US20080311117A1 - Antibodies against PD-1 and uses therefor - Google Patents
Antibodies against PD-1 and uses therefor Download PDFInfo
- Publication number
- US20080311117A1 US20080311117A1 US11/893,989 US89398907A US2008311117A1 US 20080311117 A1 US20080311117 A1 US 20080311117A1 US 89398907 A US89398907 A US 89398907A US 2008311117 A1 US2008311117 A1 US 2008311117A1
- Authority
- US
- United States
- Prior art keywords
- seq
- antibody
- antibodies
- binding
- disorder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the technical field relates to modulation of immune responses regulated by the Programmed Death 1 (PD-1) receptor.
- PD-1 Programmed Death 1
- T cells Two major classes of lymphocytes termed T cells and B cells. After encountering an antigen, T cells proliferate and differentiate into antigen-specific effector cells, while B cells proliferate and differentiate into antibody-secreting cells.
- T cell activation is a multi-step process requiring several signaling events between the T cell and an antigen-presenting cell (APC).
- APC antigen-presenting cell
- TcR antigen-specific T cell receptor
- the second, costimulatory, type regulates the magnitude of the response and is delivered through accessory receptors on the T cell.
- a primary costimulatory signal is delivered through the activating CD28 receptor upon engagement of its ligands B7-1 or B7-2.
- engagement of the inhibitory CTLA-4 receptor by the same B7-1 or B7-2 ligands results in attenuation of T cell response.
- CTLA-4 signals antagonize costimulation mediated by CD28.
- CD28 costimulation overrides the CTLA-4 inhibitory effect.
- Temporal regulation of the CD28 and CTLA-4 expression maintains a balance between activating and inhibitory signals and ensures the development of an effective immune response, while safeguarding against the development of autoimmunity.
- ICOS CD28-like costimulatory receptor
- PD-1 Programmed Death 1
- This disclosure relates to modulation of immune responses mediated by the PD-1 receptor.
- PD-1 is a 50-55 kDa type I transmembrane receptor that was originally identified in a T cell line undergoing activation-induced apoptosis. PD-1 is expressed on T cells, B cells, and macrophages.
- the ligands for PD-1 are the B7 family members PD-L1 (B7-H1) and PD-L2 (B7-DC).
- PD-1 is a member of the immunoglobulin (Ig) superfamily that contains a single 1 g V-like domain in its extracellular region.
- the PD-1 cytoplasmic domain contains two tyrosines, with the most membrane-proximal tyrosine (VAYEEL in mouse PD-1) located within an ITIM (immuno-receptor tyrosine-based inhibitory motif).
- ITIM immunoglobulin
- Human and murine PD-1 proteins share about 60% amino acid identity with conservation of four potential N-glycosylation sites, and residues that define the Ig-V domain.
- the ITIM in the cytoplasmic region and the ITIM-like motif surrounding the carboxy-terminal tyrosine (TEYATI in human and mouse) are also conserved between human and murine orthologues.
- PD-1 is expressed on activated T cells, B cells, and monocytes.
- Experimental data implicates the interactions of PD-1 with its ligands in downregulation of central and peripheral immune responses.
- proliferation in wild-type T cells but not in PD-1-deficient T cells is inhibited in the presence of PD-L1.
- PD-1-deficient mice exhibit an autoimmune phenotype.
- PD-1 deficiency in the C57BL/6 mice results in chronic progressive lupus-like glomerulonephritis and arthritis.
- PD-1 deficiency leads to severe cardiomyopathy due to the presence of heart-tissue-specific self-reacting antibodies.
- a need exists to provide safe and effective therapeutic methods for immune disorders such as, for example, autoimmune diseases, inflammatory disorders, allergies, transplant rejection, cancer, immune deficiency, and other immune system-related disorders. Modulation of the immune responses involved in these disorders can be accomplished by manipulation of the PD-1 pathway.
- the present disclosure provides antibodies that can act as agonists and/or antagonists of PD-1, thereby modulating immune responses regulated by PD-1.
- the disclosure further provides anti-PD-1 antibodies that comprise novel antigen-binding fragments.
- Anti-PD-1 antibodies of the invention are capable of (a) specifically binding to PD-1, including human PD-1; (b) blocking PD-1 interactions with its natural ligand(s); or (c) performing both functions.
- the antibodies may possess immunomodulatory properties, i.e., they may be effective in modulating the PD-1-associated downregulation of immune responses. Depending on the method of use and the desired effect, the antibodies may be used to either enhance or inhibit immune responses.
- Nonlimiting illustrative embodiments of the antibodies are referred to as PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2.
- Other embodiments comprise a V H and/or V L domain of the Fv fragment of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2.
- Further embodiments comprise one or more complementarity determining regions (CDRs) of any of these V H and V L domains.
- Other embodiments comprise an H3 fragment of the V H domain of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2.
- compositions comprising PD-1 antibodies, and their use in methods of modulating immune response, including methods of treating humans or animals.
- anti-PD-1 antibodies are used to treat or prevent immune disorders by virtue of increasing or reducing the T cell response mediated by TcR/CD28.
- Disorders susceptible to treatment with compositions of the invention include but are not limited to rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, Crohn's disease, systemic lupus erythematosis, type I diabetes, transplant rejection, graft-versus-host disease, hyperproliferative immune disorders, cancer, and infectious diseases.
- anti-PD-1 antibodies may be used diagnostically to detect PD-1 or its fragments in a biological sample.
- the amount of PD-1 detected may be correlated with the expression level of PD-1, which, in turn, is correlated with the activation status of immune cells (e.g., activated T cells, B cells, and monocytes) in the subject.
- immune cells e.g., activated T cells, B cells, and monocytes
- the disclosure also provides isolated nucleic acids, which comprise a sequence encoding a V H or V L domain from the Fv fragment of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2. Also provided are isolated nucleic acids, which comprise a sequence encoding one or more CDRs from any of the presently disclosed V H and V L domains. The disclosure also provides vectors and host cells comprising such nucleic acids.
- the disclosure further provides a method of producing new V H and V L domains and/or functional antibodies comprising all or a portion of such domains derived from the V H or V L domains of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2.
- FIGS. 1A and 1B show reactivity of scFv antibodies with human PD-1 as determined by phage ELISA.
- FIGS. 2A-2C show reactivity of IgG-converted antibodies with human or mouse PD-1 as determined by ELISA.
- FIG. 3 shows results of an ELISA demonstrating that selected PD-1 antibodies inhibit binding of PD-L1 to PD-1.
- FIG. 4 shows results of an ELISA demonstrating that immunomodulatory PD-1 antibodies bind to distinct sites on PD-1 as determined by cross-blocking ELISA assays.
- FIG. 5 shows results of T-cell proliferation assays demonstrating that co-engagement by TcR and anti-PD-1 antibody PD1-17 or PD-L1.Fc reduces proliferation. Co-engagement by TcR and anti-PD-1 J110 has no effect on proliferation.
- FIG. 6 demonstrates enhanced proliferation of primary T cells by PD1-17 in a soluble form.
- antibody refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is produced in vitro or in vivo.
- the term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies.
- antibody also includes antibody fragments such as Fab, F(ab′) 2 , Fv, scFv, Fd, dAb, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 specifically. Typically, such fragments would comprise an antigen-binding domain.
- antigen-binding domain refers to a part of an antibody molecule that comprises amino acids responsible for the specific binding between the antibody and the antigen. In instances, where an antigen is large, the antigen-binding domain may only bind to a part of the antigen. A portion of the antigen molecule that is responsible for specific interactions with the antigen-binding domain is referred to as “epitope” or “antigenic determinant.”
- An antigen-binding domain typically comprises an antibody light chain variable region (V L ) and an antibody heavy chain variable region (V H ), however, it does not necessarily have to comprise both.
- V L antibody light chain variable region
- V H antibody heavy chain variable region
- a so-called Fd antibody fragment consists only of a V H domain, but still retains some antigen-binding function of the intact antibody.
- the term “repertoire” refers to a genetically diverse collection of nucleotides derived wholly or partially from sequences that encode expressed immunoglobulins.
- the sequences are generated by in vivo rearrangement of, e.g., V, D, and J segments for H chains and, e.g., V and J segment for L chains.
- the sequences may be generated from a cell line by in vitro stimulation, in response to which the rearrangement occurs.
- part or all of the sequences may be obtained by combining, e.g., unrearranged V segments with D and J segments, by nucleotide synthesis, randomised mutagenesis, and other methods, e.g., as disclosed in U.S. Pat. No. 5,565,332.
- binding refers to two molecules forming a complex that is relatively stable under physiologic conditions. Specific binding is characterized by a high affinity and a low to moderate capacity as distinguished from nonspecific binding which usually has a low affinity with a moderate to high capacity. Typically, binding is considered specific when the affinity constant K A is higher than 10 6 M ⁇ 1 or more preferably higher than 10 8 M ⁇ 1 . If necessary, non-specific binding can be reduced without substantially affecting specific binding by varying the binding conditions.
- the appropriate binding conditions such as concentration of antibodies, ionic strength of the solution, temperature, time allowed for binding, concentration of a blocking agent (e.g., serum albumin, milk casein), etc., may be optimized by a skilled artisan using routine techniques. Illustrative conditions are set forth in Examples 1, 2, 4, 6, and 7.
- substantially as set out means that the relevant CDR, V H , or V L domain of the invention will be either identical to or have only insubstantial differences in the specified regions (e.g., a CDR), the sequence of which is set out. Insubstantial differences include minor amino acid changes, such as substitutions of 1 or 2 out of any 5 amino acids in the sequence of a specified region.
- PD-1 activity refers to one or more immunoregulatory activities associated with PD-1.
- PD-1 is a negative regulator of the TcR/CD28-mediated immune response. Procedures for assessing the PD-1 activity in vivo and in vitro are described in Examples 8, 9, and 10.
- modulate refers to a reduction or an increase in the activity of PD-1 associated with downregulation of T cell responses due to its interaction with an anti-PD-1 antibody, wherein the reduction or increase is relative to the activity of PD-1 in the absence of the same antibody.
- a reduction or an increase in activity is preferably at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more.
- the terms “modulatory” and “modulate” are interchangeable with the terms “inhibitory” and “inhibit.”
- modulatory and modulate are interchangeable with the terms “activating” and “activate.”
- the activity of PD-1 can be determined quantitatively using T cell proliferation assays as described in Examples 8 and 9.
- treatment and “therapeutic method” refer to both therapeutic treatment and prophylactic/preventative measures.
- Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder (i.e., those needing preventative measures).
- the term “effective amount” refers to a dosage or amount that is sufficient to reduce the activity of PD-1 to result in amelioration of symptoms in a patient or to achieve a desired biological outcome, e.g., increased cytolytic activity of T cells, induction of immune tolerance, reduction or increase of the PD-1 activity associated with the negative regulation of T-cell mediated immune response, etc.
- isolated refers to a molecule that is substantially free of its natural environment.
- an isolated protein is substantially free of cellular material or other proteins from the cell or tissue source from which it is derived.
- isolated also refers to preparations where the isolated protein is sufficiently pure to be administered as a pharmaceutical composition, or at least 70-80% (w/w) pure, more preferably, at least 80-90% (w/w) pure, even more preferably, 90-95% pure; and, most preferably, at least 95%, 96%, 97%, 98%, 99%, or 100% (w/w) pure.
- the disclosure provides anti-PD-1 antibodies that comprise novel antigen-binding fragments.
- antibodies can be made, for example, using traditional hybridoma techniques (Kohler and Milstein (1975) Nature, 256: 495-499), recombinant DNA methods (U.S. Pat. No. 4,816,567), or phage display performed with antibody libraries (Clackson et al. (1991) Nature, 352: 624-628; Marks et al. (1991) J. Mol. Biol., 222: 581-597).
- phage display performed with antibody libraries.
- Intact antibodies also known as immunoglobulins, are typically tetrameric glycosylated proteins composed of two light (L) chains of approximately 25 kDa each and two heavy (H) chains of approximately 50 kDa each. Two types of light chain, designated as the ⁇ chain and the ⁇ chain, are found in antibodies.
- immunoglobulins can be assigned to five major classes: A, D, E, G, and M, and several of these may be further divided into subclasses (isotypes), e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgA 1 , and IgA 2 .
- each light chain is composed of an N-terminal variable domain (V L ) and a constant domain (C L ).
- Each heavy chain is composed of an N-terminal variable domain (V H ), three or four constant domains (C H ), and a hinge region.
- the C H domain most proximal to V H is designated as C H 1.
- the V H and V L domains consist of four regions of relatively conserved sequence called framework regions (FR1, FR2, FR3, and FR4), which form a scaffold for three regions of hypervariable sequence called complementarity determining regions (CDRs).
- the CDRs contain most of the residues responsible for specific interactions with the antigen.
- the three CDRs are referred to as CDR1, CDR2, and CDR3.
- CDR constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on the light chain are referred to as L1, L2, and L3, accordingly.
- CDR3 and, particularly H3, are the greatest source of molecular diversity within the antigen-binding domain.
- H3, for example, can be as short as two amino acid residues or greater than 26.
- the Fab fragment (Fragment antigen-binding) consists of the V H -C H 1 and V L -C L domains covalently linked by a disulfide bond between the constant regions.
- a so-called single chain (sc) Fv fragment (scFv) can be constructed.
- a scFv a flexible and adequately long polypeptide links either the C-terminus of the V H to the N-terminus of the V L or the C-terminus of the V L to the N-terminus of the V H .
- a 15-residue (Gly 4 Ser) 3 peptide is used as a linker but other linkers are also known in the art.
- Antibody diversity is a result of combinatorial assembly of multiple germline genes encoding variable regions and a variety of somatic events.
- the somatic events include recombination of variable gene segments with diversity (D) and joining (J) gene segments to make a complete V H region and the recombination of variable and joining gene segments to make a complete V L region.
- D diversity
- J joining
- the recombination process itself is imprecise, resulting in the loss or addition of amino acids at the V(D)J junctions.
- the disclosure provides novel CDRs derived from human immunoglobulin gene libraries.
- the structure for carrying a CDR will generally be an antibody heavy or light chain or a portion thereof, in which the CDR is located at a location corresponding to the CDR of naturally occurring V H and V L .
- the structures and locations of immunoglobulin variable domains may be determined, for example, as described in Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md., 1991.
- Anti-PD-1 antibodies may optionally comprise antibody constant regions or parts thereof.
- a V L domain may have attached, at its C terminus, antibody light chain constant domains including human C ⁇ or C ⁇ chains.
- a specific antigen-binding domain based on a V H domain may have attached all or part of an immunoglobulin heavy chain derived from any antibody isotope, e.g., IgG, IgA, IgE, and IgM and any of the isotope sub-classes, which include but are not limited to, IgG 1 and IgG 4 .
- antibodies comprise C-terminal fragments of heavy and light chains of human IgG 1 ⁇
- PD1-F2 comprises C-terminal fragments of heavy and light chains of human IgG 1 ⁇
- the DNA and amino acid sequences for the C-terminal fragment of are well known in the art (see, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md., 1991). Nonlimiting exemplary sequences are set forth in Table 4.
- Certain embodiments comprise a V H and/or V L domain of an Fv fragment from PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2. Further embodiments comprise at least one CDR of any of these V H and V L domains.
- Antibodies comprising at least one of the CDR sequences set out in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NOs:16-40, SEQ ID NO:47, or SEQ ID NO:49 are encompassed within the scope of this invention.
- An embodiment for example, comprises an H3 fragment of the V H domain of antibodies chosen from at least one of PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2.
- the V H and/or V L domains may be germlined, i.e., the framework regions (FRs) of these domains are mutated using conventional molecular biology techniques to match those produced by the germline cells.
- the framework sequences remain diverged from the consensus germline sequences.
- the antibodies specifically bind an epitope within the extracellular domain of human PD-1.
- the predicted extracellular domain consists of a sequence from about amino acid 21 to about amino acid 170 of SEQ ID NO:41 (Swissport Accession No. Q15116).
- the antibodies specifically bind an epitope within the extracellular domain of mouse PD-1, with an affinity of more than 10 7 M ⁇ 1 , and preferably more than 10 8 M ⁇ 1 .
- the amino acid sequence of mouse PD-1 is set out in SEQ ID NO:56 (Accession No. NM — 008798) and is as a whole about 60% identical to its human counterpart.
- antibodies of the invention bind to the PD-L-binding domain of PD-1.
- antibodies of the invention may also bind with other proteins, including, for example, recombinant proteins comprising all or a portion of the PD-1 extracellular domain.
- the antibodies of this invention may be used to detect, measure, and inhibit proteins that differ somewhat from PD-1.
- the antibodies are expected to retain the specificity of binding so long as the target protein comprises a sequence which is at least about 60%, 70%, 80%, 90%, 95%, or more identical to any sequence of at least 100, 80, 60, 40, or 20 of contiguous amino acids in the sequence set forth SEQ ID NO:41.
- the percent identity is determined by standard alignment algorithms such as, for example, Basic Local Alignment Tool (BLAST) described in Altshul et al. (1990) J. Mol. Biol., 215: 403-410, the algorithm of Needleman et al. (1970) J. Mol. Biol., 48: 444-453, or the algorithm of Meyers et al. (1988) Comput. Appl. Biosci., 4: 11-17.
- BLAST Basic Local Alignment Tool
- epitope mapping see, e.g., Epitope Mapping Protocols, ed. Morris, Humana Press, 1996) and secondary and tertiary structure analyses can be carried out to identify specific 3D structures assumed by the disclosed antibodies and their complexes with antigens.
- Such methods include, but are not limited to, X-ray crystallography (Engstom (1974) Biochem. Exp. Biol., 11:7-13) and computer modeling of virtual representations of the presently disclosed antibodies (Fletterick et al. (1986) Computer Graphics and Molecular Modeling, in Current Communications in Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
- CDRs in such antibodies are not limited to the specific sequences of V H and V L identified in Table 1 and may include variants of these sequences that retain the ability to specifically bind PD-1. Such variants may be derived from the sequences listed in Table 1 by a skilled artisan using techniques well known in the art. For example, amino acid substitutions, deletions, or additions, can be made in the FRs and/or in the CDRs. While changes in the FRs are usually designed to improve stability and immunogenicity of the antibody, changes in the CDRs are typically designed to increase affinity of the antibody for its target. Variants of FRs also include naturally occurring immunoglobulin allotypes.
- affinity-increasing changes may be determined empirically by routine techniques that involve altering the CDR and testing the affinity antibody for its target. For example, conservative amino acid substitutions can be made within any one of the disclosed CDRs. Various alterations can be made according to the methods described in Antibody Engineering, 2 nd ed., Oxford University Press, ed. Borrebaeck, 1995. These include but are not limited to nucleotide sequences that are altered by the substitution of different codons that encode a functionally equivalent amino acid residue within the sequence, thus producing a “silent” change.
- the nonpolar amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine.
- the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
- the positively charged (basic) amino acids include arginine, lysine, and histidine.
- the negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs (see Table 5).
- any native residue in the polypeptide may also be substituted with alanine (see, e.g., MacLennan et al. (1998) Acta Physiol. Scand. Suppl. 643:55-67; Sasaki et al. (1998) Adv. Biophys. 35:1-24).
- Derivatives and analogs of antibodies of the invention can be produced by various techniques well known in the art, including recombinant and synthetic methods (Maniatis (1990) Molecular Cloning, A Laboratory Manual, 2 nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., and Bodansky et al. (1995) The Practice of Peptide Synthesis, 2 nd ed., Spring Verlag, Berlin, Germany).
- a method for making a V H domain which is an amino acid sequence variant of a V H domain of the invention comprises a step of adding, deleting, substituting, or inserting one or more amino acids in the amino acid sequence of the presently disclosed V H domain, optionally combining the V H domain thus provided with one or more V L domains, and testing the V H domain or V H /V L combination or combinations for a specific binding to PD-1 or and, optionally, testing the ability of such antigen-binding domain to modulate PD-1 activity.
- the V L domain may have an amino acid sequence that is identical or is substantially as set out according to Table 1.
- An analogous method can be employed in which one or more sequence variants of a V L domain disclosed herein are combined with one or more V H domains.
- a further aspect of the disclosure provides a method of preparing antigen-binding fragment that specifically binds with PD-1.
- the method comprises:
- V L CDR3 i.e., L3
- the donor nucleic acid may be selected from nucleic acids encoding an amino acid sequence substantially as set out in SEQ ID NO:1740 or SEQ ID NO:50-55.
- a sequence encoding a CDR of the invention may be introduced into a repertoire of variable domains lacking the respective CDR (e.g., CDR3), using recombinant DNA technology, for example, using methodology described by Marks et al. (Bio/Technology (1992) 10: 779-783).
- consensus primers directed at or adjacent to the 5′ end of the variable domain area can be used in conjunction with consensus primers to the third framework region of human V H genes to provide a repertoire of V H variable domains lacking a CDR3.
- the repertoire may be combined with a CDR3 of a particular antibody.
- the CDR3-derived sequences may be shuffled with repertoires of V H or V L domains lacking a CDR3, and the shuffled complete V H or V L domains combined with a cognate V L or V H domain to make the PD-1-specific antibodies of the invention.
- the repertoire may then be displayed in a suitable host system such as the phage display system such as described in WO92/01047 so that suitable antigen-binding fragments can be selected.
- One such technique, error-prone PCR is described by Gram et al. (Proc. Nat. Acad. Sci. U.S.A. (1992) 89: 3576-3580).
- Another method that may be used is to direct mutagenesis to CDRs of V H or V L genes.
- Such techniques are disclosed by Barbas et al. (Proc. Nat. Acad. Sci. U.S.A. (1994) 91: 3809-3813) and Schier et al. (J. Mol. Biol. (1996) 263: 551-567).
- one or more, or all three CDRs may be grafted into a repertoire of V H or V L domains, which are then screened for an antigen-binding fragment specific for PD-1.
- a portion of an immunoglobulin variable domain will comprise at least one of the CDRs substantially as set out herein and, optionally, intervening framework regions from the scF v fragments as set out herein.
- the portion may include at least about 50% of either or both of FR1 and FR4, the 50% being the C-terminal 50% of FR1 and the N-terminal 50% of FR4. Additional residues at the N-terminal or C-terminal end of the substantial part of the variable domain may be those not normally associated with naturally occurring variable domain regions.
- construction of antibodies by recombinant DNA techniques may result in the introduction of N- or C-terminal residues encoded by linkers introduced to facilitate cloning or other manipulation steps.
- Other manipulation steps include the introduction of linkers to join variable domains to further protein sequences including immunoglobulin heavy chain constant regions, other variable domains (for example, in the production of diabodies), or proteinaceous labels as discussed in further detail below.
- embodiments illustrated in the Examples comprise a “matching” pair of V H and V L domains
- alternative embodiments may comprise antigen-binding fragments containing only a single CDR from either V L or V H domain.
- Either one of the single chain specific binding domains can be used to screen for complementary domains capable of forming a two-domain specific antigen-binding fragment capable of, for example, binding to PD-1.
- the screening may be accomplished by phage display screening methods using the so-called hierarchical dual combinatorial approach disclosed in WO92/01047, in which an individual colony containing either an H or L chain clone is used to infect a complete library of clones encoding the other chain (L or H) and the resulting two-chain specific binding domain is selected in accordance with phage display techniques as described.
- Anti-PD1 antibodies described herein can be linked to another functional molecule, e.g., another peptide or protein (albumin, another antibody, etc.), toxin, radioisotope, cytotoxic or cytostatic agents.
- the antibodies can be linked by chemical cross-linking or by recombinant methods.
- the antibodies may also be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; or 4,179,337.
- the antibodies can be chemically modified by covalent conjugation to a polymer, for example, to increase their circulating half-life.
- exemplary polymers and methods to attach them are also shown in U.S. Pat. Nos. 4,766,106; 4,179,337; 4,495,285, and 4,609,546.
- the disclosed antibodies may also be altered to have a glycosylation pattern that differs from the native pattern.
- one or more carbohydrate moieties can be deleted and/or one or more glycosylation sites added to the original antibody.
- Addition of glycosylation sites to the presently disclosed antibodies may be accomplished by altering the amino acid sequence to contain glycosylation site consensus sequences known in the art.
- Another means of increasing the number of carbohydrate moieties on the antibodies is by chemical or enzymatic coupling of glycosides to the amino acid residues of the antibody. Such methods are described in WO 87/05330 and in Aplin et al. (1981) CRC Crit. Rev. Biochem., 22: 259-306.
- the antibodies may also be tagged with a detectable, or functional, label.
- Detectable labels include radiolabels such as 131 I or 99 Tc, which may also be attached to antibodies using conventional chemistry.
- Detectable labels also include enzyme labels such as horseradish peroxidase or alkaline phosphatase.
- Detectable labels further include chemical moieties such as biotin, which may be detected via binding to a specific cognate detectable moiety, e.g., labeled avidin.
- Antibodies in which CDR sequences differ only insubstantially from those set out in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NOs:1640, SEQ ID NO:47, or SEQ ID NO:49 are encompassed within the scope of this invention.
- an amino acid is substituted by a related amino acid having similar charge, hydrophobic, or stereochemical characteristics. Such substitutions would be within the ordinary skills of an artisan.
- CDRs more substantial changes can be made in FRs without adversely affecting the binding properties of an antibody.
- Changes to FRs include, but are not limited to, humanizing a non-human derived or engineering certain framework residues that are important for antigen contact or for stabilizing the binding site, e.g., changing the class or subclass of the constant region, changing specific amino acid residues which might alter the effector function such as Fc receptor binding, e.g., as described in U.S. Pat. Nos. 5,624,821 and 5,648,260 and Lund et al. (1991) J. Immun. 147: 2657-2662 and Morgan et al. (1995) Immunology 86: 319-324, or changing the species from which the constant region is derived.
- the present disclosure further provides isolated nucleic acids encoding the disclosed antibodies.
- the nucleic acids may comprise DNA or RNA and may be wholly or partially synthetic or recombinant.
- Reference to a nucleotide sequence as set out herein encompasses a DNA molecule with the specified sequence, and encompasses a RNA molecule with the specified sequence in which U is substituted for T, unless context requires otherwise.
- nucleic acids provided herein comprise a coding sequence for a CDR, a V H domain, and/or a V L domain disclosed herein.
- the present disclosure also provides constructs in the form of plasmids, vectors, phagemids, transcription or expression cassettes which comprise at least one nucleic acid encoding a CDR, a V H domain, and/or a V L domain disclosed here.
- the disclosure further provides a host cell which comprises one or more constructs as above.
- nucleic acids encoding any CDR (H1, H2, H3, L1, L2, or L3), V H or V L domain, as well as methods of making of the encoded products.
- the method comprises expressing the encoded product from the encoding nucleic acid. Expression may be achieved by culturing under appropriate conditions recombinant host cells containing the nucleic acid. Following production by expression a V H or V L domain, or specific binding member may be isolated and/or purified using any suitable technique, then used as appropriate.
- Antigen-binding fragments, V H and/or V L domains, and encoding nucleic acid molecules and vectors may be isolated and/or purified from their natural environment, in substantially pure or homogeneous form, or, in the case of nucleic acid, free or substantially free of nucleic acid or genes of origin other than the sequence encoding a polypeptide with the required function.
- suitable host cells include bacteria, plant cells, mammalian cells, and yeast and baculovirus systems.
- Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, NS0 mouse myeloma cells, and many others.
- a common bacterial host is E. coli .
- Any protein expression system compatible with the invention may be used to produce the disclosed antibodies. Suitable expression systems include transgenic animals described in Gene Expression Systems, Academic Press, eds. Fernandez et al., 1999.
- Suitable vectors can be chosen or constructed, so that they contain appropriate regulatory sequences, including promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate.
- Vectors may be plasmids or viral, e.g., phage, or phagemid, as appropriate.
- phage e.g., phagemid
- a further aspect of the disclosure provides a host cell comprising a nucleic acid as disclosed here.
- a still further aspect provides a method comprising introducing such nucleic acid into a host cell.
- the introduction may employ any available technique.
- suitable techniques may include calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus, e.g., vaccinia or, for insect cells, baculovirus.
- suitable techniques may include calcium chloride transformation, electroporation and transfection using bacteriophage.
- the introduction of the nucleic acid into the cells may be followed by causing or allowing expression from the nucleic acid, e.g., by culturing host cells under conditions for expression of the gene.
- the disclosed anti-PD-1 antibodies are capable of modulating the PD-1-associated downregulation of the immune responses.
- the immune response is TcR/CD28-mediated.
- the disclosed antibodies can act as either agonists or antagonists of PD-1, depending on the method of their use.
- the antibodies can be used to prevent, diagnose, or treat medical disorders in mammals, especially, in humans.
- Antibodies of the invention can also be used for isolating PD-1 or PD-1-expressing cells.
- the antibodies can be used to treat a subject at risk of or susceptible to a disorder or having a disorder associated with aberrant PD-1 expression or function.
- Antibodies of the invention can be used in methods for induction of tolerance to a specific antigen (e.g., a therapeutic protein).
- a specific antigen e.g., a therapeutic protein
- tolerance is induced against a specific antigen by co-administration of antigen and an anti-PD-1 antibody of the invention.
- Antibodies of the invention can be used in circumstances where a reduction in the level of immune response may be desirable, for example, in certain types of allergy or allergic reactions (e.g., by inhibition of IgE production), autoimmune diseases (e.g., rheumatoid arthritis, type I diabetes mellitus, multiple sclerosis, inflammatory bowel disease, Crohn's disease, and systemic lupus erythematosis), tissue, skin and organ transplant rejection, and graft-versus-host disease (GVHD).
- autoimmune diseases e.g., rheumatoid arthritis, type I diabetes mellitus, multiple sclerosis, inflammatory bowel disease, Crohn's disease, and systemic lupus erythematosis
- tissue skin and organ transplant rejection
- graft-versus-host disease graft-versus-host disease
- the anti-PD-1 antibodies of the invention may be used as agonists to PD-1 in order to enhance the PD-1-associated attenuation of the immune response.
- co-presentation and physical proximity between positive (i.e., mediated by an antigen receptor, e.g., TcR or BcR) and negative (i.e., PD-1) signals are required.
- the preferred distance is less than or comparable to the size of a naturally occurring antigen-presenting cell, i.e., less than about 100 ⁇ m; more preferably, less than about 50 ⁇ m; and most preferably, less than about 20 ⁇ m.
- the positive (activating) and the negative (inhibiting) signals are provided by a ligand or antibodies immobilized on solid support matrix, or a carrier.
- the solid support matrix may be composed of polymer such as activated agarose, dextran, cellulose, polyvinylidene fluoride (PVDF).
- the solid support matrix may be based on silica or plastic polymers, e.g., as nylon, dacron, polystyrene, polyacrylates, polyvinyls, teflons, etc.
- the matrix can be implanted into the spleen of a patient.
- the matrix may be used for the ex vivo incubation of T cells obtained from a patient, which are then separated and implanted back into the patient.
- the matrix may also be made from a biodegradable material such polyglycolic acid, polyhydroxyalkanoate, collagen, or gelatin so that they can be injected into the patient's peritoneal cavity, and dissolve after some time following the injection.
- the carrier can be shaped to mimic a cell (e.g., bead or microsphere).
- the positive signal is delivered by a T-cell-activating anti-CD3 antibody, which binds TcR.
- Activating anti-CD3 antibodies are known in the art (see, for example, U.S. Pat. Nos. 6,405,696 and 5,316,763).
- the ratio between the activating TcR signal and negative PD-1 signal is determined experimentally using conventional procedures known in the art or as described in Examples 8, 9, and 10.
- the disorders being treated or prevented by the disclosed methods include but are not limited to infections with microbes (e.g. bacteria), viruses (e.g., systemic viral infections such as influenza, viral skin diseases such as herpes or shingles), or parasites; and cancer (e.g., melanoma and prostate cancers).
- microbes e.g. bacteria
- viruses e.g., systemic viral infections such as influenza, viral skin diseases such as herpes or shingles
- parasites e.g., melanoma and prostate cancers.
- the antibodies act as antagonists of PD-1.
- the antibodies can be used to inhibit or reduce the downregulatory activity associated with PD-1, i.e., the activity associated with downregulation of TcR/CD28-mediated immune response.
- the antibodies are not coupled to a positive signal such as the TcR-mediated stimulation, e.g., the antibodies are in their soluble, support-unbound, form.
- the antibodies inhibit binding of PD-L to PD-1 with an IC 50 of less than 10 nM, and more preferably less then 5 nM, and most preferably less than 1 nM. Inhibition of PD-L binding can be measured as described in Example 6 or using techniques known in the art.
- the antibodies or antibody compositions of the present invention are administered in therapeutically effective amounts.
- a therapeutically effective amount may vary with the subject's age, condition, and sex, as well as the severity of the medical condition of the subject.
- a therapeutically effective amount of antibody ranges from about 0.001 to about 30 mg/kg body weight, preferably from about 0.01 to about 25 mg/kg body weight, from about 0.1 to about 20 mg/kg body weight, or from about 1 to about 10 mg/kg.
- the dosage may be adjusted, as necessary, to suit observed effects of the treatment. The appropriate dose is chosen based on clinical indications by a treating physician.
- the antibodies may given as a bolus dose, to maximize the circulating levels of antibodies for the greatest length of time after the dose. Continuous infusion may also be used after the bolus dose.
- Immune cells can also be isolated from a patient and incubated ex vivo with antibodies of the invention.
- immune responses can be inhibited by removing immune cells from a subject, contacting the immune cells in vitro with an anti-PD-1 antibody of the invention concomitantly with activation of the immune cells (e.g., by antibodies to the TcR and/or BcR antigen receptor).
- the anti-PD-1 antibody should be used in a multivalent form such that PD-1 molecules on the surface of an immune cell become “crosslinked” upon binding to such antibodies.
- the anti-PD-1 antibodies can be bound to solid support, such as beads, or crosslinked via a secondary antibody.
- the immune cells may be then isolated using methods known in the art and reimplanted into the patient.
- the antibodies of the invention can be used as a targeting agent for delivery of another therapeutic or a cytotoxic agent (e.g., a toxin) to a cell expressing PD-1.
- a cytotoxic agent e.g., a toxin
- the method includes administering an anti-PD-1 antibody coupled to a therapeutic or a cytotoxic agent or under conditions that allow binding of the antibody to PD-1.
- the antibodies of the invention may also be used to detect the presence of PD-1 in biological samples.
- the amount of PD-1 detected may be correlated with the expression level of PD-1, which, in turn, is correlated with the activation status of immune cells (e.g., activated T cells, B cells, and monocytes) in the subject.
- immune cells e.g., activated T cells, B cells, and monocytes
- Detection methods that employ antibodies are well known in the art and include, for example, ELISA, radioimmunoassay, immunoblot, Western blot, immunofluorescence, immunoprecipitation.
- the antibodies may be provided in a diagnostic kit that incorporates one or more of these techniques to detect PD-1.
- a kit may contain other components, packaging, instructions, or other material to aid the detection of the protein.
- the antibodies are intended for diagnostic purposes, it may be desirable to modify them, for example, with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope or an enzyme).
- a detectable label such as a fluorescent group, a radioisotope or an enzyme.
- the antibodies of the invention may be labeled using conventional techniques. Suitable detectable labels include, for example, fluorophores, chromophores, radioactive atoms, electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase can be detected by its ability to convert tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer.
- TMB tetramethylbenzidine
- binding partners include, but are not limited to, biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.
- Antibodies of the invention can be used in screening methods to identify inhibitors of the PD-1 pathway effective as therapeutics.
- a first binding mixture is formed by combining PD-1 and an antibody of the invention; and the amount of binding in the first binding mixture (M 0 ) is measured.
- a second binding mixture is also formed by combining PD-1, the antibody, and the compound or agent to be screened, and the amount of binding in the second binding mixture (M 1 ) is measured.
- a compound to be tested may be another anti-PD-1 antibody, as illustrated in the Examples.
- the amounts of binding in the first and second binding mixtures are then compared, for example, by calculating the M 1 /M 0 ratio.
- the compound or agent is considered to be capable of modulating a PD-1-associated downregulation of immune responses if a decrease in binding in the second binding mixture as compared to the first binding mixture is observed.
- the formulation and optimization of binding mixtures is within the level of skill in the art, such binding mixtures may also contain buffers and salts necessary to enhance or to optimize binding, and additional control assays may be included in the screening assay of the invention.
- Compounds found to reduce the PD-1-antibody binding by at least about 10% (i.e., M 1 /M 0 ⁇ 0.9), preferably greater than about 30% may thus be identified and then, if desired, secondarily screened for the capacity to ameliorate a disorder in other assays or animal models as described below.
- the strength of the binding between PD-1 and an antibody can be measured using, for example, an enzyme-linked immunoadsorption assay (ELISA), radio-immunoassay (RIA), surface plasmon resonance-based technology (e.g., Biacore), all of which are techniques well known in the art.
- ELISA enzyme-linked immunoadsorption assay
- RIA radio-immunoassay
- Biacore surface plasmon resonance-based technology
- the compound may then be tested in vitro as described in the Examples or in an animal model (see, generally, Immunologic Defects in Laboratory Animals, eds. Gershwin et al., Plenum Press, 1981), for example, such as the following: the SWR ⁇ NZB (SNF1) transgenic mouse model (Uner et al. (1998) J. Autoimmune. 11(3): 233-240), the KRN transgenic mouse (K/B ⁇ N) model (Ji et al. (1999) Immunol. Rev. 169: 139); NZB ⁇ NZW (B/W) mice, a model for SLE (Riemekasten et al.
- SNF1 SWR ⁇ NZB
- K/B ⁇ N KRN transgenic mouse
- B/W NZB ⁇ NZW mice
- Preliminary doses as, for example, determined according to animal tests, and the scaling of dosages for human administration is performed according to art-accepted practices.
- Toxicity and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The data obtained from the cell culture assays or animal studies can be used in formulating a range of dosage for use in humans.
- Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al. (1966) Cancer Chemother. Reports, 50(4): 219-244).
- compositions comprising anti-PD-1 antibodies. Such compositions may be suitable for pharmaceutical use and administration to patients.
- the compositions typically comprise one or more antibodies of the present invention and a pharmaceutically acceptable excipient.
- pharmaceutically acceptable excipient includes any and all solvents, dispersion media, coatings, antibacterial agents and antifungal agents, isotonic agents, and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art.
- the compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions.
- the pharmaceutical compositions may also be included in a container, pack, or dispenser together with instructions for administration.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Methods to accomplish the administration are known to those of ordinary skill in the art.
- the administration may, for example, be intravenous, intraperitoneal, intramuscular, intracavity, subcutaneous or transdermal. It may also be possible to obtain compositions which may be topically or orally administered, or which may be capable of transmission across mucous membranes.
- Solutions or suspensions used for intradermal or subcutaneous application typically include one or more of the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- Such preparations may be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injection include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate, and gelatin.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For oral administration, the antibodies can be combined with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches, and the like can contain any of the following ingredients, or compounds of a similar nature; a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration may be accomplished, for example, through the use of lozenges, nasal sprays, inhalers, or suppositories;
- compositions may be capable of transmission across mucous membranes in intestine, mouth, or lungs (e.g., via the FcRn receptor-mediated pathway as described in U.S. Pat. No.
- the active compounds may be formulated into ointments, salves, gels, or creams as generally known in the art.
- the antibodies may be delivered in the form of an aerosol spray from pressured container or dispenser, which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- the presently disclosed antibodies are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- Liposomal suspensions containing the presently disclosed antibodies can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- Toxicity and therapeutic efficacy of the composition of the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
- Compositions that exhibit large therapeutic indices are preferred.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- suitable bioassays include DNA replication assays, cytokine release assays, transcription-based assays, PD-1/PD-L1 binding assays, creatine kinase assays, assays based on the differentiation of pre-adipocytes, assays based on glucose uptake in adipocytes, immunological assays other assays as, for example, described in the Examples.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (i.e., the concentration of the antibody which achieves a half-maximal inhibition of symptoms). Circulating levels in plasma may be measured, for example, by high performance liquid chromatography. The effects of any particular dosage can be monitored by a suitable bioassay. The dosage lies preferably within a range of circulating concentrations with little or no toxicity. The dosage may vary depending upon the dosage form employed and the route of administration utilized.
- scFv phagemid library which is an expanded version of the 1.38 ⁇ 10 10 library described by Vaughan et al. (Nature Biotech. (1996) 14: 309-314) was used to select antibodies specific for human PD-1.
- Soluble PD-1 fusion protein at 20 ⁇ g/ml in phosphate buffered saline (PBS)
- control fusion protein at 50 ⁇ g/ml in PBS
- Purified phage (10 12 transducing units (tu)) was blocked for 1 hour in a final volume of 100 ⁇ l of 3% MPBS. Blocked phage was added to blocked control fusion protein wells and incubated for 1 hour. The blocked and deselected phage were then transferred to the blocked wells coated with the PD-1 fusion protein and were incubated for an additional hour. Wells were washed 5 times with PBST (PBS containing 0.1% v/v Tween 20), then 5 times with PBS. Bound phage particles were eluted and used to infect 10 ml exponentially growing E. coli TG1.
- PBST PBS containing 0.1% v/v Tween 20
- Infected cells were grown in 2TY broth for 1 hour at 37° C., then spread onto 2TYAG plates and incubated overnight at 30° C. Colonies were scraped off the plates into 10 ml 2TY broth and 15% glycerol added for storage at ⁇ 70° C.
- Glycerol stock cultures from the first round of panning selection were superinfected with helper phage and rescued to give scFv antibody-expressing phage particles for the second round of panning.
- a total of two rounds of panning were carried out in this way for isolation of PD1-17, except in the second round of panning 20 ⁇ g/ml of control protein were used for deselection.
- Clones PD1-28, PD1-33, and PD1-35 were selected following three rounds of selection. Deselection in the second and third rounds was carried out using 10 ⁇ g/ml control fusion protein.
- Antibodies to murine PD-1 were selected by soluble selection using biotinylated murine PD-1 fusion protein at a final concentration of 100 nM.
- An scFv phagemid library as described above, was used. Purified scFv phage (10 12 tu) in 1 ml 3% MPBS were blocked for 30 minutes, then biotinylated antigen was added and incubated at room temperature for 1 hour. Phage/antigen was added to 250 ⁇ l of Dynal M280 Streptavidin magnetic beads that had been blocked for 1 hour at 37° C. in 1 ml of 3% MPBS and incubated for a further 15 minutes at room temperature.
- Beads were captured using a magnetic rack and washed 4 times in 1 ml of 3% MPBS/0.1% (v/v) Tween 20 followed by 3 washes in PBS. After the last PBS wash, beads were resuspended in 100 ⁇ l PBS and used to infect 5 ml exponentially growing E. coli TG-1 cells. Infected cells were incubated for 1 hour at 37° C. (30 minutes stationary, 30 minutes shaking at 250 rpm), then spread on 2TYAG plates and incubated overnight at 30° C. Output colonies were scraped off the plates and phage rescued as described above. A second round of soluble selection was carried out as described above.
- a phage ELISA was performed against PD-1 fusion protein and control proteins. Individual E. coli colonies from selection outputs were picked into 96 well plates containing 100 ⁇ l of 2TYAG medium per well. M13K07 helper phage was added to a multiplicity of infection (moi) of 10 to the exponentially growing culture and the plates incubated an additional 1 hour at 37° C. Plates were centrifuged in a benchtop centrifuge at 2000 rpm for 10 minutes. The supernatant was removed and cell pellets were resuspended in 100 ⁇ l 2TYAK and incubated at 30° C. overnight with shaking. The next day, plates were centrifuged at 2000 rpm for 10 minutes and phage-containing supernatant from each well was transferred to a fresh 96 well plate. Phage samples were blocked in a final concentration of 3% MPBS prior to ELISA.
- Human or mouse PD-1 fusion protein and control fusion and non-fusion proteins were coated overnight at 4° C. onto 96-well microtiter plates at 0.5-2.5 ⁇ g/ml in PBS. After coating, the solutions were removed from the wells, and the plates blocked for 1 hour in 3% MPBS. Plates were rinsed with PBS and then 50 ⁇ l of pre-blocked phage were added to each well. The plates were incubated for 1 hour and then washed 3 times with PBST followed by 3 washes with PBS. To each well, 50 ⁇ l of a 1:5000 dilution of anti-M13-HRP conjugate (Pharmacia, Peapack, N.J.) was added, and the plates incubated for 40-60 minutes.
- anti-M13-HRP conjugate Pharmacia, Peapack, N.J.
- FIG. 1A Specificity data for the PD1-17 scFv is shown in FIG. 1A . Reactivity of PD1-28, PD1-33, and PD1-35 scFv's with human PD-1 is shown in FIG. 1B (an IgG 1 control did not bind PD-1).
- PD-1-binding scFv E. coli clones were streaked out onto 2TYAG plates and incubated overnight at 30° C. Colonies from these plates were sequenced using pCANTAB6 vector sequence oligos to amplify the V H and V L regions from the scFv clone. Unique PD-1 binding clones were assayed for neutralization: of PD-L1 binding to PD-1 as described in Example 4. Sequence differences between scFv and IgG formats are due to changes introduced by PCR primers during the conversion from scFv to IgG.
- scFv's (PD1-17, PD1-28, PD1-33, and PD1-35) were tested for the ability to inhibit the binding of biotinylated human PD-L1 fusion protein to human PD-1 fusion protein immobilized on plastic in a 96 well microtiter plate assay. Binding of biotinylated PD-L1 fusion protein was detected with AMDEX-alkaline phosphatase, and the signal generated was measured by reading the absorbance at 405 nm using a microtiter plate reader. Data was expressed as a percentage of the total binding and a titration of scFv concentrations was tested to establish clone potency as calculated IC 50 values. Clone potency data for the scFv and IgG antibodies is shown in Table 5.
- PD1-F2 scFv was produced and purified as described above.
- Cells expressing murine PD-1 were added at 10 5 cells/well in a final volume of 100 ⁇ l to a poly-D-lysine-coated 96 well microtiter plate. Cells were centrifuged and washed twice in PBS, then blocked with 300 ⁇ l 1% BSA in PBS for 1 hour at room temperature. Blocked cells were washed three times in PBST, prior to addition of 25 ⁇ l/well of assay buffer (0.05% BSA, 0.05% Tween 20 in Dulbecco's PBS) or sample, followed by 25 ⁇ l of biotinylated murine PD-L1 fusion protein at 300 ng/ml. Binding of biotinylated PD-L1 fusion protein was detected with Amdex alkaline phosphatase and signals read as described above. Potencies of PD1-F2 scFv and IgG are shown in
- Heavy and light chain V regions from scFv clones were amplified by PCR using clone-specific primers. PCR products were digested with appropriate restriction enzymes and subcloned into vectors containing human IgG 1 heavy chain constant domain (Takahashi et al. (1982) Cell 29, 671) or vectors containing human lambda or kappa light chain constant domains (Hieter et al. (1982) Nature 294, 536). Based on the germlines of the V H and V L segments, it was determined whether kappa or lambda light chain constant domains were used for conversion (Table 7).
- Plasmids were prepared from E. coli cultures by standard techniques and heavy and light chain constructs cotransfected into eukaryotic cells using standard techniques. Secreted IgG was purified using Protein A Sepharose (Pharmacia) and buffer-exchanged into PBS.
- the binding affinity of the anti-mouse PD1 antibody PD1-F2 was determined with a Surface Plasmon Resonance (SPR) system (BIAcore 3000) (Biacore, Piscataway, N.J.) using murine PD-1 fusion immobilized on a CM5 sensor chip.
- SPR Surface Plasmon Resonance
- the concentration of PD1-F2 in the flow cell ranged from 7.81 to 125 nM, while the concentration of the anti-mouse PD1 antibody J43 (eBioscience, San Diego, Calif.) ranged from 25 nM to 500 nM.
- the ability of anti-PD-1 IgG's to bind human or murine PD-1 was determined as follows. ELISA plates were incubated with 2.5 ⁇ g/ml human PD-1/IgG chimera overnight. Plates were washed with PBS/1% BSA and incubated with serial dilutions of a test antibody for 2 hours at room temperature (RT). After washing, saturating concentrations of HRP-conjugated goat anti-human antibody or HRP-conjugated rabbit anti-murine antibody were added, and the samples were incubated for 1 hour at RT. Unbound goat and rabbit antibodies were washed using PBS/1% BSA. The assay was developed using TBM. Results were expressed as OD 405 absorbency values and are presented in FIGS. 2A-2C . Murine anti-human PD-1 antibody J110 is commercially available (eBioscience, San Diego, Calif.) and was included for comparison.
- Inhibition assays were performed to assess the ability of the antibodies to block binding of PD-L1 to PD-1.
- ELISA was performed as described in Example 2 with modifications. After incubation with a primary, anti-PD-1 antibody for 2 hours at RT, a fixed concentration (1 ⁇ g/ml) of biotin-conjugated PD-L1-Ig was added, and the samples were further incubated for 1 hour at RT. After washing, saturating concentrations of avidin-HRP were added, and incubated for 1 hour at RT. Unbound avidin-HRP was washed using PBS/1% BSA. The assay was developed using TMB.
- Anti-human PD-1 antibodies J110 and PD1-30 did not inhibit the binding of PD-L1 to PD-1.
- Anti-human antibodies PD1-17, PD1-28, PD1-33, and PD1-35 and anti-mouse antibody PD1-F2 block PD-1/PD-L1 interaction.
- Inhibition assays were performed to map sites recognize by the various human anti-human PD-1 antibodies.
- ELISA was performed as described in Example 6 with minor modifications. After incubation with primary antibody for 2 hours at RT, a fixed concentration (0.25 ⁇ g/ml) of biotin-conjugated anti-PD-1 antibody J110 was added, and the samples were further incubated for 1 hour at RT. After washing, saturating concentrations of avidin-HRP were added, and incubated for 1 hour at Rt. Unbound avidin-HRP was washed using PBS/1% BSA. The assay was developed using TMB.
- binding of anti-human PD-1 antibodies defines at least two distinct sites on PD-1.
- Cross-blocking results show that J110 and J116, bind to identical or overlapping sites while PD1-17, 28, 33, and 35 bind to another distinct site.
- Binding of J116 or J110 to PD-1 blocks the binding of J110.
- binding of PD1-17, PD1-28, PD1-33, and PD1-35 do not block binding of J110. This suggests that the tested anti-PD-1 antibodies bind to at least two distinct epitopes: one recognized by J110 and J116, and the other one recognized by PD1-17, PD1-28, PD1-33, and PD1-35.
- CD4+ T cells (5 ⁇ 10 4 cells/well) were stimulated with tosyl-beads (Dynal, Great Neck, N.Y.) coated with anti-hCD3+/ ⁇ PD-L1-Fc or anti-PD-1 (PD1-17 or J110). Concentration of fusion protein or antibody titer was as indicated in the X-axis of FIG. 5 . After 72 hours, proliferation was determined by 3 H-thymidine incorporation. Incorporated radioactivity was determined using a LKB 1205 plate reader.
- PD-1 engagement by anti-PD-1 antibody PD1-17 or PD-L1.Fc caused a decrease in T cell proliferation.
- PD1-17 can mimic PD-1 ligands and delivered an inhibitory signal.
- this inhibitory signal results in decreased T cell proliferation and IL-2 production.
- Antibodies PD1-28, PD1-33, and PD1-35 have the same effect as PD1-17. The effect is dose-dependent, as activation of cells in the presence of increasing concentrations of PD1-17 or PD-L1.Fc results in decreased T cell proliferation.
- the control anti-PD-1 antibodies, J110 FIG.
- J116 do not inhibit T cell responses and increasing the concentration of J110 has minimal effect on T cell proliferation.
- values are represented as percentage of the anti-CD3 response. “100%” represents CPMs obtained when cells were activated with anti-CD3/murine IgG-coated microspheres.
- CD4+ T cells were pre-activated for 48 hours with anti-CD3/anti-CD28-coated beads, harvested, and restimulated with the indicated concentration of PHA plus 10 ng/ml IL-2 in the presence of PD1-17, J110, or control IgG. Each of the antibodies was added at various concentrations at initiation of the culture. Proliferation was measured at 72 hr.
- the control antibody J110 did not enhance in vitro T cell responses.
- Modulation of immune response regulated by PD-1 is useful in instances where an immunosuppressive effect or augmentation of immune response is desired.
- This example describes the use of PD-1 antibodies as PD-1 agonists or antagonists to treat a subject at disease onset or having an established immune disorder or cancer, respectively.
- a PD-1 antagonist such as an anti-PD-1 antibody of the present invention in a soluble form.
- antibodies are administered in an outpatient setting by weekly administration at about 0.1-10 mg/kg dose by slow intravenous (IV) infusion.
- the appropriate therapeutically effective dose of an antagonist is selected by a treating clinician and would range approximately from 1 ⁇ g/kg to 20 mg/kg, from 1 ⁇ g/kg to 10 mg/kg, from 1 ⁇ g/kg to 1 mg/kg, from 10 ⁇ g/kg to 1 mg/kg, from 10 ⁇ g/kg to 100 ⁇ g/kg, from 100 ⁇ g to 1 mg/kg, and from 500 ⁇ g/kg to 5 mg/kg.
- the antibodies are also used to prevent and/or to reduce severity and/or symptoms of diseases or conditions that involve an aberrant or undesirable immune response, such as in autoimmune disorders exemplified below.
- MS Multiple sclerosis
- EAE experimental autoimmune encephalitis
- mice Tuohy et al. (J. Immunol. (1988) 141: 1126-1130), Sobel et al. (J. Immunol. (1984) 132: 2393-2401), and Traugott (Cell Immunol. (1989) 119: 114-129)
- treatment of mice with a PD-1 agonist prior (and continuously) to EAE induction is expected to prevent or delay the onset of MS.
- rheumatoid arthritis is a disease characterized by inflammation in the joints.
- CIA collagen induced arthritis
- RA rheumatoid arthritis
- SLE Systemic Lupus Erythematosis
- NZB ⁇ NZW mice a mouse model for SLE
- SLE Systemic Lupus Erythematosis
- PD-1 antibodies of the invention would be administered as PD-1 agonists in ex vivo therapy with a frequency of one per month or less. Treatment duration could range between one month and several years.
- Treatment groups include a placebo group and one to three groups treated with a PD-1 agonist (different doses). Individuals are followed prospectively for one to three years. It is anticipated that individuals receiving treatment would exhibit an improvement.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Pain & Pain Management (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 60/435,354, filed Dec. 23, 2002, which is incorporated herein by reference.
- The technical field relates to modulation of immune responses regulated by the Programmed Death 1 (PD-1) receptor.
- An adaptive immune response involves activation, selection, and clonal proliferation of two major classes of lymphocytes termed T cells and B cells. After encountering an antigen, T cells proliferate and differentiate into antigen-specific effector cells, while B cells proliferate and differentiate into antibody-secreting cells.
- T cell activation is a multi-step process requiring several signaling events between the T cell and an antigen-presenting cell (APC). For T cell activation to occur, two types of signals must be delivered to a resting T cell. The first type is mediated by the antigen-specific T cell receptor (TcR), and confers specificity to the immune response. The second, costimulatory, type regulates the magnitude of the response and is delivered through accessory receptors on the T cell.
- A primary costimulatory signal is delivered through the activating CD28 receptor upon engagement of its ligands B7-1 or B7-2. In contrast, engagement of the inhibitory CTLA-4 receptor by the same B7-1 or B7-2 ligands results in attenuation of T cell response. Thus, CTLA-4 signals antagonize costimulation mediated by CD28. At high antigen concentrations, CD28 costimulation overrides the CTLA-4 inhibitory effect. Temporal regulation of the CD28 and CTLA-4 expression maintains a balance between activating and inhibitory signals and ensures the development of an effective immune response, while safeguarding against the development of autoimmunity.
- Molecular homologues of CD28 and CTLA-4 and their B-7 like ligands have been recently identified. ICOS is a CD28-like costimulatory receptor. PD-1 (Programmed Death 1) is an inhibitory receptor and a counterpart of CTLA-4. This disclosure relates to modulation of immune responses mediated by the PD-1 receptor.
- PD-1 is a 50-55 kDa type I transmembrane receptor that was originally identified in a T cell line undergoing activation-induced apoptosis. PD-1 is expressed on T cells, B cells, and macrophages. The ligands for PD-1 are the B7 family members PD-L1 (B7-H1) and PD-L2 (B7-DC).
- PD-1 is a member of the immunoglobulin (Ig) superfamily that contains a single 1 g V-like domain in its extracellular region. The PD-1 cytoplasmic domain contains two tyrosines, with the most membrane-proximal tyrosine (VAYEEL in mouse PD-1) located within an ITIM (immuno-receptor tyrosine-based inhibitory motif). The presence of an ITIM on PD-1 indicates that this molecule functions to attenuate antigen receptor signaling by recruitment of cytoplasmic phosphatases. Human and murine PD-1 proteins share about 60% amino acid identity with conservation of four potential N-glycosylation sites, and residues that define the Ig-V domain. The ITIM in the cytoplasmic region and the ITIM-like motif surrounding the carboxy-terminal tyrosine (TEYATI in human and mouse) are also conserved between human and murine orthologues.
- PD-1 is expressed on activated T cells, B cells, and monocytes. Experimental data implicates the interactions of PD-1 with its ligands in downregulation of central and peripheral immune responses. In particular, proliferation in wild-type T cells but not in PD-1-deficient T cells is inhibited in the presence of PD-L1. Additionally, PD-1-deficient mice exhibit an autoimmune phenotype. PD-1 deficiency in the C57BL/6 mice results in chronic progressive lupus-like glomerulonephritis and arthritis. In Balb/c mice, PD-1 deficiency leads to severe cardiomyopathy due to the presence of heart-tissue-specific self-reacting antibodies.
- In general, a need exists to provide safe and effective therapeutic methods for immune disorders such as, for example, autoimmune diseases, inflammatory disorders, allergies, transplant rejection, cancer, immune deficiency, and other immune system-related disorders. Modulation of the immune responses involved in these disorders can be accomplished by manipulation of the PD-1 pathway.
- The present disclosure provides antibodies that can act as agonists and/or antagonists of PD-1, thereby modulating immune responses regulated by PD-1. The disclosure further provides anti-PD-1 antibodies that comprise novel antigen-binding fragments. Anti-PD-1 antibodies of the invention are capable of (a) specifically binding to PD-1, including human PD-1; (b) blocking PD-1 interactions with its natural ligand(s); or (c) performing both functions. Furthermore, the antibodies may possess immunomodulatory properties, i.e., they may be effective in modulating the PD-1-associated downregulation of immune responses. Depending on the method of use and the desired effect, the antibodies may be used to either enhance or inhibit immune responses.
- Nonlimiting illustrative embodiments of the antibodies are referred to as PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2. Other embodiments comprise a VH and/or VL domain of the Fv fragment of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2. Further embodiments comprise one or more complementarity determining regions (CDRs) of any of these VH and VL domains. Other embodiments comprise an H3 fragment of the VH domain of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2.
- The disclosure also provides compositions comprising PD-1 antibodies, and their use in methods of modulating immune response, including methods of treating humans or animals. In particular embodiments, anti-PD-1 antibodies are used to treat or prevent immune disorders by virtue of increasing or reducing the T cell response mediated by TcR/CD28. Disorders susceptible to treatment with compositions of the invention include but are not limited to rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, Crohn's disease, systemic lupus erythematosis, type I diabetes, transplant rejection, graft-versus-host disease, hyperproliferative immune disorders, cancer, and infectious diseases.
- Additionally, anti-PD-1 antibodies may be used diagnostically to detect PD-1 or its fragments in a biological sample. The amount of PD-1 detected may be correlated with the expression level of PD-1, which, in turn, is correlated with the activation status of immune cells (e.g., activated T cells, B cells, and monocytes) in the subject.
- The disclosure also provides isolated nucleic acids, which comprise a sequence encoding a VH or VL domain from the Fv fragment of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2. Also provided are isolated nucleic acids, which comprise a sequence encoding one or more CDRs from any of the presently disclosed VH and VL domains. The disclosure also provides vectors and host cells comprising such nucleic acids.
- The disclosure further provides a method of producing new VH and VL domains and/or functional antibodies comprising all or a portion of such domains derived from the VH or VL domains of PD1-17, PD1-28, PD1-33, PD1-35, or PD1-F2.
- Additional aspects of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practicing the invention. The invention is set forth and particularly pointed out in the appended claims, and the present disclosure should not be construed as limiting the scope of the claims in any way. The following detailed description includes exemplary representations of various embodiments of the invention, which are not restrictive of the invention, as claimed. The accompanying figures constitute a part of this specification and, together with the description, serve only to illustrate various embodiments and not limit the invention. Citation of references is not an admission that these references are prior art to the invention.
-
FIGS. 1A and 1B show reactivity of scFv antibodies with human PD-1 as determined by phage ELISA. -
FIGS. 2A-2C show reactivity of IgG-converted antibodies with human or mouse PD-1 as determined by ELISA. -
FIG. 3 shows results of an ELISA demonstrating that selected PD-1 antibodies inhibit binding of PD-L1 to PD-1. -
FIG. 4 shows results of an ELISA demonstrating that immunomodulatory PD-1 antibodies bind to distinct sites on PD-1 as determined by cross-blocking ELISA assays. -
FIG. 5 shows results of T-cell proliferation assays demonstrating that co-engagement by TcR and anti-PD-1 antibody PD1-17 or PD-L1.Fc reduces proliferation. Co-engagement by TcR and anti-PD-1 J110 has no effect on proliferation. -
FIG. 6 demonstrates enhanced proliferation of primary T cells by PD1-17 in a soluble form. - The term “antibody,” as used in this disclosure, refers to an immunoglobulin or a fragment or a derivative thereof, and encompasses any polypeptide comprising an antigen-binding site, regardless whether it is produced in vitro or in vivo. The term includes, but is not limited to, polyclonal, monoclonal, monospecific, polyspecific, non-specific, humanized, single-chain, chimeric, synthetic, recombinant, hybrid, mutated, and grafted antibodies. Unless otherwise modified by the term “intact,” as in “intact antibodies,” for the purposes of this disclosure, the term “antibody” also includes antibody fragments such as Fab, F(ab′)2, Fv, scFv, Fd, dAb, and other antibody fragments that retain antigen-binding function, i.e., the ability to bind PD-1 specifically. Typically, such fragments would comprise an antigen-binding domain.
- The terms “antigen-binding domain,” “antigen-binding fragment,” and “binding fragment” refer to a part of an antibody molecule that comprises amino acids responsible for the specific binding between the antibody and the antigen. In instances, where an antigen is large, the antigen-binding domain may only bind to a part of the antigen. A portion of the antigen molecule that is responsible for specific interactions with the antigen-binding domain is referred to as “epitope” or “antigenic determinant.”
- An antigen-binding domain typically comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH), however, it does not necessarily have to comprise both. For example, a so-called Fd antibody fragment consists only of a VH domain, but still retains some antigen-binding function of the intact antibody.
- The term “repertoire” refers to a genetically diverse collection of nucleotides derived wholly or partially from sequences that encode expressed immunoglobulins. The sequences are generated by in vivo rearrangement of, e.g., V, D, and J segments for H chains and, e.g., V and J segment for L chains. Alternatively, the sequences may be generated from a cell line by in vitro stimulation, in response to which the rearrangement occurs. Alternatively, part or all of the sequences may be obtained by combining, e.g., unrearranged V segments with D and J segments, by nucleotide synthesis, randomised mutagenesis, and other methods, e.g., as disclosed in U.S. Pat. No. 5,565,332.
- The terms “specific interaction” and “specific binding” refer to two molecules forming a complex that is relatively stable under physiologic conditions. Specific binding is characterized by a high affinity and a low to moderate capacity as distinguished from nonspecific binding which usually has a low affinity with a moderate to high capacity. Typically, binding is considered specific when the affinity constant KA is higher than 106 M−1 or more preferably higher than 108 M−1. If necessary, non-specific binding can be reduced without substantially affecting specific binding by varying the binding conditions. The appropriate binding conditions such as concentration of antibodies, ionic strength of the solution, temperature, time allowed for binding, concentration of a blocking agent (e.g., serum albumin, milk casein), etc., may be optimized by a skilled artisan using routine techniques. Illustrative conditions are set forth in Examples 1, 2, 4, 6, and 7.
- The phrase “substantially as set out” means that the relevant CDR, VH, or VL domain of the invention will be either identical to or have only insubstantial differences in the specified regions (e.g., a CDR), the sequence of which is set out. Insubstantial differences include minor amino acid changes, such as substitutions of 1 or 2 out of any 5 amino acids in the sequence of a specified region.
- The term “PD-1 activity” refers to one or more immunoregulatory activities associated with PD-1. For example, PD-1 is a negative regulator of the TcR/CD28-mediated immune response. Procedures for assessing the PD-1 activity in vivo and in vitro are described in Examples 8, 9, and 10.
- The terms “modulate,” “immunomodulatory,” and their cognates refer to a reduction or an increase in the activity of PD-1 associated with downregulation of T cell responses due to its interaction with an anti-PD-1 antibody, wherein the reduction or increase is relative to the activity of PD-1 in the absence of the same antibody. A reduction or an increase in activity is preferably at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more. When PD-1 activity is reduced, the terms “modulatory” and “modulate” are interchangeable with the terms “inhibitory” and “inhibit.” When PD-1 activity is increased, the terms “modulatory” and “modulate” are interchangeable with the terms “activating” and “activate.” The activity of PD-1 can be determined quantitatively using T cell proliferation assays as described in Examples 8 and 9.
- The terms “treatment” and “therapeutic method” refer to both therapeutic treatment and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder (i.e., those needing preventative measures).
- The term “effective amount” refers to a dosage or amount that is sufficient to reduce the activity of PD-1 to result in amelioration of symptoms in a patient or to achieve a desired biological outcome, e.g., increased cytolytic activity of T cells, induction of immune tolerance, reduction or increase of the PD-1 activity associated with the negative regulation of T-cell mediated immune response, etc.
- The term “isolated” refers to a molecule that is substantially free of its natural environment. For instance, an isolated protein is substantially free of cellular material or other proteins from the cell or tissue source from which it is derived. The term “isolated” also refers to preparations where the isolated protein is sufficiently pure to be administered as a pharmaceutical composition, or at least 70-80% (w/w) pure, more preferably, at least 80-90% (w/w) pure, even more preferably, 90-95% pure; and, most preferably, at least 95%, 96%, 97%, 98%, 99%, or 100% (w/w) pure.
- The disclosure provides anti-PD-1 antibodies that comprise novel antigen-binding fragments.
- In general, antibodies can be made, for example, using traditional hybridoma techniques (Kohler and Milstein (1975) Nature, 256: 495-499), recombinant DNA methods (U.S. Pat. No. 4,816,567), or phage display performed with antibody libraries (Clackson et al. (1991) Nature, 352: 624-628; Marks et al. (1991) J. Mol. Biol., 222: 581-597). For other antibody production techniques, see also Antibodies: A Laboratory Manual, eds. Harlow et al., Cold Spring Harbor Laboratory, 1988. The invention is not limited to any particular source, species of origin, method of production.
- Intact antibodies, also known as immunoglobulins, are typically tetrameric glycosylated proteins composed of two light (L) chains of approximately 25 kDa each and two heavy (H) chains of approximately 50 kDa each. Two types of light chain, designated as the λ chain and the κ chain, are found in antibodies. Depending on the amino acid sequence of the constant domain of heavy chains, immunoglobulins can be assigned to five major classes: A, D, E, G, and M, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2.
- The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known in the art. For a review of antibody structure, see Harlow et al., supra. Briefly, each light chain is composed of an N-terminal variable domain (VL) and a constant domain (CL). Each heavy chain is composed of an N-terminal variable domain (VH), three or four constant domains (CH), and a hinge region. The CH domain most proximal to VH is designated as
C H1. The VH and VL domains consist of four regions of relatively conserved sequence called framework regions (FR1, FR2, FR3, and FR4), which form a scaffold for three regions of hypervariable sequence called complementarity determining regions (CDRs). The CDRs contain most of the residues responsible for specific interactions with the antigen. The three CDRs are referred to as CDR1, CDR2, and CDR3. CDR constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on the light chain are referred to as L1, L2, and L3, accordingly. CDR3 and, particularly H3, are the greatest source of molecular diversity within the antigen-binding domain. H3, for example, can be as short as two amino acid residues or greater than 26. - The Fab fragment (Fragment antigen-binding) consists of the VH-
C H1 and VL-CL domains covalently linked by a disulfide bond between the constant regions. To overcome the tendency of non-covalently linked VH and VL domains in the Fv to dissociate when co-expressed in a host cell, a so-called single chain (sc) Fv fragment (scFv) can be constructed. In a scFv, a flexible and adequately long polypeptide links either the C-terminus of the VH to the N-terminus of the VL or the C-terminus of the VL to the N-terminus of the VH. Most commonly, a 15-residue (Gly4Ser)3 peptide is used as a linker but other linkers are also known in the art. - Antibody diversity is a result of combinatorial assembly of multiple germline genes encoding variable regions and a variety of somatic events. The somatic events include recombination of variable gene segments with diversity (D) and joining (J) gene segments to make a complete VH region and the recombination of variable and joining gene segments to make a complete VL region. The recombination process itself is imprecise, resulting in the loss or addition of amino acids at the V(D)J junctions. These mechanisms of diversity occur in the developing B cell prior to antigen exposure. After antigenic stimulation, the expressed antibody genes in B cells undergo somatic mutation.
- Based on the estimated number of germline gene segments, the random recombination of these segments, and random VH-VL pairing, up to 1.6×107 different antibodies could be produced (Fundamental Immunology, 3rd ed., ed. Paul, Raven Press, New York, N.Y., 1993). When other processes which contribute to antibody diversity (such as somatic mutation) are taken into account, it is thought that upwards of 1×1010 different antibodies could be potentially generated (Immunoglobulin Genes, 2nd ed., eds. Jonio et al., Academic Press, San Diego, Calif., 1995). Because of the many processes involved in antibody diversity, it is highly unlikely that independently generated antibodies will have identical or even substantially similar amino acid sequences in the CDRs.
- The disclosure provides novel CDRs derived from human immunoglobulin gene libraries. The structure for carrying a CDR will generally be an antibody heavy or light chain or a portion thereof, in which the CDR is located at a location corresponding to the CDR of naturally occurring VH and VL. The structures and locations of immunoglobulin variable domains may be determined, for example, as described in Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md., 1991.
- DNA and amino acid sequences of anti-PD-1 antibodies, their scFv fragment, VH and VL domains, and CDRs are set forth in the Sequence Listing and are enumerated as listed in Table 1. Particular nonlimiting illustrative embodiments of the antibodies are referred to as PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2. The positions for each CDR within the VH and VL domains of the illustrative embodiments are listed in Tables 2 and 3.
-
TABLE 1 DNA and Amino Acid (AA) Sequences of VH and VL Domains and CDRs Sequence PD1-17 PD1-28 PD1-33 PD1-35 PD1-F2 VH DNA SEQ ID NO: 1 SEQ ID NO: 5 SEQ ID NO: 9 SEQ ID NO: 13 SEQ ID NO: 46 VH AA SEQ ID NO: 2 SEQ ID NO: 6 SEQ ID NO: 10 SEQ ID NO: 14 SEQ ID NO: 47 VL DNA SEQ ID NO: 3 SEQ ID NO: 7 SEQ ID NO: 11 SEQ ID NO: 15 SEQ ID NO: 48 VL AA SEQ ID NO: 4 SEQ ID NO: 8 SEQ ID NO: 12 SEQ ID NO: 16 SEQ ID NO: 49 H1 AA SEQ ID NO: 17 SEQ ID NO: 23 SEQ ID NO: 29 SEQ ID NO: 35 SEQ ID NO: 50 H2 AA SEQ ID NO: 18 SEQ ID NO: 24 SEQ ID NO: 30 SEQ ID NO: 36 SEQ ID NO: 51 H3 AA SEQ ID NO: 19 SEQ ID NO: 25 SEQ ID NO: 31 SEQ ID NO: 37 SEQ ID NO: 52 L1 AA SEQ ID NO: 20 SEQ ID NO: 26 SEQ ID NO: 32 SEQ ID NO: 38 SEQ ID NO: 53 L2 AA SEQ ID NO: 21 SEQ ID NO: 27 SEQ ID NO: 33 SEQ ID NO: 39 SEQ ID NO: 54 L3 AA SEQ ID NO: 22 SEQ ID NO: 28 SEQ ID NO: 34 SEQ ID NO: 40 SEQ ID NO: 55 -
TABLE 2 Positions of Heavy Chain CDRs PD1-17 PD1-28 PD1-33 PD1-35 PD1-F2 CDR SEQ ID NO: 2 SEQ ID NO: 6 SEQ ID NO: 10 SEQ ID NO: 14 SEQ ID NO: 47 H1 31-42 31-35 31-35 31-37 34-42 H2 57-72 50-66 50-66 52-67 57-73 H3 105-117 99-108 99-108 100-116 106-114 -
TABLE 3 Positions of Light Chain CDRs PD1-17 PD1-28 PD1-33 PD1-35 PD1-F2 CDR SEQ ID NO: 4 SEQ ID NO: 8 SEQ ID NO: 12 SEQ ID NO: 16 SEQ ID NO: 49 L1 23-35 23-33 23-36 23-35 28-35 L2 51-57 49-55 52-58 51-57 54-61 L3 92-100 88-98 91-102 90-100 94-101 - Anti-PD-1 antibodies may optionally comprise antibody constant regions or parts thereof. For example, a VL domain may have attached, at its C terminus, antibody light chain constant domains including human Cκ or Cλ chains. Similarly, a specific antigen-binding domain based on a VH domain may have attached all or part of an immunoglobulin heavy chain derived from any antibody isotope, e.g., IgG, IgA, IgE, and IgM and any of the isotope sub-classes, which include but are not limited to, IgG1 and IgG4. In the exemplary embodiments, PD1-17, PD1-28, PD1-33, and PD1-35, antibodies comprise C-terminal fragments of heavy and light chains of human IgG1λ, while PD1-F2 comprises C-terminal fragments of heavy and light chains of human IgG1κ. The DNA and amino acid sequences for the C-terminal fragment of are well known in the art (see, e.g., Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md., 1991). Nonlimiting exemplary sequences are set forth in Table 4.
-
TABLE 4 C-Terminal Region DNA Amino acid IgG1 heavy chain SEQ ID NO: 44 SEQ ID NO: 45 λ light chain SEQ ID NO: 42 SEQ ID NO: 43 κ light chain SEQ ID NO: 57 SEQ ID NO: 58 - Certain embodiments comprise a VH and/or VL domain of an Fv fragment from PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2. Further embodiments comprise at least one CDR of any of these VH and VL domains. Antibodies, comprising at least one of the CDR sequences set out in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NOs:16-40, SEQ ID NO:47, or SEQ ID NO:49 are encompassed within the scope of this invention. An embodiment, for example, comprises an H3 fragment of the VH domain of antibodies chosen from at least one of PD1-17, PD1-28, PD1-33, PD1-35, and PD1-F2.
- In certain embodiments, the VH and/or VL domains may be germlined, i.e., the framework regions (FRs) of these domains are mutated using conventional molecular biology techniques to match those produced by the germline cells. In other embodiments, the framework sequences remain diverged from the consensus germline sequences.
- In certain embodiments, the antibodies specifically bind an epitope within the extracellular domain of human PD-1. The predicted extracellular domain consists of a sequence from about amino acid 21 to about amino acid 170 of SEQ ID NO:41 (Swissport Accession No. Q15116). In certain other embodiments, the antibodies specifically bind an epitope within the extracellular domain of mouse PD-1, with an affinity of more than 107 M−1, and preferably more than 108 M−1. The amino acid sequence of mouse PD-1 is set out in SEQ ID NO:56 (Accession No. NM—008798) and is as a whole about 60% identical to its human counterpart. In further embodiments, antibodies of the invention bind to the PD-L-binding domain of PD-1.
- It is contemplated that antibodies of the invention may also bind with other proteins, including, for example, recombinant proteins comprising all or a portion of the PD-1 extracellular domain.
- One of ordinary skill in the art will recognize that the antibodies of this invention may be used to detect, measure, and inhibit proteins that differ somewhat from PD-1. The antibodies are expected to retain the specificity of binding so long as the target protein comprises a sequence which is at least about 60%, 70%, 80%, 90%, 95%, or more identical to any sequence of at least 100, 80, 60, 40, or 20 of contiguous amino acids in the sequence set forth SEQ ID NO:41. The percent identity is determined by standard alignment algorithms such as, for example, Basic Local Alignment Tool (BLAST) described in Altshul et al. (1990) J. Mol. Biol., 215: 403-410, the algorithm of Needleman et al. (1970) J. Mol. Biol., 48: 444-453, or the algorithm of Meyers et al. (1988) Comput. Appl. Biosci., 4: 11-17.
- In addition to the sequence homology analyses, epitope mapping (see, e.g., Epitope Mapping Protocols, ed. Morris, Humana Press, 1996) and secondary and tertiary structure analyses can be carried out to identify specific 3D structures assumed by the disclosed antibodies and their complexes with antigens. Such methods include, but are not limited to, X-ray crystallography (Engstom (1974) Biochem. Exp. Biol., 11:7-13) and computer modeling of virtual representations of the presently disclosed antibodies (Fletterick et al. (1986) Computer Graphics and Molecular Modeling, in Current Communications in Molecular Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.).
- This disclosure also provides a method for obtaining an antibody specific for PD-1. CDRs in such antibodies are not limited to the specific sequences of VH and VL identified in Table 1 and may include variants of these sequences that retain the ability to specifically bind PD-1. Such variants may be derived from the sequences listed in Table 1 by a skilled artisan using techniques well known in the art. For example, amino acid substitutions, deletions, or additions, can be made in the FRs and/or in the CDRs. While changes in the FRs are usually designed to improve stability and immunogenicity of the antibody, changes in the CDRs are typically designed to increase affinity of the antibody for its target. Variants of FRs also include naturally occurring immunoglobulin allotypes. Such affinity-increasing changes may be determined empirically by routine techniques that involve altering the CDR and testing the affinity antibody for its target. For example, conservative amino acid substitutions can be made within any one of the disclosed CDRs. Various alterations can be made according to the methods described in Antibody Engineering, 2nd ed., Oxford University Press, ed. Borrebaeck, 1995. These include but are not limited to nucleotide sequences that are altered by the substitution of different codons that encode a functionally equivalent amino acid residue within the sequence, thus producing a “silent” change. For example, the nonpolar amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine, and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs (see Table 5). Furthermore, any native residue in the polypeptide may also be substituted with alanine (see, e.g., MacLennan et al. (1998) Acta Physiol. Scand. Suppl. 643:55-67; Sasaki et al. (1998) Adv. Biophys. 35:1-24).
- Derivatives and analogs of antibodies of the invention can be produced by various techniques well known in the art, including recombinant and synthetic methods (Maniatis (1990) Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., and Bodansky et al. (1995) The Practice of Peptide Synthesis, 2nd ed., Spring Verlag, Berlin, Germany).
-
TABLE 5 Original Exemplary Typical Residues Substitutions Substitutions Ala (A) Val, Leu, Ile Val Arg (R) Lys, Gln, Asn Lys Asn (N) Gln Gln Asp (D) Glu Glu Cys (C) Ser, Ala Ser Gln (Q) Asn Asn Gly (G) Pro, Ala Ala His (H) Asn, Gln, Lys, Arg Arg Ile (I) Leu, Val, Met, Ala, Phe, Norleucine Leu Leu (L) Norleucine, Ile, Val, Met, Ala, Phe Ile Lys (K) Arg, 1,4-Diamino-butyric Acid, Gln, Asn Arg Met (M) Leu, Phe, Ile Leu Phe (F) Leu, Val, Ile, Ala, Tyr Leu Pro (P) Ala Gly Ser (S) Thr, Ala, Cys Thr Thr (T) Ser Ser Trp (W) Tyr, Phe Tyr Tyr (Y) Trp, Phe, Thr, Ser Phe Val (V) Ile, Met, Leu, Phe, Ala, Norleucine Leu - In one embodiment, a method for making a VH domain which is an amino acid sequence variant of a VH domain of the invention comprises a step of adding, deleting, substituting, or inserting one or more amino acids in the amino acid sequence of the presently disclosed VH domain, optionally combining the VH domain thus provided with one or more VL domains, and testing the VH domain or VH/VL combination or combinations for a specific binding to PD-1 or and, optionally, testing the ability of such antigen-binding domain to modulate PD-1 activity. The VL domain may have an amino acid sequence that is identical or is substantially as set out according to Table 1.
- An analogous method can be employed in which one or more sequence variants of a VL domain disclosed herein are combined with one or more VH domains.
- A further aspect of the disclosure provides a method of preparing antigen-binding fragment that specifically binds with PD-1. The method comprises:
- (a) providing a starting repertoire of nucleic acids encoding a VH domain that either includes a CDR3 to be replaced or lacks a CDR3 encoding region;
- (b) combining the repertoire with a donor nucleic acid encoding an amino acid sequence substantially as set out herein for a VH CDR3 (i.e., H3) such that the donor nucleic acid is inserted into the CDR3 region in the repertoire, so as to provide a product repertoire of nucleic acids encoding a VH domain;
- (c) expressing the nucleic acids of the product repertoire;
- (d) selecting a binding fragment specific for PD-1; and
- (e) recovering the specific binding fragment or nucleic acid encoding it.
- Again, an analogous method may be employed in which a VL CDR3 (i.e., L3) of the invention is combined with a repertoire of nucleic acids encoding a VL domain, which either include a CDR3 to be replaced or lack a CDR3 encoding region. The donor nucleic acid may be selected from nucleic acids encoding an amino acid sequence substantially as set out in SEQ ID NO:1740 or SEQ ID NO:50-55.
- A sequence encoding a CDR of the invention (e.g., CDR3) may be introduced into a repertoire of variable domains lacking the respective CDR (e.g., CDR3), using recombinant DNA technology, for example, using methodology described by Marks et al. (Bio/Technology (1992) 10: 779-783). In particular, consensus primers directed at or adjacent to the 5′ end of the variable domain area can be used in conjunction with consensus primers to the third framework region of human VH genes to provide a repertoire of VH variable domains lacking a CDR3. The repertoire may be combined with a CDR3 of a particular antibody. Using analogous techniques, the CDR3-derived sequences may be shuffled with repertoires of VH or VL domains lacking a CDR3, and the shuffled complete VH or VL domains combined with a cognate VL or VH domain to make the PD-1-specific antibodies of the invention. The repertoire may then be displayed in a suitable host system such as the phage display system such as described in WO92/01047 so that suitable antigen-binding fragments can be selected.
- Analogous shuffling or combinatorial techniques are also disclosed by Stemmer (Nature (1994) 370: 389-391), who describes the technique in relation to a β-lactamase gene but observes that the approach may be used for the generation of antibodies.
- In further embodiments, one may generate novel VH or VL regions carrying one or more sequences derived from the sequences disclosed herein using random mutagenesis of one or more selected VH and/or VL genes. One such technique, error-prone PCR, is described by Gram et al. (Proc. Nat. Acad. Sci. U.S.A. (1992) 89: 3576-3580).
- Another method that may be used is to direct mutagenesis to CDRs of VH or VL genes. Such techniques are disclosed by Barbas et al. (Proc. Nat. Acad. Sci. U.S.A. (1994) 91: 3809-3813) and Schier et al. (J. Mol. Biol. (1996) 263: 551-567).
- Similarly, one or more, or all three CDRs may be grafted into a repertoire of VH or VL domains, which are then screened for an antigen-binding fragment specific for PD-1.
- A portion of an immunoglobulin variable domain will comprise at least one of the CDRs substantially as set out herein and, optionally, intervening framework regions from the scFv fragments as set out herein. The portion may include at least about 50% of either or both of FR1 and FR4, the 50% being the C-terminal 50% of FR1 and the N-terminal 50% of FR4. Additional residues at the N-terminal or C-terminal end of the substantial part of the variable domain may be those not normally associated with naturally occurring variable domain regions. For example, construction of antibodies by recombinant DNA techniques may result in the introduction of N- or C-terminal residues encoded by linkers introduced to facilitate cloning or other manipulation steps. Other manipulation steps include the introduction of linkers to join variable domains to further protein sequences including immunoglobulin heavy chain constant regions, other variable domains (for example, in the production of diabodies), or proteinaceous labels as discussed in further detail below.
- Although the embodiments illustrated in the Examples comprise a “matching” pair of VH and VL domains, a skilled artisan will recognize that alternative embodiments may comprise antigen-binding fragments containing only a single CDR from either VL or VH domain. Either one of the single chain specific binding domains can be used to screen for complementary domains capable of forming a two-domain specific antigen-binding fragment capable of, for example, binding to PD-1. The screening may be accomplished by phage display screening methods using the so-called hierarchical dual combinatorial approach disclosed in WO92/01047, in which an individual colony containing either an H or L chain clone is used to infect a complete library of clones encoding the other chain (L or H) and the resulting two-chain specific binding domain is selected in accordance with phage display techniques as described.
- Anti-PD1 antibodies described herein can be linked to another functional molecule, e.g., another peptide or protein (albumin, another antibody, etc.), toxin, radioisotope, cytotoxic or cytostatic agents. For example, the antibodies can be linked by chemical cross-linking or by recombinant methods. The antibodies may also be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. No. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; or 4,179,337. The antibodies can be chemically modified by covalent conjugation to a polymer, for example, to increase their circulating half-life. Exemplary polymers and methods to attach them are also shown in U.S. Pat. Nos. 4,766,106; 4,179,337; 4,495,285, and 4,609,546.
- The disclosed antibodies may also be altered to have a glycosylation pattern that differs from the native pattern. For example, one or more carbohydrate moieties can be deleted and/or one or more glycosylation sites added to the original antibody. Addition of glycosylation sites to the presently disclosed antibodies may be accomplished by altering the amino acid sequence to contain glycosylation site consensus sequences known in the art. Another means of increasing the number of carbohydrate moieties on the antibodies is by chemical or enzymatic coupling of glycosides to the amino acid residues of the antibody. Such methods are described in WO 87/05330 and in Aplin et al. (1981) CRC Crit. Rev. Biochem., 22: 259-306. Removal of any carbohydrate moieties from the antibodies may be accomplished chemically or enzymatically, for example, as described by Hakimuddin et al. (1987) Arch. Biochem. Biophys., 259: 52; and Edge et al. (1981) Anal. Biochem., 118: 131 and by Thotakura et al. (1987) Meth. Enzymol., 138: 350. The antibodies may also be tagged with a detectable, or functional, label. Detectable labels include radiolabels such as 131I or 99Tc, which may also be attached to antibodies using conventional chemistry. Detectable labels also include enzyme labels such as horseradish peroxidase or alkaline phosphatase. Detectable labels further include chemical moieties such as biotin, which may be detected via binding to a specific cognate detectable moiety, e.g., labeled avidin.
- Antibodies, in which CDR sequences differ only insubstantially from those set out in SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NOs:1640, SEQ ID NO:47, or SEQ ID NO:49 are encompassed within the scope of this invention. Typically, an amino acid is substituted by a related amino acid having similar charge, hydrophobic, or stereochemical characteristics. Such substitutions would be within the ordinary skills of an artisan. Unlike in CDRs, more substantial changes can be made in FRs without adversely affecting the binding properties of an antibody. Changes to FRs include, but are not limited to, humanizing a non-human derived or engineering certain framework residues that are important for antigen contact or for stabilizing the binding site, e.g., changing the class or subclass of the constant region, changing specific amino acid residues which might alter the effector function such as Fc receptor binding, e.g., as described in U.S. Pat. Nos. 5,624,821 and 5,648,260 and Lund et al. (1991) J. Immun. 147: 2657-2662 and Morgan et al. (1995) Immunology 86: 319-324, or changing the species from which the constant region is derived.
- One of skill in the art will appreciate that the modifications described above are not all-exhaustive, and that many other modifications would obvious to a skilled artisan in light of the teachings of the present disclosure.
- The present disclosure further provides isolated nucleic acids encoding the disclosed antibodies. The nucleic acids may comprise DNA or RNA and may be wholly or partially synthetic or recombinant. Reference to a nucleotide sequence as set out herein encompasses a DNA molecule with the specified sequence, and encompasses a RNA molecule with the specified sequence in which U is substituted for T, unless context requires otherwise.
- The nucleic acids provided herein comprise a coding sequence for a CDR, a VH domain, and/or a VL domain disclosed herein.
- The present disclosure also provides constructs in the form of plasmids, vectors, phagemids, transcription or expression cassettes which comprise at least one nucleic acid encoding a CDR, a VH domain, and/or a VL domain disclosed here.
- The disclosure further provides a host cell which comprises one or more constructs as above.
- Also provided are nucleic acids encoding any CDR (H1, H2, H3, L1, L2, or L3), VH or VL domain, as well as methods of making of the encoded products. The method comprises expressing the encoded product from the encoding nucleic acid. Expression may be achieved by culturing under appropriate conditions recombinant host cells containing the nucleic acid. Following production by expression a VH or VL domain, or specific binding member may be isolated and/or purified using any suitable technique, then used as appropriate.
- Antigen-binding fragments, VH and/or VL domains, and encoding nucleic acid molecules and vectors may be isolated and/or purified from their natural environment, in substantially pure or homogeneous form, or, in the case of nucleic acid, free or substantially free of nucleic acid or genes of origin other than the sequence encoding a polypeptide with the required function.
- Systems for cloning and expression of a polypeptide in a variety of different host cells are well known in the art. For cells suitable for producing antibodies, see Gene Expression Systems, Academic Press, eds. Fernandez et al., 1999. Briefly, suitable host cells include bacteria, plant cells, mammalian cells, and yeast and baculovirus systems. Mammalian cell lines available in the art for expression of a heterologous polypeptide include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, NS0 mouse myeloma cells, and many others. A common bacterial host is E. coli. Any protein expression system compatible with the invention may be used to produce the disclosed antibodies. Suitable expression systems include transgenic animals described in Gene Expression Systems, Academic Press, eds. Fernandez et al., 1999.
- Suitable vectors can be chosen or constructed, so that they contain appropriate regulatory sequences, including promoter sequences, terminator sequences, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. Vectors may be plasmids or viral, e.g., phage, or phagemid, as appropriate. For further details see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, 1989. Many known techniques and protocols for manipulation of nucleic acid, for example, in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene expression, and analysis of proteins, are described in detail in Current Protocols in Molecular Biology, 2nd Edition, eds. Ausubel et al., John Wiley & Sons, 1992.
- A further aspect of the disclosure provides a host cell comprising a nucleic acid as disclosed here. A still further aspect provides a method comprising introducing such nucleic acid into a host cell. The introduction may employ any available technique. For eukaryotic cells, suitable techniques may include calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection and transduction using retrovirus or other virus, e.g., vaccinia or, for insect cells, baculovirus. For bacterial cells, suitable techniques may include calcium chloride transformation, electroporation and transfection using bacteriophage. The introduction of the nucleic acid into the cells may be followed by causing or allowing expression from the nucleic acid, e.g., by culturing host cells under conditions for expression of the gene.
- The disclosed anti-PD-1 antibodies are capable of modulating the PD-1-associated downregulation of the immune responses. In particular embodiments, the immune response is TcR/CD28-mediated. The disclosed antibodies can act as either agonists or antagonists of PD-1, depending on the method of their use. The antibodies can be used to prevent, diagnose, or treat medical disorders in mammals, especially, in humans. Antibodies of the invention can also be used for isolating PD-1 or PD-1-expressing cells. Furthermore, the antibodies can be used to treat a subject at risk of or susceptible to a disorder or having a disorder associated with aberrant PD-1 expression or function.
- Antibodies of the invention can be used in methods for induction of tolerance to a specific antigen (e.g., a therapeutic protein). In one embodiment, tolerance is induced against a specific antigen by co-administration of antigen and an anti-PD-1 antibody of the invention. For example, patients that received Factor VIII frequently generate antibodies to this protein; co-administration of an anti-PD-1 antibody of the invention in combination with recombinant Factor VIII is expected to result in the downregulation of immune responses to this clotting factor.
- Antibodies of the invention can be used in circumstances where a reduction in the level of immune response may be desirable, for example, in certain types of allergy or allergic reactions (e.g., by inhibition of IgE production), autoimmune diseases (e.g., rheumatoid arthritis, type I diabetes mellitus, multiple sclerosis, inflammatory bowel disease, Crohn's disease, and systemic lupus erythematosis), tissue, skin and organ transplant rejection, and graft-versus-host disease (GVHD).
- When diminished immune response is desirable, the anti-PD-1 antibodies of the invention may be used as agonists to PD-1 in order to enhance the PD-1-associated attenuation of the immune response. In these embodiments, co-presentation and physical proximity between positive (i.e., mediated by an antigen receptor, e.g., TcR or BcR) and negative (i.e., PD-1) signals are required. The preferred distance is less than or comparable to the size of a naturally occurring antigen-presenting cell, i.e., less than about 100 μm; more preferably, less than about 50 μm; and most preferably, less than about 20 μm.
- In some embodiments, the positive (activating) and the negative (inhibiting) signals are provided by a ligand or antibodies immobilized on solid support matrix, or a carrier. In various embodiments, the solid support matrix may be composed of polymer such as activated agarose, dextran, cellulose, polyvinylidene fluoride (PVDF). Alternatively, the solid support matrix may be based on silica or plastic polymers, e.g., as nylon, dacron, polystyrene, polyacrylates, polyvinyls, teflons, etc.
- The matrix can be implanted into the spleen of a patient. Alternatively, the matrix may be used for the ex vivo incubation of T cells obtained from a patient, which are then separated and implanted back into the patient. The matrix may also be made from a biodegradable material such polyglycolic acid, polyhydroxyalkanoate, collagen, or gelatin so that they can be injected into the patient's peritoneal cavity, and dissolve after some time following the injection. The carrier can be shaped to mimic a cell (e.g., bead or microsphere).
- In some embodiments, the positive signal is delivered by a T-cell-activating anti-CD3 antibody, which binds TcR. Activating anti-CD3 antibodies are known in the art (see, for example, U.S. Pat. Nos. 6,405,696 and 5,316,763). The ratio between the activating TcR signal and negative PD-1 signal is determined experimentally using conventional procedures known in the art or as described in Examples 8, 9, and 10.
- Under certain circumstances, it may be desirable to elicit or enhance a patient's immune response in order to treat an immune disorder or cancer. The disorders being treated or prevented by the disclosed methods include but are not limited to infections with microbes (e.g. bacteria), viruses (e.g., systemic viral infections such as influenza, viral skin diseases such as herpes or shingles), or parasites; and cancer (e.g., melanoma and prostate cancers).
- Stimulation of T cell activation with anti-PD-1 antibodies enhances T-T cell responses. In such cases, antibodies act as antagonists of PD-1. Thus, in some embodiments, the antibodies can be used to inhibit or reduce the downregulatory activity associated with PD-1, i.e., the activity associated with downregulation of TcR/CD28-mediated immune response. In these embodiments, the antibodies are not coupled to a positive signal such as the TcR-mediated stimulation, e.g., the antibodies are in their soluble, support-unbound, form. As demonstrated in the Examples, a blockade of PD-1/PD-L interaction with antagonizing anti-PD-1 antibodies leads to enhanced T cell proliferative responses, consistent with a downregulatory role for the PD-1 pathway in T-T interactions. In various embodiments, the antibodies inhibit binding of PD-L to PD-1 with an IC50 of less than 10 nM, and more preferably less then 5 nM, and most preferably less than 1 nM. Inhibition of PD-L binding can be measured as described in Example 6 or using techniques known in the art.
- The antibodies or antibody compositions of the present invention are administered in therapeutically effective amounts. Generally, a therapeutically effective amount may vary with the subject's age, condition, and sex, as well as the severity of the medical condition of the subject. A therapeutically effective amount of antibody ranges from about 0.001 to about 30 mg/kg body weight, preferably from about 0.01 to about 25 mg/kg body weight, from about 0.1 to about 20 mg/kg body weight, or from about 1 to about 10 mg/kg. The dosage may be adjusted, as necessary, to suit observed effects of the treatment. The appropriate dose is chosen based on clinical indications by a treating physician.
- The antibodies may given as a bolus dose, to maximize the circulating levels of antibodies for the greatest length of time after the dose. Continuous infusion may also be used after the bolus dose.
- Immune cells (e.g., activated T cells, B cells, or monocytes) can also be isolated from a patient and incubated ex vivo with antibodies of the invention. In some embodiments, immune responses can be inhibited by removing immune cells from a subject, contacting the immune cells in vitro with an anti-PD-1 antibody of the invention concomitantly with activation of the immune cells (e.g., by antibodies to the TcR and/or BcR antigen receptor). In such embodiments, the anti-PD-1 antibody should be used in a multivalent form such that PD-1 molecules on the surface of an immune cell become “crosslinked” upon binding to such antibodies. For example, the anti-PD-1 antibodies can be bound to solid support, such as beads, or crosslinked via a secondary antibody. The immune cells may be then isolated using methods known in the art and reimplanted into the patient.
- In another aspect, the antibodies of the invention can be used as a targeting agent for delivery of another therapeutic or a cytotoxic agent (e.g., a toxin) to a cell expressing PD-1. The method includes administering an anti-PD-1 antibody coupled to a therapeutic or a cytotoxic agent or under conditions that allow binding of the antibody to PD-1.
- The antibodies of the invention may also be used to detect the presence of PD-1 in biological samples. The amount of PD-1 detected may be correlated with the expression level of PD-1, which, in turn, is correlated with the activation status of immune cells (e.g., activated T cells, B cells, and monocytes) in the subject.
- Detection methods that employ antibodies are well known in the art and include, for example, ELISA, radioimmunoassay, immunoblot, Western blot, immunofluorescence, immunoprecipitation. The antibodies may be provided in a diagnostic kit that incorporates one or more of these techniques to detect PD-1. Such a kit may contain other components, packaging, instructions, or other material to aid the detection of the protein.
- Where the antibodies are intended for diagnostic purposes, it may be desirable to modify them, for example, with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope or an enzyme). If desired, the antibodies of the invention may be labeled using conventional techniques. Suitable detectable labels include, for example, fluorophores, chromophores, radioactive atoms, electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase can be detected by its ability to convert tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. For detection, suitable binding partners include, but are not limited to, biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.
- Antibodies of the invention can be used in screening methods to identify inhibitors of the PD-1 pathway effective as therapeutics. In such a screening assay, a first binding mixture is formed by combining PD-1 and an antibody of the invention; and the amount of binding in the first binding mixture (M0) is measured. A second binding mixture is also formed by combining PD-1, the antibody, and the compound or agent to be screened, and the amount of binding in the second binding mixture (M1) is measured. A compound to be tested may be another anti-PD-1 antibody, as illustrated in the Examples. The amounts of binding in the first and second binding mixtures are then compared, for example, by calculating the M1/M0 ratio. The compound or agent is considered to be capable of modulating a PD-1-associated downregulation of immune responses if a decrease in binding in the second binding mixture as compared to the first binding mixture is observed. The formulation and optimization of binding mixtures is within the level of skill in the art, such binding mixtures may also contain buffers and salts necessary to enhance or to optimize binding, and additional control assays may be included in the screening assay of the invention. Compounds found to reduce the PD-1-antibody binding by at least about 10% (i.e., M1/M0<0.9), preferably greater than about 30% may thus be identified and then, if desired, secondarily screened for the capacity to ameliorate a disorder in other assays or animal models as described below. The strength of the binding between PD-1 and an antibody can be measured using, for example, an enzyme-linked immunoadsorption assay (ELISA), radio-immunoassay (RIA), surface plasmon resonance-based technology (e.g., Biacore), all of which are techniques well known in the art.
- The compound may then be tested in vitro as described in the Examples or in an animal model (see, generally, Immunologic Defects in Laboratory Animals, eds. Gershwin et al., Plenum Press, 1981), for example, such as the following: the SWR×NZB (SNF1) transgenic mouse model (Uner et al. (1998) J. Autoimmune. 11(3): 233-240), the KRN transgenic mouse (K/B×N) model (Ji et al. (1999) Immunol. Rev. 169: 139); NZB×NZW (B/W) mice, a model for SLE (Riemekasten et al. (2001) Arthritis Rheum., 44(10): 2435-2445); experimental autoimmune encephalitis (EAE) in mouse, a model for multiple sclerosis (Tuohy et al. (1988) J. Immunol. 141: 1126-1130, Sobel et al. (1984) J. Immunol. 132: 2393-2401, and Traugott, Cell Immunol. (1989) 119: 114-129); the NOD mouse model of diabetes (Baxter et al. (1991) Autoimmunity, 9(1): 61-67), etc.).
- Preliminary doses as, for example, determined according to animal tests, and the scaling of dosages for human administration is performed according to art-accepted practices. Toxicity and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The data obtained from the cell culture assays or animal studies can be used in formulating a range of dosage for use in humans. Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al. (1966) Cancer Chemother. Reports, 50(4): 219-244).
- The disclosure provides compositions comprising anti-PD-1 antibodies. Such compositions may be suitable for pharmaceutical use and administration to patients. The compositions typically comprise one or more antibodies of the present invention and a pharmaceutically acceptable excipient. The phrase “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial agents and antifungal agents, isotonic agents, and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. The compositions may also contain other active compounds providing supplemental, additional, or enhanced therapeutic functions. The pharmaceutical compositions may also be included in a container, pack, or dispenser together with instructions for administration.
- A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Methods to accomplish the administration are known to those of ordinary skill in the art. The administration may, for example, be intravenous, intraperitoneal, intramuscular, intracavity, subcutaneous or transdermal. It may also be possible to obtain compositions which may be topically or orally administered, or which may be capable of transmission across mucous membranes.
- Solutions or suspensions used for intradermal or subcutaneous application typically include one or more of the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol, or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Such preparations may be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- Pharmaceutical compositions suitable for injection include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars; polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate, and gelatin.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For oral administration, the antibodies can be combined with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches, and the like can contain any of the following ingredients, or compounds of a similar nature; a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration may be accomplished, for example, through the use of lozenges, nasal sprays, inhalers, or suppositories; For example, in case of antibodies that comprise the Fc portion, compositions may be capable of transmission across mucous membranes in intestine, mouth, or lungs (e.g., via the FcRn receptor-mediated pathway as described in U.S. Pat. No. 6,030,613). For transdermal administration, the active compounds may be formulated into ointments, salves, gels, or creams as generally known in the art. For administration by inhalation, the antibodies may be delivered in the form of an aerosol spray from pressured container or dispenser, which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- In certain embodiments, the presently disclosed antibodies are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Liposomal suspensions containing the presently disclosed antibodies can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- It may be advantageous to formulate oral or parenteral compositions in a dosage unit form for ease of administration and uniformity of dosage. The term “dosage unit form” as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- Toxicity and therapeutic efficacy of the composition of the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compositions that exhibit large therapeutic indices are preferred.
- For any composition used in the present invention, the therapeutically effective dose can be estimated initially from cell culture assays. Examples of suitable bioassays include DNA replication assays, cytokine release assays, transcription-based assays, PD-1/PD-L1 binding assays, creatine kinase assays, assays based on the differentiation of pre-adipocytes, assays based on glucose uptake in adipocytes, immunological assays other assays as, for example, described in the Examples. The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the antibody which achieves a half-maximal inhibition of symptoms). Circulating levels in plasma may be measured, for example, by high performance liquid chromatography. The effects of any particular dosage can be monitored by a suitable bioassay. The dosage lies preferably within a range of circulating concentrations with little or no toxicity. The dosage may vary depending upon the dosage form employed and the route of administration utilized.
- The following Examples do not in any way limit the scope of the invention. One of ordinary skill in the art will recognize the numerous modifications and variations that may be performed without altering the spirit or scope of the present invention. Such modifications and variations are encompassed within the scope of the invention. The entire contents of all references, patents, and published patent applications cited throughout this application are herein incorporated by reference.
- An scFv phagemid library, which is an expanded version of the 1.38×1010 library described by Vaughan et al. (Nature Biotech. (1996) 14: 309-314) was used to select antibodies specific for human PD-1. Soluble PD-1 fusion protein (at 20 μg/ml in phosphate buffered saline (PBS)) or control fusion protein (at 50 μg/ml in PBS) was coated onto wells of a microtiter plate overnight at 4° C. Wells were washed in PBS and blocked for 1 hour at 37° C. in MPBS (3% milk powder in PBS). Purified phage (1012 transducing units (tu)) was blocked for 1 hour in a final volume of 100 μl of 3% MPBS. Blocked phage was added to blocked control fusion protein wells and incubated for 1 hour. The blocked and deselected phage were then transferred to the blocked wells coated with the PD-1 fusion protein and were incubated for an additional hour. Wells were washed 5 times with PBST (PBS containing 0.1% v/v Tween 20), then 5 times with PBS. Bound phage particles were eluted and used to infect 10 ml exponentially growing E. coli TG1. Infected cells were grown in 2TY broth for 1 hour at 37° C., then spread onto 2TYAG plates and incubated overnight at 30° C. Colonies were scraped off the plates into 10 ml 2TY broth and 15% glycerol added for storage at −70° C.
- Glycerol stock cultures from the first round of panning selection were superinfected with helper phage and rescued to give scFv antibody-expressing phage particles for the second round of panning. A total of two rounds of panning were carried out in this way for isolation of PD1-17, except in the second round of panning 20 μg/ml of control protein were used for deselection. Clones PD1-28, PD1-33, and PD1-35 were selected following three rounds of selection. Deselection in the second and third rounds was carried out using 10 μg/ml control fusion protein.
- Antibodies to murine PD-1 were selected by soluble selection using biotinylated murine PD-1 fusion protein at a final concentration of 100 nM. An scFv phagemid library, as described above, was used. Purified scFv phage (1012 tu) in 1
ml 3% MPBS were blocked for 30 minutes, then biotinylated antigen was added and incubated at room temperature for 1 hour. Phage/antigen was added to 250 μl of Dynal M280 Streptavidin magnetic beads that had been blocked for 1 hour at 37° C. in 1 ml of 3% MPBS and incubated for a further 15 minutes at room temperature. Beads were captured using a magnetic rack and washed 4 times in 1 ml of 3% MPBS/0.1% (v/v)Tween 20 followed by 3 washes in PBS. After the last PBS wash, beads were resuspended in 100 μl PBS and used to infect 5 ml exponentially growing E. coli TG-1 cells. Infected cells were incubated for 1 hour at 37° C. (30 minutes stationary, 30 minutes shaking at 250 rpm), then spread on 2TYAG plates and incubated overnight at 30° C. Output colonies were scraped off the plates and phage rescued as described above. A second round of soluble selection was carried out as described above. - To determine the specificity of antibodies for PD-1, a phage ELISA was performed against PD-1 fusion protein and control proteins. Individual E. coli colonies from selection outputs were picked into 96 well plates containing 100 μl of 2TYAG medium per well. M13K07 helper phage was added to a multiplicity of infection (moi) of 10 to the exponentially growing culture and the plates incubated an additional 1 hour at 37° C. Plates were centrifuged in a benchtop centrifuge at 2000 rpm for 10 minutes. The supernatant was removed and cell pellets were resuspended in 100 μl 2TYAK and incubated at 30° C. overnight with shaking. The next day, plates were centrifuged at 2000 rpm for 10 minutes and phage-containing supernatant from each well was transferred to a fresh 96 well plate. Phage samples were blocked in a final concentration of 3% MPBS prior to ELISA.
- Human or mouse PD-1 fusion protein and control fusion and non-fusion proteins were coated overnight at 4° C. onto 96-well microtiter plates at 0.5-2.5 μg/ml in PBS. After coating, the solutions were removed from the wells, and the plates blocked for 1 hour in 3% MPBS. Plates were rinsed with PBS and then 50 μl of pre-blocked phage were added to each well. The plates were incubated for 1 hour and then washed 3 times with PBST followed by 3 washes with PBS. To each well, 50 μl of a 1:5000 dilution of anti-M13-HRP conjugate (Pharmacia, Peapack, N.J.) was added, and the plates incubated for 40-60 minutes. Each plate was washed three times with PBST then 3 times with PBS. Fifty μl of TMB substrate was added to each well, and the samples were incubated until color development. The reaction was stopped by the addition of 25 μl of 0.5 M H2SO4. The signal generated was measured by reading the absorbance at 450 nm using a microtiter plate reader. Clones showing specific binding to PD-1 fusion protein but not to control fusion proteins were thus identified and confirmed.
- Specificity data for the PD1-17 scFv is shown in
FIG. 1A . Reactivity of PD1-28, PD1-33, and PD1-35 scFv's with human PD-1 is shown inFIG. 1B (an IgG1 control did not bind PD-1). - PD-1-binding scFv E. coli clones were streaked out onto 2TYAG plates and incubated overnight at 30° C. Colonies from these plates were sequenced using pCANTAB6 vector sequence oligos to amplify the VH and VL regions from the scFv clone. Unique PD-1 binding clones were assayed for neutralization: of PD-L1 binding to PD-1 as described in Example 4. Sequence differences between scFv and IgG formats are due to changes introduced by PCR primers during the conversion from scFv to IgG.
- ScFv production was induced by addition of 1 mM IPTG to exponentially growing cultures and incubation overnight at 30° C. Crude scFv-containing periplasmic extracts were obtained by subjecting the bacterial pellets from the overnight induction to osmotic shock. Pellets were resuspended in 20% (w/v) sucrose, 50 mM Tris-HCl, pH 7.5, 1 mM EDTA and cooled on ice for 30 minutes. Cellular debris was removed by centrifugation, and the scFv was purified by chromatography and buffer-exchanged into PBS. Purified scFv's (PD1-17, PD1-28, PD1-33, and PD1-35) were tested for the ability to inhibit the binding of biotinylated human PD-L1 fusion protein to human PD-1 fusion protein immobilized on plastic in a 96 well microtiter plate assay. Binding of biotinylated PD-L1 fusion protein was detected with AMDEX-alkaline phosphatase, and the signal generated was measured by reading the absorbance at 405 nm using a microtiter plate reader. Data was expressed as a percentage of the total binding and a titration of scFv concentrations was tested to establish clone potency as calculated IC50 values. Clone potency data for the scFv and IgG antibodies is shown in Table 5.
- PD1-F2 scFv was produced and purified as described above. Cells expressing murine PD-1 were added at 105 cells/well in a final volume of 100 μl to a poly-D-lysine-coated 96 well microtiter plate. Cells were centrifuged and washed twice in PBS, then blocked with 300
μl 1% BSA in PBS for 1 hour at room temperature. Blocked cells were washed three times in PBST, prior to addition of 25 μl/well of assay buffer (0.05% BSA, 0.05% Tween 20 in Dulbecco's PBS) or sample, followed by 25 μl of biotinylated murine PD-L1 fusion protein at 300 ng/ml. Binding of biotinylated PD-L1 fusion protein was detected with Amdex alkaline phosphatase and signals read as described above. Potencies of PD1-F2 scFv and IgG are shown in Table 6. -
TABLE 6 Potency of Anti-PD-1 ScFv and IgG Antibodies Clone ScFv IC50 (nM) IgG IC50 (nM) PD1-17 726 2.5 PD1-28 560 1.4 PD1-33 74 1.8 PD1-35 85 2.3 PD1- F2 28 1.0 - Heavy and light chain V regions from scFv clones were amplified by PCR using clone-specific primers. PCR products were digested with appropriate restriction enzymes and subcloned into vectors containing human IgG1 heavy chain constant domain (Takahashi et al. (1982) Cell 29, 671) or vectors containing human lambda or kappa light chain constant domains (Hieter et al. (1982) Nature 294, 536). Based on the germlines of the VH and VL segments, it was determined whether kappa or lambda light chain constant domains were used for conversion (Table 7).
-
TABLE 7 Germlines of VH and VL Regions of PD-1 Antibody Clones Clone VH germline VL germline PD1-17 DP-70 DPL-8 PD1-28 DP-14 DPL-23 PD1-33 DP-7 DPL-11 PD1-35 DP-65 DPL-2 PD1-F2 DP-47 L12 (κ) - The insertion of V region domains into plasmids was verified by sequencing of plasmid DNA from individual E. coli colonies. Plasmids were prepared from E. coli cultures by standard techniques and heavy and light chain constructs cotransfected into eukaryotic cells using standard techniques. Secreted IgG was purified using Protein A Sepharose (Pharmacia) and buffer-exchanged into PBS.
- The binding affinity of the anti-mouse PD1 antibody PD1-F2 was determined with a Surface Plasmon Resonance (SPR) system (BIAcore 3000) (Biacore, Piscataway, N.J.) using murine PD-1 fusion immobilized on a CM5 sensor chip. The concentration of PD1-F2 in the flow cell ranged from 7.81 to 125 nM, while the concentration of the anti-mouse PD1 antibody J43 (eBioscience, San Diego, Calif.) ranged from 25 nM to 500 nM. The equilibrium constant KD for PD1-F2 is 6.7×10−9 M (KA=1.5×108 M−1), whereas KD for J43 is 3.8×10−7 M (KA=2.6×106 M−1).
- The ability of anti-PD-1 IgG's to bind human or murine PD-1 was determined as follows. ELISA plates were incubated with 2.5 μg/ml human PD-1/IgG chimera overnight. Plates were washed with PBS/1% BSA and incubated with serial dilutions of a test antibody for 2 hours at room temperature (RT). After washing, saturating concentrations of HRP-conjugated goat anti-human antibody or HRP-conjugated rabbit anti-murine antibody were added, and the samples were incubated for 1 hour at RT. Unbound goat and rabbit antibodies were washed using PBS/1% BSA. The assay was developed using TBM. Results were expressed as OD 405 absorbency values and are presented in
FIGS. 2A-2C . Murine anti-human PD-1 antibody J110 is commercially available (eBioscience, San Diego, Calif.) and was included for comparison. - Inhibition assays were performed to assess the ability of the antibodies to block binding of PD-L1 to PD-1. ELISA was performed as described in Example 2 with modifications. After incubation with a primary, anti-PD-1 antibody for 2 hours at RT, a fixed concentration (1 μg/ml) of biotin-conjugated PD-L1-Ig was added, and the samples were further incubated for 1 hour at RT. After washing, saturating concentrations of avidin-HRP were added, and incubated for 1 hour at RT. Unbound avidin-HRP was washed using PBS/1% BSA. The assay was developed using TMB.
- Results were compared to those obtained with J110 as shown in
FIG. 3 . Anti-human PD-1 antibodies J110 and PD1-30 did not inhibit the binding of PD-L1 to PD-1. Anti-human antibodies PD1-17, PD1-28, PD1-33, and PD1-35 and anti-mouse antibody PD1-F2 block PD-1/PD-L1 interaction. - Inhibition assays were performed to map sites recognize by the various human anti-human PD-1 antibodies. ELISA was performed as described in Example 6 with minor modifications. After incubation with primary antibody for 2 hours at RT, a fixed concentration (0.25 μg/ml) of biotin-conjugated anti-PD-1 antibody J110 was added, and the samples were further incubated for 1 hour at RT. After washing, saturating concentrations of avidin-HRP were added, and incubated for 1 hour at Rt. Unbound avidin-HRP was washed using PBS/1% BSA. The assay was developed using TMB.
- As shown in
FIG. 4 , binding of anti-human PD-1 antibodies (J110, J116, PD1-17, PD1-28, PD1-33, and PD1-35) defines at least two distinct sites on PD-1. Cross-blocking results show that J110 and J116, bind to identical or overlapping sites while PD1-17, 28, 33, and 35 bind to another distinct site. Binding of J116 or J110 to PD-1 blocks the binding of J110. In contrast, binding of PD1-17, PD1-28, PD1-33, and PD1-35 do not block binding of J110. This suggests that the tested anti-PD-1 antibodies bind to at least two distinct epitopes: one recognized by J110 and J116, and the other one recognized by PD1-17, PD1-28, PD1-33, and PD1-35. - CD4+ T cells (5×104 cells/well) were stimulated with tosyl-beads (Dynal, Great Neck, N.Y.) coated with anti-hCD3+/−PD-L1-Fc or anti-PD-1 (PD1-17 or J110). Concentration of fusion protein or antibody titer was as indicated in the X-axis of
FIG. 5 . After 72 hours, proliferation was determined by 3H-thymidine incorporation. Incorporated radioactivity was determined using a LKB 1205 plate reader. - As shown in
FIG. 5 , PD-1 engagement by anti-PD-1 antibody PD1-17 or PD-L1.Fc caused a decrease in T cell proliferation. Thus, PD1-17 can mimic PD-1 ligands and delivered an inhibitory signal. As discussed below (Example 9), this inhibitory signal results in decreased T cell proliferation and IL-2 production. Antibodies PD1-28, PD1-33, and PD1-35 have the same effect as PD1-17. The effect is dose-dependent, as activation of cells in the presence of increasing concentrations of PD1-17 or PD-L1.Fc results in decreased T cell proliferation. The control anti-PD-1 antibodies, J110 (FIG. 5 ) or J116 (data not shown), do not inhibit T cell responses and increasing the concentration of J110 has minimal effect on T cell proliferation. For comparison, values are represented as percentage of the anti-CD3 response. “100%” represents CPMs obtained when cells were activated with anti-CD3/murine IgG-coated microspheres. Altogether these results indicate that some but not all antibodies that recognize PD-1 can act as agonists of the PD-1 pathway. - Further experiments were performed to address whether PD-1 downregulation of T cell responses required coordinate TcR/PD-1 engagement on a single (CIS) or a separate (TRANS) cell surfaces. Two sets of microspheres were prepared: one set contained anti-CD3 and PD-L1.Fc (CIS), the other set contained anti-CD3 or PD-L1.Fc (TRANS). Inhibition through PD-1 was only observed under conditions where both PD-1 and TcR were engaged by ligands on the same surface (CIS). At all bead:cell ratios tested, no inhibition was observed in conditions where TCR and PD-1 signals were delivered on separate surfaces (TRANS).
- To rule out steric hindrance in the TRANS experiments, similar assays were set up using anti-CD3 antibody and B7.2.Fc. In these assays, B7 costimulation of T cell responses was observed in both CIS and TRANS conditions. Altogether, these findings demonstrate that PD-1 proximity to TCR is required for the receptor modulatory function on T cell activation. Therefore, to modulate a T cell response, both activating and inhibitory signals must emanate from the same surface whether the surface is that of a cell or a bead.
- For assessing effect of soluble anti-PD-1 antibody on proliferation, CD4+ T cells were pre-activated for 48 hours with anti-CD3/anti-CD28-coated beads, harvested, and restimulated with the indicated concentration of PHA plus 10 ng/ml IL-2 in the presence of PD1-17, J110, or control IgG. Each of the antibodies was added at various concentrations at initiation of the culture. Proliferation was measured at 72 hr.
- The results demonstrate that PD1-17 (
FIG. 6 ) and PD1-35 (data not shown) enhanced proliferation of primary T cells. The control antibody J110 did not enhance in vitro T cell responses. Selected anti-PD1 antibodies, as exemplified by PD1-17 and PD-35, inhibit the interaction of PD-1 with its natural ligands and thereby block delivery of a negative signal. The blockade of the negative signal also results in enhanced proliferation and IL-2 production. - Modulation of immune response regulated by PD-1 is useful in instances where an immunosuppressive effect or augmentation of immune response is desired. This example describes the use of PD-1 antibodies as PD-1 agonists or antagonists to treat a subject at disease onset or having an established immune disorder or cancer, respectively.
- Subjects at risk for or afflicted with cancer may be in need of immune response augmentation would benefit from treatment with a PD-1 antagonist, such as an anti-PD-1 antibody of the present invention in a soluble form. Most commonly, antibodies are administered in an outpatient setting by weekly administration at about 0.1-10 mg/kg dose by slow intravenous (IV) infusion. The appropriate therapeutically effective dose of an antagonist is selected by a treating clinician and would range approximately from 1 μg/kg to 20 mg/kg, from 1 μg/kg to 10 mg/kg, from 1 μg/kg to 1 mg/kg, from 10 μg/kg to 1 mg/kg, from 10 μg/kg to 100 μg/kg, from 100 μg to 1 mg/kg, and from 500 μg/kg to 5 mg/kg.
- The antibodies are also used to prevent and/or to reduce severity and/or symptoms of diseases or conditions that involve an aberrant or undesirable immune response, such as in autoimmune disorders exemplified below.
- Multiple sclerosis (MS) is a central nervous system disease that is characterized by inflammation and loss of myelin sheaths. In the experimental autoimmune encephalitis (EAE) mouse model for multiple sclerosis (Tuohy et al. (J. Immunol. (1988) 141: 1126-1130), Sobel et al. (J. Immunol. (1984) 132: 2393-2401), and Traugott (Cell Immunol. (1989) 119: 114-129), treatment of mice with a PD-1 agonist prior (and continuously) to EAE induction is expected to prevent or delay the onset of MS.
- Arthritis is a disease characterized by inflammation in the joints. In the collagen induced arthritis (CIA) mouse model for rheumatoid arthritis (Courtenay et al. (Nature (1980) 283: 666-628) and Williams et al. (Immunol. (1995) 84: 433-439)), treatment with a PD-1 agonist is expected to prevent or treat rheumatoid arthritis (RA) or other arthritic diseases.
- Systemic Lupus Erythematosis (SLE) is an autoimmune disease characterized by the presence of autoantibodies. The antibodies and compositions of this invention can be used as PD-1 agonists to inhibit activities of autoreactive T cells and B cells, and prevent or treat SLE or related diseases in NZB×NZW mice (a mouse model for SLE) (Immunologic Defects in Laboratory Animals, Gershwin et al. eds., Plenum Press, 1981) or in humans.
- It is anticipated that PD-1 antibodies of the invention would be administered as PD-1 agonists in ex vivo therapy with a frequency of one per month or less. Treatment duration could range between one month and several years.
- To test the clinical efficacy of antibodies in humans, individuals with melanoma, prostate cancer, RA, SLE, MS, type I diabetes, are identified and randomized to a treatment group. Treatment groups include a placebo group and one to three groups treated with a PD-1 agonist (different doses). Individuals are followed prospectively for one to three years. It is anticipated that individuals receiving treatment would exhibit an improvement.
- The specification is most thoroughly understood in light of the teachings of the references cited within the specification, all of which are hereby incorporated by reference in their entirety. The embodiments within the specification provide an illustration of embodiments of the invention and should not be construed to limit the scope of the invention. The skilled artisan recognizes that many other embodiments are encompassed by the claimed invention and that it is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/893,989 US20080311117A1 (en) | 2002-12-23 | 2007-08-17 | Antibodies against PD-1 and uses therefor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US43535402P | 2002-12-23 | 2002-12-23 | |
US10/741,481 US7488802B2 (en) | 2002-12-23 | 2003-12-22 | Antibodies against PD-1 |
US11/893,989 US20080311117A1 (en) | 2002-12-23 | 2007-08-17 | Antibodies against PD-1 and uses therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/741,481 Division US7488802B2 (en) | 2002-12-23 | 2003-12-22 | Antibodies against PD-1 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080311117A1 true US20080311117A1 (en) | 2008-12-18 |
Family
ID=32682224
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/741,481 Expired - Fee Related US7488802B2 (en) | 2002-12-23 | 2003-12-22 | Antibodies against PD-1 |
US10/540,084 Expired - Fee Related US7521051B2 (en) | 2002-12-23 | 2003-12-22 | Methods of upmodulating adaptive immune response using anti-PD-1 antibodies |
US11/893,989 Abandoned US20080311117A1 (en) | 2002-12-23 | 2007-08-17 | Antibodies against PD-1 and uses therefor |
US12/405,058 Expired - Fee Related US8088905B2 (en) | 2002-12-23 | 2009-03-16 | Nucleic acids encoding antibodies against PD-1 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/741,481 Expired - Fee Related US7488802B2 (en) | 2002-12-23 | 2003-12-22 | Antibodies against PD-1 |
US10/540,084 Expired - Fee Related US7521051B2 (en) | 2002-12-23 | 2003-12-22 | Methods of upmodulating adaptive immune response using anti-PD-1 antibodies |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/405,058 Expired - Fee Related US8088905B2 (en) | 2002-12-23 | 2009-03-16 | Nucleic acids encoding antibodies against PD-1 |
Country Status (14)
Country | Link |
---|---|
US (4) | US7488802B2 (en) |
EP (1) | EP1576014B1 (en) |
JP (2) | JP4511943B2 (en) |
CN (2) | CN101899114A (en) |
AT (1) | ATE514713T1 (en) |
AU (2) | AU2003288675B2 (en) |
BR (1) | BR0316880A (en) |
CA (1) | CA2508660C (en) |
ES (1) | ES2367430T3 (en) |
HK (1) | HK1083510A1 (en) |
IL (1) | IL169152A (en) |
MX (1) | MXPA05006828A (en) |
NO (1) | NO336442B1 (en) |
WO (1) | WO2004056875A1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100028330A1 (en) * | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
US20100266617A1 (en) * | 2007-06-18 | 2010-10-21 | N.V. Organon | Antibodies to human programmed death receptor pd-1 |
WO2012145493A1 (en) | 2011-04-20 | 2012-10-26 | Amplimmune, Inc. | Antibodies and other molecules that bind b7-h1 and pd-1 |
WO2014194293A1 (en) | 2013-05-30 | 2014-12-04 | Amplimmune, Inc. | Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof |
US9044442B2 (en) | 2012-03-07 | 2015-06-02 | Aurigene Discovery Technologies Limited | Peptidomimetic compounds as immunomodulators |
WO2016004876A1 (en) | 2014-07-09 | 2016-01-14 | Shanghai Birdie Biotech, Inc. | Anti-pd-l1 combinations for treating tumors |
WO2016196218A1 (en) | 2015-05-31 | 2016-12-08 | Curegenix Corporation | Combination compositions for immunotherapy |
US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
WO2017106061A1 (en) | 2015-12-14 | 2017-06-22 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof |
WO2017106372A1 (en) | 2015-12-15 | 2017-06-22 | Oncoimmune, Inc. | Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof |
US9815897B2 (en) | 2013-05-02 | 2017-11-14 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US9914783B1 (en) | 2016-09-14 | 2018-03-13 | Abbvie Biotherapeutics Inc. | Anti-PD-1 antibodies and their uses |
US10160806B2 (en) | 2014-06-26 | 2018-12-25 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
US10174092B1 (en) | 2017-12-06 | 2019-01-08 | Pandion Therapeutics, Inc. | IL-2 muteins |
EP3456346A1 (en) | 2015-07-30 | 2019-03-20 | MacroGenics, Inc. | Pd-1 and lag-3 binding molecules and methods of use thereof |
US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
WO2019246110A1 (en) | 2018-06-20 | 2019-12-26 | Incyte Corporation | Anti-pd-1 antibodies and uses thereof |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
US10676516B2 (en) | 2017-05-24 | 2020-06-09 | Pandion Therapeutics, Inc. | Targeted immunotolerance |
EP3763742A1 (en) | 2014-09-01 | 2021-01-13 | Birdie Biopharmaceuticals Inc. | Anti-pd-l1 conjugates for treating tumors |
US10946068B2 (en) | 2017-12-06 | 2021-03-16 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US10961310B2 (en) | 2017-03-15 | 2021-03-30 | Pandion Operations, Inc. | Targeted immunotolerance |
WO2021138512A1 (en) | 2020-01-03 | 2021-07-08 | Incyte Corporation | Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors |
US11078279B2 (en) | 2015-06-12 | 2021-08-03 | Macrogenics, Inc. | Combination therapy for the treatment of cancer |
US11155624B2 (en) | 2016-11-01 | 2021-10-26 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US11174315B2 (en) | 2015-10-08 | 2021-11-16 | Macrogenics, Inc. | Combination therapy for the treatment of cancer |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
WO2022147092A1 (en) | 2020-12-29 | 2022-07-07 | Incyte Corporation | Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies |
US11407830B2 (en) | 2017-01-09 | 2022-08-09 | Tesaro, Inc. | Methods of treating cancer with anti-PD-1 antibodies |
US11673894B2 (en) | 2018-02-27 | 2023-06-13 | Incyte Corporation | Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors |
US11739146B2 (en) | 2019-05-20 | 2023-08-29 | Pandion Operations, Inc. | MAdCAM targeted immunotolerance |
US11873304B2 (en) | 2018-05-18 | 2024-01-16 | Incyte Corporation | Fused pyrimidine derivatives as A2A/A2B inhibitors |
US11884665B2 (en) | 2019-01-29 | 2024-01-30 | Incyte Corporation | Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors |
US11981715B2 (en) | 2020-02-21 | 2024-05-14 | Pandion Operations, Inc. | Tissue targeted immunotolerance with a CD39 effector |
US11999740B2 (en) | 2018-07-05 | 2024-06-04 | Incyte Corporation | Fused pyrazine derivatives as A2A / A2B inhibitors |
EP4200324A4 (en) * | 2020-08-19 | 2024-10-02 | Pandion Operations Inc | Multi-paratopic anti-pd-1 antibodies and uses thereof |
Families Citing this family (1154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7030219B2 (en) | 2000-04-28 | 2006-04-18 | Johns Hopkins University | B7-DC, Dendritic cell co-stimulatory molecules |
PT1537878E (en) | 2002-07-03 | 2010-11-18 | Ono Pharmaceutical Co | Immunopotentiating compositions |
WO2005091716A2 (en) * | 2004-03-26 | 2005-10-06 | Quark Biotech, Inc. | Annexin ii and uses thereof |
DK1810026T3 (en) | 2004-10-06 | 2018-07-16 | Mayo Found Medical Education & Res | B7-H1 AND PD-1 FOR TREATMENT OF RENAL CELL CARCINOM |
PT2439273T (en) * | 2005-05-09 | 2019-05-13 | Ono Pharmaceutical Co | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
AU2012204032B2 (en) * | 2005-06-08 | 2014-01-16 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (PD-1) pathway |
EP1907000B2 (en) * | 2005-06-08 | 2020-02-26 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the treatment of persistent infections and cancer by inhibiting the programmed cell death 1 (pd-1)pathway |
BRPI0613361A2 (en) | 2005-07-01 | 2011-01-04 | Medarex Inc | isolated human monoclonal antibody, composition, immunoconjugate, bispecific molecule, isolated nucleic acid molecule, expression vector, host cell, transgenic mouse, method for modulating an immune response in an individual, method for inhibiting tumor cell growth in an individual, method for treating an infectious disease in a subject, a method for enhancing an immune response to an antigen in a subject, a method for treating or preventing an inflammatory disease in a subject, and a method for preparing the anti-pd-11 antibody |
PL2347775T3 (en) | 2005-12-13 | 2020-11-16 | President And Fellows Of Harvard College | Scaffolds for cell transplantation |
EP1997887B1 (en) | 2006-03-03 | 2013-09-04 | Ono Pharmaceutical Co., Ltd. | Multimer of extracellular domain of cell surface functional molecule |
US8455245B2 (en) | 2006-05-31 | 2013-06-04 | Children's Medical Center Corporation | ABCB5 positive mesenchymal stem cells as immunomodulators |
CA3045637A1 (en) * | 2006-12-27 | 2008-07-10 | Emory University | Compositions and methods for the treatment of infections and tumors |
SI2644205T1 (en) | 2007-04-12 | 2018-11-30 | The Brigham And Women's Hospital, Inc. | Targeting ABCB5 for cancer therapy |
PE20090321A1 (en) | 2007-06-04 | 2009-04-20 | Genentech Inc | ANTI-NOTCH1 NRR ANTIBODIES, METHOD OF PREPARATION AND PHARMACEUTICAL COMPOSITION |
AU2014201367B2 (en) * | 2007-06-18 | 2016-01-28 | Merck Sharp & Dohme B.V. | Antibodies to human programmed death receptor pd-1 |
EP2581441A1 (en) * | 2007-08-09 | 2013-04-17 | Genzyme Corporation | Method of treating autoimmune disease with mesenchymal stem cells |
WO2009033009A2 (en) | 2007-09-05 | 2009-03-12 | Inotek Pharmaceuticals Corporation | Antibodies against flagellin and uses thereof |
AU2009215188B2 (en) | 2008-02-13 | 2014-09-18 | Dana-Farber Cancer Institute, Inc. | Continuous cell programming devices |
EP2262837A4 (en) * | 2008-03-12 | 2011-04-06 | Merck Sharp & Dohme | Pd-1 binding proteins |
JP5757863B2 (en) | 2008-05-19 | 2015-08-05 | アドバクシス インコーポレイテッド | Dual delivery system for xenoantigens |
US9017660B2 (en) | 2009-11-11 | 2015-04-28 | Advaxis, Inc. | Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors |
US9650639B2 (en) | 2008-05-19 | 2017-05-16 | Advaxis, Inc. | Dual delivery system for heterologous antigens |
MX2011002252A (en) | 2008-08-25 | 2011-06-24 | Amplimmune Inc | Compositions of pd-1 antagonists and methods of use. |
CA2735006A1 (en) * | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Pd-1 antagonists and methods of use thereof |
EP2342228B1 (en) * | 2008-09-12 | 2017-09-06 | Oxford University Innovation Limited | Pd-1 specific antibodies and uses thereof |
WO2010029435A1 (en) * | 2008-09-12 | 2010-03-18 | Isis Innovation Limited | Pd-1 specific antibodies and uses thereof |
CN102264762B (en) * | 2008-09-26 | 2018-03-27 | 达纳-法伯癌症研究公司 | The anti-PD 1 of people, PD L1 and PD L2 antibody and its application |
EP3281955A1 (en) | 2008-10-02 | 2018-02-14 | Aptevo Research and Development LLC | Cd86 antagonist multi-target binding proteins |
US11542328B2 (en) | 2008-11-14 | 2023-01-03 | The Brigham And Women's Hospital, Inc. | Therapeutic and diagnostic methods relating to cancer stem cells |
US20110287034A1 (en) | 2008-11-14 | 2011-11-24 | The Brigham And Womens Hospital, Inc. | Therapeutic and diagnostic methods relating to cancer stem cells |
MX2011005691A (en) | 2008-11-28 | 2011-07-20 | Univ Emory | Methods for the treatment of infections and tumors. |
PE20141722A1 (en) * | 2008-12-09 | 2014-12-02 | Genentech Inc | ANTI-PD-L1 ANTIBODIES AND ITS USE TO IMPROVE T-CELL FUNCTION |
EP3192811A1 (en) * | 2009-02-09 | 2017-07-19 | Université d'Aix-Marseille | Pd-1 antibodies and pd-l1 antibodies and uses thereof |
US20100239583A1 (en) * | 2009-03-04 | 2010-09-23 | Inotek Pharmaceuticals Corporation | Antibodies against flagellin and uses thereof |
ES2593027T3 (en) | 2009-03-30 | 2016-12-05 | Eisai R&D Management Co., Ltd. | Liposomal composition |
CA2775761C (en) | 2009-09-30 | 2018-08-28 | Memorial Sloan-Kettering Cancer Center | Combination immunotherapy for the treatment of cancer |
US10016617B2 (en) | 2009-11-11 | 2018-07-10 | The Trustees Of The University Of Pennsylvania | Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers |
US20130202623A1 (en) * | 2010-02-16 | 2013-08-08 | Nicolas Chomont | Pd-1 modulation and uses thereof for modulating hiv replication |
TW201134488A (en) * | 2010-03-11 | 2011-10-16 | Ucb Pharma Sa | PD-1 antibodies |
CN102892786B (en) * | 2010-03-11 | 2016-03-16 | Ucb医药有限公司 | Pd-1 antibody |
EP3153521B1 (en) | 2010-03-26 | 2019-09-04 | Trustees of Dartmouth College | Vista regulatory t cell mediator protein, vista binding agents and use thereof |
US20150231215A1 (en) | 2012-06-22 | 2015-08-20 | Randolph J. Noelle | VISTA Antagonist and Methods of Use |
US10745467B2 (en) | 2010-03-26 | 2020-08-18 | The Trustees Of Dartmouth College | VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders |
WO2011159877A2 (en) | 2010-06-18 | 2011-12-22 | The Brigham And Women's Hospital, Inc. | Bi-specific antibodies against tim-3 and pd-1 for immunotherapy in chronic immune conditions |
US8907053B2 (en) | 2010-06-25 | 2014-12-09 | Aurigene Discovery Technologies Limited | Immunosuppression modulating compounds |
US9783578B2 (en) | 2010-06-25 | 2017-10-10 | Aurigene Discovery Technologies Limited | Immunosuppression modulating compounds |
US8906649B2 (en) | 2010-09-27 | 2014-12-09 | Janssen Biotech, Inc. | Antibodies binding human collagen II |
JP6126991B2 (en) | 2010-09-27 | 2017-05-10 | ヤンセン バイオテツク,インコーポレーテツド | Antibody binding to human type II collagen |
EP2621527A4 (en) | 2010-10-01 | 2015-12-09 | Univ Pennsylvania | The use of listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals |
AU2011311904B2 (en) | 2010-10-06 | 2016-02-25 | President And Fellows Of Harvard College | Injectable, pore-forming hydrogels for materials-based cell therapies |
EP2683400A4 (en) | 2011-03-11 | 2014-09-17 | Advaxis | Listeria-based adjuvants |
JP6014116B2 (en) * | 2011-03-31 | 2016-10-25 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | Stable formulations of antibodies to human programmed death receptor PD-1 and related treatments |
ES2666550T3 (en) | 2011-04-19 | 2018-05-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Human monoclonal antibodies specific for glypican 3 and their use |
US9096642B2 (en) | 2011-06-08 | 2015-08-04 | Aurigene Discovery Technologies Limited | Therapeutic compounds for immunomodulation |
WO2013003555A1 (en) | 2011-06-28 | 2013-01-03 | Whitehead Institute For Biomedical Research | Using sortases to install click chemistry handles for protein ligation |
DK3409278T3 (en) | 2011-07-21 | 2020-11-09 | Sumitomo Dainippon Pharma Oncology Inc | Heterocyclic protein kinase inhibitors |
EP3939613A1 (en) | 2011-08-11 | 2022-01-19 | ONO Pharmaceutical Co., Ltd. | Therapeutic agent for autoimmune diseases comprising pd-1 agonist |
CN103917243B (en) * | 2011-10-17 | 2021-05-11 | Io生物技术公司 | PD-L1-based immunotherapy |
BR112014022662A2 (en) | 2012-03-12 | 2017-10-03 | Advaxis Inc | INHIBITION OF SUPPRESSOR CELL FUNCTION FOLLOWING LISTERIA VACCINE TREATMENT |
EP2831108A1 (en) | 2012-03-29 | 2015-02-04 | Aurigene Discovery Technologies Limited | Immunomodulating cyclic compounds from the bc loop of human pd1 |
CA2869748C (en) | 2012-04-12 | 2017-10-24 | Yale University | Vehicles for controlled delivery of different pharmaceutical agents |
CA2870309C (en) | 2012-04-16 | 2024-02-20 | President And Fellows Of Harvard College | Mesoporous silica compositions for modulating immune responses |
KR102702287B1 (en) | 2012-05-15 | 2024-09-04 | 브리스톨-마이어스 스큅 컴퍼니 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
CN115093480A (en) * | 2012-05-31 | 2022-09-23 | 索伦托药业有限公司 | Antigen binding proteins that bind to PD-L1 |
MX359293B (en) | 2012-06-13 | 2018-09-24 | Incyte Holdings Corp | Substituted tricyclic compounds as fgfr inhibitors. |
US9890215B2 (en) | 2012-06-22 | 2018-02-13 | King's College London | Vista modulators for diagnosis and treatment of cancer |
CN112587658A (en) | 2012-07-18 | 2021-04-02 | 博笛生物科技有限公司 | Targeted immunotherapy for cancer |
KR102204525B1 (en) | 2012-08-30 | 2021-01-19 | 암젠 인크 | A method for treating melanoma using a herpes simplex virus and an immune checkpoint inhibitor |
CN105246507B (en) | 2012-09-07 | 2019-01-25 | 达特茅斯大学理事会 | VISTA regulator for diagnosing and treating cancer |
WO2014122271A1 (en) | 2013-02-07 | 2014-08-14 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from diffuse large b-cell lymphomas |
TW201446794A (en) | 2013-02-20 | 2014-12-16 | Novartis Ag | Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells |
LT2958943T (en) | 2013-02-20 | 2020-01-27 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
PL2964638T3 (en) | 2013-03-06 | 2018-01-31 | Astrazeneca Ab | Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor |
WO2014165082A2 (en) * | 2013-03-13 | 2014-10-09 | Medimmune, Llc | Antibodies and methods of detection |
US9308236B2 (en) | 2013-03-15 | 2016-04-12 | Bristol-Myers Squibb Company | Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-1)/PD-L1 protein/protein interactions |
TWI654206B (en) | 2013-03-16 | 2019-03-21 | 諾華公司 | Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor |
WO2014165422A1 (en) | 2013-04-02 | 2014-10-09 | Merck Sharp & Dohme Corp. | Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue |
JP2016516772A (en) | 2013-04-09 | 2016-06-09 | リクスト・バイオテクノロジー,インコーポレイテッド | Formulation of oxacycloheptane and oxabicycloheptene |
BR112015026122A8 (en) | 2013-04-18 | 2020-01-21 | Armo Biosciences Inc | polyethylene glycol-yl-10 agent (peg-il-10), its use, pharmaceutical composition, sterile container and kit |
SG11201508328PA (en) | 2013-04-19 | 2015-11-27 | Incyte Corp | Bicyclic heterocycles as fgfr inhibitors |
EP3546484B1 (en) | 2013-05-10 | 2021-09-08 | Whitehead Institute for Biomedical Research | In vitro production of red blood cells with sortaggable proteins |
JP6603209B2 (en) | 2013-05-10 | 2019-11-06 | ホワイトヘッド・インスティテュート・フォー・バイオメディカル・リサーチ | Protein modification of living cells using sortase |
CN111423511B (en) | 2013-05-31 | 2024-02-23 | 索伦托药业有限公司 | Antigen binding proteins that bind to PD-1 |
EP3434277A1 (en) | 2013-06-17 | 2019-01-30 | Armo Biosciences, Inc. | Method for assessing protein identity and stability |
EA034459B1 (en) | 2013-08-05 | 2020-02-11 | Твист Байосайенс Корпорейшн | De novo synthesized gene libraries |
KR20240107197A (en) | 2013-08-08 | 2024-07-08 | 싸이튠 파마 | Combined pharmaceutical composition |
EP3444271B1 (en) | 2013-08-08 | 2021-10-06 | Cytune Pharma | Il-15 and il-15ralpha sushi domain based modulokines |
AR097306A1 (en) | 2013-08-20 | 2016-03-02 | Merck Sharp & Dohme | MODULATION OF TUMOR IMMUNITY |
AU2014309199B2 (en) | 2013-08-20 | 2018-04-19 | Merck Sharp & Dohme Llc | Treating cancer with a combination of a PD-1 antagonist and dinaciclib |
CN105658232A (en) | 2013-08-30 | 2016-06-08 | 阿尔莫生物科技股份有限公司 | Methods of using interleukin-10 for treating diseases and disorders |
AU2014316686B2 (en) | 2013-09-06 | 2018-11-22 | Aurigene Discovery Technologies Limited | Cyclic peptidomimetic compounds as immunomodulators |
PL3363790T3 (en) | 2013-09-06 | 2020-07-27 | Aurigene Discovery Technologies Limited | 1,2,4-oxadiazole derivatives as immunomodulators |
CU24345B1 (en) | 2013-09-06 | 2018-05-08 | Aurigene Discovery Tech Ltd | DERIVATIVES OF 1,3,4-OXADIAZOL AND 1,3,4-TIADIAZOL AS IMMUNOMODULATORS |
US10077305B2 (en) * | 2013-09-10 | 2018-09-18 | Medimmune Limited | Antibodies against PD-1 and uses thereof |
CA2924172C (en) * | 2013-09-13 | 2020-06-30 | Beigene, Ltd. | Anti-pd1 antibodies and their use as therapeutics and diagnostics |
CN104558177B (en) * | 2013-10-25 | 2020-02-18 | 苏州思坦维生物技术股份有限公司 | Monoclonal antibody for antagonizing and inhibiting programmed death receptor PD-1and ligand combination thereof, and coding sequence and application thereof |
WO2015066413A1 (en) | 2013-11-01 | 2015-05-07 | Novartis Ag | Oxazolidinone hydroxamic acid compounds for the treatment of bacterial infections |
CA2929277C (en) | 2013-11-01 | 2018-01-16 | Yale University | Delivery vehicles comprising il-2 and losartan |
RU2016122957A (en) | 2013-11-11 | 2017-12-19 | Армо Байосайенсиз, Инк. | Methods of using interleukin-10 for the treatment of diseases and disorders |
US20150140036A1 (en) | 2013-11-13 | 2015-05-21 | Novartis Institutes For Biomedical Research, Inc. | Low, immune enhancing, dose mtor inhibitors and uses thereof |
WO2015073746A2 (en) | 2013-11-13 | 2015-05-21 | Whitehead Institute For Biomedical Research | 18f labeling of proteins using sortases |
US10241115B2 (en) | 2013-12-10 | 2019-03-26 | Merck Sharp & Dohme Corp. | Immunohistochemical proximity assay for PD-1 positive cells and PD-ligand positive cells in tumor tissue |
HUE046249T2 (en) | 2013-12-12 | 2020-02-28 | Shanghai hengrui pharmaceutical co ltd | Pd-1 antibody, antigen-binding fragment thereof, and medical application thereof |
EP3084003A4 (en) | 2013-12-17 | 2017-07-19 | Merck Sharp & Dohme Corp. | Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists |
CA2931684C (en) | 2013-12-19 | 2024-02-20 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
US11014987B2 (en) | 2013-12-24 | 2021-05-25 | Janssen Pharmaceutics Nv | Anti-vista antibodies and fragments, uses thereof, and methods of identifying same |
PL3712174T3 (en) | 2013-12-24 | 2022-07-04 | Janssen Pharmaceutica Nv | Anti-vista antibodies and fragments |
EP4056594A1 (en) | 2014-01-10 | 2022-09-14 | Birdie Biopharmaceuticals Inc. | Compounds and compositions for immunotherapy |
JO3517B1 (en) | 2014-01-17 | 2020-07-05 | Novartis Ag | N-azaspirocycloalkane substituted n-heteroaryl compounds and compositions for inhibiting the activity of shp2 |
TWI681969B (en) * | 2014-01-23 | 2020-01-11 | 美商再生元醫藥公司 | Human antibodies to pd-1 |
TWI680138B (en) | 2014-01-23 | 2019-12-21 | 美商再生元醫藥公司 | Human antibodies to pd-l1 |
EP3102604B1 (en) | 2014-02-04 | 2020-01-15 | Pfizer Inc | Combination of a pd-1 antagonist and a 4-1bb agonist for treating cancer |
CA2938566A1 (en) | 2014-02-04 | 2015-08-13 | Incyte Corporation | Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer |
US10570202B2 (en) | 2014-02-04 | 2020-02-25 | Pfizer Inc. | Combination of a PD-1 antagonist and a VEGFR inhibitor for treating cancer |
US20170088626A1 (en) | 2014-03-05 | 2017-03-30 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
PE20170071A1 (en) | 2014-03-14 | 2017-03-17 | Novartis Ag | ANTIBODY MOLECULES THAT BIND AND USES LAG-3 |
CN106163547A (en) | 2014-03-15 | 2016-11-23 | 诺华股份有限公司 | Use Chimeric antigen receptor treatment cancer |
MX2016011822A (en) | 2014-03-24 | 2016-12-02 | Novartis Ag | Monobactam organic compounds for the treatment of bacterial infections. |
TWI753848B (en) | 2014-04-07 | 2022-02-01 | 瑞士商諾華公司 | Treatment of cancer using anti-cd19 chimeric antigen receptor |
US10682400B2 (en) * | 2014-04-30 | 2020-06-16 | President And Fellows Of Harvard College | Combination vaccine devices and methods of killing cancer cells |
US20170158776A1 (en) | 2014-05-15 | 2017-06-08 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
AU2015264102C1 (en) | 2014-05-23 | 2020-10-08 | Eisai R&D Management Co., Ltd. | Combination therapies for the treatment of cancer |
KR20170005492A (en) | 2014-05-28 | 2017-01-13 | 아이데닉스 파마슈티칼스 엘엘씨 | Nucleoside derivatives for the treatment of cancer |
LT3148579T (en) | 2014-05-28 | 2021-05-25 | Agenus Inc. | Anti-gitr antibodies and methods of use thereof |
US10293043B2 (en) | 2014-06-02 | 2019-05-21 | Armo Biosciences, Inc. | Methods of lowering serum cholesterol |
HUE047385T2 (en) | 2014-06-06 | 2020-04-28 | Bristol Myers Squibb Co | Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof |
WO2015191881A2 (en) | 2014-06-11 | 2015-12-17 | Green Kathy A | Use of vista agonists and antagonists to suppress or enhance humoral immunity |
US10092645B2 (en) | 2014-06-17 | 2018-10-09 | Medimmune Limited | Methods of treatment with antagonists against PD-1 and PD-L1 in combination with radiation therapy |
WO2015196051A1 (en) | 2014-06-19 | 2015-12-23 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized programmed cell death 1 gene |
TWI687438B (en) | 2014-07-03 | 2020-03-11 | 英屬開曼群島商百濟神州生物科技有限公司 | Anti-pd-l1 antibodies and their use as therapeutics and diagnostics |
ES2909957T3 (en) | 2014-07-16 | 2022-05-11 | Transgene | Oncolytic virus for expression of immune checkpoint modulators |
US10765710B2 (en) | 2014-07-16 | 2020-09-08 | Institut Gustave-Roussy | Combination of oncolytic virus with immune checkpoint modulators |
AU2015289533B2 (en) | 2014-07-18 | 2021-04-01 | Advaxis, Inc. | Combination of a PD-1 antagonist and a Listeria-based vaccine for treating prostate cancer |
US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
EP3722316A1 (en) | 2014-07-21 | 2020-10-14 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
JP2017528433A (en) | 2014-07-21 | 2017-09-28 | ノバルティス アーゲー | Low immunoenhancing dose of mTOR inhibitor and CAR combination |
MX2017000985A (en) | 2014-07-22 | 2018-03-08 | Cb Therapeutics Inc | Anti-pd-1 antibodies. |
CN105330740B (en) * | 2014-07-30 | 2018-08-17 | 珠海市丽珠单抗生物技术有限公司 | Anti- PD-1 antibody and its application |
WO2016019300A1 (en) | 2014-07-31 | 2016-02-04 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
KR102357893B1 (en) * | 2014-08-05 | 2022-02-04 | 맵퀘스트 에스아 | Immunological reagents binding to pd-1 |
CA2956399A1 (en) | 2014-08-05 | 2016-02-11 | Cb Therapeutics, Inc. | Anti-pd-l1 antibodies |
US9982052B2 (en) | 2014-08-05 | 2018-05-29 | MabQuest, SA | Immunological reagents |
CN107001316A (en) | 2014-08-06 | 2017-08-01 | 诺华股份有限公司 | It is used as the Carbostyril derivative of antiseptic |
WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
TW202140557A (en) | 2014-08-19 | 2021-11-01 | 瑞士商諾華公司 | Treatment of cancer using a cd123 chimeric antigen receptor |
CA2955676A1 (en) | 2014-08-25 | 2016-03-03 | Pfizer Inc. | Combination of a pd-1 antagonist and an alk inhibitor for treating cancer |
US9535074B2 (en) | 2014-09-08 | 2017-01-03 | Merck Sharp & Dohme Corp. | Immunoassay for soluble PD-L1 |
MX2017003303A (en) * | 2014-09-16 | 2017-08-04 | Innate Pharma | Neutralization of inhibitory pathways in lymphocytes. |
DK3194443T3 (en) | 2014-09-17 | 2021-09-27 | Novartis Ag | TARGETING OF CYTOTOXIC CELLS WITH CHIMARY RECEPTORS IN CONNECTION WITH ADOPTIVE IMMUNTERAPHY |
US10053683B2 (en) | 2014-10-03 | 2018-08-21 | Whitehead Institute For Biomedical Research | Intercellular labeling of ligand-receptor interactions |
BR112017006664A2 (en) | 2014-10-03 | 2017-12-26 | Novartis Ag | combination therapies |
SG11201702895SA (en) | 2014-10-08 | 2017-05-30 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
MA41044A (en) | 2014-10-08 | 2017-08-15 | Novartis Ag | COMPOSITIONS AND METHODS OF USE FOR INCREASED IMMUNE RESPONSE AND CANCER TREATMENT |
US9732119B2 (en) | 2014-10-10 | 2017-08-15 | Bristol-Myers Squibb Company | Immunomodulators |
US20160101128A1 (en) | 2014-10-10 | 2016-04-14 | Idera Pharmaceuticals, Inc. | Treatment of cancer using tlr9 agonist with checkpoint inhibitors |
CA2963989A1 (en) | 2014-10-14 | 2016-04-21 | Armo Biosciences, Inc. | Interleukin-15 compositions and uses thereof |
US9988452B2 (en) | 2014-10-14 | 2018-06-05 | Novartis Ag | Antibody molecules to PD-L1 and uses thereof |
MX2017004983A (en) | 2014-10-22 | 2017-11-13 | Armo Biosciences Inc | Methods of using interleukin-10 for treating diseases and disorders. |
GB201419084D0 (en) | 2014-10-27 | 2014-12-10 | Agency Science Tech & Res | Anti-PD-1 antibodies |
ES2851390T3 (en) | 2014-10-29 | 2021-09-06 | Five Prime Therapeutics Inc | Combination therapy for cancer |
JP7305300B2 (en) | 2014-11-05 | 2023-07-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Combination immunotherapy |
EP3218409A2 (en) * | 2014-11-11 | 2017-09-20 | Sutro Biopharma, Inc. | Anti-pd-1 antibodies, compositions comprising anti-pd-1 antibodies and methods of using anti-pd-1 antibodies |
EP4098278A1 (en) | 2014-11-13 | 2022-12-07 | The Johns Hopkins University | Checkpoint blockade and microsatellite instability |
KR20170084202A (en) | 2014-11-14 | 2017-07-19 | 노파르티스 아게 | Antibody drug conjugates |
US9856292B2 (en) | 2014-11-14 | 2018-01-02 | Bristol-Myers Squibb Company | Immunomodulators |
CN107106608B (en) | 2014-11-20 | 2022-01-21 | 普洛麦格公司 | Systems and methods for evaluating immune checkpoint modulators |
US20180334490A1 (en) | 2014-12-03 | 2018-11-22 | Qilong H. Wu | Methods for b cell preconditioning in car therapy |
AU2015358462A1 (en) | 2014-12-04 | 2017-07-27 | Bristol-Myers Squibb Company | Combination of anti-CS1 and anti-PD1 antibodies to treat cancer (myeloma) |
WO2016090347A1 (en) | 2014-12-05 | 2016-06-09 | Immunext, Inc. | Identification of vsig8 as the putative vista receptor and its use thereof to produce vista/vsig8 modulators |
US10086000B2 (en) | 2014-12-05 | 2018-10-02 | Merck Sharp & Dohme Corp. | Tricyclic compounds as inhibitors of mutant IDH enzymes |
WO2016089830A1 (en) | 2014-12-05 | 2016-06-09 | Merck Sharp & Dohme Corp. | Novel tricyclic compounds as inhibitors of mutant idh enzymes |
US10442819B2 (en) | 2014-12-05 | 2019-10-15 | Merck Sharp & Dohme Corp. | Tricyclic compounds as inhibitors of mutant IDH enzymes |
HRP20240855T1 (en) | 2014-12-09 | 2024-10-11 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cluster of differentiation 274 gene |
US11377693B2 (en) | 2014-12-09 | 2022-07-05 | Merck Sharp & Dohme Llc | System and methods for deriving gene signature biomarkers of response to PD-1 antagonists |
TWI595006B (en) | 2014-12-09 | 2017-08-11 | 禮納特神經系統科學公司 | Anti-pd-1 antibodies and methods of use thereof |
US9549916B2 (en) | 2014-12-16 | 2017-01-24 | Novartis Ag | Isoxazole hydroxamic acid compounds as LpxC inhibitors |
EP3234114B9 (en) | 2014-12-18 | 2023-06-14 | Amgen Inc. | Stable frozen herpes simplex virus formulation |
US9861680B2 (en) | 2014-12-18 | 2018-01-09 | Bristol-Myers Squibb Company | Immunomodulators |
WO2016100975A1 (en) | 2014-12-19 | 2016-06-23 | Massachsetts Institute Ot Technology | Molecular biomarkers for cancer immunotherapy |
EP3233918A1 (en) | 2014-12-19 | 2017-10-25 | Novartis AG | Combination therapies |
US9944678B2 (en) | 2014-12-19 | 2018-04-17 | Bristol-Myers Squibb Company | Immunomodulators |
US10682365B2 (en) | 2014-12-31 | 2020-06-16 | Checkmate Pharmaceuticals, Inc. | Combination tumor immunotherapy |
JP2018506526A (en) | 2015-01-29 | 2018-03-08 | ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティBoard Of Trustees Of Michigan State University | Cryptic polypeptides and uses thereof |
US11786457B2 (en) | 2015-01-30 | 2023-10-17 | President And Fellows Of Harvard College | Peritumoral and intratumoral materials for cancer therapy |
US11161907B2 (en) | 2015-02-02 | 2021-11-02 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
WO2016126615A1 (en) | 2015-02-03 | 2016-08-11 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US20160222060A1 (en) | 2015-02-04 | 2016-08-04 | Bristol-Myers Squibb Company | Immunomodulators |
EP3617205B1 (en) | 2015-02-20 | 2021-08-04 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
MA41551A (en) | 2015-02-20 | 2017-12-26 | Incyte Corp | BICYCLIC HETEROCYCLES USED AS FGFR4 INHIBITORS |
BR112017018234A2 (en) | 2015-02-26 | 2018-04-17 | Merck Patent Gmbh | pd-1 / pd-l1 inhibitors for cancer treatment |
AU2015384801B2 (en) | 2015-03-04 | 2022-01-06 | Eisai R&D Management Co., Ltd. | Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer |
CN107810013B (en) | 2015-03-04 | 2021-04-02 | 默沙东公司 | Combination of a PD-1 antagonist and eribulin for the treatment of cancer |
EP3265091A4 (en) | 2015-03-06 | 2018-08-01 | Beyondspring Pharmaceuticals Inc. | Method of treating a brain tumor |
RU2736045C2 (en) | 2015-03-06 | 2020-11-11 | Бейондспринг Фармасьютикалс, Инк. | Method of treating cancer associated with a ras mutation |
MX2017011597A (en) | 2015-03-10 | 2018-05-11 | Aduro Biotech Inc | Compositions and methods for activating "stimulator of interferon gene" -dependent signalling. |
DK3267984T3 (en) | 2015-03-10 | 2022-03-07 | Aurigene Discovery Tech Ltd | THE COMPOUNDS 1,2,4-OXADIAZOLE AND THOADIAZOLE AS IMMUNE MODULATORS |
US9809625B2 (en) | 2015-03-18 | 2017-11-07 | Bristol-Myers Squibb Company | Immunomodulators |
SG11201707769VA (en) | 2015-03-23 | 2017-10-30 | Jounce Therapeutics Inc | Antibodies to icos |
CN114380909A (en) * | 2015-03-30 | 2022-04-22 | 斯特库比股份有限公司 | Antibodies specific for glycosylated PD-L1 and methods of use thereof |
CN108136001B (en) | 2015-04-03 | 2022-07-29 | 佐马技术有限公司 | Treatment of cancer using TGF-beta inhibitors and PD-1 inhibitors |
US20180140602A1 (en) | 2015-04-07 | 2018-05-24 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
WO2016164705A1 (en) | 2015-04-10 | 2016-10-13 | Omar Abdel-Rahman Ali | Immune cell trapping devices and methods for making and using the same |
WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
US11326211B2 (en) | 2015-04-17 | 2022-05-10 | Merck Sharp & Dohme Corp. | Blood-based biomarkers of tumor sensitivity to PD-1 antagonists |
CN113577264A (en) | 2015-04-17 | 2021-11-02 | 百时美施贵宝公司 | Compositions comprising a combination of an anti-PD-1 antibody and an additional antibody |
WO2016172377A1 (en) | 2015-04-21 | 2016-10-27 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
EP3988571A1 (en) | 2015-04-28 | 2022-04-27 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
US20160362489A1 (en) | 2015-04-28 | 2016-12-15 | Bristol-Myers Squibb Company | Treatment of PD-L1-Positive Melanoma Using an Anti-PD-1 Antibody |
EP3736287A1 (en) | 2015-05-11 | 2020-11-11 | The Johns Hopkins University | Autoimmune antibodies for use in inhibiting cancer cell growth |
BR112017024899A2 (en) | 2015-05-21 | 2018-11-13 | Harpoon Therapeutics, Inc. | trispecific binding proteins and methods of use. |
WO2016189055A1 (en) | 2015-05-27 | 2016-12-01 | Idenix Pharmaceuticals Llc | Nucleotides for the treatment of cancer |
WO2016191587A1 (en) | 2015-05-28 | 2016-12-01 | Armo Biosciences, Inc. | Pegylated interleukin-10 for use in treating cancer |
US20180155429A1 (en) * | 2015-05-28 | 2018-06-07 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
AU2016271591A1 (en) | 2015-05-29 | 2017-12-21 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
WO2016196173A1 (en) | 2015-05-29 | 2016-12-08 | Merck Sharp & Dohme Corp. | Combination of a pd-1 antagonist and cpg-c type oligonucleotide for treating cancer |
TWI773646B (en) | 2015-06-08 | 2022-08-11 | 美商宏觀基因股份有限公司 | Lag-3-binding molecules and methods of use thereof |
CN108026173A (en) | 2015-06-12 | 2018-05-11 | 百时美施贵宝公司 | Pass through combined occlusion PD-1 and CXCR4 signal transduction path treating cancer |
EP3310810A1 (en) | 2015-06-16 | 2018-04-25 | Merck Patent GmbH | Pd-l1 antagonist combination treatments |
CN107849145B (en) * | 2015-06-16 | 2021-10-26 | 基因泰克公司 | anti-CD 3 antibodies and methods of use thereof |
EP3310813A1 (en) | 2015-06-17 | 2018-04-25 | Novartis AG | Antibody drug conjugates |
JP6974311B2 (en) * | 2015-06-23 | 2021-12-01 | メモリアル スローン ケタリング キャンサー センター | New PD-1 immunomodulator |
MX2017016647A (en) | 2015-06-24 | 2019-04-25 | Janssen Pharmaceutica Nv | Anti-vista antibodies and fragments. |
EP3316888A1 (en) | 2015-07-02 | 2018-05-09 | Celgene Corporation | Combination therapy for treatment of hematological cancers and solid tumors |
GB201511790D0 (en) | 2015-07-06 | 2015-08-19 | Iomet Pharma Ltd | Pharmaceutical compound |
US10513558B2 (en) | 2015-07-13 | 2019-12-24 | Cytomx Therapeutics, Inc. | Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof |
ES2910035T3 (en) | 2015-07-13 | 2022-05-11 | Beyondspring Pharmaceuticals Inc | Plinabulin Compositions |
WO2017011666A1 (en) | 2015-07-14 | 2017-01-19 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
CA2991628C (en) | 2015-07-16 | 2020-04-07 | Bioxcel Therapeutics, Inc. | A novel approach for treatment of cancer using immunomodulation |
WO2017009842A2 (en) | 2015-07-16 | 2017-01-19 | Biokine Therapeutics Ltd. | Compositions and methods for treating cancer |
CA2992551A1 (en) | 2015-07-21 | 2017-01-26 | Novartis Ag | Methods for improving the efficacy and expansion of immune cells |
CN106699888B (en) * | 2015-07-28 | 2020-11-06 | 上海昀怡健康科技发展有限公司 | PD-1 antibody and preparation method and application thereof |
CA2991857A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Novel combination for use in the treatment of cancer |
DK3317301T3 (en) | 2015-07-29 | 2021-06-28 | Immutep Sas | COMBINATION THERAPIES INCLUDING ANTIBODY MOLECULES AGAINST LAYER-3 |
MX2018001268A (en) | 2015-07-29 | 2018-07-06 | Novartis Ag | Combination of pd-1 antagonist with an egfr inhibitor. |
EP3328418A1 (en) | 2015-07-29 | 2018-06-06 | Novartis AG | Combination therapies comprising antibody molecules to pd-1 |
EP3316902A1 (en) | 2015-07-29 | 2018-05-09 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
WO2017021910A1 (en) | 2015-08-04 | 2017-02-09 | Glaxosmithkline Intellectual Property Development Limited | Combination treatments and uses and methods thereof |
EP3331918A1 (en) | 2015-08-04 | 2018-06-13 | GlaxoSmithKline Intellectual Property Development Limited | Combination treatments and uses and methods thereof |
WO2017025871A1 (en) | 2015-08-07 | 2017-02-16 | Glaxosmithkline Intellectual Property Development Limited | Combination therapy comprising anti ctla-4 antibodies |
AU2016306597A1 (en) | 2015-08-07 | 2018-02-22 | Pieris Pharmaceuticals Gmbh | Novel fusion polypeptide specific for LAG-3 and PD-1 |
WO2017024465A1 (en) * | 2015-08-10 | 2017-02-16 | Innovent Biologics (Suzhou) Co., Ltd. | Pd-1 antibodies |
EP3334763B1 (en) * | 2015-08-11 | 2024-08-07 | WuXi Biologics Ireland Limited | Novel anti-pd-1 antibodies |
UA123701C2 (en) | 2015-08-13 | 2021-05-19 | Мерк Шарп І Доум Корп. | Cyclic di-nucleotide compounds as sting agonists |
US11453697B1 (en) | 2015-08-13 | 2022-09-27 | Merck Sharp & Dohme Llc | Cyclic di-nucleotide compounds as sting agonists |
US11014983B2 (en) | 2015-08-20 | 2021-05-25 | Sutro Biopharma, Inc. | Anti-Tim-3 antibodies, compositions comprising anti-Tim-3 antibodies and methods of making and using anti-Tim-3 antibodies |
US10398761B2 (en) | 2015-08-25 | 2019-09-03 | Armo Biosciences, Inc. | Methods of using combinations of PEG-IL-10 and IL-15 for treating cancers |
WO2017032867A1 (en) | 2015-08-27 | 2017-03-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from a lung cancer |
MA48579A (en) | 2015-09-01 | 2020-03-18 | Agenus Inc | ANTI-PD1 ANTIBODIES AND METHODS OF USING THEM |
IL257798B2 (en) | 2015-09-02 | 2024-10-01 | Immutep Sas | Anti-lag-3 antibodies |
EP3344996A2 (en) | 2015-09-03 | 2018-07-11 | The Trustees Of The University Of Pennsylvania | Biomarkers predictive of cytokine release syndrome |
KR20180043835A (en) | 2015-09-03 | 2018-04-30 | 에일러론 테라퓨틱스 인코포레이티드 | Peptidomimetic macrocycles and their uses |
US10844373B2 (en) | 2015-09-18 | 2020-11-24 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
WO2017053450A1 (en) | 2015-09-22 | 2017-03-30 | Twist Bioscience Corporation | Flexible substrates for nucleic acid synthesis |
WO2017055327A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of endothelial cells in a tissue sample |
US10947598B2 (en) | 2015-09-29 | 2021-03-16 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods for determining the metabolic status of lymphomas |
WO2017055325A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of nk cells in a tissue sample |
WO2017055326A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of myeloid dendritic cells in a tissue sample |
WO2017055324A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of cells of monocytic origin in a tissue sample |
WO2017055320A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of cytotoxic lymphocytes in a tissue sample |
EA201890790A1 (en) | 2015-09-29 | 2018-10-31 | Селджин Корпорейшн | CONNECTING PD-1 PROTEINS AND METHODS OF THEIR APPLICATION |
WO2017055322A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of neutrophils in a tissue sample |
WO2017055321A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of fibroblasts in a tissue sample |
WO2017055319A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of b cells in a tissue sample |
EP3359573B1 (en) | 2015-10-01 | 2023-01-04 | The Whitehead Institute for Biomedical Research | Labeling of antibodies |
WO2017059224A2 (en) | 2015-10-01 | 2017-04-06 | Gilead Sciences, Inc. | Combination of a btk inhibitor and a checkpoint inhibitor for treating cancers |
DK3356411T3 (en) | 2015-10-02 | 2021-09-06 | Hoffmann La Roche | Bispecific antibodies specific for PD1 and TIM3 |
CA2997799A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-pd1 antibodies and methods of use |
WO2017060397A1 (en) | 2015-10-09 | 2017-04-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of subjects suffering from melanoma metastases |
EP3362074B1 (en) | 2015-10-16 | 2023-08-09 | President and Fellows of Harvard College | Regulatory t cell pd-1 modulation for regulating t cell effector immune responses |
EP3365062B1 (en) | 2015-10-19 | 2024-09-18 | CG Oncology, Inc. | Methods of treating solid or lymphatic tumors by combination therapy |
TW201723190A (en) | 2015-10-22 | 2017-07-01 | 永斯醫療股份有限公司 | Gene signatures for determining ICOS expression |
CN105238762A (en) * | 2015-10-26 | 2016-01-13 | 无锡傲锐东源生物科技有限公司 | Anti-PD-1 protein monoclonal antibody hybridomas cell, anti- PD-1 monoclonal antibody generated by same and application |
MA44334A (en) | 2015-10-29 | 2018-09-05 | Novartis Ag | ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST |
CN106632674B (en) * | 2015-10-30 | 2018-11-16 | 泽达生物医药有限公司 | A kind of anti-PD-1 monoclonal antibody, its medical composition and its use |
EA201891106A1 (en) | 2015-11-02 | 2018-12-28 | Файв Прайм Терапьютикс, Инк. | POLYPEPTIDES OF CD80 OUT-CELL DOMAIN AND THEIR APPLICATION IN CANCER TREATMENT |
MD3370768T2 (en) | 2015-11-03 | 2022-07-31 | Janssen Biotech Inc | Antibodies specifically binding pd-1 and their uses |
CA3003969A1 (en) | 2015-11-06 | 2017-05-11 | Orionis Biosciences Nv | Bi-functional chimeric proteins and uses thereof |
TWI795347B (en) | 2015-11-18 | 2023-03-11 | 美商必治妥施貴寶公司 | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
US20170145103A1 (en) | 2015-11-23 | 2017-05-25 | Five Prime Therapeutics, Inc. | Predicting response to cancer treatment with fgfr2 inhibitors |
EP3383412A4 (en) * | 2015-12-02 | 2019-06-05 | Stcube, Inc. | Antibodies specific to glycosylated pd-1 and methods of use thereof |
CA3007233A1 (en) | 2015-12-02 | 2017-06-08 | Agenus Inc. | Antibodies and methods of use thereof |
MX363780B (en) | 2015-12-03 | 2019-04-03 | Glaxosmithkline Ip Dev Ltd | Cyclic purine dinucleotides as modulators of sting. |
WO2017098421A1 (en) | 2015-12-08 | 2017-06-15 | Glaxosmithkline Intellectual Property Development Limited | Benzothiadiazine compounds |
CN105837692A (en) * | 2015-12-10 | 2016-08-10 | 苏州佰通生物科技有限公司 | Chimeric antigen receptor for blocking immunodetection point and use thereof |
EP3389783B1 (en) | 2015-12-15 | 2024-07-03 | Merck Sharp & Dohme LLC | Novel compounds as indoleamine 2,3-dioxygenase inhibitors |
EP4424322A2 (en) | 2015-12-17 | 2024-09-04 | Novartis AG | Antibody molecules to pd-1 and uses thereof |
US10392442B2 (en) | 2015-12-17 | 2019-08-27 | Bristol-Myers Squibb Company | Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment |
RU2018126297A (en) | 2015-12-18 | 2020-01-22 | Новартис Аг | ANTIBODIES AIMED AT CD32B AND WAYS TO USE THEM |
RS64588B1 (en) | 2015-12-22 | 2023-10-31 | Regeneron Pharma | Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer |
TWI850624B (en) | 2015-12-22 | 2024-08-01 | 美商英塞特公司 | Heterocyclic compounds as immunomodulators |
EP3393504A1 (en) | 2015-12-22 | 2018-10-31 | Novartis AG | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
CN105669864B (en) | 2015-12-23 | 2018-10-16 | 杭州尚健生物技术有限公司 | Anti-human 1 antibody of programmed death receptor and its preparation method and application |
EP3400443B1 (en) | 2016-01-04 | 2020-09-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma |
CN106943598A (en) | 2016-01-07 | 2017-07-14 | 博笛生物科技(北京)有限公司 | Anti- HER2 for treating tumour is combined |
CN115554406A (en) | 2016-01-07 | 2023-01-03 | 博笛生物科技有限公司 | anti-CD 20 combinations for the treatment of tumors |
CN106943597A (en) | 2016-01-07 | 2017-07-14 | 博笛生物科技(北京)有限公司 | Anti-EGFR for treating tumour is combined |
US10052315B2 (en) | 2016-01-08 | 2018-08-21 | Celgene Corporation | Formulations of 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide |
JP7071922B2 (en) | 2016-01-08 | 2022-05-19 | セルジーン コーポレイション | Solid form of 2- (4-chlorophenyl) -N-((2- (2,6-dioxopiperidine-3-yl) -1-oxoisoindoline-5-yl) methyl) -2,2-difluoroacetamide , And their pharmaceutical compositions and uses |
SG10202003099XA (en) | 2016-01-08 | 2020-05-28 | Celgene Corp | Antiproliferative compounds, and their pharmaceutical compositions and uses |
CN108473569B (en) | 2016-01-11 | 2022-11-22 | 苏黎世大学 | Immunostimulatory humanized monoclonal antibodies against human interleukin-2 and fusion proteins thereof |
US11214617B2 (en) | 2016-01-22 | 2022-01-04 | MabQuest SA | Immunological reagents |
WO2017125815A2 (en) | 2016-01-22 | 2017-07-27 | MabQuest SA | Immunological reagents |
WO2017129763A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer |
EP3407912B1 (en) | 2016-01-28 | 2022-05-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for enhancing the potency of the immune checkpoint inhibitors |
WO2017129790A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of cancer |
WO2017133175A1 (en) * | 2016-02-04 | 2017-08-10 | Nanjing Legend Biotech Co., Ltd. | Engineered mammalian cells for cancer therapy |
JP7166923B2 (en) | 2016-02-05 | 2022-11-08 | オリオニス バイオサイエンシズ ビーブイ | Targeted therapeutic agents and their uses |
CN115531609A (en) | 2016-02-06 | 2022-12-30 | 哈佛学院校长同事会 | Remodeling hematopoietic niches to reconstitute immunity |
EP3413885A4 (en) | 2016-02-08 | 2019-09-18 | Beyondspring Pharmaceuticals, Inc. | Compositions containing tucaresol or its analogs |
WO2017137830A1 (en) | 2016-02-12 | 2017-08-17 | Janssen Pharmaceutica Nv | Anti-vista (b7h5) antibodies |
CU20180088A7 (en) | 2016-02-17 | 2019-05-03 | Novartis Ag | ANTIBODIES ANTI TGFBETA 2 |
US9845325B2 (en) | 2016-02-19 | 2017-12-19 | Novartis Ag | Tetracyclic pyridone compounds as antivirals |
WO2017144668A1 (en) | 2016-02-26 | 2017-08-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity for btla and uses thereof |
EP3423488A4 (en) | 2016-02-29 | 2019-11-06 | Foundation Medicine, Inc. | Methods of treating cancer |
KR20180118175A (en) | 2016-03-04 | 2018-10-30 | 노파르티스 아게 | Cells expressing multiple chimeric antigen receptor (CAR) molecules and their uses |
US10143746B2 (en) | 2016-03-04 | 2018-12-04 | Bristol-Myers Squibb Company | Immunomodulators |
WO2017155981A1 (en) | 2016-03-07 | 2017-09-14 | Massachusetts Institute Of Technology | Protein-chaperoned t-cell vaccines |
WO2017156349A1 (en) | 2016-03-10 | 2017-09-14 | Cold Genesys, Inc. | Methods of treating solid or lymphatic tumors by combination therapy |
WO2017153952A1 (en) | 2016-03-10 | 2017-09-14 | Glaxosmithkline Intellectual Property Development Limited | 5-sulfamoyl-2-hydroxybenzamide derivatives |
WO2017160599A1 (en) | 2016-03-14 | 2017-09-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Use of cd300b antagonists to treat sepsis and septic shock |
WO2017160754A1 (en) | 2016-03-15 | 2017-09-21 | Mersana Therapeutics,Inc. | Napi2b-targeted antibody-drug conjugates and methods of use thereof |
WO2017160975A1 (en) * | 2016-03-16 | 2017-09-21 | Bristol-Myers Squibb Company | Methods of diagnosing and treating lupus |
KR20190080825A (en) | 2016-03-21 | 2019-07-08 | 다나-파버 캔서 인스티튜트 인크. | T-cell dysfunction state-specific gene expression regulators and their uses |
WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
PT3433257T (en) | 2016-03-24 | 2023-11-29 | Novartis Ag | Alkynyl nucleoside analogs as inhibitors of human rhinovirus |
US11760803B2 (en) | 2016-03-24 | 2023-09-19 | Takeda Pharmaceutical Company Limited | Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments |
WO2017165742A1 (en) | 2016-03-24 | 2017-09-28 | Millennium Pharmaceuticals, Inc. | Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments |
CN107286242B (en) * | 2016-04-01 | 2019-03-22 | 中山康方生物医药有限公司 | The monoclonal antibody of anti-PD-1 |
EP3225253A1 (en) | 2016-04-01 | 2017-10-04 | Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts | Cancer therapy with an oncolytic virus combined with a checkpoint inhibitor |
EP3436066A1 (en) | 2016-04-01 | 2019-02-06 | Checkmate Pharmaceuticals, Inc. | Fc receptor-mediated drug delivery |
US10358463B2 (en) | 2016-04-05 | 2019-07-23 | Bristol-Myers Squibb Company | Immunomodulators |
WO2017176925A1 (en) | 2016-04-05 | 2017-10-12 | Bristol-Myers Squibb Company | Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment |
SG11201808621TA (en) | 2016-04-07 | 2018-10-30 | Glaxosmithkline Ip Dev Ltd | Heterocyclic amides useful as protein modulators |
KR20180132783A (en) | 2016-04-07 | 2018-12-12 | 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 | Heterocyclic amides useful as protein modulators |
WO2017178572A1 (en) | 2016-04-13 | 2017-10-19 | Vivia Biotech, S.L | Ex vivo bite-activated t cells |
AU2017250294B2 (en) | 2016-04-15 | 2022-07-21 | Immunext Inc. | Anti-human VISTA antibodies and use thereof |
ES2952680T3 (en) | 2016-04-28 | 2023-11-03 | Eisai R&D Man Co Ltd | Eribulin to inhibit tumor growth |
WO2017192874A1 (en) | 2016-05-04 | 2017-11-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Albumin-binding immunomodulatory compositions and methods of use thereof |
WO2017191545A1 (en) | 2016-05-05 | 2017-11-09 | Glaxosmithkline Intellectual Property (No.2) Limited | Enhancer of zeste homolog 2 inhibitors |
US11236141B2 (en) | 2016-05-13 | 2022-02-01 | Orionis Biosciences BV | Targeted mutant interferon-beta and uses thereof |
TWI822521B (en) | 2016-05-13 | 2023-11-11 | 美商再生元醫藥公司 | Methods of treating skin cancer by administering a pd-1 inhibitor |
WO2017194782A2 (en) | 2016-05-13 | 2017-11-16 | Orionis Biosciences Nv | Therapeutic targeting of non-cellular structures |
EP3243832A1 (en) | 2016-05-13 | 2017-11-15 | F. Hoffmann-La Roche AG | Antigen binding molecules comprising a tnf family ligand trimer and pd1 binding moiety |
RS61510B1 (en) | 2016-05-18 | 2021-03-31 | Boehringer Ingelheim Int | Anti pd-1 and anti-lag3 antibodies for cancer treatment |
CN109475629A (en) | 2016-05-20 | 2019-03-15 | 伊莱利利公司 | With the combined therapy of NOTCH and PD-1 or PD-L1 inhibitor |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
CN105968200B (en) | 2016-05-20 | 2019-03-15 | 瑞阳(苏州)生物科技有限公司 | Anti human PD-L 1 Humanized monoclonal antibodies and its application |
CN106008714B (en) * | 2016-05-24 | 2019-03-15 | 瑞阳(苏州)生物科技有限公司 | Anti-human PD-1 Humanized monoclonal antibodies and its application |
US20190292259A1 (en) | 2016-05-24 | 2019-09-26 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
AU2017270234B2 (en) | 2016-05-25 | 2023-11-23 | Assistance Publique-Hôpitaux De Paris (Aphp) | Methods and compositions for treating cancers |
CN109476751B (en) | 2016-05-27 | 2024-04-19 | 艾吉纳斯公司 | Anti-TIM-3 antibodies and methods of use thereof |
PL3463457T3 (en) | 2016-06-02 | 2023-08-21 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
PL3463436T3 (en) | 2016-06-02 | 2024-03-04 | Ultimovacs Asa | A vaccine in combination with an immune checkpoint inhibitor for use in treating cancer |
HUE063911T2 (en) * | 2016-06-02 | 2024-02-28 | Bristol Myers Squibb Co | Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment |
US20200325226A1 (en) | 2016-06-03 | 2020-10-15 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treating a tumor |
ES2897964T3 (en) | 2016-06-03 | 2022-03-03 | Bristol Myers Squibb Co | Use of anti-PD-1 antibody in the treatment of patients with colorectal cancer |
EP4386005A3 (en) | 2016-06-03 | 2024-09-04 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
CN118304304A (en) | 2016-06-06 | 2024-07-09 | 大连万春布林医药有限公司 | Compositions and methods for reducing neutropenia |
BR112018075615A2 (en) | 2016-06-08 | 2019-07-02 | Glaxosmithkline Ip Dev Ltd | chemical compounds |
US20190298705A1 (en) | 2016-06-08 | 2019-10-03 | Glaxosmithkline Intellectual Property Development Limited | Chemical Compounds |
AU2017283480A1 (en) | 2016-06-13 | 2019-01-24 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
AU2017285218B2 (en) * | 2016-06-14 | 2024-08-22 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
MD3468957T2 (en) | 2016-06-14 | 2020-11-30 | Novartis Ag | Crystalline form of (r)-4-(5-(cyclopropylethynyl)isoxazol-3-yl)-n-hydroxy-2-methyl-2-(methylsulfonyl)butanamide as an antibacterial agent |
WO2017216686A1 (en) | 2016-06-16 | 2017-12-21 | Novartis Ag | 8,9-fused 2-oxo-6,7-dihydropyrido-isoquinoline compounds as antivirals |
WO2017216685A1 (en) | 2016-06-16 | 2017-12-21 | Novartis Ag | Pentacyclic pyridone compounds as antivirals |
BR112018076281A2 (en) | 2016-06-20 | 2019-03-26 | Kymab Limited | immunocytocin, use of an immunocytocin, method, pharmaceutical composition, method for treating a proliferative disease in an animal, nucleic acid, vector, host and antibody or fragment thereof |
MD3472167T2 (en) | 2016-06-20 | 2023-02-28 | Incyte Corp | Heterocyclic compounds as immunomodulators |
BR112018077021A2 (en) | 2016-06-24 | 2019-04-02 | Infinity Pharmaceuticals, Inc. | combination therapies |
CN109475536B (en) | 2016-07-05 | 2022-05-27 | 百济神州有限公司 | Combination of a PD-l antagonist and a RAF inhibitor for the treatment of cancer |
US11098077B2 (en) | 2016-07-05 | 2021-08-24 | Chinook Therapeutics, Inc. | Locked nucleic acid cyclic dinucleotide compounds and uses thereof |
WO2018011166A2 (en) | 2016-07-12 | 2018-01-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for quantifying the population of myeloid dendritic cells in a tissue sample |
WO2018013597A1 (en) | 2016-07-12 | 2018-01-18 | Revolution Medicines, Inc. | 2,5-disubstituted 3-methyl pyrazines and 2,5,6-trisubstituted 3-methyl pyrazines as allosteric shp2 inhibitors |
WO2018013797A1 (en) | 2016-07-13 | 2018-01-18 | President And Fellows Of Harvard College | Antigen-presenting cell-mimetic scaffolds and methods for making and using the same |
BR112019001136A2 (en) | 2016-07-20 | 2019-04-30 | Glaxosmithkline Ip Dev Ltd | chemical compounds |
US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
KR20230100748A (en) | 2016-07-28 | 2023-07-05 | 노파르티스 아게 | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
CN109562282A (en) | 2016-07-29 | 2019-04-02 | 伊莱利利公司 | MERESTINIB and anti-PD-L1 or the combination treatment of anti-PD-1 inhibitor are used for treating cancer |
US20210369746A1 (en) | 2016-08-01 | 2021-12-02 | Molecular Templates, Inc. | Administration of hypoxia activated prodrugs in combination with immune modulatory agents for treating cancer |
JP2019528311A (en) | 2016-08-03 | 2019-10-10 | ネクストキュア インコーポレイテッド | Compositions and methods for modulating LAIR signaling |
EP3494140A1 (en) | 2016-08-04 | 2019-06-12 | GlaxoSmithKline Intellectual Property Development Ltd | Anti-icos and anti-pd-1 antibody combination therapy |
WO2018027524A1 (en) | 2016-08-09 | 2018-02-15 | Innovent Biologics (Suzhou) Co., Ltd. | Pd-1 antibody formulation |
WO2018029336A1 (en) | 2016-08-12 | 2018-02-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for determining whether a subject was administered with an activator of the ppar beta/delta pathway. |
DK3500299T3 (en) | 2016-08-19 | 2024-01-29 | Beigene Switzerland Gmbh | Combination of zanubrutinib with an anti-CD20 or an anti-PD-1 antibody for use in the treatment of cancer |
AU2017315294B2 (en) | 2016-08-22 | 2023-12-21 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
CN106977602B (en) | 2016-08-23 | 2018-09-25 | 中山康方生物医药有限公司 | A kind of anti-PD1 monoclonal antibodies, its medical composition and its use |
WO2018035710A1 (en) | 2016-08-23 | 2018-03-01 | Akeso Biopharma, Inc. | Anti-ctla4 antibodies |
CN106967172B (en) | 2016-08-23 | 2019-01-08 | 康方药业有限公司 | The anti-PD-1 bifunctional antibody of anti-CTLA 4-, its medical composition and its use |
CN110121352B (en) | 2016-09-01 | 2020-12-11 | 嵌合体生物工程公司 | GOLD-optimized CAR T-cells |
WO2018047109A1 (en) | 2016-09-09 | 2018-03-15 | Novartis Ag | Polycyclic pyridone compounds as antivirals |
WO2018049263A1 (en) | 2016-09-09 | 2018-03-15 | Tg Therapeutics, Inc. | Combination of an anti-cd20 antibody, pi3 kinase-delta inhibitor, and anti-pd-1 or anti-pd-l1 antibody for treating hematological cancers |
US20190218294A1 (en) | 2016-09-09 | 2019-07-18 | Bristol-Myers Squibb Company | Use of an anti-pd-1 antibody in combination with an anti-mesothelin antibody in cancer treatment |
WO2018046736A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018046738A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018053434A1 (en) | 2016-09-16 | 2018-03-22 | The Johns Hopkins University | Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery |
SG11201901950TA (en) | 2016-09-19 | 2019-04-29 | Celgene Corp | Methods of treating immune disorders using pd-1 binding proteins |
US10766958B2 (en) | 2016-09-19 | 2020-09-08 | Celgene Corporation | Methods of treating vitiligo using PD-1 binding antibodies |
EP3516528A4 (en) | 2016-09-21 | 2020-06-24 | Twist Bioscience Corporation | Nucleic acid based data storage |
EP4360714A3 (en) | 2016-09-21 | 2024-07-24 | Nextcure, Inc. | Antibodies for siglec-15 and methods of use thereof |
ES2982558T3 (en) | 2016-09-21 | 2024-10-16 | Nextcure Inc | Antibodies to Siglec-15 and methods of using them |
AU2017332161B9 (en) | 2016-09-21 | 2024-08-22 | The United States Government As Represented By The Department Of Veterans Affairs | Chimeric antigen receptor (car) that targets chemokine receptor CCR4 and its use |
US20200016177A1 (en) | 2016-09-22 | 2020-01-16 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof |
CA3036564A1 (en) | 2016-09-23 | 2018-03-29 | Elstar Therapeutics, Inc. | Multispecific antibody molecules comprising lambda and kappa light chains |
JOP20190061A1 (en) | 2016-09-28 | 2019-03-26 | Novartis Ag | Beta-lactamase inhibitors |
PT3523287T (en) | 2016-10-04 | 2021-10-06 | Merck Sharp & Dohme | Benzo[b]thiophene compounds as sting agonists |
CN109843324A (en) | 2016-10-06 | 2019-06-04 | 辉瑞公司 | AVELUMAB therapeutic regimen for treating cancer |
AU2017341047B2 (en) | 2016-10-07 | 2024-10-10 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
JP7213799B2 (en) | 2016-10-10 | 2023-01-27 | ザ ナショナル インスティチュート フォー バイオテクノロジー イン ザ ネゲヴ,リミテッド | NON-CYTOTOXIC MODIFIED CELLS AND USES THEREOF |
MA46529A (en) | 2016-10-11 | 2019-08-21 | Agenus Inc | ANTI-LAG-3 ANTIBODIES AND PROCESSES FOR USE |
WO2018071576A1 (en) | 2016-10-14 | 2018-04-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Treatment of tumors by inhibition of cd300f |
EP3525818A1 (en) | 2016-10-14 | 2019-08-21 | Merck Sharp & Dohme Corp. | Combination of a pd-1 antagonist and eribulin for treating urothelial cancer |
TW201819380A (en) | 2016-10-18 | 2018-06-01 | 瑞士商諾華公司 | Fused tetracyclic pyridone compounds as antivirals |
WO2018075447A1 (en) | 2016-10-19 | 2018-04-26 | The Trustees Of Columbia University In The City Of New York | Combination of braf inhibitor, talimogene laherparepvec, and immune checkpoint inhibitor for use in the treatment cancer (melanoma) |
CA3040802A1 (en) | 2016-10-24 | 2018-05-03 | Orionis Biosciences Nv | Targeted mutant interferon-gamma and uses thereof |
KR20240019398A (en) | 2016-10-28 | 2024-02-14 | 브리스톨-마이어스 스큅 컴퍼니 | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
JP7267914B2 (en) | 2016-11-02 | 2023-05-02 | エンクマフ エスアーエールエル | Bispecific antibodies to BCMA and CD3 and immunotherapeutic agents used in combination to treat multiple myeloma |
WO2018083087A2 (en) | 2016-11-02 | 2018-05-11 | Glaxosmithkline Intellectual Property (No.2) Limited | Binding proteins |
AU2017355446A1 (en) | 2016-11-03 | 2019-05-02 | Bristol-Myers Squibb Company | Activatable anti-CTLA-4 antibodies and uses thereof |
US10342785B2 (en) | 2016-11-04 | 2019-07-09 | Askat Inc. | Use of EP4 receptor antagonists for the treatment of NASH-associated liver cancer |
EP3535280B1 (en) | 2016-11-07 | 2022-03-16 | Bristol-Myers Squibb Company | Immunomodulators |
IT201600111877A1 (en) * | 2016-11-07 | 2018-05-07 | Biouniversa Srl | Anti-BAG3 antibodies in combination with inhibitors of immune check-point for therapeutic use |
EP3538140A1 (en) | 2016-11-14 | 2019-09-18 | Institut National de la Sante et de la Recherche Medicale (INSERM) | Methods and pharmaceutical compositions for modulating stem cells proliferation or differentiation |
WO2018094275A1 (en) | 2016-11-18 | 2018-05-24 | Tolero Pharmaceuticals, Inc. | Alvocidib prodrugs and their use as protein kinase inhibitors |
WO2018091542A1 (en) | 2016-11-21 | 2018-05-24 | Idenix Pharmaceuticals Llc | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
US11135307B2 (en) | 2016-11-23 | 2021-10-05 | Mersana Therapeutics, Inc. | Peptide-containing linkers for antibody-drug conjugates |
TW201825119A (en) | 2016-11-30 | 2018-07-16 | 日商協和醱酵麒麟有限公司 | Method of treating cancer using anti-ccr4 antibody and anti-pd-1 antibody |
CN110234342A (en) | 2016-12-01 | 2019-09-13 | 葛兰素史密斯克莱知识产权发展有限公司 | Combination treatment |
BR112019011370A2 (en) | 2016-12-01 | 2019-10-15 | Glaxosmithkline Ip Dev Ltd | combination therapy |
US20190358262A1 (en) | 2016-12-03 | 2019-11-28 | Juno Therapeutics, Inc. | Methods for modulation of car-t cells |
CA3046205A1 (en) | 2016-12-07 | 2018-06-14 | Agenus Inc. | Anti-ctla-4 antibodies and methods of use thereof |
CA3046082A1 (en) | 2016-12-07 | 2018-06-14 | Agenus Inc. | Antibodies and methods of use thereof |
US10308644B2 (en) | 2016-12-22 | 2019-06-04 | Incyte Corporation | Heterocyclic compounds as immunomodulators |
EP3559044A4 (en) * | 2016-12-23 | 2020-12-02 | REMD Biotherapeutics, Inc. | Immunotherapy using antibodies that bind programmed death 1 (pd-1) |
CA3047508A1 (en) | 2016-12-23 | 2018-06-28 | Virttu Biologics Limited | Treatment of cancer |
WO2018122245A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting the survival time of patients suffering from cms3 colorectal cancer |
WO2018122249A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer |
CN110431135A (en) | 2017-01-06 | 2019-11-08 | 大连万春布林医药有限公司 | Tubulin binding compound and its therapeutical uses |
US11613785B2 (en) | 2017-01-09 | 2023-03-28 | Onkosxcel Therapeutics, Llc | Predictive and diagnostic methods for prostate cancer |
AU2018207172B2 (en) | 2017-01-13 | 2023-10-12 | Mink Therapeutics, Inc. | T cell receptors that bind to NY-ESO-1 and methods of use thereof |
WO2018134279A1 (en) | 2017-01-18 | 2018-07-26 | Pieris Pharmaceuticals Gmbh | Novel fusion polypeptides specific for lag-3 and pd-1 |
TWI771361B (en) * | 2017-01-20 | 2022-07-21 | 大陸商大有華夏生物醫藥集團有限公司 | Monoclonal Antibody and Fragments of Human Programmed Death Receptor PD-1 |
US20200237874A1 (en) | 2017-01-20 | 2020-07-30 | Novartis Ag | Combination therapy for the treatment of cancer |
BR112019014527A2 (en) | 2017-01-23 | 2020-02-27 | Revolution Medicines, Inc. | PYRIDINE COMPOUNDS AS ALLOSTIC SHP2 INHIBITORS |
KR102665763B1 (en) | 2017-01-23 | 2024-05-10 | 레볼루션 메디슨즈, 인크. | Bicyclic compounds as allosteric SHP2 inhibitors |
CN110461847B (en) | 2017-01-25 | 2022-06-07 | 百济神州有限公司 | Crystalline forms of (S) -7- (1- (but-2-alkynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4,5,6, 7-tetrahydropyrazolo [1,5-a ] pyrimidine-3-carboxamide, preparation and use thereof |
EP3573979A1 (en) | 2017-01-27 | 2019-12-04 | Celgene Corporation | 3-(1-oxo-4-((4-((3-oxomorpholino) methyl)benzyl)oxy)isoindolin-2-yl)piperidine-2,6-dione and isotopologues thereof |
US11400086B2 (en) | 2017-02-01 | 2022-08-02 | Beyondspring Pharmaceuticals, Inc. | Method of reducing chemotherapy-induced neutropenia |
JOP20190187A1 (en) | 2017-02-03 | 2019-08-01 | Novartis Ag | Anti-ccr7 antibody drug conjugates |
CN110573172A (en) | 2017-02-06 | 2019-12-13 | 奥里尼斯生物科学有限公司 | Targeted engineered interferons and uses thereof |
JP7476467B2 (en) | 2017-02-06 | 2024-05-01 | オリオンズ バイオサイエンス ビーブイ | Targeted chimeric proteins and uses thereof |
WO2018146148A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | A method for predicting the response to checkpoint blockade cancer immunotherapy |
WO2018146128A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Detection of kit polymorphism for predicting the response to checkpoint blockade cancer immunotherapy |
DK3579874T3 (en) | 2017-02-10 | 2021-10-11 | Novartis Ag | 1- (4-AMINO-5-BROMO-6- (1H-PYRAZOL-1-YL) PYRIMIDIN-2-YL) -1H-PYRAZOL-4-OL AND ITS USE FOR CANCER TREATMENT |
WO2018150326A1 (en) | 2017-02-15 | 2018-08-23 | Glaxosmithkline Intellectual Property Development Limited | Combination treatment for cancer |
WO2018151820A1 (en) | 2017-02-16 | 2018-08-23 | Elstar Therapeutics, Inc. | Multifunctional molecules comprising a trimeric ligand and uses thereof |
CA3054289A1 (en) | 2017-02-21 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Anti-pd-1 antibodies for treatment of lung cancer |
CN110892485B (en) | 2017-02-22 | 2024-03-22 | 特韦斯特生物科学公司 | Nucleic acid-based data storage |
EP3585813A1 (en) * | 2017-02-22 | 2020-01-01 | Sutro Biopharma, Inc. | Pd-1/tim-3 bi-specific antibodies, compositions thereof, and methods of making and using the same |
BR112019017628A2 (en) | 2017-02-24 | 2020-07-07 | Macrogenics, Inc. | cd137 x ta binding molecule, pharmaceutical compositions, use of cd137 x ta binding molecule, cd137 binding molecule, use of cd137 binding molecule, her2 / neu binding molecule, use of her2 binding molecule / neu, and use of a composition |
JP2020509009A (en) | 2017-02-27 | 2020-03-26 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited | Heterocyclic amides as kinase inhibitors |
TW201834697A (en) | 2017-02-28 | 2018-10-01 | 美商梅爾莎納醫療公司 | Combination therapies of her2-targeted antibody-drug conjugates |
CN110637031B (en) * | 2017-03-04 | 2024-04-16 | 湘潭腾华生物科技有限公司 | Recombinant antibodies to programmed death protein 1 (PD-1) and uses thereof |
WO2018163051A1 (en) | 2017-03-06 | 2018-09-13 | Novartis Ag | Methods of treatment of cancer with reduced ubb expression |
WO2018167778A1 (en) | 2017-03-12 | 2018-09-20 | Yeda Research And Development Co. Ltd. | Methods of diagnosing and prognosing cancer |
WO2018167780A1 (en) | 2017-03-12 | 2018-09-20 | Yeda Research And Development Co. Ltd. | Methods of prognosing and treating cancer |
JP2020510050A (en) | 2017-03-15 | 2020-04-02 | アムジエン・インコーポレーテツド | Use of an oncolytic virus alone or in combination with a checkpoint inhibitor to treat cancer |
EP3595674A4 (en) | 2017-03-15 | 2020-12-16 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US20210186982A1 (en) | 2017-03-24 | 2021-06-24 | Universite Nice Sophia Antipolis | Methods and compositions for treating melanoma |
IL313939A (en) | 2017-03-31 | 2024-08-01 | Bristol Myers Squibb Co | Anti-pd-1 antibodies for treating tumors in high tumor mutational burden (tmb) patients |
CA3057687A1 (en) | 2017-03-31 | 2018-10-04 | Five Prime Therapeutics, Inc. | Combination therapy for cancer using anti-gitr antibodies |
CN106987631A (en) * | 2017-04-01 | 2017-07-28 | 武汉赛云博生物科技有限公司 | A kind of immune group sequencing technologies for the adjoint diagnosis of PD 1/PD L1 blocking treatments |
WO2018185618A1 (en) | 2017-04-03 | 2018-10-11 | Novartis Ag | Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment |
HRP20221254T1 (en) | 2017-04-03 | 2022-12-23 | F. Hoffmann - La Roche Ag | Immunoconjugates of an anti-pd-1 antibody with a mutant il-2 or with il-15 |
CN110506059B (en) | 2017-04-05 | 2023-01-17 | 豪夫迈·罗氏有限公司 | Bispecific antibodies that specifically bind PD1 and LAG3 |
US11603407B2 (en) | 2017-04-06 | 2023-03-14 | Regeneron Pharmaceuticals, Inc. | Stable antibody formulation |
TWI788340B (en) | 2017-04-07 | 2023-01-01 | 美商必治妥美雅史谷比公司 | Anti-icos agonist antibodies and uses thereof |
CN110546166B (en) | 2017-04-13 | 2024-03-29 | 艾吉纳斯公司 | anti-CD 137 antibodies and methods of use thereof |
US11338003B2 (en) | 2017-04-14 | 2022-05-24 | Cg Oncology, Inc. | Methods of treating bladder cancer with an oncolytic virus |
DK3612517T3 (en) | 2017-04-18 | 2022-05-23 | Tempest Therapeutics Inc | Bicyclic compounds and their use in the treatment of cancer |
CN108728444A (en) | 2017-04-18 | 2018-11-02 | 长春华普生物技术股份有限公司 | Immunoregulation polynucleotide and its application |
US12134654B2 (en) | 2017-04-19 | 2024-11-05 | Marengo Therapeutics, Inc. | Multispecific molecules and uses thereof |
CN106939049B (en) * | 2017-04-20 | 2019-10-01 | 苏州思坦维生物技术股份有限公司 | The monoclonal antibody and the preparation method and application thereof of antagonism inhibition people PD-1 antigen and its ligand binding |
JP2020517737A (en) | 2017-04-21 | 2020-06-18 | シルラゼン, インコーポレイテッド | Combination therapy of oncolytic vaccinia virus and checkpoint inhibitor |
AR111419A1 (en) | 2017-04-27 | 2019-07-10 | Novartis Ag | INDAZOL PIRIDONA FUSIONED COMPOUNDS AS ANTIVIRALS |
CN118515666A (en) | 2017-04-27 | 2024-08-20 | 博笛生物科技有限公司 | 2-Amino-quinoline derivatives |
AR111651A1 (en) | 2017-04-28 | 2019-08-07 | Novartis Ag | CONJUGATES OF ANTIBODIES THAT INCLUDE TOLL TYPE RECEIVER AGONISTS AND COMBINATION THERAPIES |
US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
WO2018201047A1 (en) | 2017-04-28 | 2018-11-01 | Elstar Therapeutics, Inc. | Multispecific molecules comprising a non-immunoglobulin heterodimerization domain and uses thereof |
UY37695A (en) | 2017-04-28 | 2018-11-30 | Novartis Ag | BIS 2’-5’-RR- (3’F-A) (3’F-A) CYCLE DINUCLEOTIDE COMPOUND AND USES OF THE SAME |
RS64576B1 (en) | 2017-05-01 | 2023-10-31 | Agenus Inc | Anti-tigit antibodies and methods of use thereof |
JOP20190260A1 (en) | 2017-05-02 | 2019-10-31 | Merck Sharp & Dohme | Stable formulations of programmed death receptor 1 (pd-1) antibodies and methods of use thereof |
AU2018263868A1 (en) | 2017-05-02 | 2019-12-12 | Merck Sharp & Dohme Llc | Formulations of anti-LAG3 antibodies and co-formulations of anti-LAG3 antibodies and anti-PD-1 antibodies |
UY37718A (en) | 2017-05-05 | 2018-11-30 | Novartis Ag | 2-TRYCLINAL QUINOLINONES AS ANTIBACTERIAL AGENTS |
JP7090347B2 (en) | 2017-05-12 | 2022-06-24 | ハープーン セラピューティクス,インク. | Mesothelin-binding protein |
WO2018208667A1 (en) | 2017-05-12 | 2018-11-15 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
JOP20190256A1 (en) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | Newcastle disease viruses and uses thereof |
US11685787B2 (en) | 2017-05-16 | 2023-06-27 | Bristol-Myers Squibb Company | Treatment of cancer with anti-GITR agonist antibodies |
AR111760A1 (en) | 2017-05-19 | 2019-08-14 | Novartis Ag | COMPOUNDS AND COMPOSITIONS FOR THE TREATMENT OF SOLID TUMORS THROUGH INTRATUMORAL ADMINISTRATION |
WO2018215937A1 (en) | 2017-05-24 | 2018-11-29 | Novartis Ag | Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer |
EP3630162A1 (en) | 2017-05-24 | 2020-04-08 | Novartis AG | Antibody-cytokine engrafted proteins and methods of use |
KR20200010468A (en) | 2017-05-24 | 2020-01-30 | 노파르티스 아게 | Antibody-Cytokine Implanted Proteins and Methods of Use in Cancer Treatment |
AR111960A1 (en) | 2017-05-26 | 2019-09-04 | Incyte Corp | CRYSTALLINE FORMS OF A FGFR INHIBITOR AND PROCESSES FOR ITS PREPARATION |
WO2018222711A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
EP3631454B1 (en) | 2017-05-30 | 2023-09-13 | Bristol-Myers Squibb Company | Treatment of lag-3 positive tumors |
MX2019012076A (en) | 2017-05-30 | 2019-12-09 | Bristol Myers Squibb Co | Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody. |
JOP20190279A1 (en) | 2017-05-31 | 2019-11-28 | Novartis Ag | Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts |
WO2018222901A1 (en) | 2017-05-31 | 2018-12-06 | Elstar Therapeutics, Inc. | Multispecific molecules that bind to myeloproliferative leukemia (mpl) protein and uses thereof |
CA3065300A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
AU2018275109A1 (en) | 2017-06-01 | 2020-01-02 | Xencor, Inc. | Bispecific antibodies that bind CD 123 CD3 |
WO2018223004A1 (en) | 2017-06-01 | 2018-12-06 | Xencor, Inc. | Bispecific antibodies that bind cd20 and cd3 |
WO2018223040A1 (en) | 2017-06-01 | 2018-12-06 | Bristol-Myers Squibb Company | Methods of treating a tumor using an anti-pd-1 antibody |
KR20200054160A (en) | 2017-06-02 | 2020-05-19 | 주노 쎄러퓨티크스 인코퍼레이티드 | Preparation and method of articles for treatment with adoptive cell therapy |
US11559504B2 (en) | 2017-06-02 | 2023-01-24 | The Penn State Research Foundation | Ceramide nanoliposomes, compositions and methods of using for immunotherapy |
US11542331B2 (en) | 2017-06-06 | 2023-01-03 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that bind to BTN1A1 or BTN1A1-ligands |
WO2018225093A1 (en) | 2017-06-07 | 2018-12-13 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as atf4 pathway inhibitors |
CN110719799A (en) | 2017-06-09 | 2020-01-21 | 俄勒冈州普罗维登斯健康与服务部 | Use of CD39 and CD103 for identifying human tumor-reactive T cells for cancer therapy |
CA3066048A1 (en) | 2017-06-09 | 2018-12-13 | Glaxosmithkline Intellectual Property Development Limited | Combination therapy |
WO2018231872A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
WO2018229715A1 (en) | 2017-06-16 | 2018-12-20 | Novartis Ag | Compositions comprising anti-cd32b antibodies and methods of use thereof |
WO2018234367A1 (en) | 2017-06-20 | 2018-12-27 | Institut Curie | Inhibitor of suv39h1 histone methyltransferase for use in cancer combination therapy |
WO2018235056A1 (en) | 2017-06-22 | 2018-12-27 | Novartis Ag | Il-1beta binding antibodies for use in treating cancer |
EP3642240A1 (en) | 2017-06-22 | 2020-04-29 | Novartis AG | Antibody molecules to cd73 and uses thereof |
ES2959860T3 (en) | 2017-06-22 | 2024-02-28 | Celgene Corp | Treatment of hepatocellular carcinoma characterized by hepatitis B virus infection |
EA202090104A1 (en) | 2017-06-22 | 2020-04-09 | Новартис Аг | ANTIBODY MOLECULES TO CD73 AND WAYS OF THEIR APPLICATION |
TW201904993A (en) | 2017-06-22 | 2019-02-01 | 瑞士商諾華公司 | Use of IL-1β binding antibody |
KR20200020858A (en) | 2017-06-23 | 2020-02-26 | 브리스톨-마이어스 스큅 컴퍼니 | Immunomodulators Acting as Antagonists of PD-1 |
IL312120A (en) | 2017-06-23 | 2024-06-01 | Birdie Biopharmaceuticals Inc | Pharmaceutical compositions |
CN110799537B (en) * | 2017-06-25 | 2023-07-28 | 西雅图免疫公司 | anti-PD-1 antibodies and methods of making and using the same |
US11597768B2 (en) | 2017-06-26 | 2023-03-07 | Beigene, Ltd. | Immunotherapy for hepatocellular carcinoma |
US20200223924A1 (en) | 2017-06-27 | 2020-07-16 | Novartis Ag | Dosage regimens for anti-tim-3 antibodies and uses thereof |
JP2020526194A (en) | 2017-06-29 | 2020-08-31 | ジュノー セラピューティクス インコーポレイテッド | Mouse model for assessing toxicity associated with immunotherapeutic agents |
CN111032043A (en) | 2017-06-30 | 2020-04-17 | 细胞基因公司 | Compositions and methods of use of 2- (4-chlorophenyl) -N- ((2- (2, 6-dioxopiperidin-3-yl) -1-oxoisoindolin-5-yl) methyl) -2, 2-difluoroacetamide |
JP2020525512A (en) | 2017-07-03 | 2020-08-27 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited | 2-(4-chlorophenoxy)-N-((1-(2-(4-chlorophenoxy)ethynazetidin-3-yl)methyl) as an ATF4 inhibitor for treating cancer and other diseases Acetamide derivatives and related compounds |
JP2020525513A (en) | 2017-07-03 | 2020-08-27 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited | N-(3-(2-(4-chlorophenoxy)acetamidobicyclo[1.1.1]pentan-1-yl)-2-cyclobutane-1 as an ATF4 inhibitor for treating cancer and other diseases -Carboxamide derivatives and related compounds |
SG11202000143PA (en) | 2017-07-10 | 2020-02-27 | Celgene Corp | Antiproliferative compounds and methods of use thereof |
EP3655542A1 (en) | 2017-07-18 | 2020-05-27 | Institut Gustave Roussy | Method for assessing the response to pd-1/pdl-1 targeting drugs |
AU2018302283A1 (en) | 2017-07-20 | 2020-02-06 | Novartis Ag | Dosage regimens of anti-LAG-3 antibodies and uses thereof |
EP3658173A1 (en) | 2017-07-25 | 2020-06-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for modulating monocytopoiesis |
WO2019021208A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | Indazole derivatives useful as perk inhibitors |
JP7274454B2 (en) | 2017-07-28 | 2023-05-16 | ブリストル-マイヤーズ スクイブ カンパニー | Predictive peripheral blood biomarkers for checkpoint inhibitors |
EP3661499A4 (en) | 2017-08-04 | 2021-04-21 | Merck Sharp & Dohme Corp. | COMBINATIONS OF PD-1 ANTAGONISTS AND BENZO[b |
JP2020530838A (en) | 2017-08-04 | 2020-10-29 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | Benzo [b] thiophene STING agonist for cancer treatment |
EP3676616A1 (en) | 2017-08-28 | 2020-07-08 | Bristol-Myers Squibb Company | Tim-3 antagonists for the treatment and diagnosis of cancers |
EP3679062A1 (en) | 2017-09-04 | 2020-07-15 | Agenus Inc. | T cell receptors that bind to mixed lineage leukemia (mll)-specific phosphopeptides and methods of use thereof |
AU2018328273A1 (en) | 2017-09-07 | 2020-03-12 | Revolution Medicines, Inc. | SHP2 inhibitor compositions and methods for treating cancer |
CA3074647A1 (en) | 2017-09-07 | 2019-03-14 | Augusta University Research Institute, Inc. | Antibodies to programmed cell death protein 1 |
TW201922721A (en) | 2017-09-07 | 2019-06-16 | 英商葛蘭素史克智慧財產發展有限公司 | Chemical compounds |
WO2019051501A1 (en) | 2017-09-11 | 2019-03-14 | Twist Bioscience Corporation | Gpcr binding proteins and synthesis thereof |
WO2019053617A1 (en) | 2017-09-12 | 2019-03-21 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
JP7196160B2 (en) | 2017-09-12 | 2022-12-26 | スミトモ ファーマ オンコロジー, インコーポレイテッド | Treatment Regimens for Cancers Insensitive to BCL-2 Inhibitors Using the MCL-1 Inhibitor Albocidib |
EP3684410A1 (en) | 2017-09-19 | 2020-07-29 | Institut Curie | Agonist of aryl hydrocarbon receptor for use in cancer combination therapy |
CN109554349B (en) * | 2017-09-27 | 2022-06-24 | 亘喜生物科技(上海)有限公司 | Engineered immune cells with silenced PD-1 gene expression |
WO2019061324A1 (en) | 2017-09-29 | 2019-04-04 | Curis Inc. | Crystal forms of immunomodulators |
KR20200058506A (en) | 2017-10-03 | 2020-05-27 | 브리스톨-마이어스 스큅 컴퍼니 | Immunomodulators |
AU2018344902B2 (en) | 2017-10-05 | 2021-06-03 | Glaxosmithkline Intellectual Property Development Limited | Modulators of stimulator of interferon genes (STING) useful in treating HIV |
EP3692034A1 (en) | 2017-10-05 | 2020-08-12 | GlaxoSmithKline Intellectual Property Development Limited | Modulators of stimulator of interferon genes (sting) |
EP3694879A1 (en) * | 2017-10-10 | 2020-08-19 | Numab Therapeutics AG | Antibodies targeting pdl1 and methods of use thereof |
CN117417308A (en) | 2017-10-11 | 2024-01-19 | 奥里吉恩肿瘤学有限公司 | Crystalline forms of 3-substituted 1,2, 4-oxadiazoles |
MX2020003579A (en) | 2017-10-12 | 2020-07-22 | Revolution Medicines Inc | Pyridine, pyrazine, and triazine compounds as allosteric shp2 inhibitors. |
SG11202003341UA (en) | 2017-10-13 | 2020-05-28 | Harpoon Therapeutics Inc | B cell maturation antigen binding proteins |
EP3694884A1 (en) | 2017-10-15 | 2020-08-19 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2019077062A1 (en) | 2017-10-18 | 2019-04-25 | Vivia Biotech, S.L. | Bite-activated car-t cells |
GB2583590A (en) | 2017-10-20 | 2020-11-04 | Twist Bioscience Corp | Heated nanowells for polynucleotide synthesis |
US20210040205A1 (en) | 2017-10-25 | 2021-02-11 | Novartis Ag | Antibodies targeting cd32b and methods of use thereof |
US12031975B2 (en) | 2017-11-01 | 2024-07-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
SG11202003866QA (en) | 2017-11-01 | 2020-05-28 | Juno Therapeutics Inc | Chimeric antigen receptors specific for b-cell maturation antigen (bcma) |
WO2019089412A1 (en) | 2017-11-01 | 2019-05-09 | Merck Sharp & Dohme Corp. | Novel substituted tetrahydroquinolin compounds as indoleamine 2,3-dioxygenase (ido) inhibitors |
EP3703688A2 (en) | 2017-11-01 | 2020-09-09 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for b-cell maturation antigen |
MX2020004531A (en) | 2017-11-03 | 2020-08-03 | Aurigene Discovery Tech Ltd | Dual inhibitors of tim-3 and pd-1 pathways. |
JP7378395B2 (en) | 2017-11-06 | 2023-11-13 | オーリジーン オンコロジー リミテッド | Conjoint therapy for immunomodulation |
EP3706778A1 (en) | 2017-11-06 | 2020-09-16 | Bristol-Myers Squibb Company | Methods of treating a tumor |
EP3706779B1 (en) | 2017-11-10 | 2022-12-14 | Armo Biosciences, Inc. | Compositions and methods of use of interleukin-10 in combination with immune checkpoint pathway inhibitors |
WO2019099294A1 (en) | 2017-11-14 | 2019-05-23 | Merck Sharp & Dohme Corp. | Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors |
MX2020004930A (en) | 2017-11-14 | 2020-08-27 | Merck Sharp & Dohme | Novel substituted biaryl compounds as indoleamine 2,3-dioxygenase (ido) inhibitors. |
BR112020008888A2 (en) | 2017-11-16 | 2020-10-20 | Novartis Ag | combination therapies |
CR20200204A (en) | 2017-11-17 | 2020-06-18 | Merck Sharp & Dohme | Antibodies specific for immunoglobulin-like transcript 3 (ilt3) and uses thereof |
EP3710455A1 (en) | 2017-11-17 | 2020-09-23 | Novartis AG | Novel dihydroisoxazole compounds and their use for the treatment of hepatitis b |
CN111670043A (en) | 2017-11-24 | 2020-09-15 | 国家医疗保健研究所 | Methods and compositions for treating cancer |
EP3717021A1 (en) | 2017-11-27 | 2020-10-07 | Mersana Therapeutics, Inc. | Pyrrolobenzodiazepine antibody conjugates |
WO2019108795A1 (en) | 2017-11-29 | 2019-06-06 | Beigene Switzerland Gmbh | Treatment of indolent or aggressive b-cell lymphomas using a combination comprising btk inhibitors |
CA3083949A1 (en) | 2017-11-30 | 2020-06-06 | Novartis Ag | Bcma-targeting chimeric antigen receptor, and uses thereof |
JP7348899B2 (en) | 2017-12-08 | 2023-09-21 | マレンゴ・セラピューティクス,インコーポレーテッド | Multispecific molecules and their uses |
US11946094B2 (en) | 2017-12-10 | 2024-04-02 | Augusta University Research Institute, Inc. | Combination therapies and methods of use thereof |
WO2019118937A1 (en) | 2017-12-15 | 2019-06-20 | Juno Therapeutics, Inc. | Anti-cct5 binding molecules and methods of use thereof |
AU2018385713A1 (en) | 2017-12-15 | 2020-06-18 | Revolution Medicines, Inc. | Polycyclic compounds as allosteric SHP2 inhibitors |
CN111433210A (en) | 2017-12-20 | 2020-07-17 | 诺华股份有限公司 | Fused tricyclic pyrazolo-dihydropyrazinyl-pyridinone compounds as antiviral agents |
WO2019125974A1 (en) | 2017-12-20 | 2019-06-27 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
CN111757757A (en) | 2017-12-21 | 2020-10-09 | 梅尔莎纳医疗公司 | Pyrrolobenzodiazepine antibody conjugates |
CN109966487B (en) * | 2017-12-28 | 2023-08-25 | 上海复宏汉霖生物制药有限公司 | Pharmaceutical formulation comprising anti-PD-L1 monoclonal antibody |
CA3087230A1 (en) | 2017-12-28 | 2019-07-04 | The General Hospital Corporation | Targeting the cbm signalosome complex induces regulatory t cells to inflame the tumor microenvironment |
IL312616A (en) | 2018-01-04 | 2024-07-01 | Twist Bioscience Corp | Dna-based digital information storage |
WO2019134946A1 (en) | 2018-01-04 | 2019-07-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma resistant |
US11324774B2 (en) | 2018-01-05 | 2022-05-10 | Augusta University Research Institute, Inc. | Compositions of oral alkaline salts and metabolic acid inducers and uses thereof |
EP3737408A1 (en) | 2018-01-08 | 2020-11-18 | Novartis AG | Immune-enhancing rnas for combination with chimeric antigen receptor therapy |
MX2020006171A (en) | 2018-01-12 | 2020-09-03 | Bristol Myers Squibb Co | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer. |
EP3740506A1 (en) | 2018-01-16 | 2020-11-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
AU2019210332A1 (en) | 2018-01-22 | 2020-09-10 | Pascal Biosciences Inc. | Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells |
EP3743076A1 (en) | 2018-01-22 | 2020-12-02 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
AU2019211326A1 (en) | 2018-01-23 | 2020-09-10 | Nextcure, Inc. | B7-H4 antibodies and methods of use thereof |
BR112020014960A2 (en) | 2018-01-24 | 2020-12-22 | Beyondspring Pharmaceuticals, Inc. | COMPOSITION AND METHOD FOR REDUCING THROMBOCYTOPENIA |
AU2019215031A1 (en) | 2018-01-31 | 2020-08-20 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
JP7383620B2 (en) | 2018-01-31 | 2023-11-20 | セルジーン コーポレイション | Combination therapy using adoptive cell therapy and checkpoint inhibitors |
EP3746480A1 (en) | 2018-01-31 | 2020-12-09 | F. Hoffmann-La Roche AG | Bispecific antibodies comprising an antigen-binding site binding to lag3 |
WO2019157124A1 (en) | 2018-02-08 | 2019-08-15 | Bristol-Myers Squibb Company | Combination of a tetanus toxoid, anti-ox40 antibody and/or anti-pd-1 antibody to treat tumors |
TWI804572B (en) | 2018-02-09 | 2023-06-11 | 日商小野藥品工業股份有限公司 | Bispecific antibody |
NL2020422B1 (en) | 2018-02-12 | 2019-08-19 | Stichting Het Nederlands Kanker Inst Antoni Van Leeuwenhoek Ziekenhuis | Methods for Predicting Treatment Outcome and/or for Selecting a Subject Suitable for Immune Checkpoint Therapy. |
US20200399383A1 (en) | 2018-02-13 | 2020-12-24 | Novartis Ag | Chimeric antigen receptor therapy in combination with il-15r and il15 |
WO2019162325A1 (en) | 2018-02-21 | 2019-08-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors |
JP2021514982A (en) | 2018-02-28 | 2021-06-17 | ノバルティス アーゲー | Indole-2-carbonyl compounds and their use for the treatment of hepatitis B |
US20210002373A1 (en) | 2018-03-01 | 2021-01-07 | Nextcure, Inc. | KLRG1 Binding Compositions and Methods of Use Thereof |
TWI708787B (en) | 2018-03-02 | 2020-11-01 | 美商美國禮來大藥廠 | Pd-1 agonist antibodies and uses thereof |
EP3762105A1 (en) | 2018-03-06 | 2021-01-13 | Institut Curie | Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy |
BR112020018585A8 (en) | 2018-03-12 | 2022-12-06 | Inst Nat Sante Rech Med | USE OF CALORIC RESTRICTION MIMETICS TO ENHANCE CHEMOIMMUNOTHERAPY FOR THE TREATMENT OF CANCER |
US20210009711A1 (en) | 2018-03-14 | 2021-01-14 | Elstar Therapeutics, Inc. | Multifunctional molecules and uses thereof |
US20210238280A1 (en) | 2018-03-14 | 2021-08-05 | Elstar Therapeutics, Inc. | Multifunctional molecules that bind to calreticulin and uses thereof |
BR112020018539A2 (en) | 2018-03-23 | 2020-12-29 | Bristol-Myers Squibb Company | ANTIBODIES AGAINST MICA AND / OR MICB AND USES OF THE SAME |
WO2019185792A1 (en) | 2018-03-29 | 2019-10-03 | Philogen S.P.A | Cancer treatment using immunoconjugates and immune check-point inhibitors |
CN108530537B (en) * | 2018-03-29 | 2019-07-02 | 中国人民解放军军事科学院军事医学研究院 | PD-1/PD-L1 signal pathway inhibitor |
WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
EP3774764A1 (en) | 2018-04-03 | 2021-02-17 | Merck Sharp&Dohme Corp. | Benzothiophenes and related compounds as sting agonists |
WO2019195063A1 (en) | 2018-04-03 | 2019-10-10 | Merck Sharp & Dohme Corp. | Aza-benzothiophene compounds as sting agonists |
CN112292399A (en) | 2018-04-04 | 2021-01-29 | 百时美施贵宝公司 | anti-CD27 antibodies and uses thereof |
WO2019193541A1 (en) | 2018-04-06 | 2019-10-10 | Glaxosmithkline Intellectual Property Development Limited | Bicyclic aromatic ring derivatives of formula (i) as atf4 inhibitors |
WO2019193540A1 (en) | 2018-04-06 | 2019-10-10 | Glaxosmithkline Intellectual Property Development Limited | Heteroaryl derivatives of formula (i) as atf4 inhibitors |
AU2019251421A1 (en) | 2018-04-09 | 2020-10-29 | Checkmate Pharmaceuticals | Packaging oligonucleotides into virus-like particles |
US20210147570A1 (en) | 2018-04-12 | 2021-05-20 | Bristol-Myers Squibb Company | Anticancer combination therapy with cd73 antagonist antibody and pd-1/pd-l1 axis antagonist antibody |
US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
WO2019204523A1 (en) | 2018-04-17 | 2019-10-24 | Tempest Therapeutics, Inc. | Bicyclic carboxamides and methods of use thereof |
MX2020010912A (en) | 2018-04-18 | 2021-01-29 | Xencor Inc | Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof. |
WO2019204665A1 (en) | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof |
EP3781687A4 (en) | 2018-04-20 | 2022-02-09 | Merck Sharp & Dohme Corp. | Novel substituted rig-i agonists: compositions and methods thereof |
CA3096909A1 (en) | 2018-04-26 | 2019-10-31 | Agenus Inc. | Heat shock protein-binding peptide compositions and methods of use thereof |
WO2019207030A1 (en) | 2018-04-26 | 2019-10-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
US12048745B2 (en) | 2018-05-01 | 2024-07-30 | Augusta University Research Institute, Inc. | Methods for detecting and reversing immune therapy resistance |
MX2020011718A (en) | 2018-05-04 | 2021-02-15 | Incyte Corp | Solid forms of an fgfr inhibitor and processes for preparing the same. |
BR112020022373A2 (en) | 2018-05-04 | 2021-02-02 | Incyte Corporation | salts of a fgfr inhibitor |
CN112424230A (en) | 2018-05-14 | 2021-02-26 | 英美偌科有限公司 | Bifunctional binding polypeptides |
GB201807924D0 (en) | 2018-05-16 | 2018-06-27 | Ctxt Pty Ltd | Compounds |
SG11202011467RA (en) | 2018-05-18 | 2020-12-30 | Twist Bioscience Corp | Polynucleotides, reagents, and methods for nucleic acid hybridization |
CN112492874A (en) | 2018-05-23 | 2021-03-12 | 细胞基因公司 | Treatment of multiple myeloma and use of biomarkers for 4- (4- (4- (((2- (2, 6-dioxopiperidin-3-yl) -1-oxoisoindolin-4-yl) oxy) methyl) benzyl) piperazin-1-yl) -3-fluorobenzonitrile |
HUE061792T2 (en) | 2018-05-23 | 2023-08-28 | Celgene Corp | Antiproliferative compounds and bispecific antibody against bcma and cd3 for combined use |
TW202015726A (en) | 2018-05-30 | 2020-05-01 | 瑞士商諾華公司 | Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies |
US20210214459A1 (en) | 2018-05-31 | 2021-07-15 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
WO2019231870A1 (en) | 2018-05-31 | 2019-12-05 | Merck Sharp & Dohme Corp. | Novel substituted [1.1.1] bicyclo compounds as indoleamine 2,3-dioxygenase inhibitors |
WO2019232319A1 (en) | 2018-05-31 | 2019-12-05 | Peloton Therapeutics, Inc. | Compositions and methods for inhibiting cd73 |
US11932681B2 (en) | 2018-05-31 | 2024-03-19 | Novartis Ag | Hepatitis B antibodies |
CN118459594A (en) | 2018-06-01 | 2024-08-09 | 诺华股份有限公司 | Binding molecules to BCMA and uses thereof |
WO2019232528A1 (en) | 2018-06-01 | 2019-12-05 | Xencor, Inc. | Dosing of a bispecific antibody that bind cd123 and cd3 |
KR20210029158A (en) | 2018-06-03 | 2021-03-15 | 람카프 바이오 베타 엘티디. | Bispecific antibodies to CEACAM5 and CD47 |
CA3100724A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | B-cell maturation antigen protein (bcma) chimeric antigen receptors and uses thereof |
MA52889A (en) | 2018-06-15 | 2021-04-21 | Flagship Pioneering Innovations V Inc | INCREASED IMMUNE ACTIVITY BY MODULATION OF POST-CELLULAR SIGNALING FACTORS |
WO2019245817A1 (en) | 2018-06-19 | 2019-12-26 | Armo Biosciences, Inc. | Compositions and methods of use of il-10 agents in conjunction with chimeric antigen receptor cell therapy |
TW202005985A (en) | 2018-06-21 | 2020-02-01 | 美商再生元醫藥公司 | Methods for treating cancer with bispecific anti-CD3xMUC16 antibodies and anti-PD-1 antibodies |
WO2020005068A2 (en) | 2018-06-29 | 2020-01-02 | Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis | Gene signatures and method for predicting response to pd-1 antagonists and ctla-4 antagonists, and combination thereof |
CN112955465A (en) | 2018-07-03 | 2021-06-11 | 马伦戈治疗公司 | anti-TCR antibody molecules and uses thereof |
CA3108460A1 (en) * | 2018-07-04 | 2020-01-09 | Cytoimmune Therapeutics, Inc. | Compositions and methods for immunotherapy targeting flt3, pd-1, and/or pd-l1 |
CA3105942A1 (en) | 2018-07-09 | 2020-01-16 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
AR116109A1 (en) | 2018-07-10 | 2021-03-31 | Novartis Ag | DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME |
CA3103385A1 (en) | 2018-07-10 | 2020-01-16 | Novartis Ag | 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases |
GB201811408D0 (en) | 2018-07-12 | 2018-08-29 | F Star Beta Ltd | CD137 Binding Molecules |
US20210277135A1 (en) | 2018-07-13 | 2021-09-09 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a method of treating a cancer or a solid tumor |
US20210301020A1 (en) | 2018-07-24 | 2021-09-30 | Amgen Inc. | Combination of lilrb1/2 pathway inhibitors and pd-1 pathway inhibitors |
WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
MX2021000726A (en) | 2018-07-26 | 2021-03-25 | Bristol Myers Squibb Co | Lag-3 combination therapy for the treatment of cancer. |
WO2020021061A1 (en) | 2018-07-26 | 2020-01-30 | Pieris Pharmaceuticals Gmbh | Humanized anti-pd-1 antibodies and uses thereof |
US20210236633A1 (en) | 2018-08-06 | 2021-08-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers |
WO2020030571A1 (en) | 2018-08-06 | 2020-02-13 | Glaxosmithkline Intellectual Property Development Limited | Combinations of a pd-1 antibody and a tlr4 modulator and uses thereof |
WO2020031107A1 (en) | 2018-08-08 | 2020-02-13 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
EP3833762A4 (en) | 2018-08-09 | 2022-09-28 | Verseau Therapeutics, Inc. | Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof |
CN112955221A (en) | 2018-08-27 | 2021-06-11 | 皮里斯制药有限公司 | Combination therapy comprising a CD137/HER2 bispecific agent and a PD-1 axis inhibitor and uses thereof |
WO2020044206A1 (en) | 2018-08-29 | 2020-03-05 | Glaxosmithkline Intellectual Property Development Limited | Heterocyclic amides as kinase inhibitors for use in the treatment cancer |
SG11202101780WA (en) | 2018-08-30 | 2021-03-30 | Hcw Biologics Inc | Single-chain chimeric polypeptides and uses thereof |
EP3843756A2 (en) | 2018-08-30 | 2021-07-07 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
US11518792B2 (en) | 2018-08-30 | 2022-12-06 | HCW Biologics, Inc. | Multi-chain chimeric polypeptides and uses thereof |
WO2020044252A1 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Dosage regimes for anti-m-csf antibodies and uses thereof |
WO2020047345A1 (en) | 2018-08-31 | 2020-03-05 | Yale University | Compositions and methods of using cell-penetrating antibodies in combination with immune checkpoint modulators |
WO2020048942A1 (en) | 2018-09-04 | 2020-03-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses |
WO2020049534A1 (en) | 2018-09-07 | 2020-03-12 | Novartis Ag | Sting agonist and combination therapy thereof for the treatment of cancer |
BR112021004287A2 (en) | 2018-09-07 | 2021-08-03 | Pfizer Inc. | anti-avss8 antibodies and compositions and uses thereof |
WO2020053742A2 (en) | 2018-09-10 | 2020-03-19 | Novartis Ag | Anti-hla-hbv peptide antibodies |
MX2021002742A (en) | 2018-09-11 | 2021-08-11 | Curis Inc | Combination therapy with a phosphoinositide 3-kinase inhibitor with a zinc binding moiety. |
WO2020053654A1 (en) | 2018-09-12 | 2020-03-19 | Novartis Ag | Antiviral pyridopyrazinedione compounds |
EP3849606A4 (en) | 2018-09-13 | 2022-06-29 | Merck Sharp & Dohme Corp. | Combination of pd-1 antagonist and lag3 antagonist for treating non-microsatellite instablity-high/proficient mismatch repair colorectal cancer |
JP2022511337A (en) | 2018-09-19 | 2022-01-31 | インサーム (インスティテュート ナショナル デ ラ サンテ エ デ ラ ルシェルシェ メディカル) | Methods and Pharmaceutical Compositions for the Treatment of Cancers Resistant to Immune Checkpoint Treatment |
JP2022501361A (en) | 2018-09-19 | 2022-01-06 | アルパイン イミューン サイエンシズ インコーポレイテッド | Methods and uses of variant CD80 fusion proteins and related constructs |
EP3856771A4 (en) | 2018-09-25 | 2022-06-29 | Harpoon Therapeutics, Inc. | Dll3 binding proteins and methods of use |
EP3856350A1 (en) | 2018-09-27 | 2021-08-04 | Marengo Therapeutics, Inc. | Csf1r/ccr2 multispecific antibodies |
US20220047633A1 (en) | 2018-09-28 | 2022-02-17 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
EP3856782A1 (en) | 2018-09-28 | 2021-08-04 | Novartis AG | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
IL305106A (en) | 2018-09-29 | 2023-10-01 | Novartis Ag | Process of manufacture of a compound for inhibiting the activity of shp2 |
EP3860578A1 (en) | 2018-10-01 | 2021-08-11 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Use of inhibitors of stress granule formation for targeting the regulation of immune responses |
WO2020072821A2 (en) | 2018-10-03 | 2020-04-09 | Xencor, Inc. | Il-12 heterodimeric fc-fusion proteins |
JP2022512642A (en) | 2018-10-09 | 2022-02-07 | ブリストル-マイヤーズ スクイブ カンパニー | Anti-MerTK antibody to treat cancer |
US11066404B2 (en) | 2018-10-11 | 2021-07-20 | Incyte Corporation | Dihydropyrido[2,3-d]pyrimidinone compounds as CDK2 inhibitors |
MA53862A (en) | 2018-10-12 | 2022-01-19 | Xencor Inc | FC FUSION PROTEINS OF IL-15/IL-15RALPHA TARGETTING PD-1 AND USES IN COMBINATION THERAPIES INVOLVING THE SAME |
WO2020079581A1 (en) | 2018-10-16 | 2020-04-23 | Novartis Ag | Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy |
IL308722B1 (en) | 2018-10-17 | 2024-09-01 | Biolinerx Ltd | Treatment of metastatic pancreatic adenocarcinoma |
WO2020079164A1 (en) | 2018-10-18 | 2020-04-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination of a big-h3 antagonist and an immune checkpoint inhibitor for the treatment of solid tumor |
CA3117016A1 (en) | 2018-10-19 | 2020-04-23 | Bristol-Myers Squibb Company | Combination therapy for melanoma |
MX2021004603A (en) | 2018-10-22 | 2021-09-08 | Glaxosmithkline Ip Dev Ltd | Dosing. |
CN112912403A (en) | 2018-10-23 | 2021-06-04 | 百时美施贵宝公司 | Method for treating tumors |
US20230021500A1 (en) | 2018-10-29 | 2023-01-26 | Mersana Therapeutics, Inc. | Cysteine engineered antibody-drug conjugates with peptide-containing linkers |
US20230053449A1 (en) | 2018-10-31 | 2023-02-23 | Novartis Ag | Dc-sign antibody drug conjugates |
MX2021005024A (en) | 2018-11-01 | 2021-07-21 | Juno Therapeutics Inc | Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen. |
EP3873464A4 (en) | 2018-11-01 | 2022-06-08 | Merck Sharp & Dohme Corp. | Novel substituted pyrazole compounds as indoleamine 2,3-dioxygenase inhibitors |
BR112021007626A2 (en) | 2018-11-01 | 2021-10-13 | Juno Therapeutics, Inc. | CHIMERIC ANTIGEN RECEPTORS SPECIFIC FOR G-PROTEIN-COUPLED RECEPTOR CLASS C, GROUP 5, MEMBER D RECEPTOR (GPRC5D) |
EP3877366A4 (en) | 2018-11-06 | 2022-08-24 | Merck Sharp & Dohme Corp. | Novel substituted tricyclic compounds as indoleamine 2,3-dioxygenase inhibitors |
PL3880186T3 (en) | 2018-11-14 | 2024-07-22 | Regeneron Pharmaceuticals, Inc. | Intralesional administration of pd-1 inhibitors for treating skin cancer |
TW202028222A (en) | 2018-11-14 | 2020-08-01 | 美商Ionis製藥公司 | Modulators of foxp3 expression |
AU2019379179A1 (en) | 2018-11-16 | 2021-06-10 | Arqule, Inc. | Pharmaceutical combination for treatment of cancer |
US11274150B2 (en) | 2018-11-16 | 2022-03-15 | Bristol-Myers Squibb Company | Anti-human natural killer cell inhibitory receptor group 2A protein (NKG2A) antibodies |
US20220008465A1 (en) | 2018-11-16 | 2022-01-13 | Juno Therapeutics, Inc. | Methods of dosing engineered t cells for the treatment of b cell malignancies |
JP2022507606A (en) | 2018-11-16 | 2022-01-18 | ネオイミューンテック, インコーポレイテッド | How to Treat Tumors with a Combination of IL-7 Protein and Immune Checkpoint Inhibitors |
WO2020104496A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Bispecific antibody targeting transferrin receptor 1 and soluble antigen |
WO2020106560A1 (en) | 2018-11-20 | 2020-05-28 | Merck Sharp & Dohme Corp. | Substituted amino triazolopyrimidine and amino triazolopyrazine adenosine receptor antagonists, pharmaceutical compositions and their use |
WO2020104479A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies |
BR112021009078A8 (en) | 2018-11-20 | 2023-02-07 | Merck Sharp & Dohme | SUBSTITUTED ADENOSINE RECEPTOR ANTAGONISTS OF AMINOTRIAZOLOPYRIMIDINE AND AMINOTRIAZOLOPYRAZINE, PHARMACEUTICAL COMPOSITIONS AND THEIR USES |
EP3886842A1 (en) | 2018-11-26 | 2021-10-06 | Debiopharm International SA | Combination treatment of hiv infections |
WO2020112581A1 (en) | 2018-11-28 | 2020-06-04 | Merck Sharp & Dohme Corp. | Novel substituted piperazine amide compounds as indoleamine 2, 3-dioxygenase (ido) inhibitors |
WO2020109355A1 (en) | 2018-11-28 | 2020-06-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kit for assaying lytic potential of immune effector cells |
CN113710256A (en) | 2018-11-30 | 2021-11-26 | 朱诺治疗学股份有限公司 | Methods of treatment using adoptive cell therapy |
JP7406556B2 (en) | 2018-11-30 | 2023-12-27 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッド | Compounds useful in HIV therapy |
BR112021010427B1 (en) | 2018-11-30 | 2022-09-27 | Merck Sharp & Dohme Corp | AMINO TRIAZOLO QUINAZOLINE DERIVATIVE COMPOUNDS SUBSTITUTED IN POSITION 9 AS ADENOSINE RECEPTOR ANTAGONISTS, THEIR PHARMACEUTICAL COMPOSITIONS AND THEIR USES |
WO2020117988A1 (en) | 2018-12-04 | 2020-06-11 | Tolero Pharmaceuticals, Inc. | Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer |
EP3891270A1 (en) | 2018-12-07 | 2021-10-13 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes |
WO2020115261A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
MA54448A (en) | 2018-12-11 | 2021-10-20 | Theravance Biopharma R&D Ip Llc | NAPHTHYRIDINE AND QUINOLINE DERIVATIVES AS ALK5 INHIBITORS |
WO2020120592A1 (en) | 2018-12-12 | 2020-06-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating melanoma |
EP3897624A1 (en) | 2018-12-17 | 2021-10-27 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Use of sulconazole as a furin inhibitor |
GB201820547D0 (en) | 2018-12-17 | 2019-01-30 | Oxford Univ Innovation | Modified antibodies |
EP3898699A1 (en) | 2018-12-19 | 2021-10-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d |
WO2020128972A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
US11618776B2 (en) | 2018-12-20 | 2023-04-04 | Xencor, Inc. | Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains |
WO2020127885A1 (en) | 2018-12-21 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions for treating cancers and resistant cancers |
KR20210107731A (en) | 2018-12-21 | 2021-09-01 | 노파르티스 아게 | Antibodies to PMEL17 and conjugates thereof |
WO2020128636A1 (en) | 2018-12-21 | 2020-06-25 | Novartis Ag | Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome |
AU2019403445A1 (en) | 2018-12-21 | 2021-07-29 | Aim Immunotech Inc. | Compositions and methods for cancer therapy |
WO2020128637A1 (en) | 2018-12-21 | 2020-06-25 | Novartis Ag | Use of il-1 binding antibodies in the treatment of a msi-h cancer |
EP3897613A1 (en) | 2018-12-21 | 2021-10-27 | Novartis AG | Use of il-1beta binding antibodies |
EP3898974A1 (en) | 2018-12-21 | 2021-10-27 | Onxeo | New conjugated nucleic acid molecules and their uses |
JP2022514087A (en) | 2018-12-21 | 2022-02-09 | ノバルティス アーゲー | Use of IL-1β binding antibody |
MX2021007639A (en) | 2018-12-27 | 2021-08-11 | Amgen Inc | Lyophilized virus formulations. |
US20220073626A1 (en) | 2019-01-03 | 2022-03-10 | Institut National De La Santé Et De La Recheche Médicale (Inserm) | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer |
US11370777B2 (en) | 2019-01-09 | 2022-06-28 | Celgene Corporation | Solid forms comprising (s)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl)benzyl)piperazin-1-yl)-3-fluorobenzonitrile and salts thereof, and compositions comprising and methods of using the same |
JP7467479B2 (en) | 2019-01-09 | 2024-04-15 | セルジーン コーポレイション | Antiproliferative compounds and second active agents and methods of combination use thereof in the treatment of multiple myeloma - Patents.com |
MX2021008321A (en) | 2019-01-09 | 2021-10-13 | Celgene Corp | Pharmaceutical compositions comprising (s)-4-(4-(4-(((2-(2,6-diox opiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl) benzyl)piperazin-1-yl)-3-fluorobenzonitrile and methods of using the same. |
US20220073614A1 (en) * | 2019-01-11 | 2022-03-10 | The Wistar Institute Of Anatomy And Biology | Dna monoclonal antibodies targeting pd-1 for the treatment and prevention of cancer |
MX2021008525A (en) | 2019-01-15 | 2021-11-12 | Univ Nantes | Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy. |
EP3911302A1 (en) | 2019-01-17 | 2021-11-24 | Georgia Tech Research Corporation | Drug delivery systems containing oxidized cholesterols |
KR20210122272A (en) | 2019-01-29 | 2021-10-08 | 주노 쎄러퓨티크스 인코퍼레이티드 | Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase-like orphan receptor 1 (ROR1) |
WO2020157131A1 (en) | 2019-01-30 | 2020-08-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for identifying whether a subject suffering from a cancer will achieve a response with an immune-checkpoint inhibitor |
WO2020161083A1 (en) | 2019-02-04 | 2020-08-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating blood-brain barrier |
MX2021009371A (en) | 2019-02-12 | 2021-09-10 | Sumitomo Pharma Oncology Inc | Formulations comprising heterocyclic protein kinase inhibitors. |
BR112021015487A2 (en) | 2019-02-12 | 2021-10-05 | Novartis Ag | PHARMACEUTICAL COMBINATION COMPRISING TNO155 AND A PD-1 INHIBITOR |
WO2020165370A1 (en) | 2019-02-13 | 2020-08-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for selecting a cancer treatment in a subject suffering from cancer |
CN113490528A (en) | 2019-02-15 | 2021-10-08 | 诺华股份有限公司 | 3- (1-oxo-5- (piperidine-4-yl) isoindoline-2-yl) piperidine-2, 6-dione derivatives and uses thereof |
EP3924521A4 (en) | 2019-02-15 | 2023-03-29 | IncellDx, Inc. | Assaying bladder-associated samples, identifying and treating bladder-associated neoplasia, and kits for use therein |
WO2020168197A1 (en) | 2019-02-15 | 2020-08-20 | Incyte Corporation | Pyrrolo[2,3-d]pyrimidinone compounds as cdk2 inhibitors |
MA54947A (en) | 2019-02-15 | 2021-12-22 | Incyte Corp | CYCLINE-DEPENDENT KINASE 2 BIOMARKERS AND THEIR USES |
KR20210129672A (en) | 2019-02-15 | 2021-10-28 | 노파르티스 아게 | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
EP3927371A1 (en) | 2019-02-22 | 2021-12-29 | Novartis AG | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
US11492728B2 (en) | 2019-02-26 | 2022-11-08 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
AU2020228296A1 (en) | 2019-02-28 | 2021-10-14 | Regeneron Pharmaceuticals, Inc. | Administration of PD-1 inhibitors for treating skin cancer |
US11472791B2 (en) | 2019-03-05 | 2022-10-18 | Incyte Corporation | Pyrazolyl pyrimidinylamine compounds as CDK2 inhibitors |
BR112021017551A2 (en) | 2019-03-05 | 2021-11-09 | Amgen Inc | Use of oncolytic viruses for the treatment of cancer |
EP3935085A1 (en) | 2019-03-06 | 2022-01-12 | Regeneron Pharmaceuticals, Inc. | Il-4/il-13 pathway inhibitors for enhanced efficacy in treating cancer |
US11628162B2 (en) | 2019-03-08 | 2023-04-18 | Incyte Corporation | Methods of treating cancer with an FGFR inhibitor |
WO2020183011A1 (en) | 2019-03-14 | 2020-09-17 | Institut Curie | Htr1d inhibitors and uses thereof in the treatment of cancer |
EP3941503A1 (en) | 2019-03-19 | 2022-01-26 | Fundació Privada Institut d'Investigació Oncològica de Vall-Hebron | Combination therapy with omomyc and an antibody binding pd-1 or ctla-4 for the treatment of cancer |
US11793802B2 (en) | 2019-03-20 | 2023-10-24 | Sumitomo Pharma Oncology, Inc. | Treatment of acute myeloid leukemia (AML) with venetoclax failure |
AU2020245437A1 (en) | 2019-03-22 | 2021-09-30 | Sumitomo Pharma Oncology, Inc. | Compositions comprising PKM2 modulators and methods of treatment using the same |
KR20210146348A (en) | 2019-03-28 | 2021-12-03 | 브리스톨-마이어스 스큅 컴퍼니 | how to treat a tumor |
CN113891748A (en) | 2019-03-28 | 2022-01-04 | 百时美施贵宝公司 | Method for treating tumors |
TW202102543A (en) | 2019-03-29 | 2021-01-16 | 美商安進公司 | Use of oncolytic viruses in the neoadjuvant therapy of cancer |
CA3134439A1 (en) | 2019-03-29 | 2020-10-08 | Institut Curie | Interleukin-2 variants with modified biological activity |
US11919904B2 (en) | 2019-03-29 | 2024-03-05 | Incyte Corporation | Sulfonylamide compounds as CDK2 inhibitors |
EP3947737A2 (en) | 2019-04-02 | 2022-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
WO2020205688A1 (en) | 2019-04-04 | 2020-10-08 | Merck Sharp & Dohme Corp. | Inhibitors of histone deacetylase-3 useful for the treatment of cancer, inflammation, neurodegeneration diseases and diabetes |
US20220160692A1 (en) | 2019-04-09 | 2022-05-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer |
WO2020212484A1 (en) | 2019-04-17 | 2020-10-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders |
EP3963109A1 (en) | 2019-04-30 | 2022-03-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
US11440914B2 (en) | 2019-05-01 | 2022-09-13 | Incyte Corporation | Tricyclic amine compounds as CDK2 inhibitors |
WO2020223558A1 (en) | 2019-05-01 | 2020-11-05 | Incyte Corporation | Tricyclic amine compounds as cdk2 inhibitors |
MA55805A (en) | 2019-05-03 | 2022-03-09 | Flagship Pioneering Innovations V Inc | METHODS OF MODULATING IMMUNE ACTIVITY |
WO2020226633A1 (en) | 2019-05-07 | 2020-11-12 | Immunicom, Inc. | Increasing responses to checkpoint inhibitors by extracorporeal apheresis |
CA3136568A1 (en) | 2019-05-13 | 2020-11-19 | Regeneron Pharmaceuticals, Inc. | Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating cancer |
CN114302875A (en) | 2019-05-16 | 2022-04-08 | 斯汀塞拉股份有限公司 | Oxoacridinylacetic acid derivatives and methods of use |
US20220251079A1 (en) | 2019-05-16 | 2022-08-11 | Stingthera, Inc. | Benzo[b][1,8]naphthyridine acetic acid derivatives and methods of use |
CN113874036A (en) | 2019-05-24 | 2021-12-31 | 辉瑞公司 | Combination therapy with CDK inhibitors |
WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
WO2020243563A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Multi-tumor gene signatures for suitability to immuno-oncology therapy |
JP2022534982A (en) | 2019-05-30 | 2022-08-04 | ブリストル-マイヤーズ スクイブ カンパニー | Cellular localization signatures and their uses |
AU2020286444A1 (en) * | 2019-06-05 | 2021-12-23 | Anaptysbio, Inc. | PD-1 agonist and method of using same |
US20210038684A1 (en) | 2019-06-11 | 2021-02-11 | Alkermes Pharma Ireland Limited | Compositions and Methods for Cancer Immunotherapy |
KR20220024495A (en) | 2019-06-14 | 2022-03-03 | 틸트 바이오세러퓨틱스 오이 | Oncolytic adenovirus and checkpoint inhibitor combination therapy |
WO2020255011A1 (en) | 2019-06-18 | 2020-12-24 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 or anti-pd-l1 antibody |
US20220233685A1 (en) | 2019-06-18 | 2022-07-28 | Janssen Sciences Ireland Unlimited Company | Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 antibody |
KR20220035394A (en) | 2019-06-21 | 2022-03-22 | 에이치씨더블유 바이올로직스, 인크. | Multi-chain chimeric polypeptides and uses thereof |
EP3987019A4 (en) | 2019-06-21 | 2023-04-19 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
WO2020260547A1 (en) | 2019-06-27 | 2020-12-30 | Rigontec Gmbh | Design method for optimized rig-i ligands |
KR20220038362A (en) | 2019-07-02 | 2022-03-28 | 프레드 헛친슨 켄서 리서치 센터 | Recombinant AD35 Vector and Related Gene Therapy Improvements |
US11529350B2 (en) | 2019-07-03 | 2022-12-20 | Sumitomo Pharma Oncology, Inc. | Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof |
TWI845231B (en) | 2019-07-05 | 2024-06-11 | 日商小野藥品工業股份有限公司 | Treatment of hematological cancer with pd-1/cd3 bispecific protein |
US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
CN110384657A (en) * | 2019-07-15 | 2019-10-29 | 三峡大学 | Target the preparation method and the application on the drug that preparation inhibits cervical carcinoma that PD-L1 carries miR-34a microvesicle |
GB201910304D0 (en) | 2019-07-18 | 2019-09-04 | Ctxt Pty Ltd | Compounds |
GB201910305D0 (en) | 2019-07-18 | 2019-09-04 | Ctxt Pty Ltd | Compounds |
US12036204B2 (en) | 2019-07-26 | 2024-07-16 | Eisai R&D Management Co., Ltd. | Pharmaceutical composition for treating tumor |
US11083705B2 (en) | 2019-07-26 | 2021-08-10 | Eisai R&D Management Co., Ltd. | Pharmaceutical composition for treating tumor |
TW202120500A (en) | 2019-08-02 | 2021-06-01 | 美商梅爾莎納醫療公司 | Sting agonist compounds and methods of use |
JP2022542437A (en) | 2019-08-02 | 2022-10-03 | ランティオペプ ベスローテン ヴェンノーツハップ | Angiotensin type 2 (AT2) receptor agonists for treating cancer |
WO2021024020A1 (en) | 2019-08-06 | 2021-02-11 | Astellas Pharma Inc. | Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer |
WO2021025140A1 (en) | 2019-08-08 | 2021-02-11 | 小野薬品工業株式会社 | Dual-specific protein |
MX2022001732A (en) | 2019-08-12 | 2022-05-06 | Purinomia Biotech Inc | Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells. |
AR119765A1 (en) | 2019-08-14 | 2022-01-12 | Incyte Corp | IMIDAZOLIL PYRIMIDINILAMINE COMPOUNDS AS CDK2 INHIBITORS |
GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
JP2022545741A (en) | 2019-08-30 | 2022-10-28 | アジェナス インコーポレイテッド | ANTI-CD96 ANTIBODY AND METHODS OF USE THEREOF |
WO2021048292A1 (en) | 2019-09-11 | 2021-03-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
EP4031540A1 (en) | 2019-09-17 | 2022-07-27 | Bial-R&D Investments, S.A. | Substituted, saturated and unsaturated n-heterocyclic carboxamides and related compounds for their use in the treatment of medical disorders |
CA3151022A1 (en) | 2019-09-17 | 2021-03-25 | Bial - R&D Investments, S.A. | Substituted n-heterocyclic carboxamides as acid ceramidase inhibitors and their use as medicaments |
AU2020349516A1 (en) | 2019-09-17 | 2022-03-17 | Bial-R&D Investments, S.A. | Substituted imidazole carboxamides and their use in the treatment of medical disorders |
JP2022548881A (en) | 2019-09-18 | 2022-11-22 | ノバルティス アーゲー | ENTPD2 Antibodies, Combination Therapy and Methods of Using Antibodies and Combination Therapy |
WO2021053556A1 (en) | 2019-09-18 | 2021-03-25 | Novartis Ag | Nkg2d fusion proteins and uses thereof |
TW202124446A (en) | 2019-09-18 | 2021-07-01 | 瑞士商諾華公司 | Combination therapies with entpd2 antibodies |
CN114786776A (en) | 2019-09-18 | 2022-07-22 | 拉姆卡普生物阿尔法股份公司 | Bispecific antibodies against CEACAM5 and CD3 |
BR112022004316A2 (en) | 2019-09-22 | 2022-06-21 | Bristol Myers Squibb Co | Quantitative spatial characterization for lag-3 antagonist therapy |
WO2021061829A1 (en) | 2019-09-23 | 2021-04-01 | Twist Bioscience Corporation | Variant nucleic acid libraries for crth2 |
AU2020351751A1 (en) | 2019-09-25 | 2022-04-21 | Seagen Inc. | Combination anti-CD30 ADC, anti-PD-1 and chemotherapeutic for treatment of hematopoietic cancers |
KR20220066950A (en) | 2019-09-25 | 2022-05-24 | 브리스톨-마이어스 스큅 컴퍼니 | Complex biomarkers for cancer therapy |
EP4034537A1 (en) | 2019-09-26 | 2022-08-03 | Novartis AG | Antiviral pyrazolopyridinone compounds |
CA3155173A1 (en) | 2019-09-27 | 2021-04-01 | Glaxosmithkline Intellectual Property Development Limited | Antigen binding proteins |
EP3800201A1 (en) | 2019-10-01 | 2021-04-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cd28h stimulation enhances nk cell killing activities |
AU2020358726A1 (en) | 2019-10-01 | 2022-04-07 | Silverback Therapeutics, Inc. | Combination therapy with immune stimulatory conjugates |
US12122767B2 (en) | 2019-10-01 | 2024-10-22 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
WO2021064180A1 (en) | 2019-10-03 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating macrophages polarization |
US11851466B2 (en) | 2019-10-03 | 2023-12-26 | Xencor, Inc. | Targeted IL-12 heterodimeric Fc-fusion proteins |
US20220363776A1 (en) | 2019-10-04 | 2022-11-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer |
TW202128757A (en) | 2019-10-11 | 2021-08-01 | 美商建南德克公司 | Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties |
KR20220099970A (en) | 2019-10-11 | 2022-07-14 | 인사이트 코포레이션 | Bicyclic amines as CDK2 inhibitors |
JOP20220083A1 (en) | 2019-10-14 | 2023-01-30 | Incyte Corp | Bicyclic heterocycles as fgfr inhibitors |
WO2021076728A1 (en) | 2019-10-16 | 2021-04-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
US20240301497A1 (en) | 2019-10-17 | 2024-09-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing nasal intestinal type adenocarcinomas |
JP2022553306A (en) | 2019-10-21 | 2022-12-22 | ノバルティス アーゲー | TIM-3 inhibitors and uses thereof |
US20240301053A1 (en) | 2019-10-21 | 2024-09-12 | Novartis Ag | Combination therapies with venetoclax and tim-3 inhibitors |
EP4048304A1 (en) | 2019-10-22 | 2022-08-31 | Institut Curie | Immunotherapy targeting tumor neoantigenic peptides |
NL2024108B1 (en) | 2019-10-26 | 2021-07-19 | Vitroscan B V | Methods and apparatus for measuring immune-cell mediated anti-tumoroid responses |
BR112022008074A2 (en) | 2019-10-28 | 2022-07-12 | Shanghai Inst Materia Medica Cas | FIVE-MEMBED HETEROCYCLIC OXOCARBOXYLIC ACID COMPOUND AND MEDICAL USE THEREOF |
US20240122938A1 (en) | 2019-10-29 | 2024-04-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating uveal melanoma |
AU2020374883A1 (en) | 2019-10-29 | 2022-05-26 | Eisai R&D Management Co., Ltd. | Combination of a PD-1 antagonist, a VEGFR/FGFR/RET tyrosine kinase inhibitor and a CBP/beta-catenin inhibitor for treating cancer |
US12090147B2 (en) | 2019-11-05 | 2024-09-17 | Celgene Corporation | Combination therapy with 2-(4-chlorophenyl)-N-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-5-yl)methyl)-2,2-difluoroacetamide |
EP4055392A1 (en) | 2019-11-05 | 2022-09-14 | Bristol-Myers Squibb Company | M-protein assays and uses thereof |
WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
MX2022005474A (en) | 2019-11-08 | 2022-06-02 | Bristol Myers Squibb Co | Lag-3 antagonist therapy for melanoma. |
AU2020385113A1 (en) | 2019-11-11 | 2022-05-19 | Incyte Corporation | Salts and crystalline forms of a PD-1/PD-L1 inhibitor |
WO2021097256A1 (en) | 2019-11-14 | 2021-05-20 | Cohbar, Inc. | Cxcr4 antagonist peptides |
US20230000864A1 (en) | 2019-11-22 | 2023-01-05 | Sumitomo Pharma Oncology, Inc. | Solid dose pharmaceutical composition |
IL293084A (en) | 2019-11-22 | 2022-07-01 | Theravance Biopharma R& D Ip Llc | Substituted 1,5-naphthyridines or quinolines as alk5 inhibitors |
EP3824954A1 (en) | 2019-11-22 | 2021-05-26 | Centre National de la Recherche Scientifique | Device, apparatus and method for minibeam radiation therapy |
WO2021108025A1 (en) | 2019-11-26 | 2021-06-03 | Massachusetts Institute Of Technology | Cell-based cancer vaccines and cancer therapies |
KR20220104217A (en) | 2019-11-26 | 2022-07-26 | 노파르티스 아게 | CD19 and CD22 chimeric antigen receptors and uses thereof |
EP3831849A1 (en) | 2019-12-02 | 2021-06-09 | LamKap Bio beta AG | Bispecific antibodies against ceacam5 and cd47 |
CR20220285A (en) | 2019-12-04 | 2022-10-27 | Incyte Corp | Derivatives of an fgfr inhibitor |
EP3920976B1 (en) | 2019-12-04 | 2023-07-19 | Orna Therapeutics, Inc. | Circular rna compositions and methods |
US11897891B2 (en) | 2019-12-04 | 2024-02-13 | Incyte Corporation | Tricyclic heterocycles as FGFR inhibitors |
EP4069683A1 (en) | 2019-12-06 | 2022-10-12 | Mersana Therapeutics, Inc. | Dimeric compounds as sting agonists |
US11897950B2 (en) | 2019-12-06 | 2024-02-13 | Augusta University Research Institute, Inc. | Osteopontin monoclonal antibodies |
WO2021119105A1 (en) | 2019-12-09 | 2021-06-17 | Seagen Inc. | Combination therapy with liv1-adc and pd-1 antagonist |
WO2021127217A1 (en) | 2019-12-17 | 2021-06-24 | Flagship Pioneering Innovations V, Inc. | Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly |
KR20220118481A (en) | 2019-12-19 | 2022-08-25 | 브리스톨-마이어스 스큅 컴퍼니 | Combinations of DGK inhibitors and checkpoint antagonists |
US20230346901A1 (en) | 2019-12-19 | 2023-11-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and vaccine compositions to treat cancers |
US20230057071A1 (en) | 2019-12-20 | 2023-02-23 | Novartis Ag | Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome |
EP4084821A4 (en) | 2020-01-03 | 2024-04-24 | Marengo Therapeutics, Inc. | Multifunctional molecules that bind to cd33 and uses thereof |
WO2021146424A1 (en) | 2020-01-15 | 2021-07-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
EP4090335A1 (en) | 2020-01-17 | 2022-11-23 | Novartis AG | Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia |
WO2021144426A1 (en) | 2020-01-17 | 2021-07-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
JP2023511439A (en) | 2020-01-28 | 2023-03-17 | ジェネンテック, インコーポレイテッド | IL15/IL15R alpha heterodimeric FC fusion proteins for the treatment of cancer |
AU2021213969A1 (en) | 2020-01-30 | 2022-09-01 | ONA Therapeutics S.L. | Combination therapy for treatment of cancer and cancer metastasis |
EP4100126A1 (en) | 2020-02-05 | 2022-12-14 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki) |
WO2021158938A1 (en) | 2020-02-06 | 2021-08-12 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
AU2021220196A1 (en) | 2020-02-11 | 2022-08-04 | HCW Biologics, Inc. | Methods of activating regulatory T cells |
KR20220140535A (en) | 2020-02-11 | 2022-10-18 | 에이치씨더블유 바이올로직스, 인크. | Chromatographic resins and uses thereof |
US12115191B2 (en) | 2020-02-11 | 2024-10-15 | Immunitybio, Inc. | Methods of treating age-related and inflammatory diseases |
WO2021171260A2 (en) | 2020-02-28 | 2021-09-02 | Novartis Ag | A triple pharmaceutical combination comprising dabrafenib, an erk inhibitor and a raf inhibitor or a pd-1 inhibitor |
WO2021171264A1 (en) | 2020-02-28 | 2021-09-02 | Novartis Ag | Dosing of a bispecific antibody that binds cd123 and cd3 |
EP4110955A1 (en) | 2020-02-28 | 2023-01-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing, prognosing and managing treatment of breast cancer |
EP4114449A2 (en) | 2020-03-05 | 2023-01-11 | Neotx Therapeutics Ltd. | Methods and compositions for treating cancer with immune cells |
BR112022016720A2 (en) | 2020-03-06 | 2022-11-16 | Ona Therapeutics S L | ANTI-CD36 ANTIBODIES AND THEIR USE FOR CANCER TREATMENT |
EP4114450A1 (en) | 2020-03-06 | 2023-01-11 | Stichting Het Nederlands Kanker Instituut- Antoni van Leeuwenhoek Ziekenhuis | Modulating anti-tumor immunity |
TW202140027A (en) | 2020-03-06 | 2021-11-01 | 美商英塞特公司 | Combination therapy comprising axl/mer and pd-1/pd-l1 inhibitors |
WO2021183318A2 (en) | 2020-03-09 | 2021-09-16 | President And Fellows Of Harvard College | Methods and compositions relating to improved combination therapies |
EP4121453A2 (en) | 2020-03-20 | 2023-01-25 | Orna Therapeutics, Inc. | Circular rna compositions and methods |
IL296673A (en) | 2020-03-23 | 2022-11-01 | Bristol Myers Squibb Co | Anti-ccr8 antibodies for treating cancer |
US11673879B2 (en) | 2020-03-31 | 2023-06-13 | Theravance Biopharma R&D Ip, Llc | Substituted pyrimidines and methods of use |
WO2021207689A2 (en) | 2020-04-10 | 2021-10-14 | Juno Therapeutics, Inc. | Methods and uses related to cell therapy engineered with a chimeric antigen receptor targeting b-cell maturation antigen |
WO2021209357A1 (en) | 2020-04-14 | 2021-10-21 | Glaxosmithkline Intellectual Property Development Limited | Combination treatment for cancer involving anti-icos and anti-pd1 antibodies, optionally further involving anti-tim3 antibodies |
CN115397861A (en) | 2020-04-14 | 2022-11-25 | 葛兰素史密斯克莱知识产权发展有限公司 | Combination therapy for cancer |
AU2021254794A1 (en) | 2020-04-16 | 2022-12-15 | Incyte Corporation | Fused tricyclic KRAS inhibitors |
AU2021260982B2 (en) | 2020-04-21 | 2024-03-28 | Novartis Ag | Dosing regimen for treating a disease modulated by CSF-1R |
TW202206100A (en) | 2020-04-27 | 2022-02-16 | 美商西健公司 | Treatment for cancer |
CN115836087A (en) | 2020-04-29 | 2023-03-21 | Hcw生物科技公司 | anti-CD 26 protein and application thereof |
US20230181756A1 (en) | 2020-04-30 | 2023-06-15 | Novartis Ag | Ccr7 antibody drug conjugates for treating cancer |
WO2021224186A1 (en) | 2020-05-04 | 2021-11-11 | Institut Curie | New pyridine derivatives as radiosensitizers |
EP4146345A2 (en) | 2020-05-05 | 2023-03-15 | Teon Therapeutics, Inc. | Cannabinoid receptor type 2 (cb2) modulators and uses thereof |
MX2022013843A (en) | 2020-05-06 | 2022-11-30 | Merck Sharp & Dohme Llc | Il4i1 inhibitors and methods of use. |
US11739102B2 (en) | 2020-05-13 | 2023-08-29 | Incyte Corporation | Fused pyrimidine compounds as KRAS inhibitors |
MX2022014191A (en) | 2020-05-13 | 2022-12-07 | Massachusetts Inst Technology | Compositions of polymeric microdevices and their use in cancer immunotherapy. |
CN115968377A (en) | 2020-05-20 | 2023-04-14 | 居里研究所 | Single domain antibodies and their use in cancer therapy |
CA3184802A1 (en) | 2020-05-26 | 2021-12-02 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Severe acute respiratory syndrome coronavirus 2 (sars-cov-2) polypeptides and uses thereof for vaccine purposes |
US20210403567A1 (en) | 2020-05-26 | 2021-12-30 | Regeneron Pharmaceuticals, Inc. | Methods of treating cervical cancer by administering a pd-1 inhibitor |
CA3180060A1 (en) | 2020-05-29 | 2021-12-02 | Zongmin ZHAO | Living cells engineered with polyphenol-functionalized biologically active nanocomplexes |
CA3184756A1 (en) | 2020-06-01 | 2021-12-09 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
WO2021247003A1 (en) | 2020-06-01 | 2021-12-09 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
US12024545B2 (en) | 2020-06-01 | 2024-07-02 | HCW Biologics, Inc. | Methods of treating aging-related disorders |
US11767353B2 (en) | 2020-06-05 | 2023-09-26 | Theraly Fibrosis, Inc. | Trail compositions with reduced immunogenicity |
EP4165041A1 (en) | 2020-06-10 | 2023-04-19 | Theravance Biopharma R&D IP, LLC | Naphthyridine derivatives useful as alk5 inhibitors |
US20230332104A1 (en) | 2020-06-11 | 2023-10-19 | Novartis Ag | Zbtb32 inhibitors and uses thereof |
AR122644A1 (en) | 2020-06-19 | 2022-09-28 | Onxeo | NEW CONJUGATED NUCLEIC ACID MOLECULES AND THEIR USES |
BR112022026202A2 (en) | 2020-06-23 | 2023-01-17 | Novartis Ag | DOSAGE REGIMEN COMPRISING 3-(1-OXOISOINDOLIN-2-IL)PIPERIDINE-2,6-DIONE DERIVATIVES |
WO2021262969A1 (en) | 2020-06-24 | 2021-12-30 | The General Hospital Corporation | Materials and methods of treating cancer |
WO2021260675A1 (en) | 2020-06-24 | 2021-12-30 | Yeda Research And Development Co. Ltd. | Agents for sensitizing solid tumors to treatment |
MX2022015891A (en) | 2020-06-25 | 2023-01-24 | Celgene Corp | Methods for treating cancer with combination therapies. |
CA3187576A1 (en) | 2020-06-26 | 2021-12-30 | Amgen Inc. | Il-10 muteins and fusion proteins thereof |
CA3184366A1 (en) | 2020-06-29 | 2022-01-06 | Darby Rye Schmidt | Viruses engineered to promote thanotransmission and their use in treating cancer |
CN115997123A (en) | 2020-06-30 | 2023-04-21 | 国家医疗保健研究所 | Methods for predicting risk of recurrence and/or death of solid cancer patients after preoperative adjuvant therapy |
JP2023531290A (en) | 2020-06-30 | 2023-07-21 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | A method for predicting the risk of recurrence and/or death in patients with solid tumors after neoadjuvant therapy and definitive surgery |
WO2022008519A1 (en) | 2020-07-07 | 2022-01-13 | BioNTech SE | Therapeutic rna for hpv-positive cancer |
BR112023000248A2 (en) | 2020-07-07 | 2023-01-31 | Celgene Corp | PHARMACEUTICAL COMPOSITIONS COMPRISING (S)-4-(4-(4-(((2-(2,6-DIOXOPIPERIDIN-3-IL)-1-OXOISOINDOLIN-4-YL)OXY)METHYL)BENZYL)PIPERAZIN-1- IL)-3-FLUOROBENZO¬NITRILE AND METHODS OF USE THEREOF |
WO2022009157A1 (en) | 2020-07-10 | 2022-01-13 | Novartis Ag | Lhc165 and spartalizumab combinations for treating solid tumors |
JP2023535610A (en) | 2020-07-28 | 2023-08-18 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods and compositions for preventing and treating cancer |
WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
AU2021333779A1 (en) | 2020-08-26 | 2023-04-13 | Marengo Therapeutics, Inc. | Methods of detecting TRBC1 or TRBC2 |
US20230323470A1 (en) | 2020-08-26 | 2023-10-12 | Regeneron Pharmaceuticals, Inc. | Methods of treating cancer by administering a pd-1 inhibitor |
WO2022047093A1 (en) | 2020-08-28 | 2022-03-03 | Incyte Corporation | Vinyl imidazole compounds as inhibitors of kras |
BR112023003427A2 (en) | 2020-08-28 | 2023-03-21 | Bristol Myers Squibb Co | LAG-3 ANTAGONIST THERAPY FOR HEPATOCELLULAR CARCINOMA |
US20230321285A1 (en) | 2020-08-31 | 2023-10-12 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
WO2022043558A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
EP4204453A1 (en) | 2020-08-31 | 2023-07-05 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
AU2021337223A1 (en) | 2020-09-02 | 2023-03-16 | Msd International Gmbh | Combination therapy of a PD-1 antagonist and an antagonist for VEGFR-2 for treating patients with cancer |
AU2021337650A1 (en) | 2020-09-03 | 2023-05-04 | Regeneron Pharmaceuticals, Inc. | Methods of treating cancer pain by administering a pd-1 inhibitor |
WO2022072783A1 (en) | 2020-10-02 | 2022-04-07 | Incyte Corporation | Bicyclic dione compounds as inhibitors of kras |
EP4222171A1 (en) | 2020-10-02 | 2023-08-09 | Regeneron Pharmaceuticals, Inc. | Combination of antibodies for treating cancer with reduced cytokine release syndrome |
JP2023544410A (en) | 2020-10-05 | 2023-10-23 | ブリストル-マイヤーズ スクイブ カンパニー | Methods for concentrating proteins |
EP4229090A1 (en) | 2020-10-16 | 2023-08-23 | Université d'Aix-Marseille | Anti-gpc4 single domain antibodies |
EP4232453A1 (en) | 2020-10-20 | 2023-08-30 | Institut Curie | Metallic trans-(n-heterocyclic carbene)-amine-platinum complexes and uses thereof for treating cancer |
WO2022084531A1 (en) | 2020-10-23 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating glioma |
KR20230093282A (en) | 2020-10-23 | 2023-06-27 | 브리스톨-마이어스 스큅 컴퍼니 | LAG-3 antagonist therapy for lung cancer |
CA3196535A1 (en) | 2020-10-28 | 2022-05-05 | Alfredo C. Castro | Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine |
CN116390757A (en) | 2020-10-28 | 2023-07-04 | 卫材R&D管理有限公司 | Pharmaceutical composition for treating tumors |
WO2022097060A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Cd19 binding molecules and uses thereof |
TW202233615A (en) | 2020-11-06 | 2022-09-01 | 美商英塞特公司 | Crystalline form of a pd-1/pd-l1 inhibitor |
MX2023005362A (en) | 2020-11-06 | 2023-06-22 | Incyte Corp | Process for making a pd-1/pd-l1 inhibitor and salts and crystalline forms thereof. |
WO2022099018A1 (en) | 2020-11-06 | 2022-05-12 | Incyte Corporation | Process of preparing a pd-1/pd-l1 inhibitor |
TW202233248A (en) | 2020-11-08 | 2022-09-01 | 美商西健公司 | Combination therapy |
US20240010739A1 (en) | 2020-11-12 | 2024-01-11 | Institut National De La Santé Et De La Recherche Médicale (Inserm) | Antibodies conjugated or fused to the receptor-binding domain of the sars-cov-2 spike protein and uses thereof for vaccine purposes |
EP4244391A1 (en) | 2020-11-16 | 2023-09-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
EP4244392A1 (en) | 2020-11-16 | 2023-09-20 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for predicting and treating uveal melanoma |
WO2022101463A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of the last c-terminal residues m31/41 of zikv m ectodomain for triggering apoptotic cell death |
US20230416196A1 (en) | 2020-11-18 | 2023-12-28 | Institut Curie | Dimer of biguanidines and their therapeutic uses |
TW202227089A (en) | 2020-11-30 | 2022-07-16 | 大陸商杭州阿諾生物醫藥科技有限公司 | Combination therapy for the treatment of pik3ca mutant cancer |
WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
CA3201219A1 (en) | 2020-12-04 | 2022-06-09 | Mir Ali | Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof |
US20240050432A1 (en) | 2020-12-08 | 2024-02-15 | Infinity Pharmaceuticals, Inc. | Eganelisib for use in the treatment of pd-l1 negative cancer |
TW202237119A (en) | 2020-12-10 | 2022-10-01 | 美商住友製藥腫瘤公司 | Alk-5 inhibitors and uses thereof |
WO2022130206A1 (en) | 2020-12-16 | 2022-06-23 | Pfizer Inc. | TGFβr1 INHIBITOR COMBINATION THERAPIES |
ES2967381T3 (en) | 2020-12-18 | 2024-04-30 | Lamkap Bio Beta Ag | Bispecific antibodies against CEACAM5 and CD47 |
WO2022135667A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Therapeutic rna for treating cancer |
WO2022135666A1 (en) | 2020-12-21 | 2022-06-30 | BioNTech SE | Treatment schedule for cytokine proteins |
TW202245808A (en) | 2020-12-21 | 2022-12-01 | 德商拜恩迪克公司 | Therapeutic rna for treating cancer |
IL303648A (en) | 2020-12-28 | 2023-08-01 | Bristol Myers Squibb Co | Antibody compositions and methods of use thereof |
MX2023007650A (en) | 2020-12-28 | 2023-09-11 | Bristol Myers Squibb Co | Subcutaneous administration of pd1/pd-l1 antibodies. |
JP2024504923A (en) | 2021-01-11 | 2024-02-02 | シンセカイン インコーポレイテッド | Compositions and methods for receptor pairing |
US20240317890A1 (en) | 2021-01-14 | 2024-09-26 | Institut Curie | Her2 single domain antibodies variants and cars thereof |
WO2022162569A1 (en) | 2021-01-29 | 2022-08-04 | Novartis Ag | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
CA3206549A1 (en) | 2021-01-29 | 2022-08-04 | Frederick G. Vogt | Methods of making modified tumor infiltrating lymphocytes and their use in adoptive cell therapy |
WO2022165403A1 (en) | 2021-02-01 | 2022-08-04 | Yale University | Chemotherapeutic bioadhesive particles with immunostimulatory molecules for cancer treatment |
US20240139198A1 (en) | 2021-02-10 | 2024-05-02 | Curon Biopharmaceutical (Shanghai) Co., Limited | Method and combination for treating tumors |
EP4291243A1 (en) | 2021-02-12 | 2023-12-20 | Synthorx, Inc. | Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof |
EP4301733A1 (en) | 2021-03-02 | 2024-01-10 | GlaxoSmithKline Intellectual Property Development Limited | Substituted pyridines as dnmt1 inhibitors |
CN117677634A (en) | 2021-03-05 | 2024-03-08 | 利达提斯有限公司 | Trimeric polypeptides and their use in the treatment of cancer |
WO2022189618A1 (en) | 2021-03-12 | 2022-09-15 | Institut Curie | Nitrogen-containing heterocycles as radiosensitizers |
US20240165094A1 (en) | 2021-03-17 | 2024-05-23 | Institut National de la Santé et de la Recherche Médicale | Methods and compositions for treating melanoma |
EP4308935A1 (en) | 2021-03-18 | 2024-01-24 | Novartis AG | Biomarkers for cancer and methods of use thereof |
US11859021B2 (en) | 2021-03-19 | 2024-01-02 | Icahn School Of Medicine At Mount Sinai | Compounds for regulating trained immunity, and their methods of use |
MX2023011007A (en) | 2021-03-23 | 2023-12-07 | Regeneron Pharma | Methods of treating cancer in immunosuppressed or immunocompromised patients by administering a pd-1 inhibitor. |
TW202304506A (en) | 2021-03-25 | 2023-02-01 | 日商安斯泰來製藥公司 | Combination therapy involving antibodies against claudin 18.2 for treatment of cancer |
CN117858719A (en) | 2021-03-29 | 2024-04-09 | 朱诺治疗学股份有限公司 | Methods of dosing and treatment using a combination of checkpoint inhibitor therapy and CAR T cell therapy |
JP2024512669A (en) | 2021-03-31 | 2024-03-19 | フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド | Tanotransmission polypeptides and their use in the treatment of cancer |
WO2022208353A1 (en) | 2021-03-31 | 2022-10-06 | Glaxosmithkline Intellectual Property Development Limited | Antigen binding proteins and combinations thereof |
WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
TW202304979A (en) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
CN117597359A (en) | 2021-04-08 | 2024-02-23 | 马伦戈治疗公司 | Multifunctional molecules binding to TCR and uses thereof |
CA3214729A1 (en) | 2021-04-08 | 2022-10-13 | Marilena GALLOTTA | Combination therapies with cbl-b inhibitor compounds |
IL307556A (en) | 2021-04-09 | 2023-12-01 | Seagen Inc | Methods of treating cancer with anti-tigit antibodies |
JP2024513575A (en) | 2021-04-12 | 2024-03-26 | インサイト・コーポレイション | Combination therapy including FGFR inhibitor and Nectin-4 targeting agent |
EP4323356A1 (en) | 2021-04-13 | 2024-02-21 | Nuvalent, Inc. | Amino-substituted heterocycles for treating cancers with egfr mutations |
US20240228659A1 (en) | 2021-04-14 | 2024-07-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method to improve nk cells cytotoxicity |
US20240252668A1 (en) | 2021-04-16 | 2024-08-01 | Anne-Sophie BLUEMMEL | Antibody drug conjugates and methods for making thereof |
EP4326333A1 (en) | 2021-04-20 | 2024-02-28 | Seagen Inc. | Modulation of antibody-dependent cellular cytotoxicity |
WO2022223791A1 (en) | 2021-04-23 | 2022-10-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cell senescence accumulation related disease |
WO2022227015A1 (en) | 2021-04-30 | 2022-11-03 | Merck Sharp & Dohme Corp. | Il4i1 inhibitors and methods of use |
EP4337763A1 (en) | 2021-05-10 | 2024-03-20 | Institut Curie | Methods for the treatment of cancer, inflammatory diseases and autoimmune diseases |
BR112023023400A2 (en) | 2021-05-13 | 2024-01-23 | Foundation For Biomedical Res And Innovation At Kobe | HUMAN ANTI-PD-1 AGONIST ANTIBODY AND PHARMACEUTICAL COMPOSITION COMPRISING THE ANTIBODY FOR THE TREATMENT OR PREVENTION OF INFLAMMATORY DISEASES |
AR125874A1 (en) | 2021-05-18 | 2023-08-23 | Novartis Ag | COMBINATION THERAPIES |
US20240239892A1 (en) * | 2021-05-18 | 2024-07-18 | Suzhou Kanova Biopharmaceutical Co., Ltd. | Anti-pd-1 polypeptides and their use |
WO2022242737A1 (en) | 2021-05-21 | 2022-11-24 | 天津立博美华基因科技有限责任公司 | Pharmaceutical combination and use thereof |
WO2022251359A1 (en) | 2021-05-26 | 2022-12-01 | Theravance Biopharma R&D Ip, Llc | Bicyclic inhibitors of alk5 and methods of use |
WO2022254337A1 (en) | 2021-06-01 | 2022-12-08 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
EP4346904A1 (en) | 2021-06-03 | 2024-04-10 | Synthorx, Inc. | Head and neck cancer combination therapy comprising an il-2 conjugate and cetuximab |
GB202107994D0 (en) | 2021-06-04 | 2021-07-21 | Kymab Ltd | Treatment of cancer |
US20240277842A1 (en) | 2021-06-07 | 2024-08-22 | Providence Health & Services - Oregon | Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use |
CA3220155A1 (en) | 2021-06-09 | 2022-12-15 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
JP2024522189A (en) | 2021-06-09 | 2024-06-11 | インサイト・コーポレイション | Tricyclic Heterocycles as FGFR Inhibitors |
CN115466329A (en) * | 2021-06-11 | 2022-12-13 | 广东菲鹏制药股份有限公司 | anti-PD-1 humanized antibody and application thereof |
US11981671B2 (en) | 2021-06-21 | 2024-05-14 | Incyte Corporation | Bicyclic pyrazolyl amines as CDK2 inhibitors |
US20240316104A1 (en) | 2021-06-29 | 2024-09-26 | Flagship Pioneering Innovations V, Inc. | Immune cells engineered to promote thanotransmission and uses thereof |
US20240316005A1 (en) | 2021-07-05 | 2024-09-26 | Institut National de la Santé et de la Recherche Médicale | Gene signatures for predicting survival time in patients suffering from renal cell carcinoma |
IL309642A (en) | 2021-07-07 | 2024-02-01 | Incyte Corp | Tricyclic compounds as inhibitors of kras |
IL309831A (en) | 2021-07-13 | 2024-02-01 | BioNTech SE | Multispecific binding agents against cd40 and cd137 in combination therapy for cancer |
JP2024529340A (en) | 2021-07-14 | 2024-08-06 | シンセカイン インコーポレイテッド | Methods and compositions for use in cell therapy of neoplastic diseases - Patents.com |
EP4370515A1 (en) | 2021-07-14 | 2024-05-22 | Incyte Corporation | Tricyclic compounds as inhibitors of kras |
AU2022314735A1 (en) | 2021-07-19 | 2024-02-22 | Regeneron Pharmaceuticals, Inc. | Combination of checkpoint inhibitors and an oncolytic virus for treating cancer |
CN118488964A (en) | 2021-07-30 | 2024-08-13 | Ona疗法有限公司 | Anti-CD 36 antibodies and their use for treating cancer |
WO2023010080A1 (en) | 2021-07-30 | 2023-02-02 | Seagen Inc. | Treatment for cancer |
WO2023012147A1 (en) | 2021-08-03 | 2023-02-09 | F. Hoffmann-La Roche Ag | Bispecific antibodies and methods of use |
EP4380596A1 (en) | 2021-08-04 | 2024-06-12 | Genentech, Inc. | Il15/il15r alpha heterodimeric fc-fusion proteins for the expansion of nk cells in the treatment of solid tumours |
WO2023011879A1 (en) | 2021-08-05 | 2023-02-09 | Institut Curie | Scanning dynamic device for minibeams production |
CN118284623A (en) | 2021-08-23 | 2024-07-02 | 伊莫尼塔斯治疗公司 | Anti-CD 161 antibodies and uses thereof |
WO2023034290A1 (en) | 2021-08-31 | 2023-03-09 | Incyte Corporation | Naphthyridine compounds as inhibitors of kras |
TW202325306A (en) | 2021-09-02 | 2023-07-01 | 美商天恩治療有限公司 | Methods of improving growth and function of immune cells |
EP4399206A1 (en) | 2021-09-08 | 2024-07-17 | Redona Therapeutics, Inc. | Papd5 and/or papd7 inhibiting 4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives |
WO2023039243A2 (en) * | 2021-09-13 | 2023-03-16 | Achelois Biopharma, Inc. | Hepatitis b virus antivirus (hbv-antivirus) compositions and methods of use |
US20240316061A1 (en) | 2021-09-17 | 2024-09-26 | Institut Curie | Bet inhibitors for treating pab1 deficient cancer |
WO2023049697A1 (en) | 2021-09-21 | 2023-03-30 | Incyte Corporation | Hetero-tricyclic compounds as inhibitors of kras |
WO2023051926A1 (en) | 2021-09-30 | 2023-04-06 | BioNTech SE | Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists |
JP2024537824A (en) | 2021-10-01 | 2024-10-16 | インサイト・コーポレイション | Pyrazoloquinoline KRAS inhibitors |
TW202327595A (en) | 2021-10-05 | 2023-07-16 | 美商輝瑞大藥廠 | Combinations of azalactam compounds for the treatment of cancer |
IL311771A (en) | 2021-10-06 | 2024-05-01 | BioNTech SE | Multispecific binding agents against pd-l1 and cd137 in combination |
TW202333802A (en) | 2021-10-11 | 2023-09-01 | 德商拜恩迪克公司 | Therapeutic rna for lung cancer |
EP4415824A1 (en) | 2021-10-14 | 2024-08-21 | Incyte Corporation | Quinoline compounds as inhibitors of kras |
TW202328198A (en) | 2021-10-21 | 2023-07-16 | 大陸商杭州阿諾生物醫藥科技有限公司 | A fusion polypeptide and application thereof |
KR20240099331A (en) | 2021-10-28 | 2024-06-28 | 라이엘 이뮤노파마, 인크. | Method for cultivating immune cells |
CN118176214A (en) | 2021-10-29 | 2024-06-11 | 百时美施贵宝公司 | LAG-3 antagonist therapy of hematological cancers |
WO2023079428A1 (en) | 2021-11-03 | 2023-05-11 | Pfizer Inc. | Combination therapies using tlr7/8 agonist |
WO2023081730A1 (en) | 2021-11-03 | 2023-05-11 | Teon Therapeutics, Inc. | 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer |
EP4427044A1 (en) | 2021-11-03 | 2024-09-11 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods and compositions for treating triple negative breast cancer (tnbc) |
WO2023083439A1 (en) | 2021-11-09 | 2023-05-19 | BioNTech SE | Tlr7 agonist and combinations for cancer treatment |
AU2022383847A1 (en) * | 2021-11-11 | 2024-06-20 | Regeneron Pharmaceuticals, Inc. | Cd20-pd1 binding molecules and methods of use thereof |
CN118234519A (en) | 2021-11-12 | 2024-06-21 | 诺华股份有限公司 | Combination therapy for treating lung cancer |
WO2023083379A1 (en) | 2021-11-15 | 2023-05-19 | 中国科学院生物物理研究所 | Fusion protein construct taking interleukin 15 as active ingredient and use thereof |
EP4433504A1 (en) | 2021-11-17 | 2024-09-25 | Institut National de la Santé et de la Recherche Médicale | Universal sarbecovirus vaccines |
WO2023089032A1 (en) | 2021-11-19 | 2023-05-25 | Institut Curie | Methods for the treatment of hrd cancer and brca-associated cancer |
TW202320792A (en) | 2021-11-22 | 2023-06-01 | 美商英塞特公司 | Combination therapy comprising an fgfr inhibitor and a kras inhibitor |
WO2023097211A1 (en) | 2021-11-24 | 2023-06-01 | The University Of Southern California | Methods for enhancing immune checkpoint inhibitor therapy |
WO2023102184A1 (en) | 2021-12-03 | 2023-06-08 | Incyte Corporation | Bicyclic amine compounds as cdk12 inhibitors |
WO2023099763A1 (en) | 2021-12-03 | 2023-06-08 | Institut Curie | Sirt6 inhibitors for use in treating resistant hrd cancer |
US11976073B2 (en) | 2021-12-10 | 2024-05-07 | Incyte Corporation | Bicyclic amines as CDK2 inhibitors |
WO2023107705A1 (en) | 2021-12-10 | 2023-06-15 | Incyte Corporation | Bicyclic amines as cdk12 inhibitors |
MX2024007300A (en) | 2021-12-16 | 2024-06-28 | Valerio Therapeutics | New conjugated nucleic acid molecules and their uses. |
EP4452327A1 (en) | 2021-12-20 | 2024-10-30 | Synthorx, Inc. | Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab |
EP4452257A1 (en) | 2021-12-21 | 2024-10-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
TW202340215A (en) | 2021-12-22 | 2023-10-16 | 美商英塞特公司 | Salts and solid forms of an fgfr inhibitor and processes of preparing thereof |
KR20240130705A (en) | 2021-12-30 | 2024-08-29 | 네오이뮨텍, 인코퍼레이티드 | Method for treating tumors with a combination of IL-7 protein and VEGF antagonist |
WO2023133424A2 (en) * | 2022-01-05 | 2023-07-13 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins and anti-pd-1 fusion peptides |
AU2023204751A1 (en) | 2022-01-07 | 2024-07-11 | Regeneron Pharmaceuticals, Inc. | Methods of treating recurrent ovarian cancer with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies |
IL314050A (en) | 2022-01-26 | 2024-09-01 | Bristol Myers Squibb Co | Combination therapy for hepatocellular carcinoma |
WO2023147488A1 (en) | 2022-01-28 | 2023-08-03 | Iovance Biotherapeutics, Inc. | Cytokine associated tumor infiltrating lymphocytes compositions and methods |
WO2023142996A1 (en) | 2022-01-28 | 2023-08-03 | 上海岸阔医药科技有限公司 | Method for preventing or treating disease or disorder associated with antineoplastic agent |
WO2023154799A1 (en) | 2022-02-14 | 2023-08-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Combination immunotherapy for treating cancer |
WO2023154905A1 (en) | 2022-02-14 | 2023-08-17 | Gilead Sciences, Inc. | Antiviral pyrazolopyridinone compounds |
KR20240149434A (en) | 2022-02-17 | 2024-10-14 | 리제너론 파마슈티칼스 인코포레이티드 | Combination of checkpoint inhibitors and oncolytic viruses to treat cancer |
WO2023155905A1 (en) | 2022-02-21 | 2023-08-24 | 上海岸阔医药科技有限公司 | Compound and use thereof |
WO2023161453A1 (en) | 2022-02-24 | 2023-08-31 | Amazentis Sa | Uses of urolithins |
IL314713A (en) | 2022-02-25 | 2024-10-01 | Bristol Myers Squibb Co | Combination therapy for colorectal carcinoma |
AU2023228683A1 (en) | 2022-03-02 | 2024-09-19 | Immunitybio, Inc. | Method of treating pancreatic cancer |
WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
WO2023172921A1 (en) | 2022-03-07 | 2023-09-14 | Incyte Corporation | Solid forms, salts, and processes of preparation of a cdk2 inhibitor |
AU2023230110A1 (en) | 2022-03-08 | 2024-10-24 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
WO2023177772A1 (en) | 2022-03-17 | 2023-09-21 | Regeneron Pharmaceuticals, Inc. | Methods of treating recurrent epithelioid sarcoma with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies |
WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
WO2023180552A1 (en) | 2022-03-24 | 2023-09-28 | Institut Curie | Immunotherapy targeting tumor transposable element derived neoantigenic peptides in glioblastoma |
WO2023187024A1 (en) | 2022-03-31 | 2023-10-05 | Institut Curie | Modified rela protein for inducing interferon expression and engineered immune cells with improved interferon expression |
WO2023192478A1 (en) | 2022-04-01 | 2023-10-05 | Bristol-Myers Squibb Company | Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer |
WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
WO2023194607A1 (en) | 2022-04-07 | 2023-10-12 | Institut Curie | Myeloid cells modified by chimeric antigen receptor with cd40 and uses thereof for anti-cancer therapy |
WO2023194608A1 (en) | 2022-04-07 | 2023-10-12 | Institut Curie | Myeloid cells modified by chimeric antigen receptor and uses thereof for anti-cancer therapy |
IL315992A (en) | 2022-04-08 | 2024-11-01 | Bristol Myers Squibb Company | Machine learning identification, classification, and quantification of tertiary lymphoid structures |
WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
WO2023214325A1 (en) | 2022-05-05 | 2023-11-09 | Novartis Ag | Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors |
TW202413412A (en) | 2022-05-12 | 2024-04-01 | 丹麥商珍美寶股份有限公司 | Binding agents capable of binding to cd27 in combination therapy |
AU2023272836A1 (en) | 2022-05-16 | 2024-12-12 | Regeneron Pharmaceuticals, Inc. | Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies |
WO2023230554A1 (en) | 2022-05-25 | 2023-11-30 | Pfizer Inc. | Combination of a braf inhibitor, an egfr inhibitor, and a pd-1 antagonist for the treatment of braf v600e-mutant, msi-h/dmmr colorectal cancer |
TW202410916A (en) | 2022-05-27 | 2024-03-16 | 日商武田藥品工業股份有限公司 | Dosing of cd38-binding fusion protein |
AR129423A1 (en) | 2022-05-27 | 2024-08-21 | Viiv Healthcare Co | USEFUL COMPOUNDS IN HIV THERAPY |
WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
US20230399342A1 (en) | 2022-06-08 | 2023-12-14 | Incyte Corporation | Tricyclic triazolo compounds as dgk inhibitors |
WO2023240156A1 (en) | 2022-06-08 | 2023-12-14 | Tidal Therapeutics, Inc. | Ionizable cationic lipids and lipid nanoparticles, and methods of synthesis and use thereof |
WO2023242351A1 (en) | 2022-06-16 | 2023-12-21 | Lamkap Bio Beta Ag | Combination therapy of bispecific antibodies against ceacam5 and cd47 and bispecific antibodies against ceacam5 and cd3 |
AR129675A1 (en) | 2022-06-22 | 2024-09-18 | Incyte Corp | CDK12 INHIBITORS OF BICYCLIC AMINES |
WO2023250400A1 (en) | 2022-06-22 | 2023-12-28 | Juno Therapeutics, Inc. | Treatment methods for second line therapy of cd19-targeted car t cells |
WO2024003353A1 (en) | 2022-07-01 | 2024-01-04 | Transgene | Fusion protein comprising a surfactant-protein-d and a member of the tnfsf |
US20240101557A1 (en) | 2022-07-11 | 2024-03-28 | Incyte Corporation | Fused tricyclic compounds as inhibitors of kras g12v mutants |
WO2024015372A1 (en) | 2022-07-14 | 2024-01-18 | Teon Therapeutics, Inc. | Adenosine receptor antagonists and uses thereof |
EP4310197A1 (en) | 2022-07-21 | 2024-01-24 | Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda | Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy |
WO2024030453A1 (en) | 2022-08-02 | 2024-02-08 | Regeneron Pharmaceuticals, Inc. | Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd28 antibodies in combination with anti-pd-1 antibodies |
WO2024031091A2 (en) | 2022-08-05 | 2024-02-08 | Juno Therapeutics, Inc. | Chimeric antigen receptors specific for gprc5d and bcma |
WO2024033400A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sk2 inhibitor for the treatment of pancreatic cancer |
WO2024033399A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sigmar1 ligand for the treatment of pancreatic cancer |
WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
WO2024040264A1 (en) | 2022-08-19 | 2024-02-22 | Massachusetts Institute Of Technology | Compositions and methods for targeting dendritic cell lectins |
WO2024052356A1 (en) | 2022-09-06 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer |
WO2024056716A1 (en) | 2022-09-14 | 2024-03-21 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy |
WO2024068617A1 (en) | 2022-09-26 | 2024-04-04 | Institut Curie | Myeloid cells expressing il-2 and uses thereof for quick anticancer therapy |
WO2024069009A1 (en) | 2022-09-30 | 2024-04-04 | Alentis Therapeutics Ag | Treatment of drug-resistant hepatocellular carcinoma |
US20240270849A1 (en) | 2022-10-03 | 2024-08-15 | Regeneron Pharmaceuticals, Inc. | Methods of treating cancer with bispecific egfr xcd28 antibodies alone or in combination with anti-pd-1 antibodies |
WO2024077191A1 (en) | 2022-10-05 | 2024-04-11 | Flagship Pioneering Innovations V, Inc. | Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer |
WO2024081736A2 (en) | 2022-10-11 | 2024-04-18 | Yale University | Compositions and methods of using cell-penetrating antibodies |
WO2024086827A2 (en) | 2022-10-20 | 2024-04-25 | Repertoire Immune Medicines, Inc. | Cd8 t cell targeted il2 |
WO2024084013A1 (en) | 2022-10-20 | 2024-04-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination therapy for the treatment of cancer |
WO2024083988A1 (en) | 2022-10-20 | 2024-04-25 | Fundación Para La Investigación Médica Aplicada | Nanobodies for cancer therapy |
WO2024084034A1 (en) | 2022-10-21 | 2024-04-25 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of osteoarthritis |
WO2024102722A1 (en) | 2022-11-07 | 2024-05-16 | Neoimmunetech, Inc. | Methods of treating a tumor with an unmethylated mgmt promoter |
WO2024108100A1 (en) | 2022-11-18 | 2024-05-23 | Incyte Corporation | Heteroaryl fluoroalkenes as dgk inhibitors |
WO2024112867A1 (en) | 2022-11-23 | 2024-05-30 | University Of Georgia Research Foundation, Inc. | Compositions and methods of use thereof for increasing immune responses |
WO2024115725A1 (en) | 2022-12-01 | 2024-06-06 | BioNTech SE | Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy |
WO2024116140A1 (en) | 2022-12-01 | 2024-06-06 | Medimmune Limited | Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies |
WO2024129778A2 (en) | 2022-12-13 | 2024-06-20 | Juno Therapeutics, Inc. | Chimeric antigen receptors specific for baff-r and cd19 and methods and uses thereof |
WO2024126457A1 (en) | 2022-12-14 | 2024-06-20 | Astellas Pharma Europe Bv | Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors |
WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
US20240269251A1 (en) | 2023-01-09 | 2024-08-15 | Flagship Pioneering Innovations V, Inc. | Genetic switches and their use in treating cancer |
WO2024150177A1 (en) | 2023-01-11 | 2024-07-18 | Advesya | Treatment methods for solid tumors |
WO2024151346A1 (en) | 2023-01-12 | 2024-07-18 | Incyte Corporation | Heteroaryl fluoroalkenes as dgk inhibitors |
US20240294651A1 (en) | 2023-01-30 | 2024-09-05 | Kymab Limited | Antibodies |
WO2024163477A1 (en) | 2023-01-31 | 2024-08-08 | University Of Rochester | Immune checkpoint blockade therapy for treating staphylococcus aureus infections |
WO2024192033A1 (en) | 2023-03-13 | 2024-09-19 | Regeneron Pharmaceuticals, Inc. | Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating melanoma |
WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
WO2024194673A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Methods for the treatment of dedifferentiated liposarcoma |
WO2024194401A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Vps4b inhibitor for use in methods for the treatment of hrd cancer |
WO2024194402A1 (en) | 2023-03-21 | 2024-09-26 | Institut Curie | Farnesyl transferase inhibitor for use in methods for the treatment of hrd cancer |
WO2024200571A1 (en) | 2023-03-28 | 2024-10-03 | Institut National de la Santé et de la Recherche Médicale | Method for discriminating mono-immunotherapy from combined immunotherapy in cancers |
WO2024206357A1 (en) | 2023-03-29 | 2024-10-03 | Merck Sharp & Dohme Llc | Il4i1 inhibitors and methods of use |
WO2024209072A1 (en) | 2023-04-06 | 2024-10-10 | Genmab A/S | Multispecific binding agents against pd-l1 and cd137 for treating cancer |
WO2024216028A1 (en) | 2023-04-12 | 2024-10-17 | Agenus Inc. | Methods of treating cancer using an anti-ctla4 antibody and an enpp1 inhibitor |
WO2024213782A1 (en) | 2023-04-13 | 2024-10-17 | Institut Curie | Methods for the treatment of t-cell acute lymphoblastic leukemia |
WO2024213767A1 (en) | 2023-04-14 | 2024-10-17 | Institut National de la Santé et de la Recherche Médicale | Engraftment of mesenchymal stromal cells engineered to stimulate immune infiltration in tumors |
WO2024220532A1 (en) | 2023-04-18 | 2024-10-24 | Incyte Corporation | Pyrrolidine kras inhibitors |
WO2024223299A2 (en) | 2023-04-26 | 2024-10-31 | Isa Pharmaceuticals B.V. | Methods of treating cancer by administering immunogenic compositions and a pd-1 inhibitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837845A (en) * | 1991-06-28 | 1998-11-17 | Mitsubishi Chemical Corporation | Human monoclonal antibody specifically binding to surface antigen of cancer cell membrane |
US6632927B2 (en) * | 1989-12-21 | 2003-10-14 | Celltech Therapeutics Limited | Humanized antibodies |
US6808710B1 (en) * | 1999-08-23 | 2004-10-26 | Genetics Institute, Inc. | Downmodulating an immune response with multivalent antibodies to PD-1 |
US20040213795A1 (en) * | 2002-12-23 | 2004-10-28 | Wyeth | Antibodies against PD-1 and uses therefor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580756A (en) | 1990-03-26 | 1996-12-03 | Bristol-Myers Squibb Co. | B7Ig fusion protein |
EP0711345A1 (en) | 1993-07-26 | 1996-05-15 | Dana Farber Cancer Institute | B7-2: ctl a4/cd 28 counter receptor |
CA2143491C (en) | 1994-03-01 | 2011-02-22 | Yasumasa Ishida | A novel peptide related to human programmed cell death and dna encoding it |
GB9601081D0 (en) * | 1995-10-06 | 1996-03-20 | Cambridge Antibody Tech | Specific binding members for human transforming growth factor beta;materials and methods |
US6936704B1 (en) | 1999-08-23 | 2005-08-30 | Dana-Farber Cancer Institute, Inc. | Nucleic acids encoding costimulatory molecule B7-4 |
AU6422799A (en) | 1999-10-08 | 2001-04-23 | Toshihiko Matsuo | Oculomedin and glaucoma |
WO2001027279A1 (en) | 1999-10-12 | 2001-04-19 | Cambridge Antibody Technology | Human anti-adipocyte monoclonal antibodies and their use |
AR036993A1 (en) | 2001-04-02 | 2004-10-20 | Wyeth Corp | USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS |
EP1445264B1 (en) | 2001-07-31 | 2011-09-14 | Ono Pharmaceutical Co., Ltd. | Substance specific to pd-1 |
IL149820A0 (en) | 2002-05-23 | 2002-11-10 | Curetech Ltd | Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency |
-
2003
- 2003-12-22 AU AU2003288675A patent/AU2003288675B2/en not_active Ceased
- 2003-12-22 JP JP2004561922A patent/JP4511943B2/en not_active Expired - Fee Related
- 2003-12-22 ES ES03780521T patent/ES2367430T3/en not_active Expired - Lifetime
- 2003-12-22 BR BR0316880-8A patent/BR0316880A/en not_active IP Right Cessation
- 2003-12-22 US US10/741,481 patent/US7488802B2/en not_active Expired - Fee Related
- 2003-12-22 CA CA2508660A patent/CA2508660C/en not_active Expired - Fee Related
- 2003-12-22 US US10/540,084 patent/US7521051B2/en not_active Expired - Fee Related
- 2003-12-22 EP EP03780521A patent/EP1576014B1/en not_active Expired - Lifetime
- 2003-12-22 AT AT03780521T patent/ATE514713T1/en not_active IP Right Cessation
- 2003-12-22 CN CN2010101700224A patent/CN101899114A/en active Pending
- 2003-12-22 WO PCT/IB2003/006304 patent/WO2004056875A1/en active Application Filing
- 2003-12-22 CN CN2003801099298A patent/CN1753912B/en not_active Expired - Fee Related
- 2003-12-22 MX MXPA05006828A patent/MXPA05006828A/en active IP Right Grant
-
2005
- 2005-06-14 IL IL169152A patent/IL169152A/en not_active IP Right Cessation
- 2005-07-12 NO NO20053389A patent/NO336442B1/en not_active IP Right Cessation
-
2006
- 2006-03-17 HK HK06103433.3A patent/HK1083510A1/en not_active IP Right Cessation
-
2007
- 2007-08-17 US US11/893,989 patent/US20080311117A1/en not_active Abandoned
-
2009
- 2009-03-16 US US12/405,058 patent/US8088905B2/en not_active Expired - Fee Related
-
2010
- 2010-03-16 JP JP2010059987A patent/JP2010189395A/en active Pending
- 2010-10-22 AU AU2010235966A patent/AU2010235966A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6632927B2 (en) * | 1989-12-21 | 2003-10-14 | Celltech Therapeutics Limited | Humanized antibodies |
US5837845A (en) * | 1991-06-28 | 1998-11-17 | Mitsubishi Chemical Corporation | Human monoclonal antibody specifically binding to surface antigen of cancer cell membrane |
US6808710B1 (en) * | 1999-08-23 | 2004-10-26 | Genetics Institute, Inc. | Downmodulating an immune response with multivalent antibodies to PD-1 |
US20040213795A1 (en) * | 2002-12-23 | 2004-10-28 | Wyeth | Antibodies against PD-1 and uses therefor |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088905B2 (en) | 2002-12-23 | 2012-01-03 | Wyeth | Nucleic acids encoding antibodies against PD-1 |
US20100028330A1 (en) * | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
US11117961B2 (en) | 2007-06-18 | 2021-09-14 | Merck Sharp & Dohme B.V. | Antibodies to human programmed death receptor PD-1 |
US20100266617A1 (en) * | 2007-06-18 | 2010-10-21 | N.V. Organon | Antibodies to human programmed death receptor pd-1 |
US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
US8900587B2 (en) | 2007-06-18 | 2014-12-02 | Merck Sharp & Dohme Corp. | Antibodies to human programmed death receptor PD-1 |
US9834605B2 (en) | 2007-06-18 | 2017-12-05 | Merck Sharpe & Dohme B.V. | Antibodies to human programmed death receptor PD-1 |
US8952136B2 (en) | 2007-06-18 | 2015-02-10 | Merck Sharp & Dohme B.V. | Antibodies to human programmed death receptor PD-1 |
US9205148B2 (en) | 2011-04-20 | 2015-12-08 | Medimmune, Llc | Antibodies and other molecules that bind B7-H1 and PD-1 |
WO2012145493A1 (en) | 2011-04-20 | 2012-10-26 | Amplimmune, Inc. | Antibodies and other molecules that bind b7-h1 and pd-1 |
EP3403672A1 (en) | 2011-04-20 | 2018-11-21 | Medlmmune, LLC | Antibodies and other molecules that bind b7-h1 and pd-1 |
US9044442B2 (en) | 2012-03-07 | 2015-06-02 | Aurigene Discovery Technologies Limited | Peptidomimetic compounds as immunomodulators |
US10738117B2 (en) | 2013-05-02 | 2020-08-11 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US9815897B2 (en) | 2013-05-02 | 2017-11-14 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
WO2014194293A1 (en) | 2013-05-30 | 2014-12-04 | Amplimmune, Inc. | Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof |
US11708412B2 (en) | 2013-09-26 | 2023-07-25 | Novartis Ag | Methods for treating hematologic cancers |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
US11827704B2 (en) | 2014-01-24 | 2023-11-28 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US9815898B2 (en) | 2014-01-24 | 2017-11-14 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US10752687B2 (en) | 2014-01-24 | 2020-08-25 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US10981990B2 (en) | 2014-01-31 | 2021-04-20 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US11155620B2 (en) | 2014-01-31 | 2021-10-26 | Novartis Ag | Method of detecting TIM-3 using antibody molecules to TIM-3 |
US10160806B2 (en) | 2014-06-26 | 2018-12-25 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
US11098119B2 (en) | 2014-06-26 | 2021-08-24 | Macrogenics, Inc. | Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof |
EP4001311A1 (en) | 2014-07-09 | 2022-05-25 | Birdie Biopharmaceuticals Inc. | Anti-pd-l1 combinations for treating tumors |
WO2016004876A1 (en) | 2014-07-09 | 2016-01-14 | Shanghai Birdie Biotech, Inc. | Anti-pd-l1 combinations for treating tumors |
EP4148069A1 (en) | 2014-09-01 | 2023-03-15 | Birdie Biopharmaceuticals Inc. | Anti-pd-l1 conjugates for treating tumors |
EP3763742A1 (en) | 2014-09-01 | 2021-01-13 | Birdie Biopharmaceuticals Inc. | Anti-pd-l1 conjugates for treating tumors |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
WO2016196218A1 (en) | 2015-05-31 | 2016-12-08 | Curegenix Corporation | Combination compositions for immunotherapy |
US11078279B2 (en) | 2015-06-12 | 2021-08-03 | Macrogenics, Inc. | Combination therapy for the treatment of cancer |
US11623959B2 (en) | 2015-07-30 | 2023-04-11 | Macrogenics, Inc. | PD-1-binding molecules and methods of use thereof |
EP4450088A2 (en) | 2015-07-30 | 2024-10-23 | MacroGenics, Inc. | Pd-1-binding molecules and methods of use thereof |
EP3981792A1 (en) | 2015-07-30 | 2022-04-13 | MacroGenics, Inc. | Pd-1-binding molecules and methods of use thereof |
US10577422B2 (en) | 2015-07-30 | 2020-03-03 | Macrogenics, Inc. | PD-1-binding molecules and methods of use thereof |
EP3456346A1 (en) | 2015-07-30 | 2019-03-20 | MacroGenics, Inc. | Pd-1 and lag-3 binding molecules and methods of use thereof |
US11174315B2 (en) | 2015-10-08 | 2021-11-16 | Macrogenics, Inc. | Combination therapy for the treatment of cancer |
US11840571B2 (en) | 2015-12-14 | 2023-12-12 | Macrogenics, Inc. | Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4 |
US10954301B2 (en) | 2015-12-14 | 2021-03-23 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof |
WO2017106061A1 (en) | 2015-12-14 | 2017-06-22 | Macrogenics, Inc. | Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof |
EP4374926A2 (en) | 2015-12-15 | 2024-05-29 | OncoC4, Inc. | Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof |
WO2017106372A1 (en) | 2015-12-15 | 2017-06-22 | Oncoimmune, Inc. | Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof |
US9914783B1 (en) | 2016-09-14 | 2018-03-13 | Abbvie Biotherapeutics Inc. | Anti-PD-1 antibodies and their uses |
US10730953B2 (en) | 2016-09-14 | 2020-08-04 | Abbvie Biotherapeutics Inc. | Anti-PD-1 antibodies and their uses |
US11155624B2 (en) | 2016-11-01 | 2021-10-26 | Anaptysbio, Inc. | Antibodies directed against programmed death-1 (PD-1) |
US11407830B2 (en) | 2017-01-09 | 2022-08-09 | Tesaro, Inc. | Methods of treating cancer with anti-PD-1 antibodies |
US10961310B2 (en) | 2017-03-15 | 2021-03-30 | Pandion Operations, Inc. | Targeted immunotolerance |
US10676516B2 (en) | 2017-05-24 | 2020-06-09 | Pandion Therapeutics, Inc. | Targeted immunotolerance |
US11466068B2 (en) | 2017-05-24 | 2022-10-11 | Pandion Operations, Inc. | Targeted immunotolerance |
US11945852B2 (en) | 2017-12-06 | 2024-04-02 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US11965008B2 (en) | 2017-12-06 | 2024-04-23 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US11091526B2 (en) | 2017-12-06 | 2021-08-17 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US10174091B1 (en) | 2017-12-06 | 2019-01-08 | Pandion Therapeutics, Inc. | IL-2 muteins |
US11091527B2 (en) | 2017-12-06 | 2021-08-17 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US11779632B2 (en) | 2017-12-06 | 2023-10-10 | Pandion Operation, Inc. | IL-2 muteins and uses thereof |
US10946068B2 (en) | 2017-12-06 | 2021-03-16 | Pandion Operations, Inc. | IL-2 muteins and uses thereof |
US10174092B1 (en) | 2017-12-06 | 2019-01-08 | Pandion Therapeutics, Inc. | IL-2 muteins |
US11673894B2 (en) | 2018-02-27 | 2023-06-13 | Incyte Corporation | Imidazopyrimidines and triazolopyrimidines as A2A / A2B inhibitors |
US11873304B2 (en) | 2018-05-18 | 2024-01-16 | Incyte Corporation | Fused pyrimidine derivatives as A2A/A2B inhibitors |
WO2019246110A1 (en) | 2018-06-20 | 2019-12-26 | Incyte Corporation | Anti-pd-1 antibodies and uses thereof |
EP4349411A2 (en) | 2018-06-20 | 2024-04-10 | Incyte Corporation | Anti-pd-1 antibodies and uses thereof |
US11999740B2 (en) | 2018-07-05 | 2024-06-04 | Incyte Corporation | Fused pyrazine derivatives as A2A / A2B inhibitors |
US11884665B2 (en) | 2019-01-29 | 2024-01-30 | Incyte Corporation | Pyrazolopyridines and triazolopyridines as A2A / A2B inhibitors |
US11739146B2 (en) | 2019-05-20 | 2023-08-29 | Pandion Operations, Inc. | MAdCAM targeted immunotolerance |
WO2021138512A1 (en) | 2020-01-03 | 2021-07-08 | Incyte Corporation | Combination therapy comprising a2a/a2b and pd-1/pd-l1 inhibitors |
US11981715B2 (en) | 2020-02-21 | 2024-05-14 | Pandion Operations, Inc. | Tissue targeted immunotolerance with a CD39 effector |
EP4200324A4 (en) * | 2020-08-19 | 2024-10-02 | Pandion Operations Inc | Multi-paratopic anti-pd-1 antibodies and uses thereof |
WO2022147092A1 (en) | 2020-12-29 | 2022-07-07 | Incyte Corporation | Combination therapy comprising a2a/a2b inhibitors, pd-1/pd-l1 inhibitors, and anti-cd73 antibodies |
Also Published As
Publication number | Publication date |
---|---|
EP1576014B1 (en) | 2011-06-29 |
AU2003288675B2 (en) | 2010-07-22 |
JP2010189395A (en) | 2010-09-02 |
US7521051B2 (en) | 2009-04-21 |
CA2508660A1 (en) | 2004-07-08 |
HK1083510A1 (en) | 2006-07-07 |
NO20053389D0 (en) | 2005-07-12 |
IL169152A (en) | 2010-11-30 |
NO20053389L (en) | 2005-07-12 |
CN1753912A (en) | 2006-03-29 |
AU2010235966A1 (en) | 2010-11-11 |
US20060210567A1 (en) | 2006-09-21 |
US8088905B2 (en) | 2012-01-03 |
MXPA05006828A (en) | 2005-09-08 |
US7488802B2 (en) | 2009-02-10 |
US20100028330A1 (en) | 2010-02-04 |
EP1576014A1 (en) | 2005-09-21 |
BR0316880A (en) | 2005-10-25 |
WO2004056875A1 (en) | 2004-07-08 |
JP2006521783A (en) | 2006-09-28 |
US20040213795A1 (en) | 2004-10-28 |
CN1753912B (en) | 2011-11-02 |
IL169152A0 (en) | 2007-07-04 |
AU2003288675A8 (en) | 2004-07-14 |
AU2003288675A1 (en) | 2004-07-14 |
CA2508660C (en) | 2013-08-20 |
CN101899114A (en) | 2010-12-01 |
ATE514713T1 (en) | 2011-07-15 |
JP4511943B2 (en) | 2010-07-28 |
NO336442B1 (en) | 2015-08-17 |
ES2367430T3 (en) | 2011-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7521051B2 (en) | Methods of upmodulating adaptive immune response using anti-PD-1 antibodies | |
US10077305B2 (en) | Antibodies against PD-1 and uses thereof | |
CN108064236B (en) | Novel forms of IL33, mutant forms of IL33, antibodies, assays and methods of use thereof | |
EP1554312B1 (en) | Neutralizing antibodies against gdf-8 and uses therefor | |
US20040265960A1 (en) | Antibodies against human IL-21 receptor and uses therefor | |
US20210347899A1 (en) | Anti-klrg1 antibodies | |
EP1708961B1 (en) | Anti-ip-10 antibodies | |
JP2024156878A (en) | Anti-KLRG1 antibody |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CAMBRIDGE ANTIBODY TECHNOLOGY LIMITED, UNITED KING Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALGE-ARCHER, VIIA;ANDREWS, JOHN;RUSSELL, CAROLINE;REEL/FRAME:021312/0945 Effective date: 20040323 Owner name: WYETH, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLLINS, MARY;WOOD, CLIVE R.;CARRENO, BEATRIZ M.;AND OTHERS;REEL/FRAME:021312/0915;SIGNING DATES FROM 20040318 TO 20040330 |
|
AS | Assignment |
Owner name: MEDIMMUNE LIMITED, UNITED KINGDOM Free format text: CHANGE OF NAME;ASSIGNOR:CAMBRIDGE ANTIBODY TECHNOLOGY LIMITED;REEL/FRAME:021361/0845 Effective date: 20071029 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |