent without added substances. Adequate volumes of the effluents are taken for analysis and filtered through membrane filters (0.451 m), the first 20 ml (approximately) of filtrate being discarded.
- the filtered samples have to be analyzed on the same day, otherwise they must be preserved by any suitable method, for example, by using 0.05 ml of a 1% mercuric chloride (HgCl 2 ) solution for each 10 ml of filtrate or by storing them at 2 to 4° C. up to 24 hours, or below ⁇ 18° C. for longer periods.
- HgCl 2 1% mercuric chloride
- the running-in time, with addition of test substance, should not exceed six weeks and the evaluation period should not be shorter than three weeks, so that about 14 to 20 determinations are available for calculation of the final result.
- the activated sludge respiration inhibition test assesses the effect of a test substance on micro-organisms by measuring the respiration rate under defined conditions in the presence of different concentrations of the test substance.
- the purpose of this method is to provide a rapid screening method whereby substances which may adversely affect aerobic microbial treatment may be identified, and to indicate suitable non-inhibitory concentrations of test substances to be used in biodegradability tests.
- Two controls without the test substance are included in the test design, one at the start and the other at the end of the test series. Each batch of activated sludge should also be checked using a reference substance.
- the activated sludge respiration inhibition method is most readily applied to substances which, due to their water solubility and low volatility, are likely to remain in water. For substances with limited solubility in the test media, it may not be possible to determine the EC 50 . Results based on oxygen uptake may lead to erroneous conclusions if the test substance has the propensity to uncouple oxidative phosphorylation. It may be useful to have the following information to perform the test: water solubility, vapor pressure, structural formula, and the purity of the test substance.
- 3,5-dichlorophenol as a known inhibitor of respiration, be used as a reference substance and tested for EC, on each batch of activated sludge as a means of checking that the sensitivity of the sludge is not abnormal.
- At least five concentrations spaced by a constant factor preferably not exceeding 3.2, are used.
- 16 ml of the synthetic sewage feed are made up to 300 ml with water.
- 200 ml of microbial inoculum are added and the total mixture (500 ml) poured into a first vessel (first control C1).
- the test vessels should be aerated continuously so as to ensure that the dissolved O 2 does not fall below 2.5 mg/liter and that, immediately before the measurement of the respiration rate, the O 2 concentration is about 6.5 mg/liter.
- a second control is prepared (C2). After three hours the pH is recorded, and a well-mixed sample of the contents of the first vessel is poured into the measuring apparatus and the respiration rate is measured over a period of up to 10 minutes. This determination is repeated on the contents of each vessel at 15-minute intervals, in such a way that the contact time in each vessel is three hours.
- the reference substance may be tested on each batch of microbial inoculum in the same way.
- the modified SCAS test is used to evaluate the potential ultimate biodegradability of water-soluble, non-volatile organic substances when exposed to relatively high concentrations of micro-organisms over a long time period. The viability of the microorganisms is maintained over this period by daily addition of a settled sewage feed.
- the conditions provided by the test are highly favorable to the selection and/or adaptation of microorganisms capable of degrading the test compound, however the procedure may also be used to produce acclimatized inocula for use in other tests.
- the measure of the concentration of dissolved organic carbon is used to assess the ultimate biodegradability of the test substances. It is preferable to determine DOC after acidification and purging rather than as the difference of C total -C inorganic.
- the method is applicable only to those organic test substances which, at the concentration used in the test are soluble in water (at least 20 mg dissolved organic carbon/liter), have negligible vapor pressure, are not inhibitory to bacteria, do not significantly adsorb within the test system, and are not lost by foaming from the test solution.
- the organic carbon content of the test substance must be established prior to running the test.
- Activated sludge from a sewage treatment plant is placed in a semi-continuous activated sludge (SCAS) unit.
- SCAS semi-continuous activated sludge
- the test compound and settled domestic sewage are added, and the mixture is aerated for 23 hours.
- the aeration is then stopped, the sludge allowed to settle, and the supernatant liquor is removed.
- the sludge remaining in the aeration chamber is then mixed with a further aliquot of test compound and sewage and the cycle is repeated.
- Biodegradation is established by determining the dissolved organic carbon content of the supernatant liquor. This value is compared with that found for the liquor obtained from a control tube dosed with settled sewage only.
- the dissolved organic carbon in the supernatant liquors is determined daily, although less frequent analyses may be used.
- the liquors are filtered through washed 0.45 ⁇ m membrane filters or centrifuged.
- Membrane filters are suitable if it is assured that they neither release carbon nor absorb the substance in the filtration step.
- the temperature of the sample must not exceed 40° C. while it is in the centrifuge.
- the length of the test for compounds showing little or no biodegradation is indeterminate, but experience suggests that this should be at least 12 weeks in general, but not longer than 26 weeks.
- Bioaccumulation is defined as the increase in concentration of a test substance in or on an organism or specified tissues thereof relative to the concentration of the test substance in the surrounding medium.
- bioaccumulation and “bioconcentration” are used interchangeably to refer to the same criteria.
- the bioconcentration factor (“BCF”) is calculated as the concentration of test substance in an organism (or specified tissues thereof) divided by the concentration of the substance in the surrounding medium. Both the uptake and depuration of substances by organisms, and the respective rates thereof, are considered in calculating bioaccumulation.
- P ow octanol-water partition coefficient
- the P ow is a substance's solubility in n-octanol and water at equilibrium.
- the logarithm of P ow may be an indication of a substance's potential for bioaccumulation in aquatic organisms.
- the criterion for acceptable bioaccumulation is defined in European Council Directive 76/548/EEC Annex XIII section 1.2, which is herein incorporated by reference, as a substance having a bioconcentration factor higher than 2000.
- the bioconcentration factor of a material may be determined by test procedures set forth in European Council Directive 76/548/EEC Annex V, section C.13 flow-through fish test, which is incorporated in full herein by reference.
- the flow-through fish test consists of two phases: the exposure (uptake) phase and the post-exposure (depuration) phase.
- the uptake phase separate groups of fish of one species are exposed to at least two concentrations of the test substance. They are then transferred to a medium free of the test substance for the depuration phase.
- a depuration phase is always necessary unless uptake of the substance during the uptake phase has been insignificant (e.g., the BCF is less than 10).
- the concentration of the test substance in/on the fish (or specified tissue thereof) is followed through both phases of the test.
- a control group of fish is held under identical conditions except for the absence of the test substance, to relate possible adverse effects observed in the bioconcentration test to a matching control group and to obtain background concentrations of test substance.
- the uptake phase is run for 28 days unless it is demonstrated that equilibrium has been reached earlier.
- the depuration period is then begun by transferring the fish to the same medium but without the test substance in another clean vessel.
- the bioconcentration factor is calculated preferably both as the ratio (BCF ss ) of concentration of the fish (C t ) and in the water (C w ) at apparent steady-state and as a kinetic bioconcentration factor, BCF K as the ratio of the rate constants of uptake (k 1 ) and depuration (k 2 ) assuming first-order kinetics.
- the uptake phase should be extended until steady-state is reached, or 60 days, whichever comes first; the depuration phase is then begun.
- the BCF is expressed as a function of the total wet weight of the fish.
- specified tissues or organs e.g. muscle, liver
- the fish may be divided into edible (fillet) and non-edible (viscera) fractions.
- fat e.g., fillet
- viscera non-edible fractions.
- bioconcentration should be expressed in relation to lipid content in addition to whole body weight.
- the lipid content is determined on the same biological material as is used to determine the concentration of the test substance, when feasible.
- the toxicity criterion is defined in European Council Directive 76/548/EEC Annex XIII section 1.3, which is herein incorporated by reference, as a substance having a long-term no-observed effect concentration (NOEC) for marine or freshwater organisms less than 0.01 mg/L. Substances that are classified as carcinogenic, mutagenic, or toxic for reproduction may also be considered as toxic.
- NOEC no-observed effect concentration
- the toxicity of a material may be determined by test procedures, such as the acute toxicity for fish test, the acute toxicity for Daphnia test, and the algal inhibition test, set forth in European Council Directive 76/548/EEC Annex V, sections C.1, C.2, and C.3, which are incorporated in full herein by reference. These acute tests may be used for first cut screening (if LC50 ⁇ 1 ppm), however chronic toxicity tests (usually in Daphnia but also other organisms) may be used for definitive Toxicity.
- the purpose of the acute toxicity for fish test is to determine the acute lethal toxicity of a substance to fish in fresh water. It is desirable to have, as far as possible, information on the water solubility, vapor pressure, chemical stability, dissociation constants, and biodegradability of the substance to help in the selection of the most appropriate test method (static, semi-static, or flow-through) for ensuring satisfactorily constant concentrations of the test substance over the period of the test.
- Acute toxicity is the discernible adverse effect induced in an organism within a short time (days) of exposure to a substance.
- acute toxicity is expressed as the median lethal concentration (LC 50 ), the concentration in water which kills 50% of a test batch of fish within a continuous period of exposure which must be stated.
- LC 50 median lethal concentration
- the static test is a toxicity test in which no flow of test solution occurs. The solutions remain unchanged throughout the duration of the test.
- the semi-static test is a test without flow of test solution, but with regular batchwise renewal of test solutions after prolonged periods (e.g. 24 hours).
- the flow-through test is a toxicity test in which the water is renewed constantly in the test chambers, the chemical under test being transported with the water used to renew the test medium.
- At least 7 fish per concentration being tested are exposed to the substance for a duration of 96 hours in tanks of suitable capacity. At least five concentrations differing by a constant factor not exceeding 2.2, and as far as possible spanning the range of 0 to 100% mortality, should be tested for each substance.
- the fish may not be fed during the test. The fish are inspected after the first 2 to 4 hours and afterward at least at 24-hour intervals. Fish are considered dead if touching of the caudal peduncle produces no reaction, and no breathing movements are visible. Dead fish are removed when observed and mortalities are recorded. Records are kept of visible abnormalities (e.g. loss of equilibrium, changes in swimming behavior, respiratory function, pigmentation, etc.). Measurements of pH, dissolved oxygen and temperature must be carried out daily.
- the acute toxicity for Daphnia test is similar to the acute toxicity for fish test, but the purpose is to determine the median effective concentration for immobilization (EC 50 ) of a substance to Daphnia in fresh water.
- EC 50 median effective concentration for immobilization
- the Daphnia are exposed to the test substance added to water at a range of concentrations for 48 hours. Under otherwise identical test conditions, and an adequate range of test substance concentrations, different concentrations of a test substance exert different average degrees of effect on the swimming ability of Daphnia. Different concentrations result in different percentages of Daphnia being no longer capable of swimming at the end of the test.
- concentrations causing zero or 100% immobilization are derived directly from the test observations whereas the 48-hour EC 50 may be determined by calculation if possible. A static system is used for this method, hence test solutions are not renewed during the exposure period.
- Stock solutions of the required strength are prepared by dissolving the substance in deionized water or water.
- the chosen test concentrations are prepared by dilution of the stock solution. If high concentrations are tested, the substance may be dissolved in the dilution water directly.
- the substances are normally only tested up to the limit of solubility. For some substances (e. g. substances having low solubility in water, or high P ow , or those forming stable dispersion rather than true solution in water), it is acceptable to run a test concentration above the solubility limit of the substance to ensure that the maximum soluble/stable concentration has been obtained. It is important, however, that this concentration will not otherwise disturb the test system (e. g. film of the substance on the water surface preventing the oxygenation of the water, etc.).
- Daphnia magna is the preferred test species although Daphnia pulex is also permitted.
- the test animals shall be less than 24 hours old at the beginning of the test, laboratory bred, free from overt disease, and with a known history (e.g. breeding, any pretreatments, etc.).
- the Daphnia are exposed to the substance for 48 hours. At least 20 animals at each test concentration, preferably divided into four batches of five animals each or two batches of 10, are required. At least 2 ml of test solutions should be provided for each animal.
- the test solution should be prepared immediately before introduction of the Daphnia, preferably without using any solvent other than water. The concentrations are made up in a geometric series, at a concentration ratio not exceeding 2.2. Concentrations sufficient to give 0 and 100% immobilization after 48 hours and a range of intermediate degrees of immobilizations permitting calculation of the 48 hour EC50 should be tested together with controls.
- the test temperature should be between 18 and 22° C., but for each single test it should be constant within ⁇ 1° C.
- test solutions must not be bubble-aerated, and the animals may not be fed during the test.
- the pH and the oxygen concentration of the controls and of all the test concentrations should be measured at the end of the test; the pH of the test solutions should not be modified.
- Volatile compounds should be tested in completely filled closed containers, large enough to prevent lack of oxygen. The Daphnia are inspected at least after 24 hours exposure and again after 48 hours.
- the algal inhibition test may be used to determine the effects of a substance on the growth of a unicellular green algal species. Relatively brief (72 hours) tests may assess effects over several generations. This method may be adapted for use with several different unicellular algal species. The method is most easily applied to water-soluble substances which, under the conditions of the test, are likely to remain in the water.
- Exponentially-growing cultures of selected green algae are exposed to various concentrations of the test substance over several generations under defined conditions.
- the test solutions are incubated for a period of 72 hours, during which the cell density in each solution is measured at least every 24 hours.
- the inhibition of growth in relation to a control culture is determined.
- Test cultures containing the desired concentrations of test substance and the desired quantity of algal inoculum are prepared by adding aliquots of stock solutions of the test substance to suitable amounts of pre-prepared algal cultures.
- the culture flasks are shaken and placed in the culturing apparatus.
- the algal cells are kept in suspension by shaking, stirring, or bubbling with air, in order to improve gas exchange and reduce pH variation in the test solutions.
- the cultures are maintained at a temperature in the range of 21 to 25° C., controlled at ⁇ 2° C.
- the cell density in each flask is determined at least at 24, 48 and 72 hours after the start of the test.
- Filtered algal medium containing the appropriate concentration of the test chemical is used to determine the background when using cell density measurements other than direct counting methods.
- a suitable lubricant or lubricant additive composition may use tribologically functional components that may not exhibit persistence, bioaccumulation, or toxicity when tested according to the procedures set forth above. Accordingly, a tribologically functional component that is found to be persistent, bioaccumulative, and toxic may not be included in lubricating formulations of the present disclosure.
- Acceptable tribologically functional components may include one or more components functionally described as: antioxidants, dispersants, detergents, viscosity index improvers, friction modifiers, pour point depressants, antiwear agents, extreme pressure agents, rust inhibitors, corrosion inhibitors, foam inhibitors, seal swell additives, and diluents. Such components may be deemed acceptable for use in compositions of the present disclosure upon receiving a passing evaluation in testing for persistence, bioaccumulation, or toxicity using the test methods and/or criteria described above.
- Suitable embodiments of the present disclosure may incorporate one or more of the following substances: a sulfurized neopentyl glycol phosphate, a succinimide, a fatty amine ethoxylate, an oleamide, a dodecyl succinic acid, an adipate, a sulfurized isobutylene, an alkylthiadiazole, a polyalphaolefin, an alkylpolymethacrylate comprising less than 0.3% weight of unreacted monomer, and/or an olefin copolymer or multifunctional olefin copolymer comprising less than 0.3% weight of unreacted monomer.
- Example 2 (Wt. % based on (Wt. % based on Component finished fluid) finished fluid) Dispersant 0-5.0 0.5-4.5 Detergent 0-15 0.1-10 Antioxidant 0-5.0 0.01-3.0 Corrosion inhibitor 0-5.0 0-2.0 Antiwear agent and/or 0-7.0 0.1-5.0 Extreme pressure agent Antifoaming agent 0-5.0 0.001-0.15 Pour point depressant 0-5.0 0.01-1.5 Viscosity modifier 0-12.00 0.01-10.0 Friction modifier 0-1.25 0.05-1.0 Seal swell agent 0-15 1.5-10 Process oil 0-10.0 0.1-5.0 Base oil Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance
- the conventional additives indicated in Table I may be combined with one or more base oils selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- base oil groups are as follows:
- PAOs polyalphaolefins
- the base oils may also be selected from gas-to-liquid (GTL) base oils.
- GTL base oils may be made by a process, such as the process described in U.S. Pat. No. 6,497,812, the disclosure of which is incorporated herein by reference.
- the GTL process includes two primary steps, (1) conversion of a material existing in the gaseous state into a synthesis gas consisting primarily of carbon monoxide and hydrogen, and the conversion of the synthesis gas into a synthetic crude in a reaction based on a Fischer-Tropsch reaction. Direct conversion of gaseous hydrocarbon sources using various catalysts and/or catalytic systems may also be used as the GTL process.
- Base oils derived from a gaseous source typically have a viscosity index of greater than about 130, a sulfur content of less than about 0.3 percent by weight, contain greater than about 90 percent by weight saturated hydrocarbons (isoparaffins), typically from about 95 to about 100 wt. % branched aliphatic hydrocarbons, have a pour point of below -15 to ⁇ 20° C., and have a NOACK volatility of less than about 15 weight percent, and in another embodiment a NOACK volatility of less than about 10 weight percent.
- Other characteristics of the GTL base oil may be within the range of conventional lubricant base oils.
- the base oil component of the lubricant composition may include from about 5 to about 100 percent by weight of the GTL base oil with the balance of the base oil component being a conventional base oil. Because of the characteristically high content of branched alkanes in the GTL base oils, finished lubricant formulations made with such GTL base oils include a solubilizing agent that aids in solubilizing additives and degradation products in the finished lubricant formulation.
- the GTL base oils may be used alone or may be mixed with any one or more of the other base oils listed in Table II above.
- Viscosity modifiers for use in finished lubricant compositions as described herein may comprise an olefin (co)polymer(s).
- a suitable viscosity modifier may include a mixture of olefin (co)polymers.
- a fully formulated lubricant composition as described herein may contain 0.1 to 40 wt. % olefin (co)polymer.
- the olefin (co)polymer which may be used is a homopolymer, copolymer, or terpolymer resulting from the polymerization of C 2 -C 10 olefins having a number average molecular weight of from about 1,000 to about 10,000, for example, about 1,000 to about 3,000, as determined by gel permeation chromatography (GPC).
- the C 2 -C 10 olefins include ethylene, propylene, 1-butene, isobutylene, 2-butene, isoprene, 1-octene, and 1-decene.
- Exemplary (co)polymers include polypropylene, polyisobutylene, ethylene/propylene copolymers, styrene/isoprene copolymers, and 1-butene/isobutylene copolymers, and mixtures of the polymers thereof.
- the dispersants useful in the lubricant compositions described herein include at least one oil-soluble ashless dispersant having a basic nitrogen and/or at least one hydroxyl group in the molecule.
- Suitable dispersants include alkenyl succinimides, alkenyl succinic acid esters, alkenyl succinic ester-amides, and Mannich bases.
- alkenyl succinimides in which the succinic group contains a hydrocarbyl substituent containing at least 30 carbon atoms are described for example in U.S. Pat. Nos. 3,172,892; 3,202,678; 3,216,936; 3,219,666; 3,254,025; 3,272,746; and 4,234,435.
- Such alkenyl succinimides may be derived from polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography.
- PIBSA polyisobutenyl succinic anhydride
- Alkenyl succinic acid esters and diesters of polyhydric alcohols containing 2-20 carbon atoms and 2-6 hydroxyl groups can be used in forming the phosphorus-containing ashless dispersants. Representative examples are described in U.S. Pat. Nos. 3,331,776; 3,381,022; and 3,522,179.
- the alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
- Suitable alkenyl succinic ester-amides for forming phosphorylated ashless dispersant are described for example in U.S. Pat. Nos. 3,184,474; 3,576,743; 3,632,511; 3,804,763; 3,836,471; 3,862,981; 3,936,480; 3,948,800; 3,950,341; 3,957,854; 3,957,855; 3,991,098; 4,071,548; and 4,173,540.
- the Mannich base dispersants are usually a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). Examples of Mannich condensation products, and methods for their production are described in U.S. Pat. Nos.
- the dispersants of the present disclosure may be boronated. Methods for boronating (borating) the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; and 4,652,387.
- the amount of ashless dispersant on an “active ingredient basis” is generally within the range of about 0.5 to about 7.5 weight percent (wt %), typically within the range of about 0.5 to 5.0 wt %, notably within the range of about 0.5 to about 3.0 wt %, and usually within the range of about 2.0 to about 3.0 wt %, based on the finished oil.
- Suitable friction modifiers include such compounds as aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, organic molybdenum compounds, or mixtures thereof.
- the aliphatic group typically contains at least about eight carbon atoms so as to render the compound suitably oil soluble.
- aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia.
- finished lubricant formulations may contain up to about 1.25 wt %, and usually from about 0.05 to about 1 wt % of one or more friction modifiers.
- Finished lubricant compositions as described herein typically will contain some inhibitors.
- the inhibitor components serve different functions including rust inhibition, corrosion inhibition and foam inhibition.
- the inhibitors may be introduced in a pre-formed additive package that may contain in addition one or more other components used in the finished lubricant compositions. Alternatively these inhibitor components may be introduced individually or in various sub-combinations. While amounts of inhibitors used may be varied within reasonable limits, the finished lubricant compositions of this disclosure will typically have a total inhibitor content in the range of about 0 to about 15 wt %, on an “active ingredient basis,” i.e., excluding the weight of inert materials such as solvents or diluents normally associated therewith.
- Foam inhibitors form one type of inhibitor suitable for use as an inhibitor component in the finished lubricant compositions.
- Useful foam inhibitors include silicones, surfactants, and the like.
- Copper corrosion inhibitors constitute another class of additives suitable for inclusion in the finished lubricant compositions.
- Such compounds include thiazoles, triazoles and thiadiazoles.
- examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles.
- the compounds are the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole.
- the 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
- Rust or corrosion inhibitors comprise another type of inhibitor additive for use in finished lubricant compositions.
- Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid.
- Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like.
- alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like.
- half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols.
- Suitable rust or corrosion inhibitors include acid phosphates; ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
- Antioxidants may also be present in the finished lubricant formulations of the disclosure.
- Suitable antioxidants include phenolic antioxidants, aromatic amine antioxidants, and sulfurized phenolic antioxidants, among others.
- phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4′-methylenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-tert-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4′-thiobis(2-methyl-6-tert-butylphenol).
- N,N′-di-sec-butyl-p-phenylenediamine, 4-isopropylaminodiphenyl amine, phenyl-naphthyl amine, phenyl-naphthyl amine, and ring-alkylated diphenylamines serve as examples of aromatic amine antioxidants.
- the antioxidants are the sterically hindered tertiary butylated phenols, the ring alkylated diphenylamines, and combinations thereof.
- Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life for lubricant formulations used in crankcase applications.
- Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from 0 to less than 150.
- a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide.
- the resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates).
- Such overbased detergents may have a TBN of 150 or greater, and typically ranging from 250 to 450 or more.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- the most commonly used metals are calcium and magnesium, which may both be present. Mixtures of calcium and/or magnesium with sodium are also useful.
- Particularly convenient metal detergents are neutral and overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral and overbased calcium or magnesium phenates and sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used. When used, the presence of at least one overbased detergent is desirable.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
- the alkylation may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 70 carbon atoms.
- the alkaryl sulfonates usually contain from 9 to 80 or more carbon atoms, typically from 16 to 60 carbon atoms per alkyl substituted aromatic moiety.
- the oil-soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulphides, hydrosulfides, nitrates, borates and ethers of the alkali metal.
- the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from 100 to 220 wt % (desirably at least 125 wt %) of that stoichiometrically required.
- Metal salts of alkyl phenols and sulfurized alkyl phenols are prepared by reaction with an appropriate metal compound such as an oxide, hydroxide or alkoxide, and overbased products may be obtained by methods well known in the art.
- Sulfurized alkyl phenols may be prepared by reacting an alkyl phenol with sulphur or a sulphur-containing compound such as hydrogen sulphide, sulphur monohalide or sulphur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulphur-containing bridges.
- the starting alkyl phenol may contain one or more alkyl substituents.
- alkyl phenols may be branched or unbranched, and depending on the number of substituents may have from 1 to 30 carbon atoms (provided the resulting alkyl phenol is oil-soluble), with from 9 to 18 carbon atoms being particularly suitable. Mixtures of alkyl phenols with different alkyl substituents may be used.
- Metal salts of carboxylic acids may be prepared in a number of ways: for example, by adding a basic metal compound to a reaction mixture comprising the carboxylic acid (which may be part of a mixture with another organic acid such as a sulfonic acid) or its metal salt and promoter, and removing free water from the reaction mixture to form an metal salt, then adding more basic metal compound to the reaction mixture and removing free water from the reaction mixture.
- the carboxylate is then overbased by introducing the acidic material such as carbon dioxide to the reaction mixture while removing water. This can be repeated until a product of the desired TBN is obtained.
- the overbasing process is well known in the art and typically comprises reacting acidic material with a reaction mixture comprising the organic acid or its metal salt, a metal compound.
- That acidic material may be a gas such as carbon dioxide or sulphur dioxide, or it may be boric acid.
- Processes for the preparation of overbased alkali metal sulfonates and phenates are described in U.S. Pat. No. 4,839,094.
- a process suitable for overbased sodium sulfonates is described in EP-A-235929.
- a process for making overbased salicylates is described in U.S. Pat. No. 5,451,331.
- the overbased metal detergents may also be borated.
- the boron may be introduced by using boric acid as the acidic material used in the overbasing step.
- a desirable alternative is to borate the overbased product after formation by reacting a boron compound with the overbased metal salt.
- Boron compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids.
- the overbased metal salt may be reacted with a boron compound at from 50° C. to 250° C., in the presence of a solvent such as mineral oil or xylene.
- the borated, overbased alkali metal salt comprises at least 0.5%, and typically from 1% to 5%, by weight boron.
- the amount of detergent in a finished lubricant composition according to the disclosed embodiments may range from about 0.1 to about 15 percent by weight based on the total weight of the finished lubricant composition.
- sulfur-containing antiwear and/or extreme pressure agents may be used in the finished lubricant formulations described herein.
- examples include dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C2-C8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. Pat. No. Re 27,331.
- Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others.
- Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents may also be used, such as a combination of sulfurized isobutylene and di-tert-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide.
- Use may also be made of a wide variety of phosphorus-containing oil-soluble antiwear and/or extreme pressure additives such as the oil-soluble organic phosphates, organic phosphites, organic phosphonates, organic phosphonites, etc., and their sulfur analogs.
- phosphorus-containing antiwear and/or extreme pressure additives that may be used in the disclosed lubricant compositions include those compounds that contain both phosphorus and nitrogen.
- Phosphorus-containing oil-soluble antiwear and/or extreme pressure additives useful in the disclosed embodiments include those compounds taught in U.S. Pat. Nos. 5,464,549; 5,500,140; and 5,573,696, the disclosures of which are hereby incorporated by reference.
- the phosphorus-containing antiwear agents may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof.
- phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
- the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 10 to about 500 parts per million by weight of phosphorus in the finished lubricant composition.
- the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the finished lubricant composition.
- phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which may be used are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496.
- these compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine.
- phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive that may be used in the lubricant compositions described herein include the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes and the amine salts of partial esters of phosphoric and thiophosphoric acids.
- the lubricant additive package or lubricant compositions disclosed herein may also contain one or more pour point depressants.
- Pour point depressants may be used in compositions described herein to improve low temperature properties of the compositions. Examples of useful pour point depressants are polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this disclosure and techniques for their preparation are described in U.S. Pat. Nos.
- the pour point depressant is represented by the general structural formula: Ar(R)—(Ar1(R1))—Ar2, wherein the Ar, Ar1 and Ar2 are aromatic groups of up to about 12 carbon atoms, (R) and (R1) are independently an alkylene group containing 1 to 100 carbon atoms with the proviso that at least one of (R) or (R1) is CH2, and n is 0 to about 1000 with the proviso that if n is 0, then (R) is CH2 and at least one aromatic moiety has at least one substituent, the substituents being selected from the group consisting of a substituent derived from an olefin containing about 8 to about 30 carbon atoms, and a substituent derived from a chlorinated hydrocarbon usually containing about 8 to about 50 carbon atoms and about 2.5 chlorine atoms for each 24 carbon atoms.
- Seal swell agents may be included in the finished lubricant compositions of the disclosed embodiments particularly when the lubricant compositions are used as power transmission fluids.
- Suitable seal swell agents may be selected from oil-soluble diesters, oil-soluble sulfones, silicon containing organic compounds, and mixtures thereof.
- the most suitable diesters include the adipates, azelates, and sebacates of C8-C13 alkanols (or mixtures thereof), and the phthalates of C4-C13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used.
- Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
- Other esters which may give generally equivalent performance are polyol esters.
- Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587. Typically these products are employed at levels in the range of about 0.25 to about 1 wt % in the finished transmission fluid.
- the seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid.
- the adipates and sebacates should be used in amounts in the range of from about 4 to about 15 wt % in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt %. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
- thickening agents may be used for providing lubricants and greases containing the base oil component. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms per molecule.
- the metal cations of the metal soaps are typified by sodium, lithium, calcium, magnesium, and barium. Fatty materials are illustrated by stearic acid, hydroxystearic acid, stearin, cottonseed oil acids, oleic acid, palmitic acid, myristic acid and hydrogenated fish oils.
- thickening agents include salt and salt-soap complexes such as calcium stearate-acetate (U.S. Pat. No. 2,197,263), barium stearate acetate (U.S. Pat. No. 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Pat. No. 2,999,065), calcium-caprylate-acetate (U.S. Pat. No. 2,999,066), and calcium salts and soaps of low-, intermediate-, and high-molecular weight acids and of nut oil acids.
- Another group of thickening agents comprises substituted ureas, phthalocyanines, indanthrene, pigments such as perylimides, pyromellitdiimides, ammeline, and hydrophobic clays.
- additive components described above may be supplied in the form of solutions of active ingredient(s) in an inert diluent or solvent, such as a diluent oil.
- an inert diluent or solvent such as a diluent oil.
- concentrations of each additive component are expressed in terms of active additive, i.e., the amount of solvent or diluent that may be associated with such component as received is excluded.
- the individual components employed may be separately blended into the base fluid or may be blended therein in various sub-combinations, if desired. Ordinarily, the particular sequence of such blending steps is not crucial. Moreover, such components may be blended in the form of separate solutions in a diluent. It may be preferable, however, to blend the additive components used in the form of a concentrate, as this simplifies the blending operations, reduces the likelihood of blending errors, and takes advantage of the compatibility and solubility characteristics afforded by the overall concentrate.
- Additive concentrates may thus be formulated to contain all of the additive components and if desired, some of the base oil component, in amounts proportioned to yield finished fluid blends consistent with the concentrations described above.
- the additive concentrate will contain one or more diluents such as light mineral oils, to facilitate handling and blending of the concentrate.
- concentrates containing up to about 50 wt. % of one or more diluents or solvents may be used, provided the solvents are not present in amounts that interfere with the low and high temperature and flash point characteristics and the performance of the finished power transmission fluid composition.
- the additive components used pursuant to this disclosure may be selected and proportioned such that an additive concentrate or package formulated from such components will have a flash point of about 170° C. or above, using the ASTM D-92 test procedure.
- Such additive concentrates are suitably devoid of materials or components that are bioaccumulative, toxic, and persistent as indicated by the tests described above.
- materials include but are not limited to, certain alkanes, alkoxy alkylamines, alkyl methacrylates, alkyl phenols, alkylphenols, polyoxyalkyl alkylamines, aryl amines, aryl phosphites, branched alkyl phenols, branched alkyl polysulfides, branched long-chain alkyl amines, long-chain alkenyl alkyl amine, long-chain alkenyl alkylene amines, long-chain alkenyl amines, long-chain alkoxylated amines, long-chain alkyl alkoxylated alcohols, long-chain alkyl alkylene amines, long-chain alkyl amines, long-chain alkyl methacrylates, long-chain alkyoxylated amines, long-chain alky
- Lubricating fluids of the embodiments herein may be formulated to provide lubrication and/or enhanced friction performance properties and/or improved low temperature viscometric properties for various applications.
- a lubricant composition according to the present disclosure may be used for lubricating a machine part.
- Such fluids may be suitable for automatic or manual transmissions, including step automatic transmissions, continuously variable transmissions (chain, belt, or disk type), semi-automatic transmissions, automated manual transmissions, toroidal transmissions, and dual clutch transmissions.
- Example automatic transmissions include four-, five-, six-, and seven-speed transmissions.
- the lubricating fluids of the present disclosure also are suitable for use in transmissions with an electronically controlled converter clutch, a slipping torque converter, a continuously slipping torque converter clutch, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches.
- a further aspect of the present disclosure may be directed specifically toward providing a fluid for a transmission.
- Exemplary transmissions may include those described in “Transmission and Driveline Design”, SAE Paper Number SP-108, Society of Automotive Engineers, Warrendale Pa. 1995; “Design of Practices: Passenger Car Automotive Transmissions”, The Third Edition, SAE Publication # AE-18, Society of Automotive Engineers, Warrendale PA 1994; and “Automotive Transmission Advancements”, SAE Paper Number SP-854, Society of Automotive Engineers, Warrendale Pa. 1991.
- Lubricating fluids according to the present disclosure may also be used in gear applications, such as industrial gear applications, automotive gear applications, axles, and stationary gearboxes.
- Gear-types may include, but are not limited to, spur, spiral, worm, rack and pinion, involute, bevel, helical, planetary, and hypoid gears.
- the presently disclosed lubricating fluids may be used in axles, transfer cases, differentials, such as straight differentials, turning differentials, limited slip differentials, clutch-type differentials, and locking differentials, and the like.
- Lubricating fluids of the present disclosure may be used in various engine applications, including but not limited to, internal combustion engines, rotary engines, gas turbine engines, four-stroke engines, and two-stroke engines.
- Engine components that may be lubricated with presently disclosed additives may include pistons, bearings, crankshafts, and/or camshafts.
- lubricating fluids of the present disclosure may also be useful in metalworking applications.
- a further aspect of the present disclosure may provide lubricant composition comprising a lubricant additive as described herein, wherein the lubricant composition is suitable for lubricating moving components or parts of a truck, an automobile, and/or a piece of mechanized farm equipment, such as a tractor or reaper.
- lubricant additive compositions of the present disclosure may further be useful in grease compositions, or in lubricants for cutting, quenching, or rolling applications.
- composition of the present disclosure may be manufactured in the United States of America or Canada.
- composition of the present disclosure may be transported to Europe by ship, air, rail, or truck.
- each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Lubricants (AREA)
Abstract
A lubricant additive composition having environmentally compatible characteristics as defined by European Council Directive 67/548/EEC is disclosed. Such a composition may include components selected from non-persistent materials, non-bioaccumulative materials, or non-toxic materials.
Description
- This patent application claims priority from and is related to U.S. Provisional Patent Application Ser. No. 60/916,106 filed May 4, 2007, entitled: “ENVIRONMENTALLY-FRIENDLY LUBRICANT COMPOSITIONS.” This U.S. Provisional Patent Application is incorporated by reference in its entirety herein.
- The present disclosure relates to the field of lubricants and lubricant compositions, specifically lubricant compositions having environmentally-friendly characteristics.
- As concern for the environment grows worldwide, the safety of the various chemical substances used in lubricant compositions and additive concentrates is becoming more of a concern for manufacturers and distributors of lubricant compositions. It is paramount for the industry to examine the use of tribologically functional additive components that are also compatible with environmental regulations. In particular, substances that are persistent in the environment, bioaccumulative, and toxic may be banned from use. Hence, there exists a need for additive compositions and lubricant formulations containing such compositions that incorporate more environmentally acceptable materials.
- SUMMARY
- One embodiment of the present disclosure provides an environmentally compatible lubricant additive composition. The additive composition may contain four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- Another embodiment of the present disclosure provides an environmentally compatible lubricant composition. The composition may contain a major amount of a base oil and a minor amount of an additive composition. The additive composition may include four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- Another embodiment provides a method of lubricating a machine part comprising lubricating said machine part with a lubricant composition as disclosed herein.
- Another embodiment provides an environmentally compatible lubricating composition, comprising a) a major amount of a base oil; and b) a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component comprises at least one of: an acceptable level biodegradation as determined by a biodegradation test, a bioconcentration factor below 2000, or is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test.
- Another embodiment provides a method of making an environmentally compatible lubricant composition, comprising combining a major amount of a base oil and a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component is selected from: a material having an acceptable level of biodegradation, a material having a bioconcentration factor below 2000, and a material that is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test, wherein the lubricant composition complies with European Council Directive 67/548/EEC.
- A further embodiment of the present disclosure may provide a method of making an environmentally compatible lubricant composition. The method may include combining a major amount of a base oil and a minor amount of an additive composition, having four or more tribologically functional components, wherein each component is selected from the group consisting of non-persistent materials, non-bioaccumulative materials, and non-toxic materials, and the additive composition is devoid of components that are persistent, bioaccumulative, and toxic.
- An advantage of embodiments of the disclosure is that an impact on the environmental by the use of materials disclosed herein is perceived to be lessened. A further advantage is that accidental or inadvertent spills of the compositions and lubricants may not pose long term threats to humans and wildlife. Still further advantages of the compositions and methods described herein may be acceptable to national and state regulatory agencies.
- As used herein, the terms “oil composition,” “lubrication composition,” “lubricating oil composition,” “lubricating oil,” “lubricant composition,” “fully formulated lubricant composition,” and “lubricant” are considered synonymous, fully interchangeable terminology referring to the finished lubrication product comprising a major amount of a base oil plus a minor amount of an additive composition.
- As used herein, the terms “additive package,” “additive concentrate,” and “additive composition” are considered synonymous, fully interchangeable terminology referring to the portion of the lubricating composition excluding the major amount of base oil stock mixture.
- As used herein, the terms “tribologically” and “tribological” are considered terms that relate to the science and mechanism of friction, lubrication, and wear of interacting surfaces and fluids for lubricating such surfaces. Accordingly, a “tribologically functional” component means a component that is used in a lubricating formulation to provide a measurable change in a characteristic or property of a fluid containing the component including those properties not necessarily associated directly with the surface such as oxidation inhibitors, dispersants, detergents, and the like.
- As used herein, the terms “agent” and “additive” are considered synonymous, fully interchangeable terminology referring to any single component of a lubricating composition excluding the major amount of base oil stock mixture.
- Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and/or can be learned by practice of the disclosure. The objects and advantages of the disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosure, as claimed.
- Exemplary embodiments of the disclosure will now be provided to illustrate limited aspects of the preferred embodiments thereof, including various examples and illustrations of the formulation and use of the disclosed embodiments. It will be understood that these embodiments are presented solely for the purpose of illustrating the embodiments and shall not be considered as a limitation upon the scope thereof.
- European Council Directive 76/548/EEC, incorporated herein by reference, provides regulatory guidance for the registration and evaluation of chemical substances that may be exposed to the environment during the normal course of use. Guidelines and testing procedures are enumerated therein, so that the potential environmental impact of any substance may be quantified.
- A number of diagnostic tests have been developed to measure the effects of certain chemical substances upon various aspects of the environment. In particular, three main parameters are used to classify such substances: namely, persistence, bioaccumulation, and toxicity.
- The persistence of a substance in the environment may be inversely related to the biodegradability of the substance. Biodegradability is the ability of microbes occurring in an environment to break down a substance into simpler substances. The persistence, or biodegradability, criterion is defined in European Council Directive 76/548/EEC Annex XIII section 1.1, which is herein incorporated by reference, as a substance fulfilling one of the following criteria: having a half-life in marine water longer than 60 days, having a half-life in fresh or estuarine water longer than 40 days, having a half-life in marine sediment longer than 180 days, having a half-life in fresh or estuarine water sediment longer than 120 days, or having a half-life in soil longer than 120 days.
- A material's persistence in the environment may be determined by a number of different test procedures, including the following tests: a dissolved organic carbon (DOC) die-away test, a modified OECD screening dissolved organic carbon die-away test, a carbon dioxide evolution test, a manometric respirometry test, a closed bottle test, a MITI test, a Zahn-Wellens test, an activated sludge simulation test, an activated sludge respiration inhibition test, and a modified SCAS test. The above test procedures are set forth in European Council Directive 76/548/EEC Annex V, sections C.4, C.9, C.10, C.11, and C. 12, which are incorporated in full herein by reference, and are summarized below.
- Six test methods are described that permit the screening of chemicals for ready biodegradability in an aerobic aqueous medium:
- (a) Dissolved Organic Carbon (DOC) Die-Away (Method C.4-A)
- (b) Modified OECD Screening—DOC Die-Away (Method C.4-B)
- (c) Carbon dioxide (CO2) Evolution (Method C.4-C)
- (d) Manometric Respirometry (Method C.4-0)
- (e) Closed Bottle (Method C.4-E)
- f) MITI (Ministry of International Trade and Industry—Japan) (Method C.4-F)
- For example, a solution, or suspension, of the test substance in a mineral medium is introduced into an inoculum and incubated under aerobic conditions in the dark or in diffuse light. The amount of dissolved organic carbon (DOC) in the test solution due to microbial inoculum should be kept as low as possible compared to the amount of DOC due to the test substance. Allowance is made for the endogenous activity of the inoculum by running parallel blank tests with inoculum but without test substance, although the endogenous activity of cells in the presence of the substance will not exactly match that in the endogenous control. A reference substance is run in parallel to check the operation of the procedures.
- In general, degradation is followed by the determination of parameters, such as DOC, CO2 production, and oxygen uptake, and measurements are taken at sufficiently frequent intervals to allow the identification of the beginning and end of biodegradation. With automatic respirometers the measurement is continuous. DOC is sometimes measured in addition to another parameter but this is usually done only at the beginning and the end of the test. Specific chemical analysis may also be used to assess primary degradation of the test substance, and to determine the concentration of any intermediate substances formed (obligatory in the MITI test).
- Normally, the tests last for 28 days. Tests however may be ended before 28 days, i.e., as soon as the biodegradation curve has reached a plateau for at least 3 determinations. Tests may also be prolonged beyond 28 days when the curve shows that biodegradation has started but that the plateau has not been reached by day 28.
- The inoculum may be derived from a variety of sources: activated sludge, unchlorinated sewage effluents, surface waters and soils, or from a mixture of these.
- In the dissolved organic carbon die-away test and the modified OECD screening dissolved organic carbon die-away test, a measured volume of inoculated mineral medium containing a known concentration of the test substance (10-40 mg DOC/l) as the nominal sole source of organic carbon is aerated in the dark or diffused light at 22±2° C. Degradation is followed by DOC analysis at frequent intervals over a 28-day period. The degree of biodegradation is calculated by expressing the concentration of DOC removed (corrected for that in the blank inoculum control) as a percentage of the concentration initially present. The degree of primary biodegradation may also be calculated from supplemental chemical analysis made at the beginning and end of incubation.
- In the carbon dioxide evolution test a measured volume of inoculated mineral medium containing a known concentration of the test chemical (10-20 mg DOC or total organic carbon (TOC) per liter) as the nominal sole source of organic carbon is aerated by the passage of carbon dioxide-free air at a controlled rate in the dark or in diffuse light. Degradation is followed over 28 days by determining the carbon dioxide produced, which is trapped in barium or sodium hydroxide and which is measured by titration of the residual hydroxide or as inorganic carbon. The amount of carbon dioxide produced from the test chemical (corrected for that derived from the blank inoculum) is expressed as a percentage of theoretical maximum carbon dioxide produced (ThCO2). The degree of biodegradation may also be calculated from supplemental DOC analysis made at the beginning and end of incubation.
- The percentage degradation may be calculated by:
-
% degradation=(mg CO2 produced×100)/(ThCO2×mg test chemical added) - In the manometric respirometry test a measured volume of inoculated mineral medium, containing a known concentration of test chemical (100 mg/liter of the test substance, to give at least 50-100 mg theoretical oxygen demand/liter) as the nominal sole source of organic carbon, is stirred in a closed flask at a constant temperature (±1° C. or closer) for up to 28 days. The consumption of oxygen may be determined either by measuring the quantity of oxygen (produced electrolytically) required to maintain constant gas volume in the respirometer flask, or from the change in volume or pressure (or a combination of the two) in the apparatus. Evolved carbon dioxide is absorbed in a solution of potassium hydroxide or another suitable absorbent. The amount of oxygen taken up by the test chemical (corrected for uptake by a blank inoculum, run in parallel) is expressed as a percentage of ThOD (theoretical oxygen demand) or COD (chemical oxygen demand). Optionally, primary biodegradation may also be calculated from supplemental specific analysis made at the beginning and end of incubation, and ultimate biodegradation by DOC analysis.
- In the closed bottle test a solution of the test chemical in mineral medium, usually at 2-5 mg/liter, is inoculated with a relatively small number of micro-organisms from a mixed population and kept in completely full closed bottles in the dark at constant temperature. Degradation is followed by analysis of dissolved oxygen over a 28-day period. The amount of oxygen taken up by the test chemical, corrected for uptake by a blank inoculum run in parallel as a control, is expressed as a percentage of ThOD or COD.
- In the MITI test, the oxygen uptake by a stirred solution, or suspension, of the test chemical in a mineral medium, inoculated with specially grown, unadapted micro-organisms, is measured automatically over a period of 28 days in a darkened, enclosed respirometer at 25±1° C. Evolved carbon dioxide is absorbed by soda lime. Biodegradability is expressed as the percentage oxygen uptake (corrected for blank uptake) of the theoretical oxygen uptake (ThOD). The percentage of primary biodegradability is also calculated from supplemental specific chemical analysis made at the beginning and end of incubation and, optionally, by DOC analysis.
- The purpose of the Zahn-Wellens Test is the evaluation of the potential ultimate biodegradability of water-soluble, non-volatile organic substances when exposed to relatively high concentrations of micro-organisms in a static test. The substances to be studied are used in concentrations corresponding to DOC-values in the range of 50 to 400 mg/liter or COD-values in the range of 100 to 1000 mg/liter (DOC=dissolved organic carbon; COD=chemical oxygen demand). These relatively high concentrations have the advantage of analytical reliability. Compounds with toxic properties may delay or inhibit the degradation process. In this method, the measure of the concentration of dissolved organic carbon or the chemical oxygen demand is used to assess the ultimate biodegradability of the test substance. A simultaneous use of a specific analytical method may allow the assessment of the primary biodegradation of the substance (disappearance of the parent chemical structure). The method is applicable only to those organic test substances which, at the concentration used in the test are soluble in water under the test conditions, have negligible vapor pressure under the test conditions, are not inhibitory to bacteria, are adsorbed within the test system only to a limited extent, and are not lost by foaming from the test solution.
- Activated sludge, mineral nutrients and the test material as the sole carbon source in an aqueous solution are placed together in a one to four liter glass vessel equipped with an agitator and an aerator. The mixture is agitated and aerated at 20 to 25° C. under diffuse illumination or in a dark room for up to 28 days. The degradation process is monitored by determination of the DOC (or COD) values in the filtered solution at daily or other appropriate regular time intervals. The ratio of eliminated DOC (or COD) after each interval to the value three hours after the start is expressed as percentage biodegradation and serves as the measure of the extent of degradation at this time. The result is plotted versus time to give the biodegradation curve.
- The activated sludge simulation test is used to determine the primary biodegradability of a substance in an activated sludge plant model, at a concentration of about 20 mg/liter. This allows the assessment of the primary biodegradability of the substance (disappearance of the parent chemical structure). Another purpose of the method is the determination of ultimate biodegradability by the measurement of the removal of the substance and any metabolites in an activated sludge plant model at a concentration corresponding to >12 mg DOC/liter (or approximately 40 mg COD/liter); wherein 20 mg DOC/liter seems to be optimal.
- For the determination of ultimate biodegradability, two activated sludge pilot units are run in parallel. The test substance is added to the influent (synthetic or domestic sewage) of one of the units, while the other blank unit receives the sewage alone. For the determination of primary biodegradation with specific analysis in the influent and effluent, only one unit may be used.
- The sludge growth/stabilization period is the period during which the concentration of the activated sludge suspended solids and the performance of the units' progress to a steady state under the operating conditions used.
- The running-in period is the period which lasts from the time the test substance is first added to the time when its removal reaches a plateau (relatively constant value). This period must not exceed six weeks.
- The evaluation period is a three week period, i.e., three weeks from the time that the removal of the test substance reaches a relatively constant, and usually high, value. For those substances which show little or no degradation in the first six weeks, the evaluation period is taken as the following three weeks.
- Influent without substance to be tested must pass through an aeration vessel either at the rate of one liter per hour or a rate of one-half liter per hour thereby providing a mean retention time of either three or six hours. The rate of aeration should be regulated so that the content of the vessel is kept constantly in suspension while the dissolved oxygen content is at least 2 mg/liter.
- The sludge which has accumulated around the top of the aeration vessel must be returned to the mixed liquor at least once each day by brushing or some other appropriate means.
- The effluent is collected in a second vessel for 20 to 24 hours, and a sample is taken after thorough mixing.
- In order to monitor and control the efficiency of the process, the chemical oxygen demand (COD) or the dissolved organic carbon (DOC) of the filtrate of the accumulated effluent is measured at least twice weekly, as well as that of the filtered influent (using a membrane of pore size 0.451 m, wherein the first 20 ml (approximately) of the filtrate are discarded). The reduction in COD or DOC should level off when a roughly regular daily degradation is obtained.
- The operating conditions of the running-in period are maintained and sufficient stock solution (approximately 1%) of the test material is added to the influent of the test unit so that the desired concentration of test material (approximately 10 to 20 mg DOC/liter or 40 mg COD/liter) in the sewage is obtained. This may be done by mixing the stock solution to the sewage daily or by means of a separate pumping system. This concentration may be reached progressively. If there are no toxic effects of the test substance on the activated sludge, higher concentrations may also be tested.
- The blank unit is fed only with influent without added substances. Adequate volumes of the effluents are taken for analysis and filtered through membrane filters (0.451 m), the first 20 ml (approximately) of filtrate being discarded.
- The filtered samples have to be analyzed on the same day, otherwise they must be preserved by any suitable method, for example, by using 0.05 ml of a 1% mercuric chloride (HgCl2) solution for each 10 ml of filtrate or by storing them at 2 to 4° C. up to 24 hours, or below −18° C. for longer periods.
- The running-in time, with addition of test substance, should not exceed six weeks and the evaluation period should not be shorter than three weeks, so that about 14 to 20 determinations are available for calculation of the final result.
- The activated sludge respiration inhibition test assesses the effect of a test substance on micro-organisms by measuring the respiration rate under defined conditions in the presence of different concentrations of the test substance. The purpose of this method is to provide a rapid screening method whereby substances which may adversely affect aerobic microbial treatment may be identified, and to indicate suitable non-inhibitory concentrations of test substances to be used in biodegradability tests. Two controls without the test substance are included in the test design, one at the start and the other at the end of the test series. Each batch of activated sludge should also be checked using a reference substance.
- The activated sludge respiration inhibition method is most readily applied to substances which, due to their water solubility and low volatility, are likely to remain in water. For substances with limited solubility in the test media, it may not be possible to determine the EC50. Results based on oxygen uptake may lead to erroneous conclusions if the test substance has the propensity to uncouple oxidative phosphorylation. It may be useful to have the following information to perform the test: water solubility, vapor pressure, structural formula, and the purity of the test substance.
- It is recommended that 3,5-dichlorophenol, as a known inhibitor of respiration, be used as a reference substance and tested for EC, on each batch of activated sludge as a means of checking that the sensitivity of the sludge is not abnormal.
- At least five concentrations, spaced by a constant factor preferably not exceeding 3.2, are used. At time ‘0’, 16 ml of the synthetic sewage feed are made up to 300 ml with water. 200 ml of microbial inoculum are added and the total mixture (500 ml) poured into a first vessel (first control C1). The test vessels should be aerated continuously so as to ensure that the dissolved O2 does not fall below 2.5 mg/liter and that, immediately before the measurement of the respiration rate, the O2 concentration is about 6.5 mg/liter.
- At time ‘15 minutes’ (15 minutes is an arbitrary, but convenient, interval) the above is repeated, except that 100 ml of the test substance stock solution are added to the 16 ml of synthetic sewage before adding water to 300 ml and microbial inoculum to make a volume of 500 ml. This mixture is then poured into a second vessel and aerated as above. This process is repeated at 15-minute intervals with different volumes of the test substance stock solution to give a series of vessels containing different concentrations of the test substance.
- Finally, a second control is prepared (C2). After three hours the pH is recorded, and a well-mixed sample of the contents of the first vessel is poured into the measuring apparatus and the respiration rate is measured over a period of up to 10 minutes. This determination is repeated on the contents of each vessel at 15-minute intervals, in such a way that the contact time in each vessel is three hours. The reference substance may be tested on each batch of microbial inoculum in the same way.
- The modified SCAS test is used to evaluate the potential ultimate biodegradability of water-soluble, non-volatile organic substances when exposed to relatively high concentrations of micro-organisms over a long time period. The viability of the microorganisms is maintained over this period by daily addition of a settled sewage feed.
- The conditions provided by the test are highly favorable to the selection and/or adaptation of microorganisms capable of degrading the test compound, however the procedure may also be used to produce acclimatized inocula for use in other tests.
- According to the method, the measure of the concentration of dissolved organic carbon is used to assess the ultimate biodegradability of the test substances. It is preferable to determine DOC after acidification and purging rather than as the difference of Ctotal-Cinorganic.
- The method is applicable only to those organic test substances which, at the concentration used in the test are soluble in water (at least 20 mg dissolved organic carbon/liter), have negligible vapor pressure, are not inhibitory to bacteria, do not significantly adsorb within the test system, and are not lost by foaming from the test solution. The organic carbon content of the test substance must be established prior to running the test.
- Activated sludge from a sewage treatment plant is placed in a semi-continuous activated sludge (SCAS) unit. The test compound and settled domestic sewage are added, and the mixture is aerated for 23 hours. The aeration is then stopped, the sludge allowed to settle, and the supernatant liquor is removed. The sludge remaining in the aeration chamber is then mixed with a further aliquot of test compound and sewage and the cycle is repeated.
- Biodegradation is established by determining the dissolved organic carbon content of the supernatant liquor. This value is compared with that found for the liquor obtained from a control tube dosed with settled sewage only.
- Ideally, the dissolved organic carbon in the supernatant liquors is determined daily, although less frequent analyses may be used. Before analysis the liquors are filtered through washed 0.45 μm membrane filters or centrifuged. Membrane filters are suitable if it is assured that they neither release carbon nor absorb the substance in the filtration step. The temperature of the sample must not exceed 40° C. while it is in the centrifuge. The length of the test for compounds showing little or no biodegradation is indeterminate, but experience suggests that this should be at least 12 weeks in general, but not longer than 26 weeks.
- Bioaccumulation, or bioconcentration, is defined as the increase in concentration of a test substance in or on an organism or specified tissues thereof relative to the concentration of the test substance in the surrounding medium. As used herein, the terms “bioaccumulation” and “bioconcentration” are used interchangeably to refer to the same criteria. The bioconcentration factor (“BCF”) is calculated as the concentration of test substance in an organism (or specified tissues thereof) divided by the concentration of the substance in the surrounding medium. Both the uptake and depuration of substances by organisms, and the respective rates thereof, are considered in calculating bioaccumulation.
- One predictive factor for bioaccumulation may be a substance's octanol-water partition coefficient (Pow). The Pow is a substance's solubility in n-octanol and water at equilibrium. The logarithm of Pow may be an indication of a substance's potential for bioaccumulation in aquatic organisms.
- The criterion for acceptable bioaccumulation is defined in European Council Directive 76/548/EEC Annex XIII section 1.2, which is herein incorporated by reference, as a substance having a bioconcentration factor higher than 2000. The bioconcentration factor of a material may be determined by test procedures set forth in European Council Directive 76/548/EEC Annex V, section C.13 flow-through fish test, which is incorporated in full herein by reference.
- The flow-through fish test consists of two phases: the exposure (uptake) phase and the post-exposure (depuration) phase. During the uptake phase, separate groups of fish of one species are exposed to at least two concentrations of the test substance. They are then transferred to a medium free of the test substance for the depuration phase. A depuration phase is always necessary unless uptake of the substance during the uptake phase has been insignificant (e.g., the BCF is less than 10). The concentration of the test substance in/on the fish (or specified tissue thereof) is followed through both phases of the test. In addition to the two test concentrations, a control group of fish is held under identical conditions except for the absence of the test substance, to relate possible adverse effects observed in the bioconcentration test to a matching control group and to obtain background concentrations of test substance.
- The uptake phase is run for 28 days unless it is demonstrated that equilibrium has been reached earlier. The depuration period is then begun by transferring the fish to the same medium but without the test substance in another clean vessel. Where possible the bioconcentration factor is calculated preferably both as the ratio (BCFss) of concentration of the fish (Ct) and in the water (Cw) at apparent steady-state and as a kinetic bioconcentration factor, BCFK as the ratio of the rate constants of uptake (k1) and depuration (k2) assuming first-order kinetics.
- If a steady-state is not achieved within 28 days, the uptake phase should be extended until steady-state is reached, or 60 days, whichever comes first; the depuration phase is then begun.
- The BCF is expressed as a function of the total wet weight of the fish. However, for special purposes, specified tissues or organs (e.g. muscle, liver), may be used if the fish are sufficiently large or the fish may be divided into edible (fillet) and non-edible (viscera) fractions. Since, for many organic substances, there is a clear relationship between the potential for bioconcentration and lipophilicity, there is also a corresponding relationship between the lipid content of the test fish and the observed bioconcentration of such substances. Thus, to reduce this source of variability in test results for those substances with high lipophilicity (i.e. with log Pow>3), bioconcentration should be expressed in relation to lipid content in addition to whole body weight.
- The lipid content is determined on the same biological material as is used to determine the concentration of the test substance, when feasible.
- The toxicity criterion is defined in European Council Directive 76/548/EEC Annex XIII section 1.3, which is herein incorporated by reference, as a substance having a long-term no-observed effect concentration (NOEC) for marine or freshwater organisms less than 0.01 mg/L. Substances that are classified as carcinogenic, mutagenic, or toxic for reproduction may also be considered as toxic.
- The toxicity of a material may be determined by test procedures, such as the acute toxicity for fish test, the acute toxicity for Daphnia test, and the algal inhibition test, set forth in European Council Directive 76/548/EEC Annex V, sections C.1, C.2, and C.3, which are incorporated in full herein by reference. These acute tests may be used for first cut screening (if LC50<1 ppm), however chronic toxicity tests (usually in Daphnia but also other organisms) may be used for definitive Toxicity.
- The purpose of the acute toxicity for fish test is to determine the acute lethal toxicity of a substance to fish in fresh water. It is desirable to have, as far as possible, information on the water solubility, vapor pressure, chemical stability, dissociation constants, and biodegradability of the substance to help in the selection of the most appropriate test method (static, semi-static, or flow-through) for ensuring satisfactorily constant concentrations of the test substance over the period of the test.
- Additional information (for instance structural formula, degree of purity, nature and percentage of significant impurities, presence and amounts of additives, and n-octanol/water partition coefficient) should be taken into consideration in both the planning of the test and interpretation of the results.
- Acute toxicity is the discernible adverse effect induced in an organism within a short time (days) of exposure to a substance. In the present test, acute toxicity is expressed as the median lethal concentration (LC50), the concentration in water which kills 50% of a test batch of fish within a continuous period of exposure which must be stated.
- Three types of procedure may be used. The static test is a toxicity test in which no flow of test solution occurs. The solutions remain unchanged throughout the duration of the test. The semi-static test is a test without flow of test solution, but with regular batchwise renewal of test solutions after prolonged periods (e.g. 24 hours). The flow-through test is a toxicity test in which the water is renewed constantly in the test chambers, the chemical under test being transported with the water used to renew the test medium.
- At least 7 fish per concentration being tested are exposed to the substance for a duration of 96 hours in tanks of suitable capacity. At least five concentrations differing by a constant factor not exceeding 2.2, and as far as possible spanning the range of 0 to 100% mortality, should be tested for each substance. The fish may not be fed during the test. The fish are inspected after the first 2 to 4 hours and afterward at least at 24-hour intervals. Fish are considered dead if touching of the caudal peduncle produces no reaction, and no breathing movements are visible. Dead fish are removed when observed and mortalities are recorded. Records are kept of visible abnormalities (e.g. loss of equilibrium, changes in swimming behavior, respiratory function, pigmentation, etc.). Measurements of pH, dissolved oxygen and temperature must be carried out daily.
- The acute toxicity for Daphnia test is similar to the acute toxicity for fish test, but the purpose is to determine the median effective concentration for immobilization (EC50) of a substance to Daphnia in fresh water. As with the toxicity for fish test, it is desirable to have, as far as possible, information on the water solubility, vapor pressure, chemical stability, dissociation constants, and biodegradability of the test substance before starting the test. Additional information (for instance structural formula, degree of purity, nature and percentage of significant impurities, presence and amount of additives, and n-octanol/water partition coefficient) should be taken into consideration in both the planning of the test and interpretation of the results.
- The Daphnia are exposed to the test substance added to water at a range of concentrations for 48 hours. Under otherwise identical test conditions, and an adequate range of test substance concentrations, different concentrations of a test substance exert different average degrees of effect on the swimming ability of Daphnia. Different concentrations result in different percentages of Daphnia being no longer capable of swimming at the end of the test. The concentrations causing zero or 100% immobilization are derived directly from the test observations whereas the 48-hour EC50 may be determined by calculation if possible. A static system is used for this method, hence test solutions are not renewed during the exposure period.
- Stock solutions of the required strength are prepared by dissolving the substance in deionized water or water. The chosen test concentrations are prepared by dilution of the stock solution. If high concentrations are tested, the substance may be dissolved in the dilution water directly.
- The substances are normally only tested up to the limit of solubility. For some substances (e. g. substances having low solubility in water, or high Pow, or those forming stable dispersion rather than true solution in water), it is acceptable to run a test concentration above the solubility limit of the substance to ensure that the maximum soluble/stable concentration has been obtained. It is important, however, that this concentration will not otherwise disturb the test system (e. g. film of the substance on the water surface preventing the oxygenation of the water, etc.).
- Daphnia magna is the preferred test species although Daphnia pulex is also permitted. The test animals shall be less than 24 hours old at the beginning of the test, laboratory bred, free from overt disease, and with a known history (e.g. breeding, any pretreatments, etc.).
- The Daphnia are exposed to the substance for 48 hours. At least 20 animals at each test concentration, preferably divided into four batches of five animals each or two batches of 10, are required. At least 2 ml of test solutions should be provided for each animal. The test solution should be prepared immediately before introduction of the Daphnia, preferably without using any solvent other than water. The concentrations are made up in a geometric series, at a concentration ratio not exceeding 2.2. Concentrations sufficient to give 0 and 100% immobilization after 48 hours and a range of intermediate degrees of immobilizations permitting calculation of the 48 hour EC50 should be tested together with controls. The test temperature should be between 18 and 22° C., but for each single test it should be constant within ±1° C. The test solutions must not be bubble-aerated, and the animals may not be fed during the test. The pH and the oxygen concentration of the controls and of all the test concentrations should be measured at the end of the test; the pH of the test solutions should not be modified. Volatile compounds should be tested in completely filled closed containers, large enough to prevent lack of oxygen. The Daphnia are inspected at least after 24 hours exposure and again after 48 hours.
- For each period where observations were recorded (24 and 48 h), the percentage mortality is plotted against concentration on logarithmic-probability paper. In those cases where the slope of the concentration/percentage response curve is too steep to permit calculation of the EC50, a graphical estimate of this value is sufficient. When two immediately consecutive concentrations at a ratio of 2.2 give only 0 and 100% immobilization these two values are sufficient to indicate the range within which the EC50 falls.
- The algal inhibition test may be used to determine the effects of a substance on the growth of a unicellular green algal species. Relatively brief (72 hours) tests may assess effects over several generations. This method may be adapted for use with several different unicellular algal species. The method is most easily applied to water-soluble substances which, under the conditions of the test, are likely to remain in the water.
- Exponentially-growing cultures of selected green algae are exposed to various concentrations of the test substance over several generations under defined conditions. The test solutions are incubated for a period of 72 hours, during which the cell density in each solution is measured at least every 24 hours. The inhibition of growth in relation to a control culture is determined.
- Test cultures containing the desired concentrations of test substance and the desired quantity of algal inoculum are prepared by adding aliquots of stock solutions of the test substance to suitable amounts of pre-prepared algal cultures.
- The culture flasks are shaken and placed in the culturing apparatus. The algal cells are kept in suspension by shaking, stirring, or bubbling with air, in order to improve gas exchange and reduce pH variation in the test solutions. The cultures are maintained at a temperature in the range of 21 to 25° C., controlled at ±2° C.
- The cell density in each flask is determined at least at 24, 48 and 72 hours after the start of the test. Filtered algal medium containing the appropriate concentration of the test chemical is used to determine the background when using cell density measurements other than direct counting methods.
- A suitable lubricant or lubricant additive composition, according to the present disclosure, may use tribologically functional components that may not exhibit persistence, bioaccumulation, or toxicity when tested according to the procedures set forth above. Accordingly, a tribologically functional component that is found to be persistent, bioaccumulative, and toxic may not be included in lubricating formulations of the present disclosure.
- Acceptable tribologically functional components may include one or more components functionally described as: antioxidants, dispersants, detergents, viscosity index improvers, friction modifiers, pour point depressants, antiwear agents, extreme pressure agents, rust inhibitors, corrosion inhibitors, foam inhibitors, seal swell additives, and diluents. Such components may be deemed acceptable for use in compositions of the present disclosure upon receiving a passing evaluation in testing for persistence, bioaccumulation, or toxicity using the test methods and/or criteria described above.
- Suitable embodiments of the present disclosure may incorporate one or more of the following substances: a sulfurized neopentyl glycol phosphate, a succinimide, a fatty amine ethoxylate, an oleamide, a dodecyl succinic acid, an adipate, a sulfurized isobutylene, an alkylthiadiazole, a polyalphaolefin, an alkylpolymethacrylate comprising less than 0.3% weight of unreacted monomer, and/or an olefin copolymer or multifunctional olefin copolymer comprising less than 0.3% weight of unreacted monomer.
- An exemplary fluid composition containing tribologically functional components, wherein each component is selected from non-persistent, non-bioaccumulative, and non-toxic materials is illustrated in the following table.
-
TABLE 1 Conventional Additives Example 1 Example 2 (Wt. % based on (Wt. % based on Component finished fluid) finished fluid) Dispersant 0-5.0 0.5-4.5 Detergent 0-15 0.1-10 Antioxidant 0-5.0 0.01-3.0 Corrosion inhibitor 0-5.0 0-2.0 Antiwear agent and/or 0-7.0 0.1-5.0 Extreme pressure agent Antifoaming agent 0-5.0 0.001-0.15 Pour point depressant 0-5.0 0.01-1.5 Viscosity modifier 0-12.00 0.01-10.0 Friction modifier 0-1.25 0.05-1.0 Seal swell agent 0-15 1.5-10 Process oil 0-10.0 0.1-5.0 Base oil Balance Balance - The conventional additives indicated in Table I may be combined with one or more base oils selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. Such base oil groups are as follows:
-
TABLE 2 Base Oil Groups Base Oil Sulfur Saturates Viscosity Group1 (wt. %) (wt. %) Index Group I >0.03 and/or <90 80 to 120 Group II <0.03 and >90 80 to 120 Group III <0.03 and >90 >120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV 1Groups I-III are mineral oil base stocks. - In addition to the above conventional base oils, the base oils may also be selected from gas-to-liquid (GTL) base oils. GTL base oils may be made by a process, such as the process described in U.S. Pat. No. 6,497,812, the disclosure of which is incorporated herein by reference. The GTL process includes two primary steps, (1) conversion of a material existing in the gaseous state into a synthesis gas consisting primarily of carbon monoxide and hydrogen, and the conversion of the synthesis gas into a synthetic crude in a reaction based on a Fischer-Tropsch reaction. Direct conversion of gaseous hydrocarbon sources using various catalysts and/or catalytic systems may also be used as the GTL process.
- Base oils derived from a gaseous source, hereinafter referred to as “GTL base oils,” typically have a viscosity index of greater than about 130, a sulfur content of less than about 0.3 percent by weight, contain greater than about 90 percent by weight saturated hydrocarbons (isoparaffins), typically from about 95 to about 100 wt. % branched aliphatic hydrocarbons, have a pour point of below -15 to −20° C., and have a NOACK volatility of less than about 15 weight percent, and in another embodiment a NOACK volatility of less than about 10 weight percent. Other characteristics of the GTL base oil may be within the range of conventional lubricant base oils. The base oil component of the lubricant composition, as described herein, may include from about 5 to about 100 percent by weight of the GTL base oil with the balance of the base oil component being a conventional base oil. Because of the characteristically high content of branched alkanes in the GTL base oils, finished lubricant formulations made with such GTL base oils include a solubilizing agent that aids in solubilizing additives and degradation products in the finished lubricant formulation. The GTL base oils may be used alone or may be mixed with any one or more of the other base oils listed in Table II above.
- Viscosity modifiers for use in finished lubricant compositions as described herein may comprise an olefin (co)polymer(s). A suitable viscosity modifier may include a mixture of olefin (co)polymers. A fully formulated lubricant composition as described herein may contain 0.1 to 40 wt. % olefin (co)polymer.
- The olefin (co)polymer which may be used is a homopolymer, copolymer, or terpolymer resulting from the polymerization of C2-C10 olefins having a number average molecular weight of from about 1,000 to about 10,000, for example, about 1,000 to about 3,000, as determined by gel permeation chromatography (GPC). The C2-C10 olefins include ethylene, propylene, 1-butene, isobutylene, 2-butene, isoprene, 1-octene, and 1-decene. Exemplary (co)polymers include polypropylene, polyisobutylene, ethylene/propylene copolymers, styrene/isoprene copolymers, and 1-butene/isobutylene copolymers, and mixtures of the polymers thereof.
- The dispersants useful in the lubricant compositions described herein include at least one oil-soluble ashless dispersant having a basic nitrogen and/or at least one hydroxyl group in the molecule. Suitable dispersants include alkenyl succinimides, alkenyl succinic acid esters, alkenyl succinic ester-amides, and Mannich bases.
- The alkenyl succinimides in which the succinic group contains a hydrocarbyl substituent containing at least 30 carbon atoms are described for example in U.S. Pat. Nos. 3,172,892; 3,202,678; 3,216,936; 3,219,666; 3,254,025; 3,272,746; and 4,234,435. Such alkenyl succinimides may be derived from polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from about 200 to about 2100 as determined by gel permeation chromatography. Alkenyl succinic acid esters and diesters of polyhydric alcohols containing 2-20 carbon atoms and 2-6 hydroxyl groups can be used in forming the phosphorus-containing ashless dispersants. Representative examples are described in U.S. Pat. Nos. 3,331,776; 3,381,022; and 3,522,179. The alkenyl succinic portion of these esters corresponds to the alkenyl succinic portion of the succinimides described above.
- Suitable alkenyl succinic ester-amides for forming phosphorylated ashless dispersant are described for example in U.S. Pat. Nos. 3,184,474; 3,576,743; 3,632,511; 3,804,763; 3,836,471; 3,862,981; 3,936,480; 3,948,800; 3,950,341; 3,957,854; 3,957,855; 3,991,098; 4,071,548; and 4,173,540.
- The Mannich base dispersants are usually a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). Examples of Mannich condensation products, and methods for their production are described in U.S. Pat. Nos. 2,459,112; 2,962,442; 2,984,550; 3,036,003; 3,166,516; 3,236,770; 3,368,972; 3,413,347; 3,442,808; 3,448,047; 3,454,497; 3,459,661; 3,493,520; 3,539,633; 3,558,743; 3,586,629; 3,591,598; 3,600,372; 3,634,515; 3,649,229; 3,697,574; 3,703,536; 3,704,308; 3,725,277; 3,725,480; 3,726,882; 3,736,357; 3,751,365; 3,756,953; 3,793,202; 3,798,165; 3,798,247; 3,803,039; 3,872,019; 3,904,595; 3,957,746; 3,980,569; 3,985,802; 4,006,089; 4,011,380; 4,025,451; 4,058,468; 4,083,699; 4,090,854; 4,354,950; and 4,485,023.
- The various types of ashless dispersants described above can be phosphorylated by procedures described in U.S. Pat. Nos. 3,184,411; 3,342,735; 3,403,102; 3,502,607; 3,511,780; 3,513,093; 3,513,093; 4,615,826; 4,648,980; 4,857,214 and 5,198,133.
- The dispersants of the present disclosure may be boronated. Methods for boronating (borating) the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; and 4,652,387.
- Suitable procedures for phosphorylating and boronating ashless dispersants such as those referred to above are set forth in U.S. Pat. Nos. 4,857,214 and 5,198,133.
- The amount of ashless dispersant on an “active ingredient basis” (i.e., excluding the weight of impurities, diluents and solvents typically associated therewith) is generally within the range of about 0.5 to about 7.5 weight percent (wt %), typically within the range of about 0.5 to 5.0 wt %, notably within the range of about 0.5 to about 3.0 wt %, and usually within the range of about 2.0 to about 3.0 wt %, based on the finished oil.
- For certain applications it may be desirable to use one or more friction modifiers in preparing the finished lubricating oil formulation. Suitable friction modifiers include such compounds as aliphatic fatty acid amides, aliphatic carboxylic acids, aliphatic carboxylic esters, aliphatic carboxylic ester-amides, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, organic molybdenum compounds, or mixtures thereof. The aliphatic group typically contains at least about eight carbon atoms so as to render the compound suitably oil soluble. Also suitable are aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia.
- The use of friction modifiers is optional. However, in applications where friction modifiers are used, finished lubricant formulations may contain up to about 1.25 wt %, and usually from about 0.05 to about 1 wt % of one or more friction modifiers.
- Finished lubricant compositions as described herein typically will contain some inhibitors. The inhibitor components serve different functions including rust inhibition, corrosion inhibition and foam inhibition. The inhibitors may be introduced in a pre-formed additive package that may contain in addition one or more other components used in the finished lubricant compositions. Alternatively these inhibitor components may be introduced individually or in various sub-combinations. While amounts of inhibitors used may be varied within reasonable limits, the finished lubricant compositions of this disclosure will typically have a total inhibitor content in the range of about 0 to about 15 wt %, on an “active ingredient basis,” i.e., excluding the weight of inert materials such as solvents or diluents normally associated therewith.
- Foam inhibitors form one type of inhibitor suitable for use as an inhibitor component in the finished lubricant compositions. Useful foam inhibitors include silicones, surfactants, and the like.
- Copper corrosion inhibitors constitute another class of additives suitable for inclusion in the finished lubricant compositions. Such compounds include thiazoles, triazoles and thiadiazoles. Examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5-hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)-1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles. In one embodiment the compounds are the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole. The 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
- Rust or corrosion inhibitors comprise another type of inhibitor additive for use in finished lubricant compositions. Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid. Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like.
- Another useful type of rust inhibitor for use in the disclosed lubricant compositions is comprised of the alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like. Also useful are the half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols. Other suitable rust or corrosion inhibitors include acid phosphates; ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
- Antioxidants may also be present in the finished lubricant formulations of the disclosure. Suitable antioxidants include phenolic antioxidants, aromatic amine antioxidants, and sulfurized phenolic antioxidants, among others. Examples of phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4′-methylenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-methyl-6-tert-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4′-thiobis(2-methyl-6-tert-butylphenol). N,N′-di-sec-butyl-p-phenylenediamine, 4-isopropylaminodiphenyl amine, phenyl-naphthyl amine, phenyl-naphthyl amine, and ring-alkylated diphenylamines serve as examples of aromatic amine antioxidants. In one embodiment, the antioxidants are the sterically hindered tertiary butylated phenols, the ring alkylated diphenylamines, and combinations thereof.
- Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life for lubricant formulations used in crankcase applications. Detergents generally comprise a polar head with a long hydrophobic tail where the polar head comprises a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal, in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as measured by ASTM D2896) of from 0 to less than 150. Large amounts of a metal base may be included by reacting an excess of a metal compound such as an oxide or hydroxide with an acidic gas such as carbon dioxide. The resulting overbased detergent comprises micelles of neutralized detergent surrounding a core of inorganic metal base (e.g., hydrated carbonates). Such overbased detergents may have a TBN of 150 or greater, and typically ranging from 250 to 450 or more.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, and salicylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present. Mixtures of calcium and/or magnesium with sodium are also useful. Particularly convenient metal detergents are neutral and overbased calcium or magnesium sulfonates having a TBN of from 20 to 450 TBN, neutral and overbased calcium or magnesium phenates and sulfurized phenates having a TBN of from 50 to 450, and neutral or overbased calcium or magnesium salicylates having a TBN of from 130 to 350. Mixtures of such salts may also be used. When used, the presence of at least one overbased detergent is desirable.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from 9 to 80 or more carbon atoms, typically from 16 to 60 carbon atoms per alkyl substituted aromatic moiety.
- The oil-soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulphides, hydrosulfides, nitrates, borates and ethers of the alkali metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from 100 to 220 wt % (desirably at least 125 wt %) of that stoichiometrically required.
- Metal salts of alkyl phenols and sulfurized alkyl phenols are prepared by reaction with an appropriate metal compound such as an oxide, hydroxide or alkoxide, and overbased products may be obtained by methods well known in the art. Sulfurized alkyl phenols may be prepared by reacting an alkyl phenol with sulphur or a sulphur-containing compound such as hydrogen sulphide, sulphur monohalide or sulphur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulphur-containing bridges. The starting alkyl phenol may contain one or more alkyl substituents. These may be branched or unbranched, and depending on the number of substituents may have from 1 to 30 carbon atoms (provided the resulting alkyl phenol is oil-soluble), with from 9 to 18 carbon atoms being particularly suitable. Mixtures of alkyl phenols with different alkyl substituents may be used.
- Metal salts of carboxylic acids (including salicylic acids) may be prepared in a number of ways: for example, by adding a basic metal compound to a reaction mixture comprising the carboxylic acid (which may be part of a mixture with another organic acid such as a sulfonic acid) or its metal salt and promoter, and removing free water from the reaction mixture to form an metal salt, then adding more basic metal compound to the reaction mixture and removing free water from the reaction mixture. The carboxylate is then overbased by introducing the acidic material such as carbon dioxide to the reaction mixture while removing water. This can be repeated until a product of the desired TBN is obtained.
- The overbasing process is well known in the art and typically comprises reacting acidic material with a reaction mixture comprising the organic acid or its metal salt, a metal compound. That acidic material may be a gas such as carbon dioxide or sulphur dioxide, or it may be boric acid. Processes for the preparation of overbased alkali metal sulfonates and phenates are described in U.S. Pat. No. 4,839,094. A process suitable for overbased sodium sulfonates is described in EP-A-235929. A process for making overbased salicylates is described in U.S. Pat. No. 5,451,331.
- The overbased metal detergents may also be borated. The boron may be introduced by using boric acid as the acidic material used in the overbasing step. However a desirable alternative is to borate the overbased product after formation by reacting a boron compound with the overbased metal salt. Boron compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids. Generally, the overbased metal salt may be reacted with a boron compound at from 50° C. to 250° C., in the presence of a solvent such as mineral oil or xylene. The borated, overbased alkali metal salt comprises at least 0.5%, and typically from 1% to 5%, by weight boron.
- The amount of detergent in a finished lubricant composition according to the disclosed embodiments may range from about 0.1 to about 15 percent by weight based on the total weight of the finished lubricant composition.
- Various types of sulfur-containing antiwear and/or extreme pressure agents may be used in the finished lubricant formulations described herein. Examples include dihydrocarbyl polysulfides; sulfurized olefins; sulfurized fatty acid esters of both natural and synthetic origins; trithiones; sulfurized thienyl derivatives; sulfurized terpenes; sulfurized oligomers of C2-C8 monoolefins; and sulfurized Diels-Alder adducts such as those disclosed in U.S. Pat. No. Re 27,331. Specific examples include sulfurized polyisobutene, sulfurized isobutylene, sulfurized diisobutylene, sulfurized triisobutylene, dicyclohexyl polysulfide, diphenyl polysulfide, dibenzyl polysulfide, dinonyl polysulfide, and mixtures of di-tert-butyl polysulfide such as mixtures of di-tert-butyl trisulfide, di-tert-butyl tetrasulfide and di-tert-butyl pentasulfide, among others. Combinations of such categories of sulfur-containing antiwear and/or extreme pressure agents may also be used, such as a combination of sulfurized isobutylene and di-tert-butyl trisulfide, a combination of sulfurized isobutylene and dinonyl trisulfide, a combination of sulfurized tall oil and dibenzyl polysulfide.
- Use may also be made of a wide variety of phosphorus-containing oil-soluble antiwear and/or extreme pressure additives such as the oil-soluble organic phosphates, organic phosphites, organic phosphonates, organic phosphonites, etc., and their sulfur analogs. Also useful as the phosphorus-containing antiwear and/or extreme pressure additives that may be used in the disclosed lubricant compositions include those compounds that contain both phosphorus and nitrogen. Phosphorus-containing oil-soluble antiwear and/or extreme pressure additives useful in the disclosed embodiments include those compounds taught in U.S. Pat. Nos. 5,464,549; 5,500,140; and 5,573,696, the disclosures of which are hereby incorporated by reference.
- The phosphorus-containing antiwear agents may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof. For example, phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
- The phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 10 to about 500 parts per million by weight of phosphorus in the finished lubricant composition. As a further example, the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the finished lubricant composition.
- One such type of phosphorus- and nitrogen-containing antiwear and/or extreme pressure additives which may be used are the phosphorus- and nitrogen-containing compositions of the type described in G.B. 1,009,913; U.S. Pat. No. 3,197,405 and/or U.S. Pat. No. 3,197,496. In general, these compositions are formed by forming an acidic intermediate by the reaction of a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus acid, phosphorus oxide or phosphorus halide, and neutralizing a substantial portion of said acidic intermediate with an amine or hydroxy-substituted amine. Other types of phosphorus- and nitrogen-containing antiwear and/or extreme pressure additive that may be used in the lubricant compositions described herein include the amine salts of hydroxy-substituted phosphetanes or the amine salts of hydroxy-substituted thiophosphetanes and the amine salts of partial esters of phosphoric and thiophosphoric acids.
- The lubricant additive package or lubricant compositions disclosed herein may also contain one or more pour point depressants. Pour point depressants may be used in compositions described herein to improve low temperature properties of the compositions. Examples of useful pour point depressants are polyacrylamides; condensation products of haloparaffin waxes and aromatic compounds; vinyl carboxylate polymers; and terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers. Pour point depressants useful for the purposes of this disclosure and techniques for their preparation are described in U.S. Pat. Nos. 2,387,501; 2,015,748; 2,655,479; 1,815,022; 2,191,498; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 which are herein incorporated by reference for their relevant disclosures.
- In one embodiment, the pour point depressant is represented by the general structural formula: Ar(R)—(Ar1(R1))—Ar2, wherein the Ar, Ar1 and Ar2 are aromatic groups of up to about 12 carbon atoms, (R) and (R1) are independently an alkylene group containing 1 to 100 carbon atoms with the proviso that at least one of (R) or (R1) is CH2, and n is 0 to about 1000 with the proviso that if n is 0, then (R) is CH2 and at least one aromatic moiety has at least one substituent, the substituents being selected from the group consisting of a substituent derived from an olefin containing about 8 to about 30 carbon atoms, and a substituent derived from a chlorinated hydrocarbon usually containing about 8 to about 50 carbon atoms and about 2.5 chlorine atoms for each 24 carbon atoms.
- Seal swell agents may be included in the finished lubricant compositions of the disclosed embodiments particularly when the lubricant compositions are used as power transmission fluids. Suitable seal swell agents may be selected from oil-soluble diesters, oil-soluble sulfones, silicon containing organic compounds, and mixtures thereof. Generally speaking the most suitable diesters include the adipates, azelates, and sebacates of C8-C13 alkanols (or mixtures thereof), and the phthalates of C4-C13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) may also be used. Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid. Other esters which may give generally equivalent performance are polyol esters.
- Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587. Typically these products are employed at levels in the range of about 0.25 to about 1 wt % in the finished transmission fluid.
- In one embodiment, the seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid. The adipates and sebacates should be used in amounts in the range of from about 4 to about 15 wt % in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt %. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
- A wide variety of thickening agents may be used for providing lubricants and greases containing the base oil component. Included among the thickening agents are alkali and alkaline earth metal soaps of fatty acids and fatty materials having from about 12 to about 30 carbon atoms per molecule. The metal cations of the metal soaps are typified by sodium, lithium, calcium, magnesium, and barium. Fatty materials are illustrated by stearic acid, hydroxystearic acid, stearin, cottonseed oil acids, oleic acid, palmitic acid, myristic acid and hydrogenated fish oils.
- Other thickening agents include salt and salt-soap complexes such as calcium stearate-acetate (U.S. Pat. No. 2,197,263), barium stearate acetate (U.S. Pat. No. 2,564,561), calcium stearate-caprylate-acetate complexes (U.S. Pat. No. 2,999,065), calcium-caprylate-acetate (U.S. Pat. No. 2,999,066), and calcium salts and soaps of low-, intermediate-, and high-molecular weight acids and of nut oil acids. Another group of thickening agents comprises substituted ureas, phthalocyanines, indanthrene, pigments such as perylimides, pyromellitdiimides, ammeline, and hydrophobic clays.
- Some of the additive components described above may be supplied in the form of solutions of active ingredient(s) in an inert diluent or solvent, such as a diluent oil. Unless expressly stated to the contrary, the amounts and concentrations of each additive component are expressed in terms of active additive, i.e., the amount of solvent or diluent that may be associated with such component as received is excluded.
- It will be appreciated that the individual components employed may be separately blended into the base fluid or may be blended therein in various sub-combinations, if desired. Ordinarily, the particular sequence of such blending steps is not crucial. Moreover, such components may be blended in the form of separate solutions in a diluent. It may be preferable, however, to blend the additive components used in the form of a concentrate, as this simplifies the blending operations, reduces the likelihood of blending errors, and takes advantage of the compatibility and solubility characteristics afforded by the overall concentrate.
- Additive concentrates may thus be formulated to contain all of the additive components and if desired, some of the base oil component, in amounts proportioned to yield finished fluid blends consistent with the concentrations described above. In most cases, the additive concentrate will contain one or more diluents such as light mineral oils, to facilitate handling and blending of the concentrate. Thus concentrates containing up to about 50 wt. % of one or more diluents or solvents may be used, provided the solvents are not present in amounts that interfere with the low and high temperature and flash point characteristics and the performance of the finished power transmission fluid composition. In this regard, the additive components used pursuant to this disclosure may be selected and proportioned such that an additive concentrate or package formulated from such components will have a flash point of about 170° C. or above, using the ASTM D-92 test procedure.
- Such additive concentrates are suitably devoid of materials or components that are bioaccumulative, toxic, and persistent as indicated by the tests described above. Examples of such materials, include but are not limited to, certain alkanes, alkoxy alkylamines, alkyl methacrylates, alkyl phenols, alkylphenols, polyoxyalkyl alkylamines, aryl amines, aryl phosphites, branched alkyl phenols, branched alkyl polysulfides, branched long-chain alkyl amines, long-chain alkenyl alkyl amine, long-chain alkenyl alkylene amines, long-chain alkenyl amines, long-chain alkoxylated amines, long-chain alkyl alkoxylated alcohols, long-chain alkyl alkylene amines, long-chain alkyl amines, long-chain alkyl methacrylates, long-chain alkyoxylated amines, long-chain hydroxyalkyl amines, polyaryls, and polyolefin polyamines.
- Lubricating fluids of the embodiments herein may be formulated to provide lubrication and/or enhanced friction performance properties and/or improved low temperature viscometric properties for various applications. A lubricant composition according to the present disclosure may be used for lubricating a machine part.
- Such fluids may be suitable for automatic or manual transmissions, including step automatic transmissions, continuously variable transmissions (chain, belt, or disk type), semi-automatic transmissions, automated manual transmissions, toroidal transmissions, and dual clutch transmissions. Example automatic transmissions include four-, five-, six-, and seven-speed transmissions. Further, the lubricating fluids of the present disclosure also are suitable for use in transmissions with an electronically controlled converter clutch, a slipping torque converter, a continuously slipping torque converter clutch, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches.
- A further aspect of the present disclosure may be directed specifically toward providing a fluid for a transmission. Exemplary transmissions may include those described in “Transmission and Driveline Design”, SAE Paper Number SP-108, Society of Automotive Engineers, Warrendale Pa. 1995; “Design of Practices: Passenger Car Automotive Transmissions”, The Third Edition, SAE Publication # AE-18, Society of Automotive Engineers, Warrendale PA 1994; and “Automotive Transmission Advancements”, SAE Paper Number SP-854, Society of Automotive Engineers, Warrendale Pa. 1991.
- Lubricating fluids according to the present disclosure may also be used in gear applications, such as industrial gear applications, automotive gear applications, axles, and stationary gearboxes. Gear-types may include, but are not limited to, spur, spiral, worm, rack and pinion, involute, bevel, helical, planetary, and hypoid gears.
- The presently disclosed lubricating fluids may be used in axles, transfer cases, differentials, such as straight differentials, turning differentials, limited slip differentials, clutch-type differentials, and locking differentials, and the like.
- Lubricating fluids of the present disclosure may be used in various engine applications, including but not limited to, internal combustion engines, rotary engines, gas turbine engines, four-stroke engines, and two-stroke engines. Engine components that may be lubricated with presently disclosed additives may include pistons, bearings, crankshafts, and/or camshafts.
- Further, lubricating fluids of the present disclosure may also be useful in metalworking applications.
- A further aspect of the present disclosure may provide lubricant composition comprising a lubricant additive as described herein, wherein the lubricant composition is suitable for lubricating moving components or parts of a truck, an automobile, and/or a piece of mechanized farm equipment, such as a tractor or reaper.
- In another aspect, lubricant additive compositions of the present disclosure may further be useful in grease compositions, or in lubricants for cutting, quenching, or rolling applications.
- In one embodiment, a composition of the present disclosure may be manufactured in the United States of America or Canada.
- In a further embodiment, a composition of the present disclosure may be transported to Europe by ship, air, rail, or truck.
- At numerous places throughout this specification, reference has been made to a number of U.S. Patents. All such cited documents are expressly incorporated in full into this disclosure as if fully set forth herein.
- Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. As used throughout the specification and claims, “a” and/or “an” may refer to one or more than one. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percent, ratio, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
- The foregoing embodiments are susceptible to considerable variation in practice. Accordingly, the embodiments are not intended to be limited to the specific exemplifications set forth hereinabove. Rather, the foregoing embodiments are within the spirit and scope of the appended claims, including the equivalents thereof available as a matter of law.
- The patentees do not intend to dedicate any disclosed embodiments to the public, and to the extent any disclosed modifications or alterations may not literally fall within the scope of the claims, they are considered to be part hereof under the doctrine of equivalents.
Claims (58)
1. An environmentally compatible lubricant additive composition comprising four or more tribologically functional components,
wherein each component is a non-persistent, a non-bioaccumulative, and a non-toxic material and at least one component is selected from the group consisting essentially of a sulfurized neopentyl glycol phosphate, a substituted succinimide, a reaction product of an alkyl dicarboxylic acid or anhydride and ammonia, a fatty amine ethoxylate, an oleamide, and dodecyl succinic acid, and
wherein the additive composition is devoid of components that-are-selected from the group consisting essentially of: persistent, bioaccumulative, and toxic alkanes, alkoxy alkylamines, alkyl methacrylates, alkyl phenols, alkylphenols, polyoxyalkyl alkylamines, aryl amines, aryl phosphites, branched alkyl phenols, branched alkyl polysulfides, branched long-chain alkyl amines, long-chain alkenyl alkyl amine, long-chain alkenyl alkylene amines, long-chain alkenyl amines, long-chain alkoxylated amines, long-chain alkyl alkoxylated alcohols, long-chain alkyl alkylene amines, long-chain alkyl amines, long-chain alkyl methacrylates, long-chain alkyoxylated amines, long-chain hydroxyalkyl amines, polyaryls, and polyolefin polyamines.
2. The lubricant additive composition of claim 1 , wherein the tribologically functional components comprise materials selected from the group consisting of: antioxidants, dispersants, detergents, viscosity index improvers, friction modifiers, pour point depressants, antiwear agents, extreme pressure agents, rust inhibitors, corrosion inhibitors, foam inhibitors, seal swell additives, and diluents.
3. The lubricant additive composition of claim 1 , wherein the non-persistent material is determined by a biodegradation test selected from the group consisting of a dissolved organic carbon die-away test, a modified OECD screening dissolved organic carbon die-away test, a carbon dioxide evolution test, a manometric respirometry test, a closed bottle test, a MITI test, a Zahn-Wellens test, an activated sludge simulation test, an activated sludge respiration inhibition test, and a modified SCAS test.
4. The lubricant additive composition of claim 1 , wherein the non-bioaccumulative material is determined by a bioconcentration factor test comprising a flow-through fish test.
5. The lubricant additive composition of claim 1 , wherein the non-bioaccumulative material has bioconcentration factor test result below 2000.
6. The lubricant additive composition of claim 1 , wherein the non-toxic material is determined by a toxicity test selected from the group consisting of an acute toxicity for fish test, an acute toxicity for Daphnia test, and an algal inhibition test.
7. The lubricant additive composition of claim 1 , wherein the non-toxic material is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test.
8. The lubricant additive composition of claim 1 , wherein a non-persistent material is a material having an acceptable score on a biodegradation test selected from at least one of the following:
a) a half-life in marine water is less than 60 days;
b) a half-life in fresh or estuarine water is less than 40 days;
c) a half-life in marine sediment is less than 180 days;
d) a half-life in fresh or estuarine water sediment less than 120 days; or
e) a half-life in soil less than 120 days.
9. The lubricant additive composition of claim 1 , wherein at least one of the components is reaction product of a C16 alkyl dicarboxylic acid and ammonia.
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. The lubricant additive composition of claim 1 , wherein at least one of the components comprises an adipate.
15. The lubricant additive composition of claim 1 , wherein at least one of the components comprises a sulfurized isobutylene.
16. The lubricant additive composition of claim 1 , wherein at least one of the components comprises an alkylthiadiazole.
17. The lubricant additive composition of claim 1 , wherein at least one of the components comprises an alkylpolymethacrylate comprising less than 0.3% weight of unreacted monomer.
18. The lubricant additive composition of claim 1 , wherein at least one of the components comprises an olefin copolymer or a multifunctional olefin copolymer viscosity index improver comprising less than 0.3% weight of unreacted monomer.
19. The lubricant additive composition of claim 1 , wherein at least one of the components comprises a polyalphaolefin.
20. The lubricant additive composition of claim 1 , wherein the additive is useful in grease compositions.
21. The lubricant additive composition of claim 1 , wherein the additive is useful in cutting, quenching, or rolling applications.
22. (canceled)
23. (canceled)
24. An environmentally compatible lubricating composition, comprising:
a) a major amount of a base oil; and
b) a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component comprises an acceptable level of biodegradation as determined by a biodegradation test, a bioconcentration factor below 2000, and is devoid of a toxic effect at an aqueous concentration below 0.01 mg/L on a toxicity test and at least one component is selected from the group consisting essentially of a sulfurized neopentyl glycol phosphate, a substituted succinimide, a reaction product of an alkyl dicarboxylic acid or anhydride and ammonia, a fatty amine ethoxylate, an oleamide. and dodecyl succinic acid, and
wherein the additive composition is devoid of components selected from the mew consisting essentially of: persistent, bioaccumulative, and toxic alkanes, alkoxy alkylamines, alkyl methacrylates, alkyl phenols, alkylphenols, polyoxyalkyl alkylamines, aryl amines, aryl phosphites, branched alkyl phenols, branched alkyl polysulfides, branched long-chain alkyl amines, long-chain alkenyl alkyl amine, long-chain alkenyl alkylene amines, long-chain alkenyl amines, long-chain alkoxylated amines, long-chain alkyl alkoxylated alcohols, long-chain alkyl alkylene amines, long-chain alkyl amines. long-chain alkyl methacrylates, long-chain alkyoxylated amines, long-chain hydroxyalkyl amines, polyaryls, and polyolefin polyamines.
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. The lubricating composition of claim 24 , wherein the base oil is selected form a gas-to-liquid (GTL) base oil, a Group I base oil, a Group II base oil, a Group III base oil, a Group IV base oil, and ester, a vegetable oil, and a mixture thereof.
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. (canceled)
40. (canceled)
41. (canceled)
42. (canceled)
43. (canceled)
44. (canceled)
45. (canceled)
46. (canceled)
47. (canceled)
48. An environmentally compatible lubricating composition comprising:
a) a major amount of a base oil; and
b) a minor amount of an additive composition, comprising four or more tribologically functional components, wherein each component is of non-persistent materials, non-bioaccumulative materials and non-toxic materials and at least one component is selected from the group consisting essentially of a sulfurized neopentyl glycol phosphate, a substituted succinimide, a reaction product of an alkyl dicarboxylic acid or anhydride and ammonia, a fatty amine ethoxylate, an oleamide, and dodecyl succinic acid, and
wherein the additive composition is devoid of components selected from the group consisting essentially of: persistent, bioaccumulative, and toxic alkanes, alkoxy alkylamines, alkyl methacrylates, alkyl phenols, alkylphenols, polyoxyalkyl alkylamines, aryl amines, aryl phosphites, branched alkyl phenols, branched alkyl polysulfides, branched long-chain alkyl amines, long-chain alkenyl alkyl amine, long-chain alkenyl alkylene amines, long-chain alkenyl amines, long-chain alkoxylated amines, long-chain alkyl alkoxylated alcohols, long-chain alkyl alkylene amines. long-chain alkyl amines, long-chain alkyl methacrylates, long-chain alkyoxylated amines, long-chain hydroxyalkyl amines, polyaryls, and polyolefin polyamines.
49. (canceled)
50. A method of lubricating a machine part comprising lubricating said machine part with a lubricant composition comprising an additive composition of claim 48 .
51. The method of claim 50 , wherein said machine part comprises a gear, an axle, a differential, an engine, a crankshaft, a transmission, or a clutch.
52. The method of claim 51 , wherein said transmission is selected from the group consisting of an automatic transmission, a manual transmission, an automated manual transmission, a semi-automatic transmission, a dual clutch transmission, a continuously variable transmission, and a toroidal transmission.
53. The method of claim 51 , wherein said transmission comprises a continuously slipping torque converter clutch, a slipping torque converter, a lock-up torque converter, a starting clutch, one or more shifting clutches, or an electronically controlled converter clutch.
54. The method of claim 51 , wherein said gear is selected from the group consisting of an automotive gear, a stationary gearbox, and an axle.
55. The method of claim 51 , wherein said gear is selected from the group consisting of a hypoid gear, a spur gear, a helical gear, a bevel gear, a worm gear, a rack and pinion gear, a planetary gear set, and an involute gear.
56. The method of claim 51 , wherein said differential is selected from the group consisting of a straight differential, a turning differential, a limited slip differential, a clutch-type limited slip differential, and a locking differential.
57. The method of claim 51 , wherein said engine is selected from the group consisting of an internal combustion engine, a rotary engine, a gas turbine engine, a four-stroke engine, and a two-stroke engine.
58. The method of claim 51 , wherein said engine comprises a piston, a bearing, a crankshaft, and/or a camshaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/704,656 US20100152078A1 (en) | 2007-05-04 | 2010-02-12 | Environmentally-friendly lubricant compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91610607P | 2007-05-04 | 2007-05-04 | |
US11/763,039 US20080274921A1 (en) | 2007-05-04 | 2007-06-14 | Environmentally-Friendly Lubricant Compositions |
US12/704,656 US20100152078A1 (en) | 2007-05-04 | 2010-02-12 | Environmentally-friendly lubricant compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/763,039 Continuation US20080274921A1 (en) | 2007-05-04 | 2007-06-14 | Environmentally-Friendly Lubricant Compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100152078A1 true US20100152078A1 (en) | 2010-06-17 |
Family
ID=39939962
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/763,039 Abandoned US20080274921A1 (en) | 2007-05-04 | 2007-06-14 | Environmentally-Friendly Lubricant Compositions |
US12/704,656 Abandoned US20100152078A1 (en) | 2007-05-04 | 2010-02-12 | Environmentally-friendly lubricant compositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/763,039 Abandoned US20080274921A1 (en) | 2007-05-04 | 2007-06-14 | Environmentally-Friendly Lubricant Compositions |
Country Status (2)
Country | Link |
---|---|
US (2) | US20080274921A1 (en) |
EP (2) | EP2420553A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103289791A (en) * | 2013-05-22 | 2013-09-11 | 无锡市华明化工有限公司 | Lubricant additive and lubricant |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
US20190292480A1 (en) * | 2018-03-20 | 2019-09-26 | Basf Se | Lubricant Composition |
US11066620B2 (en) | 2019-03-20 | 2021-07-20 | Basf Se | Lubricant composition |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090031614A1 (en) * | 2007-08-01 | 2009-02-05 | Ian Macpherson | Environmentally-Friendly Fuel Compositions |
CN102307976A (en) * | 2008-12-09 | 2012-01-04 | 卢布里佐尔公司 | Lubricating composition containing a compound derived from a hydroxy-carboxylic acid |
CN102459535B (en) * | 2009-05-13 | 2017-12-01 | 路博润公司 | Lubricating composition containing malic acid derivative |
EP2895582A1 (en) | 2012-09-13 | 2015-07-22 | Evonik Oil Additives GmbH | A composition to improve low temperature properties and oxidation stability of vegetable oils and animal fats |
US9365796B2 (en) * | 2013-09-25 | 2016-06-14 | Biosynthetic Technologies, Llc | Two-cycle lubricants comprising estolide compounds |
CN103710113B (en) * | 2013-12-25 | 2016-08-17 | 烟台德高石油有限公司 | A kind of lubricating oil reinforcing agent and preparation method thereof |
JP6207432B2 (en) * | 2014-03-11 | 2017-10-04 | Jxtgエネルギー株式会社 | Lubricating oil composition |
SG11201700902QA (en) * | 2014-08-06 | 2017-03-30 | Lubrizol Corp | Industrial gear lubricant additive package with biodegradable sulfur component |
CN106167730B (en) * | 2016-07-13 | 2019-04-02 | 杭州高翔润滑油有限公司 | A kind of environmental protection wearproof lubricant |
CN106318542A (en) * | 2016-07-26 | 2017-01-11 | 中国石油化工股份有限公司 | Marine lubricating oil composition and use thereof |
JP6797633B2 (en) * | 2016-10-26 | 2020-12-09 | Eneos株式会社 | Lubricating oil composition for automatic transmission |
CN106833845B (en) * | 2017-01-23 | 2020-02-11 | 上海帕卡兴产化工有限公司 | High-cleanliness rolling oil for continuous rolling silicon steel and preparation method thereof |
CN107955683B (en) * | 2017-12-07 | 2020-10-13 | 山东一和润滑油有限公司 | Multifunctional lubricating oil |
CN108048198B (en) * | 2017-12-19 | 2020-07-07 | 上海中孚特种油品有限公司 | Environment-friendly fully-synthetic cutting fluid and preparation method thereof |
CN108456585B (en) * | 2018-03-13 | 2020-11-06 | 苏州福瑞斯德新材料科技有限公司 | Steel pipe drawing reaction oil composition |
JP7360240B2 (en) * | 2018-03-30 | 2023-10-12 | 住友化学株式会社 | Method for evaluating the degradability of chemical substances, and test containers and oxygen consumption measurement devices used in the method |
CN108865349A (en) * | 2018-06-15 | 2018-11-23 | 安徽森米诺农业科技有限公司 | For safeguarding the lubricant of roller dryer shaft |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1815022A (en) * | 1930-05-03 | 1931-07-14 | Standard Oil Dev Co | Hydrocarbon oil and process for manufacturing the same |
US2015748A (en) * | 1933-06-30 | 1935-10-01 | Standard Oil Dev Co | Method for producing pour inhibitors |
US2191498A (en) * | 1935-11-27 | 1940-02-27 | Socony Vacuum Oil Co Inc | Mineral oil composition and method of making |
US2197263A (en) * | 1939-02-23 | 1940-04-16 | Socony Vacuum Oil Co Inc | Grease composition |
US2284409A (en) * | 1940-03-08 | 1942-05-26 | Pittsburgh Corning Corp | Fitting for tempered glass panels |
US2284410A (en) * | 1940-08-22 | 1942-05-26 | John F Farmer | Adjustable end slide grille |
US2387501A (en) * | 1944-04-04 | 1945-10-23 | Du Pont | Hydrocarbon oil |
US2425845A (en) * | 1945-04-21 | 1947-08-19 | Carbide & Carbon Chem Corp | Mixtures of polyoxyalkylene diols and methods of making such mixtures |
US2425755A (en) * | 1944-06-01 | 1947-08-19 | Carbide & Carbon Chem Corp | Mixtures of polyoxyalkylene monohydroxy compounds and methods of making such mixtures |
US2448664A (en) * | 1944-05-30 | 1948-09-07 | Carbide & Carbon Chem Corp | Polyoxypropylene compounds |
US2457139A (en) * | 1946-02-26 | 1948-12-28 | Carbide & Carbon Chem Corp | Esters of polyoxyalkylene diols |
US2459112A (en) * | 1945-07-06 | 1949-01-11 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2564561A (en) * | 1944-05-20 | 1951-08-14 | Socony Vacuum Oil Co Inc | Grease composition |
US2655479A (en) * | 1949-01-03 | 1953-10-13 | Standard Oil Dev Co | Polyester pour depressants |
US2666746A (en) * | 1952-08-11 | 1954-01-19 | Standard Oil Dev Co | Lubricating oil composition |
US2721878A (en) * | 1951-08-18 | 1955-10-25 | Exxon Research Engineering Co | Strong acid as a polymerization modifier in the production of liquid polymers |
US2721877A (en) * | 1951-08-22 | 1955-10-25 | Exxon Research Engineering Co | Lubricating oil additives and a process for their preparation |
US2749311A (en) * | 1952-12-04 | 1956-06-05 | Standard Oil Co | Corrosion inhibitors and compositions containing the same |
US2760933A (en) * | 1952-11-25 | 1956-08-28 | Standard Oil Co | Lubricants |
US2765289A (en) * | 1953-04-29 | 1956-10-02 | Standard Oil Co | Corrosion inhibitors and compositions containing the same |
US2850453A (en) * | 1955-04-26 | 1958-09-02 | Standard Oil Co | Corrosion inhibited oil compositions |
US2910439A (en) * | 1955-12-22 | 1959-10-27 | Standard Oil Co | Corrosion inhibited compositions |
US2962442A (en) * | 1957-01-03 | 1960-11-29 | Socony Mobil Oil Co Inc | Preparation of aldehyde-polyamine-hydroxyaromatic compound condensates and hydrocarbon fractions containing the same |
US2984550A (en) * | 1956-09-06 | 1961-05-16 | Nalco Chemical Co | Color stabilization of petroleum oils and compositions therefor |
US2999066A (en) * | 1960-12-28 | 1961-09-05 | Socony Mobil Oil Co Inc | Lubricant containing a calcium saltcalcium soap mixture and process for forming same |
US2999065A (en) * | 1960-11-07 | 1961-09-05 | Socony Mobil Oil Co Inc | Lubricant containing a calcium saltcalcium soaps mixture and process for forming same |
US3036003A (en) * | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3166516A (en) * | 1960-10-28 | 1965-01-19 | Nalco Chemical Co | Process for breaking petroleum emulsions |
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3184474A (en) * | 1962-09-05 | 1965-05-18 | Exxon Research Engineering Co | Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial |
US3184411A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants for reducing corrosion |
US3197405A (en) * | 1962-07-09 | 1965-07-27 | Lubrizol Corp | Phosphorus-and nitrogen-containing compositions and process for preparing the same |
US3197496A (en) * | 1961-08-09 | 1965-07-27 | Lubrizol Corp | Polyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates |
US3202678A (en) * | 1959-08-24 | 1965-08-24 | California Research Corp | Alkenyl succinimides of tetraethylene pentamine |
US3216936A (en) * | 1964-03-02 | 1965-11-09 | Lubrizol Corp | Process of preparing lubricant additives |
US3236770A (en) * | 1960-09-28 | 1966-02-22 | Sinclair Research Inc | Transaxle lubricant |
US3250715A (en) * | 1964-02-04 | 1966-05-10 | Lubrizol Corp | Terpolymer product and lubricating composition containing it |
US3269993A (en) * | 1960-12-30 | 1966-08-30 | Monsanto Co | Antifoamants of isotactic alkyl methacrylate polymers |
US3272746A (en) * | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3281428A (en) * | 1963-04-29 | 1966-10-25 | Lubrizol Corp | Reaction product of certain acylated nitrogen containing intermediates and a boron compound |
US3282955A (en) * | 1963-04-29 | 1966-11-01 | Lubrizol Corp | Reaction products of acylated nitrogen intermediates and a boron compound |
US3331776A (en) * | 1962-10-04 | 1967-07-18 | Shell Oil Co | Lubricating oil composition |
US3338832A (en) * | 1963-04-29 | 1967-08-29 | Lubrizol Corp | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound |
US3342735A (en) * | 1965-04-23 | 1967-09-19 | Texaco Inc | Alkenyl succinic anhydride-amine-ps reaction product |
US3344069A (en) * | 1965-07-01 | 1967-09-26 | Lubrizol Corp | Lubricant additive and lubricant containing same |
US3368972A (en) * | 1965-01-06 | 1968-02-13 | Mobil Oil Corp | High molecular weight mannich bases as engine oil additives |
US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3403102A (en) * | 1963-05-17 | 1968-09-24 | Lubrizol Corp | Lubricant containing phosphorus acid esters |
US3413347A (en) * | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3448047A (en) * | 1967-04-05 | 1969-06-03 | Standard Oil Co | Lube oil dispersants |
US3454497A (en) * | 1966-11-14 | 1969-07-08 | Shell Oil Co | Lubricating compositions |
US3459661A (en) * | 1967-01-20 | 1969-08-05 | Shell Oil Co | Lubricating compositions containing metal salts of particular condensation products |
US3493520A (en) * | 1968-06-04 | 1970-02-03 | Sinclair Research Inc | Ashless lubricating oil detergents |
US3502607A (en) * | 1966-10-31 | 1970-03-24 | Celanese Corp | Art of making dyeable polyacrylonitrile products |
US3511780A (en) * | 1966-02-09 | 1970-05-12 | Exxon Research Engineering Co | Oil-soluble ashless dispersant-detergent-inhibitors |
US3513093A (en) * | 1963-06-17 | 1970-05-19 | Lubrizol Corp | Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives |
US3522179A (en) * | 1963-04-23 | 1970-07-28 | Lubrizol Corp | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US3533945A (en) * | 1963-11-13 | 1970-10-13 | Lubrizol Corp | Lubricating oil composition |
US3539633A (en) * | 1965-10-22 | 1970-11-10 | Standard Oil Co | Di-hydroxybenzyl polyamines |
US3558743A (en) * | 1968-06-04 | 1971-01-26 | Joseph A Verdol | Ashless,oil-soluble detergents |
US3576743A (en) * | 1969-04-11 | 1971-04-27 | Lubrizol Corp | Lubricant and fuel additives and process for making the additives |
US3586629A (en) * | 1968-09-16 | 1971-06-22 | Mobil Oil Corp | Metal salts as lubricant additives |
US3591598A (en) * | 1968-11-08 | 1971-07-06 | Standard Oil Co | Certain condensation products derived from mannich bases |
US3600372A (en) * | 1968-06-04 | 1971-08-17 | Standard Oil Co | Carbon disulfide treated mannich condensation products |
US3632511A (en) * | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3634515A (en) * | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3649229A (en) * | 1969-12-17 | 1972-03-14 | Mobil Oil Corp | Liquid hydrocarbon fuels containing high molecular weight mannich bases |
USRE27331E (en) * | 1966-12-19 | 1972-04-11 | Sulfurized diels-alder adducts and lubricants containing the same | |
US3658836A (en) * | 1964-04-16 | 1972-04-25 | Monsanto Co | Hydroxyboroxin-amine salts |
US3663561A (en) * | 1969-12-29 | 1972-05-16 | Standard Oil Co | 2-hydrocarbyldithio - 5 - mercapto-1,3,4-thiadiazoles and their preparation |
US3676089A (en) * | 1969-11-06 | 1972-07-11 | Texaco Inc | Motor fuel composition |
US3692503A (en) * | 1969-02-26 | 1972-09-19 | Apollo Chem | Activated manganese containing additive for fuels |
US3697574A (en) * | 1965-10-22 | 1972-10-10 | Standard Oil Co | Boron derivatives of high molecular weight mannich condensation products |
US3703536A (en) * | 1967-11-24 | 1972-11-21 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product |
US3704308A (en) * | 1965-10-22 | 1972-11-28 | Standard Oil Co | Boron-containing high molecular weight mannich condensation |
US3718663A (en) * | 1967-11-24 | 1973-02-27 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-urea or thiourea-succinic anhydride addition product |
US3725480A (en) * | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3726882A (en) * | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3736357A (en) * | 1965-10-22 | 1973-05-29 | Standard Oil Co | High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds |
US3756953A (en) * | 1965-10-22 | 1973-09-04 | Standard Oil Co | Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri |
US3763244A (en) * | 1971-11-03 | 1973-10-02 | Ethyl Corp | Process for producing a c6-c16 normal alpha-olefin oligomer having a pour point below about- f. |
US3780128A (en) * | 1971-11-03 | 1973-12-18 | Ethyl Corp | Synthetic lubricants by oligomerization and hydrogenation |
US3793202A (en) * | 1972-03-01 | 1974-02-19 | Standard Oil Co | Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products |
US3798247A (en) * | 1970-07-13 | 1974-03-19 | Standard Oil Co | Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products |
US3798165A (en) * | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3803039A (en) * | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
US3804763A (en) * | 1971-07-01 | 1974-04-16 | Lubrizol Corp | Dispersant compositions |
US3836471A (en) * | 1973-05-14 | 1974-09-17 | Lubrizol Corp | Lubricants and fuels containing ester-containing compositions |
US5151204A (en) * | 1990-02-01 | 1992-09-29 | Exxon Chemical Patents Inc. | Oleaginous compositions containing novel ethylene alpha-olefin polymer viscosity index improver additive |
US5773391A (en) * | 1994-11-15 | 1998-06-30 | The Lubrizol Corporation | High oleic polyol esters, compositions and lubricants, functional fluids and greases containing the same |
US6303547B1 (en) * | 2000-09-19 | 2001-10-16 | Ethyl Corporation | Friction modified lubricants |
US20030186824A1 (en) * | 2001-09-25 | 2003-10-02 | Pennzoil-Quaker State Company | Environmentally friendly lubricants |
US6642189B2 (en) * | 1999-12-22 | 2003-11-04 | Nippon Mitsubishi Oil Corporation | Engine oil compositions |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1248648B (en) | 1961-07-21 | 1967-08-31 | The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) | Process for the preparation of the ammonium salts of phosphorus- and sulfur-containing condensation products |
US3751365A (en) * | 1965-10-22 | 1973-08-07 | Standard Oil Co | Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products |
US3985802A (en) | 1965-10-22 | 1976-10-12 | Standard Oil Company (Indiana) | Lubricating oils containing high molecular weight Mannich condensation products |
US3957854A (en) * | 1971-06-11 | 1976-05-18 | The Lubrizol Corporation | Ester-containing compositions |
US3957855A (en) * | 1971-06-11 | 1976-05-18 | The Lubrizol Corporation | Ester-containing compositions |
US3936480A (en) * | 1971-07-08 | 1976-02-03 | Rhone-Progil | Additives for improving the dispersing properties of lubricating oil |
BE786032A (en) * | 1971-07-08 | 1973-01-08 | Rhone Progil | NEW ADDITIVES FOR LUBRICATING OILS |
US3991098A (en) | 1971-11-30 | 1976-11-09 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US4071548A (en) * | 1971-11-30 | 1978-01-31 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US3872019A (en) * | 1972-08-08 | 1975-03-18 | Standard Oil Co | Oil-soluble lubricant bi-functional additives from mannich condensation products of oxidized olefin copolymers, amines and aldehydes |
US3840549A (en) | 1972-08-22 | 1974-10-08 | Standard Oil Co | Preparation of 2-hydrocarbyldithio-5-mercapto-1,3,4-thiadiazoles by thiohydrocarbyl exchange |
US3950341A (en) * | 1973-04-12 | 1976-04-13 | Toa Nenryo Kogyo Kabushiki Kaisha | Reaction product of a polyalkenyl succinic acid or its anhydride, a hindered alcohol and an amine |
US3904595A (en) * | 1973-09-14 | 1975-09-09 | Ethyl Corp | Lubricating oil dispersant |
US3862798A (en) * | 1973-11-19 | 1975-01-28 | Charles L Hopkins | Automatic rear view mirror adjuster |
US3980569A (en) * | 1974-03-15 | 1976-09-14 | The Lubrizol Corporation | Dispersants and process for their preparation |
US3974081A (en) * | 1974-07-31 | 1976-08-10 | Exxon Research And Engineering Company | Biodegradable seal swell additive with low toxicity properties for automatic transmission fluids, power transmission fluids and rotary engine oil applications |
US3957746A (en) * | 1974-10-04 | 1976-05-18 | Ethyl Corporation | Phospho-sulfurized phenolic aldehyde amine alkylene oxide condensation product |
US4006089A (en) * | 1974-11-19 | 1977-02-01 | Mobil Oil Corporation | Polyoxyethylene polyamine Mannich base products and use of same in fuels and lubricants |
DE2551256A1 (en) * | 1974-11-29 | 1976-08-12 | Lubrizol Corp | MANNICH CONDENSATION PRODUCTS CONTAINING SULFUR AND LIQUID FUELS AND FUELS AND LUBRICANTS CONTAINING THESE COMPOUNDS |
US4029587A (en) * | 1975-06-23 | 1977-06-14 | The Lubrizol Corporation | Lubricants and functional fluids containing substituted sulfolanes as seal swelling agents |
US4011380A (en) * | 1975-12-05 | 1977-03-08 | Standard Oil Company (Indiana) | Oxidation of polymers in presence of benzene sulfonic acid or salt thereof |
US4058468A (en) | 1976-06-07 | 1977-11-15 | Ethyl Corporation | Lubricant composition |
US4173540A (en) | 1977-10-03 | 1979-11-06 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of polyol ester compound and a borated acyl nitrogen compound |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4354950A (en) | 1980-12-29 | 1982-10-19 | Texaco Inc. | Mannich base derivative of hydroxyaryl succinimide and hydrocarbon oil composition containing same |
US4485023A (en) | 1982-12-06 | 1984-11-27 | Standard Oil Company (Indiana) | Lubricating oil containing Mannich condensation product of ethylene/propylene/carbonyl polymers |
US4455243A (en) * | 1983-02-24 | 1984-06-19 | Chevron Research Company | Succinimide complexes of borated fatty acid esters of glycerol and lubricating oil compositions containing same |
US4648980A (en) * | 1983-09-22 | 1987-03-10 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts |
US4615826A (en) | 1983-09-22 | 1986-10-07 | Chevron Research Company | Hydrocarbon soluble nitrogen containing dispersant-fluorophosphoric acid adducts |
GB8601990D0 (en) | 1986-01-28 | 1986-03-05 | Exxon Chemical Patents Inc | Overbased additives |
US4652687A (en) * | 1986-07-07 | 1987-03-24 | Uop Inc. | Process for the dehydrogenation of dehydrogenatable hydrocarbons |
US4652387A (en) * | 1986-07-30 | 1987-03-24 | Mobil Oil Corporation | Borated reaction products of succinic compounds as lubricant dispersants and antioxidants |
GB8621343D0 (en) * | 1986-09-04 | 1986-10-15 | Exxon Chemical Patents Inc | Overbased alkali metal additives |
US5198133A (en) * | 1988-03-14 | 1993-03-30 | Ethyl Petroleum Additives, Inc. | Modified succinimide or sucinamide dispersants and their production |
GB8814008D0 (en) * | 1988-06-14 | 1988-07-20 | Bp Chemicals Additives | Lubricating oil additives |
US4857214A (en) * | 1988-09-16 | 1989-08-15 | Ethylk Petroleum Additives, Inc. | Oil-soluble phosphorus antiwear additives for lubricants |
US5464549A (en) | 1991-12-12 | 1995-11-07 | Ethyl Corporation | Oil soluble dispersants suitable for use in fuels and lubricants |
US5358650A (en) * | 1993-04-01 | 1994-10-25 | Ethyl Corporation | Gear oil compositions |
CA2162438C (en) * | 1994-11-15 | 2007-04-24 | Betsy J. Butke | Lubricants and fluids containing thiocarbamates and phosphorus esters |
US5500140A (en) * | 1995-03-31 | 1996-03-19 | Ethyl Corporation | Oil-soluble phosphorus- and nitrogen-containing additives |
US5573696A (en) | 1995-03-31 | 1996-11-12 | Ethyl Corporation | Oil-soluble phosphorus- and nitrogen-containing additives |
US6497812B1 (en) | 1999-12-22 | 2002-12-24 | Chevron U.S.A. Inc. | Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons |
EP1425367A4 (en) * | 2001-08-14 | 2006-11-02 | United Soybean Board | Soy-based methyl ester high performance metal working fluids |
US7517837B2 (en) * | 2003-05-22 | 2009-04-14 | Anderol, Inc. | Biodegradable lubricants |
US7759294B2 (en) * | 2003-10-24 | 2010-07-20 | Afton Chemical Corporation | Lubricant compositions |
US7452851B2 (en) * | 2003-10-24 | 2008-11-18 | Afton Chemical Corporation | Lubricant compositions |
MX221601B (en) * | 2004-05-14 | 2004-07-22 | Basf Ag | Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity |
US7579306B2 (en) * | 2005-03-02 | 2009-08-25 | Chemtura Corporation | Method for improving the oxidative stability of industrial fluids |
US7732386B2 (en) * | 2005-10-25 | 2010-06-08 | Chevron U.S.A. Inc. | Rust inhibitor for highly paraffinic lubricating base oil |
-
2007
- 2007-06-14 US US11/763,039 patent/US20080274921A1/en not_active Abandoned
-
2008
- 2008-04-17 EP EP11158294A patent/EP2420553A1/en not_active Withdrawn
- 2008-04-17 EP EP08154707A patent/EP2017329A1/en not_active Withdrawn
-
2010
- 2010-02-12 US US12/704,656 patent/US20100152078A1/en not_active Abandoned
Patent Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1815022A (en) * | 1930-05-03 | 1931-07-14 | Standard Oil Dev Co | Hydrocarbon oil and process for manufacturing the same |
US2015748A (en) * | 1933-06-30 | 1935-10-01 | Standard Oil Dev Co | Method for producing pour inhibitors |
US2191498A (en) * | 1935-11-27 | 1940-02-27 | Socony Vacuum Oil Co Inc | Mineral oil composition and method of making |
US2197263A (en) * | 1939-02-23 | 1940-04-16 | Socony Vacuum Oil Co Inc | Grease composition |
US2284409A (en) * | 1940-03-08 | 1942-05-26 | Pittsburgh Corning Corp | Fitting for tempered glass panels |
US2284410A (en) * | 1940-08-22 | 1942-05-26 | John F Farmer | Adjustable end slide grille |
US2387501A (en) * | 1944-04-04 | 1945-10-23 | Du Pont | Hydrocarbon oil |
US2564561A (en) * | 1944-05-20 | 1951-08-14 | Socony Vacuum Oil Co Inc | Grease composition |
US2448664A (en) * | 1944-05-30 | 1948-09-07 | Carbide & Carbon Chem Corp | Polyoxypropylene compounds |
US2425755A (en) * | 1944-06-01 | 1947-08-19 | Carbide & Carbon Chem Corp | Mixtures of polyoxyalkylene monohydroxy compounds and methods of making such mixtures |
US2425845A (en) * | 1945-04-21 | 1947-08-19 | Carbide & Carbon Chem Corp | Mixtures of polyoxyalkylene diols and methods of making such mixtures |
US2459112A (en) * | 1945-07-06 | 1949-01-11 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2457139A (en) * | 1946-02-26 | 1948-12-28 | Carbide & Carbon Chem Corp | Esters of polyoxyalkylene diols |
US2655479A (en) * | 1949-01-03 | 1953-10-13 | Standard Oil Dev Co | Polyester pour depressants |
US2721878A (en) * | 1951-08-18 | 1955-10-25 | Exxon Research Engineering Co | Strong acid as a polymerization modifier in the production of liquid polymers |
US2721877A (en) * | 1951-08-22 | 1955-10-25 | Exxon Research Engineering Co | Lubricating oil additives and a process for their preparation |
US2666746A (en) * | 1952-08-11 | 1954-01-19 | Standard Oil Dev Co | Lubricating oil composition |
US2760933A (en) * | 1952-11-25 | 1956-08-28 | Standard Oil Co | Lubricants |
US2749311A (en) * | 1952-12-04 | 1956-06-05 | Standard Oil Co | Corrosion inhibitors and compositions containing the same |
US2765289A (en) * | 1953-04-29 | 1956-10-02 | Standard Oil Co | Corrosion inhibitors and compositions containing the same |
US2850453A (en) * | 1955-04-26 | 1958-09-02 | Standard Oil Co | Corrosion inhibited oil compositions |
US2910439A (en) * | 1955-12-22 | 1959-10-27 | Standard Oil Co | Corrosion inhibited compositions |
US2984550A (en) * | 1956-09-06 | 1961-05-16 | Nalco Chemical Co | Color stabilization of petroleum oils and compositions therefor |
US2962442A (en) * | 1957-01-03 | 1960-11-29 | Socony Mobil Oil Co Inc | Preparation of aldehyde-polyamine-hydroxyaromatic compound condensates and hydrocarbon fractions containing the same |
US3036003A (en) * | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3219666A (en) * | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3202678A (en) * | 1959-08-24 | 1965-08-24 | California Research Corp | Alkenyl succinimides of tetraethylene pentamine |
US3236770A (en) * | 1960-09-28 | 1966-02-22 | Sinclair Research Inc | Transaxle lubricant |
US3166516A (en) * | 1960-10-28 | 1965-01-19 | Nalco Chemical Co | Process for breaking petroleum emulsions |
US2999065A (en) * | 1960-11-07 | 1961-09-05 | Socony Mobil Oil Co Inc | Lubricant containing a calcium saltcalcium soaps mixture and process for forming same |
US2999066A (en) * | 1960-12-28 | 1961-09-05 | Socony Mobil Oil Co Inc | Lubricant containing a calcium saltcalcium soap mixture and process for forming same |
US3269993A (en) * | 1960-12-30 | 1966-08-30 | Monsanto Co | Antifoamants of isotactic alkyl methacrylate polymers |
US3197496A (en) * | 1961-08-09 | 1965-07-27 | Lubrizol Corp | Polyphosphorus ester derivatives of o, o-dihydrocarbyl-s-hydroxylalkyl phosphorodithioates |
US3254025A (en) * | 1961-08-18 | 1966-05-31 | Lubrizol Corp | Boron-containing acylated amine and lubricating compositions containing the same |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3197405A (en) * | 1962-07-09 | 1965-07-27 | Lubrizol Corp | Phosphorus-and nitrogen-containing compositions and process for preparing the same |
US3184474A (en) * | 1962-09-05 | 1965-05-18 | Exxon Research Engineering Co | Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial |
US3184411A (en) * | 1962-09-28 | 1965-05-18 | California Research Corp | Lubricants for reducing corrosion |
US3331776A (en) * | 1962-10-04 | 1967-07-18 | Shell Oil Co | Lubricating oil composition |
US3522179A (en) * | 1963-04-23 | 1970-07-28 | Lubrizol Corp | Lubricating composition containing esters of hydrocarbon-substituted succinic acid |
US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3281428A (en) * | 1963-04-29 | 1966-10-25 | Lubrizol Corp | Reaction product of certain acylated nitrogen containing intermediates and a boron compound |
US3282955A (en) * | 1963-04-29 | 1966-11-01 | Lubrizol Corp | Reaction products of acylated nitrogen intermediates and a boron compound |
US3338832A (en) * | 1963-04-29 | 1967-08-29 | Lubrizol Corp | Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound |
US3403102A (en) * | 1963-05-17 | 1968-09-24 | Lubrizol Corp | Lubricant containing phosphorus acid esters |
US3513093A (en) * | 1963-06-17 | 1970-05-19 | Lubrizol Corp | Lubricant containing nitrogen-containing and phosphorus-containing succinic derivatives |
US3533945A (en) * | 1963-11-13 | 1970-10-13 | Lubrizol Corp | Lubricating oil composition |
US3250715A (en) * | 1964-02-04 | 1966-05-10 | Lubrizol Corp | Terpolymer product and lubricating composition containing it |
US3216936A (en) * | 1964-03-02 | 1965-11-09 | Lubrizol Corp | Process of preparing lubricant additives |
US3658836A (en) * | 1964-04-16 | 1972-04-25 | Monsanto Co | Hydroxyboroxin-amine salts |
US3368972A (en) * | 1965-01-06 | 1968-02-13 | Mobil Oil Corp | High molecular weight mannich bases as engine oil additives |
US3342735A (en) * | 1965-04-23 | 1967-09-19 | Texaco Inc | Alkenyl succinic anhydride-amine-ps reaction product |
US3344069A (en) * | 1965-07-01 | 1967-09-26 | Lubrizol Corp | Lubricant additive and lubricant containing same |
US3704308A (en) * | 1965-10-22 | 1972-11-28 | Standard Oil Co | Boron-containing high molecular weight mannich condensation |
US3697574A (en) * | 1965-10-22 | 1972-10-10 | Standard Oil Co | Boron derivatives of high molecular weight mannich condensation products |
US3736357A (en) * | 1965-10-22 | 1973-05-29 | Standard Oil Co | High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds |
US3756953A (en) * | 1965-10-22 | 1973-09-04 | Standard Oil Co | Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri |
US3798165A (en) * | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3539633A (en) * | 1965-10-22 | 1970-11-10 | Standard Oil Co | Di-hydroxybenzyl polyamines |
US3272746A (en) * | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3413347A (en) * | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3725277A (en) * | 1966-01-26 | 1973-04-03 | Ethyl Corp | Lubricant compositions |
US3511780A (en) * | 1966-02-09 | 1970-05-12 | Exxon Research Engineering Co | Oil-soluble ashless dispersant-detergent-inhibitors |
US3502607A (en) * | 1966-10-31 | 1970-03-24 | Celanese Corp | Art of making dyeable polyacrylonitrile products |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3454497A (en) * | 1966-11-14 | 1969-07-08 | Shell Oil Co | Lubricating compositions |
USRE27331E (en) * | 1966-12-19 | 1972-04-11 | Sulfurized diels-alder adducts and lubricants containing the same | |
US3459661A (en) * | 1967-01-20 | 1969-08-05 | Shell Oil Co | Lubricating compositions containing metal salts of particular condensation products |
US3448047A (en) * | 1967-04-05 | 1969-06-03 | Standard Oil Co | Lube oil dispersants |
US3718663A (en) * | 1967-11-24 | 1973-02-27 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-urea or thiourea-succinic anhydride addition product |
US3703536A (en) * | 1967-11-24 | 1972-11-21 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product |
US3600372A (en) * | 1968-06-04 | 1971-08-17 | Standard Oil Co | Carbon disulfide treated mannich condensation products |
US3493520A (en) * | 1968-06-04 | 1970-02-03 | Sinclair Research Inc | Ashless lubricating oil detergents |
US3558743A (en) * | 1968-06-04 | 1971-01-26 | Joseph A Verdol | Ashless,oil-soluble detergents |
US3586629A (en) * | 1968-09-16 | 1971-06-22 | Mobil Oil Corp | Metal salts as lubricant additives |
US3634515A (en) * | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3726882A (en) * | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3591598A (en) * | 1968-11-08 | 1971-07-06 | Standard Oil Co | Certain condensation products derived from mannich bases |
US3725480A (en) * | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3692503A (en) * | 1969-02-26 | 1972-09-19 | Apollo Chem | Activated manganese containing additive for fuels |
US3576743A (en) * | 1969-04-11 | 1971-04-27 | Lubrizol Corp | Lubricant and fuel additives and process for making the additives |
US3676089A (en) * | 1969-11-06 | 1972-07-11 | Texaco Inc | Motor fuel composition |
US3632511A (en) * | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3649229A (en) * | 1969-12-17 | 1972-03-14 | Mobil Oil Corp | Liquid hydrocarbon fuels containing high molecular weight mannich bases |
US3663561A (en) * | 1969-12-29 | 1972-05-16 | Standard Oil Co | 2-hydrocarbyldithio - 5 - mercapto-1,3,4-thiadiazoles and their preparation |
US3803039A (en) * | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
US3798247A (en) * | 1970-07-13 | 1974-03-19 | Standard Oil Co | Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products |
US3804763A (en) * | 1971-07-01 | 1974-04-16 | Lubrizol Corp | Dispersant compositions |
US3780128A (en) * | 1971-11-03 | 1973-12-18 | Ethyl Corp | Synthetic lubricants by oligomerization and hydrogenation |
US3763244A (en) * | 1971-11-03 | 1973-10-02 | Ethyl Corp | Process for producing a c6-c16 normal alpha-olefin oligomer having a pour point below about- f. |
US3793202A (en) * | 1972-03-01 | 1974-02-19 | Standard Oil Co | Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products |
US3836471A (en) * | 1973-05-14 | 1974-09-17 | Lubrizol Corp | Lubricants and fuels containing ester-containing compositions |
US5151204A (en) * | 1990-02-01 | 1992-09-29 | Exxon Chemical Patents Inc. | Oleaginous compositions containing novel ethylene alpha-olefin polymer viscosity index improver additive |
US5773391A (en) * | 1994-11-15 | 1998-06-30 | The Lubrizol Corporation | High oleic polyol esters, compositions and lubricants, functional fluids and greases containing the same |
US6642189B2 (en) * | 1999-12-22 | 2003-11-04 | Nippon Mitsubishi Oil Corporation | Engine oil compositions |
US6303547B1 (en) * | 2000-09-19 | 2001-10-16 | Ethyl Corporation | Friction modified lubricants |
US20030186824A1 (en) * | 2001-09-25 | 2003-10-02 | Pennzoil-Quaker State Company | Environmentally friendly lubricants |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103289791A (en) * | 2013-05-22 | 2013-09-11 | 无锡市华明化工有限公司 | Lubricant additive and lubricant |
EP3072948A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil compositions for construction machines |
EP3072949A1 (en) | 2015-03-23 | 2016-09-28 | Chevron Japan Ltd. | Lubricating oil composition for construction machines |
US20190292480A1 (en) * | 2018-03-20 | 2019-09-26 | Basf Se | Lubricant Composition |
US11066620B2 (en) | 2019-03-20 | 2021-07-20 | Basf Se | Lubricant composition |
Also Published As
Publication number | Publication date |
---|---|
EP2017329A1 (en) | 2009-01-21 |
US20080274921A1 (en) | 2008-11-06 |
EP2420553A1 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100152078A1 (en) | Environmentally-friendly lubricant compositions | |
US9550957B2 (en) | Functional fluids comprising alkyl toluene sulfonates | |
CN101517049B (en) | Multi-dispersant lubricating composition | |
US20070066495A1 (en) | Lubricant compositions including gas to liquid base oils | |
US9267092B2 (en) | Motorcycle engine lubricant | |
JP6789973B2 (en) | Lubricant containing quaternary ammonium compound | |
EP0434464A1 (en) | Transition-metal free Lubricant | |
AU2008203803B2 (en) | Lubricant compositions with reduced phosphorous content for engines having catalytic converters | |
CN102791681A (en) | Overbased alkylated arylalkyl sulfonates | |
JP4388914B2 (en) | Power transmission fluid with improved extreme pressure and wear resistance | |
JP2006090552A (en) | Lubricant for manual transmission or automated manual transmission | |
US20090192063A1 (en) | Final Drive and Powershift Transmission Lubricants | |
AU2008202853A1 (en) | Boron-containing lubrication oils having improved friction stability | |
US20060079412A1 (en) | Power transmission fluids with enhanced antishudder durability and handling characteristics | |
EP1710295A1 (en) | Tractor fluids | |
EP1857533A1 (en) | Power transmission fluids | |
US9340746B1 (en) | Low viscosity transmission fluids with enhanced gear fatigue and frictional performance | |
AU2005201899B2 (en) | Continuously variable transmission fluid | |
EP3222697B1 (en) | Color-stable transmission fluid compositions | |
CA2486404A1 (en) | Low ash stationary gas engine lubricant | |
CA3087692A1 (en) | Boron containing automotive gear oil | |
US7807610B2 (en) | Lubricating oil compositions | |
WO2011126736A1 (en) | Zinc salicylates for rust inhibition in lubricants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AFTON CHEMICAL CORPORATION,VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MACPHERSON, IAN;PETTIGREW, ANN;REEL/FRAME:024301/0308 Effective date: 20100422 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |