US20080312259A1 - SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE - Google Patents
SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE Download PDFInfo
- Publication number
- US20080312259A1 US20080312259A1 US12/137,892 US13789208A US2008312259A1 US 20080312259 A1 US20080312259 A1 US 20080312259A1 US 13789208 A US13789208 A US 13789208A US 2008312259 A1 US2008312259 A1 US 2008312259A1
- Authority
- US
- United States
- Prior art keywords
- salt
- patient
- disease
- cancer
- administering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- HFNKQEVNSGCOJV-OAHLLOKOSA-N N#CC[C@H](C1CCCC1)N1C=C(C2=C3C=CNC3=NC=N2)C=N1 Chemical compound N#CC[C@H](C1CCCC1)N1C=C(C2=C3C=CNC3=NC=N2)C=N1 HFNKQEVNSGCOJV-OAHLLOKOSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/08—Antiseborrheics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/12—Keratolytics, e.g. wart or anti-corn preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention provides salt forms of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile that are useful in the modulation of Janus kinase activity and are useful in the treatment of diseases related to activity of Janus kinases including, for example, immune-related diseases, skin disorders, myeloid proliferative disorders, cancer, and other diseases.
- Protein kinases are a group of enzymes that regulate diverse, important biological processes including cell growth, survival and differentiation, organ formation and morphogenesis, neovascularization, tissue repair and regeneration, among others. Protein kinases exert their physiological functions through catalyzing the phosphorylation of proteins (or substrates) and thereby modulating the cellular activities of the substrates in various biological contexts. In addition to the functions in normal tissues/organs, many protein kinases also play more specialized roles in a host of human diseases including cancer.
- oncogenic protein kinases when dysregulated, can cause tumor formation and growth, and further contribute to tumor maintenance and progression (Blume-Jensen P et al, Nature 2001, 411(6835):355-365).
- oncogenic protein kinases represent one of the largest and most attractive groups of protein targets for cancer intervention and drug development.
- JAK The Janus Kinase (JAK) family plays a role in the cytokine-dependent regulation of proliferation and function of cells involved in immune response.
- JAK1 also known as Janus kinase-1
- JAK2 also known as Janus kinase-2
- JAK3 also known as Janus kinase, leukocyte; JAKL; L-JAK and Janus kinase-3)
- TYK2 also known as protein-tyrosine kinase 2).
- JAK proteins range in size from 120 to 140 kDa and comprise seven conserved JAK homology (JH) domains; one of these is a functional catalytic kinase domain, and another is a pseudokinase domain potentially serving a regulatory function and/or serving as a docking site for STATs (Scott, Godshall et al. 2002, supra).
- JH JAK homology
- JAK kinases Blocking signal transduction at the level of the JAK kinases holds promise for developing treatments for human cancers. Inhibition of the JAK kinases is also envisioned to have therapeutic benefits in patients suffering from skin immune disorders such as psoriasis, and skin sensitization. Accordingly, inhibitors of Janus kinases or related kinases are widely sought and several publications report effective classes of compounds. For example, certain JAK inhibitors, including (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile depicted below, are reported in U.S. Ser. No. 11/637,545, filed Dec. 12, 2006.
- the present invention provides, inter alia, salts selected from:
- the present invention further provides methods of preparing a salt of the invention comprising combining (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile with maleic acid, sulfuric acid, or phorphoric acid.
- the present invention further provides compositions comprising a salt form of the invention and at least one pharmaceutically acceptable carrier.
- the present invention further provides methods of modulating an activity of JAK comprising contacting JAK with a salt of the invention.
- the present invention further provides methods of treating a disease in a patient, wherein the disease is associated with JAK activity, comprising administering to the patient a therapeutically effective amount of a salt of the invention.
- the present invention further provides methods of treating cancer, skin disorders, or inflammation in a patient, comprising administering to the patient a therapeutically effective amount of a salt of the invention.
- the present invention provides, inter alia, salts of the JAK inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile selected from the maleic acid salt, sulfuric acid salt, and phosphoric acid salt. These salts modulate the activity of one or more JAKs and are useful, for example, in the treatment of diseases associated with JAK expression or activity.
- the salts of the invention have numerous advantageous properties over the free base form and other salt forms.
- these salts were highly crystalline which would facilitate the preparation of pharmaceutical formulations and improve general handling, manipulation, and storage of the active ingredient.
- the salts of the invention also have superior aqueous solubility, rate of dissolution, chemical stability (with a longer shelf life), compatibility with excipients, and reproducibility compared with the free base form.
- the salts of the invention are substantially isolated.
- substantially isolated is meant that the salt is at least partially or substantially separated from the environment in which it was formed or detected.
- Partial separation can include, for example, a composition enriched in the salt of the invention.
- Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the salt.
- Salts of the invention also include all isotopes of atoms occurring in the salts.
- Isotopes include those atoms having the same atomic number but different mass numbers.
- isotopes of hydrogen include tritium and deuterium.
- Salts of the invention can be prepared using known techniques. Conventionally, a salt form is prepared by combining in solution the free base compound and an acid containing the anion of the salt form desired, and then isolating the solid salt product from the reaction solution (e.g., by crystallization, precipitation, evaporation, etc.). Other salt-forming techniques can be employed.
- Salts of the invention can modulate activity of one or more Janus kinases (JAKs).
- the term “modulate” is meant to refer to an ability to increase or decrease the activity of one or more members of the JAK family of kinases.
- compounds of the invention can be used in methods of modulating a JAK by contacting the JAK with any one or more of the compounds or compositions described herein.
- salts of the present invention can act as inhibitors of one or more JAKs.
- compounds of the present invention can act to stimulate the activity of one or more JAKs.
- the compounds of the invention can be used to modulate activity of a JAK in an individual in need of modulation of the receptor by administering a modulating amount of a salt of the invention.
- JAKs to which the present salts bind and/or modulate include any member of the JAK family.
- the JAK is JAK1, JAK2, JAK3 or TYK2.
- the JAK is JAK1 or JAK2.
- the JAK is JAK2.
- the JAK is JAK3.
- the salts of the invention can be selective.
- selective is meant that the compound binds to or inhibits a JAK with greater affinity or potency, respectively, compared to at least one other JAK.
- the compounds of the invention are selective inhibitors of JAK1 or JAK2 over JAK3 and/or TYK2.
- the salts of the invention are selective inhibitors of JAK2 (e.g., over JAK1, JAK3 and TYK2).
- a compound which is selective for JAK2 over JAK3 and which is useful in the treatment of cancer can offer the additional advantage of having fewer immunosuppressive side effects.
- Selectivity can be at least about 5-fold, 10-fold, at least about 20-fold, at least about 50-fold, at least about 100-fold, at least about 200-fold, at least about 500-fold or at least about 1000-fold. Selectivity can be measured by methods routine in the art. In some embodiments, selectivity can be tested at the Km of each enzyme. In some embodiments, selectivity of salts of the invention for JAK2 over JAK3 can be determined by the cellular ATP concentration.
- a JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels.
- a JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity.
- JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g. allograft rejection and graft versus host disease).
- organ transplant rejection e.g. allograft rejection and graft versus host disease.
- JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, autoimmune thyroid disorders, and the like.
- the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
- JAK-associated diseases include allergic conditions such as asthma, food allergies, atopic dermatitis and rhinitis.
- Further examples of JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
- EBV Epstein Barr Virus
- HBV Human Papilloma Virus
- HPV Human Papilloma Virus
- JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
- skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
- certain substances including some pharmaceuticals when topically applied can cause skin sensitization.
- co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis.
- the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
- the JAK-associated disease is cancer including those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia, acute myelogenous leukemia (AML), or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma.
- CTCL cutaneous T-cell lymphoma
- Example cutaneous T-cell lymphomas include Sezary syndrome and mycosis fungoides.
- JAK-associated diseases can further include those characterized by expression of a mutant JAK2 such as those having at least one mutation in the pseudo-kinase domain (e.g. JAK2V617F).
- a mutant JAK2 such as those having at least one mutation in the pseudo-kinase domain (e.g. JAK2V617F).
- JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like.
- MPDs myeloproliferative disorders
- PV polycythemia vera
- ET essential thrombocythemia
- MMM myeloid metaplasia with myelofibrosis
- CML chronic myelogenous leukemia
- CMML chronic myelomonocytic leukemia
- HES hypereosinophilic syndrome
- SMCD systemic mast cell disease
- JAK-associated diseases include inflammation and inflammatory diseases.
- Example inflammatory diseases include inflammatory diseases of the eye (e.g., ulceris, uveitis, scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (e.g., the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as myocarditis, and other inflammatory diseases.
- Other inflammatory diseases treatable by the compounds of the invention include systemic inflammatory response syndrome (SIRS) and septic shock.
- the JAK inhibitors described herein can further be used to treat ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest.
- the JAK inhibitors described herein can further be used to treat anorexia, cachexia, or fatigue such as that resulting from or associated with cancer.
- the JAK inhibitors described herein can further be used to treat restenosis, sclerodermitis, or fibrosis.
- the JAK inhibitors described herein can further be used to treat conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration. See, e.g., Dudley, A. C. et al. Biochem. J. 2005, 390(Pt 2):427-36 and Sriram, K. et al. J. Biol. Chem. 2004, 279(19):19936-47. Epub Mar. 2, 2004.
- JAK inhibitors described herein can further be used to treat gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia.
- contacting refers to the bringing together of indicated moieties in an in vitro system or an in vivo system.
- “contacting” a JAK with a salt of the invention includes the administration of a salt of the present invention to an individual or patient, such as a human, having a JAK, as well as, for example, introducing a salt of the invention into a sample containing a cellular or purified preparation containing the JAK.
- the term “individual” or “patient,” used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
- the phrase “therapeutically effective amount” refers to the amount of active salt or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.
- the term “treating” or “treatment” refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder; and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
- One or more additional pharmaceutical agents such as, for example, chemotherapeutics, anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, or other agents can be used in combination with the salts of the present invention for treatment of JAK-associated diseases, disorders or conditions.
- the one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
- Example chemotherapeutics include proteosome inhibitors (e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
- proteosome inhibitors e.g., bortezomib
- thalidomide thalidomide
- revlimid thalidomide
- DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
- Example steroids include coriticosteroids such as dexamethasone or prednisone.
- Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, EP2005/009967, EP2005/010408, and U.S. Ser. No. 60/578,491.
- Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120.
- Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444.
- Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402.
- the salt forms of the invention can be used in combination with other kinase inhibitors such as imatinib, particularly for the treatment of patients resistant to imatinib or other kinases.
- one or more salt forms of the invention can be used in combination with a chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the chemotherapeutic agent alone, without exacerbation of its toxic effects.
- additional pharmaceutical agents used in the treatment of multiple myeloma can include, without limitation, melphalan, melphalan plus prednisone [MP], doxorubicin, dexamethasone, and Velcade (bortezomib).
- Further additional agents used in the treatment of multiple myeloma include Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors.
- Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent.
- resistance of multiple myeloma cells to agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention.
- the agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms.
- a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.
- combinations of one or more JAK inhibitors of the invention with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant.
- the salts of the invention can be administered in the form of pharmaceutical compositions.
- These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral.
- topical including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery
- pulmonary e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal
- oral or parenteral e.g., by in
- Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular or injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump.
- Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.
- compositions which contain, as the active ingredient, one or more of the compounds of the invention above in combination with one or more pharmaceutically acceptable carriers (excipients).
- the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container.
- the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
- the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
- the compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types.
- Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art, for example see International Patent Application No. WO 2002/000196.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1000 mg (1 g), more usually about 100 to about 500 mg, of the active ingredient.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- the active compound can be effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, about 0.1 to about 1000 mg of the active ingredient of the present invention.
- the tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
- compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.
- compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
- the pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
- the therapeutic dosage of the salts of the present invention can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
- the proportion or concentration of a salt of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration.
- the salts of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day.
- the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
- the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- compositions of the invention can further include one or more additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.
- additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.
- Another aspect of the present invention relates to labeled salts of the invention (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating JAK in tissue samples, including human, and for identifying JAK ligands by inhibition binding of a labeled compound.
- the present invention includes JAK assays that contain such labeled compounds.
- the present invention further includes isotopically-labeled salts of the invention.
- An “isotopically” or “radio-labeled” compound is a salt of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring).
- Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2 H (also written as D for deuterium), 3 H (also written as T for tritium), 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 18 F, 35 S, 36 Cl, 82 Br, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I and 131 I.
- the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound.
- radio-labeled or “labeled compound” is a salt that has incorporated at least one radionuclide.
- the radionuclide is selected from the group consisting of 3 H, 14 C, 125 I, 35 S and 82 Br.
- the present invention can further include synthetic methods for incorporating radio-isotopes into compounds of the invention. Synthetic methods for incorporating radio-isotopes into organic compounds are well known in the art, and a person of ordinary skill in the art will readily recognize the methods applicable for the compounds of invention.
- a labeled salt of the invention can be used in a screening assay to identify/evaluate compounds.
- a newly synthesized or identified compound i.e., test compound
- a test compound which is labeled can be evaluated for its ability to bind a JAK by monitoring its concentration variation when contacting with the JAK, through tracking of the labeling.
- a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a JAK (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the JAK directly correlates to its binding affinity.
- the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
- kits useful for example, in the treatment or prevention of JAK-associated diseases or disorders, such as cancer, inflammation, or skin disorders, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a salt of the invention.
- kits can further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art.
- Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
- the maleic acid salt was shown to be a 1:1 salt by H 1 NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 175.96° C. (onset at 175.67° C.). The product showed only slight weight loss up to 150° C. by thermogravimetric analysis (TGA).
- the phosphoric acid salt was shown to be a 1:1 salt by 1 H NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 198.66° C. The product showed little weight loss up to 200° C. by TGA.
- the sulfuric acid salt was shown to be a 1:1 salt by 1 H NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 186.78° C. The product showed little weight loss up to 175° C. by TGA.
- Inhibitory activity of test compounds on JAK targets can be tested according to the following in vitro assay described in Park et al., Analytical Biochemistry 1999, 269, 94-104.
- the catalytic domains of human JAK1 (a.a. 837-1142), Jak2 (a.a. 828-1132) and Jak3 (a.a. 781-1124) with an N-terminal His tag are expressed using baculovirus in insect cells and purified.
- the catalytic activity of JAK1, JAK2 or JAK3 is assayed by measuring the phosphorylation of a biotinylated peptide.
- the phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF).
- IC 50 s of compounds are measured for each kinase in the reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01%) BSA.
- the ATP concentration in the reactions is 90 ⁇ M for Jak1, 30 ⁇ M for Jak2 and 3 ⁇ M for Jak3.
- Reactions are carried out at room temperature for 1 hr and then stopped with 20 ⁇ L 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, Mass.).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Virology (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Physical Education & Sports Medicine (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Biotechnology (AREA)
- Pulmonology (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physiology (AREA)
- Nutrition Science (AREA)
- Pain & Pain Management (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Endocrinology (AREA)
- Neurosurgery (AREA)
Abstract
The present invention provides salt forms of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile that are useful in the modulation of Janus kinase activity and are useful in the treatment of diseases related to activity of Janus kinases including, for example, immune-related diseases, skin disorders, myeloid proliferative disorders, cancer, and other diseases.
Description
- This application claims the benefit of U.S. Ser. No. 60/943,705, filed Jun. 13, 2007, the disclosure of which is incorporated herein by reference in its entirety.
- The present invention provides salt forms of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile that are useful in the modulation of Janus kinase activity and are useful in the treatment of diseases related to activity of Janus kinases including, for example, immune-related diseases, skin disorders, myeloid proliferative disorders, cancer, and other diseases.
- Protein kinases (PKs) are a group of enzymes that regulate diverse, important biological processes including cell growth, survival and differentiation, organ formation and morphogenesis, neovascularization, tissue repair and regeneration, among others. Protein kinases exert their physiological functions through catalyzing the phosphorylation of proteins (or substrates) and thereby modulating the cellular activities of the substrates in various biological contexts. In addition to the functions in normal tissues/organs, many protein kinases also play more specialized roles in a host of human diseases including cancer. A subset of protein kinases (also referred to as oncogenic protein kinases), when dysregulated, can cause tumor formation and growth, and further contribute to tumor maintenance and progression (Blume-Jensen P et al, Nature 2001, 411(6835):355-365). Thus far, oncogenic protein kinases represent one of the largest and most attractive groups of protein targets for cancer intervention and drug development.
- The Janus Kinase (JAK) family plays a role in the cytokine-dependent regulation of proliferation and function of cells involved in immune response. Currently, there are four known mammalian JAK family members: JAK1 (also known as Janus kinase-1), JAK2 (also known as Janus kinase-2), JAK3 (also known as Janus kinase, leukocyte; JAKL; L-JAK and Janus kinase-3) and TYK2 (also known as protein-tyrosine kinase 2). The JAK proteins range in size from 120 to 140 kDa and comprise seven conserved JAK homology (JH) domains; one of these is a functional catalytic kinase domain, and another is a pseudokinase domain potentially serving a regulatory function and/or serving as a docking site for STATs (Scott, Godshall et al. 2002, supra).
- Blocking signal transduction at the level of the JAK kinases holds promise for developing treatments for human cancers. Inhibition of the JAK kinases is also envisioned to have therapeutic benefits in patients suffering from skin immune disorders such as psoriasis, and skin sensitization. Accordingly, inhibitors of Janus kinases or related kinases are widely sought and several publications report effective classes of compounds. For example, certain JAK inhibitors, including (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile depicted below, are reported in U.S. Ser. No. 11/637,545, filed Dec. 12, 2006.
- Thus, new or improved forms of existing Janus kinase inhibitors are continually needed for developing new, improved, and more effective pharmaceutical formulations for the treatment of cancer and other diseases. The salt forms and methods described herein are directed toward these needs and other ends.
- The present invention provides, inter alia, salts selected from:
- (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile maleic acid salt;
- (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile sulfuric acid salt; and
- (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile phosphoric acid salt.
- The present invention further provides methods of preparing a salt of the invention comprising combining (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile with maleic acid, sulfuric acid, or phorphoric acid.
- The present invention further provides compositions comprising a salt form of the invention and at least one pharmaceutically acceptable carrier.
- The present invention further provides methods of modulating an activity of JAK comprising contacting JAK with a salt of the invention.
- The present invention further provides methods of treating a disease in a patient, wherein the disease is associated with JAK activity, comprising administering to the patient a therapeutically effective amount of a salt of the invention.
- The present invention further provides methods of treating cancer, skin disorders, or inflammation in a patient, comprising administering to the patient a therapeutically effective amount of a salt of the invention.
- The present invention provides, inter alia, salts of the JAK inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile selected from the maleic acid salt, sulfuric acid salt, and phosphoric acid salt. These salts modulate the activity of one or more JAKs and are useful, for example, in the treatment of diseases associated with JAK expression or activity.
- The salts of the invention have numerous advantageous properties over the free base form and other salt forms. In particular, these salts were highly crystalline which would facilitate the preparation of pharmaceutical formulations and improve general handling, manipulation, and storage of the active ingredient. The salts of the invention also have superior aqueous solubility, rate of dissolution, chemical stability (with a longer shelf life), compatibility with excipients, and reproducibility compared with the free base form.
- In some embodiments, the salts of the invention are substantially isolated. By “substantially isolated” is meant that the salt is at least partially or substantially separated from the environment in which it was formed or detected. Partial separation can include, for example, a composition enriched in the salt of the invention. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the salt.
- Salts of the invention also include all isotopes of atoms occurring in the salts. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include tritium and deuterium.
- Salts of the invention can be prepared using known techniques. Conventionally, a salt form is prepared by combining in solution the free base compound and an acid containing the anion of the salt form desired, and then isolating the solid salt product from the reaction solution (e.g., by crystallization, precipitation, evaporation, etc.). Other salt-forming techniques can be employed.
- Salts of the invention can modulate activity of one or more Janus kinases (JAKs). The term “modulate” is meant to refer to an ability to increase or decrease the activity of one or more members of the JAK family of kinases. Accordingly, compounds of the invention can be used in methods of modulating a JAK by contacting the JAK with any one or more of the compounds or compositions described herein. In some embodiments, salts of the present invention can act as inhibitors of one or more JAKs. In some embodiments, compounds of the present invention can act to stimulate the activity of one or more JAKs. In further embodiments, the compounds of the invention can be used to modulate activity of a JAK in an individual in need of modulation of the receptor by administering a modulating amount of a salt of the invention.
- JAKs to which the present salts bind and/or modulate include any member of the JAK family. In some embodiments, the JAK is JAK1, JAK2, JAK3 or TYK2. In some embodiments, the JAK is JAK1 or JAK2. In some embodiments, the JAK is JAK2. In some embodiments, the JAK is JAK3.
- The salts of the invention can be selective. By “selective” is meant that the compound binds to or inhibits a JAK with greater affinity or potency, respectively, compared to at least one other JAK. In some embodiments, the compounds of the invention are selective inhibitors of JAK1 or JAK2 over JAK3 and/or TYK2. In some embodiments, the salts of the invention are selective inhibitors of JAK2 (e.g., over JAK1, JAK3 and TYK2). Without wishing to be bound by theory, because inhibitors of JAK3 can lead to immunosuppressive effects, a compound which is selective for JAK2 over JAK3 and which is useful in the treatment of cancer (such as multiple myeloma, for example) can offer the additional advantage of having fewer immunosuppressive side effects. Selectivity can be at least about 5-fold, 10-fold, at least about 20-fold, at least about 50-fold, at least about 100-fold, at least about 200-fold, at least about 500-fold or at least about 1000-fold. Selectivity can be measured by methods routine in the art. In some embodiments, selectivity can be tested at the Km of each enzyme. In some embodiments, selectivity of salts of the invention for JAK2 over JAK3 can be determined by the cellular ATP concentration.
- Another aspect of the present invention pertains to methods of treating a JAK-associated disease or disorder in an individual (e.g., patient) by administering to the individual in need of such treatment a therapeutically effective amount or dose of a salt of the present invention or a pharmaceutical composition thereof. A JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels. A JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity.
- Examples of JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g. allograft rejection and graft versus host disease).
- Further examples of JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, autoimmune thyroid disorders, and the like. In some embodiments, the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
- Further examples of JAK-associated diseases include allergic conditions such as asthma, food allergies, atopic dermatitis and rhinitis. Further examples of JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
- Further examples of JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis). For example, certain substances including some pharmaceuticals when topically applied can cause skin sensitization. In some embodiments, co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis. In some embodiments, the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
- In further embodiments, the JAK-associated disease is cancer including those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia, acute myelogenous leukemia (AML), or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma. Example cutaneous T-cell lymphomas include Sezary syndrome and mycosis fungoides.
- JAK-associated diseases can further include those characterized by expression of a mutant JAK2 such as those having at least one mutation in the pseudo-kinase domain (e.g. JAK2V617F).
- JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like.
- Further JAK-associated diseases include inflammation and inflammatory diseases. Example inflammatory diseases include inflammatory diseases of the eye (e.g., iritis, uveitis, scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (e.g., the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as myocarditis, and other inflammatory diseases. Other inflammatory diseases treatable by the compounds of the invention include systemic inflammatory response syndrome (SIRS) and septic shock.
- The JAK inhibitors described herein can further be used to treat ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest. The JAK inhibitors described herein can further be used to treat anorexia, cachexia, or fatigue such as that resulting from or associated with cancer. The JAK inhibitors described herein can further be used to treat restenosis, sclerodermitis, or fibrosis. The JAK inhibitors described herein can further be used to treat conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration. See, e.g., Dudley, A. C. et al. Biochem. J. 2005, 390(Pt 2):427-36 and Sriram, K. et al. J. Biol. Chem. 2004, 279(19):19936-47. Epub Mar. 2, 2004.
- The JAK inhibitors described herein can further be used to treat gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia.
- As used herein, the term “contacting” refers to the bringing together of indicated moieties in an in vitro system or an in vivo system. For example, “contacting” a JAK with a salt of the invention includes the administration of a salt of the present invention to an individual or patient, such as a human, having a JAK, as well as, for example, introducing a salt of the invention into a sample containing a cellular or purified preparation containing the JAK.
- As used herein, the term “individual” or “patient,” used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
- As used herein, the phrase “therapeutically effective amount” refers to the amount of active salt or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.
- As used herein, the term “treating” or “treatment” refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder; and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
- One or more additional pharmaceutical agents such as, for example, chemotherapeutics, anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, or other agents can be used in combination with the salts of the present invention for treatment of JAK-associated diseases, disorders or conditions. The one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
- Example chemotherapeutics include proteosome inhibitors (e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
- Example steroids include coriticosteroids such as dexamethasone or prednisone.
- Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, EP2005/009967, EP2005/010408, and U.S. Ser. No. 60/578,491.
- Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120.
- Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444.
- Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402.
- In some embodiments, the salt forms of the invention can be used in combination with other kinase inhibitors such as imatinib, particularly for the treatment of patients resistant to imatinib or other kinases.
- In some embodiments, one or more salt forms of the invention can be used in combination with a chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the chemotherapeutic agent alone, without exacerbation of its toxic effects. Examples of additional pharmaceutical agents used in the treatment of multiple myeloma, for example, can include, without limitation, melphalan, melphalan plus prednisone [MP], doxorubicin, dexamethasone, and Velcade (bortezomib). Further additional agents used in the treatment of multiple myeloma include Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors. Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent. Furthermore, resistance of multiple myeloma cells to agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention. The agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms.
- In some embodiments, a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.
- In some further embodiments, combinations of one or more JAK inhibitors of the invention with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant.
- When employed as pharmaceuticals, the salts of the invention can be administered in the form of pharmaceutical compositions. These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal, intramuscular or injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.
- This invention also includes pharmaceutical compositions which contain, as the active ingredient, one or more of the compounds of the invention above in combination with one or more pharmaceutically acceptable carriers (excipients). In making the compositions of the invention, the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
- In preparing a formulation, the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
- The compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types. Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art, for example see International Patent Application No. WO 2002/000196.
- Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- The compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1000 mg (1 g), more usually about 100 to about 500 mg, of the active ingredient. The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- The active compound can be effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, about 0.1 to about 1000 mg of the active ingredient of the present invention.
- The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- The liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
- Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
- The amount of salt or composition administered to a patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like. In therapeutic applications, compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.
- The compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration. The pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
- The therapeutic dosage of the salts of the present invention can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician. The proportion or concentration of a salt of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration. For example, the salts of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 μg/kg to about 1 g/kg of body weight per day. In some embodiments, the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day. The dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- The compositions of the invention can further include one or more additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.
- Another aspect of the present invention relates to labeled salts of the invention (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating JAK in tissue samples, including human, and for identifying JAK ligands by inhibition binding of a labeled compound. Accordingly, the present invention includes JAK assays that contain such labeled compounds.
- The present invention further includes isotopically-labeled salts of the invention. An “isotopically” or “radio-labeled” compound is a salt of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring). Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2H (also written as D for deuterium), 3H (also written as T for tritium), 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 18F, 35S, 36Cl, 82Br, 75Br, 76Br, 77Br, 123I, 124I, 125I and 131I. The radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro metalloprotease labeling and competition assays, compounds that incorporate 3H, 14C, 82Br, 125I, 131I, 35S or will generally be most useful. For radio-imaging applications 11C, 18F, 125I, 123I, 124I, 131I, 75Br, 76Br or 77Br will generally be most useful.
- It is understood that a “radio-labeled ” or “labeled compound” is a salt that has incorporated at least one radionuclide. In some embodiments the radionuclide is selected from the group consisting of 3H, 14C, 125I, 35S and 82Br.
- The present invention can further include synthetic methods for incorporating radio-isotopes into compounds of the invention. Synthetic methods for incorporating radio-isotopes into organic compounds are well known in the art, and a person of ordinary skill in the art will readily recognize the methods applicable for the compounds of invention.
- A labeled salt of the invention can be used in a screening assay to identify/evaluate compounds. For example, a newly synthesized or identified compound (i.e., test compound) which is labeled can be evaluated for its ability to bind a JAK by monitoring its concentration variation when contacting with the JAK, through tracking of the labeling. For example, a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a JAK (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the JAK directly correlates to its binding affinity. Conversely, in some other screening assays, the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
- The present invention also includes pharmaceutical kits useful, for example, in the treatment or prevention of JAK-associated diseases or disorders, such as cancer, inflammation, or skin disorders, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a salt of the invention. Such kits can further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art. Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
- The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results.
- To a test tube was added (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile (153.7 mg, 0.5 mmol) and maleic acid (61.7 mg) followed by isopropyl alcohol (IPA) (4 mL). The resulting mixture was heated to clear, cooled to room temperature, and then stirred for another 2.5 hours. The precipitate was collected by filtration and the cake was washed with 0.8 mL of cold IPA. The cake was dried under vacuum to constant weight to provide the final salt product (173 mg).
- The maleic acid salt was shown to be a 1:1 salt by H1 NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 175.96° C. (onset at 175.67° C.). The product showed only slight weight loss up to 150° C. by thermogravimetric analysis (TGA).
- To a test tube was added (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile (153.5 mg) and phosphoric acid (56.6 mg) followed by isopropyl alcohol (IPA) (5.75 mL). The resulting mixture was heated to clear, cooled to room temperature, and then stirred for another 2 hours. The precipitate was collected by filtration and the cake was washed with 0.6 mL of cold IPA. The cake was dried under vacuum to constant weight to provide the final salt product (171.7 mg).
- The phosphoric acid salt was shown to be a 1:1 salt by 1H NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 198.66° C. The product showed little weight loss up to 200° C. by TGA.
- To a test tube was added (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile (153.0 mg) and sulfuric acid (56.1 mg) followed by acetonitrile (7.0 mL). The resulting mixture was heated to clear, cooled to room temperature, and then stirred for another 2 hours. The precipitate was collected by filtration and the cake was washed with 0.8 mL of cold acetonitrile. The cake was dried under vacuum to constant weight to provide the final salt product (180 mg).
- The sulfuric acid salt was shown to be a 1:1 salt by 1H NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 186.78° C. The product showed little weight loss up to 175° C. by TGA.
- In vitro JAK Kinase Assay
- Inhibitory activity of test compounds on JAK targets can be tested according to the following in vitro assay described in Park et al., Analytical Biochemistry 1999, 269, 94-104. The catalytic domains of human JAK1 (a.a. 837-1142), Jak2 (a.a. 828-1132) and Jak3 (a.a. 781-1124) with an N-terminal His tag are expressed using baculovirus in insect cells and purified. The catalytic activity of JAK1, JAK2 or JAK3 is assayed by measuring the phosphorylation of a biotinylated peptide. The phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF). IC50s of compounds are measured for each kinase in the reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01%) BSA. The ATP concentration in the reactions is 90 μM for Jak1, 30 μM for Jak2 and 3 μM for Jak3. Reactions are carried out at room temperature for 1 hr and then stopped with 20 μL 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, Mass.). Binding to the Europium labeled antibody takes place for 40 minutes and HTRF signal is measured on a Fusion plate reader (Perkin Elmer, Boston, Mass.). Both the phosphoric acid salt of the invention, and the corresponding free base compound, were found to have IC50 values of less than 50 nM for each of JAK1, JAK2, and JAK3.
- Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.
Claims (60)
1. A salt selected from:
(R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile maleic acid salt;
(R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile sulfuric acid salt; and
(R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile phosphoric acid salt.
2. The salt of claim 1 that is (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile maleic acid salt.
3. The salt of claim 1 that is (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile sulfuric acid salt.
4. The salt of claim 1 that is (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile phosphoric acid salt.
5. The salt of claim 1 that is substantially isolated.
6. A method of preparing a salt of claim 1 comprising combining (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile with maleic acid, sulfuric acid, or phorphoric acid.
7. A composition comprising at least one salt of claim 1 and at least one pharmaceutically acceptable carrier.
8. The composition of claim 7 which is suitable for oral or topical administration.
9. The composition of claim 7 which is suitable for topical administration.
10. A method of modulating an activity of JAK comprising contacting JAK with a salt of claim 1 .
11. The method of claim 10 wherein said modulating is inhibiting.
12. A method of treating a disease in a patient wherein said disease is associated with JAK activity, comprising administering to said patient a therapeutically effective amount of a salt of claim 1 .
13. The method of claim 12 wherein said disease is allograft rejection or graft versus host disease.
14. The method of claim 12 wherein said disease is an autoimmune disease.
15. The method of claim 14 wherein said autoimmune disease is a skin disorder, multiple sclerosis, rheumatoid arthritis, juvenile arthritis, type I diabetes, lupus, inflammatory bowel disease, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, or autoimmune thyroid disorder.
16. The method of claim 12 wherein said autoimmune disease is bullous skin disorder.
17. The method of claim 16 wherein said bullous skin disorder is pemphigus vulgaris (PV) or bullous pemphigoid (BP).
18. The method of claim 12 wherein said disease is a skin disorder.
19. The method of claim 18 wherein said skin disorder is atopic dermatitis, psoriasis, skin sensitization, skin irritation, skin rash, contact dermatitis or allergic contact sensitization.
20. The method of claim 12 wherein said disease is a viral disease.
21. The method of claim 20 wherein said viral disease is Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) or Human Papilloma Virus (HPV).
22. The method of claim 12 wherein said disease is cancer.
23. The method of claim 22 wherein said cancer is a solid tumor
24. The method of claim 22 wherein said cancer is prostate cancer, renal cancer, hepatic cancer, breast cancer, lung cancer, thyroid cancer, Kaposi's sarcoma, Castleman's disease or pancreatic cancer.
25. The method of claim 24 wherein said cancer is prostate cancer.
26. The method of claim 22 wherein said cancer is hematological.
27. The method of claim 26 wherein said cancer is lymphoma, leukemia, or multiple myeloma.
28. The method of claim 22 wherein said cancer is a skin cancer.
29. The method of claim 28 wherein said skin cancer is cutaneous T-cell lymphoma or cutaneous B-cell lymphoma.
30. The method of claim 22 wherein said cancer is multiple myeloma.
31. The method of claim 12 wherein said disease is characterized by a mutant JAK2.
32. The method of claim 31 wherein at least one mutation of said mutant JAK2 resides in the pseudo-kinase domain of said JAK2.
33. The method of claim 12 wherein said disease is a myeloproliferative disorder.
34. The method of claim 33 wherein said myeloproliferative disorder (MPD) is polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), or systemic mast cell disease (SMCD).
35. The method of claim 12 wherein said disease is an inflammatory disease.
36. The method of claim 35 wherein said disease is an inflammatory disease of the eye.
37. The method of claim 36 wherein said disease is iritis, uveitis, scleritis, or conjunctivitis.
38. The method of claim 35 wherein said disease is an inflammatory disease of the respiratory tract.
39. The method of claim 35 wherein said inflammatory disease concerns the upper respiratory tract.
40. The method of claim 35 wherein said inflammatory disease concerns the lower respiratory tract.
41. The method of claim 35 wherein said inflammatory disease is an inflammatory myopathy.
42. The method of claim 35 wherein said inflammatory disease is myocarditis.
43. The method of claim 12 wherein said disease is ischemia reperfusion or related to an ischemic event.
44. The method of claim 12 wherein said disease is anorexia or cachexia resulting from or associated with cancer.
45. The method of claim 12 wherein said disease is fatigue resulting from or associated with cancer.
46. A method of treating cancer in a patient, comprising administering to said patient a therapeutically effective amount of a salt of claim 1 .
47. A method of treating a skin disorder in a patient comprising topically administering to said patient a therapeutically effective amount of a salt of claim 1 .
48. A method of treating inflammation in a patient comprising topically administering to said patient a therapeutically effective amount of a salt of claim 1 .
49. A method of treating rheumatoid arthritis in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
50. A method of treating prostate cancer in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
51. A method of treating psoriasis in a patient comprising administering to said patient a therapeutically effective amount of a compound of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
52. A method of treating multiple myeloma in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
53. A method of treating myeloid metaplasia with myelofibrosis (MMM) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
54. A method of treating polycythemia vera (PV) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
55. A method of treating essential thrombocythemia (ET) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
56. A method of treating mycosis fungoides in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
57. A method of treating a hematological cancer in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
58. A method of treating chronic myelogenous leukemia (CML) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
59. A method of treating acute lymphoblastic leukemia (ALL) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof.
60. A method of treating chronic myelomonocytic leukemia (CMML) in a patient comprising administering to said patient a therapeutically effective amount of a salt of claim 1 , or pharmaceutically acceptable salt thereof
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/137,892 US20080312259A1 (en) | 2007-06-13 | 2008-06-12 | SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US14/097,588 US8722693B2 (en) | 2007-06-13 | 2013-12-05 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/097,598 US20140094477A1 (en) | 2007-06-13 | 2013-12-05 | Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,383 US8822481B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,311 US8829013B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/270,915 US9376439B2 (en) | 2007-06-13 | 2014-05-06 | Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US15/164,518 US10016429B2 (en) | 2007-06-13 | 2016-05-25 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/003,210 US10610530B2 (en) | 2007-06-13 | 2018-06-08 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/806,244 US11213528B2 (en) | 2007-06-13 | 2020-03-02 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US17/536,925 US20220288078A1 (en) | 2007-06-13 | 2021-11-29 | Salts of the Janus Kinase Inhibitor (R)-3-(4-(7h-Pyrrolo[2,3-D]Pyrimidin-4-YL)-1h-Pyrazol-1-Yl)-3- Cyclopentylpropanenitrile |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94370507P | 2007-06-13 | 2007-06-13 | |
US12/137,892 US20080312259A1 (en) | 2007-06-13 | 2008-06-12 | SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/097,598 Continuation US20140094477A1 (en) | 2007-06-13 | 2013-12-05 | Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/097,588 Continuation US8722693B2 (en) | 2007-06-13 | 2013-12-05 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080312259A1 true US20080312259A1 (en) | 2008-12-18 |
Family
ID=40029273
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/137,892 Abandoned US20080312259A1 (en) | 2007-06-13 | 2008-06-12 | SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US14/097,588 Active US8722693B2 (en) | 2007-06-13 | 2013-12-05 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/097,598 Abandoned US20140094477A1 (en) | 2007-06-13 | 2013-12-05 | Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,383 Active US8822481B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,311 Active US8829013B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/270,915 Active US9376439B2 (en) | 2007-06-13 | 2014-05-06 | Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US15/164,518 Active US10016429B2 (en) | 2007-06-13 | 2016-05-25 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/003,210 Active US10610530B2 (en) | 2007-06-13 | 2018-06-08 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/806,244 Active US11213528B2 (en) | 2007-06-13 | 2020-03-02 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US17/536,925 Abandoned US20220288078A1 (en) | 2007-06-13 | 2021-11-29 | Salts of the Janus Kinase Inhibitor (R)-3-(4-(7h-Pyrrolo[2,3-D]Pyrimidin-4-YL)-1h-Pyrazol-1-Yl)-3- Cyclopentylpropanenitrile |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/097,588 Active US8722693B2 (en) | 2007-06-13 | 2013-12-05 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/097,598 Abandoned US20140094477A1 (en) | 2007-06-13 | 2013-12-05 | Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,383 Active US8822481B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/256,311 Active US8829013B1 (en) | 2007-06-13 | 2014-04-18 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US14/270,915 Active US9376439B2 (en) | 2007-06-13 | 2014-05-06 | Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US15/164,518 Active US10016429B2 (en) | 2007-06-13 | 2016-05-25 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/003,210 Active US10610530B2 (en) | 2007-06-13 | 2018-06-08 | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US16/806,244 Active US11213528B2 (en) | 2007-06-13 | 2020-03-02 | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US17/536,925 Abandoned US20220288078A1 (en) | 2007-06-13 | 2021-11-29 | Salts of the Janus Kinase Inhibitor (R)-3-(4-(7h-Pyrrolo[2,3-D]Pyrimidin-4-YL)-1h-Pyrazol-1-Yl)-3- Cyclopentylpropanenitrile |
Country Status (42)
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070135461A1 (en) * | 2005-12-13 | 2007-06-14 | Rodgers James D | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US20080188500A1 (en) * | 2006-12-22 | 2008-08-07 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
US20090215766A1 (en) * | 2004-04-28 | 2009-08-27 | Incyte Corporation | Tetracyclic inhibitors of janus kinases |
US20090233903A1 (en) * | 2008-03-11 | 2009-09-17 | Incyte Corporation | Azetidine and cyclobutane derivatives as jak inhibitors |
US20090318405A1 (en) * | 2007-11-16 | 2009-12-24 | Incyte Corporation | 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors |
US20100190981A1 (en) * | 2009-01-15 | 2010-07-29 | Jiacheng Zhou | Processes for preparing jak inhibitors and related intermediate compounds |
US20100317659A1 (en) * | 2009-02-27 | 2010-12-16 | Sunny Abraham | Jak kinase modulating compounds and methods of use thereof |
US20110086810A1 (en) * | 2009-10-09 | 2011-04-14 | Incyte Corporation | HYDROXYL, KETO, AND GLUCURONIDE DERIVATIVES OF 3-(4-(7H-PYRROLO[2,3-d] PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US20110207754A1 (en) * | 2010-02-18 | 2011-08-25 | Incyte Corporation | Cyclobutane and methylcyclobutane derivatives as janus kinase inhibitors |
WO2011146808A2 (en) | 2010-05-21 | 2011-11-24 | Incyte Corporation | Topical formulation for a jak inhibitor |
WO2012112847A1 (en) * | 2011-02-18 | 2012-08-23 | Novartis Pharma Ag | mTOR/JAK INHIBITOR COMBINATION THERAPY |
WO2013082476A1 (en) | 2011-11-30 | 2013-06-06 | Emory University | Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections |
WO2013173506A2 (en) | 2012-05-16 | 2013-11-21 | Rigel Pharmaceuticals, Inc. | Method of treating muscular degradation |
US8604043B2 (en) | 2009-05-22 | 2013-12-10 | Incyte Corporation | 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as jak inhibitors |
US8633207B2 (en) | 2010-09-01 | 2014-01-21 | Ambit Biosciences Corporation | Quinazoline compounds and methods of use thereof |
US8691807B2 (en) | 2011-06-20 | 2014-04-08 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US8716303B2 (en) | 2009-05-22 | 2014-05-06 | Incyte Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
US8722693B2 (en) | 2007-06-13 | 2014-05-13 | Incyte Corporation | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8765734B2 (en) | 2010-03-10 | 2014-07-01 | Incyte Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
EP2813228A1 (en) * | 2013-04-25 | 2014-12-17 | Japan Tobacco Inc. | Agent for improvement of skin barrier function |
US8933085B2 (en) | 2010-11-19 | 2015-01-13 | Incyte Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
US8987443B2 (en) | 2013-03-06 | 2015-03-24 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
US9034884B2 (en) | 2010-11-19 | 2015-05-19 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors |
WO2015040243A3 (en) * | 2013-09-23 | 2015-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for targeting tumor microenvironment and for preventing metastasis |
US9181271B2 (en) | 2012-11-01 | 2015-11-10 | Incyte Holdings Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US9193733B2 (en) | 2012-05-18 | 2015-11-24 | Incyte Holdings Corporation | Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
US9249145B2 (en) | 2009-09-01 | 2016-02-02 | Incyte Holdings Corporation | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
WO2016024230A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor |
WO2016024228A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
WO2016024232A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor and/or a cdk 4/6 inhibitor |
WO2016035014A1 (en) * | 2014-09-01 | 2016-03-10 | Sun Pharmaceutical Industries Limited | Processes for the preparation of ruxolitinib phosphate |
US9359358B2 (en) | 2011-08-18 | 2016-06-07 | Incyte Holdings Corporation | Cyclohexyl azetidine derivatives as JAK inhibitors |
US9358229B2 (en) | 2011-08-10 | 2016-06-07 | Novartis Pharma Ag | JAK PI3K/mTOR combination therapy |
US9382231B2 (en) | 2013-05-17 | 2016-07-05 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US9487521B2 (en) | 2011-09-07 | 2016-11-08 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
US9498467B2 (en) | 2014-05-30 | 2016-11-22 | Incyte Corporation | Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1 |
US9655854B2 (en) | 2013-08-07 | 2017-05-23 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
US9802957B2 (en) | 2014-04-30 | 2017-10-31 | Incyte Corporation | Processes of preparing a JAK1 inhibitor and new forms thereto |
US10064866B2 (en) | 2014-04-08 | 2018-09-04 | Incyte Corporation | Treatment of B-cell malignancies by a combination JAK and PI3K inhibitors |
US10166191B2 (en) | 2012-11-15 | 2019-01-01 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
WO2019113487A1 (en) | 2017-12-08 | 2019-06-13 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
US10463667B2 (en) | 2007-06-13 | 2019-11-05 | Incyte Incorporation | Metabolites of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
WO2020028258A1 (en) | 2018-07-31 | 2020-02-06 | Loxo Oncology, Inc. | Spray-dried dispersions and formulations of (s)-5-amino-3-(4-((5-fluoro-2-methoxybenzamido)methyl)phenyl)-1-(1,1,1-trifluoro propan-2-yl)-1h-pyrazole-4-carboxamide |
WO2020131674A1 (en) | 2018-12-19 | 2020-06-25 | Array Biopharma Inc. | 7-((3,5-dimethoxyphenyl)amino)quinoxaline derivatives as fgfr inhibitors for treating cancer |
WO2020131627A1 (en) | 2018-12-19 | 2020-06-25 | Array Biopharma Inc. | Substituted pyrazolo[1,5-a]pyridine compounds as inhibitors of fgfr tyrosine kinases |
WO2020252012A1 (en) * | 2019-06-10 | 2020-12-17 | Incyte Corporation | Topical treatment of vitiligo by a jak inhibitor |
US10899736B2 (en) | 2018-01-30 | 2021-01-26 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
WO2021247064A1 (en) | 2020-06-03 | 2021-12-09 | Incyte Corporation | Combination of ruxolitinib with incb057643 for treatment of myeloproliferative neoplasms |
WO2022040180A1 (en) | 2020-08-18 | 2022-02-24 | Incyte Corporation | Process and intermediates for preparing a jak inhibitor |
WO2022072814A1 (en) | 2020-10-02 | 2022-04-07 | Incyte Corporation | Topical ruxolitinib for treating lichen planus |
US11304949B2 (en) | 2018-03-30 | 2022-04-19 | Incyte Corporation | Treatment of hidradenitis suppurativa using JAK inhibitors |
WO2022120131A1 (en) | 2020-12-04 | 2022-06-09 | Incyte Corporation | Jak inhibitor with a vitamin d analog for treatment of skin diseases |
US11510923B2 (en) | 2019-09-05 | 2022-11-29 | Incyte Corporation | Ruxolitinib formulation for reduction of itch in atopic dermatitis |
US11635435B2 (en) | 2017-06-13 | 2023-04-25 | Oncotracker, Inc. | Diagnostic, prognostic, and monitoring methods for solid tumor cancers |
US11685731B2 (en) | 2020-06-02 | 2023-06-27 | Incyte Corporation | Processes of preparing a JAK1 inhibitor |
US11698369B2 (en) | 2016-01-12 | 2023-07-11 | Oncotracker, Inc. | Methods for monitoring immune status of a subject |
US11833155B2 (en) | 2020-06-03 | 2023-12-05 | Incyte Corporation | Combination therapy for treatment of myeloproliferative neoplasms |
US11833152B2 (en) | 2018-02-16 | 2023-12-05 | Incyte Corporation | JAK1 pathway inhibitors for the treatment of cytokine-related disorders |
US11897889B2 (en) | 2020-08-18 | 2024-02-13 | Incyte Corporation | Process and intermediates for preparing a JAK1 inhibitor |
US11957661B2 (en) | 2020-12-08 | 2024-04-16 | Incyte Corporation | JAK1 pathway inhibitors for the treatment of vitiligo |
US12071439B2 (en) | 2021-07-12 | 2024-08-27 | Incyte Corporation | Process and intermediates for preparing a JAK inhibitor |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8133900B2 (en) | 2005-11-01 | 2012-03-13 | Targegen, Inc. | Use of bi-aryl meta-pyrimidine inhibitors of kinases |
US8604042B2 (en) | 2005-11-01 | 2013-12-10 | Targegen, Inc. | Bi-aryl meta-pyrimidine inhibitors of kinases |
DK1951684T3 (en) | 2005-11-01 | 2016-10-24 | Targegen Inc | BIARYLMETAPYRIMIDIN kinase inhibitors |
SA111320200B1 (en) | 2010-02-17 | 2014-02-16 | ديبيوفارم اس ايه | Bicyclic Compounds and their Uses as Dual C-SRC / JAK Inhibitors |
CN103370076A (en) * | 2010-11-02 | 2013-10-23 | 纽约市哥伦比亚大学托管会 | Methods for treating hair loss disorders |
WO2012060847A1 (en) | 2010-11-07 | 2012-05-10 | Targegen, Inc. | Compositions and methods for treating myelofibrosis |
US20140113919A1 (en) * | 2011-06-14 | 2014-04-24 | Novartis Ag | Combination of panobinostat and ruxolitinib in the treatment of cancer such as a myeloproliferative neoplasm |
WO2013020372A1 (en) * | 2011-08-09 | 2013-02-14 | 中国科学院上海生命科学研究院 | Methods and reagents for preventing and curing insulin resistance and diabetes mellitus |
US10821111B2 (en) | 2011-11-30 | 2020-11-03 | Emory University | Antiviral JAK inhibitors useful in treating or preventing retroviral and other viral infections |
WO2014013014A1 (en) | 2012-07-18 | 2014-01-23 | Fundació Privada Centre De Regulació Genòmica (Crg) | Jak inhibitors for activation of epidermal stem cell populations |
EA201590272A1 (en) | 2012-07-27 | 2015-05-29 | Рациофарм Гмбх | ORAL DOSED FORMS FOR MODIFIED SURVENT CONTAINING RUXOLITINIB |
CN105218548A (en) * | 2014-06-09 | 2016-01-06 | 上海海和药物研究开发有限公司 | A kind of novel heterocyclic compounds and preparation method thereof and the purposes as kinase inhibitor |
WO2016026975A1 (en) * | 2014-08-21 | 2016-02-25 | Ratiopharm Gmbh | Salt of (r)-3-(4-(7h-pyrrolo [2,3-d] pyrimidin-4-yl)-lh-pyrazol-l-yl)-3-cyclopentylpropanenitrile with benzenesulfonic acid |
EP3183252B1 (en) * | 2014-08-21 | 2021-05-12 | ratiopharm GmbH | Oxalate salt of ruxolitinib |
WO2016063294A2 (en) * | 2014-10-20 | 2016-04-28 | Msn Laboratories Private Limited | Process for the preparation of (r)-3-(4-(7h-pyrrolo[2,3-d], pyrimidin-4-yl)-1 h-pyrazol-1-yl)-3-cyclopentylpropanenitrile phosphate and its polymorphs thereof |
CZ2014773A3 (en) | 2014-11-10 | 2016-05-18 | Zentiva, K.S. | Salts of (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)pyrazol-1-yl]propanenitrile |
US20170335324A1 (en) | 2014-11-12 | 2017-11-23 | The General Hospital Corporation | Methods for treating neurodegenerative diseases |
CZ2015496A3 (en) | 2015-07-14 | 2017-01-25 | Zentiva, K.S. | The crystalline salt forms of (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidine-4-yl)-pyrazol-1-yl] of propanenitrile and their preparation |
CZ201629A3 (en) | 2016-01-22 | 2017-08-02 | Zentiva, K.S. | Crystalline modifications of the (3R)-3-cyclopentyl-3- [4-(7H-pyrrolo [2,3-d] pyrimidin-4yl) pyrazol-1yl] propanenitrile salts and the method of their preparation |
CN105566332B (en) * | 2016-01-29 | 2018-01-16 | 上海宣创生物科技有限公司 | Ba Ruike is for Buddhist nun's trifluoroacetate A crystal formations and B crystal form and preparation method thereof |
CN107641125A (en) * | 2016-02-01 | 2018-01-30 | 上海宣创生物科技有限公司 | Ba Ruike is for Buddhist nun's phosphate I crystal and preparation method thereof |
WO2017173451A1 (en) * | 2016-04-01 | 2017-10-05 | The General Hospital Corporation | Targeting innate immune signaling in neuroinflammation and neurodegeneration |
CN107759600A (en) * | 2016-06-16 | 2018-03-06 | 正大天晴药业集团股份有限公司 | Crystallization as the Pyrrolopyrimidine compounds of JAK inhibitor |
WO2018041989A1 (en) | 2016-09-02 | 2018-03-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing and treating refractory celiac disease type 2 |
RU2644155C1 (en) * | 2016-12-12 | 2018-02-08 | Закрытое акционерное общество "Р-Фарм" (ЗАО "Р-Фарм") | 2-(3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-1-(ethylsulfonyl)azetidin-3-yl)acetonitrile heminaphthyldisulfonate as janus kinase inhibitor |
SG11202002947TA (en) * | 2017-11-03 | 2020-04-29 | Aclaris Therapeutics Inc | Substituted pyrrolopyrimidine jak inhibitors and methods of making and using the same |
US10800775B2 (en) | 2017-11-03 | 2020-10-13 | Aclaris Therapeutics, Inc. | Pyrazolyl pyrrolo[2,3-b]pyrmidine-5-carboxylate analogs and methods of making the same |
JP2021515027A (en) | 2018-03-08 | 2021-06-17 | ノバルティス アーゲー | Use of anti-P-selectin antibody |
US11584961B2 (en) | 2018-03-30 | 2023-02-21 | Incyte Corporation | Biomarkers for inflammatory skin disease |
MX2020010815A (en) | 2018-04-13 | 2020-12-11 | Incyte Corp | Biomarkers for graft-versus-host disease. |
KR20210044822A (en) | 2018-08-10 | 2021-04-23 | 어클라리스 쎄라퓨틱스, 인코포레이티드 | Pyrrolopyrimidine ITK inhibitor |
WO2020039401A1 (en) | 2018-08-24 | 2020-02-27 | Novartis Ag | Treatment comprising il-1βeta binding antibodies and combinations thereof |
KR20210056380A (en) | 2018-09-04 | 2021-05-18 | 세라밴스 바이오파마 알앤디 아이피, 엘엘씨 | 5- to 7-membered heterocyclic amides as JAK inhibitors |
SG11202104321PA (en) | 2018-10-31 | 2021-05-28 | Incyte Corp | Combination therapy for treatment of hematological diseases |
US11459329B2 (en) | 2018-12-20 | 2022-10-04 | Incyte Corporation | Imidazopyridazine and imidazopyridine compounds and uses thereof |
CN114007621A (en) | 2019-03-05 | 2022-02-01 | 因赛特公司 | JAK1 pathway inhibitors for the treatment of chronic lung allograft dysfunction |
EP3947737A2 (en) | 2019-04-02 | 2022-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
US20220202820A1 (en) | 2019-04-16 | 2022-06-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of jak inhibitors for the treatment of painful conditions involving nav1.7 channels |
CN113727975A (en) | 2019-05-02 | 2021-11-30 | 阿克拉瑞斯治疗股份有限公司 | Substituted pyrrolopyridines as JAK inhibitors |
CA3144871A1 (en) | 2019-06-27 | 2020-12-30 | Crispr Therapeutics Ag | Use of chimeric antigen receptor t cells and nk cell inhibitors for treating cancer |
TW202124443A (en) | 2019-09-16 | 2021-07-01 | 瑞士商諾華公司 | Use of high-affinity, ligand-blocking, humanized anti-t-cell immunoglobulin domain and mucin domain-3 (tim-3) igg4 antibody for the treatment of myelofibrosis |
AU2020351324B2 (en) | 2019-09-16 | 2023-08-03 | Novartis Ag | Use of an MDM2 inhibitor for the treatment of myelofibrosis |
WO2021076124A1 (en) | 2019-10-16 | 2021-04-22 | Incyte Corporation | Use of jak1 inhibitors for the treatment of cutaneous lupus erythematosus and lichen planus (lp) |
US11992490B2 (en) | 2019-10-16 | 2024-05-28 | Incyte Corporation | Use of JAK1 inhibitors for the treatment of cutaneous lupus erythematosus and Lichen planus (LP) |
KR20220107213A (en) | 2019-11-22 | 2022-08-02 | 인사이트 코포레이션 | Combination therapy comprising an ALK2 inhibitor and a JAK2 inhibitor |
EP3892280A3 (en) | 2020-04-09 | 2022-01-12 | Children's Hospital Medical Center | Sars-cov-2 infection biomarkers and uses thereof |
US11324750B2 (en) | 2020-04-09 | 2022-05-10 | Children's Hospital Medical Center | Compositions and methods for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection |
WO2021206766A1 (en) | 2020-04-09 | 2021-10-14 | Children's Hospital Medical Center | Sars-cov-2 infection biomarkers and uses thereof |
WO2021260657A1 (en) | 2020-06-26 | 2021-12-30 | Crispr Therapeutics Ag | Allogeneic cell therapy of b cell malignancies using genetically engineered t cells targeting cd19 |
CN116261447A (en) | 2020-09-16 | 2023-06-13 | 因赛特公司 | Topical treatment of vitiligo |
TW202227077A (en) | 2020-10-08 | 2022-07-16 | 瑞士商諾華公司 | Use of an erk inhibitor for the treatment of myelofibrosis |
WO2022074599A1 (en) | 2020-10-08 | 2022-04-14 | Novartis Ag | Use of an erk inhibitor for the treatment of myelofibrosis |
CA3207859A1 (en) | 2021-01-11 | 2022-07-14 | Incyte Corporation | Combination therapy comprising jak pathway inhibitor and rock inhibitor |
KR20230148208A (en) | 2021-02-25 | 2023-10-24 | 임팩트 바이오메디신스, 인코포레이티드 | Use of BET inhibitors alone or in combination with fedratinib or ruxolitinib to treat hematologic malignancies such as myelofibrosis. |
WO2023102559A1 (en) | 2021-12-03 | 2023-06-08 | Incyte Corporation | Topical formulations of ruxolitinib with an organic amine ph adjusting agent for treatment of skin diseases |
WO2023222565A1 (en) | 2022-05-16 | 2023-11-23 | Institut National de la Santé et de la Recherche Médicale | Methods for assessing the exhaustion of hematopoietic stems cells induced by chronic inflammation |
WO2023245053A1 (en) | 2022-06-14 | 2023-12-21 | Incyte Corporation | Solid forms of a jak inhibitor and process of preparing the same |
WO2024028193A1 (en) | 2022-08-03 | 2024-02-08 | Medichem, S.A. | Stable oral pharmaceutical formulation containing ruxolitinib hemifumarate |
WO2024099396A1 (en) * | 2022-11-11 | 2024-05-16 | 浙江奥翔药业股份有限公司 | Ruxolitinib crystal and pharmaceutical composition thereof |
WO2024187416A1 (en) | 2023-03-15 | 2024-09-19 | Zhejiang Qizheng Pharmaceutical Co., Ltd. | Pharmaceutical composition comprising ruxolitinib |
WO2024187415A1 (en) * | 2023-03-15 | 2024-09-19 | Zhejiang Qizheng Pharmaceutical Co., Ltd. | Pharmaceutical composition comprising ruxolitinib |
Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3832460A (en) * | 1971-03-19 | 1974-08-27 | C Kosti | Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue |
US5521184A (en) * | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
US5795909A (en) * | 1996-05-22 | 1998-08-18 | Neuromedica, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
US6335342B1 (en) * | 2000-06-19 | 2002-01-01 | Pharmacia & Upjohn S.P.A. | Azaindole derivatives, process for their preparation, and their use as antitumor agents |
US6579882B2 (en) * | 1998-06-04 | 2003-06-17 | Abbott Laboratories | Cell adhesion-inhibiting antiinflammatory compounds |
US20030144309A1 (en) * | 2001-05-16 | 2003-07-31 | Young Choon-Moon | Inhibitors of Src and other protein kinases |
US20030165576A1 (en) * | 2000-06-23 | 2003-09-04 | Akihiro Fujii | Antitumor effect potentiators |
US6624138B1 (en) * | 2001-09-27 | 2003-09-23 | Gp Medical | Drug-loaded biological material chemically treated with genipin |
US6635762B1 (en) * | 1998-06-19 | 2003-10-21 | Pfizer Inc. | Monocyclic-7H-pyrrolo[2,3-d]pyrimidine compounds, compositions, and methods of use |
US20040009983A1 (en) * | 1999-12-24 | 2004-01-15 | Cox Paul J. | Azaindoles |
US20040029857A1 (en) * | 2002-04-26 | 2004-02-12 | Hale Michael Robin | Heterocyclic inhibitors of ERK2 and uses thereof |
US6713089B1 (en) * | 1998-09-10 | 2004-03-30 | Nycomed Danmark A/S | Quick release pharmaceutical compositions of drug substances |
US6852727B2 (en) * | 2001-08-01 | 2005-02-08 | Merck & Co., Inc. | Benzimisazo[4,5-f]isoquinolinone derivatives |
US20050153989A1 (en) * | 2004-01-13 | 2005-07-14 | Ambit Biosciences Corporation | Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases |
US20060020011A1 (en) * | 2004-07-20 | 2006-01-26 | Yong-Jin Wu | Arylpyrrolidine derivatives as NK-1 /SSRI antagonists |
US7005436B2 (en) * | 2002-04-19 | 2006-02-28 | Bristol Myers Squibb Company | Heterocyclo inhibitors of potassium channel function |
US20060106020A1 (en) * | 2004-04-28 | 2006-05-18 | Rodgers James D | Tetracyclic inhibitors of Janus kinases |
US20060183761A1 (en) * | 2005-02-03 | 2006-08-17 | Mark Ledeboer | Pyrrolopyrimidines useful as inhibitors of protein kinase |
US20060183906A1 (en) * | 2004-12-22 | 2006-08-17 | Rodgers James D | Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-4-yl-amines as janus kinase inhibitors |
US7167750B2 (en) * | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
US20070135466A1 (en) * | 2005-05-20 | 2007-06-14 | Mark Ledeboer | Pyrrolopyridines useful as inhibitors of protein kinase |
US20070135461A1 (en) * | 2005-12-13 | 2007-06-14 | Rodgers James D | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US20070149506A1 (en) * | 2005-09-22 | 2007-06-28 | Arvanitis Argyrios G | Azepine inhibitors of Janus kinases |
US20070208053A1 (en) * | 2006-01-19 | 2007-09-06 | Arnold Lee D | Fused heterobicyclic kinase inhibitors |
US20080188500A1 (en) * | 2006-12-22 | 2008-08-07 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
US20080312258A1 (en) * | 2007-06-13 | 2008-12-18 | Incyte Corporation | METABOLITES OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US20090018156A1 (en) * | 2006-02-01 | 2009-01-15 | Jun Tang | Pyrrolo [2,3,B] Pyridine Derivatives Useful As RAF Kinase Inhibitors |
US20090088445A1 (en) * | 2006-04-05 | 2009-04-02 | Mark Ledeboer | Deazapurines useful as inhibitors of Janus kinases |
US20090233903A1 (en) * | 2008-03-11 | 2009-09-17 | Incyte Corporation | Azetidine and cyclobutane derivatives as jak inhibitors |
US20090318405A1 (en) * | 2007-11-16 | 2009-12-24 | Incyte Corporation | 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors |
Family Cites Families (256)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2985589A (en) | 1957-05-22 | 1961-05-23 | Universal Oil Prod Co | Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets |
US4140755A (en) | 1976-02-13 | 1979-02-20 | Hoffmann-La Roche Inc. | Sustained release tablet formulations |
GB2030584B (en) | 1978-10-03 | 1983-03-23 | Lankro Chem Ltd | Photopolymerisable solder resist compositions |
JPS5553537A (en) | 1978-10-13 | 1980-04-19 | Barron Robert Michael | Abrasive foam material and its preparation |
DE3036390A1 (en) | 1980-09-26 | 1982-05-13 | Troponwerke GmbH & Co KG, 5000 Köln | Antiinflammatory intermediate 7H-pyrrolo-(2,3-D)-pyrimidine derivs. - prepd. by dealkylation of 7-phenyl:ethyl derivs. by reaction with hydrochloric, phosphoric or poly:phosphoric acid |
DE3220113A1 (en) | 1982-05-28 | 1983-12-01 | Basf Ag, 6700 Ludwigshafen | DIFLUORMETHOXIPHENYLTHIOPHOSPHORSAEUREESTER |
US4402832A (en) | 1982-08-12 | 1983-09-06 | Uop Inc. | High efficiency continuous separation process |
US4548990A (en) | 1983-08-15 | 1985-10-22 | Ciba-Geigy Corporation | Crosslinked, porous polymers for controlled drug delivery |
US4498991A (en) | 1984-06-18 | 1985-02-12 | Uop Inc. | Serial flow continuous separation process |
NL8403224A (en) | 1984-10-24 | 1986-05-16 | Oce Andeno Bv | DIOXAPHOSPHORINANS, THEIR PREPARATION AND THE USE FOR SPLITTING OF OPTICALLY ACTIVE COMPOUNDS. |
CA1306260C (en) | 1985-10-18 | 1992-08-11 | Shionogi & Co., Ltd. | Condensed imidazopyridine derivatives |
JPH0781138B2 (en) | 1986-12-02 | 1995-08-30 | 株式会社資生堂 | Antioxidant |
AU645504B2 (en) | 1989-10-11 | 1994-01-20 | Teijin Limited | Bicyclic pyrimidine derivative, method of producing the same, and pharmaceutical preparation containing the same as active ingredient |
IT1258781B (en) | 1992-01-16 | 1996-02-29 | Zambon Spa | OPHTHALMIC PHARMACEUTICAL COMPOSITION CONTAINING N-ACETYLCISTEIN AND POLYVINYL ALCOHOL |
AU671491B2 (en) | 1992-12-18 | 1996-08-29 | F. Hoffmann-La Roche Ag | N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines |
US6638905B2 (en) | 1993-06-18 | 2003-10-28 | The Salk Institute For Biological Studies | Cloning and recombinant production of CFR receptor(s) |
JPH0710876A (en) | 1993-06-24 | 1995-01-13 | Teijin Ltd | Pyrrolo(2,3-d)pyrimidine having cyclic amino group at 4-position |
EP0727217A3 (en) | 1995-02-10 | 1997-01-15 | Suntory Ltd | Pharmaceutical composition containing god-type ellagitannin as active ingredient |
US5856326A (en) | 1995-03-29 | 1999-01-05 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
IL117580A0 (en) | 1995-03-29 | 1996-07-23 | Merck & Co Inc | Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them |
PL324486A1 (en) | 1995-07-05 | 1998-05-25 | Du Pont | Fungicidal pyrimidinones |
CA2224435C (en) | 1995-07-06 | 2008-08-05 | Novartis Ag | Pyrrolopyrimidines and processes for the preparation thereof |
US5630943A (en) | 1995-11-30 | 1997-05-20 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Discontinuous countercurrent chromatographic process and apparatus |
GB9604361D0 (en) | 1996-02-29 | 1996-05-01 | Pharmacia Spa | 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors |
AU727939B2 (en) | 1996-04-03 | 2001-01-04 | Merck & Co., Inc. | A method of treating cancer |
AU2802297A (en) | 1996-04-18 | 1997-11-07 | Merck & Co., Inc. | A method of treating cancer |
WO1997045412A1 (en) | 1996-05-30 | 1997-12-04 | Merck & Co., Inc. | A method of treating cancer |
EP0973396A4 (en) | 1997-04-07 | 2001-02-07 | Merck & Co Inc | A method of treating cancer |
US6063284A (en) | 1997-05-15 | 2000-05-16 | Em Industries, Inc. | Single column closed-loop recycling with periodic intra-profile injection |
US6060038A (en) | 1997-05-15 | 2000-05-09 | Merck & Co., Inc. | Radiolabeled farnesyl-protein transferase inhibitors |
US5919779A (en) | 1997-08-11 | 1999-07-06 | Boehringer Ingelheim Pharmaceuticals, Inc. | 5,6-Heteroaryl-dipyrido(2,3-B:3', 2'-F) azepines and their use in the prevention or treatment of HIV infection |
US6075056A (en) | 1997-10-03 | 2000-06-13 | Penederm, Inc. | Antifungal/steroid topical compositions |
US6025366A (en) | 1998-04-02 | 2000-02-15 | Merck & Co., Inc. | Antagonists of gonadotropin releasing hormone |
BR9910864A (en) | 1998-06-04 | 2002-02-05 | Abbott Lab | Anti-inflammatory compounds for inhibiting cell adhesion |
EP1087970B1 (en) | 1998-06-19 | 2004-04-28 | Pfizer Products Inc. | PYRROLO 2,3-d]PYRIMIDINE COMPOUNDS |
WO2000009495A1 (en) | 1998-08-11 | 2000-02-24 | Novartis Ag | Isoquinoline derivatives with angiogenesis inhibiting activity |
JP2000119271A (en) | 1998-08-12 | 2000-04-25 | Hokuriku Seiyaku Co Ltd | 1h-imidazopyridine derivative |
JP3869128B2 (en) | 1998-09-11 | 2007-01-17 | 株式会社ルネサステクノロジ | Manufacturing method of semiconductor integrated circuit device |
FR2785196B1 (en) | 1998-10-29 | 2000-12-15 | Inst Francais Du Petrole | METHOD AND DEVICE FOR SEPARATION WITH VARIABLE LENGTH CHROMATOGRAPHIC AREAS |
US6413419B1 (en) | 1998-10-29 | 2002-07-02 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic |
US6375839B1 (en) | 1998-10-29 | 2002-04-23 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic zones |
US6133031A (en) | 1999-08-19 | 2000-10-17 | Isis Pharmaceuticals Inc. | Antisense inhibition of focal adhesion kinase expression |
WO2000051614A1 (en) | 1999-03-03 | 2000-09-08 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferases |
GB9905075D0 (en) | 1999-03-06 | 1999-04-28 | Zeneca Ltd | Chemical compounds |
US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
US6239113B1 (en) | 1999-03-31 | 2001-05-29 | Insite Vision, Incorporated | Topical treatment or prevention of ocular infections |
WO2000063168A1 (en) | 1999-04-16 | 2000-10-26 | Coelacanth Chemical Corporation | Synthesis of azetidine derivatives |
US6921763B2 (en) | 1999-09-17 | 2005-07-26 | Abbott Laboratories | Pyrazolopyrimidines as therapeutic agents |
EP1221443B1 (en) | 1999-10-13 | 2004-09-01 | Banyu Pharmaceutical Co., Ltd. | Substituted imidazolidinone derivatives |
TR200201498T2 (en) * | 1999-12-10 | 2003-01-21 | Pfizer Products Inc. | Pyrrolo [2,3-d] pyrimidine compounds. |
GB0004890D0 (en) | 2000-03-01 | 2000-04-19 | Astrazeneca Uk Ltd | Chemical compounds |
US7235551B2 (en) | 2000-03-02 | 2007-06-26 | Smithkline Beecham Corporation | 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases |
DK1142566T3 (en) | 2000-04-07 | 2004-02-09 | Medidom Lab | Ophthalmological formulations based on cyclosporine, hyaluronic acid and polysorbate |
WO2001081345A1 (en) | 2000-04-20 | 2001-11-01 | Mitsubishi Pharma Corporation | Aromatic amide compounds |
PT1939203E (en) | 2000-04-25 | 2015-02-04 | Icos Corp | Inhibitors of human phosphatidyl-inositol 3-kinase delta isoform |
EP1294752A2 (en) | 2000-06-16 | 2003-03-26 | Curis, Inc. | Angiogenesis-modulating compositions and uses |
US7498304B2 (en) | 2000-06-16 | 2009-03-03 | Curis, Inc. | Angiogenesis-modulating compositions and uses |
PT1294724E (en) | 2000-06-26 | 2006-07-31 | Pfizer Prod Inc | COMPOUNDS PYRROLE (2,3-D) PYRIMIDINE AS IMMUNOSPRESSOR AGENTS |
PT1294358E (en) | 2000-06-28 | 2004-12-31 | Smithkline Beecham Plc | MOORING PROCESS BY HUMIDITY |
US20020111353A1 (en) | 2000-12-05 | 2002-08-15 | Mark Ledeboer | Inhibitors of c-Jun N-terminal kinases (JNK) and other protein kinases |
GB0100622D0 (en) | 2001-01-10 | 2001-02-21 | Vernalis Res Ltd | Chemical compounds V111 |
JP2004520347A (en) | 2001-01-15 | 2004-07-08 | グラクソ グループ リミテッド | Arylpiperidine and piperazine derivatives as inducers of LDL-receptor expression |
WO2002060492A1 (en) | 2001-01-30 | 2002-08-08 | Cytopia Pty Ltd | Methods of inhibiting kinases |
US7301023B2 (en) | 2001-05-31 | 2007-11-27 | Pfizer Inc. | Chiral salt resolution |
GB0115109D0 (en) | 2001-06-21 | 2001-08-15 | Aventis Pharma Ltd | Chemical compounds |
GB0115393D0 (en) | 2001-06-23 | 2001-08-15 | Aventis Pharma Ltd | Chemical compounds |
JP4456365B2 (en) | 2001-09-19 | 2010-04-28 | アベンティス・ファーマ・ソシエテ・アノニム | Compound |
US6429231B1 (en) | 2001-09-24 | 2002-08-06 | Bradley Pharmaceuticals, Inc. | Compositions containing antimicrobials and urea for the treatment of dermatological disorders and methods for their use |
RU2337692C3 (en) | 2001-10-30 | 2020-11-09 | Новартис Аг | STAUROSPORIN DERIVATIVES AS INHIBITORS OF FLT3 RECEPTOR TYROSINE KINASE ACTIVITY |
JP2003155285A (en) | 2001-11-19 | 2003-05-27 | Toray Ind Inc | Cyclic nitrogen-containing derivative |
US6949668B2 (en) | 2001-11-30 | 2005-09-27 | Teijin Limited | Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound |
GT200200234A (en) | 2001-12-06 | 2003-06-27 | NEW CRYSTAL COMPOUNDS | |
US6995144B2 (en) | 2002-03-14 | 2006-02-07 | Eisai Co., Ltd. | Nitrogen containing heterocyclic compounds and medicines containing the same |
JP2005530745A (en) | 2002-05-02 | 2005-10-13 | メルク エンド カムパニー インコーポレーテッド | Tyrosine kinase inhibitor |
KR20100120243A (en) | 2002-05-07 | 2010-11-12 | 피시비다 유에스 인코포레이티드 | Processes for forming a drug delivery device |
US7122550B2 (en) | 2002-05-23 | 2006-10-17 | Cytopia Pty Ltd | Protein kinase inhibitors |
TW200406374A (en) | 2002-05-29 | 2004-05-01 | Novartis Ag | Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases |
US7385018B2 (en) | 2002-06-26 | 2008-06-10 | Idemitsu Kosan Co., Ltd. | Hydrogenated copolymer, process for producing the same, and hot-melt adhesive composition containing the same |
GB0215676D0 (en) | 2002-07-05 | 2002-08-14 | Novartis Ag | Organic compounds |
GB0215844D0 (en) | 2002-07-09 | 2002-08-14 | Novartis Ag | Organic compounds |
EP1541563A4 (en) | 2002-07-10 | 2007-11-07 | Ono Pharmaceutical Co | Ccr4 antagonist and medicinal use thereof |
AU2003278727A1 (en) | 2002-09-20 | 2004-04-08 | Alcon, Inc. | Use of cytokine synthesis inhibitors for the treatment of dry eye disorders |
US20040204404A1 (en) | 2002-09-30 | 2004-10-14 | Robert Zelle | Human N-type calcium channel blockers |
ES2289349T3 (en) | 2002-11-04 | 2008-02-01 | Vertex Pharmaceuticals Incorporated | DERIVATIVES OF HETEROARIL-PYRIMIDINE AS JAK INHIBITORS. |
TWI335913B (en) | 2002-11-15 | 2011-01-11 | Vertex Pharma | Diaminotriazoles useful as inhibitors of protein kinases |
MXPA05005576A (en) | 2002-11-26 | 2005-07-27 | Pfizer Prod Inc | Method of treatment of transplant rejection. |
UA80767C2 (en) | 2002-12-20 | 2007-10-25 | Pfizer Prod Inc | Pyrimidine derivatives for the treatment of abnormal cell growth |
TWI335819B (en) | 2002-12-24 | 2011-01-11 | Alcon Inc | Use of oculosurface selective glucocorticoid in the treatment of dry eye |
US7135493B2 (en) | 2003-01-13 | 2006-11-14 | Astellas Pharma Inc. | HDAC inhibitor |
WO2004072063A1 (en) | 2003-02-07 | 2004-08-26 | Vertex Pharmaceuticals Incorporated | Heteroaryl substituted pyrolls useful as inhibitors of protein kinases |
GB0305929D0 (en) | 2003-03-14 | 2003-04-23 | Novartis Ag | Organic compounds |
AU2004230841A1 (en) | 2003-04-03 | 2004-10-28 | Vertex Pharmaceuticals Incorporated | Compositions useful as inhibitors of protein kinases |
SE0301372D0 (en) | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | Novel compounds |
SE0301373D0 (en) | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | Novel compounds |
FR2857454B1 (en) | 2003-07-08 | 2006-08-11 | Aventis Pasteur | DOSAGE OF TECHIC ACIDS OF BACTERIA GRAM + |
US20050043346A1 (en) | 2003-08-08 | 2005-02-24 | Pharmacia Italia S.P.A. | Pyridylpyrrole derivatives active as kinase inhibitors |
JP5010917B2 (en) | 2003-08-29 | 2012-08-29 | エグゼリクシス, インコーポレイテッド | c-Kit Regulator and Method of Use |
WO2005026129A1 (en) | 2003-09-15 | 2005-03-24 | Gpc Biotech Ag | Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases |
PE20050952A1 (en) | 2003-09-24 | 2005-12-19 | Novartis Ag | DERIVATIVES OF ISOQUINOLINE AS INHIBITORS OF B-RAF |
PT1679074E (en) | 2003-10-24 | 2011-03-03 | Santen Pharmaceutical Co Ltd | Therapeutic agent for keratoconjunctive disorder |
MY141220A (en) | 2003-11-17 | 2010-03-31 | Astrazeneca Ab | Pyrazole derivatives as inhibitors of receptor tyrosine kinases |
WO2005051393A1 (en) | 2003-11-25 | 2005-06-09 | Pfizer Products Inc. | Method of treatment of atherosclerosis |
RU2006120956A (en) | 2003-12-17 | 2008-01-27 | Пфайзер Продактс Инк. (Us) | PYRROLO {2, 3-D} Pyrimidine Compounds for the Treatment of Transplant Rejection |
EP1694659B8 (en) | 2003-12-19 | 2008-10-08 | Schering Corporation | Thiadiazoles as cxc- and cc- chemokine receptor ligands |
WO2005062795A2 (en) | 2003-12-19 | 2005-07-14 | Plexxikon, Inc. | Compounds and methods for development of ret modulators |
US8247576B2 (en) | 2003-12-23 | 2012-08-21 | Astex Therapeutics Limited | Pyrazole derivatives as protein kinase modulators |
EP1744751A4 (en) | 2004-03-18 | 2010-03-10 | Brigham & Womens Hospital | Methods for the treatment of synucleinopathies |
MXPA06011327A (en) | 2004-03-30 | 2006-12-15 | Vertex Pharma | Azaindoles useful as inhibitors of jak and other protein kinases. |
AU2005249380C1 (en) | 2004-04-23 | 2012-09-20 | Exelixis, Inc. | Kinase modulators and methods of use |
US7558717B2 (en) | 2004-04-28 | 2009-07-07 | Vertex Pharmaceuticals Incorporated | Crystal structure of human JAK3 kinase domain complex and binding pockets thereof |
MXPA06012663A (en) | 2004-05-03 | 2007-01-16 | Novartis Ag | Combinations comprising a s1p receptor agonist and a jak3 kinase inhibitor. |
WO2005110410A2 (en) | 2004-05-14 | 2005-11-24 | Abbott Laboratories | Kinase inhibitors as therapeutic agents |
PE20060426A1 (en) | 2004-06-02 | 2006-06-28 | Schering Corp | TARTARIC ACID DERIVATIVES AS INHIBITORS OF MMPs, ADAMs, TACE AND TNF-alpha |
EP1758892B1 (en) | 2004-06-10 | 2012-10-17 | Irm Llc | Compounds and compositions as protein kinase inhibitors |
JP5315611B2 (en) | 2004-06-23 | 2013-10-16 | 小野薬品工業株式会社 | Compound having S1P receptor binding ability and use thereof |
WO2006004984A1 (en) | 2004-06-30 | 2006-01-12 | Vertex Pharmaceuticals Incorporated | Azaindoles useful as inhibitors of protein kinases |
FR2873691B1 (en) | 2004-07-29 | 2006-10-06 | Sanofi Synthelabo | AMINO-PIPERIDINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION |
WO2006013114A1 (en) | 2004-08-06 | 2006-02-09 | Develogen Aktiengesellschaft | Use of a timp-2 secreted protein product for preventing and treating pancreatic diseases and/or obesity and/or metabolic syndrome |
WO2006022459A1 (en) | 2004-08-23 | 2006-03-02 | Mogam Biotechnology Institute | Primer and probe for detection of sars coronavirus, kit comprising the primer and/or the probe, and detection method thereof |
US20070054916A1 (en) | 2004-10-01 | 2007-03-08 | Amgen Inc. | Aryl nitrogen-containing bicyclic compounds and methods of use |
AU2005293818A1 (en) | 2004-10-13 | 2006-04-20 | F. Hoffmann-La Roche Ag | Disubstituted pyrazolobenzodiazepines useful as inhibitors for CDK2 and angiogesis, and for the treatment of breast, colon, lung and prostate cancer |
MY179032A (en) | 2004-10-25 | 2020-10-26 | Cancer Research Tech Ltd | Ortho-condensed pyridine and pyrimidine derivatives (e.g.purines) as protein kinase inhibitors |
UY29177A1 (en) | 2004-10-25 | 2006-05-31 | Astex Therapeutics Ltd | SUBSTITUTED DERIVATIVES OF PURINA, PURINONA AND DEAZAPURINA, COMPOSITIONS THAT CONTAIN METHODS FOR THEIR PREPARATION AND ITS USES |
MX337817B (en) | 2004-11-04 | 2011-11-04 | Vertex Pharma | PYRAZOLO[1,5-a]PYRIMIDINES USEFUL AS INHIBITORS OF PROTEIN KINASES. |
WO2006056399A2 (en) | 2004-11-24 | 2006-06-01 | Novartis Ag | Combinations of jak inhibitors and at least one of bcr-abl, flt-3, fak or raf kinase inhibitors |
US7517870B2 (en) | 2004-12-03 | 2009-04-14 | Fondazione Telethon | Use of compounds that interfere with the hedgehog signaling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization |
WO2006065916A1 (en) | 2004-12-14 | 2006-06-22 | Alcon, Inc. | Method of treating dry eye disorders using 13(s)-hode and its analogs |
US7981065B2 (en) | 2004-12-20 | 2011-07-19 | Cardiac Pacemakers, Inc. | Lead electrode incorporating extracellular matrix |
WO2006067445A2 (en) | 2004-12-22 | 2006-06-29 | Astrazeneca Ab | Csf-1r kinase inhibitors |
WO2006077499A1 (en) | 2005-01-20 | 2006-07-27 | Pfizer Limited | Chemical compounds |
US7683171B2 (en) | 2005-02-04 | 2010-03-23 | Bristol-Myers Squibb Company | 1H-imidazo[4,5-d]thieno[3,2-b]pyridine based tricyclic compounds and pharmaceutical compositions comprising same |
MX2007011316A (en) | 2005-03-15 | 2007-11-12 | Irm Llc | Compounds and compositions as protein kinase inhibitors. |
BRPI0610514A2 (en) | 2005-04-05 | 2016-11-16 | Pharmacopeia Inc | compound, pharmaceutical composition, and method of treating a disorder |
GB0510139D0 (en) | 2005-05-18 | 2005-06-22 | Addex Pharmaceuticals Sa | Novel compounds B1 |
GB0510390D0 (en) | 2005-05-20 | 2005-06-29 | Novartis Ag | Organic compounds |
BRPI0606172A2 (en) | 2005-06-08 | 2009-06-02 | Targegen Inc | methods and compositions for treating eye disorders |
CA2608367C (en) | 2005-06-08 | 2014-08-19 | Rigel Pharmaceuticals, Inc. | Compositions and methods for inhibition of the jak pathway |
WO2006136823A1 (en) | 2005-06-21 | 2006-12-28 | Astex Therapeutics Limited | Heterocyclic containing amines as kinase b inhibitors |
MY147410A (en) | 2005-06-22 | 2012-11-30 | Plexxikon Inc | Compounds and methods for kinase modulation, and indications therefor |
JP2007010876A (en) | 2005-06-29 | 2007-01-18 | Fujinon Corp | Lens drive device |
EP2251341A1 (en) | 2005-07-14 | 2010-11-17 | Astellas Pharma Inc. | Heterocyclic Janus kinase 3 inhibitors |
FR2889662B1 (en) | 2005-08-11 | 2011-01-14 | Galderma Res & Dev | OIL-IN-WATER EMULSION FOR TOPICAL APPLICATION IN DERMATOLOGY |
WO2007025090A2 (en) | 2005-08-25 | 2007-03-01 | Kalypsys, Inc. | Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase |
AU2006297351A1 (en) | 2005-09-30 | 2007-04-12 | Vertex Pharmaceuticals Incorporated | Deazapurines useful as inhibitors of janus kinases |
WO2007044894A2 (en) | 2005-10-11 | 2007-04-19 | Chembridge Research Laboratories, Inc. | Cell-free protein expression systems and methods of use thereof |
CA2623202C (en) | 2005-10-14 | 2014-09-16 | Sumitomo Chemical Company, Limited | Hydrazide compound and pesticidal use of the same |
PT1945631E (en) | 2005-10-28 | 2012-10-15 | Astrazeneca Ab | 4- (3-aminopyrazole) pyrimidine derivatives for use as tyrosine kinase inhibitors in the treatment of cancer |
DK1951684T3 (en) | 2005-11-01 | 2016-10-24 | Targegen Inc | BIARYLMETAPYRIMIDIN kinase inhibitors |
WO2007062459A1 (en) | 2005-11-29 | 2007-06-07 | Cytopia Research Pty Ltd | Selective kinase inhibitors based on pyridine scaffold |
US20130137681A1 (en) | 2005-12-13 | 2013-05-30 | Incyte Corporation | HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS |
EP1968568A4 (en) | 2005-12-22 | 2011-04-13 | Glaxosmithkline Llc | INHIBITORS OF Akt ACTIVITY |
US7282588B2 (en) | 2005-12-23 | 2007-10-16 | Smithkline Beecham | Azaindole inhibitors of aurora kinases |
CN102532134A (en) | 2006-01-17 | 2012-07-04 | 沃泰克斯药物股份有限公司 | Azaindoles useful as inhibitors of janus kinases |
US7745477B2 (en) | 2006-02-07 | 2010-06-29 | Hoffman-La Roche Inc. | Heteroaryl and benzyl amide compounds |
CN101443322A (en) | 2006-03-10 | 2009-05-27 | 小野药品工业株式会社 | Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient |
PL2003132T3 (en) | 2006-04-03 | 2014-10-31 | Astellas Pharma Inc | Oxadiazole derivatives as S1P1 agonists |
EP2059515A2 (en) | 2006-04-12 | 2009-05-20 | Pfizer Limited | Pyrrolidine derivatives as modulators of chemokine ccr5 receptors |
WO2007129195A2 (en) | 2006-05-04 | 2007-11-15 | Pfizer Products Inc. | 4-pyrimidine-5-amino-pyrazole compounds |
US7691811B2 (en) | 2006-05-25 | 2010-04-06 | Bodor Nicholas S | Transporter-enhanced corticosteroid activity and methods and compositions for treating dry eye |
JO3235B1 (en) | 2006-05-26 | 2018-03-08 | Astex Therapeutics Ltd | Pyrrolopyrimidine compounds and their uses |
US20080021026A1 (en) | 2006-07-20 | 2008-01-24 | Mehmet Kahraman | Benzothiophene inhibitors of rho kinase |
WO2008013622A2 (en) | 2006-07-27 | 2008-01-31 | E. I. Du Pont De Nemours And Company | Fungicidal azocyclic amides |
US8492378B2 (en) | 2006-08-03 | 2013-07-23 | Takeda Pharmaceutical Company Limited | GSK-3β inhibitor |
CA2660560A1 (en) | 2006-08-16 | 2008-02-21 | Boehringer Ingelheim International Gmbh | Pyrazine compounds, their use and methods of preparation |
EP2081888A1 (en) | 2006-09-08 | 2009-07-29 | Novartis AG | N-biaryl (hetero) arylsulphonamide derivatives useful in the treatment of diseases mediated by lymphocytes interactions |
WO2008035376A2 (en) | 2006-09-19 | 2008-03-27 | Council Of Scientific & Industrial Research | A novel bio-erodible insert for ophthalmic applications and a process for the preparation thereof |
US7915268B2 (en) | 2006-10-04 | 2011-03-29 | Wyeth Llc | 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression |
CL2007002866A1 (en) | 2006-10-04 | 2008-07-04 | Pharmacopeia Inc | COMPOUNDS DERIVED FROM 6-SUBSTITUTES-2- (BENCIMIDAZOLIL) PURINA AND PURINONA; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUND; AND USE OF THE COMPOUND IN THE TREATMENT OF AUTOIMMUNE DISEASES, INFLAMMATORY DISEASE, DISEASE MEDIATED BY M |
US20120225057A1 (en) | 2006-10-11 | 2012-09-06 | Deciphera Pharmaceuticals, Llc | Methods and compositions for the treatment of myeloproliferative diseases and other proliferative diseases |
BRPI0718029A2 (en) | 2006-11-06 | 2013-11-26 | Supergen Inc | IMIDAZO (1,2-B) PYRIDAZINE AND PIRAZOLE (1,5-A) PYRIMIDINE DERIVATIVES AND THEIR USE AS PROTEIN KINASE INHIBITORS |
US20080119496A1 (en) | 2006-11-16 | 2008-05-22 | Pharmacopeia Drug Discovery, Inc. | 7-Substituted Purine Derivatives for Immunosuppression |
WO2008064157A1 (en) | 2006-11-22 | 2008-05-29 | Incyte Corporation | Imidazotriazines and imidazopyrimidines as kinase inhibitors |
WO2008067119A2 (en) | 2006-11-27 | 2008-06-05 | Smithkline Beecham Corporation | Novel compounds |
CA2672616A1 (en) | 2006-12-15 | 2008-06-26 | Abbott Laboratories | Novel oxadiazole compounds |
EP2125781A2 (en) | 2006-12-20 | 2009-12-02 | Amgen Inc. | Substituted heterocycles and methods of use |
ES2387471T3 (en) | 2006-12-20 | 2012-09-24 | Amgen Inc. | Heterocyclic compounds and their use in the treatment of inflammation, angiogenesis and cancer |
BRPI0720434A2 (en) | 2006-12-22 | 2014-01-07 | Sigma Tau Ind Farmaceuti | USEFUL GEL FOR OPHTHALMIC PHARMACEUTICAL RELEASE |
WO2008082840A1 (en) | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Pim kinase inhibitors as cancer chemotherapeutics |
KR20080062876A (en) | 2006-12-29 | 2008-07-03 | 주식회사 대웅제약 | Novel antifungal triazole derivatives |
WO2008082839A2 (en) | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Pim kinase inhibitors as cancer chemotherapeutics |
US8822497B2 (en) | 2007-03-01 | 2014-09-02 | Novartis Ag | PIM kinase inhibitors and methods of their use |
ES2420113T3 (en) | 2007-04-03 | 2013-08-22 | Array Biopharma, Inc. | Imidazo [1,2-a] pyridine compounds as receptor tyrosine kinase inhibitors |
GB0709031D0 (en) | 2007-05-10 | 2007-06-20 | Sareum Ltd | Pharmaceutical compounds |
EP2155689B1 (en) | 2007-05-31 | 2015-07-08 | Boehringer Ingelheim International GmbH | Ccr2 receptor antagonists and uses thereof |
GB0710528D0 (en) | 2007-06-01 | 2007-07-11 | Glaxo Group Ltd | Novel compounds |
HUE029236T2 (en) | 2007-06-13 | 2017-02-28 | Incyte Holdings Corp | Crystalline salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
RU2445098C2 (en) | 2007-07-11 | 2012-03-20 | Пфайзер Инк. | Pharmaceutical composition and methods of treating dry-eye syndrome |
KR20100038119A (en) | 2007-08-01 | 2010-04-12 | 화이자 인코포레이티드 | Pyrazole compounds and their use as raf inhibitors |
WO2009049028A1 (en) | 2007-10-09 | 2009-04-16 | Targegen Inc. | Pyrrolopyrimidine compounds and their use as janus kinase modulators |
US20110263664A1 (en) | 2007-11-15 | 2011-10-27 | Musc Foundation For Research Development | Inhibitors of PIM-1 Protein Kinases, Compositions and Methods for Treating Prostate Cancer |
GB0723815D0 (en) | 2007-12-05 | 2008-01-16 | Glaxo Group Ltd | Compounds |
LT2231689T (en) | 2008-01-18 | 2016-10-25 | Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic | Novel cytostatic 7-deazapurine nucleosides |
EP2240016A4 (en) | 2008-02-04 | 2011-11-16 | Mercury Therapeutics Inc | Ampk modulators |
PE20091577A1 (en) | 2008-03-03 | 2009-11-05 | Novartis Ag | PIM KINASE INHIBITORS AND METHODS FOR THEIR USE |
AU2009227013B2 (en) | 2008-03-21 | 2013-01-10 | Novartis Ag | Novel heterocyclic compounds and uses therof |
EP2310000B1 (en) | 2008-06-26 | 2019-09-18 | Anterios, Inc. | Dermal delivery |
TWI461423B (en) | 2008-07-02 | 2014-11-21 | Astrazeneca Ab | Thiazolidinedione compounds useful in the treatment of pim kinase related conditions and diseases |
FR2933409B1 (en) | 2008-07-03 | 2010-08-27 | Centre Nat Rech Scient | NEW PYRROLO ° 2,3-a! CARBAZOLES AND THEIR USE AS INHIBITORS OF PIM KINASES |
TWI496779B (en) | 2008-08-19 | 2015-08-21 | Array Biopharma Inc | Triazolopyridine compounds as pim kinase inhibitors |
US8557809B2 (en) | 2008-08-19 | 2013-10-15 | Array Biopharma Inc. | Triazolopyridine compounds as PIM kinase inhibitors |
SI2384326T1 (en) | 2008-08-20 | 2014-06-30 | Zoetis Llc | Pyrrološ2,3-dćpyrimidine compounds |
KR20110058866A (en) | 2008-09-02 | 2011-06-01 | 노파르티스 아게 | Bicyclic kinase inhibitors |
KR20110056399A (en) | 2008-09-02 | 2011-05-27 | 노파르티스 아게 | Heterocyclic pim-kinase inhibitors |
PT2344474E (en) | 2008-09-02 | 2015-12-28 | Novartis Ag | Picolinamide derivatives as kinase inhibitors |
CL2009001884A1 (en) | 2008-10-02 | 2010-05-14 | Incyte Holdings Corp | Use of 3-cyclopentyl-3- [4- (7h-pyrrolo [2,3-d] pyrimidin-4-yl) -1h-pyrazol-1-yl) propanonitrile, janus kinase inhibitor, and use of a composition that understands it for the treatment of dry eye. |
JOP20190230A1 (en) | 2009-01-15 | 2017-06-16 | Incyte Corp | Processes for preparing jak inhibitors and related intermediate compounds |
EP2210890A1 (en) | 2009-01-19 | 2010-07-28 | Almirall, S.A. | Oxadiazole derivatives as S1P1 receptor agonists |
US8263601B2 (en) | 2009-02-27 | 2012-09-11 | Concert Pharmaceuticals, Inc. | Deuterium substituted xanthine derivatives |
UA106078C2 (en) | 2009-05-22 | 2014-07-25 | Інсайт Корпорейшн | 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octane- or heptanenitrile as jak inhibitors |
EP2432555B1 (en) | 2009-05-22 | 2014-04-30 | Incyte Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
UA110324C2 (en) | 2009-07-02 | 2015-12-25 | Genentech Inc | Jak inhibitory compounds based on pyrazolo pyrimidine |
WO2011025685A1 (en) | 2009-08-24 | 2011-03-03 | Merck Sharp & Dohme Corp. | Jak inhibition blocks rna interference associated toxicities |
TW201111385A (en) | 2009-08-27 | 2011-04-01 | Biocryst Pharm Inc | Heterocyclic compounds as janus kinase inhibitors |
US9249145B2 (en) | 2009-09-01 | 2016-02-02 | Incyte Holdings Corporation | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
JP5567136B2 (en) | 2009-09-08 | 2014-08-06 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 4-Substituted pyridin-3-yl-carboxamide compounds and methods of use |
EP2305660A1 (en) | 2009-09-25 | 2011-04-06 | Almirall, S.A. | New thiadiazole derivatives |
BR112012008267B1 (en) | 2009-10-09 | 2022-10-04 | Incyte Holdings Corporation | 3-(4-(7H-PYROLO[2,3-D]PYRIMIDIN-4-IL)-1H-PYRAZOL-1-IL)-3-CYCLOPENTYLPROPANONITRILE 3-(4-(7H-PYROXYL, KETO, AND GLUCURONIDE) DERIVATIVES |
MX2012004020A (en) | 2009-10-20 | 2012-05-08 | Cellzome Ltd | Heterocyclyl pyrazolopyrimidine analogues as jak inhibitors. |
EP2332917B1 (en) | 2009-11-11 | 2012-08-01 | Sygnis Bioscience GmbH & Co. KG | Compounds for PIM kinase inhibition and for treating malignancy |
WO2011066369A2 (en) | 2009-11-24 | 2011-06-03 | Alder Biopharmaceuticals, Inc. | Antagonists of il-6 to raise albumin and/or lower crp |
US20130129675A1 (en) | 2009-12-04 | 2013-05-23 | Board Of Regents, The University Of Texas System | Interferon therapies in combination with blockade of stat3 activation |
JP2013517220A (en) | 2010-01-12 | 2013-05-16 | エフ.ホフマン−ラ ロシュ アーゲー | Tricyclic heterocyclic compounds, compositions thereof, and methods of use |
SA111320200B1 (en) | 2010-02-17 | 2014-02-16 | ديبيوفارم اس ايه | Bicyclic Compounds and their Uses as Dual C-SRC / JAK Inhibitors |
AU2011217961B2 (en) | 2010-02-18 | 2016-05-05 | Incyte Holdings Corporation | Cyclobutane and methylcyclobutane derivatives as Janus kinase inhibitors |
PT3050882T (en) | 2010-03-10 | 2018-04-16 | Incyte Holdings Corp | Piperidin-4-yl azetidine derivatives as jak1 inhibitors |
US8962596B2 (en) | 2010-04-14 | 2015-02-24 | Array Biopharma Inc. | 5,7-substituted-imidazo[1,2-C]pyrimidines as inhibitors of JAK kinases |
EP2390252A1 (en) | 2010-05-19 | 2011-11-30 | Almirall, S.A. | New pyrazole derivatives |
ES2581834T3 (en) | 2010-05-21 | 2016-09-07 | Incyte Holdings Corporation | Topical formulation for a JAK inhibitor |
WO2011156698A2 (en) | 2010-06-11 | 2011-12-15 | Abbott Laboratories | NOVEL PYRAZOLO[3,4-d]PYRIMIDINE COMPOUNDS |
US9351943B2 (en) | 2010-07-01 | 2016-05-31 | Matthew T. McLeay | Anti-fibroblastic fluorochemical emulsion therapies |
WO2012045010A1 (en) | 2010-09-30 | 2012-04-05 | Portola Pharmaceuticals, Inc. | Combinations of 4-(3-(2h-1,2,3-triazo-2-yl) phenylamino)-2-((1r,2s)-2-aminocyclohexylamino) pyrimidine-5-carboxamide and fludarabine |
CN101974161B (en) | 2010-09-30 | 2012-10-31 | 中国科学院西双版纳热带植物园 | Method for dissolving and quickly hydrolyzing lignocellulose biomass as well as device and application thereof |
WO2012068450A1 (en) | 2010-11-19 | 2012-05-24 | Incyte Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors |
WO2012068440A1 (en) | 2010-11-19 | 2012-05-24 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors |
WO2012071612A1 (en) | 2010-12-03 | 2012-06-07 | Ym Biosciences Australia Pty Ltd | Treatment of jak2-mediated conditions |
AU2012219395B2 (en) | 2011-02-18 | 2017-05-25 | Incyte Corporation | mTOR/JAK inhibitor combination therapy |
JP5876146B2 (en) | 2011-06-20 | 2016-03-02 | インサイト・ホールディングス・コーポレイションIncyte Holdings Corporation | Azetidinylphenyl, pyridyl, or pyrazinylcarboxamide derivatives as JAK inhibitors |
WO2013023119A1 (en) | 2011-08-10 | 2013-02-14 | Novartis Pharma Ag | JAK P13K/mTOR COMBINATION THERAPY |
TW201313721A (en) | 2011-08-18 | 2013-04-01 | Incyte Corp | Cyclohexyl azetidine derivatives as JAK inhibitors |
UA111854C2 (en) | 2011-09-07 | 2016-06-24 | Інсайт Холдінгс Корпорейшн | METHODS AND INTERMEDIATE COMPOUNDS FOR JAK INHIBITORS |
TW201406761A (en) | 2012-05-18 | 2014-02-16 | Incyte Corp | Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
US10155987B2 (en) | 2012-06-12 | 2018-12-18 | Dana-Farber Cancer Institute, Inc. | Methods of predicting resistance to JAK inhibitor therapy |
US9573958B2 (en) | 2012-08-31 | 2017-02-21 | Principia Biopharma, Inc. | Benzimidazole derivatives as ITK inhibitors |
US9263059B2 (en) | 2012-09-28 | 2016-02-16 | International Business Machines Corporation | Deep tagging background noises |
US20140095210A1 (en) | 2012-10-02 | 2014-04-03 | CareRev, Inc. | Computer-implemented method and system for facilitating information sharing, communication, and collaboration in a healthcare facility |
PE20151141A1 (en) | 2012-11-01 | 2015-08-06 | Incyte Corp | FUSED TRICYCLIC DERIVATIVES OF THIOPHENE AS JAK INHIBITORS |
CA2890755C (en) | 2012-11-15 | 2024-02-20 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
UA121532C2 (en) | 2013-03-06 | 2020-06-10 | Інсайт Холдінгс Корпорейшн | METHODS AND INTERMEDIATES IN THE PREPARATION OF JAK INHIBITOR |
LT3231801T (en) | 2013-05-17 | 2019-08-12 | Incyte Corporation | Bipyrazole salt as jak inhibitor |
TWI503855B (en) | 2013-07-05 | 2015-10-11 | Timotion Technology Co Ltd | Limit switch and linear actuator with the limit switch |
JP6334700B2 (en) | 2013-08-07 | 2018-05-30 | インサイト・コーポレイションIncyte Corporation | Sustained release dosage form for JAK1 inhibitor |
CN105555313A (en) | 2013-08-20 | 2016-05-04 | 因赛特公司 | Survival benefit in patients with solid tumors with elevated c-reactive protein levels |
JP6576941B2 (en) | 2014-02-28 | 2019-09-18 | インサイト・コーポレイションIncyte Corporation | JAK1 inhibitor for the treatment of myelodysplastic syndrome |
LT3129021T (en) | 2014-04-08 | 2020-12-10 | Incyte Corporation | Treatment of b-cell malignancies by a combination jak and pi3k inhibitor |
KR20170007331A (en) | 2014-04-30 | 2017-01-18 | 인사이트 코포레이션 | Processes of preparing a jak1 inhibitor and new forms thereto |
WO2015184305A1 (en) | 2014-05-30 | 2015-12-03 | Incyte Corporation | TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1 |
-
2008
- 2008-06-12 HU HUE13198120A patent/HUE029236T2/en unknown
- 2008-06-12 AU AU2008266183A patent/AU2008266183B2/en active Active
- 2008-06-12 ES ES16152794T patent/ES2714092T3/en active Active
- 2008-06-12 JP JP2010512343A patent/JP5475653B2/en active Active
- 2008-06-12 EP EP13198120.1A patent/EP2740731B1/en active Active
- 2008-06-12 GE GEAP200811637A patent/GEP20125533B/en unknown
- 2008-06-12 ES ES13198120.1T patent/ES2575797T3/en active Active
- 2008-06-12 ES ES18203965T patent/ES2903444T3/en active Active
- 2008-06-12 EP EP21200662.1A patent/EP4011883A1/en active Pending
- 2008-06-12 BR BRPI0814254A patent/BRPI0814254B8/en active IP Right Grant
- 2008-06-12 US US12/137,892 patent/US20080312259A1/en not_active Abandoned
- 2008-06-12 KR KR1020157002074A patent/KR20150036210A/en active Search and Examination
- 2008-06-12 ES ES08770794T patent/ES2467665T5/en active Active
- 2008-06-12 ME MEP-2009-345A patent/ME00960B/en unknown
- 2008-06-12 MX MX2013005828A patent/MX342814B/en unknown
- 2008-06-12 CN CN201310367212.9A patent/CN103524509B/en active Active
- 2008-06-12 CA CA2689663A patent/CA2689663C/en active Active
- 2008-06-12 PT PT87707949T patent/PT2173752E/en unknown
- 2008-06-12 PL PL13198120.1T patent/PL2740731T3/en unknown
- 2008-06-12 KR KR1020107000805A patent/KR101549876B1/en active IP Right Grant
- 2008-06-12 PL PL08770794.9T patent/PL2173752T5/en unknown
- 2008-06-12 SG SG10201912675VA patent/SG10201912675VA/en unknown
- 2008-06-12 PT PT16152794T patent/PT3070090T/en unknown
- 2008-06-12 UA UAA201000232A patent/UA99467C2/en unknown
- 2008-06-12 MX MX2009013402A patent/MX2009013402A/en active IP Right Grant
- 2008-06-12 CN CN2008801029033A patent/CN101932582B/en active Active
- 2008-06-12 EA EA201070013A patent/EA019784B1/en unknown
- 2008-06-12 SG SG2012043428A patent/SG182198A1/en unknown
- 2008-06-12 RS RS20190251A patent/RS58449B1/en unknown
- 2008-06-12 EP EP18203965.1A patent/EP3495369B1/en active Active
- 2008-06-12 TR TR2019/03488T patent/TR201903488T4/en unknown
- 2008-06-12 HU HUE16152794A patent/HUE043732T2/en unknown
- 2008-06-12 DK DK13198120.1T patent/DK2740731T3/en active
- 2008-06-12 PL PL16152794T patent/PL3070090T3/en unknown
- 2008-06-12 WO PCT/US2008/066662 patent/WO2008157208A2/en active Application Filing
- 2008-06-12 RS RS20160375A patent/RS54878B1/en unknown
- 2008-06-12 SI SI200832042T patent/SI3070090T1/en unknown
- 2008-06-12 DK DK08770794.9T patent/DK2173752T4/en active
- 2008-06-12 DK DK16152794.0T patent/DK3070090T3/en active
- 2008-06-12 RS RS20140152A patent/RS53245B2/en unknown
- 2008-06-12 SG SG10201509887UA patent/SG10201509887UA/en unknown
- 2008-06-12 EP EP16152794.0A patent/EP3070090B1/en not_active Revoked
- 2008-06-12 SI SI200831217T patent/SI2173752T2/en unknown
- 2008-06-12 CU CU20120155A patent/CU24179B1/en active IP Right Grant
- 2008-06-12 EP EP08770794.9A patent/EP2173752B2/en active Active
- 2008-06-12 SI SI200831621A patent/SI2740731T1/en unknown
- 2008-06-12 NZ NZ581803A patent/NZ581803A/en unknown
- 2008-06-12 LT LTEP16152794.0T patent/LT3070090T/en unknown
- 2008-06-12 MY MYPI20095311A patent/MY154969A/en unknown
-
2009
- 2009-12-06 IL IL202524A patent/IL202524A/en active IP Right Grant
- 2009-12-09 CR CR11151A patent/CR11151A/en unknown
- 2009-12-10 GT GT200900314A patent/GT200900314A/en unknown
- 2009-12-10 ZA ZA2009/08826A patent/ZA200908826B/en unknown
- 2009-12-10 TN TNP2009000514A patent/TN2009000514A1/en unknown
- 2009-12-10 DO DO2009000280A patent/DOP2009000280A/en unknown
- 2009-12-11 NI NI200900216A patent/NI200900216A/en unknown
- 2009-12-11 CU CU2009000213A patent/CU23933B1/en active IP Right Grant
- 2009-12-14 EC EC2009009802A patent/ECSP099802A/en unknown
- 2009-12-16 CO CO09144142A patent/CO6251256A2/en active IP Right Grant
-
2010
- 2010-01-08 SM SM201000002T patent/SMP201000002B/en unknown
- 2010-01-12 MA MA32505A patent/MA31517B1/en unknown
- 2010-10-14 HK HK10109728.8A patent/HK1143161A1/en unknown
-
2013
- 2013-12-05 US US14/097,588 patent/US8722693B2/en active Active
- 2013-12-05 US US14/097,598 patent/US20140094477A1/en not_active Abandoned
-
2014
- 2014-04-18 US US14/256,383 patent/US8822481B1/en active Active
- 2014-04-18 US US14/256,311 patent/US8829013B1/en active Active
- 2014-05-01 IL IL232410A patent/IL232410A0/en active IP Right Grant
- 2014-05-06 US US14/270,915 patent/US9376439B2/en active Active
- 2014-05-07 CY CY20141100323T patent/CY1115145T1/en unknown
- 2014-06-09 HR HRP20140541TT patent/HRP20140541T4/en unknown
- 2014-12-03 HK HK14112206.9A patent/HK1198652A1/en unknown
-
2016
- 2016-05-25 US US15/164,518 patent/US10016429B2/en active Active
- 2016-06-13 CY CY20161100513T patent/CY1117693T1/en unknown
- 2016-06-21 HR HRP20160717TT patent/HRP20160717T1/en unknown
-
2018
- 2018-06-08 US US16/003,210 patent/US10610530B2/en active Active
-
2019
- 2019-01-16 IL IL264276A patent/IL264276B/en active IP Right Grant
- 2019-02-28 HR HRP20190385TT patent/HRP20190385T1/en unknown
- 2019-03-07 CY CY20191100273T patent/CY1121338T1/en unknown
- 2019-06-11 NO NO2019025C patent/NO2019025I1/en unknown
-
2020
- 2020-03-02 US US16/806,244 patent/US11213528B2/en active Active
-
2021
- 2021-01-26 IL IL280401A patent/IL280401B/en unknown
- 2021-10-31 IL IL287708A patent/IL287708B1/en unknown
- 2021-11-29 US US17/536,925 patent/US20220288078A1/en not_active Abandoned
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3832460A (en) * | 1971-03-19 | 1974-08-27 | C Kosti | Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue |
US5521184A (en) * | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
US5795909A (en) * | 1996-05-22 | 1998-08-18 | Neuromedica, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
US6579882B2 (en) * | 1998-06-04 | 2003-06-17 | Abbott Laboratories | Cell adhesion-inhibiting antiinflammatory compounds |
US6635762B1 (en) * | 1998-06-19 | 2003-10-21 | Pfizer Inc. | Monocyclic-7H-pyrrolo[2,3-d]pyrimidine compounds, compositions, and methods of use |
US6713089B1 (en) * | 1998-09-10 | 2004-03-30 | Nycomed Danmark A/S | Quick release pharmaceutical compositions of drug substances |
US20040198737A1 (en) * | 1999-12-24 | 2004-10-07 | Aventis Pharma Limited | Azaindoles |
US20040009983A1 (en) * | 1999-12-24 | 2004-01-15 | Cox Paul J. | Azaindoles |
US6486322B1 (en) * | 2000-06-19 | 2002-11-26 | Pharmacia Italia S.P.A. | Azaindole derivatives, process for their preparation, and their use as antitumor agents |
US6335342B1 (en) * | 2000-06-19 | 2002-01-01 | Pharmacia & Upjohn S.P.A. | Azaindole derivatives, process for their preparation, and their use as antitumor agents |
US20030165576A1 (en) * | 2000-06-23 | 2003-09-04 | Akihiro Fujii | Antitumor effect potentiators |
US20030144309A1 (en) * | 2001-05-16 | 2003-07-31 | Young Choon-Moon | Inhibitors of Src and other protein kinases |
US6852727B2 (en) * | 2001-08-01 | 2005-02-08 | Merck & Co., Inc. | Benzimisazo[4,5-f]isoquinolinone derivatives |
US6624138B1 (en) * | 2001-09-27 | 2003-09-23 | Gp Medical | Drug-loaded biological material chemically treated with genipin |
US7005436B2 (en) * | 2002-04-19 | 2006-02-28 | Bristol Myers Squibb Company | Heterocyclo inhibitors of potassium channel function |
US20040029857A1 (en) * | 2002-04-26 | 2004-02-12 | Hale Michael Robin | Heterocyclic inhibitors of ERK2 and uses thereof |
US7167750B2 (en) * | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
US20050153989A1 (en) * | 2004-01-13 | 2005-07-14 | Ambit Biosciences Corporation | Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases |
US20060106020A1 (en) * | 2004-04-28 | 2006-05-18 | Rodgers James D | Tetracyclic inhibitors of Janus kinases |
US20090215766A1 (en) * | 2004-04-28 | 2009-08-27 | Incyte Corporation | Tetracyclic inhibitors of janus kinases |
US20060020011A1 (en) * | 2004-07-20 | 2006-01-26 | Yong-Jin Wu | Arylpyrrolidine derivatives as NK-1 /SSRI antagonists |
US7335667B2 (en) * | 2004-12-22 | 2008-02-26 | Incyte Corporation | Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-4-yl-amines as Janus kinase inhibitors |
US20060183906A1 (en) * | 2004-12-22 | 2006-08-17 | Rodgers James D | Pyrrolo[2,3-b]pyridin-4-yl-amines and pyrrolo[2,3-b]pyrimidin-4-yl-amines as janus kinase inhibitors |
US20060183761A1 (en) * | 2005-02-03 | 2006-08-17 | Mark Ledeboer | Pyrrolopyrimidines useful as inhibitors of protein kinase |
US20070135466A1 (en) * | 2005-05-20 | 2007-06-14 | Mark Ledeboer | Pyrrolopyridines useful as inhibitors of protein kinase |
US20070149506A1 (en) * | 2005-09-22 | 2007-06-28 | Arvanitis Argyrios G | Azepine inhibitors of Janus kinases |
US20090181959A1 (en) * | 2005-12-13 | 2009-07-16 | Incyte Corporation | HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS |
US20070135461A1 (en) * | 2005-12-13 | 2007-06-14 | Rodgers James D | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US7598257B2 (en) * | 2005-12-13 | 2009-10-06 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US20070208053A1 (en) * | 2006-01-19 | 2007-09-06 | Arnold Lee D | Fused heterobicyclic kinase inhibitors |
US20090018156A1 (en) * | 2006-02-01 | 2009-01-15 | Jun Tang | Pyrrolo [2,3,B] Pyridine Derivatives Useful As RAF Kinase Inhibitors |
US20090088445A1 (en) * | 2006-04-05 | 2009-04-02 | Mark Ledeboer | Deazapurines useful as inhibitors of Janus kinases |
US20080188500A1 (en) * | 2006-12-22 | 2008-08-07 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
US20080312258A1 (en) * | 2007-06-13 | 2008-12-18 | Incyte Corporation | METABOLITES OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US20090318405A1 (en) * | 2007-11-16 | 2009-12-24 | Incyte Corporation | 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors |
US20090233903A1 (en) * | 2008-03-11 | 2009-09-17 | Incyte Corporation | Azetidine and cyclobutane derivatives as jak inhibitors |
Cited By (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090215766A1 (en) * | 2004-04-28 | 2009-08-27 | Incyte Corporation | Tetracyclic inhibitors of janus kinases |
US10639310B2 (en) | 2005-12-13 | 2020-05-05 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US9974790B2 (en) | 2005-12-13 | 2018-05-22 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
US8933086B2 (en) | 2005-12-13 | 2015-01-13 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors |
US7598257B2 (en) | 2005-12-13 | 2009-10-06 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US8946245B2 (en) | 2005-12-13 | 2015-02-03 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US9079912B2 (en) | 2005-12-13 | 2015-07-14 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors |
US11744832B2 (en) | 2005-12-13 | 2023-09-05 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US10398699B2 (en) | 2005-12-13 | 2019-09-03 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US9814722B2 (en) | 2005-12-13 | 2017-11-14 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
US8541425B2 (en) | 2005-12-13 | 2013-09-24 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US20070135461A1 (en) * | 2005-12-13 | 2007-06-14 | Rodgers James D | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
US8530485B2 (en) | 2005-12-13 | 2013-09-10 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US9662335B2 (en) | 2005-12-13 | 2017-05-30 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
US11331320B2 (en) | 2005-12-13 | 2022-05-17 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US9206187B2 (en) | 2005-12-13 | 2015-12-08 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase |
US8415362B2 (en) | 2005-12-13 | 2013-04-09 | Incyte Corporation | Pyrazolyl substituted pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
US8841318B2 (en) | 2006-12-22 | 2014-09-23 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
US8513270B2 (en) | 2006-12-22 | 2013-08-20 | Incyte Corporation | Substituted heterocycles as Janus kinase inhibitors |
US20080188500A1 (en) * | 2006-12-22 | 2008-08-07 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
US10016429B2 (en) | 2007-06-13 | 2018-07-10 | Incyte Corporation | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8722693B2 (en) | 2007-06-13 | 2014-05-13 | Incyte Corporation | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US11213528B2 (en) | 2007-06-13 | 2022-01-04 | Incyte Holdings Corporation | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US10463667B2 (en) | 2007-06-13 | 2019-11-05 | Incyte Incorporation | Metabolites of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US9376439B2 (en) | 2007-06-13 | 2016-06-28 | Incyte Corporation | Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8822481B1 (en) | 2007-06-13 | 2014-09-02 | Incyte Corporation | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8829013B1 (en) | 2007-06-13 | 2014-09-09 | Incyte Corporation | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US10610530B2 (en) | 2007-06-13 | 2020-04-07 | Incyte Corporation | Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8309718B2 (en) | 2007-11-16 | 2012-11-13 | Incyte Corporation | 4-pyrazolyl-N-arylpyrimidin-2-amines and 4-pyrazolyl-N-heteroarylpyrimidin-2-amines as janus kinase inhibitors |
US20090318405A1 (en) * | 2007-11-16 | 2009-12-24 | Incyte Corporation | 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors |
US8158616B2 (en) | 2008-03-11 | 2012-04-17 | Incyte Corporation | Azetidine and cyclobutane derivatives as JAK inhibitors |
US8420629B2 (en) | 2008-03-11 | 2013-04-16 | Incyte Corporation | Azetidine and cyclobutane derivatives as JAK inhibitors |
US20090233903A1 (en) * | 2008-03-11 | 2009-09-17 | Incyte Corporation | Azetidine and cyclobutane derivatives as jak inhibitors |
US9000161B2 (en) | 2009-01-15 | 2015-04-07 | Incyte Corporation | Processes for preparing JAK inhibitors and related intermediate compounds |
US10975085B2 (en) | 2009-01-15 | 2021-04-13 | Incyte Holdings Corporation | Process for preparing a composition comprising an enantiomeric excess of greater than or equal to 90% of the (R)-enantiomer of a compound of formula III |
US20100190981A1 (en) * | 2009-01-15 | 2010-07-29 | Jiacheng Zhou | Processes for preparing jak inhibitors and related intermediate compounds |
US10364248B2 (en) | 2009-01-15 | 2019-07-30 | Incyte Corporation | Processes for preparing 4-chloro-7H-pyrrolo[2,3-d]pyrimidine |
US8993582B2 (en) | 2009-01-15 | 2015-03-31 | Incyte Corporation | Processes for preparing JAK inhibitors and related intermediate compounds |
US8410265B2 (en) | 2009-01-15 | 2013-04-02 | Incyte Corporation | Processes for preparing JAK inhibitors and related intermediate compounds |
US8883806B2 (en) | 2009-01-15 | 2014-11-11 | Incyte Corporation | Processes for preparing JAK inhibitors and related intermediate compounds |
US9908888B2 (en) | 2009-01-15 | 2018-03-06 | Incyte Corporation | Processes for preparing pyrazolyl-substituted pyrrolo[2,3-d]pyrimidines |
US9290506B2 (en) | 2009-01-15 | 2016-03-22 | Incyte Corporation | Processes for preparing JAK inhibitors and related intermediate compounds |
US8927711B2 (en) | 2009-02-27 | 2015-01-06 | Ambit Biosciences Corp. | JAK kinase modulating compounds and methods of use thereof |
US20100317659A1 (en) * | 2009-02-27 | 2010-12-16 | Sunny Abraham | Jak kinase modulating compounds and methods of use thereof |
US9308207B2 (en) | 2009-02-27 | 2016-04-12 | Ambit Biosciences Corp. | JAK kinase modulating compounds and methods of use thereof |
US8349851B2 (en) | 2009-02-27 | 2013-01-08 | Ambit Biosciences Corp. | JAK kinase modulating compounds and methods of use thereof |
US9623029B2 (en) | 2009-05-22 | 2017-04-18 | Incyte Holdings Corporation | 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors |
US9334274B2 (en) | 2009-05-22 | 2016-05-10 | Incyte Holdings Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
US8716303B2 (en) | 2009-05-22 | 2014-05-06 | Incyte Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
US9216984B2 (en) | 2009-05-22 | 2015-12-22 | Incyte Corporation | 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors |
US8604043B2 (en) | 2009-05-22 | 2013-12-10 | Incyte Corporation | 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as jak inhibitors |
US9249145B2 (en) | 2009-09-01 | 2016-02-02 | Incyte Holdings Corporation | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
US20130345157A1 (en) * | 2009-10-09 | 2013-12-26 | Incyte Corporation | HYDROXYL, KETO, AND GLUCURONIDE DERIVATIVES OF 3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US20110086810A1 (en) * | 2009-10-09 | 2011-04-14 | Incyte Corporation | HYDROXYL, KETO, AND GLUCURONIDE DERIVATIVES OF 3-(4-(7H-PYRROLO[2,3-d] PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US20140378400A1 (en) * | 2009-10-09 | 2014-12-25 | Incyte Corporation | HYDROXYL, KETO, AND GLUCURONIDE DERIVATIVES OF 3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
US8486902B2 (en) | 2009-10-09 | 2013-07-16 | Incyte Corporation | Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US8748401B2 (en) * | 2009-10-09 | 2014-06-10 | Incyte Corporation | Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
US9512161B2 (en) * | 2009-10-09 | 2016-12-06 | Incyte Corporation | Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
JP2013520436A (en) * | 2010-02-18 | 2013-06-06 | インサイト・コーポレイション | Cyclobutane and methylcyclobutane derivatives as Janus kinase inhibitors |
CN102844317B (en) * | 2010-02-18 | 2015-06-03 | 因西特公司 | Cyclobutane and methylcyclobutane derivatives as janus kinase inhibitors |
WO2011103423A1 (en) | 2010-02-18 | 2011-08-25 | Incyte Corporation | Cyclobutane and methylcyclobutane derivatives as janus kinase inhibitors |
US20110207754A1 (en) * | 2010-02-18 | 2011-08-25 | Incyte Corporation | Cyclobutane and methylcyclobutane derivatives as janus kinase inhibitors |
EA023444B1 (en) * | 2010-02-18 | 2016-06-30 | Инсайт Холдингс Корпорейшн | Cyclobutane and methylcyclobutane derivatives, composition based thereon and methods of use thereof |
CN102844317A (en) * | 2010-02-18 | 2012-12-26 | 因西特公司 | Cyclobutane and methylcyclobutane derivatives as janus kinase inhibitors |
US8765734B2 (en) | 2010-03-10 | 2014-07-01 | Incyte Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
US11285140B2 (en) | 2010-03-10 | 2022-03-29 | Incyte Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
US9464088B2 (en) | 2010-03-10 | 2016-10-11 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
US10695337B2 (en) | 2010-03-10 | 2020-06-30 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
US9999619B2 (en) | 2010-03-10 | 2018-06-19 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
US11219624B2 (en) * | 2010-05-21 | 2022-01-11 | Incyte Holdings Corporation | Topical formulation for a JAK inhibitor |
US20200046707A1 (en) * | 2010-05-21 | 2020-02-13 | Incyte Corporation | Topical formulation for a jak inhibitor |
US11590136B2 (en) | 2010-05-21 | 2023-02-28 | Incyte Corporation | Topical formulation for a JAK inhibitor |
US10758543B2 (en) * | 2010-05-21 | 2020-09-01 | Incyte Corporation | Topical formulation for a JAK inhibitor |
US10869870B2 (en) | 2010-05-21 | 2020-12-22 | Incyte Corporation | Topical formulation for a JAK inhibitor |
WO2011146808A2 (en) | 2010-05-21 | 2011-11-24 | Incyte Corporation | Topical formulation for a jak inhibitor |
US11571425B2 (en) | 2010-05-21 | 2023-02-07 | Incyte Corporation | Topical formulation for a JAK inhibitor |
US20230277541A1 (en) * | 2010-05-21 | 2023-09-07 | Incyte Corporation | Topical formulation for a jak inhibitor |
AU2018201889B2 (en) * | 2010-05-21 | 2020-03-05 | Incyte Holdings Corporation | Topical formulation for a jak inhibitor |
US20220211707A1 (en) * | 2010-05-21 | 2022-07-07 | Incyte Corporation | Topical formulation for a jak inhibitor |
US8633207B2 (en) | 2010-09-01 | 2014-01-21 | Ambit Biosciences Corporation | Quinazoline compounds and methods of use thereof |
US9034884B2 (en) | 2010-11-19 | 2015-05-19 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors |
US8933085B2 (en) | 2010-11-19 | 2015-01-13 | Incyte Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
US10640506B2 (en) | 2010-11-19 | 2020-05-05 | Incyte Holdings Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors |
EP2675451B1 (en) | 2011-02-18 | 2015-06-24 | Novartis Pharma AG | mTOR/JAK INHIBITOR COMBINATION THERAPY |
EA026317B1 (en) * | 2011-02-18 | 2017-03-31 | Новартис Фарма Аг | mTOR/JAK INHIBITOR COMBINATION THERAPY |
AU2012219395B2 (en) * | 2011-02-18 | 2017-05-25 | Incyte Corporation | mTOR/JAK inhibitor combination therapy |
KR20140082591A (en) * | 2011-02-18 | 2014-07-02 | 노파르티스 파르마 아게 | mTOR/JAK INHIBITOR COMBINATION THERAPY |
US9993480B2 (en) | 2011-02-18 | 2018-06-12 | Novartis Pharma Ag | mTOR/JAK inhibitor combination therapy |
WO2012112847A1 (en) * | 2011-02-18 | 2012-08-23 | Novartis Pharma Ag | mTOR/JAK INHIBITOR COMBINATION THERAPY |
KR102024948B1 (en) * | 2011-02-18 | 2019-11-04 | 노파르티스 파르마 아게 | mTOR/JAK INHIBITOR COMBINATION THERAPY |
US9023840B2 (en) | 2011-06-20 | 2015-05-05 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US11214573B2 (en) | 2011-06-20 | 2022-01-04 | Incyte Holdings Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US9611269B2 (en) | 2011-06-20 | 2017-04-04 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US10513522B2 (en) | 2011-06-20 | 2019-12-24 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US8691807B2 (en) | 2011-06-20 | 2014-04-08 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
US9358229B2 (en) | 2011-08-10 | 2016-06-07 | Novartis Pharma Ag | JAK PI3K/mTOR combination therapy |
US9359358B2 (en) | 2011-08-18 | 2016-06-07 | Incyte Holdings Corporation | Cyclohexyl azetidine derivatives as JAK inhibitors |
US9718834B2 (en) | 2011-09-07 | 2017-08-01 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
US9487521B2 (en) | 2011-09-07 | 2016-11-08 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
EP3750544A2 (en) | 2011-11-30 | 2020-12-16 | Emory University | Jak inhibitors for use in the prevention or treatment of viral infection |
WO2013082476A1 (en) | 2011-11-30 | 2013-06-06 | Emory University | Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections |
WO2013173506A2 (en) | 2012-05-16 | 2013-11-21 | Rigel Pharmaceuticals, Inc. | Method of treating muscular degradation |
US9193733B2 (en) | 2012-05-18 | 2015-11-24 | Incyte Holdings Corporation | Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
US9181271B2 (en) | 2012-11-01 | 2015-11-10 | Incyte Holdings Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US9777017B2 (en) | 2012-11-01 | 2017-10-03 | Incyte Holdings Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US9908895B2 (en) | 2012-11-01 | 2018-03-06 | Incyte Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US11161855B2 (en) | 2012-11-01 | 2021-11-02 | Incyte Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US11851442B2 (en) | 2012-11-01 | 2023-12-26 | Incyte Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US10370387B2 (en) | 2012-11-01 | 2019-08-06 | Incyte Holdings Corporation | Tricyclic fused thiophene derivatives as JAK inhibitors |
US11337927B2 (en) | 2012-11-15 | 2022-05-24 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
US10166191B2 (en) | 2012-11-15 | 2019-01-01 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
US11576865B2 (en) | 2012-11-15 | 2023-02-14 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
US11576864B2 (en) | 2012-11-15 | 2023-02-14 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
US11896717B2 (en) | 2012-11-15 | 2024-02-13 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
EP3949953A1 (en) | 2012-11-15 | 2022-02-09 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
US10874616B2 (en) | 2012-11-15 | 2020-12-29 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
US8987443B2 (en) | 2013-03-06 | 2015-03-24 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
US9714233B2 (en) | 2013-03-06 | 2017-07-25 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
US9221845B2 (en) | 2013-03-06 | 2015-12-29 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
EP2813228A1 (en) * | 2013-04-25 | 2014-12-17 | Japan Tobacco Inc. | Agent for improvement of skin barrier function |
US11591318B2 (en) | 2013-05-17 | 2023-02-28 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US9926301B2 (en) | 2013-05-17 | 2018-03-27 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US9382231B2 (en) | 2013-05-17 | 2016-07-05 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US11905275B2 (en) | 2013-05-17 | 2024-02-20 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US10435392B2 (en) | 2013-05-17 | 2019-10-08 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US11001571B2 (en) | 2013-05-17 | 2021-05-11 | Incyte Corporation | Bipyrazole derivatives as JAK inhibitors |
US9655854B2 (en) | 2013-08-07 | 2017-05-23 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
US10561616B2 (en) * | 2013-08-07 | 2020-02-18 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
US11045421B2 (en) | 2013-08-07 | 2021-06-29 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
US20170319487A1 (en) * | 2013-08-07 | 2017-11-09 | Incyte Corporation | Sustained release dosage forms for a jak1 inhibitor |
WO2015040243A3 (en) * | 2013-09-23 | 2015-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for targeting tumor microenvironment and for preventing metastasis |
US10064866B2 (en) | 2014-04-08 | 2018-09-04 | Incyte Corporation | Treatment of B-cell malignancies by a combination JAK and PI3K inhibitors |
US10675284B2 (en) | 2014-04-08 | 2020-06-09 | Incyte Corporation | Treatment of B-cell malignancies by a combination JAK and PI3K inhibitors |
IL273802A (en) * | 2014-04-08 | 2020-05-31 | Incyte Corp | Treatment of b-cell malignancies by a combination jak and pi3k inhibitor |
US10450325B2 (en) | 2014-04-30 | 2019-10-22 | Incyte Corporation | Processes of preparing a JAK1 inhibitor and new forms thereto |
US9802957B2 (en) | 2014-04-30 | 2017-10-31 | Incyte Corporation | Processes of preparing a JAK1 inhibitor and new forms thereto |
US9498467B2 (en) | 2014-05-30 | 2016-11-22 | Incyte Corporation | Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1 |
WO2016024230A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor |
WO2016024228A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
WO2016024232A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor and/or a cdk 4/6 inhibitor |
WO2016024231A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
WO2016035014A1 (en) * | 2014-09-01 | 2016-03-10 | Sun Pharmaceutical Industries Limited | Processes for the preparation of ruxolitinib phosphate |
US11698369B2 (en) | 2016-01-12 | 2023-07-11 | Oncotracker, Inc. | Methods for monitoring immune status of a subject |
US11635435B2 (en) | 2017-06-13 | 2023-04-25 | Oncotracker, Inc. | Diagnostic, prognostic, and monitoring methods for solid tumor cancers |
US11278541B2 (en) | 2017-12-08 | 2022-03-22 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
US10596161B2 (en) | 2017-12-08 | 2020-03-24 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
WO2019113487A1 (en) | 2017-12-08 | 2019-06-13 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
US10899736B2 (en) | 2018-01-30 | 2021-01-26 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
US11833152B2 (en) | 2018-02-16 | 2023-12-05 | Incyte Corporation | JAK1 pathway inhibitors for the treatment of cytokine-related disorders |
US11304949B2 (en) | 2018-03-30 | 2022-04-19 | Incyte Corporation | Treatment of hidradenitis suppurativa using JAK inhibitors |
WO2020028258A1 (en) | 2018-07-31 | 2020-02-06 | Loxo Oncology, Inc. | Spray-dried dispersions and formulations of (s)-5-amino-3-(4-((5-fluoro-2-methoxybenzamido)methyl)phenyl)-1-(1,1,1-trifluoro propan-2-yl)-1h-pyrazole-4-carboxamide |
WO2020131627A1 (en) | 2018-12-19 | 2020-06-25 | Array Biopharma Inc. | Substituted pyrazolo[1,5-a]pyridine compounds as inhibitors of fgfr tyrosine kinases |
WO2020131674A1 (en) | 2018-12-19 | 2020-06-25 | Array Biopharma Inc. | 7-((3,5-dimethoxyphenyl)amino)quinoxaline derivatives as fgfr inhibitors for treating cancer |
JP2022545568A (en) * | 2019-06-10 | 2022-10-27 | インサイト・コーポレイション | Topical treatment of vitiligo with JAK inhibitors |
US11590138B2 (en) | 2019-06-10 | 2023-02-28 | Incyte Corporation | Topical treatment of vitiligo by a jak inhibitor |
JP7532511B2 (en) | 2019-06-10 | 2024-08-13 | インサイト・コーポレイション | Topical treatment of vitiligo vulgaris with JAK inhibitors |
WO2020252012A1 (en) * | 2019-06-10 | 2020-12-17 | Incyte Corporation | Topical treatment of vitiligo by a jak inhibitor |
US11602536B2 (en) | 2019-06-10 | 2023-03-14 | Incyte Corporation | Topical treatment of vitiligo by a JAK inhibitor |
US11590137B2 (en) | 2019-09-05 | 2023-02-28 | Incyte Corporation | Ruxolitinib formulation for reduction of itch in atopic dermatitis |
US11510923B2 (en) | 2019-09-05 | 2022-11-29 | Incyte Corporation | Ruxolitinib formulation for reduction of itch in atopic dermatitis |
US11685731B2 (en) | 2020-06-02 | 2023-06-27 | Incyte Corporation | Processes of preparing a JAK1 inhibitor |
US11833155B2 (en) | 2020-06-03 | 2023-12-05 | Incyte Corporation | Combination therapy for treatment of myeloproliferative neoplasms |
WO2021247064A1 (en) | 2020-06-03 | 2021-12-09 | Incyte Corporation | Combination of ruxolitinib with incb057643 for treatment of myeloproliferative neoplasms |
US11897889B2 (en) | 2020-08-18 | 2024-02-13 | Incyte Corporation | Process and intermediates for preparing a JAK1 inhibitor |
US11905292B2 (en) | 2020-08-18 | 2024-02-20 | Incyte Corporation | Process and intermediates for preparing a JAK inhibitor |
WO2022040180A1 (en) | 2020-08-18 | 2022-02-24 | Incyte Corporation | Process and intermediates for preparing a jak inhibitor |
WO2022072814A1 (en) | 2020-10-02 | 2022-04-07 | Incyte Corporation | Topical ruxolitinib for treating lichen planus |
WO2022120131A1 (en) | 2020-12-04 | 2022-06-09 | Incyte Corporation | Jak inhibitor with a vitamin d analog for treatment of skin diseases |
US11957661B2 (en) | 2020-12-08 | 2024-04-16 | Incyte Corporation | JAK1 pathway inhibitors for the treatment of vitiligo |
US12071439B2 (en) | 2021-07-12 | 2024-08-27 | Incyte Corporation | Process and intermediates for preparing a JAK inhibitor |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11213528B2 (en) | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile | |
EP2173751B1 (en) | Metabolites of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-lh-pyrazol-l-yl)-3- cyclopentylpropanenitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INCYTE CORPORATION, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODGERS, JAMES D.;LI, HUI-YIN;REEL/FRAME:021296/0856 Effective date: 20080702 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |