US20080228700A1 - Attribute Combination Discovery - Google Patents

Attribute Combination Discovery Download PDF

Info

Publication number
US20080228700A1
US20080228700A1 US11/746,395 US74639507A US2008228700A1 US 20080228700 A1 US20080228700 A1 US 20080228700A1 US 74639507 A US74639507 A US 74639507A US 2008228700 A1 US2008228700 A1 US 2008228700A1
Authority
US
United States
Prior art keywords
attribute
attributes
query
combinations
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/746,395
Inventor
Andrew Alexander Kenedy
Charles Anthony Eldering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
23andMe Inc
Original Assignee
Expanse Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Expanse Networks Inc filed Critical Expanse Networks Inc
Priority to US11/746,395 priority Critical patent/US20080228700A1/en
Assigned to EXPANSE NETWORKS, INC. reassignment EXPANSE NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELDERING, CHARLES A
Assigned to EXPANSE NETWORKS, INC. reassignment EXPANSE NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KENEDY, ANDREW A
Publication of US20080228700A1 publication Critical patent/US20080228700A1/en
Assigned to EXPANSE BIOINFORMATICS, INC. reassignment EXPANSE BIOINFORMATICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EXPANSE NETWORKS, INC.
Assigned to 23ANDME, INC. reassignment 23ANDME, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EXPANSE BIOINFORMATICS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/20ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2282Tablespace storage structures; Management thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24575Query processing with adaptation to user needs using context
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24578Query processing with adaptation to user needs using ranking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9538Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/955Retrieval from the web using information identifiers, e.g. uniform resource locators [URL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/40Population genetics; Linkage disequilibrium
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/306User profiles

Definitions

  • FIG. 1 illustrates attribute categories and their relationships
  • FIG. 2 illustrates a system diagram including data formatting, comparison, and statistical computation engines and dataset input/output for a method of creating an attribute combinations database
  • FIG. 3 illustrates examples of genetic attributes
  • FIG. 4 illustrates examples of epigenetic attributes
  • FIG. 5 illustrates representative physical attributes classes
  • FIG. 6 illustrates representative situational attributes classes
  • FIG. 7 illustrates representative behavioral attributes classes
  • FIG. 8 illustrates an attribute determination system
  • FIG. 9 illustrates an example of expansion and reformatting of attributes
  • FIG. 10 illustrates the advantage of identifying attribute combinations in a two attribute example
  • FIG. 11 illustrates the advantage of identifying attribute combinations in a three attribute example
  • FIG. 12 illustrates an example of statistical measures & formulas useful for the methods
  • FIG. 13 illustrates a flow chart for a method of creating an attribute combinations database
  • FIG. 14 illustrates a 1st dataset example for a method of creating an attribute combinations database
  • FIG. 15 illustrates 2nd dataset and combinations table examples for a method of creating an attribute combinations database
  • FIG. 16 illustrates a 3rd dataset example for a method of creating an attribute combinations database
  • FIG. 17 illustrates a 4th dataset example for a method of creating an attribute combinations database
  • FIG. 18 illustrates a 4th dataset example for a method of creating an attribute combinations database
  • FIG. 19 illustrates a flowchart for a method of identifying predisposing attribute combinations
  • FIG. 20 illustrates a rank-ordered tabulated results example for a method of identifying predisposing attribute combinations
  • FIG. 21 illustrates a flowchart for a method of predisposition prediction
  • FIG. 22 illustrates 1st and 2nd dataset examples for a method of predisposition prediction
  • FIG. 23 illustrates 3rd dataset and tabulated results examples for a method of predisposition prediction
  • FIG. 24 illustrates a flowchart for a method of destiny modification
  • FIG. 25 illustrates 1st dataset, 3rd dataset and tabulated results examples for destiny modification of individual # 113 ;
  • FIG. 26 illustrates 1st dataset, 3rd dataset and tabulated results examples for destiny modification of individual # 114 ;
  • FIG. 27 illustrates 3rd dataset examples from a method of destiny modification for use in synergy discovery
  • FIG. 28 illustrates one embodiment of a computing system on which the present method and system can be implemented.
  • FIG. 29 illustrates a representative deployment diagram for an attribute determination system.
  • Described herein are methods, computer systems, databases and software for identifying combinations of attributes associated with individuals that co-occur with key attributes, such as specific disorders, behaviors and traits. Also described are databases as well as database systems for creating and accessing databases describing those attributes and for performing analyses based on those attributes. The methods, computer systems and software are useful for identifying intricate combinations of attributes that predispose human beings toward having or developing specific disorders, behaviors and traits of interest, determining the level of predisposition of an individual towards such attributes, and revealing which attribute associations can be added or eliminated to effectively modify what may have been hereto believed to be destiny.
  • the methods, computer systems and software are also applicable for tissues and non-human organisms, as well as for identifying combinations of attributes that correlate with or cause behaviors and outcomes in complex non-living systems including molecules, electrical and mechanical systems and various devices and apparatus whose functionality is dependent on a multitude of attributes.
  • SNPs single nucleotide polymorphisms
  • SNPs are typically located within gene coding regions and do not allow consideration of 98% of the 3 billion base pairs of genetic code in the human genome that does not encode gene sequences.
  • Other markers such as STS, gene locus markers and chromosome loci markers also provide very low resolution and incomplete coverage of the genome. Complete and partial sequencing of an individual's genome provides the ability to incorporate that detailed information into the analysis of factors contributing toward expressed attributes.
  • Genomic influence on traits is now known to involve more than just the DNA nucleotide sequence of the genome. Regulation of expression of the genome can be influenced significantly by epigenetic modification of the genomic DNA and chromatin (3-dimensional genomic DNA with bound proteins). Termed the epigenome, this additional level of information can make genes in an individual's genome behave as if they were absent. Epigenetic modification can dramatically affect the expression of approximately at least 6% of all genes.
  • Epigenetic modification silences the activity of gene regulatory regions required to permit gene expression.
  • Genes can undergo epigenetic silencing as a result of methylation of cytosines occurring in CpG dinucleotide motifs, and to a lesser extent by deacetylation of chromatin-associated histone proteins which inhibit gene expression by creating 3-dimensional conformational changes in chromatin.
  • Assays such as bisulfite sequencing, differential methyl hybridization using microarrays, methylation sensitive polymerase chain reaction, and mass spectrometry enable the detection of cytosine nucleotide methylation while chromosome immunoprecipitation (CHIP) can be used to detect histone acetylation states of chromatin.
  • CHIP chromosome immunoprecipitation
  • epigenetic attributes are incorporated in the present invention to provide certain functionality.
  • major mental disorders such as schizophrenia and bipolar mood disorder are thought to be caused by or at least greatly influenced by epigenetic imprinting of genes.
  • epigenetic modification characterized to date is reversible in nature, allowing for the potential therapeutic manipulation of the epigenome to alter the course and occurrence of disease and certain behaviors.
  • epigenetic data can help fill gaps resulting from unobtainable personal data, and reinforce or even substitute for unreliable self-reported data such as life experiences and environmental exposures.
  • FIG. 1 displays one embodiment of the attribute categories and their interrelationships according to the present invention and illustrates that physical and behavioral attributes can be collectively equivalent to the broadest classical definition of phenotype, while situational attributes can be equivalent to those typically classified as environmental.
  • historical attributes can be viewed as a separate category containing a mixture of genetic, epigenetic, physical, behavioral and situational attributes that occurred in the past.
  • historical attributes can be integrated within the genetic, epigenetic, physical, behavioral and situational categories provided they are made readily distinguishable from those attributes that describe the individual's current state.
  • the historical nature of an attribute is accounted for via a time stamp or other time based marker associated with the attribute.
  • time stamping the time associated with the attribute can be used to make a determination as to whether the attribute is occurring in what would be considered the present, or if it has occurred in the past.
  • Traditional demographic factors are typically a small subset of attributes derived from the phenotype and environmental categories and can be therefore represented within the physical, behavioral and situational categories.
  • the term ‘attributes’ rather than the term ‘factors’ is used since many of the entities are characteristics associated with an individual that may have no influence on the vast majority of their traits, behaviors and disorders. As such, there may be many instances during execution of the methods described herein when a particular attribute does not act as a factor in determining predisposition. Nonetheless, every attribute remains a potentially important characteristic of the individual and may contribute to predisposition toward some other attribute or subset of attributes queried during subsequent or future implementation of the methods described herein. An individual possesses many associated attributes which may be collectively referred to as an attribute profile associated with that individual.
  • the attribute profile of an individual is preferably provided to embodiments of the present invention as a dataset record whose association with the individual can be indicated by a unique identifier contained in the dataset record.
  • An actual attribute of an individual can be represented by an attribute descriptor in attribute profiles, records, datasets, and databases.
  • attribute descriptors may be referred to simply as attributes.
  • statistical relationships and associations between attribute descriptors are a direct result of relationships and associations between actual attributes of an individual.
  • the term ‘individual’ can refer to an individual group, person, organism, organ, tissue, cell, virus, molecule, thing, entity or state, wherein a state includes but is not limited to a state-of-being, an operational state or a status.
  • Individuals, attribute profiles and attributes can be real and/or measurable, or they may be hypothetical and/or not directly observable.
  • the present invention can be used to discover combinations of attributes regardless of number or type, in a population of any size, that cause predisposition to an attribute of interest.
  • this embodiment also has the ability to provide a list of attributes one can add or subtract from an existing profile of attributes in order to respectively increase or decrease the strength of predisposition toward the attribute of interest.
  • the ability to accurately detect predisposing attribute combinations naturally benefits from being supplied with datasets representing large numbers of individuals and having a large number and variety of attributes for each. Nevertheless, the present invention will function properly with a minimal number of individuals and attributes.
  • One embodiment of the present invention can be used to detect not only attributes that have a direct (causal) effect on an attribute of interest, but also those attributes that do not have a direct effect such as instrumental variables (i.e., correlative attributes), which are attributes that correlate with and can be used to predict predisposition for the attribute of interest but are not causal.
  • instrumental variables i.e., correlative attributes
  • predisposing attributes or simply attributes, that contribute toward predisposition toward the attribute of interest, regardless of whether the contribution or correlation is direct or indirect.
  • the attribute categories collectively encompass all potential attributes of an individual.
  • Each attribute of an individual can be appropriately placed in one or more attribute categories of the methods, system and software of the invention. Attributes and the various categories of attributes can be defined as follows:
  • the methods, systems, software, and databases described herein apply to and are suitable for use with not only humans, but for other organisms as well.
  • the methods, systems, software and databases may also be used for applications that consider attribute identification, predisposition potential and destiny modification for organs, tissues, individual cells, and viruses.
  • the methods can be applied to behavior modification of individual cells being grown and studied in a laboratory incubator by providing pangenetic attributes of the cells, physical attributes of the cells such as size, shape and surface receptor densities, and situational attributes of the cells such as levels of oxygen and carbon dioxide in the incubator, temperature of the incubator, and levels of glucose and other nutrients in the liquid growth medium.
  • the methods, systems, software and databases can then be used to predict predisposition of the cells for such characteristics as susceptibility to infection by viruses, general growth rate, morphology, and differentiation potential.
  • the methods, systems, software, and databases described herein can also be applied to complex non-living systems to, for example, predict the behavior of molecules or the performance of electrical devices or machinery subject to a large number of variables.
  • FIG. 2 illustrates system components corresponding to one embodiment of a method, system, software, and databases for compiling predisposing attribute combinations. Attributes can be stored in the various datasets of the system.
  • 1st dataset 200 is a raw dataset of attributes that may be converted and expanded by conversion/formatting engine 220 into a more versatile format and stored in expanded 1st dataset 202 .
  • Comparison engine 222 can perform a comparison between attributes from records of the 1st dataset 200 or expanded 1st dataset 202 to determine candidate predisposing attributes which are then stored in 2nd dataset 204 .
  • Comparison engine 222 can tabulate a list of all possible combinations of the candidate attributes and then perform a comparison of those combinations with attributes contained within individual records of 1st dataset 200 or expanded 1st dataset 202 . Comparison engine 222 can store those combinations that are found to occur and meet certain selection criteria in 3rd dataset 206 along with a numerical frequency of occurrence obtained as a count during the comparison. Statistical computation engine 224 can perform statistical computations using the numerical frequencies of occurrence to obtain results for strength of association between attributes and attribute combinations and then store those results in 3rd dataset 206 .
  • Statistical computation engine 224 can create a 4th dataset 208 containing attributes and attribute combinations that meet a minimum or maximum statistical requirement by applying a numerical or statistical filter to the numerical frequencies of occurrence or the results for strength of association stored in 3rd dataset 206 .
  • system and engines can be considered subsystems of a larger system, and as such referred to as subsystems.
  • Such subsystems may be implemented as sections of code, objects, or classes of objects within a single system, or may be separate hardware and software platforms which are integrated with other subsystems to form the final system.
  • FIGS. 3A and 3B show a representative form for genetic attributes as DNA nucleotide sequence with each nucleotide position associated with a numerical identifier.
  • each nucleotide is treated as an individual genetic attribute, thus providing maximum resolution of the genomic information of an individual.
  • FIG. 3A depicts a known gene sequence for the HTR2A gene. Comparing known genes simplifies the task of properly phasing nucleotide sequence comparisons. However, for comparison of non-gene sequences, due to the presence of insertions and deletions of varying size in the genome of one individual versus another, markers such as STS sequences can be used to allow for a proper in-phase comparison of the DNA sequences between different individuals.
  • FIG. 3B shows DNA plus-strand sequence beginning at the STS#68777 forward primer, which provides a known location of the sequence within the genome and can serve to allowing phasing of the sequence with other sequences from that region of the genome during sequence comparison.
  • Conversion/formatting engine 220 of FIG. 2 can be used in conjunction with comparison engine 222 to locate and number the STS marker positions within the sequence data and store the resulting data in expanded 1st dataset 202 .
  • comparison engine 222 has the ability to recognize strings of nucleotides with a word size large enough to enable accurately phased comparison of individual nucleotides in the span between marker positions. This function is also valuable in comparing known gene sequences. Nucleotide sequence comparisons in the present invention can also involve transcribed sequences in the form of mRNA, tRNA, rRNA, and cDNA sequences which all derive from genomic DNA sequence and are handled in the same manner as nucleotide sequences of known genes.
  • FIGS. 3C and 3D show two other examples of genetic attributes that may be compared in one embodiment of the present invention and the format they may take. Although not preferred because of the relatively small amount of information provided, SNP polymorphisms ( FIG. 3C ) and allele identity ( FIG. 3D ) can be processed by one or more of the methods herein to provide a limited comparison of the genetic content of individuals.
  • a direct sequence comparison that that requires two or more sequences to be the same at the nucleotide sequence level is performed.
  • a direct sequence comparison between genomic sequences may use only gene coding and gene regulatory sequences since these represent the expressed and expression-controlling portions of the genome, respectively.
  • a comparison of the whole genome can be used as opposed to comparison of only the 2% which encodes genes and gene regulatory sequences since the noncoding region of the genome may still have effects on genome expression which influence attribute predisposition.
  • comparison engine 222 is permitted some degree of flexibility in comparison of nucleotide sequences, so that the exact identity within protein encoding regions is not always required. For example, when a single nucleotide difference between two sequences is deemed unlikely to result in a functional difference between the two encoded proteins, it is beneficial to make the determination that the two sequences are the same even though they are actually not identical. The reason for allowing non-identical matches being that since the nucleotide difference is functionally silent it should not have a differential effect on attribute predisposition. A number of rules can be provided to comparison engine 222 to guide such decision making. These rules are based on the knowledge of several phenomena.
  • a single nucleotide difference in the 3rd nucleotide position of a codon—termed the wobble position—often does not change the identity of the amino acid encoded by the codon, and therefore may not change the amino acid sequence of the encoded protein. Determination of whether or not a particular nucleotide change in a wobble position alters the encoded protein amino acid sequence is easily made based on published information known to those in the art.
  • Allowing flexibility in sequence matching can increase the number of sequences determined to be identical, but may also reduce the sensitivity of the invention to detect predisposing attributes.
  • nucleotide changes in the wobble codon position that do not change the amino acid sequence may appear to be inconsequential, but may actually impact the stability of the intermediary RNA transcript required for translation of nucleotide sequence into the encoded protein, thus having a significant effect on ultimate levels of expressed protein. Therefore, application of the rules can be left to up the user's discretion or automatically applied when comparing small populations where the low opportunity for exact matches resulting from small sample size increases the probability of obtaining an uninformative result.
  • the rules when a particular set of rules fails to provide sufficient detection of predisposing attributes, the rules can be modified in order to provide higher granularity or resolution for the discovery of predisposing attributes. As such, nucleotide changes in the wobble codon position may be examined in certain applications. Similarly, the brand of cigarettes smoked may be a required attribute to discover some predisposing attributes, but not others.
  • the rules are varied on a test population (which can be comprised of both attribute-positive and attribute-negative individuals) in an effort to determine the most appropriate rules for the greater population.
  • comparison engine 222 when comparing two nucleotide sequences:
  • FIGS. 4A and 4B show examples of epigenetic data that can be compared, the preferred epigenetic attributes being methylation site data.
  • FIG. 4A represents a format of methylation data where each methylation site (methylation variable position) is distinguishable by a unique alphanumeric identifier. The identifier may be further associated with a specific gene, site or chromosomal locus of the genome.
  • the methylation status at each site is an attribute that can have either of two values: methylated (M) or unmethylated (U).
  • M methylated
  • U unmethylated
  • Other epigenetic data and representations of epigenetic data can be used to perform the methods described herein, and to construct the systems, software and databases described herein, as will be understood by one skilled in the art.
  • an alternative way to organize the epigenetic data is to append it directly into the corresponding genetic attribute dataset in the form of methylation status at each candidate CpG dinucleotide occurring in that genomic nucleotide sequence.
  • the advantage of this format is that it inherently includes chromosome, gene and nucleotide position information.
  • this format which is the most complete and informative format for the raw data, the epigenetic data can be extracted and converted to another format at any time.
  • Both formats (that of FIG. 4A as well as that of FIG. 4B ) provide the same resolution of methylation data, but it is preferable to adhere to one format in order to facilitate comparison of epigenetic data between different individuals.
  • the corresponding epigenetic attribute value should be omitted (i.e., assigned a null).
  • FIG. 5 illustrates representative classes of physical attributes as defined by physical attributes metaclass 500 , which can include physical health class 510 , basic physical class 520 , and detailed physical class 530 , for example.
  • physical health class 510 includes a physical diagnoses subclass 510 . 1 that includes the following specific attributes (objects), which when positive indicate a known physical diagnoses:
  • the above classes and attributes represent the current condition of the individual.
  • the individual e.g. consumer 810
  • the same classification methodology can be applied, but with an “h” placed after the attribute number to denote a historical attribute.
  • 510.1.4h can be used to create an attribute to indicate that the individual suffered a stroke in the past, as opposed to 510.1.4 which indicates the individual is currently suffering a stroke or the immediate aftereffects.
  • historical classes and attributes mirroring the current classes and attributes can be created, as illustrated by historical physical health class 510 h, historical physical diagnoses class 510 . 1 h, historical basic physical class 520 h, historical height class 520 .
  • time stamping of attributes is preferred in order to permit accurate determination of those attributes or attribute combinations that are associated with an attribute of interest (i.e., a query attribute or target attribute) in a causative or predictive relationship, or alternatively, those attributes or attribute combinations that are associated with an attribute of interest in a consequential or symptomatic relationship.
  • only attributes bearing a time stamp that predates the time stamp of the attribute of interest are processed by the methods.
  • only attributes bearing a time stamp that postdates the time stamp of the attribute of interest are processed by the methods.
  • both attributes that predate and attributes that postdate an attribute of interest are processed by the methods.
  • physical prognoses subclass 510 . 2 can contain attributes related to clinical forecasting of the course and outcome of disease and chances for recovery.
  • Basic physical class 520 can include the attributes age 520 . 1 , sex 520 . 2 , height 520 . 3 , weight 520 . 4 , and ethnicity 520 . 5 , whose values provide basic physical information about the individual.
  • Hormone levels 530 . 1 and strength/endurance 530 . 4 are examples of attribute subclasses within detailed physical class 530 .
  • Hormone levels 530 . 1 can include attributes for testosterone level, estrogen level, progesterone level, thyroid hormone level, insulin level, pituitary hormone level, and growth hormone level, for example.
  • Strength/endurance 530 . 4 can include attributes for various weight lifting capabilities, stamina, running distance and times, and heart rates under various types of physical stress, for example.
  • Blood sugar level 530 . 2 , blood pressure 530 . 3 and body mass index 530 . 5 are examples of attributes whose values provide detailed physical information about the individual.
  • Historical physical health class 510 h, historical basic physical class 520 h and historical detailed physical class 530 h are examples of historical attribute classes.
  • Historical physical health class 510 h can include historical attribute subclasses such as historical physical diagnoses class 510 . h which would include attributes for past physical diagnoses of various diseases and physical health conditions which may or may not be representative of the individual's current health state.
  • Historical basic physical class 520 h can include attributes such as historical height class 520 . 1 h which can contain heights measured at particular ages.
  • Historical detailed physical class 530 h can include attributes and attribute classes such as the historical hormone levels class 530 . 1 h which would include attributes for various hormone levels measured at various time points in the past.
  • the classes and indexing illustrated in FIG. 5 and described above can be matched to health insurance information such as health insurance codes, such that information collected by health care professionals (such as clinician 820 of FIG. 8 , which can be a physician, nurse, nurse practitioner or other health care professional) can be directly incorporated as attribute data.
  • the heath insurance database can directly form part of the attribute database, such as one which can be constructed using the classes of FIG. 5 .
  • FIG. 6 illustrates classes of situational attributes as defined by situational attributes metaclass 600 , which in one embodiment can include medical class 610 , exposures class 620 , and financial class 630 , for example.
  • medical class 610 can include treatments subclass 610 . 1 and medications subclass 610 . 2
  • exposures class 620 can include environmental exposures subclass 620 . 1 , occupational exposures subclass 620 . 2 and self-produced exposures 620 . 3
  • financial class 630 can include assets subclass 630 . 1 , debt subclass 630 . 2 and credit report subclass 630 . 3 .
  • Historical medical class 610 h can include historical treatments subclass 610 . 1 h, historical medications subclass 610 .
  • Other historical classes included within the situational attributes metaclass 600 can be historical exposures subclass 620 h, historical financial subclass 630 h, historical income history subclass 640 h, historical employment history subclass 650 h, historical marriage/partnerships subclass 660 h, and historical education subclass 670 h.
  • databases containing purchase information can be used as either the basis for extracting attributes for the classes such as those in financial subclass 630 and historical financial subclass 630 h, or for direct mapping of the information in those databases to situational attributes.
  • accounting information such as that maintained by the consumer 810 of FIG. 8 , or a representative of the consumer (e.g. the consumer's accountant) can also be incorporated, transformed, or mapped into the classes of attributes shown in FIG. 6 .
  • Measurement of financial attributes such as those illustrated and described with respect to FIG. 6 allows financial attributes such as assets, debt, credit rating, income and historical income to be utilized in the methods, systems, software and databases described herein.
  • financial attributes can be important with respect to a query attribute.
  • other situational attributes such as the number of marriages/partnerships, length of marriages/partnership, number jobs held, income history, can be important attributes and will be found to be related to certain query attributes.
  • a significant number of attributes described in FIG. 6 are extracted from public or private databases, either directly or through manipulation, interpolation, or calculations based on the data in those databases.
  • FIG. 7 illustrates classes of behavioral attributes as defined by behavioral attributes metaclass 700 , which in one embodiment can include mental health class 710 , habits class 720 , time usage class 730 , mood/emotional state class 740 , and intelligence quotient class 750 , for example.
  • mental health class 710 can include mental/behavioral diagnoses subclass 710 . 1 and mental/behavioral prognoses subclass 710 . 2
  • habits class 720 can include diet subclass 720 . 1 , exercise subclass 720 . 2 , alcohol consumption subclass 720 . 3 , substances usage subclass 720 . 4 , and sexual activity subclass 720 . 5
  • time usage class 730 can include work subclass 730 .
  • Behavioral attributes metaclass 700 can also include historical classes such as historical mental health class 710 h, historical habits 720 h, and historical time usage class 730 h.
  • external databases such as health care provider databases, purchase records and credit histories, and time tracking systems can be used to supply the data which constitutes the attributes of FIG. 7 .
  • classification systems such as those used by mental health professionals such as classifications found in the DSM-IV can be used directly, such that the attributes of mental health class 710 and historical prior mental health class 710 h have a direct correspondence to the DSM-IV.
  • the classes and objects of the present invention as described with respect to FIGS. 5 , 6 and 7 , can be implemented using a number of database architectures including, but not limited to flat files, relational databases and object oriented databases.
  • UML Unified Modeling Language
  • UML diagrams including, but not limited to, use case diagrams, class diagrams and activity diagrams, are meant to serve as an aid in describing the embodiments of the present invention but do not constrain implementation thereof to any particular hardware or software embodiments.
  • the notation used with respect to the UML diagrams contained herein is consistent with the UML 2.0 specification or variants thereof and is understood by those skilled in the art.
  • FIG. 8 illustrates a use case diagram for an attribute determination system 800 which, in one embodiment, allows for the determination of attributes which are statistically relevant or related to a query attribute.
  • Attribute determination system 800 allows for a consumer 810 , clinician 820 , and genetic database administrator 830 to interact, although the multiple roles may be filled by a single individual, to input attributes and query the system regarding which attributes are relevant to the specified query attribute.
  • a contribute genetic sample use case 840 a consumer 810 contributes a genetic sample.
  • this involves the contribution by consumer 810 of a swab of the inside of the cheek, a blood sample, or contribution of other biological specimen associated with consumer 810 from which genetic and epigenetic data can be obtained.
  • genetic database administrator 830 causes the genetic sample to be analyzed through a determine genetic and epigenetic attributes use case 850 .
  • Consumer 810 or clinician 820 may collect physical attributes through a describe physical attributes use case 842 .
  • behavioral, situational, and historical attributes are collected from consumer 810 or clinician 820 via describe behavioral attributes use case 844 , describe situational attributes use case 846 , and describe historical attributes use case 848 , respectively.
  • Clinician 820 or consumer 810 can then enter a query attribute through receive query attribute use case 852 .
  • Attribute determination system 800 determines which attributes and combinations of attributes, extending across the pangenetic (genetic/epigenetic), physical, behavioral, situational, and historical attribute categories, are statistically related to the query attribute.
  • historical attributes can, in certain embodiments, be accounted for through the other categories of attributes.
  • describe historical attributes use case 848 is effectively accomplished through determine genetic and epigenetic attributes use case 850 , describe physical attributes use case 842 , describe behavioral attributes use case 844 , and describe situational attributes use case 846 .
  • Physical, behavioral, situational and historical attribute data may be stored or processed in a manner that allows retention of maximum resolution and accuracy of the data while also allowing flexible comparison of the data so that important shared similarities between individuals are not overlooked. This is taken into account when processing narrow and extreme attribute values, or smaller populations of individuals where the reduced number of individuals makes the occurrence of identical matches of attributes rare.
  • flexible treatment and comparison of attributes can reveal predisposing attributes that are related to or legitimately derive from the original attribute values but have broader scope, lower resolution, and extended or compounded values compared to the original attributes.
  • attributes and attribute values can be qualitative (categorical) or quantitative (numerical).
  • attributes and attribute values can be discrete or continuous.
  • one approach is to incorporate data conversion/formatting engine 220 which is able to create expanded 1st dataset 202 from 1st dataset 200 .
  • a second approach is to incorporate functions into attribute comparison engine 222 that allow it to expand the original attribute data into additional values or ranges during the comparison process. This provides the functional equivalent of reformatting the original dataset without having to create and store the entire set of expanded attribute values.
  • individual attributes may be expanded into one or more sets containing attributes having values, levels or degrees that are above, below, surrounding or including that of the original attribute.
  • attributes can be used to create new attributes that are broader or narrower in scope than the original attribute.
  • attributes can be used to compute new attributes that are related to the original attribute.
  • FIG. 9 illustrates how time spans or multiple noncontiguous time periods for historical attributes such as those shown in FIG. 9A , may be recalculated to form a single value for total time exposed or total length of experience such as that shown in FIG. 9B . Also exemplified in FIG.
  • a time point in life at which a historical attribute occurred may be stratified into a wider time range or interval to increase the opportunity for matches with other individuals.
  • the original attribute value is retained and the expanded attribute values provided in addition to allow the opportunity to detect similarities at both the maximal resolution level provided by the original attribute value and the lower level of resolution and broader coverage provided by the expanded attribute values or attribute value range.
  • attribute values are determined from detailed questionnaires which are completed by the consumer/patient directly or with the assistance of clinician 820 . Based on these questionnaires, values such as those shown in FIGS. 9A and 9B can be derived.
  • the broader attributes may be included and the narrow attributes eliminated, filtered or masked in order to reduce the complexity and lengthiness of the final results.
  • inaccuracies can occur, sometimes due to outright misrepresentations of the individual's habits. For example, it is not uncommon for patients to self-report alcohol consumption levels which are significantly below actual levels. Such situations can occur even when a clinician/physician is involved, as the patient reports consumption levels to the clinician/physician that are significantly below their actual consumption levels. Similarly, it is not uncommon for an individual to over-report the amount of exercise they get.
  • disparate sources of data including consumption data as derived from purchase records, data from blood and urine tests, and other observed characteristics are used to derive attributes such as those shown in FIGS. 5-7 .
  • heuristic rules are used to generate attribute data based on measured, rather than self-reported attributes.
  • Heuristic rules are defined as rules which relate measurable (or accurately measurable) attributes to less measurable or less reliable attributes such as those from self-reported data. For example, an individual's recorded purchases including cigarette purchases can be combined with urine analysis or blood test results which measure nicotine levels or another tobacco related parameter and heuristic rules can be applied to estimate cigarette consumption level.
  • one or more heuristic rules can be applied to the data representing the number of packs of cigarettes purchased by an individual or household, results of urine or blood tests, and other studied attributes, to derive an estimate of the extent to which the individual smokes.
  • the heuristic rules take into account attributes such as household size and self-reported data to assist in the derivation of the desired attribute. For example, if purchase data is used in a heuristic rule, household size and even the number of self-reported smokers in the household, can be used to help determine actual levels of consumption of tobacco by the individual. In one embodiment, household members are tracked individually, and the heuristic rules provide for the ability to approximately assign consumption levels to different people in the household. Details such as individual brand usages or preferences may be used to help assign consumptions within the household. As such, the heuristic rules can be applied to a number of disparate pieces of data to assist in extracting one or more attributes.
  • an attribute may have no effect on expression of another attribute unless it occurs in the proper context, the proper context being co-occurrence with one or more additional predisposing attributes.
  • an attribute may be a significant contributor to predisposition of the organism for developing the attribute of interest. This contribution is likely to remain undetected if attributes are evaluated individually.
  • complex diseases require a specific combination of multiple attributes to promote expression of the disease. The required disease-predisposing attribute combinations will occur in a significant percentage of those that have or develop the disease and will occur at a lower frequency in a group of unaffected individuals.
  • FIG. 10 illustrates an example of the difference in frequencies of occurrence of attributes when considered in combination as opposed to individually.
  • a query attribute a specific attribute of interest that can be submitted in a query.
  • One group does not possess (is not associated with) the query attribute, the query-attribute-negative group, and the other does possess (is associated with) the query attribute, the query-attribute-positive group.
  • the query attribute of interest is a particular disease or trait.
  • the two groups are analyzed for the occurrence of two attributes, A and X, which are candidates for causing predisposition to the disease.
  • frequencies of occurrence are computed individually for A and for X, the observed frequencies are identical (50%) for both groups.
  • the frequency of occurrence is computed for the combination of A with X for individuals of each group, the frequency of occurrence is dramatically higher in the positive group compared to the negative group (50% versus 0%). Therefore, while both A and X are significant contributors to predisposition in this theoretical example, their association with expression of the disease in individuals can only be detected by determining the frequency of co-occurrence of A with X in each individual.
  • FIG. 11 illustrates another example of the difference in frequencies of occurrence of attributes when considered in combination as opposed to individually.
  • Three genes are under consideration as candidates for causing predisposition to the query attribute.
  • Each of the three genes has three possible alleles (each labeled A, B, or C for each gene). This illustrates not only the requirement of attribute combinations in causing predisposition, but also the phenomenon that there can be multiple different combinations of attributes that produce the same outcome.
  • a combination of either all A, all B, or all C alleles for the genes can result in predisposition to the query attribute.
  • the query-attribute-positive group is evenly divided among these three attribute combinations, each having a frequency of occurrence of 33%.
  • the same three combinations occur with 0% frequency in the query-attribute-negative group.
  • the frequency of occurrence of each allele of each gene is an identical 33% in both groups, which would appear to indicate no contribution to predisposition by any of the alleles in one groups versus the other.
  • FIG. 11 this is not the case, since every gene allele considered in this example does contribute to predisposition toward the query attribute when occurring in a particular combination of alleles, specifically a combination of all A, all B, or all C.
  • the frequencies of occurrence of attribute combinations are can be stored as ratios for both the query-attribute-positive individuals and the query-attribute-negative individuals.
  • the frequency of occurrence for the query-attribute-positive group is the ratio of the number of individuals of that group having the attribute combination (the exposed query-attribute-positive individuals designated ‘a’) to the total number of individuals in that group (‘a’ plus ‘c’).
  • the frequency of occurrence for the query-attribute-negative group is the ratio of the number of individuals of that group having the attribute combination (the exposed query-attribute-negative individuals designated ‘b’) to the total number of individuals in that group (‘b’ plus ‘d’).
  • the frequencies of occurrence of an attribute or attribute combination when compared for two or more groups of individuals with respect to a query attribute, are statistical results that can indicate strength of association of the attribute combination with a query attribute. Frequencies of occurrence can also be utilized by statistical computation engine 224 to compute additional statistical results for strength of association of the attribute combinations with the query attribute.
  • the statistical measures used may include, but are not limited to, prevalence, incidence, probability, absolute risk, relative risk, attributable risk, excess risk, odds (a.k.a. likelihood), and odds ratio (a.k.a. likelihood ratio). Absolute risk (a.k.a. probability), relative risk, odds, and odds ratio are the preferred statistical computations for the present invention.
  • absolute risk and relative risk are the more preferable statistical computations because their values can still be calculated for an attribute combination in instances where the frequency of occurrence of the attribute combination in the query-attribute-negative group is zero. Odds and odds ratio are undefined in instances where the frequency of occurrence of the attribute combination in the query-attribute-negative group is zero, because in that situation their computation requires division by zero which is mathematically undefined.
  • One embodiment of the present invention when supplied with ample data, is expected to routinely yield frequencies of occurrence of zero in query-attribute-negative groups because of its ability to discover large predisposing attribute combinations that are exclusively associated with the query attribute.
  • FIG. 12B illustrates formulas for the statistical measures that can be used to compute statistical results.
  • absolute risk is computed as the probability that an individual has or will develop the query attribute given exposure to an attribute combination.
  • relative risk is computed as the ratio of the probability that an exposed individual has or will develop the query attribute to the probability that an unexposed individual has or will develop the query attribute.
  • odds is computed as the ratio of the probability that an exposed individual has or will develop the query attribute (absolute risk of the exposed query-attribute-positive individuals) to the probability that an exposed individual does not have and will not develop the query attribute (absolute risk of the exposed query-attribute-negative individuals).
  • the odds ratio is computed as the ratio of the odds that an exposed individual has or will develop the query attribute to the odds that an unexposed individual has or will develop the query attribute.
  • an absolute risk ⁇ 1.0 can be interpreted to mean one or more of the following: 1) the association status of one or more attributes, as provided to the methods, is inaccurate or missing (null), 2) not enough attributes have been collected, provided to or processed by the methods, or 3) the resolution afforded by the attributes that have been provided is too narrow or too broad.
  • the statistical results obtained from computing the statistical measures can be subjected to inclusion, elimination, filtering, and evaluation based on meeting one or more statistical requirements.
  • Statistical requirements can include but are not limited to numerical thresholds, statistical minimum or maximum values, and statistical significance/confidence values.
  • Bayesian analyses e.g., Bayesian probabilities, Bayesian classifiers, Bayesian classification tree analyses, Bayesian networks
  • linear regression analyses non-linear regression analyses
  • multiple linear regression analyses uniform analyses, Gaussian analyses, hierarchical analyses, recursive partitioning (e.g., classification and regression trees), resampling methods (e.g., bootstrapping, cross-validation, jackknife), Markov methods (e.g., Hidden Markov Models, Regular Markov Models, Markov Blanket algorithms), kernel methods (e.g., Support Vector Machine, Fisher's linear discriminant analysis, principle components analysis, canonical correlation analysis, ridge regression, spectral clustering, matching pursuit, partial least squares), multivariate data analyses including cluster analyses, discriminant analyses and factor analyses, parametric statistical methods (e.g., ANOVA), non-parametric inferential statistical methods (i.e., binomial test, Anderson
  • the methods, databases, software and systems of the present invention can be used to produce data for use in and/or results for the above statistical analyses. In another embodiment, the methods, databases, software and systems of the present invention can be used to independently verify the results produced by the above statistical analyses.
  • a method accesses a first dataset containing attributes associated with a set of query-attribute-positive individuals and query-attribute-negative individuals, the attributes being pangenetic, physical, behavioral and situational attributes associated with individuals, and creates a second dataset of attributes associated with a query-attribute-positive individual but not associated with one or more query-attribute-negative individuals.
  • a third dataset can be created containing attributes of the second dataset that are either associated with one or more query-attribute-positive individuals or are not present in any of the query-attribute-negative individuals, along with the frequency of occurrence in the query-attribute-positive individuals and the frequency of occurrence in the query-attribute-negative individuals.
  • a statistical computation can be performed for each attribute combination, based on the frequency of occurrence, the statistical computation result indicating the strength of association, as measured by one or more well known statistical measures, between each attribute combination and the query attribute.
  • the process can be repeated for a number of query attributes, and multiple query-positive individuals can be studied to create a computer-stored and machine-accessible compilation of different attribute combinations that co-occur with the queried attributes.
  • the compilation can be ranked and co-occurring attribute combinations not having a minimum strength of association with the query attribute can be eliminated from the compilation.
  • a system can be developed which contains a subsystem for accessing a query attribute, a second subsystem for accessing a set of databases containing pangenetic, physical, behavioral, and situational attributes associated with a plurality of query-attribute positive, and query-attribute negative individuals, a data processing subsystem for identifying combinations of pangenetic, physical, behavioral, and situational attributes associated with query-attribute positive individuals, but not with query-attribute negative individuals, and a calculating subsystem for determining a set of statistical results that indicates a strength of association between the combinations of pangenetic, physical, behavioral, and situational attributes with the query attribute.
  • the system can also include a communications subsystem for retrieving at least some of pangenetic, physical, behavioral, and situational attributes from at least one external database; a ranking subsystem for ranking the co-occurring attributes according to the strength of the association of each co-occurring attribute with the query attribute; and a storage subsystem for storing the set of statistical results indicating the strength of association between the combinations of pangenetic, physical, behavioral, and situational attributes and the query attribute.
  • the various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs).
  • CPUs Central Processing Units
  • a variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • the method and/or system is used in conjunction with a plurality of databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which serve to store the aforementioned attributes.
  • the pangenetic (genetic and epigenetic) data is stored separately from the other attribute data and is accessed by the system/method.
  • the pangenetic data is stored with the other attribute data.
  • a user such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for determination of the attribute combinations associated with that query attribute.
  • the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first.
  • the calculation is made at the time the query is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 13 illustrates a flowchart of one embodiment of a method for creation of a database of attribute combinations, wherein 1st dataset 1322 , 2nd dataset 1324 , 3rd dataset 1326 and 4th dataset 1328 correspond to 1st dataset 200 , 2nd dataset 204 , 3rd dataset 206 and 4th dataset 208 respectively of the system illustrated in FIG. 2 .
  • Expanded 1st dataset 202 of FIG. 2 is optional for this embodiment of the method and is therefore not illustrated in the flowchart of FIG. 13 .
  • One aspect of this method is the comparison of attributes and attribute combinations of different individuals in order to identify those attributes and attribute combinations that are shared in common between those individuals. Any attribute that is present in the dataset record of an individual is said to be associated with that individual.
  • 1st dataset 1322 in the flow chart of FIG. 13 represents the initial dataset containing the individuals' attribute dataset records to be processed by the method.
  • FIG. 14 illustrates an example of the content of a 1st dataset representing attribute data for 111 individuals.
  • Each individual's association with attributes A-Z is indicated by either an association status value of 0 (no, does do not possess the attribute) or a status value of 1 (yes, does possess the attribute). In one embodiment, this is preferred format for indicating the presence or absence of association of an attribute with an individual.
  • an individual's attribute profile or dataset record contains the complete set of attributes under consideration and a 0 or 1 status value for each.
  • representation of association of an attribute with an individual can be more complex than the simple binary value representations of yes or no, or numerical 1 or 0.
  • the presence of attributes themselves for example the actual identity of nucleotides, a brand name, or a trait represented by a verbal descriptor, can be used to represent the identity, degree and presence of association of the attribute.
  • the absence of an attribute is itself an attribute that can be referred to and/or represented as a ‘not-attribute’.
  • a not-attribute simply refers to an attribute having a status value of 0, and in a further embodiment, the not-attribute is determined to be associated with an individual or present in an attribute profile (i.e., dataset, database or record) if the corresponding attribute has a status value of 0 associated with the individual or is present in the attribute profile as an attribute with a status value of 0, respectively.
  • a not-attribute can be an attribute descriptor having a ‘not’ prefix, minus sign, or alternative designation imparting essentially the same meaning.
  • not-attributes are treated and processed no differently than other attributes.
  • the attribute or attribute status may be omitted and represented as a null.
  • a null should not be treated as being equivalent to a value of zero, since a null is not a value.
  • a null represents the absence of a value, such as when no attribute or attribute association status is entered into a dataset for a particular attribute.
  • individuals # 1 - 10 and # 111 possess unique attribute content which is not repeated in other individuals of this population.
  • Individuals # 11 - 20 are representative of individuals # 21 - 100 , so that the data for each of the individuals # 11 - 20 is treated as occurring ten times in this population of 111 individuals.
  • individuals # 12 , # 13 , # 14 , # 15 , # 16 , # 17 , # 18 , # 19 and # 20 are examples of individuals # 12 , # 13 , # 14 , # 15 , # 16 , # 17 , # 18 , # 19 and # 20 .
  • the method begins with access query attribute step 1300 in which query attribute 1320 , provided either by a user or by automated submission, is accessed.
  • the query attribute is ‘A’.
  • access data step 1302 the attribute data for individuals as stored in 1st dataset 1322 are accessed with query attribute 1320 determining classification of the individuals as either query-attribute-positive individuals (those individuals that possess the query attribute in their 1st dataset record) or query-attribute-negative individuals (those individuals that do not possess the query attribute in their dataset record).
  • query attribute ‘A’ individuals # 1 - 10 are the query-attribute-positive individuals, and individuals # 11 - 111 are the query-attribute-negative individuals.
  • select query-attribute-positive individual N step 1304 individual # 1 is selected in this example for comparison of their attributes with those of other individuals.
  • store attributes step 1306 those attributes of the selected individual # 1 that are not associated with a portion (e.g., one or more individuals) of the query-attribute-negative group (or alternatively, a randomly selected subgroup of query-attribute-negative individuals) are stored in 2nd dataset 1324 as potential candidate attributes for contributing to predisposition toward the query attribute.
  • this initial comparison step is used to increase efficiency of the method by eliminating those attributes that are associated with all of the query-attribute-negative individuals.
  • this step ensures that only attributes of the individual that occur with a frequency of less than 100% in the query-attribute-negative group are stored in the 2nd dataset. This step is especially useful for handling genetic attributes since the majority of the approximately three billion nucleotide attributes of the human genome are identically shared among individuals and may be eliminated from further comparison before advancing to subsequent steps.
  • this initial comparison to effectively eliminate attributes that are not potential candidates may be performed against a randomly selected subgroup of query-attribute-negative individuals.
  • Using a small subgroup of individuals for the comparison increases efficiency and prevents the need to perform a comparison against the entire query-attribute-negative population which may consist of thousands or even millions of individuals.
  • such a subgroup preferably consists of at least 20, but as few as 10, randomly selected query-attribute-negative individuals.
  • FIG. 15A illustrates the 2nd dataset which results from processing the attributes of individual # 1 for query attribute ‘A’ in a comparison against individuals # 11 - 111 of the query-attribute-negative subgroup.
  • the stored candidate attributes consist of C,E,F,N,T and Y.
  • FIG. 15B illustrates a tabulation of all possible combinations of these attributes.
  • store attribute combinations step 1308 those combinations of attributes of 2nd dataset 1324 that are found by comparison to be associated with one or more query-attribute-positive individuals of 1st dataset 1322 are stored in 3rd dataset 1326 along with the corresponding frequencies of occurrence for both groups determined during the comparison.
  • one embodiment of the method can include a requirement that any attribute combination not present in any of the query-attribute-negative individuals be stored in the 3rd dataset along with the frequencies of occurrence for both groups. Any attribute combination stored according to this rule necessarily has a frequency of occurrence equal to zero for the query-attribute-negative group and a frequency of occurrence having a numerator equal to one for the attribute-positive group.
  • FIG. 16 illustrates a 3rd dataset containing a representative portion of the stored attribute combinations and their frequencies of occurrence for the data of this example.
  • Each frequency of occurrence is preferably stored as a ratio of the number of individuals of a group that are associated with the attribute combination in the numerator and the total number of individuals of that group in the denominator.
  • the frequencies of occurrence previously stored in 3rd dataset 1326 are used to compute statistical results for the attribute combinations which indicate the strength of association of each attribute combination with the query attribute.
  • the statistical computations used may include prevalence, incidence, absolute risk (a.k.a. probability), attributable risk, excess risk, relative risk, odds and odds ratio.
  • absolute risk, relative risk, odds and odds ratio are the statistical computations performed (see formulas in FIG. 12B ). Computed statistical results stored with their corresponding attribute combinations are shown in the 3rd dataset illustrated by FIG. 16 .
  • the resulting data for each additional individual is simply appended into the 3rd dataset during each successive iteration.
  • data in the 2nd dataset is preferably deleted between iterations, or uniquely identified for each individual. This will ensure that any data in the 2nd dataset originating from a previous iteration is not reconsidered in current and subsequent iterations of other individuals in the group. Alternate techniques to prevent reconsideration of the data can be utilized.
  • 4th dataset 1328 may be created by selecting and storing only those attribute combinations and their associated data from the 3rd dataset that show a minimum statistical association with the query attribute.
  • the minimum statistical association may be a minimum positive, negative, neutral or combined association determined by either the user or the system. This determination can be made based on the statistical results previously stored in 3rd dataset 1326 . As an example, the determination can be made based on the results computed for relative risk. Statistically, a relative risk of>1.0 indicates a positive association between the attribute combination and the query attribute, while a relative risk of 1.0 indicates no association, and a relative risk of ⁇ 1.0 indicates a negative association.
  • FIG. 17 illustrates a 4th dataset consisting of attribute combinations with a relative risk>1.0, from which the attribute combinations CETY and CE are excluded because they have associated relative risks•1.0.
  • FIG. 18 illustrates another example of a 4 th dataset that can be created. In this example, a minimum statistical association requirement of either relative risk>4.0 or absolute risk>0.3 produce this 4th dataset.
  • 4th dataset 1328 can be presented in the form of a report which contains only those attribute combinations determined to be predisposing toward the query attribute above a selected threshold of significant association for the individual or population of individuals.
  • predisposing attribute combinations for additional query attributes within the same population of individuals. In one embodiment this is accomplished by repeating the entire method for each additional query attribute and either creating new 2nd, 3rd and 4th datasets, or appending the results into the existing datasets with associated identifiers that clearly indicate what data results correspond to which query attributes. In this way, a comprehensive database containing datasets of predisposing attribute combinations for many different query attributes may be created.
  • attribute profile records of individuals that have nulls for one or more attribute values are not processed by the method or are eliminated from the 1st dataset before initiating the method.
  • attribute profile records of individuals that have nulls for one or more attribute values are only processed by the method if those attribute values that are nulls are deemed inconsequential for the particular query or application.
  • a population of individuals having one or more individual attribute profile records containing nulls for one or more attribute values are only processed for those attributes that have values (non-nulls) for every individual of that population.
  • frequencies of occurrence and statistical results for strength of association of existing attribute combinations in the attribute combinations dataset are updated based on the attribute profile of an individual processed by the method. In another embodiment, frequencies of occurrence and statistical results for strength of association of existing attribute combinations in the attribute combinations dataset are not updated based on the attribute profile of an individual processed by the method.
  • the processing of an individual by the method can require first comparing the individuals' attribute profile to the preexisting attribute combinations dataset to determine which attribute combinations in the dataset are also present in the individual's attribute profile, and then in a further embodiment, based on the individual's attribute profile, updating the frequencies of occurrence and statistical results for strength of association of those attribute combinations in the dataset that are also present in the individual's attribute profile, without further processing the individual or their attributes by the method.
  • the 3rd and 4th datasets created by performing the above methods for creation of a database of attribute combinations can be used for additional methods of the invention that enable: 1) identification of predisposing attribute combinations toward a key attribute of interest, 2) predisposition prediction for an individual toward a key attribute of interest, and 3) intelligent individual destiny modification provided as predisposition predictions resulting from the addition or elimination of specific attribute associations.
  • a method of identifying predisposing attribute combinations which accesses a first dataset containing attribute combinations and statistical computation results that indicate the potential of each attribute combination to co-occur with a query attribute, the attributes being pangenetic, physical, behavioral, and situational attributes.
  • a tabulation can be performed to provide, based on the statistical computation results, those predisposing attribute combinations that are most likely to co-occur with the query attribute, or a rank-ordering of predisposing attribute combinations of the first dataset that co-occur with the query attribute.
  • a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attribute combinations of pangenetic, physical, behavioral and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for tabulating the attribute combinations.
  • the various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs).
  • CPUs Central Processing Units
  • a variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results.
  • the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets.
  • the attribute combinations and corresponding statistical results data is stored with the other attribute data.
  • a user such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute.
  • the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first.
  • the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 19 illustrates a flow chart for a method of attribute identification providing tabulation of attribute combinations that are predisposing toward an attribute of interest provided in a query.
  • query attribute 1920 can be provided as one or more attributes in a query by a user.
  • query attribute 1920 can be provided by automated submission, as part of a set of one or more stored attributes for example.
  • access co-occurring attribute combinations step 1902 1st dataset 1922 is accessed, wherein this 1st dataset contains attribute combinations that co-occur with the query attribute and statistical results that indicate the corresponding strength of association with the query attribute.
  • the query attribute is ‘A’, and a representative 1st dataset is shown in FIG. 16 .
  • co-occurring attribute combinations are tabulated, preferably according to a rank assigned to each attribute combination based on the strength of association with the query attribute. Further, attribute combinations can be included or excluded based on a statistical requirement. For example, attribute combinations below the minimum strength of association may be excluded. In one embodiment, a minimum strength of association can be specified by the user in reference to one or more statistical results computed for the attribute combinations.
  • a minimum strength of association requiring relative risk•1.0 may be chosen. Based on this chosen requirement, the tabulated list of attribute combinations shown in FIG. 20 would result from processing the 1st dataset represented in FIG. 16 .
  • the attribute combinations are ordered according to rank. In this example, rank values were automatically assigned to each attribute combination based on the number of attributes in each attribute combination and the magnitude of the corresponding absolute risk value. The higher the absolute risk value, the lower the numerical rank assigned. For attribute combinations having the same absolute risk, those with more total attributes per combination receive a lower numerical rank.
  • This treatment is based on two tendencies of larger predisposing attribute combinations. The first is the general tendency of predisposing attribute combinations containing more attributes to possess a higher statistical strength of association with the query attribute.
  • the second is the general tendency for elimination of a single attribute from larger combinations of predisposing attributes to have less of an effect on strength of association with the query attribute.
  • the resulting tabulated list of FIG. 20 therefore provides an rank-ordered listing of predisposing attribute combinations toward attribute ‘A’, where the first attribute combination in the listing is ranked as the most predisposing attribute combination identified and the last attribute combination in the listing is ranked as the least predisposing attribute combination of all predisposing attribute combinations identified for the population of this example.
  • a method for predicting predisposition of an individual for query attributes of interest accesses a first dataset containing attributes associated with an individual and a second dataset containing attribute combinations and statistical computation results that indicate strength of association of each attribute combination with a query attribute, the attributes being pangenetic, physical, behavioral and situational attributes.
  • a comparison can be performed to determine the largest attribute combination of the second dataset that is also present in the first dataset and that meets a minimum statistical requirement, the result being stored in a third dataset.
  • the process can be repeated for a number of query attributes.
  • a tabulation can be performed to provide a predisposition prediction listing indicating the predisposition of the individual for each of the query attributes.
  • predisposition can be defined as a statistical result indicating strength of association between an attribute or attribute combination and a query attribute.
  • a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attributes of an individual, a third subsystem for accessing attribute combinations of pangenetic, physical, behavioral, and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for comparing and tabulating the attribute combinations.
  • the various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs).
  • CPUs Central Processing Units
  • a variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results.
  • the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets.
  • the attribute combinations and corresponding statistical results data is stored with the other attribute data.
  • a user such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute.
  • the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first.
  • the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 21 illustrates a flowchart for a method of predicting predisposition of an individual toward an attribute of interest with which they currently have no association or their association is currently unknown.
  • query attribute 2120 can be provided as one or more attributes in a query by a user.
  • query attribute 2120 can be provided by automated submission, as part of a set of one or more stored attributes that may be referred to as key attributes. These key attributes may be submitted as a simple list, or they may be designated attributes within a dataset that also contains predisposing attribute combinations and their corresponding statistical results for strength of association with one or more of the designated key attributes.
  • query attribute ‘A’ is submitted by a user in a query.
  • access attributes step 2102 the attributes of an individual whose attribute profile is contained in a 1 st dataset 2122 are accessed.
  • a representative 1st dataset for individual # 112 is shown in FIG. 22A .
  • access stored attribute combinations step 2104 attribute combinations and corresponding statistical results for strength of association with query attribute 2120 contained in 2nd dataset 2124 are accessed.
  • a representative 2nd dataset for this example is shown in FIG. 22B .
  • attribute combinations of 2nd dataset 2124 that are also present in 1st dataset 2122 are identified by comparison, and the largest identified attribute combination shared by both datasets and its corresponding statistical results for strength of association with the query attribute are stored in 3rd dataset 2126 if a minimum statistical requirement for strength of association is met.
  • Absolute risk and relative risk are the preferred statistical results, although other statistical computations such as odds and odds ratio can also be used.
  • a representative 3rd dataset is shown in FIG. 23A .
  • Individual # 112 possesses the largest predisposing attribute combination CEFNTY, for which the corresponding statistical results for strength of association with attribute ‘A’ are an absolute risk of 1.0 and a relative risk of 15.3.
  • decision step 2108 a choice is made whether to perform another iteration of steps 2100 - 2106 for another attribute of interest.
  • attribute ‘W’ is received and another iteration is performed.
  • the choice is made not to perform any further iterations.
  • the method concludes with tabulate predisposing attribute combinations step 2110 , wherein all or a portion of the data of 3rd dataset 2126 is tabulated to provide statistical predictions for predisposition of the individual toward each of the query attributes of interest.
  • the tabulation can include ordering the tabulated data based on the magnitude of the statistical results, or the importance of the query attributes.
  • the tabulation can be provided in a form suitable for visual output, such as a visual graphic display or printed report. Attribute combinations do not need to be reported in predisposition prediction and can be omitted or masked so as to provide only the query attributes of interest and the individual's predisposition prediction for each.
  • tabulating the statistical predictions can include substituting the terminology ‘absolute risk’ and ‘relative risk’ with the terminology ‘absolute potential’ and ‘relative potential’, since the term ‘risk’ carries negative connotations typically associated with the potential for developing undesirable conditions like diseases.
  • a method for individual destiny modification accesses a first dataset containing attributes associated with an individual and a second dataset containing attribute combinations and statistical computation results that indicate strength of association of each attribute combination with a query attribute, the attributes being pangenetic, physical, behavioral and situational attributes.
  • a comparison can be performed to identify the largest attribute combination of the second dataset that consists of attributes of the first dataset.
  • attribute combinations of the second dataset that either contain that identified attribute combination or consist of attributes from that identified attribute combination can be stored in a third dataset.
  • the content of the third dataset can be transmitted as a tabulation of attribute combinations and corresponding statistical results which indicate strengths of association of each attribute combination with the query attribute, thereby providing predisposition potentials for the individual toward the query attribute given possession of those attribute combinations.
  • destiny can be defined as statistical predisposition toward having or acquiring one or more specific attributes.
  • a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attributes of an individual, a third subsystem for accessing attribute combinations of pangenetic, physical, behavioral, and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for comparing and tabulating the attribute combinations.
  • the various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs).
  • CPUs Central Processing Units
  • a variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic, and electro-optical storage.
  • the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results.
  • the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets.
  • the attribute combinations and corresponding statistical results data is stored with the other attribute data.
  • a user such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute.
  • the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first.
  • the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 24 illustrates a flow chart for a method of providing intelligent destiny modification in which statistical results for changes to an individual's predisposition toward a query attribute that result from the addition or elimination of specific attribute associations in their attribute profile are determined.
  • query attribute 2420 can be provided as one or more attributes in a query by a user or by automated submission.
  • query attribute ‘A’ is received.
  • access attributes of an individual step 2402 the attribute profile of a selected individual contained in 1st dataset 2422 is accessed. For this example, a representative 1st dataset for individual # 113 is shown in FIG. 25A .
  • FIG. 16 illustrates a representative 2nd dataset.
  • identify the largest attribute combination step 2406 the largest attribute combination in 2nd dataset 2424 that consists entirely of attributes present in 1st dataset 2422 is identified by comparison.
  • the largest attribute combination identified for individual # 113 is CEF.
  • store attribute combinations step 2408 those attribute combinations of 2nd dataset 2424 that either contain the largest attribute combination identified in step 2406 or consist of attributes from that attribute combination are selected and stored in 3rd dataset 2426 .
  • both types of attributes are stored, and the resulting representative 3rd dataset for individual # 113 is shown in FIG. 25B .
  • attribute combinations from 3rd dataset 2426 and their corresponding statistical results are tabulated into an ordered list of attribute combinations and transmitted as output, wherein the ordering of combinations can be based on the magnitudes of the corresponding statistical results such as absolute risk values.
  • the tabulation may include only a portion of the attribute combinations from 3rd dataset 2426 based on subselection.
  • a subselection of attribute combinations that are larger that the largest attribute combination identified in step 2406 may require the inclusion of only those that have at least a minimum statistical association with the query attribute. For example, a requirement can be made that the larger attribute combinations have an absolute risk value greater than that of the attribute combination identified in step 2406 .
  • a subselection of attribute combinations that are smaller than the attribute combination identified in step 2406 may require the inclusion of only those that have less than a maximum statistical association with the query attribute. For example, a requirement can be made that the smaller attribute combinations must have an absolute risk less than that of the attribute combination identified in step 2406 . This will ensure the inclusion of only those smaller attribute combinations that show decreased predisposition toward the query attribute relative to the attribute combination identified in step 2406 .
  • the method for individual destiny modification is used to identify and report attributes that the individual may modify to increase or decrease their chances of having a particular attribute or outcome.
  • the tabulation of attribute combinations produced by the method of destiny modification is filtered to eliminate those attribute combinations that contain one or more attributes that are not modifiable.
  • modifiable attributes are prioritized for modification in order to enable efficient destiny (i.e., predisposition) modification.
  • non-historical attributes are considered modifiable while historical attributes are considered not modifiable.
  • non-historical behavioral attributes are considered to be the most easily or readily modifiable attributes.
  • non-historical situational attributes are considered to be the most easily or readily modifiable attributes.
  • non-historical physical attributes are considered to be the most easily or readily modifiable attributes.
  • non-historical pangenetic attributes are considered to be the most easily or readily modifiable attributes.
  • the modifiable attributes are ranked or otherwise presented in a manner that indicates which are the most easily or readily modifiable, which may include creating categories or classes of modifiable attributes, or alternatively, reporting attributes organized according to the attribute categories of the invention.
  • FIG. 25C illustrates an example of tabulation of attribute combinations for individual # 113 without statistical subselection of the larger and smaller attribute combinations.
  • the larger attribute combinations show how predisposition is altered by adding additional attributes to the largest attribute combination currently possessed by individual # 113 (bolded), and the smaller attribute combinations show how predisposition is altered by removing attributes from the individual's current attribute combination.
  • FIGS. 26A , 26 B and 26 C illustrate 1st dataset, 3rd dataset and tabulated results, respectively, for a different individual, individual # 114 , processed by the method for destiny modification using the same query attribute ‘A’ and the 2nd dataset of FIG. 16 .
  • the largest attribute combination possessed by individual # 114 is CET, which has an absolute risk of 0.14 for predisposition toward query attribute ‘A’.
  • the tabulation of attribute combinations in FIG. 26C is obtained by imposing statistical subselection requirements. The subselection required that only those larger attribute combinations having an absolute risk greater than 0.14 be included and that only those smaller attribute combinations having an absolute risk less than 0.14 be included.
  • age and sex type are two somewhat unique and powerful attributes that influence the expression of many other attributes.
  • age is a primary factor associated with: predicting onset and progression of age-associated diseases in humans and animals; acquiring training and life experiences that lead to success in career, sports and music; and determining life-style choices.
  • biological sex type is correlated with profound differences in expression of physical, behavioral and situational attributes. The inclusion of accurate data for the age and sex of individuals is very important for acquiring accurate and valid results from the methods of the present invention.
  • specific values of age and sex that aggregate with a query attribute can be determined by the methods of the present invention, just as for other attributes, to either co-occur or not co-occur in attribute combinations that are associated with a query attribute.
  • results of the methods can be filtered according to age and/or sex.
  • a population or subpopulation can be selected according to age and/or sex (age-matching and/or sex-matching) and then only that subpopulation subjected to additional processing by methods of the present invention.
  • an age-matched and/or sex-matched population may be used to form query-attribute-positive and query-attribute-negative groups.
  • the sex and/or age of an individual is used to select a population of age-matched and/or sex-matched individuals for creation of an attribute combinations database. In another embodiment, the sex and/or age of an individual is used to select a subpopulation of age-matched and/or sex-matched individuals for comparison in methods of identifying predisposing attribute combinations, individual predisposition prediction and individual destiny modification. In another embodiment, summary statistics for age and/or sex are included with the output results of the methods. In another embodiment, summary statistics for age and/or sex are included with the output results of the methods when other attributes are omitted or masked for privacy.
  • preselection is a selection or pooling of one or more populations or subpopulations of individuals from one or more datasets or databases based on particular values of attributes such as income, occupation, disease status, zip code or marital status for example.
  • Preselecting populations and subpopulations based on possession of one or more specific attributes can serve to focus a query on the most representative population, reduce noise by removing irrelevant individuals whose attribute data may contribute to increasing error in the results, and decrease computing time required to execute the methods by reducing the size of the population to be processed.
  • using preselection to define and separate different populations enables comparison of predisposing attribute combinations toward the same query attribute between those populations.
  • predisposing attribute combinations that are present in one preselected population and absent in a second preselected population are identified.
  • the frequencies of occurrence and/or statistical strengths of association of predisposing attribute combinations are compared between two or more preselected populations. In one embodiment, only a single preselected population is selected and processed by the methods of the present invention.
  • two or more mutually exclusive (having no attributes in common) predisposing attribute combinations for a query attribute are identified for a single individual and can be tabulated and presented as output.
  • the query attribute can be an attribute combination, and can be termed a query attribute combination.
  • statistical measures for strength of association of attribute combinations are not stored in a dataset containing the attribute combinations, but rather, are calculated at any time (on as-needed basis) from the frequencies of occurrence of the stored attribute combinations.
  • only a portion of the results from a method of the present invention are presented, reported or displayed as output.
  • the results may be presented as a graphical display or printout including but not limited to a 2-dimensional, 3-dimensional or multi-dimensional axis, pie-chart, flowchart, bar-graph, histogram, cluster chart, dendrogram, tree or pictogram.
  • bias can manifest as inaccurate frequencies of occurrence and strengths of association between attribute combinations and query attributes, inaccurate lists of attributes determined to co-occur with a query attribute, inaccurate predictions of an individual's predisposition toward query attributes, and inaccurate lists of modifiable attributes for destiny modification.
  • Bias can result from inaccurate data supplied to methods of the present invention, primarily as a consequence of inaccurate reporting and self-reporting of attribute data but also as a consequence of collecting attributes from populations that are biased, skewed or unrepresentative of the individual or population for which predisposition predictions are desired. Error can also result as consequence of faulty attribute data collection such as misdirected or improperly worded questionnaires.
  • bias exists and is left unchecked it can have different effects depending on whether the bias exists with the query attribute, or whether the bias exists in one or more of the co-occurring attributes of an attribute combination.
  • the existence of bias in the attribute data or population distribution may result in slightly inaccurate results for frequency of occurrence of attributes and attribute combinations, and inaccurate statistical strengths of association between attribute combinations and query attributes.
  • Selection bias is a major source of error and refers to bias that results from using a population of individuals that are not representative of the population for which results and predictions are desired. For example, if a query for attribute combinations that predispose an individual to becoming a professional basketball player is entered against an attributes combination dataset that was created with an over-representation of professional basketball players relative to the general population, then smaller attribute combinations that are associated with both professional basketball players and individuals that are not professional basketball players will receive artificially inflated statistical strengths of association with the query attribute, giving a false impression that one needs fewer predisposing attributes than are actually required to achieve the goal with a high degree of probability. Selection bias is largely under the control of those responsible for collecting attribute profiles for individuals of the population and creating datasets that contain that information.
  • Selecting a misrepresentative set of individuals will obviously result in selection bias as discussed above.
  • Sending questionnaires to a representative set of individuals but failing to receive completed questionnaires from a particular subpopulation, such as a very busy group of business professionals who failed to take time to fill out and return the questionnaire, will also result in selection bias if the returned questionnaires are used to complete a database without ensuring that the set of responses are a balanced and representative set for the population as a whole. Therefore, in one embodiment, administrators of the methods described herein use a variety of techniques to ensure that appropriate and representative populations are used so that selection bias is not present in the attribute profiles and attribute combination datasets used as input data for the methods.
  • Information bias is the second major class of bias and encompasses error due to inaccuracies in the collected attribute data.
  • the information bias class comprises several subclasses including misclassification bias, interview bias, surveillance bias, surrogate interview bias, recall bias and reporting bias.
  • Misclassification bias refers to bias resulting from misclassifying an individual as attribute-positive when they are attribute-negative, or vice-versa. To help eliminate this type of bias, it is possible to assign a null for an attribute in circumstances where an accurate value for the attribute cannot be ensured.
  • Interview bias refers to bias resulting from deriving attributes from questions or means of information collection that are not correctly designed to obtain accurate attribute values. This type of bias is primarily under the control of those administrators that design and administer the various modes of attribute collection, and as such, they can ensure that the means of attribute collection employed are correctly designed and validated for collecting accurate values of the targeted attributes.
  • Surveillance bias refers to bias that results from more closely or more frequently monitoring one subpopulation of individuals relative to others, thereby resulting in collection of more accurate and/or more complete attribute data for that subpopulation. This is common in cases of individuals suffering from disease, which results in their constant and close monitoring by experienced professionals who may collect more accurate and more complete attribute data about many aspects of the individual, including trivial, routine and common attributes that are not restricted to the medical field.
  • An administrator of the methods described herein can seek to reduce this bias by either excluding attribute information obtained as a consequence of surveillance bias or by ensuring that equivalent attribute information is provided for all members of the representative population used for the methods.
  • Surrogate interview bias refers to bias that results from obtaining inaccurate attribute information about an individual from a second-hand source such as a friend or relative. For example, when an individual dies, the only source of certain attribute information may be from a parent or spouse of the individual who may have inaccurate perception or memory of certain attributes of the deceased individual. To help avoid this type of bias, it is preferable that a surrogate provider of attribute information be instructed to refrain from providing attribute values for which they are uncertain and instead assign a null for those attributes.
  • Recall bias refers to enhanced or diminished memory recall of attribute values in one subpopulation of individuals versus another. This again may occur in individuals that are subject to extreme situations such as chronic illness, where the individual is much more conscious and attentive to small details of their life and environment to which others would pay little attention and therefore not recall as accurately. This type of bias results from inaccuracy in self-reporting and can be difficult to detect and control for. Therefore, to minimize this type of bias, it is recommended that attempts to collect self-reported data be made over a period of time in which individuals are aware of attributes that are being collected and may even keep a record or journal for attributes that are subject to significant recall bias. Also, whenever more accurate means than self-reporting can be used to collect attribute values, the more accurate means should be used.
  • Reporting bias refers to bias resulting from intentional misrepresentation of attribute values. This occurs when individuals underestimate the value for an attribute or underreport or fail to report an attribute they perceive as undesirable or are in denial over, or alternatively, when they overestimate the value for an attribute or overreport or invent possession of an attribute they perceive as desirable. For example, individuals typically knowingly underestimate the quantity of alcohol they drink, but overestimate the amount of time they spend exercising.
  • One approach to encourage accurate self-reporting of attribute values can be to allow the individual to control their attribute profile record and keep their identity masked or anonymous in results output or during use of their data by others, when creating attribute combinations databases for example.
  • bias can be determined to exist and quantified at least in relative terms
  • another approach can be to use mathematical compensation/correction of the attribute value reported by the individual by multiplying their reported value by a coefficient or numerical adjustment factor in order to obtain an accurate value.
  • this type of adjustment can be performed at the time the data is collected.
  • this type of adjustment can be performed during conversion and reformatting of data by data conversion/formatting engine 220 .
  • data conversion/formatting engine 220 works toward the removal of biases by the application of rules which assist in the identification of biased (suspect) attributes.
  • the rules cause the insertion of null attributes where the existing attribute is suspect.
  • rules are applied to identify suspect attributes (e.g. overreporting of exercise, underreporting of alcohol consumption) and corrective factors are applied to those attributes. For example, if it is determined that users self report consumption of alcohol at about 1 ⁇ 3 the actual rate consumed, the rules can, when attributes are suspect, increase the self-reported attribute by a factor of 1.5-3.0 depending on how the attribute is believed to be suspect.
  • large databases e.g. health care databases
  • the size of the database can be used in conjunction with specific investigations (detailed data collection on test groups) to help develop rules to both identify and address biases.
  • actual possession of attributes and accurate values for self-reported attributes are determined using a multipronged data collection approach wherein multiple different inquires or means of attribute collection are used to collect a value for an attribute prone to bias.
  • a questionnaire that asks multiple different questions to acquire the same attribute value. For example, if one wants to collect the attribute value for the number of cigarettes a person smokes each week, a questionnaire can include the following questions which are designed to directly or indirectly acquire this information: “how many cigarettes do you smoke each day?”, “how many packs of cigarettes do you smoke each day?”, “how many packs of cigarettes do you smoke each week?”, “how many packs of cigarettes do purchase each day?
  • the comparison, cross-validation, deletion, filtering, adjusting and averaging of attribute values can be performed during conversion and reformatting of data by data conversion/formatting engine 220 .
  • multiple values obtained for a single attribute are averaged to obtain a final value for the attribute.
  • values for an attribute are discarded based on discrepancies between multiple values for an attribute.
  • one value for an attribute is chosen from among multiple values obtained for the attribute based on a comparison of the multiple values.
  • reported values that appear out of an acceptable range e.g. statistical outliers
  • statistical measures of confidence including but not limited to variance, standard deviation, confidence intervals, coefficients of variation, correlation coefficients, residuals, t values (e.g., student's t test, one- and two-tailed t-distributions), ANOVA, correlation coefficients (e.g., regression coefficient, Pearson product-moment correlation coefficient), standard error and p-values can be computed for the results of methods of the current invention, the computation of which is known to those of skill in the art.
  • these confidence measures provide a level or degree of confidence in the numerical results of the methods so that the formal, standardized, legal, ethical, business, economic, medical, scientific, or peer-reviewable conclusions and decision-making can be made based on the results.
  • these measures are computed and compared for frequencies of occurrence of attribute combinations during creation of an attribute combinations database, for example to determine whether the difference between frequencies of occurrence of an attribute combination for the query-attribute-positive and query-attribute-negative groups is statistically significant for the purpose, in a further embodiment, of eliminating those attribute combinations that do not have a statistically significant difference in frequency of occurrence between the two populations.
  • Levels of significance and confidence thresholds can be chosen based on user preference, implementation requirements, or standards of the various industries and fields of application.
  • the present invention can also be used for investigation of attribute interactions forming the basis for predisposition.
  • embodiments of the methods can be used to reveal which attributes have diverse and wide-ranging interactions, which attributes have subtle interactions, which attributes have additive effects and which attributes have multiplicative or exponential synergistic interactions with other attributes.
  • synergistic interactions are particularly important because they have multiplicative or exponential effects on predisposition, rather than simple additive effects, and can increase predisposition by many fold, sometimes by as much as 1000 fold.
  • These types of synergistic interactions are common occurrences in biological systems. For example, synergistic interactions routinely occur with drugs introduced into biological systems. Depending on the circumstances, this synergism can lead to beneficial synergistic increases in drug potency or to synergistic adverse drug reactions. Synergism also occurs in opportunistic infections by microbes. Synergism between attributes may also occur in development of physical and behavioral traits. For example, cigarette smoking and asbestos exposure are known to synergize in multiplicative fashion to cause lung cancer.
  • FIG. 27A is a representative example of a 3rd dataset resulting from the method for destiny modification to determine predisposition of individual # 1 of FIG. 14 toward attribute ‘W’.
  • FIG. 27B is a representative example of a 3rd dataset for individual # 1 resulting from the method for destiny modification to determine predisposition toward attribute ‘W’ following elimination of attribute ‘A’ from their attribute profile.
  • the question as to how the results are to be used can be considered in the application of a particular embodiment of the method of attribute identification.
  • the goal is to determine how to reduce predisposition toward an undesirable attribute for example
  • utilizing one embodiment of the method to determine the identity of predisposing attribute combinations and then proceeding to eliminate an individual's association with those attributes is one way to reduce predisposition toward that attribute.
  • one may also attempt to decrease predisposition by applying an embodiment of the method to determine those attribute combinations that are predisposing toward an attribute that is the opposite of the undesirable attribute, and then proceed to introduce association with those attributes to direct predisposition of the individual toward that opposing attribute.
  • the attributes that predispose toward a key attribute may in many cases not be simple opposite of attributes that predispose to the opposite of the key attribute. Approaching this from both angles may provide additional effectiveness in achieving the goal of how to most effectively modify predisposition toward a key attribute of interest. In one embodiment both approaches are applied simultaneously to increase success in reaching the goal of destiny modification.
  • Confidentiality of personal attribute data can be a major concern to individuals that submit their data for analysis.
  • Various embodiments of the present invention are envisioned in which the identity of an individual linked directly or indirectly to their data, or masked, or provided by privileged access or express permission, including but not limited to the following embodiments.
  • the identity of individuals are linked to their raw attribute profiles.
  • the identity of individuals are linked directly to their raw attribute profiles.
  • the identity of individuals are linked indirectly to their raw attribute profiles.
  • the identity of individuals are anonymously linked to their raw attribute profiles.
  • the identity of individuals are linked to their raw attribute profiles using a nondescriptive alphanumeric identifier.
  • the identity of individuals are linked to the attribute combinations they possess as stored in one or more datasets of the methods.
  • the linkage of identity is direct.
  • the linkage of identity is indirect.
  • the linkage of identity requires anonymizing the identity of the individual.
  • the linkage of identity requires use of a nondescriptive alphanumeric identifier.
  • the identity of attributes and statistical results produced in the output of the methods are provided only to the individual whose attribute profile was accessed for the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to the individual that submitted or authorized the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to the individual consumer that paid for the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to a commercial organization that submitted, authorized or paid for the query.
  • the identities of attributes in the output results from methods of the present invention are omitted or masked.
  • the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by the individual whose attribute profile was accessed for the query.
  • the identity of attributes can be made accessible to a government employee, legal professional, medical professional, or other professional legally bound to secrecy.
  • the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by a government employee, legal professional, or medical professional.
  • the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by a commercial organization.
  • FIG. 28 illustrates a representative computing system on which embodiments of the present method and system can be implemented.
  • a Central Processing Unit (CPU) 2800 is connected to a local bus 2802 which is also connected to Random Access Memory (RAM) 2804 and disk controller and storage system 2806 .
  • CPU 2800 is also connected to an operating system including BIOS 2808 which contains boot code and which can access disk controller and storage system 2806 to provide an operational environment and to run an application (e.g. attribute determination).
  • the representative computing system includes a graphics adaptor 2820 , display 2830 , I/O controller 2810 with printer 2812 , mouse 2814 , and keyboard 2816 .
  • FIG. 28 is only a representative computing platform, and is not intended to limit the scope of the claimed invention.
  • multiprocessor units with multiple CPUs or cores can be used, as well as distributed computing platforms in which computations are made across a network by a plurality of computing units working in conjunction using a specified algorithm.
  • the computing platforms may be fixed or portable, and data collection can be performed by one unit (e.g. a handheld unit) with the collected information being reported to a fixed workstation or database which is formed by a computer in conjunction with mass storage.
  • a number of programming languages can be used to implement the methods and to create the systems described herein, those programming languages including but not limited to C, Java, php, C++, perl, visual basic, sql and other languages which can be used to cause the representative computing system of FIG. 28 to perform the steps described herein.
  • FIG. 29 the interconnection of various computing systems over a network 2900 to realize an attribute determination system 800 such as that of FIG. 8 , is illustrated.
  • consumer 810 uses a Personal Computer (PC) 2910 to interface with the system and more specifically to enter and receive data.
  • clinician 820 uses a workstation 2930 to interface with the system.
  • Genetic database administrator 830 uses an external genetic database 2950 for the storage of genetic/epigenetic data for large populations. Historical, situational, and behavioral data are all maintained on population database 2960 . All of the aforementioned computing systems are interconnected via network 2900 .
  • an attribute determination computing and database platform 2940 is utilized to host the software-based components of attribute determination system 800 , and data is collected as illustrated in FIG. 8 . Once relevant attributes are determined, they can be displayed to consumer 810 , clinician 820 , or both.
  • the software-based components of attribute determination system 800 can reside on workstation 2930 operated by clinician 820 . Genetic database administrator 830 may also maintain and operate attribute determination system 800 and host its software-based components on external genetic database 2950 . Another embodiment is also possible in which the software-based components of the attribute determination system 800 are distributed across the various computing platforms. Similarly, other parties and hosting machines not illustrated in FIG. 29 may also be used to create attribute determination system 800 .
  • the datasets of the methods of the present invention may be combined into a single dataset. In another embodiment the datasets may be kept separated. Separate datasets may be stored on a single computing device or distributed across a plurality of devices. Data, datasets, databases, methods and software of the present invention can be embodied on computer-readable media and computer-readable memory devices.
  • At least a portion of the attribute data for one or more individuals is obtained from medical records. In one embodiment, at least a portion of the attribute data for one or more individuals is accessed, retrieved or obtained (directly or indirectly) from a centralized medical records database. In one embodiment, at least a portion of the attribute data for one or more individuals is accessed or retrieved from a centralized medical records database over a computer network.
  • the methods, systems, software and databases described herein have a number of industrial applications pertaining to the identification of attributes and combinations of attributes related to a query attribute, creation of databases including the attributes, combinations of attributes, strength of association with the query attribute, and rankings of strength of association with the query attribute, use of the identified attributes, combinations of attributes, and strength of association of attributes with the query attribute in making a variety of decisions related to lifestyle, lifestyle modification, diagnosis, medical treatment, eventual outcome (e.g. destiny), possibilities for destiny modification, and sensitivity analysis (impact or lack thereof of modification of certain attributes).
  • the methods, system, software, and databases described herein are used as part of a web based health analysis and diagnostics system in which one or more service providers utilize pangenetic information (attributes) in conjunction with physical, situational, and behavioral, attributes to provide services such as longevity analysis, insurance optimization (determination of recommended policies and amounts), and medication impact analysis.
  • pangenetic information attributes
  • physical, situational, and behavioral, attributes to provide services such as longevity analysis, insurance optimization (determination of recommended policies and amounts), and medication impact analysis.
  • the methods described herein are applied using appropriate query attributes to determine such parameters as the likelihood that the patient will develop or has a particular disease, or make an inquiry related to likelihood of disease development.
  • the genetic sample is mailed to an analysis center, where genetic and epigenetic sequencing is performed, and the data stored in an appropriate database.
  • a query related to a diagnosis can be developed by clinician 820 (or other practitioner) and submitted via the web.
  • clinician 820 or other practitioner
  • a probable diagnosis or set of possible diagnoses can be developed and presented via the web interface.
  • These diagnoses can be physical or mental.
  • identification of key behavioral and situational attributes e.g. financial attributes, relationship attributes
  • Risk assessments can be performed to indicate what mental illnesses consumer 810 may be subject to, as well as suggesting modifications to behavior or living environment to avoid those illnesses. For example, a consumer subject to certain types of obsessive disorders might be advised to change certain behavioral and/or situational attributes which are associated with that obsessive disorder, thus decreasing the probability that they will have or exacerbate that disorder.
  • the web based system can be used to evaluate insurance coverage (amounts and types) and provide recommendations for coverage based on the specific illness risks and attributes possessed by the consumer, evaluate the impact (or lack thereof) of lifestyle changes, the impact and effectiveness of medications.
  • Such analyses can also be made in view of predisposition predictions that can indicate probable future development of a disorder, thereby allowing preparations for insurance coverage and therapeutic preventive measures to be taken in advance of the disorder.
  • the system can be used for web based strength and weakness identification, by allowing the consumer or clinician to query the system to assess the probability that an individual has a particular strength or weakness.
  • parents query the system to determine if their child (from which a biological sample was taken) will have particular strengths (e.g. music or sports) and to determine what behavioral attributes should be adopted to maximize the probability of success at that endeavor, assuming there is an identified “natural talent” as suggested by combinations of attributes associated with that endeavor.
  • Various service providers including genetic and epigenetic profiling entities, can interact with the system over a network (e.g., the internet) and allow the consumer or clinician to interact with the system over a network through a web-based interface to obtain the destiny or attribute information.
  • a web based goal achievement tool in which the consumer enters one or more goals, and the system returns modifiable attributes which have been identified using the aforementioned analysis tools, indicating how the consumer can best obtain the desired goal(s) given their pangenetic, physical, situational, and behavioral makeup.
  • potential relationship/life/marriage partners are located based on the pangenetic, physical, situational, and behavioral attributes of those individuals, as measured against an attribute model of a suitable partner developed for the consumer.
  • the attribute model of the suitable partner can be developed using a number of techniques, including but not limited to, modeling of partner attributes based on attributes of individuals with which the individual has had previous successful relationships, determination of appropriate “complementary” attributes to the consumer based on statistical studies of individuals with similar attributes to the consumer who are in successful relationships and examination of their partner's attributes (determination of appropriate complementary attributes), and an ab initio determination of appropriate partner attributes.
  • a database containing pangenetic, physical, situational and behavioral attribute data for potential partners for the consumer can be searched for the purpose of partner identification.
  • a consumer indicates persons they believe have suitable partner qualities including physical attraction (based on photos or video segments) as well as attributes described in profiles associated with the persons and their photos.
  • the system uses genetic and epigenetic information associated with those individuals to create a subpopulation of individuals which the consumer believes they are attracted to, and examines a variety of data associated with that subpopulation (e.g., all available attribute data including genetic and epigenetic data) to determine attributes that are indicative of desirability to that consumer.
  • the system uses those attributes to locate more individuals that could be potentially of interest to the consumer and presents those individuals to the consumer as potential partners.
  • pangenetic, physical, situational and behavioral data embodiments not utilizing pangenetic information are possible, with those embodiments being based solely on physical, situational and behavioral data.
  • Such embodiments can be utilized to accomplish the tasks described above with respect to the analysis of biological systems, as well as for the analysis of complex non-living systems which contain a multitude of attributes.
  • a non-biological application of the methodology and systems described herein would be for the analysis of complex electrical or electrical-mechanical systems in order to identify probable failure mechanisms (e.g. attributes leading to failure) and as such increase reliability through the identification of those failure-associated attributes.
  • the aforementioned embodiments are based on the use of information from multiple attribute categories. Embodiments in which attribute information from a single attribute category (pangenetic, behavioral, physical, or situational) can be used in circumstances where attributes from a single category dominate in the development of a condition or outcome.
  • Embodiments of the present invention can be used for a variety of methods, databases, software and systems including but not limited to: pattern recognition; feature extraction; binary search trees and binary prediction tree modeling; decision trees; neural networks and self-learning systems; belief networks; classification systems; classifier-based systems; clustering algorithms; nondeterministic algorithms (e.g., Monte Carlo methods); deterministic algorithms; scoring systems; decision-making systems; decision-based training systems; complex supervised learning systems; process control systems; chaos analysis systems; interaction, association and correlation mapping systems; relational databases; navigation and autopilot systems; communications systems and interfaces; career management; job placement and hiring; dating services; marriage counseling; relationship evaluation; animal companion compatibility evaluation; living environment evaluation; disease and health management and assessment; genetic assessment and counseling; genetic engineering; genetic linkage studies; genetic screening; genetic drift and evolution discovery; ancestry investigation; criminal investigation; forensics; criminal profiling; psychological profiling; adoption placement and planning; fertility and pregnancy evaluation and planning; family planning; social services; infrastructure planning; species preservation; organism cloning; organism design and evaluation
  • prophylaxis data mining; bioinformatics; biomarker development; physiological profiling; rational drug design; drug interaction prediction; drug screening; pharmaceutical formulation; molecular modeling; xenobiotic side-effect prediction; microarray analysis; dietary analysis and recommendation; processed foods formulation; census evaluation and planning; population dynamics assessment; ecological and environmental preservation; environmental health; land management; agriculture planning; crisis and disaster prediction, prevention, planning and analysis; pandemic and epidemic prediction, prevention, planning and analysis; weather forecasting; goal formulation and goal achievement assessment; risk assessment; formulating recommendations; asset management; task management; consulting; marketing and advertising; cost analysis; business development; economics forecasting and planning; stock market prediction; lifestyle modification; time management; emergency intervention; operational/failure status evaluation and prediction; system failure analysis; optimization analysis; architectural design; and product appearance, ergonomics, efficiency, efficacy and reliability engineering (i.e., product development).
  • the embodiments of the present invention may be implemented with any combination of hardware and software. If implemented as a computer-implemented apparatus, the present invention is implemented using means for performing all of the steps and functions described above.
  • the embodiments of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer useable media.
  • the media has embodied therein, for instance, computer readable program code means for providing and facilitating the mechanisms of the present invention.
  • the article of manufacture can be included as part of a computer system or sold separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Pathology (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)

Abstract

A method and system are presented in which stored attribute combinations and statistical results that indicate the strength of association of each attribute combination with the query attribute are accessed, and attribute combinations and their strength of association with the query attribute are tabulated based on the statistical results.

Description

  • This application claims priority to U.S. Provisional Application Ser. No. 60895236, which was filed on Mar. 16, 2007, and which is incorporated herein by reference in its entirety.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following detailed description will be better understood when read in conjunction with the appended drawings, in which there is shown one or more of the multiple embodiments of the present invention. It should be understood, however, that the various embodiments are not limited to the precise arrangements and instrumentalities shown in the drawings.
  • FIG. 1 illustrates attribute categories and their relationships;
  • FIG. 2 illustrates a system diagram including data formatting, comparison, and statistical computation engines and dataset input/output for a method of creating an attribute combinations database;
  • FIG. 3 illustrates examples of genetic attributes;
  • FIG. 4 illustrates examples of epigenetic attributes;
  • FIG. 5 illustrates representative physical attributes classes;
  • FIG. 6 illustrates representative situational attributes classes;
  • FIG. 7 illustrates representative behavioral attributes classes;
  • FIG. 8 illustrates an attribute determination system;
  • FIG. 9 illustrates an example of expansion and reformatting of attributes;
  • FIG. 10 illustrates the advantage of identifying attribute combinations in a two attribute example;
  • FIG. 11 illustrates the advantage of identifying attribute combinations in a three attribute example;
  • FIG. 12 illustrates an example of statistical measures & formulas useful for the methods;
  • FIG. 13 illustrates a flow chart for a method of creating an attribute combinations database;
  • FIG. 14 illustrates a 1st dataset example for a method of creating an attribute combinations database;
  • FIG. 15 illustrates 2nd dataset and combinations table examples for a method of creating an attribute combinations database;
  • FIG. 16 illustrates a 3rd dataset example for a method of creating an attribute combinations database;
  • FIG. 17 illustrates a 4th dataset example for a method of creating an attribute combinations database;
  • FIG. 18 illustrates a 4th dataset example for a method of creating an attribute combinations database;
  • FIG. 19 illustrates a flowchart for a method of identifying predisposing attribute combinations;
  • FIG. 20 illustrates a rank-ordered tabulated results example for a method of identifying predisposing attribute combinations;
  • FIG. 21 illustrates a flowchart for a method of predisposition prediction;
  • FIG. 22 illustrates 1st and 2nd dataset examples for a method of predisposition prediction;
  • FIG. 23 illustrates 3rd dataset and tabulated results examples for a method of predisposition prediction;
  • FIG. 24 illustrates a flowchart for a method of destiny modification;
  • FIG. 25 illustrates 1st dataset, 3rd dataset and tabulated results examples for destiny modification of individual # 113;
  • FIG. 26 illustrates 1st dataset, 3rd dataset and tabulated results examples for destiny modification of individual # 114;
  • FIG. 27 illustrates 3rd dataset examples from a method of destiny modification for use in synergy discovery;
  • FIG. 28 illustrates one embodiment of a computing system on which the present method and system can be implemented; and
  • FIG. 29 illustrates a representative deployment diagram for an attribute determination system.
  • DETAILED DESCRIPTION
  • Described herein are methods, computer systems, databases and software for identifying combinations of attributes associated with individuals that co-occur with key attributes, such as specific disorders, behaviors and traits. Also described are databases as well as database systems for creating and accessing databases describing those attributes and for performing analyses based on those attributes. The methods, computer systems and software are useful for identifying intricate combinations of attributes that predispose human beings toward having or developing specific disorders, behaviors and traits of interest, determining the level of predisposition of an individual towards such attributes, and revealing which attribute associations can be added or eliminated to effectively modify what may have been hereto believed to be destiny. The methods, computer systems and software are also applicable for tissues and non-human organisms, as well as for identifying combinations of attributes that correlate with or cause behaviors and outcomes in complex non-living systems including molecules, electrical and mechanical systems and various devices and apparatus whose functionality is dependent on a multitude of attributes.
  • Previous methods have been largely unsuccessful in determining the complex combinations of attributes that predispose individuals to most disorders, behaviors and traits. The level of resolution afforded by the data typically used is too low, the number and types of attributes considered is too limited, and the sensitivity to detect low frequency, high complexity combinations is lacking. The desirability of being able to determine the complex combinations of attributes that predispose an individual to physical or behavioral disorders has clear implications for improving individualized diagnoses, choosing the most effective therapeutic regimens, making beneficial lifestyle changes that prevent disease and promote health, and reducing associated health care expenditures. It is also desirable to determine those combinations of attributes that promote certain behaviors and traits such as success in sports, music, school, leadership, career and relationships.
  • Advances in technology within the field of genetics, provides the ability to achieve maximum resolution of the entire genome. Discovery and characterization of epigenetic modifications—reversible chemical modifications of DNA and structural modification of chromatin that dramatically alter gene expression—has provided an additional level of information that may be altered due to environmental conditions, life experiences and aging. Along with a collection of diverse nongenetic attributes including physical, behavioral, situational and historical attributes associated with an organism, the present invention provides the ability to utilize the above information to enable prediction of the predisposition of an organism toward developing a specific attribute of interest provided in a query.
  • There are approximately 25,000 genes in the human genome. Of these, approximately 1,000 of these genes are involved in monogenic disorders, which are disorders whose sole cause is due to the properties of a single gene. This collection of disorders represents less than two percent of all human disorders. The remaining 98 percent of human disorders, termed complex disorders, are caused by multiple genetic influences or a combination of multiple genetic and non-genetic influences, still yet to be determined due to their resistance to current methods of discovery.
  • Previous methods using genetic information have suffered from either a lack of high resolution information, very limited coverage of total genomic information, or both. Genetic markers such as single nucleotide polymorphisms (SNPs) do not provide a complete picture of a gene's nucleotide sequence or the total genetic variability of the individual. The SNPs typically used occur at a frequency of at least 5% in the population. However, the majority of genetic variation that exists in the population occurs at frequencies below 1%. Furthermore, SNPs are spaced hundreds of nucleotides apart and do not account for genetic variation that occurs in the genetic sequence lying between, which is vastly more sequence than the single nucleotide position represented by an SNP. SNPs are typically located within gene coding regions and do not allow consideration of 98% of the 3 billion base pairs of genetic code in the human genome that does not encode gene sequences. Other markers such as STS, gene locus markers and chromosome loci markers also provide very low resolution and incomplete coverage of the genome. Complete and partial sequencing of an individual's genome provides the ability to incorporate that detailed information into the analysis of factors contributing toward expressed attributes.
  • Genomic influence on traits is now known to involve more than just the DNA nucleotide sequence of the genome. Regulation of expression of the genome can be influenced significantly by epigenetic modification of the genomic DNA and chromatin (3-dimensional genomic DNA with bound proteins). Termed the epigenome, this additional level of information can make genes in an individual's genome behave as if they were absent. Epigenetic modification can dramatically affect the expression of approximately at least 6% of all genes.
  • Epigenetic modification silences the activity of gene regulatory regions required to permit gene expression. Genes can undergo epigenetic silencing as a result of methylation of cytosines occurring in CpG dinucleotide motifs, and to a lesser extent by deacetylation of chromatin-associated histone proteins which inhibit gene expression by creating 3-dimensional conformational changes in chromatin. Assays such as bisulfite sequencing, differential methyl hybridization using microarrays, methylation sensitive polymerase chain reaction, and mass spectrometry enable the detection of cytosine nucleotide methylation while chromosome immunoprecipitation (CHIP) can be used to detect histone acetylation states of chromatin.
  • In one embodiment, epigenetic attributes are incorporated in the present invention to provide certain functionality. First, major mental disorders such as schizophrenia and bipolar mood disorder are thought to be caused by or at least greatly influenced by epigenetic imprinting of genes. Second, all epigenetic modification characterized to date is reversible in nature, allowing for the potential therapeutic manipulation of the epigenome to alter the course and occurrence of disease and certain behaviors. Third, because epigenetic modification of the genome occurs in response to experiences and stimuli encountered during prenatal and postnatal life, epigenetic data can help fill gaps resulting from unobtainable personal data, and reinforce or even substitute for unreliable self-reported data such as life experiences and environmental exposures.
  • In addition to genetic and epigenetic attributes, numerous other attributes likely influence the development of traits and disorders. The remaining attributes can be classified as either physical, behavioral, situational or historical. FIG. 1 displays one embodiment of the attribute categories and their interrelationships according to the present invention and illustrates that physical and behavioral attributes can be collectively equivalent to the broadest classical definition of phenotype, while situational attributes can be equivalent to those typically classified as environmental. In one embodiment, historical attributes can be viewed as a separate category containing a mixture of genetic, epigenetic, physical, behavioral and situational attributes that occurred in the past. Alternatively, historical attributes can be integrated within the genetic, epigenetic, physical, behavioral and situational categories provided they are made readily distinguishable from those attributes that describe the individual's current state. In one embodiment, the historical nature of an attribute is accounted for via a time stamp or other time based marker associated with the attribute. As such, there are no explicit historical attributes, but through use of time stamping, the time associated with the attribute can be used to make a determination as to whether the attribute is occurring in what would be considered the present, or if it has occurred in the past. Traditional demographic factors are typically a small subset of attributes derived from the phenotype and environmental categories and can be therefore represented within the physical, behavioral and situational categories.
  • In the present invention the term ‘attributes’ rather than the term ‘factors’ is used since many of the entities are characteristics associated with an individual that may have no influence on the vast majority of their traits, behaviors and disorders. As such, there may be many instances during execution of the methods described herein when a particular attribute does not act as a factor in determining predisposition. Nonetheless, every attribute remains a potentially important characteristic of the individual and may contribute to predisposition toward some other attribute or subset of attributes queried during subsequent or future implementation of the methods described herein. An individual possesses many associated attributes which may be collectively referred to as an attribute profile associated with that individual. The attribute profile of an individual is preferably provided to embodiments of the present invention as a dataset record whose association with the individual can be indicated by a unique identifier contained in the dataset record. An actual attribute of an individual can be represented by an attribute descriptor in attribute profiles, records, datasets, and databases. Herein, both actual attributes and attribute descriptors may be referred to simply as attributes. In one embodiment, statistical relationships and associations between attribute descriptors are a direct result of relationships and associations between actual attributes of an individual. In the present disclosure, the term ‘individual’ can refer to an individual group, person, organism, organ, tissue, cell, virus, molecule, thing, entity or state, wherein a state includes but is not limited to a state-of-being, an operational state or a status. Individuals, attribute profiles and attributes can be real and/or measurable, or they may be hypothetical and/or not directly observable.
  • In one embodiment the present invention can be used to discover combinations of attributes regardless of number or type, in a population of any size, that cause predisposition to an attribute of interest. In doing so, this embodiment also has the ability to provide a list of attributes one can add or subtract from an existing profile of attributes in order to respectively increase or decrease the strength of predisposition toward the attribute of interest. The ability to accurately detect predisposing attribute combinations naturally benefits from being supplied with datasets representing large numbers of individuals and having a large number and variety of attributes for each. Nevertheless, the present invention will function properly with a minimal number of individuals and attributes. One embodiment of the present invention can be used to detect not only attributes that have a direct (causal) effect on an attribute of interest, but also those attributes that do not have a direct effect such as instrumental variables (i.e., correlative attributes), which are attributes that correlate with and can be used to predict predisposition for the attribute of interest but are not causal. For simplicity of terminology, both types of attributes are referred to herein as predisposing attributes, or simply attributes, that contribute toward predisposition toward the attribute of interest, regardless of whether the contribution or correlation is direct or indirect.
  • It is beneficial, but not necessary, in most instances, that the individuals whose data is supplied for the method be representative of the individual or population of individuals for which the predictions are desired. In a preferred embodiment, the attribute categories collectively encompass all potential attributes of an individual. Each attribute of an individual can be appropriately placed in one or more attribute categories of the methods, system and software of the invention. Attributes and the various categories of attributes can be defined as follows:
      • a) attribute: a quality, trait, characteristic, relationship, property, factor or object associated with or possessed by an individual;
      • b) genetic attribute: any genome, genotype, haplotype, chromatin, chromosome, chromosome locus, chromosomal material, deoxyribonucleic acid (DNA), allele, gene, gene cluster, gene locus, gene polymorphism, gene marker, nucleotide, single nucleotide polymorphism (SNP), restriction fragment length polymorphism (RFLP), variable tandem repeat (VTR), genetic marker, sequence marker, sequence tagged site (STS), plasmid, transcription unit, transcription product, ribonucleic acid (RNA), and copy DNA (cDNA), including the nucleotide sequence and encoded amino acid sequence of any of the above;
      • c) epigenetic attribute: any feature of the genetic material—all genomic, vector and plasmid DNA, and chromatin—that affects gene expression in a manner that is heritable during somatic cell divisions and sometimes heritable in germline transmission, but that is nonmutational to the DNA sequence and is therefore fundamentally reversible, including but not limited to methylation of DNA nucleotides and acetylation of chromatin-associated histone proteins;
      • d) pangenetic attribute: any genetic or epigenetic attribute;
      • e) physical attribute: any material quality, trait, characteristic, property or factor of an individual present at the atomic, molecular, cellular, tissue, organ or organism level, excluding genetic and epigenetic attributes;
      • f) behavioral attribute: any singular, periodic, or aperiodic response, action or habit of an individual to internal or external stimuli, including but not limited to an action, reflex, emotion or psychological state that is controlled or created by the nervous system on either a conscious or subconscious level;
      • g) situational attribute: any object, condition, influence, or milieu that surrounds, impacts or contacts an individual;
      • h) historical attribute: any genetic, epigenetic, physical, behavioral or situational attribute that was associated with or possessed by an individual in the past. As such, the historical attribute refers to a past state of the individual and may no longer describe the current state.
  • The methods, systems, software, and databases described herein apply to and are suitable for use with not only humans, but for other organisms as well. The methods, systems, software and databases may also be used for applications that consider attribute identification, predisposition potential and destiny modification for organs, tissues, individual cells, and viruses. For example, the methods can be applied to behavior modification of individual cells being grown and studied in a laboratory incubator by providing pangenetic attributes of the cells, physical attributes of the cells such as size, shape and surface receptor densities, and situational attributes of the cells such as levels of oxygen and carbon dioxide in the incubator, temperature of the incubator, and levels of glucose and other nutrients in the liquid growth medium. Using these and other attributes, the methods, systems, software and databases can then be used to predict predisposition of the cells for such characteristics as susceptibility to infection by viruses, general growth rate, morphology, and differentiation potential. The methods, systems, software, and databases described herein can also be applied to complex non-living systems to, for example, predict the behavior of molecules or the performance of electrical devices or machinery subject to a large number of variables.
  • FIG. 2 illustrates system components corresponding to one embodiment of a method, system, software, and databases for compiling predisposing attribute combinations. Attributes can be stored in the various datasets of the system. In one embodiment, 1st dataset 200 is a raw dataset of attributes that may be converted and expanded by conversion/formatting engine 220 into a more versatile format and stored in expanded 1st dataset 202. Comparison engine 222 can perform a comparison between attributes from records of the 1st dataset 200 or expanded 1st dataset 202 to determine candidate predisposing attributes which are then stored in 2nd dataset 204. Comparison engine 222 can tabulate a list of all possible combinations of the candidate attributes and then perform a comparison of those combinations with attributes contained within individual records of 1st dataset 200 or expanded 1st dataset 202. Comparison engine 222 can store those combinations that are found to occur and meet certain selection criteria in 3rd dataset 206 along with a numerical frequency of occurrence obtained as a count during the comparison. Statistical computation engine 224 can perform statistical computations using the numerical frequencies of occurrence to obtain results for strength of association between attributes and attribute combinations and then store those results in 3rd dataset 206. Statistical computation engine 224, alone or in conjunction with comparison engine 222, can create a 4th dataset 208 containing attributes and attribute combinations that meet a minimum or maximum statistical requirement by applying a numerical or statistical filter to the numerical frequencies of occurrence or the results for strength of association stored in 3rd dataset 206. Although represented as a system and engines, the system and engines can be considered subsystems of a larger system, and as such referred to as subsystems. Such subsystems may be implemented as sections of code, objects, or classes of objects within a single system, or may be separate hardware and software platforms which are integrated with other subsystems to form the final system.
  • FIGS. 3A and 3B show a representative form for genetic attributes as DNA nucleotide sequence with each nucleotide position associated with a numerical identifier. In this form, each nucleotide is treated as an individual genetic attribute, thus providing maximum resolution of the genomic information of an individual. FIG. 3A depicts a known gene sequence for the HTR2A gene. Comparing known genes simplifies the task of properly phasing nucleotide sequence comparisons. However, for comparison of non-gene sequences, due to the presence of insertions and deletions of varying size in the genome of one individual versus another, markers such as STS sequences can be used to allow for a proper in-phase comparison of the DNA sequences between different individuals. FIG. 3B shows DNA plus-strand sequence beginning at the STS#68777 forward primer, which provides a known location of the sequence within the genome and can serve to allowing phasing of the sequence with other sequences from that region of the genome during sequence comparison.
  • Conversion/formatting engine 220 of FIG. 2 can be used in conjunction with comparison engine 222 to locate and number the STS marker positions within the sequence data and store the resulting data in expanded 1st dataset 202. In one embodiment, comparison engine 222 has the ability to recognize strings of nucleotides with a word size large enough to enable accurately phased comparison of individual nucleotides in the span between marker positions. This function is also valuable in comparing known gene sequences. Nucleotide sequence comparisons in the present invention can also involve transcribed sequences in the form of mRNA, tRNA, rRNA, and cDNA sequences which all derive from genomic DNA sequence and are handled in the same manner as nucleotide sequences of known genes.
  • FIGS. 3C and 3D show two other examples of genetic attributes that may be compared in one embodiment of the present invention and the format they may take. Although not preferred because of the relatively small amount of information provided, SNP polymorphisms (FIG. 3C) and allele identity (FIG. 3D) can be processed by one or more of the methods herein to provide a limited comparison of the genetic content of individuals.
  • In a preferred mode of comparison between nucleotide sequences, a direct sequence comparison that that requires two or more sequences to be the same at the nucleotide sequence level is performed. To increase efficiency at the cost of loosing information contained in non-gene-coding regions of the genome, a direct sequence comparison between genomic sequences may use only gene coding and gene regulatory sequences since these represent the expressed and expression-controlling portions of the genome, respectively. In embodiments where computing power and time are available, a comparison of the whole genome can be used as opposed to comparison of only the 2% which encodes genes and gene regulatory sequences since the noncoding region of the genome may still have effects on genome expression which influence attribute predisposition.
  • In one embodiment, comparison engine 222 is permitted some degree of flexibility in comparison of nucleotide sequences, so that the exact identity within protein encoding regions is not always required. For example, when a single nucleotide difference between two sequences is deemed unlikely to result in a functional difference between the two encoded proteins, it is beneficial to make the determination that the two sequences are the same even though they are actually not identical. The reason for allowing non-identical matches being that since the nucleotide difference is functionally silent it should not have a differential effect on attribute predisposition. A number of rules can be provided to comparison engine 222 to guide such decision making. These rules are based on the knowledge of several phenomena. For example, a single nucleotide difference in the 3rd nucleotide position of a codon—termed the wobble position—often does not change the identity of the amino acid encoded by the codon, and therefore may not change the amino acid sequence of the encoded protein. Determination of whether or not a particular nucleotide change in a wobble position alters the encoded protein amino acid sequence is easily made based on published information known to those in the art. Other exemplary types of changes that are unlikely to affect protein function are those that are known to be silent, those that result in conservative amino acid changes particularly in non-enzymatic, non-catalytic, nonantigenic or non-transmembrane domains of the protein, and those that simply alter the location of truncation of a protein within the same domain of one protein relative to another.
  • Allowing flexibility in sequence matching can increase the number of sequences determined to be identical, but may also reduce the sensitivity of the invention to detect predisposing attributes. There may be sequence changes which are thought to be innocuous or inconsequential based on current scientific knowledge that in actuality are not. For example, nucleotide changes in the wobble codon position that do not change the amino acid sequence may appear to be inconsequential, but may actually impact the stability of the intermediary RNA transcript required for translation of nucleotide sequence into the encoded protein, thus having a significant effect on ultimate levels of expressed protein. Therefore, application of the rules can be left to up the user's discretion or automatically applied when comparing small populations where the low opportunity for exact matches resulting from small sample size increases the probability of obtaining an uninformative result.
  • In one embodiment, when a particular set of rules fails to provide sufficient detection of predisposing attributes, the rules can be modified in order to provide higher granularity or resolution for the discovery of predisposing attributes. As such, nucleotide changes in the wobble codon position may be examined in certain applications. Similarly, the brand of cigarettes smoked may be a required attribute to discover some predisposing attributes, but not others. By varying the rules, the appropriate level of granularity or resolution can be determined. In one embodiment, the rules are varied on a test population (which can be comprised of both attribute-positive and attribute-negative individuals) in an effort to determine the most appropriate rules for the greater population.
  • Based on this knowledge, the following additional rules can be applied by comparison engine 222 when comparing two nucleotide sequences:
      • a) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more nucleotides within the open reading frame that do not alter the amino acid sequence of the encoded protein;
      • b) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more nucleotides that result in conservative amino acid substitutions within the amino acid sequence of the encoded protein;
      • c) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more nucleotides that result in conservative amino acid substitutions anywhere within the amino acid sequence of the encoded protein except for enzymatic, transmembrane or antigen-recognition domains;
      • d) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more nucleotides that result in silent amino acid substitutions;
      • e) a direct sequence comparison may determine two nucleotide sequences that do not encode amino acid sequences to be the same if they differ only by the identity of nucleotide mutations occurring at the same position within both sequences;
      • f) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more conservative missense mutations within the open reading frame of the encoded protein;
      • g) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more conservative missense mutations anywhere within the open reading frame of the encoded protein except for those regions of the open reading frame that encode enzymatic, transmembrane or antigen-recognition domains of the protein;
      • h) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by one or more silent mutations;
      • i) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by the locations of nonsense mutations within the same domain of the encoded protein;
      • j) a direct sequence comparison may determine two protein-encoding nucleotide sequences to be the same if they encode the same protein and differ only by the locations of frameshift mutations within the same respective domain of the encoded protein.
  • FIGS. 4A and 4B show examples of epigenetic data that can be compared, the preferred epigenetic attributes being methylation site data. FIG. 4A represents a format of methylation data where each methylation site (methylation variable position) is distinguishable by a unique alphanumeric identifier. The identifier may be further associated with a specific gene, site or chromosomal locus of the genome. In this embodiment, the methylation status at each site is an attribute that can have either of two values: methylated (M) or unmethylated (U). Other epigenetic data and representations of epigenetic data can be used to perform the methods described herein, and to construct the systems, software and databases described herein, as will be understood by one skilled in the art.
  • As shown in FIG. 4B, an alternative way to organize the epigenetic data is to append it directly into the corresponding genetic attribute dataset in the form of methylation status at each candidate CpG dinucleotide occurring in that genomic nucleotide sequence. The advantage of this format is that it inherently includes chromosome, gene and nucleotide position information. In this format, which is the most complete and informative format for the raw data, the epigenetic data can be extracted and converted to another format at any time. Both formats (that of FIG. 4A as well as that of FIG. 4B) provide the same resolution of methylation data, but it is preferable to adhere to one format in order to facilitate comparison of epigenetic data between different individuals. Regarding either data format, in instances where an individual is completely lacking a methylation site due to a deletion or mutation of the corresponding CpG dinucleotide, the corresponding epigenetic attribute value should be omitted (i.e., assigned a null).
  • FIG. 5 illustrates representative classes of physical attributes as defined by physical attributes metaclass 500, which can include physical health class 510, basic physical class 520, and detailed physical class 530, for example. In one embodiment physical health class 510 includes a physical diagnoses subclass 510.1 that includes the following specific attributes (objects), which when positive indicate a known physical diagnoses:
  • 510.1.1 Diabetes
    510.1.2 Heart Disease
    510.1.3 Osteoporosis
    510.1.4 Stroke
    510.1.5 Cancer
      510.1.5.1   Prostrate Cancer
      510.1.5.2   Breast Cancer
      510.1.5.3   Lung Cancer
      510.1.5.4   Colon Cancer
      510.1.5.5   Bladder Cancer
      510.1.5.6   Endometrial Cancer
      510.1.5.7   Non-Hodgkin's Lymphoma
      510.1.5.8   Ovarian Cancer
      510.1.5.9   Kidney Cancer
      510.1.5.10  Leukemia
      510.1.5.11   Cervical Cancer
      510.1.5.12  Pancreatic Cancer
      510.1.5.13  Skin melanoma
      510.1.5.14  Stomach Cancer
    510.1.6 Bronchitis
    510.1.7 Asthma
    510.1.8 Emphysema
  • The above classes and attributes represent the current condition of the individual. In the event that the individual (e.g. consumer 810) had a diagnosis for an ailment in the past, the same classification methodology can be applied, but with an “h” placed after the attribute number to denote a historical attribute. For example, 510.1.4h can be used to create an attribute to indicate that the individual suffered a stroke in the past, as opposed to 510.1.4 which indicates the individual is currently suffering a stroke or the immediate aftereffects. Using this approach, historical classes and attributes mirroring the current classes and attributes can be created, as illustrated by historical physical health class 510 h, historical physical diagnoses class 510.1 h, historical basic physical class 520 h, historical height class 520.1 h, historical detailed physical class 530 h, and historical hormone levels class 530.1 h. In an alternate embodiment historical classes and historical attributes are not utilized. Rather, time stamping of the diagnoses or event is used. In this approach, an attribute of 510.1.4-05FEB03 would indicate that the individual suffered a stroke on Feb. 5, 2003. Alternate classification schemes and attribute classes/classifications can be used and will be understood by one of skill in the art. In one embodiment, time stamping of attributes is preferred in order to permit accurate determination of those attributes or attribute combinations that are associated with an attribute of interest (i.e., a query attribute or target attribute) in a causative or predictive relationship, or alternatively, those attributes or attribute combinations that are associated with an attribute of interest in a consequential or symptomatic relationship. In one embodiment, only attributes bearing a time stamp that predates the time stamp of the attribute of interest are processed by the methods. In another embodiment, only attributes bearing a time stamp that postdates the time stamp of the attribute of interest are processed by the methods. In another embodiment, both attributes that predate and attributes that postdate an attribute of interest are processed by the methods.
  • As further shown in FIG. 5, physical prognoses subclass 510.2 can contain attributes related to clinical forecasting of the course and outcome of disease and chances for recovery. Basic physical class 520 can include the attributes age 520.1, sex 520.2, height 520.3, weight 520.4, and ethnicity 520.5, whose values provide basic physical information about the individual. Hormone levels 530.1 and strength/endurance 530.4 are examples of attribute subclasses within detailed physical class 530. Hormone levels 530.1 can include attributes for testosterone level, estrogen level, progesterone level, thyroid hormone level, insulin level, pituitary hormone level, and growth hormone level, for example. Strength/endurance 530.4 can include attributes for various weight lifting capabilities, stamina, running distance and times, and heart rates under various types of physical stress, for example. Blood sugar level 530.2, blood pressure 530.3 and body mass index 530.5 are examples of attributes whose values provide detailed physical information about the individual. Historical physical health class 510 h, historical basic physical class 520 h and historical detailed physical class 530 h are examples of historical attribute classes. Historical physical health class 510 h can include historical attribute subclasses such as historical physical diagnoses class 510.h which would include attributes for past physical diagnoses of various diseases and physical health conditions which may or may not be representative of the individual's current health state. Historical basic physical class 520 h can include attributes such as historical height class 520.1 h which can contain heights measured at particular ages. Historical detailed physical class 530 h can include attributes and attribute classes such as the historical hormone levels class 530.1 h which would include attributes for various hormone levels measured at various time points in the past.
  • In one embodiment, the classes and indexing illustrated in FIG. 5 and described above can be matched to health insurance information such as health insurance codes, such that information collected by health care professionals (such as clinician 820 of FIG. 8, which can be a physician, nurse, nurse practitioner or other health care professional) can be directly incorporated as attribute data. In this embodiment, the heath insurance database can directly form part of the attribute database, such as one which can be constructed using the classes of FIG. 5.
  • FIG. 6 illustrates classes of situational attributes as defined by situational attributes metaclass 600, which in one embodiment can include medical class 610, exposures class 620, and financial class 630, for example. In one embodiment, medical class 610 can include treatments subclass 610.1 and medications subclass 610.2; exposures class 620 can include environmental exposures subclass 620.1, occupational exposures subclass 620.2 and self-produced exposures 620.3; and financial class 630 can include assets subclass 630.1, debt subclass 630.2 and credit report subclass 630.3. Historical medical class 610 h can include historical treatments subclass 610.1 h, historical medications subclass 610.2 h, historical hospitalizations subclass 610.3 h and historical surgeries subclass 610.4 h. Other historical classes included within the situational attributes metaclass 600 can be historical exposures subclass 620 h, historical financial subclass 630 h, historical income history subclass 640 h, historical employment history subclass 650 h, historical marriage/partnerships subclass 660 h, and historical education subclass 670 h.
  • In one embodiment, commercial databases such as credit databases, databases containing purchase information (e.g. frequent shopper information) can be used as either the basis for extracting attributes for the classes such as those in financial subclass 630 and historical financial subclass 630 h, or for direct mapping of the information in those databases to situational attributes. Similarly, accounting information such as that maintained by the consumer 810 of FIG. 8, or a representative of the consumer (e.g. the consumer's accountant) can also be incorporated, transformed, or mapped into the classes of attributes shown in FIG. 6.
  • Measurement of financial attributes such as those illustrated and described with respect to FIG. 6 allows financial attributes such as assets, debt, credit rating, income and historical income to be utilized in the methods, systems, software and databases described herein. In some instances, such financial attributes can be important with respect to a query attribute. Similarly, other situational attributes such as the number of marriages/partnerships, length of marriages/partnership, number jobs held, income history, can be important attributes and will be found to be related to certain query attributes. In one embodiment a significant number of attributes described in FIG. 6 are extracted from public or private databases, either directly or through manipulation, interpolation, or calculations based on the data in those databases.
  • FIG. 7 illustrates classes of behavioral attributes as defined by behavioral attributes metaclass 700, which in one embodiment can include mental health class 710, habits class 720, time usage class 730, mood/emotional state class 740, and intelligence quotient class 750, for example. In one embodiment, mental health class 710 can include mental/behavioral diagnoses subclass 710.1 and mental/behavioral prognoses subclass 710.2; habits class 720 can include diet subclass 720.1, exercise subclass 720.2, alcohol consumption subclass 720.3, substances usage subclass 720.4, and sexual activity subclass 720.5; and time usage class 730 can include work subclass 730.1, commute subclass 730.2, television subclass 730.3, exercise subclass 730.4 and sleep subclass 730.5. Behavioral attributes metaclass 700 can also include historical classes such as historical mental health class 710 h, historical habits 720 h, and historical time usage class 730 h.
  • As discussed with respect to FIGS. 5 and 6, in one embodiment, external databases such as health care provider databases, purchase records and credit histories, and time tracking systems can be used to supply the data which constitutes the attributes of FIG. 7. Also with respect to FIG. 7, classification systems such as those used by mental health professionals such as classifications found in the DSM-IV can be used directly, such that the attributes of mental health class 710 and historical prior mental health class 710 h have a direct correspondence to the DSM-IV. The classes and objects of the present invention, as described with respect to FIGS. 5, 6 and 7, can be implemented using a number of database architectures including, but not limited to flat files, relational databases and object oriented databases.
  • Unified Modeling Language (“UML”) can be used to model and/or describe methods and systems and provide the basis for better understanding their functionality and internal operation as well as describing interfaces with external components, systems and people using standardized notation. When used herein, UML diagrams including, but not limited to, use case diagrams, class diagrams and activity diagrams, are meant to serve as an aid in describing the embodiments of the present invention but do not constrain implementation thereof to any particular hardware or software embodiments. Unless otherwise noted, the notation used with respect to the UML diagrams contained herein is consistent with the UML 2.0 specification or variants thereof and is understood by those skilled in the art.
  • FIG. 8 illustrates a use case diagram for an attribute determination system 800 which, in one embodiment, allows for the determination of attributes which are statistically relevant or related to a query attribute. Attribute determination system 800 allows for a consumer 810, clinician 820, and genetic database administrator 830 to interact, although the multiple roles may be filled by a single individual, to input attributes and query the system regarding which attributes are relevant to the specified query attribute. In a contribute genetic sample use case 840 a consumer 810 contributes a genetic sample.
  • In one embodiment this involves the contribution by consumer 810 of a swab of the inside of the cheek, a blood sample, or contribution of other biological specimen associated with consumer 810 from which genetic and epigenetic data can be obtained. In one embodiment, genetic database administrator 830 causes the genetic sample to be analyzed through a determine genetic and epigenetic attributes use case 850. Consumer 810 or clinician 820 may collect physical attributes through a describe physical attributes use case 842. Similarly, behavioral, situational, and historical attributes are collected from consumer 810 or clinician 820 via describe behavioral attributes use case 844, describe situational attributes use case 846, and describe historical attributes use case 848, respectively. Clinician 820 or consumer 810 can then enter a query attribute through receive query attribute use case 852. Attribute determination system 800 then, based on attributes of large query-attribute positive and query-attribute negative populations, determines which attributes and combinations of attributes, extending across the pangenetic (genetic/epigenetic), physical, behavioral, situational, and historical attribute categories, are statistically related to the query attribute. As previously discussed, and with respect to FIG. 1 and FIGS. 4-6, historical attributes can, in certain embodiments, be accounted for through the other categories of attributes. In this embodiment, describe historical attributes use case 848 is effectively accomplished through determine genetic and epigenetic attributes use case 850, describe physical attributes use case 842, describe behavioral attributes use case 844, and describe situational attributes use case 846.
  • Physical, behavioral, situational and historical attribute data may be stored or processed in a manner that allows retention of maximum resolution and accuracy of the data while also allowing flexible comparison of the data so that important shared similarities between individuals are not overlooked. This is taken into account when processing narrow and extreme attribute values, or smaller populations of individuals where the reduced number of individuals makes the occurrence of identical matches of attributes rare. In these and other circumstances, flexible treatment and comparison of attributes can reveal predisposing attributes that are related to or legitimately derive from the original attribute values but have broader scope, lower resolution, and extended or compounded values compared to the original attributes. In one embodiment, attributes and attribute values can be qualitative (categorical) or quantitative (numerical). In a further embodiment, attributes and attribute values can be discrete or continuous.
  • There are several ways flexible treatment and comparison of attributes can be accomplished. As shown in FIG. 2, one approach is to incorporate data conversion/formatting engine 220 which is able to create expanded 1st dataset 202 from 1st dataset 200. A second approach is to incorporate functions into attribute comparison engine 222 that allow it to expand the original attribute data into additional values or ranges during the comparison process. This provides the functional equivalent of reformatting the original dataset without having to create and store the entire set of expanded attribute values.
  • In one embodiment, individual attributes may be expanded into one or more sets containing attributes having values, levels or degrees that are above, below, surrounding or including that of the original attribute. In one embodiment, attributes can be used to create new attributes that are broader or narrower in scope than the original attribute. In one embodiment, attributes can be used to compute new attributes that are related to the original attribute. As an example, FIG. 9 illustrates how time spans or multiple noncontiguous time periods for historical attributes such as those shown in FIG. 9A, may be recalculated to form a single value for total time exposed or total length of experience such as that shown in FIG. 9B. Also exemplified in FIG. 9B, a time point in life at which a historical attribute occurred may be stratified into a wider time range or interval to increase the opportunity for matches with other individuals. In one embodiment, the original attribute value is retained and the expanded attribute values provided in addition to allow the opportunity to detect similarities at both the maximal resolution level provided by the original attribute value and the lower level of resolution and broader coverage provided by the expanded attribute values or attribute value range. In one embodiment, attribute values are determined from detailed questionnaires which are completed by the consumer/patient directly or with the assistance of clinician 820. Based on these questionnaires, values such as those shown in FIGS. 9A and 9B can be derived. In one or more embodiments, when tabulating, storing, transmitting and reporting results of methods of the present invention, wherein the results include both narrow attributes and broad attributes that encompass those narrow attributes, the broader attributes may be included and the narrow attributes eliminated, filtered or masked in order to reduce the complexity and lengthiness of the final results.
  • With respect to the aforementioned method of collection, inaccuracies can occur, sometimes due to outright misrepresentations of the individual's habits. For example, it is not uncommon for patients to self-report alcohol consumption levels which are significantly below actual levels. Such situations can occur even when a clinician/physician is involved, as the patient reports consumption levels to the clinician/physician that are significantly below their actual consumption levels. Similarly, it is not uncommon for an individual to over-report the amount of exercise they get.
  • In one embodiment, disparate sources of data including consumption data as derived from purchase records, data from blood and urine tests, and other observed characteristics are used to derive attributes such as those shown in FIGS. 5-7. By analyzing sets of disparate data, corrections to self-reported data can be made to produce more accurate determinations of relevant attributes. In one embodiment, heuristic rules are used to generate attribute data based on measured, rather than self-reported attributes. Heuristic rules are defined as rules which relate measurable (or accurately measurable) attributes to less measurable or less reliable attributes such as those from self-reported data. For example, an individual's recorded purchases including cigarette purchases can be combined with urine analysis or blood test results which measure nicotine levels or another tobacco related parameter and heuristic rules can be applied to estimate cigarette consumption level. As such, one or more heuristic rules, typically based on research which statistically links a variety of parameters, can be applied to the data representing the number of packs of cigarettes purchased by an individual or household, results of urine or blood tests, and other studied attributes, to derive an estimate of the extent to which the individual smokes.
  • In one embodiment, the heuristic rules take into account attributes such as household size and self-reported data to assist in the derivation of the desired attribute. For example, if purchase data is used in a heuristic rule, household size and even the number of self-reported smokers in the household, can be used to help determine actual levels of consumption of tobacco by the individual. In one embodiment, household members are tracked individually, and the heuristic rules provide for the ability to approximately assign consumption levels to different people in the household. Details such as individual brand usages or preferences may be used to help assign consumptions within the household. As such, the heuristic rules can be applied to a number of disparate pieces of data to assist in extracting one or more attributes.
  • The methods, systems, software and databases described herein are able to achieve determination of complex combinations of predisposing attributes not only as a consequence of the resolution and breadth of data used, but also as a consequence of the process methodology used for discovery of predisposing attributes. An attribute may have no effect on expression of another attribute unless it occurs in the proper context, the proper context being co-occurrence with one or more additional predisposing attributes. In combination with one or more additional attributes of the right type and degree, an attribute may be a significant contributor to predisposition of the organism for developing the attribute of interest. This contribution is likely to remain undetected if attributes are evaluated individually. As an example, complex diseases require a specific combination of multiple attributes to promote expression of the disease. The required disease-predisposing attribute combinations will occur in a significant percentage of those that have or develop the disease and will occur at a lower frequency in a group of unaffected individuals.
  • FIG. 10 illustrates an example of the difference in frequencies of occurrence of attributes when considered in combination as opposed to individually. In the example illustrated, there are two groups of individuals referred to based on their status of association with a query attribute (a specific attribute of interest that can be submitted in a query). One group does not possess (is not associated with) the query attribute, the query-attribute-negative group, and the other does possess (is associated with) the query attribute, the query-attribute-positive group. In one embodiment, the query attribute of interest is a particular disease or trait. The two groups are analyzed for the occurrence of two attributes, A and X, which are candidates for causing predisposition to the disease. When frequencies of occurrence are computed individually for A and for X, the observed frequencies are identical (50%) for both groups. When the frequency of occurrence is computed for the combination of A with X for individuals of each group, the frequency of occurrence is dramatically higher in the positive group compared to the negative group (50% versus 0%). Therefore, while both A and X are significant contributors to predisposition in this theoretical example, their association with expression of the disease in individuals can only be detected by determining the frequency of co-occurrence of A with X in each individual.
  • FIG. 11 illustrates another example of the difference in frequencies of occurrence of attributes when considered in combination as opposed to individually. In this example there are again two groups of individuals that are positive or negative for an attribute of interest submitted in a query, which could again be a particular disease or trait of interest. Three genes are under consideration as candidates for causing predisposition to the query attribute. Each of the three genes has three possible alleles (each labeled A, B, or C for each gene). This illustrates not only the requirement of attribute combinations in causing predisposition, but also the phenomenon that there can be multiple different combinations of attributes that produce the same outcome. In the example, a combination of either all A, all B, or all C alleles for the genes can result in predisposition to the query attribute. The query-attribute-positive group is evenly divided among these three attribute combinations, each having a frequency of occurrence of 33%. The same three combinations occur with 0% frequency in the query-attribute-negative group. However, if the attributes are evaluated individually, the frequency of occurrence of each allele of each gene is an identical 33% in both groups, which would appear to indicate no contribution to predisposition by any of the alleles in one groups versus the other. As can be seen from FIG. 11, this is not the case, since every gene allele considered in this example does contribute to predisposition toward the query attribute when occurring in a particular combination of alleles, specifically a combination of all A, all B, or all C. This demonstrates that a method of attribute predisposition determination needs to be able to detect attributes that express their predisposing effect only when occurring in particular combinations. It also demonstrates that the method should be able to detect multiple different combinations of attributes that may all cause predisposition to the same query attribute.
  • Although the previous two figures present frequencies of occurrence as percentages, for the methods of the present invention the frequencies of occurrence of attribute combinations are can be stored as ratios for both the query-attribute-positive individuals and the query-attribute-negative individuals. Referring to FIG. 12A and FIG. 12B, the frequency of occurrence for the query-attribute-positive group is the ratio of the number of individuals of that group having the attribute combination (the exposed query-attribute-positive individuals designated ‘a’) to the total number of individuals in that group (‘a’ plus ‘c’). The number of individuals in the query-attribute-positive group that do not possess the attribute combination (the unexposed query-attribute-positive individuals designated ‘c’) can either be tallied and stored during comparison of attribute combinations, or computed afterward from the stored frequency as the total number of individuals in the group minus the number of exposed individuals in that group (i.e., (a+c)−a=c). For the same attribute combination, the frequency of occurrence for the query-attribute-negative group is the ratio of the number of individuals of that group having the attribute combination (the exposed query-attribute-negative individuals designated ‘b’) to the total number of individuals in that group (‘b’ plus ‘d’). The number of individuals in the query-attribute-negative group that do not possess the attribute combination (the unexposed query-attribute-negative individuals designated ‘d’) can either be tallied and stored during comparison of attribute combinations or can be computed afterward from the stored frequency as the total number of individuals in the group minus the number of exposed individuals in that group (i.e., (b+d)−b=d).
  • The frequencies of occurrence of an attribute or attribute combination, when compared for two or more groups of individuals with respect to a query attribute, are statistical results that can indicate strength of association of the attribute combination with a query attribute. Frequencies of occurrence can also be utilized by statistical computation engine 224 to compute additional statistical results for strength of association of the attribute combinations with the query attribute. The statistical measures used may include, but are not limited to, prevalence, incidence, probability, absolute risk, relative risk, attributable risk, excess risk, odds (a.k.a. likelihood), and odds ratio (a.k.a. likelihood ratio). Absolute risk (a.k.a. probability), relative risk, odds, and odds ratio are the preferred statistical computations for the present invention. Among these, absolute risk and relative risk are the more preferable statistical computations because their values can still be calculated for an attribute combination in instances where the frequency of occurrence of the attribute combination in the query-attribute-negative group is zero. Odds and odds ratio are undefined in instances where the frequency of occurrence of the attribute combination in the query-attribute-negative group is zero, because in that situation their computation requires division by zero which is mathematically undefined. One embodiment of the present invention, when supplied with ample data, is expected to routinely yield frequencies of occurrence of zero in query-attribute-negative groups because of its ability to discover large predisposing attribute combinations that are exclusively associated with the query attribute.
  • FIG. 12B illustrates formulas for the statistical measures that can be used to compute statistical results. In one embodiment, absolute risk is computed as the probability that an individual has or will develop the query attribute given exposure to an attribute combination. In one embodiment, relative risk is computed as the ratio of the probability that an exposed individual has or will develop the query attribute to the probability that an unexposed individual has or will develop the query attribute. In one embodiment, odds is computed as the ratio of the probability that an exposed individual has or will develop the query attribute (absolute risk of the exposed query-attribute-positive individuals) to the probability that an exposed individual does not have and will not develop the query attribute (absolute risk of the exposed query-attribute-negative individuals). In one embodiment, the odds ratio is computed as the ratio of the odds that an exposed individual has or will develop the query attribute to the odds that an unexposed individual has or will develop the query attribute.
  • In one embodiment, results for absolute risk and relative risk can be interpreted as follows with respect to an attribute combination predicting association with a query attribute: 1) if absolute risk=1.0, and relative risk=undefined, then the attribute combination is sufficient and necessary to cause association with the query attribute, 2) if absolute risk=1.0, and relative risk•undefined, then the attribute combination is sufficient but not necessary to cause association with the query attribute, 3) if absolute risk<1.0, and relative risk•undefined, then the attribute combination is neither sufficient nor necessary to cause association with the query attribute, and 4) if absolute risk<1.0, and relative risk=undefined, then the attribute combination is not sufficient but is necessary to cause association with the query attribute. In an alternate embodiment, relative risk=undefined can be interpreted to mean that there are two or more attribute combinations, rather than just one attribute combination, that can cause association with the query attribute. In one embodiment, an absolute risk<1.0 can be interpreted to mean one or more of the following: 1) the association status of one or more attributes, as provided to the methods, is inaccurate or missing (null), 2) not enough attributes have been collected, provided to or processed by the methods, or 3) the resolution afforded by the attributes that have been provided is too narrow or too broad. These interpretations can be used to increase accuracy and utility of the methods for use in many applications including but not limited to attribute combination discovery, attribute prediction, predisposition prediction, predisposition modification and destiny modification.
  • The statistical results obtained from computing the statistical measures can be subjected to inclusion, elimination, filtering, and evaluation based on meeting one or more statistical requirements. Statistical requirements can include but are not limited to numerical thresholds, statistical minimum or maximum values, and statistical significance/confidence values.
  • One embodiment of the present invention can be used in many types of statistical analyses including but not limited to Bayesian analyses (e.g., Bayesian probabilities, Bayesian classifiers, Bayesian classification tree analyses, Bayesian networks), linear regression analyses, non-linear regression analyses, multiple linear regression analyses, uniform analyses, Gaussian analyses, hierarchical analyses, recursive partitioning (e.g., classification and regression trees), resampling methods (e.g., bootstrapping, cross-validation, jackknife), Markov methods (e.g., Hidden Markov Models, Regular Markov Models, Markov Blanket algorithms), kernel methods (e.g., Support Vector Machine, Fisher's linear discriminant analysis, principle components analysis, canonical correlation analysis, ridge regression, spectral clustering, matching pursuit, partial least squares), multivariate data analyses including cluster analyses, discriminant analyses and factor analyses, parametric statistical methods (e.g., ANOVA), non-parametric inferential statistical methods (i.e., binomial test, Anderson-Darling test, chi-square test, Cochran's Q, Cohen's kappa, Efron-Petrosian Test, Fisher's exact test, Friedman two-way analysis of variance by ranks, Kendall's tau, Kendall's W, Kolmogorov-Smirnov test, Kruskal-Wallis one-way analysis of variance by ranks, Kuiper's test, Mann-Whitney U or Wilcoxon rank sum test, McNemar's test, median test, Pitman's permutation test, Siegel-Tukey test, Spearman's rank correlation coefficient, Student-Newman-Keuls test, Wald-Wolfowitz runs test, Wilcoxon signed-rank test).
  • In one embodiment, the methods, databases, software and systems of the present invention can be used to produce data for use in and/or results for the above statistical analyses. In another embodiment, the methods, databases, software and systems of the present invention can be used to independently verify the results produced by the above statistical analyses.
  • In one embodiment a method is provided which accesses a first dataset containing attributes associated with a set of query-attribute-positive individuals and query-attribute-negative individuals, the attributes being pangenetic, physical, behavioral and situational attributes associated with individuals, and creates a second dataset of attributes associated with a query-attribute-positive individual but not associated with one or more query-attribute-negative individuals. A third dataset can be created containing attributes of the second dataset that are either associated with one or more query-attribute-positive individuals or are not present in any of the query-attribute-negative individuals, along with the frequency of occurrence in the query-attribute-positive individuals and the frequency of occurrence in the query-attribute-negative individuals. A statistical computation can be performed for each attribute combination, based on the frequency of occurrence, the statistical computation result indicating the strength of association, as measured by one or more well known statistical measures, between each attribute combination and the query attribute. The process can be repeated for a number of query attributes, and multiple query-positive individuals can be studied to create a computer-stored and machine-accessible compilation of different attribute combinations that co-occur with the queried attributes. The compilation can be ranked and co-occurring attribute combinations not having a minimum strength of association with the query attribute can be eliminated from the compilation.
  • Similarly, a system can be developed which contains a subsystem for accessing a query attribute, a second subsystem for accessing a set of databases containing pangenetic, physical, behavioral, and situational attributes associated with a plurality of query-attribute positive, and query-attribute negative individuals, a data processing subsystem for identifying combinations of pangenetic, physical, behavioral, and situational attributes associated with query-attribute positive individuals, but not with query-attribute negative individuals, and a calculating subsystem for determining a set of statistical results that indicates a strength of association between the combinations of pangenetic, physical, behavioral, and situational attributes with the query attribute. The system can also include a communications subsystem for retrieving at least some of pangenetic, physical, behavioral, and situational attributes from at least one external database; a ranking subsystem for ranking the co-occurring attributes according to the strength of the association of each co-occurring attribute with the query attribute; and a storage subsystem for storing the set of statistical results indicating the strength of association between the combinations of pangenetic, physical, behavioral, and situational attributes and the query attribute. The various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs). A variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • In one application the method and/or system is used in conjunction with a plurality of databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which serve to store the aforementioned attributes. In one embodiment the pangenetic (genetic and epigenetic) data is stored separately from the other attribute data and is accessed by the system/method. In another embodiment the pangenetic data is stored with the other attribute data. A user, such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for determination of the attribute combinations associated with that query attribute. In one embodiment the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first. In an alternate embodiment the calculation is made at the time the query is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 13 illustrates a flowchart of one embodiment of a method for creation of a database of attribute combinations, wherein 1st dataset 1322, 2nd dataset 1324, 3rd dataset 1326 and 4th dataset 1328 correspond to 1st dataset 200, 2nd dataset 204, 3rd dataset 206 and 4th dataset 208 respectively of the system illustrated in FIG. 2. Expanded 1st dataset 202 of FIG. 2 is optional for this embodiment of the method and is therefore not illustrated in the flowchart of FIG. 13. One aspect of this method is the comparison of attributes and attribute combinations of different individuals in order to identify those attributes and attribute combinations that are shared in common between those individuals. Any attribute that is present in the dataset record of an individual is said to be associated with that individual.
  • 1st dataset 1322 in the flow chart of FIG. 13 represents the initial dataset containing the individuals' attribute dataset records to be processed by the method. FIG. 14 illustrates an example of the content of a 1st dataset representing attribute data for 111 individuals. Each individual's association with attributes A-Z is indicated by either an association status value of 0 (no, does do not possess the attribute) or a status value of 1 (yes, does possess the attribute). In one embodiment, this is preferred format for indicating the presence or absence of association of an attribute with an individual. In an alternate embodiment, an individual's attribute profile or dataset record contains the complete set of attributes under consideration and a 0 or 1 status value for each. In other embodiments, representation of association of an attribute with an individual can be more complex than the simple binary value representations of yes or no, or numerical 1 or 0. In one embodiment, the presence of attributes themselves, for example the actual identity of nucleotides, a brand name, or a trait represented by a verbal descriptor, can be used to represent the identity, degree and presence of association of the attribute. In one embodiment, the absence of an attribute is itself an attribute that can be referred to and/or represented as a ‘not-attribute’. In one embodiment, a not-attribute simply refers to an attribute having a status value of 0, and in a further embodiment, the not-attribute is determined to be associated with an individual or present in an attribute profile (i.e., dataset, database or record) if the corresponding attribute has a status value of 0 associated with the individual or is present in the attribute profile as an attribute with a status value of 0, respectively. In another embodiment, a not-attribute can be an attribute descriptor having a ‘not’ prefix, minus sign, or alternative designation imparting essentially the same meaning. In a further embodiment, not-attributes are treated and processed no differently than other attributes. In circumstances where data for an attribute or an attribute's association status cannot be obtained for an individual, the attribute or attribute status may be omitted and represented as a null. Typically, a null should not be treated as being equivalent to a value of zero, since a null is not a value. A null represents the absence of a value, such as when no attribute or attribute association status is entered into a dataset for a particular attribute.
  • In the example illustrated in FIG. 14, individuals #1-10 and #111 possess unique attribute content which is not repeated in other individuals of this population. Individuals #11-20 are representative of individuals #21-100, so that the data for each of the individuals #11-20 is treated as occurring ten times in this population of 111 individuals. In other words, there are nine other individuals within the group of individuals #21-100 (not shown in the table) that have A-Z attribute values identical to those of individual # 11. The same is true for individuals #12, #13, #14, #15, #16, #17, #18, #19 and #20.
  • As shown in the flowchart of FIG. 13, in one embodiment the method begins with access query attribute step 1300 in which query attribute 1320, provided either by a user or by automated submission, is accessed. For this example the query attribute is ‘A’. In access data step 1302, the attribute data for individuals as stored in 1st dataset 1322 are accessed with query attribute 1320 determining classification of the individuals as either query-attribute-positive individuals (those individuals that possess the query attribute in their 1st dataset record) or query-attribute-negative individuals (those individuals that do not possess the query attribute in their dataset record). For query attribute ‘A’, individuals #1-10 are the query-attribute-positive individuals, and individuals #11-111 are the query-attribute-negative individuals.
  • In select query-attribute-positive individualN step 1304, individual # 1 is selected in this example for comparison of their attributes with those of other individuals. In store attributes step 1306, those attributes of the selected individual # 1 that are not associated with a portion (e.g., one or more individuals) of the query-attribute-negative group (or alternatively, a randomly selected subgroup of query-attribute-negative individuals) are stored in 2nd dataset 1324 as potential candidate attributes for contributing to predisposition toward the query attribute. In one embodiment this initial comparison step is used to increase efficiency of the method by eliminating those attributes that are associated with all of the query-attribute-negative individuals. Because such attributes occur with a frequency of 100% in the query-attribute-negative group, they cannot occur at a higher frequency in the query-attribute-positive group and are therefore not candidates for contributing to predisposition toward the query attribute. Therefore, this step ensures that only attributes of the individual that occur with a frequency of less than 100% in the query-attribute-negative group are stored in the 2nd dataset. This step is especially useful for handling genetic attributes since the majority of the approximately three billion nucleotide attributes of the human genome are identically shared among individuals and may be eliminated from further comparison before advancing to subsequent steps.
  • As mentioned above, this initial comparison to effectively eliminate attributes that are not potential candidates may be performed against a randomly selected subgroup of query-attribute-negative individuals. Using a small subgroup of individuals for the comparison increases efficiency and prevents the need to perform a comparison against the entire query-attribute-negative population which may consist of thousands or even millions of individuals. In one embodiment, such a subgroup preferably consists of at least 20, but as few as 10, randomly selected query-attribute-negative individuals.
  • For the present example, only those attributes having a status value of 1 for individual # 1 and a status value of 0 for one or more query-attribute-negative individuals are stored as potential candidate attributes, but in one embodiment those attributes having a status value of 0 for individual # 1 and a status value of 1 for one or more query-attribute-negative individuals (i.e., attributes I, K, Q and W) can also be stored as candidate attributes, and may be referred to as candidate not-attributes of individual # 1. FIG. 15A illustrates the 2nd dataset which results from processing the attributes of individual # 1 for query attribute ‘A’ in a comparison against individuals #11-111 of the query-attribute-negative subgroup. The stored candidate attributes consist of C,E,F,N,T and Y. FIG. 15B illustrates a tabulation of all possible combinations of these attributes. In store attribute combinations step 1308, those combinations of attributes of 2nd dataset 1324 that are found by comparison to be associated with one or more query-attribute-positive individuals of 1st dataset 1322 are stored in 3rd dataset 1326 along with the corresponding frequencies of occurrence for both groups determined during the comparison. Although not relevant to this example, there may be instances in which a particular attribute combination is rare enough, or the group sizes small enough, that the selected query-attribute-positive individual is the only individual that possesses that particular attribute combination. Under such circumstances, no other individual of the query-attribute-positive group and no individual of the query-attribute-negative group will be found to possess that particular attribute combination. To ensure that the attribute combination is stored as a potential predisposing attribute combination, one embodiment of the method can include a requirement that any attribute combination not present in any of the query-attribute-negative individuals be stored in the 3rd dataset along with the frequencies of occurrence for both groups. Any attribute combination stored according to this rule necessarily has a frequency of occurrence equal to zero for the query-attribute-negative group and a frequency of occurrence having a numerator equal to one for the attribute-positive group.
  • FIG. 16 illustrates a 3rd dataset containing a representative portion of the stored attribute combinations and their frequencies of occurrence for the data of this example. Each frequency of occurrence is preferably stored as a ratio of the number of individuals of a group that are associated with the attribute combination in the numerator and the total number of individuals of that group in the denominator.
  • In store statistical results step 1310, the frequencies of occurrence previously stored in 3rd dataset 1326 are used to compute statistical results for the attribute combinations which indicate the strength of association of each attribute combination with the query attribute. As mentioned previously, the statistical computations used may include prevalence, incidence, absolute risk (a.k.a. probability), attributable risk, excess risk, relative risk, odds and odds ratio. In one embodiment, absolute risk, relative risk, odds and odds ratio are the statistical computations performed (see formulas in FIG. 12B). Computed statistical results stored with their corresponding attribute combinations are shown in the 3rd dataset illustrated by FIG. 16. The odds and odds ratio computations for the attribute combinations CEFNTY, CEFNT, CEFNY, CFNTY and CEFN are shown as undefined in this 3rd dataset example because the frequencies of occurrence of these attribute combinations in the query-attribute-positive group are zero.
  • For the sake of brevity, only the individual # 1 was selected and processed in the method, thereby determining only the predisposing attribute combinations of individual # 1 and those individuals of the group that also happen to possess one or more of those attribute combinations. However, one can proceed to exhaustively determine all predisposing attribute combinations in the query-attribute-positive group and build a complete 3rd dataset for the population with respect to query attribute ‘A’. As shown in the flow chart of FIG. 13, this is achieved by simply including decision step 1312 to provide a choice of selecting successive individuals from the query-attribute-positive group and processing their attribute data through successive iteration of steps 1300-1310 one individual at a time until all have been processed. The resulting data for each additional individual is simply appended into the 3rd dataset during each successive iteration. When selecting and processing multiple individuals, data in the 2nd dataset is preferably deleted between iterations, or uniquely identified for each individual. This will ensure that any data in the 2nd dataset originating from a previous iteration is not reconsidered in current and subsequent iterations of other individuals in the group. Alternate techniques to prevent reconsideration of the data can be utilized.
  • In store significantly associated attribute combinations step 1314, 4th dataset 1328 may be created by selecting and storing only those attribute combinations and their associated data from the 3rd dataset that show a minimum statistical association with the query attribute. The minimum statistical association may be a minimum positive, negative, neutral or combined association determined by either the user or the system. This determination can be made based on the statistical results previously stored in 3rd dataset 1326. As an example, the determination can be made based on the results computed for relative risk. Statistically, a relative risk of>1.0 indicates a positive association between the attribute combination and the query attribute, while a relative risk of 1.0 indicates no association, and a relative risk of<1.0 indicates a negative association.
  • FIG. 17 illustrates a 4th dataset consisting of attribute combinations with a relative risk>1.0, from which the attribute combinations CETY and CE are excluded because they have associated relative risks•1.0. FIG. 18 illustrates another example of a 4th dataset that can be created. In this example, a minimum statistical association requirement of either relative risk>4.0 or absolute risk>0.3 produce this 4th dataset.
  • It can be left up to the user or made dependent on the particular application as to which statistical measure and what degree of statistical association is used as the criteria for determining inclusion of attribute combinations in the 4th dataset. In this way, 4th dataset 1328 can be presented in the form of a report which contains only those attribute combinations determined to be predisposing toward the query attribute above a selected threshold of significant association for the individual or population of individuals.
  • In many applications it will be desirable to determine predisposing attribute combinations for additional query attributes within the same population of individuals. In one embodiment this is accomplished by repeating the entire method for each additional query attribute and either creating new 2nd, 3rd and 4th datasets, or appending the results into the existing datasets with associated identifiers that clearly indicate what data results correspond to which query attributes. In this way, a comprehensive database containing datasets of predisposing attribute combinations for many different query attributes may be created.
  • In one embodiment of a method for creating an attribute combinations database, attribute profile records of individuals that have nulls for one or more attribute values are not processed by the method or are eliminated from the 1st dataset before initiating the method. In another embodiment, attribute profile records of individuals that have nulls for one or more attribute values are only processed by the method if those attribute values that are nulls are deemed inconsequential for the particular query or application. In another embodiment, a population of individuals having one or more individual attribute profile records containing nulls for one or more attribute values are only processed for those attributes that have values (non-nulls) for every individual of that population.
  • In one embodiment of a method for creating an attribute combinations database, frequencies of occurrence and statistical results for strength of association of existing attribute combinations in the attribute combinations dataset are updated based on the attribute profile of an individual processed by the method. In another embodiment, frequencies of occurrence and statistical results for strength of association of existing attribute combinations in the attribute combinations dataset are not updated based on the attribute profile of an individual processed by the method. In another embodiment, the processing of an individual by the method can require first comparing the individuals' attribute profile to the preexisting attribute combinations dataset to determine which attribute combinations in the dataset are also present in the individual's attribute profile, and then in a further embodiment, based on the individual's attribute profile, updating the frequencies of occurrence and statistical results for strength of association of those attribute combinations in the dataset that are also present in the individual's attribute profile, without further processing the individual or their attributes by the method.
  • The 3rd and 4th datasets created by performing the above methods for creation of a database of attribute combinations can be used for additional methods of the invention that enable: 1) identification of predisposing attribute combinations toward a key attribute of interest, 2) predisposition prediction for an individual toward a key attribute of interest, and 3) intelligent individual destiny modification provided as predisposition predictions resulting from the addition or elimination of specific attribute associations.
  • In one embodiment a method of identifying predisposing attribute combinations is provided which accesses a first dataset containing attribute combinations and statistical computation results that indicate the potential of each attribute combination to co-occur with a query attribute, the attributes being pangenetic, physical, behavioral, and situational attributes. A tabulation can be performed to provide, based on the statistical computation results, those predisposing attribute combinations that are most likely to co-occur with the query attribute, or a rank-ordering of predisposing attribute combinations of the first dataset that co-occur with the query attribute.
  • Similarly, a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attribute combinations of pangenetic, physical, behavioral and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for tabulating the attribute combinations. The various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs). A variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • In one application the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results. In one embodiment the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets. In another embodiment the attribute combinations and corresponding statistical results data is stored with the other attribute data. A user, such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute. In one embodiment the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first. In an alternate embodiment the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 19 illustrates a flow chart for a method of attribute identification providing tabulation of attribute combinations that are predisposing toward an attribute of interest provided in a query. In receive query attribute step 1900, query attribute 1920 can be provided as one or more attributes in a query by a user. Alternatively, query attribute 1920 can be provided by automated submission, as part of a set of one or more stored attributes for example. In access co-occurring attribute combinations step 1902, 1st dataset 1922 is accessed, wherein this 1st dataset contains attribute combinations that co-occur with the query attribute and statistical results that indicate the corresponding strength of association with the query attribute. For this example the query attribute is ‘A’, and a representative 1st dataset is shown in FIG. 16. In tabulate predisposing attribute combinations step 1904, co-occurring attribute combinations are tabulated, preferably according to a rank assigned to each attribute combination based on the strength of association with the query attribute. Further, attribute combinations can be included or excluded based on a statistical requirement. For example, attribute combinations below the minimum strength of association may be excluded. In one embodiment, a minimum strength of association can be specified by the user in reference to one or more statistical results computed for the attribute combinations.
  • As an example, a minimum strength of association requiring relative risk•1.0 may be chosen. Based on this chosen requirement, the tabulated list of attribute combinations shown in FIG. 20 would result from processing the 1st dataset represented in FIG. 16. The attribute combinations are ordered according to rank. In this example, rank values were automatically assigned to each attribute combination based on the number of attributes in each attribute combination and the magnitude of the corresponding absolute risk value. The higher the absolute risk value, the lower the numerical rank assigned. For attribute combinations having the same absolute risk, those with more total attributes per combination receive a lower numerical rank. This treatment is based on two tendencies of larger predisposing attribute combinations. The first is the general tendency of predisposing attribute combinations containing more attributes to possess a higher statistical strength of association with the query attribute. The second is the general tendency for elimination of a single attribute from larger combinations of predisposing attributes to have less of an effect on strength of association with the query attribute. The resulting tabulated list of FIG. 20 therefore provides an rank-ordered listing of predisposing attribute combinations toward attribute ‘A’, where the first attribute combination in the listing is ranked as the most predisposing attribute combination identified and the last attribute combination in the listing is ranked as the least predisposing attribute combination of all predisposing attribute combinations identified for the population of this example.
  • In one embodiment a method for predicting predisposition of an individual for query attributes of interest is provided which accesses a first dataset containing attributes associated with an individual and a second dataset containing attribute combinations and statistical computation results that indicate strength of association of each attribute combination with a query attribute, the attributes being pangenetic, physical, behavioral and situational attributes. A comparison can be performed to determine the largest attribute combination of the second dataset that is also present in the first dataset and that meets a minimum statistical requirement, the result being stored in a third dataset. The process can be repeated for a number of query attributes. A tabulation can be performed to provide a predisposition prediction listing indicating the predisposition of the individual for each of the query attributes. In one embodiment, predisposition can be defined as a statistical result indicating strength of association between an attribute or attribute combination and a query attribute.
  • Similarly, a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attributes of an individual, a third subsystem for accessing attribute combinations of pangenetic, physical, behavioral, and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for comparing and tabulating the attribute combinations. The various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs). A variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic and electro-optical storage.
  • In one application the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results. In one embodiment the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets. In another embodiment the attribute combinations and corresponding statistical results data is stored with the other attribute data. A user, such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute. In one embodiment the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first. In an alternate embodiment the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 21 illustrates a flowchart for a method of predicting predisposition of an individual toward an attribute of interest with which they currently have no association or their association is currently unknown. In receive query attribute step 2100, query attribute 2120 can be provided as one or more attributes in a query by a user. Alternatively, query attribute 2120 can be provided by automated submission, as part of a set of one or more stored attributes that may be referred to as key attributes. These key attributes may be submitted as a simple list, or they may be designated attributes within a dataset that also contains predisposing attribute combinations and their corresponding statistical results for strength of association with one or more of the designated key attributes.
  • For this example, query attribute ‘A’ is submitted by a user in a query. In access attributes step 2102 the attributes of an individual whose attribute profile is contained in a 1 st dataset 2122 are accessed. A representative 1st dataset for individual # 112 is shown in FIG. 22A. In access stored attribute combinations step 2104, attribute combinations and corresponding statistical results for strength of association with query attribute 2120 contained in 2nd dataset 2124 are accessed. A representative 2nd dataset for this example is shown in FIG. 22B. In store the largest attribute combination step 2106, attribute combinations of 2nd dataset 2124 that are also present in 1st dataset 2122 are identified by comparison, and the largest identified attribute combination shared by both datasets and its corresponding statistical results for strength of association with the query attribute are stored in 3rd dataset 2126 if a minimum statistical requirement for strength of association is met. Absolute risk and relative risk are the preferred statistical results, although other statistical computations such as odds and odds ratio can also be used. A representative 3rd dataset is shown in FIG. 23A. Individual # 112 possesses the largest predisposing attribute combination CEFNTY, for which the corresponding statistical results for strength of association with attribute ‘A’ are an absolute risk of 1.0 and a relative risk of 15.3. In decision step 2108, a choice is made whether to perform another iteration of steps 2100-2106 for another attribute of interest. Continuing with this example, attribute ‘W’ is received and another iteration is performed. For this example, after completing this iteration there are no additional attributes of interest submitted, so upon reaching decision step 2108 the choice is made not to perform any further iterations. The method concludes with tabulate predisposing attribute combinations step 2110, wherein all or a portion of the data of 3rd dataset 2126 is tabulated to provide statistical predictions for predisposition of the individual toward each of the query attributes of interest. In one embodiment, the tabulation can include ordering the tabulated data based on the magnitude of the statistical results, or the importance of the query attributes.
  • In one embodiment, the tabulation can be provided in a form suitable for visual output, such as a visual graphic display or printed report. Attribute combinations do not need to be reported in predisposition prediction and can be omitted or masked so as to provide only the query attributes of interest and the individual's predisposition prediction for each. In creating a tabulated report for viewing by a consumer, counselor, agent, physician, patient or consumer, tabulating the statistical predictions can include substituting the terminology ‘absolute risk’ and ‘relative risk’ with the terminology ‘absolute potential’ and ‘relative potential’, since the term ‘risk’ carries negative connotations typically associated with the potential for developing undesirable conditions like diseases. This substitution may be desirable when the present invention is used to predict predisposition for desirable attributes such as specific talents or success in careers and sports. Also, the numerical result of absolute risk is a mathematical probability that can be converted to chance by simply multiplying it by 100%. It may be desirable to make this conversion during tabulation since chance is more universally understood than mathematical probability. Similarly, relative risk can be represented as a multiplier, which may facilitate its interpretation. The resulting tabulated results for this example are shown in FIG. 23B, in which all of the aforementioned options for substitution of terminology and conversion of statistical results have been exercised. The tabulated results of FIG. 23B indicate that individual # 112 has a 100% chance of having or developing attribute ‘A’ and is 15.3 times as likely to have or develop attribute ‘A’ as someone in that population not associated with attribute combination CEFNTY. The results further indicate that individual # 112 has a 36% chance of having or developing attribute ‘W’ and is 0.7 times as likely to have or develop attribute ‘W’ as someone in that population not associated with attribute combination CE.
  • In one embodiment a method for individual destiny modification is provided which accesses a first dataset containing attributes associated with an individual and a second dataset containing attribute combinations and statistical computation results that indicate strength of association of each attribute combination with a query attribute, the attributes being pangenetic, physical, behavioral and situational attributes. A comparison can be performed to identify the largest attribute combination of the second dataset that consists of attributes of the first dataset. Then, attribute combinations of the second dataset that either contain that identified attribute combination or consist of attributes from that identified attribute combination can be stored in a third dataset. The content of the third dataset can be transmitted as a tabulation of attribute combinations and corresponding statistical results which indicate strengths of association of each attribute combination with the query attribute, thereby providing predisposition potentials for the individual toward the query attribute given possession of those attribute combinations. In one embodiment destiny can be defined as statistical predisposition toward having or acquiring one or more specific attributes.
  • Similarly, a system can be developed which contains a subsystem for accessing or receiving a query attribute, a second subsystem for accessing a dataset containing attributes of an individual, a third subsystem for accessing attribute combinations of pangenetic, physical, behavioral, and situational attributes that co-occur with one or more query attributes, a communications subsystem for retrieving the attribute combinations from at least one external database, and a data processing subsystem for comparing and tabulating the attribute combinations. The various subsystems can be discrete components, configurations of electronic circuits within other circuits, software modules running on computing platforms including classes of objects and object code, or individual commands or lines of code working in conjunction with one or more Central Processing Units (CPUs). A variety of storage units can be used including but not limited to electronic, magnetic, electromagnetic, optical, opto-magnetic, and electro-optical storage.
  • In one application the method and/or system is used in conjunction with one or more databases, such as those that would be maintained by health-insurance providers, employers, or health-care providers, which can serve to store the aforementioned attribute combinations and corresponding statistical results. In one embodiment the attribute combinations are stored in a separate dataset from the statistical results and the correspondence is achieved using identifiers or keys present in (shared across) both datasets. In another embodiment the attribute combinations and corresponding statistical results data is stored with the other attribute data. A user, such as a clinician, physician or patient, can input a query attribute, and that query attribute can form the basis for tabulating attribute combinations associated with that query attribute. In one embodiment the associations will have been previously stored and are retrieved and displayed to the user, with the highest ranked (most strongly associated) combinations appearing first. In an alternate embodiment the tabulation is performed at the time the query attribute is entered, and a threshold can be used to determine the number of attribute combinations that are to be displayed.
  • FIG. 24 illustrates a flow chart for a method of providing intelligent destiny modification in which statistical results for changes to an individual's predisposition toward a query attribute that result from the addition or elimination of specific attribute associations in their attribute profile are determined. In receive query attribute step 2400, query attribute 2420 can be provided as one or more attributes in a query by a user or by automated submission. In this example query attribute ‘A’ is received. In access attributes of an individual step 2402, the attribute profile of a selected individual contained in 1st dataset 2422 is accessed. For this example, a representative 1st dataset for individual # 113 is shown in FIG. 25A. In access stored attribute combinations step 2404, attribute combinations from 2nd dataset 2424 and corresponding statistical results for strength of association with query attribute 2420 are accessed. FIG. 16 illustrates a representative 2nd dataset. In identify the largest attribute combination step 2406, the largest attribute combination in 2nd dataset 2424 that consists entirely of attributes present in 1st dataset 2422 is identified by comparison. In this example, the largest attribute combination identified for individual # 113 is CEF. In store attribute combinations step 2408, those attribute combinations of 2nd dataset 2424 that either contain the largest attribute combination identified in step 2406 or consist of attributes from that attribute combination are selected and stored in 3rd dataset 2426. For this example both types of attributes are stored, and the resulting representative 3rd dataset for individual # 113 is shown in FIG. 25B. In transmit the attribute combinations step 2410, attribute combinations from 3rd dataset 2426 and their corresponding statistical results are tabulated into an ordered list of attribute combinations and transmitted as output, wherein the ordering of combinations can be based on the magnitudes of the corresponding statistical results such as absolute risk values. Further, the tabulation may include only a portion of the attribute combinations from 3rd dataset 2426 based on subselection. A subselection of attribute combinations that are larger that the largest attribute combination identified in step 2406 may require the inclusion of only those that have at least a minimum statistical association with the query attribute. For example, a requirement can be made that the larger attribute combinations have an absolute risk value greater than that of the attribute combination identified in step 2406. This will ensure the inclusion of only those larger attribute combinations that show increased predisposition toward the query attribute relative to the attribute combination identified in step 2406. Similarly, a subselection of attribute combinations that are smaller than the attribute combination identified in step 2406 may require the inclusion of only those that have less than a maximum statistical association with the query attribute. For example, a requirement can be made that the smaller attribute combinations must have an absolute risk less than that of the attribute combination identified in step 2406. This will ensure the inclusion of only those smaller attribute combinations that show decreased predisposition toward the query attribute relative to the attribute combination identified in step 2406.
  • In one embodiment the method for individual destiny modification is used to identify and report attributes that the individual may modify to increase or decrease their chances of having a particular attribute or outcome. In one embodiment, the tabulation of attribute combinations produced by the method of destiny modification is filtered to eliminate those attribute combinations that contain one or more attributes that are not modifiable. In an alternate embodiment, modifiable attributes are prioritized for modification in order to enable efficient destiny (i.e., predisposition) modification. In one embodiment, non-historical attributes are considered modifiable while historical attributes are considered not modifiable. In another embodiment, non-historical behavioral attributes are considered to be the most easily or readily modifiable attributes. In another embodiment, non-historical situational attributes are considered to be the most easily or readily modifiable attributes. In another embodiment, non-historical physical attributes are considered to be the most easily or readily modifiable attributes. In another embodiment, non-historical pangenetic attributes are considered to be the most easily or readily modifiable attributes. In one embodiment, the modifiable attributes are ranked or otherwise presented in a manner that indicates which are the most easily or readily modifiable, which may include creating categories or classes of modifiable attributes, or alternatively, reporting attributes organized according to the attribute categories of the invention.
  • FIG. 25C illustrates an example of tabulation of attribute combinations for individual # 113 without statistical subselection of the larger and smaller attribute combinations. The larger attribute combinations show how predisposition is altered by adding additional attributes to the largest attribute combination currently possessed by individual #113 (bolded), and the smaller attribute combinations show how predisposition is altered by removing attributes from the individual's current attribute combination.
  • FIGS. 26A, 26B and 26C illustrate 1st dataset, 3rd dataset and tabulated results, respectively, for a different individual, individual # 114, processed by the method for destiny modification using the same query attribute ‘A’ and the 2nd dataset of FIG. 16. The largest attribute combination possessed by individual # 114 is CET, which has an absolute risk of 0.14 for predisposition toward query attribute ‘A’. In this case, the tabulation of attribute combinations in FIG. 26C is obtained by imposing statistical subselection requirements. The subselection required that only those larger attribute combinations having an absolute risk greater than 0.14 be included and that only those smaller attribute combinations having an absolute risk less than 0.14 be included. These subselection requirements result in the exclusion of larger attribute combination CETY and smaller attribute combination CT from the tabulation. In this example, the tabulation also exemplifies how the nomenclature and statistical computations may be altered to increase ease of interpretation. Absolute risk results have been converted to percentages, relative risk results have been converted to multipliers, and the terms absolute potential and relative potential have been substituted for the terms absolute risk and relative risk respectively. The transmitted tabulated listing of attribute combinations indicate what individual # 114 can do to increase or decrease their predisposition toward query attribute ‘A’.
  • In biological organisms and systems, age and sex type are two somewhat unique and powerful attributes that influence the expression of many other attributes. For example, age is a primary factor associated with: predicting onset and progression of age-associated diseases in humans and animals; acquiring training and life experiences that lead to success in career, sports and music; and determining life-style choices. Similarly, biological sex type is correlated with profound differences in expression of physical, behavioral and situational attributes. The inclusion of accurate data for the age and sex of individuals is very important for acquiring accurate and valid results from the methods of the present invention. In one embodiment, specific values of age and sex that aggregate with a query attribute can be determined by the methods of the present invention, just as for other attributes, to either co-occur or not co-occur in attribute combinations that are associated with a query attribute. In one embodiment results of the methods can be filtered according to age and/or sex. In other embodiments a population or subpopulation can be selected according to age and/or sex (age-matching and/or sex-matching) and then only that subpopulation subjected to additional processing by methods of the present invention. In another embodiment, an age-matched and/or sex-matched population may be used to form query-attribute-positive and query-attribute-negative groups. In another embodiment, the sex and/or age of an individual is used to select a population of age-matched and/or sex-matched individuals for creation of an attribute combinations database. In another embodiment, the sex and/or age of an individual is used to select a subpopulation of age-matched and/or sex-matched individuals for comparison in methods of identifying predisposing attribute combinations, individual predisposition prediction and individual destiny modification. In another embodiment, summary statistics for age and/or sex are included with the output results of the methods. In another embodiment, summary statistics for age and/or sex are included with the output results of the methods when other attributes are omitted or masked for privacy.
  • Additional embodiments are envisioned which implement a preselection of individuals processed by methods of the present invention. In one embodiment, preselection is a selection or pooling of one or more populations or subpopulations of individuals from one or more datasets or databases based on particular values of attributes such as income, occupation, disease status, zip code or marital status for example. Preselecting populations and subpopulations based on possession of one or more specific attributes can serve to focus a query on the most representative population, reduce noise by removing irrelevant individuals whose attribute data may contribute to increasing error in the results, and decrease computing time required to execute the methods by reducing the size of the population to be processed. Also, using preselection to define and separate different populations enables comparison of predisposing attribute combinations toward the same query attribute between those populations. For example, if two separate subpopulations are selected—a first population of individuals that earn over $100,000/year and a second population of individuals that earn less that $10,000/year—and each subpopulation is processed separately to identify predisposing attribute combinations for a query attribute of alcoholism, a comparison of the identities, frequencies of occurrence, and strengths of association of predisposing attribute combinations that lead to alcoholism in individuals that earn over $100,000 can be made with those of individuals that earn less than $10,000. In one embodiment, predisposing attribute combinations that are present in one preselected population and absent in a second preselected population are identified. In one embodiment, the frequencies of occurrence and/or statistical strengths of association of predisposing attribute combinations are compared between two or more preselected populations. In one embodiment, only a single preselected population is selected and processed by the methods of the present invention.
  • Additional embodiments of the methods of the present invention are possible. In one embodiment, two or more mutually exclusive (having no attributes in common) predisposing attribute combinations for a query attribute are identified for a single individual and can be tabulated and presented as output. In one embodiment the query attribute can be an attribute combination, and can be termed a query attribute combination. By submitting a query attribute combination to the methods of the present invention, the ability to identify attribute combinations that predispose toward other attribute combinations is enabled.
  • In one embodiment of the methods of the present invention, statistical measures for strength of association of attribute combinations are not stored in a dataset containing the attribute combinations, but rather, are calculated at any time (on as-needed basis) from the frequencies of occurrence of the stored attribute combinations. In one embodiment only a portion of the results from a method of the present invention are presented, reported or displayed as output. In one embodiment, the results may be presented as a graphical display or printout including but not limited to a 2-dimensional, 3-dimensional or multi-dimensional axis, pie-chart, flowchart, bar-graph, histogram, cluster chart, dendrogram, tree or pictogram.
  • Methods for predisposing attributes identification, predisposition prediction and intelligent destiny modification are subject to error and noise. A prominent cause of error and noise in methods is bias in the attribute data or in the distribution of the population from which the data is collected. In one embodiment, bias can manifest as inaccurate frequencies of occurrence and strengths of association between attribute combinations and query attributes, inaccurate lists of attributes determined to co-occur with a query attribute, inaccurate predictions of an individual's predisposition toward query attributes, and inaccurate lists of modifiable attributes for destiny modification. Bias can result from inaccurate data supplied to methods of the present invention, primarily as a consequence of inaccurate reporting and self-reporting of attribute data but also as a consequence of collecting attributes from populations that are biased, skewed or unrepresentative of the individual or population for which predisposition predictions are desired. Error can also result as consequence of faulty attribute data collection such as misdirected or improperly worded questionnaires.
  • If bias exists and is left unchecked, it can have different effects depending on whether the bias exists with the query attribute, or whether the bias exists in one or more of the co-occurring attributes of an attribute combination. At a minimum, the existence of bias in the attribute data or population distribution may result in slightly inaccurate results for frequency of occurrence of attributes and attribute combinations, and inaccurate statistical strengths of association between attribute combinations and query attributes. When bias is present at higher levels, results for frequency of occurrence and strengths of association can be moderately to highly inaccurate, even producing false positives (Type I Error) and false negatives (Type II Error), where a false positive is the mistaken identification of an attribute association that actually does not exist (or does not exist differentially in one population relative to another) and a false negative is a mistaken unidentification of an attribute association that actually does exist (or exists differentially in one population relative to another).
  • For the methods described herein, it is possible to minimize error and noise by ensuring that accurate (unbiased) attribute data is provided to the methods and that representative populations of individuals are used as the basis for creating attribute combinations datasets. It is anticipated that some degree of inaccuracy of input data will be present. The following disclosure indicates types of sources of error and noise and ways to identify, avoid and compensate for inaccurate attribute data and unrepresentative populations.
  • Selection bias is a major source of error and refers to bias that results from using a population of individuals that are not representative of the population for which results and predictions are desired. For example, if a query for attribute combinations that predispose an individual to becoming a professional basketball player is entered against an attributes combination dataset that was created with an over-representation of professional basketball players relative to the general population, then smaller attribute combinations that are associated with both professional basketball players and individuals that are not professional basketball players will receive artificially inflated statistical strengths of association with the query attribute, giving a false impression that one needs fewer predisposing attributes than are actually required to achieve the goal with a high degree of probability. Selection bias is largely under the control of those responsible for collecting attribute profiles for individuals of the population and creating datasets that contain that information. Selecting a misrepresentative set of individuals will obviously result in selection bias as discussed above. Sending questionnaires to a representative set of individuals but failing to receive completed questionnaires from a particular subpopulation, such as a very busy group of business professionals who failed to take time to fill out and return the questionnaire, will also result in selection bias if the returned questionnaires are used to complete a database without ensuring that the set of responses are a balanced and representative set for the population as a whole. Therefore, in one embodiment, administrators of the methods described herein use a variety of techniques to ensure that appropriate and representative populations are used so that selection bias is not present in the attribute profiles and attribute combination datasets used as input data for the methods.
  • Information bias is the second major class of bias and encompasses error due to inaccuracies in the collected attribute data. The information bias class comprises several subclasses including misclassification bias, interview bias, surveillance bias, surrogate interview bias, recall bias and reporting bias.
  • Misclassification bias refers to bias resulting from misclassifying an individual as attribute-positive when they are attribute-negative, or vice-versa. To help eliminate this type of bias, it is possible to assign a null for an attribute in circumstances where an accurate value for the attribute cannot be ensured.
  • Interview bias refers to bias resulting from deriving attributes from questions or means of information collection that are not correctly designed to obtain accurate attribute values. This type of bias is primarily under the control of those administrators that design and administer the various modes of attribute collection, and as such, they can ensure that the means of attribute collection employed are correctly designed and validated for collecting accurate values of the targeted attributes.
  • Surveillance bias refers to bias that results from more closely or more frequently monitoring one subpopulation of individuals relative to others, thereby resulting in collection of more accurate and/or more complete attribute data for that subpopulation. This is common in cases of individuals suffering from disease, which results in their constant and close monitoring by experienced professionals who may collect more accurate and more complete attribute data about many aspects of the individual, including trivial, routine and common attributes that are not restricted to the medical field. An administrator of the methods described herein can seek to reduce this bias by either excluding attribute information obtained as a consequence of surveillance bias or by ensuring that equivalent attribute information is provided for all members of the representative population used for the methods.
  • Surrogate interview bias refers to bias that results from obtaining inaccurate attribute information about an individual from a second-hand source such as a friend or relative. For example, when an individual dies, the only source of certain attribute information may be from a parent or spouse of the individual who may have inaccurate perception or memory of certain attributes of the deceased individual. To help avoid this type of bias, it is preferable that a surrogate provider of attribute information be instructed to refrain from providing attribute values for which they are uncertain and instead assign a null for those attributes.
  • Recall bias refers to enhanced or diminished memory recall of attribute values in one subpopulation of individuals versus another. This again may occur in individuals that are subject to extreme situations such as chronic illness, where the individual is much more conscious and attentive to small details of their life and environment to which others would pay little attention and therefore not recall as accurately. This type of bias results from inaccuracy in self-reporting and can be difficult to detect and control for. Therefore, to minimize this type of bias, it is recommended that attempts to collect self-reported data be made over a period of time in which individuals are aware of attributes that are being collected and may even keep a record or journal for attributes that are subject to significant recall bias. Also, whenever more accurate means than self-reporting can be used to collect attribute values, the more accurate means should be used.
  • Reporting bias refers to bias resulting from intentional misrepresentation of attribute values. This occurs when individuals underestimate the value for an attribute or underreport or fail to report an attribute they perceive as undesirable or are in denial over, or alternatively, when they overestimate the value for an attribute or overreport or invent possession of an attribute they perceive as desirable. For example, individuals typically knowingly underestimate the quantity of alcohol they drink, but overestimate the amount of time they spend exercising. One approach to encourage accurate self-reporting of attribute values can be to allow the individual to control their attribute profile record and keep their identity masked or anonymous in results output or during use of their data by others, when creating attribute combinations databases for example. If bias can be determined to exist and quantified at least in relative terms, another approach can be to use mathematical compensation/correction of the attribute value reported by the individual by multiplying their reported value by a coefficient or numerical adjustment factor in order to obtain an accurate value. In one embodiment this type of adjustment can be performed at the time the data is collected. In another embodiment this type of adjustment can be performed during conversion and reformatting of data by data conversion/formatting engine 220.
  • In one embodiment data conversion/formatting engine 220 works toward the removal of biases by the application of rules which assist in the identification of biased (suspect) attributes. In one embodiment the rules cause the insertion of null attributes where the existing attribute is suspect. In an alternate embodiment, rules are applied to identify suspect attributes (e.g. overreporting of exercise, underreporting of alcohol consumption) and corrective factors are applied to those attributes. For example, if it is determined that users self report consumption of alcohol at about ⅓ the actual rate consumed, the rules can, when attributes are suspect, increase the self-reported attribute by a factor of 1.5-3.0 depending on how the attribute is believed to be suspect. In large databases (e.g. health care databases) the size of the database can be used in conjunction with specific investigations (detailed data collection on test groups) to help develop rules to both identify and address biases.
  • In an alternate embodiment, actual possession of attributes and accurate values for self-reported attributes are determined using a multipronged data collection approach wherein multiple different inquires or means of attribute collection are used to collect a value for an attribute prone to bias. One example of this approach is to employ a questionnaire that asks multiple different questions to acquire the same attribute value. For example, if one wants to collect the attribute value for the number of cigarettes a person smokes each week, a questionnaire can include the following questions which are designed to directly or indirectly acquire this information: “how many cigarettes do you smoke each day?”, “how many packs of cigarettes do you smoke each day?”, “how many packs of cigarettes do you smoke each week?”, “how many packs of cigarettes do purchase each day? each week?”, “how many cartons of cigarettes do you purchase each month?”, “how much money do you spend on cigarettes each day?, each week? each month?”, “how many smoking breaks do you take at work each day?”. Another example is to ask a person to self-report how much time they spend exercising and also collect information from their gym that shows the time they swipe-in and swipe-out with their membership card. In this way, multiple sources of values for an attribute can be obtained and the values compared, cross-validated, deleted, filtered, adjusted, or averaged to help ensure storing accurate values for attributes.
  • In one embodiment the comparison, cross-validation, deletion, filtering, adjusting and averaging of attribute values can be performed during conversion and reformatting of data by data conversion/formatting engine 220. In one embodiment, multiple values obtained for a single attribute are averaged to obtain a final value for the attribute. In one embodiment, values for an attribute are discarded based on discrepancies between multiple values for an attribute. In one embodiment, one value for an attribute is chosen from among multiple values obtained for the attribute based on a comparison of the multiple values. In an alternate embodiment, reported values that appear out of an acceptable range (e.g. statistical outliers) are discarded and the final attribute value is determined from the remaining reported values.
  • Although calculation of the following mathematical measures are not performed in the examples presented herein, statistical measures of confidence including but not limited to variance, standard deviation, confidence intervals, coefficients of variation, correlation coefficients, residuals, t values (e.g., student's t test, one- and two-tailed t-distributions), ANOVA, correlation coefficients (e.g., regression coefficient, Pearson product-moment correlation coefficient), standard error and p-values can be computed for the results of methods of the current invention, the computation of which is known to those of skill in the art. In one embodiment, these confidence measures provide a level or degree of confidence in the numerical results of the methods so that the formal, standardized, legal, ethical, business, economic, medical, scientific, or peer-reviewable conclusions and decision-making can be made based on the results. In another embodiment, these measures are computed and compared for frequencies of occurrence of attribute combinations during creation of an attribute combinations database, for example to determine whether the difference between frequencies of occurrence of an attribute combination for the query-attribute-positive and query-attribute-negative groups is statistically significant for the purpose, in a further embodiment, of eliminating those attribute combinations that do not have a statistically significant difference in frequency of occurrence between the two populations. Levels of significance and confidence thresholds can be chosen based on user preference, implementation requirements, or standards of the various industries and fields of application.
  • Aside from the purposes indicated in the above methods, the present invention can also be used for investigation of attribute interactions forming the basis for predisposition. For example, embodiments of the methods can be used to reveal which attributes have diverse and wide-ranging interactions, which attributes have subtle interactions, which attributes have additive effects and which attributes have multiplicative or exponential synergistic interactions with other attributes.
  • In one embodiment, synergistic interactions are particularly important because they have multiplicative or exponential effects on predisposition, rather than simple additive effects, and can increase predisposition by many fold, sometimes by as much as 1000 fold. These types of synergistic interactions are common occurrences in biological systems. For example, synergistic interactions routinely occur with drugs introduced into biological systems. Depending on the circumstances, this synergism can lead to beneficial synergistic increases in drug potency or to synergistic adverse drug reactions. Synergism also occurs in opportunistic infections by microbes. Synergism between attributes may also occur in development of physical and behavioral traits. For example, cigarette smoking and asbestos exposure are known to synergize in multiplicative fashion to cause lung cancer. The same is true for smoking combined with uranium radiation exposure. Exposure to bacterial aflatoxin ingested via farm products combined with chronic hepatitis B infection synergistically causes liver cancer. Revealing synergistic interactions can be invaluable for intelligent and efficient targeting of therapies, treatments, training regimens, and lifestyle alterations to either increase or decrease predisposition toward an attribute of interest in the most rapid and efficient manner.
  • FIG. 27A is a representative example of a 3rd dataset resulting from the method for destiny modification to determine predisposition of individual # 1 of FIG. 14 toward attribute ‘W’. In contrast, FIG. 27B is a representative example of a 3rd dataset for individual # 1 resulting from the method for destiny modification to determine predisposition toward attribute ‘W’ following elimination of attribute ‘A’ from their attribute profile. By comparing the two datasets, a before and after look at the predisposition of individual # 1 toward having or developing attribute ‘W’ is provided, where ‘before’ refers to the situation in which attribute ‘A’ is still associated with the individual and ‘after’ refers to the situation in which attribute ‘A’ is no longer associated with the individual. From a comparison of these results, not only is the magnitude of attribute ‘A’ contribution toward predisposition revealed, but synergistic interactions of other attributes with attribute ‘A’ are also revealed.
  • In the ‘before’ situation shown in FIG. 27A, the individual possesses the attribute combination ACE. Addition of association to either attribute I, K or Q alone increases absolute risk to 1.0. However, in the ‘after’ situation of FIG. 27B where the individual begins with the combination CE, adding association to either attribute I, K or Q alone has little or no positive effect on predisposition. This reveals that I, K and Q require synergism with A to contribute significantly toward predisposition to query attribute W in this example. Furthermore, addition of a combination of IQ or IK still has no positive effect on predisposition in the absence of A. This indicates that I can synergize with A but not with Q or K. Interestingly, when the combination KQ is added to the combination CE in the absence of A, absolute risk jumps to 1.0. This indicates that K and Q can synergize with each other in the presence of CE, effectively increasing predisposition to a maximum even in the absence of attribute A.
  • In the various embodiments of the present invention, the question as to how the results are to be used can be considered in the application of a particular embodiment of the method of attribute identification. In instances where the goal is to determine how to reduce predisposition toward an undesirable attribute for example, then utilizing one embodiment of the method to determine the identity of predisposing attribute combinations and then proceeding to eliminate an individual's association with those attributes is one way to reduce predisposition toward that attribute. However, one may also attempt to decrease predisposition by applying an embodiment of the method to determine those attribute combinations that are predisposing toward an attribute that is the opposite of the undesirable attribute, and then proceed to introduce association with those attributes to direct predisposition of the individual toward that opposing attribute. In other words, the attributes that predispose toward a key attribute may in many cases not be simple opposite of attributes that predispose to the opposite of the key attribute. Approaching this from both angles may provide additional effectiveness in achieving the goal of how to most effectively modify predisposition toward a key attribute of interest. In one embodiment both approaches are applied simultaneously to increase success in reaching the goal of destiny modification.
  • Confidentiality of personal attribute data can be a major concern to individuals that submit their data for analysis. Various embodiments of the present invention are envisioned in which the identity of an individual linked directly or indirectly to their data, or masked, or provided by privileged access or express permission, including but not limited to the following embodiments. In one embodiment the identity of individuals are linked to their raw attribute profiles. In one embodiment the identity of individuals are linked directly to their raw attribute profiles. In one embodiment the identity of individuals are linked indirectly to their raw attribute profiles. In one embodiment the identity of individuals are anonymously linked to their raw attribute profiles. In one embodiment the identity of individuals are linked to their raw attribute profiles using a nondescriptive alphanumeric identifier. In one embodiment the identity of individuals are linked to the attribute combinations they possess as stored in one or more datasets of the methods. In one embodiment the linkage of identity is direct. In one embodiment the linkage of identity is indirect. In one embodiment the linkage of identity requires anonymizing the identity of the individual. In one embodiment the linkage of identity requires use of a nondescriptive alphanumeric identifier.
  • Various embodiments of the present invention are envisioned in which data is made public, or held private, or provided restricted/privileged access granted upon express permission and include but are not limited to the following embodiments. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to the individual whose attribute profile was accessed for the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to the individual that submitted or authorized the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to the individual consumer that paid for the query. In one embodiment, the identity of attributes and statistical results produced in the output of the methods are provided only to a commercial organization that submitted, authorized or paid for the query. In one embodiment, the identities of attributes in the output results from methods of the present invention are omitted or masked. In one embodiment, the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by the individual whose attribute profile was accessed for the query. In one embodiment, the identity of attributes can be made accessible to a government employee, legal professional, medical professional, or other professional legally bound to secrecy. In one embodiment, the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by a government employee, legal professional, or medical professional. In one embodiment, the identity of attributes can be omitted, masked or granted privileged access to by others as dictated by a commercial organization.
  • FIG. 28 illustrates a representative computing system on which embodiments of the present method and system can be implemented. With respect to FIG. 28, a Central Processing Unit (CPU) 2800 is connected to a local bus 2802 which is also connected to Random Access Memory (RAM) 2804 and disk controller and storage system 2806. CPU 2800 is also connected to an operating system including BIOS 2808 which contains boot code and which can access disk controller and storage system 2806 to provide an operational environment and to run an application (e.g. attribute determination). The representative computing system includes a graphics adaptor 2820, display 2830, I/O controller 2810 with printer 2812, mouse 2814, and keyboard 2816.
  • It will be appreciated by one of skill in the art that the present methods, systems, software and databases can be implemented on a number of computing platforms, and that FIG. 28 is only a representative computing platform, and is not intended to limit the scope of the claimed invention. For example, multiprocessor units with multiple CPUs or cores can be used, as well as distributed computing platforms in which computations are made across a network by a plurality of computing units working in conjunction using a specified algorithm. The computing platforms may be fixed or portable, and data collection can be performed by one unit (e.g. a handheld unit) with the collected information being reported to a fixed workstation or database which is formed by a computer in conjunction with mass storage. Similarly, a number of programming languages can be used to implement the methods and to create the systems described herein, those programming languages including but not limited to C, Java, php, C++, perl, visual basic, sql and other languages which can be used to cause the representative computing system of FIG. 28 to perform the steps described herein.
  • With respect to FIG. 29, the interconnection of various computing systems over a network 2900 to realize an attribute determination system 800 such as that of FIG. 8, is illustrated. In one embodiment, consumer 810 uses a Personal Computer (PC) 2910 to interface with the system and more specifically to enter and receive data. Similarly, clinician 820 uses a workstation 2930 to interface with the system. Genetic database administrator 830 uses an external genetic database 2950 for the storage of genetic/epigenetic data for large populations. Historical, situational, and behavioral data are all maintained on population database 2960. All of the aforementioned computing systems are interconnected via network 2900.
  • In one embodiment, and as illustrated in FIG. 29, an attribute determination computing and database platform 2940 is utilized to host the software-based components of attribute determination system 800, and data is collected as illustrated in FIG. 8. Once relevant attributes are determined, they can be displayed to consumer 810, clinician 820, or both. In an alternate embodiment, the software-based components of attribute determination system 800 can reside on workstation 2930 operated by clinician 820. Genetic database administrator 830 may also maintain and operate attribute determination system 800 and host its software-based components on external genetic database 2950. Another embodiment is also possible in which the software-based components of the attribute determination system 800 are distributed across the various computing platforms. Similarly, other parties and hosting machines not illustrated in FIG. 29 may also be used to create attribute determination system 800.
  • In one embodiment, the datasets of the methods of the present invention may be combined into a single dataset. In another embodiment the datasets may be kept separated. Separate datasets may be stored on a single computing device or distributed across a plurality of devices. Data, datasets, databases, methods and software of the present invention can be embodied on computer-readable media and computer-readable memory devices.
  • In one embodiment, at least a portion of the attribute data for one or more individuals is obtained from medical records. In one embodiment, at least a portion of the attribute data for one or more individuals is accessed, retrieved or obtained (directly or indirectly) from a centralized medical records database. In one embodiment, at least a portion of the attribute data for one or more individuals is accessed or retrieved from a centralized medical records database over a computer network.
  • The methods, systems, software and databases described herein have a number of industrial applications pertaining to the identification of attributes and combinations of attributes related to a query attribute, creation of databases including the attributes, combinations of attributes, strength of association with the query attribute, and rankings of strength of association with the query attribute, use of the identified attributes, combinations of attributes, and strength of association of attributes with the query attribute in making a variety of decisions related to lifestyle, lifestyle modification, diagnosis, medical treatment, eventual outcome (e.g. destiny), possibilities for destiny modification, and sensitivity analysis (impact or lack thereof of modification of certain attributes).
  • In one embodiment the methods, system, software, and databases described herein are used as part of a web based health analysis and diagnostics system in which one or more service providers utilize pangenetic information (attributes) in conjunction with physical, situational, and behavioral, attributes to provide services such as longevity analysis, insurance optimization (determination of recommended policies and amounts), and medication impact analysis. In these scenarios, the methods described herein are applied using appropriate query attributes to determine such parameters as the likelihood that the patient will develop or has a particular disease, or make an inquiry related to likelihood of disease development. In one embodiment, the genetic sample is mailed to an analysis center, where genetic and epigenetic sequencing is performed, and the data stored in an appropriate database. Clinician 820 of FIG. 8 or consumer 810 of FIG. 8 provides for reporting of other data from which physical, situational, and behavioral attributes are developed and stored. A query related to a diagnosis can be developed by clinician 820 (or other practitioner) and submitted via the web. Using the methods and algorithms described herein, a probable diagnosis or set of possible diagnoses can be developed and presented via the web interface. These diagnoses can be physical or mental. With respect to the diagnosis of mental illnesses (mental health analyses), identification of key behavioral and situational attributes (e.g. financial attributes, relationship attributes) which may affect mental health is possible using the present methods, systems, software and databases. Risk assessments can be performed to indicate what mental illnesses consumer 810 may be subject to, as well as suggesting modifications to behavior or living environment to avoid those illnesses. For example, a consumer subject to certain types of obsessive disorders might be advised to change certain behavioral and/or situational attributes which are associated with that obsessive disorder, thus decreasing the probability that they will have or exacerbate that disorder.
  • With respect to general analysis of medical conditions, the web based system can be used to evaluate insurance coverage (amounts and types) and provide recommendations for coverage based on the specific illness risks and attributes possessed by the consumer, evaluate the impact (or lack thereof) of lifestyle changes, the impact and effectiveness of medications. Such analyses can also be made in view of predisposition predictions that can indicate probable future development of a disorder, thereby allowing preparations for insurance coverage and therapeutic preventive measures to be taken in advance of the disorder.
  • As previously discussed, the system can be used for web based strength and weakness identification, by allowing the consumer or clinician to query the system to assess the probability that an individual has a particular strength or weakness. In one embodiment, parents query the system to determine if their child (from which a biological sample was taken) will have particular strengths (e.g. music or sports) and to determine what behavioral attributes should be adopted to maximize the probability of success at that endeavor, assuming there is an identified “natural talent” as suggested by combinations of attributes associated with that endeavor. Various service providers, including genetic and epigenetic profiling entities, can interact with the system over a network (e.g., the internet) and allow the consumer or clinician to interact with the system over a network through a web-based interface to obtain the destiny or attribute information.
  • In one embodiment a web based goal achievement tool is presented in which the consumer enters one or more goals, and the system returns modifiable attributes which have been identified using the aforementioned analysis tools, indicating how the consumer can best obtain the desired goal(s) given their pangenetic, physical, situational, and behavioral makeup.
  • In one embodiment, potential relationship/life/marriage partners are located based on the pangenetic, physical, situational, and behavioral attributes of those individuals, as measured against an attribute model of a suitable partner developed for the consumer. The attribute model of the suitable partner can be developed using a number of techniques, including but not limited to, modeling of partner attributes based on attributes of individuals with which the individual has had previous successful relationships, determination of appropriate “complementary” attributes to the consumer based on statistical studies of individuals with similar attributes to the consumer who are in successful relationships and examination of their partner's attributes (determination of appropriate complementary attributes), and an ab initio determination of appropriate partner attributes. Once the attribute model for the most suitable potential partner has been developed, a database containing pangenetic, physical, situational and behavioral attribute data for potential partners for the consumer can be searched for the purpose of partner identification. In an alternate embodiment a consumer indicates persons they believe have suitable partner qualities including physical attraction (based on photos or video segments) as well as attributes described in profiles associated with the persons and their photos. In one embodiment the system uses genetic and epigenetic information associated with those individuals to create a subpopulation of individuals which the consumer believes they are attracted to, and examines a variety of data associated with that subpopulation (e.g., all available attribute data including genetic and epigenetic data) to determine attributes that are indicative of desirability to that consumer. In one embodiment the system uses those attributes to locate more individuals that could be potentially of interest to the consumer and presents those individuals to the consumer as potential partners.
  • Although the aforementioned methods, systems, software and databases have been described as incorporating and utilizing pangenetic, physical, situational and behavioral data, embodiments not utilizing pangenetic information are possible, with those embodiments being based solely on physical, situational and behavioral data. Such embodiments can be utilized to accomplish the tasks described above with respect to the analysis of biological systems, as well as for the analysis of complex non-living systems which contain a multitude of attributes. As an example, a non-biological application of the methodology and systems described herein would be for the analysis of complex electrical or electrical-mechanical systems in order to identify probable failure mechanisms (e.g. attributes leading to failure) and as such increase reliability through the identification of those failure-associated attributes. Additionally, the aforementioned embodiments are based on the use of information from multiple attribute categories. Embodiments in which attribute information from a single attribute category (pangenetic, behavioral, physical, or situational) can be used in circumstances where attributes from a single category dominate in the development of a condition or outcome.
  • Embodiments of the present invention can be used for a variety of methods, databases, software and systems including but not limited to: pattern recognition; feature extraction; binary search trees and binary prediction tree modeling; decision trees; neural networks and self-learning systems; belief networks; classification systems; classifier-based systems; clustering algorithms; nondeterministic algorithms (e.g., Monte Carlo methods); deterministic algorithms; scoring systems; decision-making systems; decision-based training systems; complex supervised learning systems; process control systems; chaos analysis systems; interaction, association and correlation mapping systems; relational databases; navigation and autopilot systems; communications systems and interfaces; career management; job placement and hiring; dating services; marriage counseling; relationship evaluation; animal companion compatibility evaluation; living environment evaluation; disease and health management and assessment; genetic assessment and counseling; genetic engineering; genetic linkage studies; genetic screening; genetic drift and evolution discovery; ancestry investigation; criminal investigation; forensics; criminal profiling; psychological profiling; adoption placement and planning; fertility and pregnancy evaluation and planning; family planning; social services; infrastructure planning; species preservation; organism cloning; organism design and evaluation; apparatus design and evaluation; invention design and evaluation; clinical investigation; epidemiological investigation; etiology investigation; diagnosis, prognosis, treatment, prescription and therapy prediction, formulation and delivery; adverse outcome avoidance (i.e. prophylaxis); data mining; bioinformatics; biomarker development; physiological profiling; rational drug design; drug interaction prediction; drug screening; pharmaceutical formulation; molecular modeling; xenobiotic side-effect prediction; microarray analysis; dietary analysis and recommendation; processed foods formulation; census evaluation and planning; population dynamics assessment; ecological and environmental preservation; environmental health; land management; agriculture planning; crisis and disaster prediction, prevention, planning and analysis; pandemic and epidemic prediction, prevention, planning and analysis; weather forecasting; goal formulation and goal achievement assessment; risk assessment; formulating recommendations; asset management; task management; consulting; marketing and advertising; cost analysis; business development; economics forecasting and planning; stock market prediction; lifestyle modification; time management; emergency intervention; operational/failure status evaluation and prediction; system failure analysis; optimization analysis; architectural design; and product appearance, ergonomics, efficiency, efficacy and reliability engineering (i.e., product development).
  • The embodiments of the present invention may be implemented with any combination of hardware and software. If implemented as a computer-implemented apparatus, the present invention is implemented using means for performing all of the steps and functions described above.
  • The embodiments of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer useable media. The media has embodied therein, for instance, computer readable program code means for providing and facilitating the mechanisms of the present invention. The article of manufacture can be included as part of a computer system or sold separately.
  • While specific embodiments have been described in detail in the foregoing detailed description and illustrated in the accompanying drawings, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure and the broad inventive concepts thereof. It is understood, therefore, that the scope of the present invention is not limited to the particular examples and implementations disclosed herein, but is intended to cover modifications within the spirit and scope thereof as defined by the appended claims and any and all equivalents thereof.

Claims (20)

1. A computer based method for attribute combination discovery, comprising:
a) receiving a query attribute;
b) accessing stored attribute combinations and statistical results that indicate the strength of association of each attribute combination with the query attribute; and
c) tabulating, based on the statistical results, one or more of the attribute combinations and their strength of association with the query attribute.
2. The computer based method of claim 1, further comprising:
d) storing the tabulation.
3. The computer based method of claim 1, wherein tabulating attribute combinations comprises tabulating those attribute combinations most likely to co-occur with the query attribute based on one or more statistical requirements for strength of association with the query attribute.
4. The computer based method of claim 3, wherein the one or more statistical requirements are selected from the group consisting of: greater than a minimum statistical value, and statistical significance.
5. The computer based method of claim 1, further comprising:
d) ranking the tabulated attribute combinations based on the statistical results.
6. The computer based method of claim 1, further comprising:
d) ranking the tabulated attribute combinations based on their attribute content and the statistical results.
7. The computer based method of claim 1, further comprising:
d) repeating steps (a)-(c) for a succession of query attributes.
8. The computer based method of claim 1, further comprising:
d) transmitting at least a portion of the tabulation as output.
9. The computer based method of claim 1, further comprising:
d) ranking the tabulated attribute combinations based on the statistical results;
e) storing the tabulation;
f) repeating steps (a)-(c) for a succession of query attributes; and
g) transmitting at least a portion of the stored tabulations as output.
10. The computer based method of claim 8, wherein the portion of each tabulation transmitted is determined by a threshold that specifies the maximum number of attribute combinations of each tabulation to be transmitted.
11. The computer based method of claim 9, wherein the portion of each tabulation transmitted is determined by a threshold that specifies the maximum number of attribute combinations of each tabulation to be transmitted.
12. The computer based method of claim 1, further comprising:
d) associating one or more of the tabulation, the attribute combinations, and the query attribute with an individual and storing the association.
13. The computer based method of claim 12, wherein storing the association comprises storing a link to one or more of: an identifier of the individual, an attribute profile of the individual, and a record of the individual.
14. The computer based method of claim 1, wherein the one or more attribute combinations are required to lack one or more specified attributes.
15. The computer based method of claim 1, wherein the one or more attribute combinations are required to contain one or more specified attributes.
16. The computer based method of claim 1, wherein the query attribute can be a query attribute combination consisting of two or more attributes.
17. A computer based system for attribute combination discovery, comprising:
a) a data receiving subsystem for receiving a query attribute;
b) a data accessing subsystem for accessing one or more databases containing attribute combinations and statistical results that indicate the strength of association of each attribute combination with the query attribute; and
c) a data tabulating subsystem for tabulating one or more attribute combinations and their strength of association with the query attribute.
18. The computer based system of claim 17, further comprising:
d) a data ranking subsystem for ranking the attribute combinations based on at least the statistical results.
19. The computer based system of claim 17, further comprising:
d) a data storage subsystem for storing tabulations of attributes, attribute combinations and statistical results, and for storing associations of one or more of these data with an individual.
20. The computer based system of claim 17, further comprising:
d) a communications subsystem for transmitting one or more attributes, attribute combinations and statistical results as output.
US11/746,395 2007-03-16 2007-05-09 Attribute Combination Discovery Abandoned US20080228700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/746,395 US20080228700A1 (en) 2007-03-16 2007-05-09 Attribute Combination Discovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89523607P 2007-03-16 2007-03-16
US11/746,395 US20080228700A1 (en) 2007-03-16 2007-05-09 Attribute Combination Discovery

Publications (1)

Publication Number Publication Date
US20080228700A1 true US20080228700A1 (en) 2008-09-18

Family

ID=39763071

Family Applications (73)

Application Number Title Priority Date Filing Date
US11/746,373 Abandoned US20080228699A1 (en) 2007-03-16 2007-05-09 Creation of Attribute Combination Databases
US11/746,380 Expired - Fee Related US7844609B2 (en) 2007-03-16 2007-05-09 Attribute combination discovery
US11/746,395 Abandoned US20080228700A1 (en) 2007-03-16 2007-05-09 Attribute Combination Discovery
US11/746,364 Abandoned US20080228698A1 (en) 2007-03-16 2007-05-09 Creation of Attribute Combination Databases
US11/747,913 Active 2029-07-06 US8051033B2 (en) 2007-03-16 2007-05-13 Predisposition prediction using attribute combinations
US11/747,912 Abandoned US20080228722A1 (en) 2007-03-16 2007-05-13 Attribute Prediction Using Attribute Combinations
US11/750,516 Abandoned US20080228701A1 (en) 2007-03-16 2007-05-18 Destiny Modification Using Attribute Combinations
US11/750,522 Abandoned US20080228702A1 (en) 2007-03-16 2007-05-18 Predisposition Modification Using Attribute Combinations
US11/835,794 Abandoned US20080228797A1 (en) 2007-03-16 2007-08-08 Creation of Attribute Combination Databases Using Expanded Attribute Profiles
US11/835,839 Abandoned US20080228753A1 (en) 2007-03-16 2007-08-08 Determining Attribute Associations Using Expanded Attribute Profiles
US11/835,803 Expired - Fee Related US8024348B2 (en) 2007-03-16 2007-08-08 Expanding attribute profiles
US11/848,974 Expired - Fee Related US7818310B2 (en) 2007-03-16 2007-08-31 Predisposition modification
US11/865,388 Abandoned US20080228765A1 (en) 2007-03-16 2007-10-01 Genetic Attribute Analysis
US11/953,994 Abandoned US20080228451A1 (en) 2007-03-16 2007-12-11 Predisposition Prediction Using Co-associating Bioattributes
US11/957,441 Abandoned US20080228756A1 (en) 2007-03-16 2007-12-15 Compiling Co-associating Bioattributes
US11/957,440 Active 2028-04-06 US7797302B2 (en) 2007-03-16 2007-12-15 Compiling co-associating bioattributes
US11/957,443 Abandoned US20080228757A1 (en) 2007-03-16 2007-12-15 Identifying Co-associating Bioattributes
US11/957,446 Abandoned US20080228410A1 (en) 2007-03-16 2007-12-15 Genetic attribute analysis
US11/968,990 Abandoned US20080228677A1 (en) 2007-03-16 2008-01-03 Identifying Co-associating Bioattributes
US11/968,998 Active 2028-02-06 US7933912B2 (en) 2007-03-16 2008-01-03 Compiling co-associating bioattributes using expanded bioattribute profiles
US11/969,012 Abandoned US20080228704A1 (en) 2007-03-16 2008-01-03 Expanding Bioattribute Profiles
US11/972,642 Abandoned US20080243843A1 (en) 2007-03-16 2008-01-11 Predisposition Modification Using Co-associating Bioattributes
US11/972,640 Abandoned US20080228705A1 (en) 2007-03-16 2008-01-11 Predisposition Modification Using Co-associating Bioattributes
US11/972,643 Abandoned US20080228706A1 (en) 2007-03-16 2008-01-11 Determining Bioattribute Associations Using Expanded Bioattribute Profiles
US12/031,669 Active 2029-04-06 US7941434B2 (en) 2007-03-16 2008-02-14 Efficiently compiling co-associating bioattributes
US12/031,671 Abandoned US20080228766A1 (en) 2007-03-16 2008-02-14 Efficiently Compiling Co-associating Attributes
US12/047,203 Abandoned US20080228768A1 (en) 2007-03-16 2008-03-12 Individual Identification by Attribute
US12/047,193 Abandoned US20080228767A1 (en) 2007-03-16 2008-03-12 Attribute Method and System
US12/048,193 Abandoned US20080228043A1 (en) 2007-03-16 2008-03-13 Diagnosis Determination and Strength and Weakness Analysis
US12/048,194 Active 2030-01-03 US8099424B2 (en) 2007-03-16 2008-03-13 Treatment determination and impact analysis
US12/048,195 Abandoned US20080228708A1 (en) 2007-03-16 2008-03-13 Goal Achievement and Outcome Prevention
US12/048,196 Active 2029-09-25 US7941329B2 (en) 2007-03-16 2008-03-13 Insurance optimization and longevity analysis
US12/049,332 Abandoned US20080227063A1 (en) 2007-03-16 2008-03-15 Career Selection and Psychological Profiling
US12/049,330 Active 2029-02-02 US8606761B2 (en) 2007-03-16 2008-03-15 Lifestyle optimization and behavior modification
US12/853,062 Active US8209319B2 (en) 2007-03-16 2010-08-09 Compiling co-associating bioattributes
US12/878,748 Active US8055643B2 (en) 2007-03-16 2010-09-09 Predisposition modification
US12/912,174 Active US8065324B2 (en) 2007-03-16 2010-10-26 Weight and diet attribute combination discovery
US12/962,188 Abandoned US20110078168A1 (en) 2007-03-16 2010-12-07 Compiling Co-associating Bioattributes Using Expanded Bioattribute Profiles
US13/079,601 Active US8185461B2 (en) 2007-03-16 2011-04-04 Longevity analysis and modifiable attribute identification
US13/079,576 Abandoned US20110184656A1 (en) 2007-03-16 2011-04-04 Efficiently Determining Condition Relevant Modifiable Lifestyle Attributes
US13/208,488 Active US8224835B2 (en) 2007-03-16 2011-08-12 Expanding attribute profiles
US13/272,773 Active 2028-04-15 US8655908B2 (en) 2007-03-16 2011-10-13 Predisposition modification
US13/272,737 Active 2027-06-14 US8458121B2 (en) 2007-03-16 2011-10-13 Predisposition prediction using attribute combinations
US13/301,209 Active 2028-10-12 US9582647B2 (en) 2007-03-16 2011-11-21 Attribute combination discovery for predisposition determination
US13/346,322 Active 2028-06-30 US9170992B2 (en) 2007-03-16 2012-01-09 Treatment determination and impact analysis
US13/464,554 Active 2028-03-30 US8788283B2 (en) 2007-03-16 2012-05-04 Modifiable attribute identification
US13/534,952 Abandoned US20120270190A1 (en) 2007-03-16 2012-06-27 Career Selection and Psychological Profiling
US13/538,457 Active US8655899B2 (en) 2007-03-16 2012-06-29 Attribute method and system
US14/822,023 Abandoned US20150347566A1 (en) 2007-03-16 2015-08-10 Individual Identification by Attribute
US14/887,688 Active 2028-05-25 US10379812B2 (en) 2007-03-16 2015-10-20 Treatment determination and impact analysis
US15/297,208 Abandoned US20170053089A1 (en) 2007-03-16 2016-10-19 Career Selection and Psychological Profiling
US15/443,739 Abandoned US20170185719A1 (en) 2007-03-16 2017-02-27 Attribute Combination Discovery for Predisposition Determination
US15/927,785 Active 2028-09-29 US10803134B2 (en) 2007-03-16 2018-03-21 Computer implemented identification of genetic similarity
US16/151,721 Active 2029-06-23 US11581096B2 (en) 2007-03-16 2018-10-04 Attribute identification based on seeded learning
US16/519,295 Active 2028-06-21 US10991467B2 (en) 2007-03-16 2019-07-23 Treatment determination and impact analysis
US16/814,243 Abandoned US20200210143A1 (en) 2007-03-16 2020-03-10 Attribute Combination Discovery for Predisposition Determination
US17/004,494 Active US10957455B2 (en) 2007-03-16 2020-08-27 Computer implemented identification of genetic similarity
US17/004,911 Active US10896233B2 (en) 2007-03-16 2020-08-27 Computer implemented identification of genetic similarity
US17/175,995 Active 2028-08-31 US11545269B2 (en) 2007-03-16 2021-02-15 Computer implemented identification of genetic similarity
US17/212,596 Active 2028-07-08 US11515046B2 (en) 2007-03-16 2021-03-25 Treatment determination and impact analysis
US17/584,844 Active US11348691B1 (en) 2007-03-16 2022-01-26 Computer implemented predisposition prediction in a genetics platform
US17/590,304 Active US11348692B1 (en) 2007-03-16 2022-02-01 Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US17/729,840 Active US11581098B2 (en) 2007-03-16 2022-04-26 Computer implemented predisposition prediction in a genetics platform
US17/731,779 Active US11495360B2 (en) 2007-03-16 2022-04-28 Computer implemented identification of treatments for predicted predispositions with clinician assistance
US17/731,963 Active US11515047B2 (en) 2007-03-16 2022-04-28 Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US17/743,973 Active US11600393B2 (en) 2007-03-16 2022-05-13 Computer implemented modeling and prediction of phenotypes
US17/873,563 Active US11482340B1 (en) 2007-03-16 2022-07-26 Attribute combination discovery for predisposition determination of health conditions
US17/958,665 Active US11621089B2 (en) 2007-03-16 2022-10-03 Attribute combination discovery for predisposition determination of health conditions
US17/981,917 Abandoned US20230057262A1 (en) 2007-03-16 2022-11-07 Genetic Determination of Predispositions for Health-Related Conditions
US17/989,388 Active US11735323B2 (en) 2007-03-16 2022-11-17 Computer implemented identification of genetic similarity
US18/099,478 Active US11791054B2 (en) 2007-03-16 2023-01-20 Comparison and identification of attribute similarity based on genetic markers
US18/211,922 Pending US20230335300A1 (en) 2007-03-16 2023-06-20 Computer Implemented Identification of Genetic Similarity
US18/244,715 Active US12106862B2 (en) 2007-03-16 2023-09-11 Determination and display of likelihoods over time of developing age-associated disease

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/746,373 Abandoned US20080228699A1 (en) 2007-03-16 2007-05-09 Creation of Attribute Combination Databases
US11/746,380 Expired - Fee Related US7844609B2 (en) 2007-03-16 2007-05-09 Attribute combination discovery

Family Applications After (70)

Application Number Title Priority Date Filing Date
US11/746,364 Abandoned US20080228698A1 (en) 2007-03-16 2007-05-09 Creation of Attribute Combination Databases
US11/747,913 Active 2029-07-06 US8051033B2 (en) 2007-03-16 2007-05-13 Predisposition prediction using attribute combinations
US11/747,912 Abandoned US20080228722A1 (en) 2007-03-16 2007-05-13 Attribute Prediction Using Attribute Combinations
US11/750,516 Abandoned US20080228701A1 (en) 2007-03-16 2007-05-18 Destiny Modification Using Attribute Combinations
US11/750,522 Abandoned US20080228702A1 (en) 2007-03-16 2007-05-18 Predisposition Modification Using Attribute Combinations
US11/835,794 Abandoned US20080228797A1 (en) 2007-03-16 2007-08-08 Creation of Attribute Combination Databases Using Expanded Attribute Profiles
US11/835,839 Abandoned US20080228753A1 (en) 2007-03-16 2007-08-08 Determining Attribute Associations Using Expanded Attribute Profiles
US11/835,803 Expired - Fee Related US8024348B2 (en) 2007-03-16 2007-08-08 Expanding attribute profiles
US11/848,974 Expired - Fee Related US7818310B2 (en) 2007-03-16 2007-08-31 Predisposition modification
US11/865,388 Abandoned US20080228765A1 (en) 2007-03-16 2007-10-01 Genetic Attribute Analysis
US11/953,994 Abandoned US20080228451A1 (en) 2007-03-16 2007-12-11 Predisposition Prediction Using Co-associating Bioattributes
US11/957,441 Abandoned US20080228756A1 (en) 2007-03-16 2007-12-15 Compiling Co-associating Bioattributes
US11/957,440 Active 2028-04-06 US7797302B2 (en) 2007-03-16 2007-12-15 Compiling co-associating bioattributes
US11/957,443 Abandoned US20080228757A1 (en) 2007-03-16 2007-12-15 Identifying Co-associating Bioattributes
US11/957,446 Abandoned US20080228410A1 (en) 2007-03-16 2007-12-15 Genetic attribute analysis
US11/968,990 Abandoned US20080228677A1 (en) 2007-03-16 2008-01-03 Identifying Co-associating Bioattributes
US11/968,998 Active 2028-02-06 US7933912B2 (en) 2007-03-16 2008-01-03 Compiling co-associating bioattributes using expanded bioattribute profiles
US11/969,012 Abandoned US20080228704A1 (en) 2007-03-16 2008-01-03 Expanding Bioattribute Profiles
US11/972,642 Abandoned US20080243843A1 (en) 2007-03-16 2008-01-11 Predisposition Modification Using Co-associating Bioattributes
US11/972,640 Abandoned US20080228705A1 (en) 2007-03-16 2008-01-11 Predisposition Modification Using Co-associating Bioattributes
US11/972,643 Abandoned US20080228706A1 (en) 2007-03-16 2008-01-11 Determining Bioattribute Associations Using Expanded Bioattribute Profiles
US12/031,669 Active 2029-04-06 US7941434B2 (en) 2007-03-16 2008-02-14 Efficiently compiling co-associating bioattributes
US12/031,671 Abandoned US20080228766A1 (en) 2007-03-16 2008-02-14 Efficiently Compiling Co-associating Attributes
US12/047,203 Abandoned US20080228768A1 (en) 2007-03-16 2008-03-12 Individual Identification by Attribute
US12/047,193 Abandoned US20080228767A1 (en) 2007-03-16 2008-03-12 Attribute Method and System
US12/048,193 Abandoned US20080228043A1 (en) 2007-03-16 2008-03-13 Diagnosis Determination and Strength and Weakness Analysis
US12/048,194 Active 2030-01-03 US8099424B2 (en) 2007-03-16 2008-03-13 Treatment determination and impact analysis
US12/048,195 Abandoned US20080228708A1 (en) 2007-03-16 2008-03-13 Goal Achievement and Outcome Prevention
US12/048,196 Active 2029-09-25 US7941329B2 (en) 2007-03-16 2008-03-13 Insurance optimization and longevity analysis
US12/049,332 Abandoned US20080227063A1 (en) 2007-03-16 2008-03-15 Career Selection and Psychological Profiling
US12/049,330 Active 2029-02-02 US8606761B2 (en) 2007-03-16 2008-03-15 Lifestyle optimization and behavior modification
US12/853,062 Active US8209319B2 (en) 2007-03-16 2010-08-09 Compiling co-associating bioattributes
US12/878,748 Active US8055643B2 (en) 2007-03-16 2010-09-09 Predisposition modification
US12/912,174 Active US8065324B2 (en) 2007-03-16 2010-10-26 Weight and diet attribute combination discovery
US12/962,188 Abandoned US20110078168A1 (en) 2007-03-16 2010-12-07 Compiling Co-associating Bioattributes Using Expanded Bioattribute Profiles
US13/079,601 Active US8185461B2 (en) 2007-03-16 2011-04-04 Longevity analysis and modifiable attribute identification
US13/079,576 Abandoned US20110184656A1 (en) 2007-03-16 2011-04-04 Efficiently Determining Condition Relevant Modifiable Lifestyle Attributes
US13/208,488 Active US8224835B2 (en) 2007-03-16 2011-08-12 Expanding attribute profiles
US13/272,773 Active 2028-04-15 US8655908B2 (en) 2007-03-16 2011-10-13 Predisposition modification
US13/272,737 Active 2027-06-14 US8458121B2 (en) 2007-03-16 2011-10-13 Predisposition prediction using attribute combinations
US13/301,209 Active 2028-10-12 US9582647B2 (en) 2007-03-16 2011-11-21 Attribute combination discovery for predisposition determination
US13/346,322 Active 2028-06-30 US9170992B2 (en) 2007-03-16 2012-01-09 Treatment determination and impact analysis
US13/464,554 Active 2028-03-30 US8788283B2 (en) 2007-03-16 2012-05-04 Modifiable attribute identification
US13/534,952 Abandoned US20120270190A1 (en) 2007-03-16 2012-06-27 Career Selection and Psychological Profiling
US13/538,457 Active US8655899B2 (en) 2007-03-16 2012-06-29 Attribute method and system
US14/822,023 Abandoned US20150347566A1 (en) 2007-03-16 2015-08-10 Individual Identification by Attribute
US14/887,688 Active 2028-05-25 US10379812B2 (en) 2007-03-16 2015-10-20 Treatment determination and impact analysis
US15/297,208 Abandoned US20170053089A1 (en) 2007-03-16 2016-10-19 Career Selection and Psychological Profiling
US15/443,739 Abandoned US20170185719A1 (en) 2007-03-16 2017-02-27 Attribute Combination Discovery for Predisposition Determination
US15/927,785 Active 2028-09-29 US10803134B2 (en) 2007-03-16 2018-03-21 Computer implemented identification of genetic similarity
US16/151,721 Active 2029-06-23 US11581096B2 (en) 2007-03-16 2018-10-04 Attribute identification based on seeded learning
US16/519,295 Active 2028-06-21 US10991467B2 (en) 2007-03-16 2019-07-23 Treatment determination and impact analysis
US16/814,243 Abandoned US20200210143A1 (en) 2007-03-16 2020-03-10 Attribute Combination Discovery for Predisposition Determination
US17/004,494 Active US10957455B2 (en) 2007-03-16 2020-08-27 Computer implemented identification of genetic similarity
US17/004,911 Active US10896233B2 (en) 2007-03-16 2020-08-27 Computer implemented identification of genetic similarity
US17/175,995 Active 2028-08-31 US11545269B2 (en) 2007-03-16 2021-02-15 Computer implemented identification of genetic similarity
US17/212,596 Active 2028-07-08 US11515046B2 (en) 2007-03-16 2021-03-25 Treatment determination and impact analysis
US17/584,844 Active US11348691B1 (en) 2007-03-16 2022-01-26 Computer implemented predisposition prediction in a genetics platform
US17/590,304 Active US11348692B1 (en) 2007-03-16 2022-02-01 Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US17/729,840 Active US11581098B2 (en) 2007-03-16 2022-04-26 Computer implemented predisposition prediction in a genetics platform
US17/731,779 Active US11495360B2 (en) 2007-03-16 2022-04-28 Computer implemented identification of treatments for predicted predispositions with clinician assistance
US17/731,963 Active US11515047B2 (en) 2007-03-16 2022-04-28 Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US17/743,973 Active US11600393B2 (en) 2007-03-16 2022-05-13 Computer implemented modeling and prediction of phenotypes
US17/873,563 Active US11482340B1 (en) 2007-03-16 2022-07-26 Attribute combination discovery for predisposition determination of health conditions
US17/958,665 Active US11621089B2 (en) 2007-03-16 2022-10-03 Attribute combination discovery for predisposition determination of health conditions
US17/981,917 Abandoned US20230057262A1 (en) 2007-03-16 2022-11-07 Genetic Determination of Predispositions for Health-Related Conditions
US17/989,388 Active US11735323B2 (en) 2007-03-16 2022-11-17 Computer implemented identification of genetic similarity
US18/099,478 Active US11791054B2 (en) 2007-03-16 2023-01-20 Comparison and identification of attribute similarity based on genetic markers
US18/211,922 Pending US20230335300A1 (en) 2007-03-16 2023-06-20 Computer Implemented Identification of Genetic Similarity
US18/244,715 Active US12106862B2 (en) 2007-03-16 2023-09-11 Determination and display of likelihoods over time of developing age-associated disease

Country Status (1)

Country Link
US (73) US20080228699A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090144270A1 (en) * 2007-11-29 2009-06-04 Jack Thacher Leonard Methods for the prevention of diseases
US20110161469A1 (en) * 2008-03-13 2011-06-30 Claudio Luis De Amorim Method for building spontaneous virtual communities based on common interests using interest bands
CN111933300A (en) * 2020-09-28 2020-11-13 平安科技(深圳)有限公司 Epidemic situation prevention and control effect prediction method, device, server and storage medium
US11322227B2 (en) 2008-12-31 2022-05-03 23Andme, Inc. Finding relatives in a database
US11348692B1 (en) 2007-03-16 2022-05-31 23Andme, Inc. Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US11514085B2 (en) 2008-12-30 2022-11-29 23Andme, Inc. Learning system for pangenetic-based recommendations
US11514627B2 (en) 2019-09-13 2022-11-29 23Andme, Inc. Methods and systems for determining and displaying pedigrees
US11521708B1 (en) 2012-11-08 2022-12-06 23Andme, Inc. Scalable pipeline for local ancestry inference
US11531445B1 (en) 2008-03-19 2022-12-20 23Andme, Inc. Ancestry painting
US11683315B2 (en) 2007-10-15 2023-06-20 23Andme, Inc. Genome sharing
US11748383B1 (en) 2011-10-11 2023-09-05 23Andme, Inc. Cohort selection with privacy protection
US11783919B2 (en) 2020-10-09 2023-10-10 23Andme, Inc. Formatting and storage of genetic markers
US11817176B2 (en) 2020-08-13 2023-11-14 23Andme, Inc. Ancestry composition determination
US11875879B1 (en) 2007-10-15 2024-01-16 23Andme, Inc. Window-based method for determining inherited segments
US12046327B1 (en) 2019-07-19 2024-07-23 23Andme, Inc. Identity-by-descent relatedness based on focal and reference segments

Families Citing this family (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720707B1 (en) * 2000-01-07 2010-05-18 Home Producers Network, Llc Method and system for compiling a consumer-based electronic database, searchable according to individual internet user-defined micro-demographics
US8214254B1 (en) * 2000-01-07 2012-07-03 Home Producers Network, Llc Method and system for compiling a consumer-based electronic database, searchable according to individual internet user-defined micro-demographics (II)
US8195597B2 (en) * 2002-02-07 2012-06-05 Joseph Carrabis System and method for obtaining subtextual information regarding an interaction between an individual and a programmable device
US10282785B1 (en) 2004-11-19 2019-05-07 Allstate Insurance Company Delivery of customized insurance products and services
US7774217B1 (en) 2004-11-19 2010-08-10 Allstate Insurance Company Systems and methods for customizing automobile insurance
US9875508B1 (en) 2004-11-19 2018-01-23 Allstate Insurance Company Systems and methods for customizing insurance
US20070067189A1 (en) * 2005-09-16 2007-03-22 Numoda Corporation Method and apparatus for screening, enrollment and management of patients in clinical trials
US10042980B2 (en) 2005-11-17 2018-08-07 Gearbox Llc Providing assistance related to health
US20070112592A1 (en) 2005-11-17 2007-05-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Payments in providing assistance related to health
US20080114577A1 (en) * 2005-11-30 2008-05-15 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational methods and systems associated with nutraceutical related assays
US10296720B2 (en) 2005-11-30 2019-05-21 Gearbox Llc Computational systems and methods related to nutraceuticals
US20080005391A1 (en) * 2006-06-05 2008-01-03 Bugra Gedik Method and apparatus for adaptive in-operator load shedding
CA2673481A1 (en) * 2006-12-19 2008-06-26 University Of Virginia Patent Foundation Combined effects of topiramate and ondansetron on alcohol consumption
US9390158B2 (en) * 2007-01-26 2016-07-12 Information Resources, Inc. Dimensional compression using an analytic platform
US20080288209A1 (en) * 2007-01-26 2008-11-20 Herbert Dennis Hunt Flexible projection facility within an analytic platform
US20090006309A1 (en) * 2007-01-26 2009-01-01 Herbert Dennis Hunt Cluster processing of an aggregated dataset
US20080288522A1 (en) * 2007-01-26 2008-11-20 Herbert Dennis Hunt Creating and storing a data field alteration datum using an analytic platform
EP2111593A2 (en) * 2007-01-26 2009-10-28 Information Resources, Inc. Analytic platform
US8504598B2 (en) 2007-01-26 2013-08-06 Information Resources, Inc. Data perturbation of non-unique values
US9262503B2 (en) 2007-01-26 2016-02-16 Information Resources, Inc. Similarity matching of products based on multiple classification schemes
US20080294372A1 (en) * 2007-01-26 2008-11-27 Herbert Dennis Hunt Projection facility within an analytic platform
US8160984B2 (en) * 2007-01-26 2012-04-17 Symphonyiri Group, Inc. Similarity matching of a competitor's products
EP1950684A1 (en) 2007-01-29 2008-07-30 Accenture Global Services GmbH Anonymity measuring device
CA2677205A1 (en) * 2007-01-31 2008-08-07 University Of Virginia Patent Foundation Topiramate plus naltrexone for the treatment of addictive disorders
US20080294996A1 (en) * 2007-01-31 2008-11-27 Herbert Dennis Hunt Customized retailer portal within an analytic platform
US10872686B2 (en) 2007-02-22 2020-12-22 WellDoc, Inc. Systems and methods for disease control and management
US8838513B2 (en) 2011-03-24 2014-09-16 WellDoc, Inc. Adaptive analytical behavioral and health assistant system and related method of use
US10860943B2 (en) 2007-02-22 2020-12-08 WellDoc, Inc. Systems and methods for disease control and management
US8229942B1 (en) 2007-04-17 2012-07-24 Google Inc. Identifying negative keywords associated with advertisements
US8086624B1 (en) 2007-04-17 2011-12-27 Google Inc. Determining proximity to topics of advertisements
US20090062624A1 (en) * 2007-04-26 2009-03-05 Thomas Neville Methods and systems of delivering a probability of a medical condition
US8103527B1 (en) * 2007-06-29 2012-01-24 Intuit Inc. Managing insurance claim data across insurance policies
KR101399199B1 (en) * 2007-07-16 2014-05-27 삼성전자주식회사 Method for configuring genetic code in software robot
US20090030886A1 (en) * 2007-07-26 2009-01-29 Hans Chandra Pandeya Method of determining similar attributes between one or more users in a communications network
US8086474B1 (en) * 2007-07-30 2011-12-27 Intuit Inc. Managing insurance claim data
US8060484B2 (en) * 2007-08-07 2011-11-15 International Business Machines Corporation Graphical user interface for data management
US9373076B1 (en) * 2007-08-08 2016-06-21 Aol Inc. Systems and methods for building and using social networks in image analysis
US20090043752A1 (en) 2007-08-08 2009-02-12 Expanse Networks, Inc. Predicting Side Effect Attributes
US20110065628A1 (en) * 2007-08-27 2011-03-17 University Of Virginia Patent Foundation Medication Combinations for the Treatment of Alcoholism and Drug Addiction
US8086620B2 (en) * 2007-09-12 2011-12-27 Ebay Inc. Inference of query relationships
US20090094282A1 (en) * 2007-10-04 2009-04-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for correlating past epigenetic information with past disability data
US20090094065A1 (en) * 2007-10-04 2009-04-09 Hyde Roderick A Systems and methods for underwriting risks utilizing epigenetic information
US20100027780A1 (en) * 2007-10-04 2010-02-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for anonymizing personally identifiable information associated with epigenetic information
US20090100095A1 (en) * 2007-10-04 2009-04-16 Jung Edward K Y Systems and methods for reinsurance utilizing epigenetic information
US20090094067A1 (en) * 2007-10-04 2009-04-09 Searete LLC, a limited liability corporation of Systems and methods for company internal optimization utilizing epigenetic data
US20090099877A1 (en) * 2007-10-11 2009-04-16 Hyde Roderick A Systems and methods for underwriting risks utilizing epigenetic information
US20090094261A1 (en) * 2007-10-04 2009-04-09 Jung Edward K Y Systems and methods for correlating epigenetic information with disability data
US20090094281A1 (en) * 2007-10-04 2009-04-09 Jung Edward K Y Systems and methods for transferring combined epigenetic information and other information
US20090094047A1 (en) * 2007-10-04 2009-04-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for predicting a risk utilizing epigenetic data
US9992648B2 (en) * 2007-11-17 2018-06-05 S. Sejo Pan Apparatus, method and system for subsequently connecting people
WO2009148473A1 (en) * 2007-12-12 2009-12-10 21Ct, Inc. Method and system for abstracting information for use in link analysis
US8126881B1 (en) 2007-12-12 2012-02-28 Vast.com, Inc. Predictive conversion systems and methods
AU2009219174B2 (en) * 2008-02-28 2014-04-03 University Of Virginia Patent Foundation Serotonin transporter gene and treatment of alcoholism
US20110161827A1 (en) * 2008-03-05 2011-06-30 Anastasia Dedis Social media communication and contact organization
US20090327928A1 (en) * 2008-03-05 2009-12-31 Anastasia Dedis Method and System Facilitating Two-Way Interactive Communication and Relationship Management
CA2657087A1 (en) * 2008-03-06 2009-09-06 David N. Fernandes Normative database system and method
WO2009148803A2 (en) * 2008-05-15 2009-12-10 Soar Biodynamics, Ltd. Methods and systems for integrated health systems
US20100035220A1 (en) * 2008-07-10 2010-02-11 Herz Frederick S M On-line student safety learning and evaluation system
US9892103B2 (en) * 2008-08-18 2018-02-13 Microsoft Technology Licensing, Llc Social media guided authoring
US7916295B2 (en) * 2008-09-03 2011-03-29 Macronix International Co., Ltd. Alignment mark and method of getting position reference for wafer
US8200509B2 (en) 2008-09-10 2012-06-12 Expanse Networks, Inc. Masked data record access
US7917438B2 (en) 2008-09-10 2011-03-29 Expanse Networks, Inc. System for secure mobile healthcare selection
US20110287961A1 (en) * 2008-10-14 2011-11-24 University Of Miami Expression analysis of coronary artery atherosclerosis
US8473327B2 (en) * 2008-10-21 2013-06-25 International Business Machines Corporation Target marketing method and system
US8316020B1 (en) * 2008-12-09 2012-11-20 Amdocs Software Systems Limited System, method, and computer program for creating a group profile based on user profile attributes and a rule
US8627483B2 (en) * 2008-12-18 2014-01-07 Accenture Global Services Limited Data anonymization based on guessing anonymity
GB2466442A (en) * 2008-12-18 2010-06-23 Dublin Inst Of Technology A system to analyze a sample on a slide using Raman spectroscopy on an identified area of interest
EP2380018A1 (en) * 2008-12-18 2011-10-26 University Of Utah Systems and methods for classifying and screening biological materials for use for therapeutic and/or research purposes
WO2010075446A1 (en) * 2008-12-23 2010-07-01 Soar Biodynamics, Ltd. Methods and systems for prostate health monitoring
US10456036B2 (en) 2008-12-23 2019-10-29 Roche Diabetes Care, Inc. Structured tailoring
US8255403B2 (en) 2008-12-30 2012-08-28 Expanse Networks, Inc. Pangenetic web satisfaction prediction system
US20100169262A1 (en) * 2008-12-30 2010-07-01 Expanse Networks, Inc. Mobile Device for Pangenetic Web
US8386519B2 (en) 2008-12-30 2013-02-26 Expanse Networks, Inc. Pangenetic web item recommendation system
US20100169136A1 (en) * 2008-12-31 2010-07-01 Nancy Ellen Kho Information aggregation for social networks
US8145622B2 (en) * 2009-01-09 2012-03-27 Microsoft Corporation System for finding queries aiming at tail URLs
US20100228726A1 (en) * 2009-02-06 2010-09-09 Slinker Scott W Determining associative intent in a database containing linked entities
US8150832B2 (en) * 2009-03-06 2012-04-03 Oracle International Corporation Methods and systems for automatically determining a default hierarchy from data
WO2010111392A1 (en) * 2009-03-24 2010-09-30 Regents Of The University Of Minnesota Classifying an item to one of a plurality of groups
EP2416257A4 (en) * 2009-03-31 2015-04-22 Fujitsu Ltd Computer-assisted name identification equipment, name identification method, and name identification program
US8935266B2 (en) * 2009-04-08 2015-01-13 Jianqing Wu Investigative identity data search algorithm
US20100280986A1 (en) * 2009-05-04 2010-11-04 Roche Palo Alto Systems and methods for tailoring acute and chronic viral infection treatments to increase the probability of "cure" for a given subject
CA2764856C (en) * 2009-06-19 2018-08-07 Ingenix, Inc. System and method for generation of attribute driven temporal clustering
US9179847B2 (en) * 2009-07-16 2015-11-10 International Business Machines Corporation System and method to provide career counseling and management using biofeedback
US20110035444A1 (en) * 2009-08-06 2011-02-10 Timedright Inc. Relationship security in online social and professional networks and communities
US8494936B2 (en) * 2009-08-10 2013-07-23 Mory Brenner Method for decision making using artificial intelligence
EP2302845B1 (en) 2009-09-23 2012-06-20 Google, Inc. Method and device for determining a jitter buffer level
US8775605B2 (en) * 2009-09-29 2014-07-08 At&T Intellectual Property I, L.P. Method and apparatus to identify outliers in social networks
US8433762B1 (en) * 2009-11-20 2013-04-30 Facebook Inc. Generation of nickname dictionary based on analysis of user communications
US20110161119A1 (en) * 2009-12-24 2011-06-30 The Travelers Companies, Inc. Risk assessment and control, insurance premium determinations, and other applications using busyness
US20130060481A1 (en) * 2010-01-15 2013-03-07 Board of Regents of the Nevada System of Higher Ed ucation,on behalf of The Desert Reserach Institut Systems and Methods for Identifying Structurally or Functionally Significant Nucleotide Sequences
JP5515784B2 (en) * 2010-01-27 2014-06-11 富士通株式会社 Similarity calculation program and similarity calculation device
US20110205231A1 (en) * 2010-02-24 2011-08-25 Oracle International Corporation Mapping data in enterprise applications for operational visibility
US8688502B2 (en) * 2010-02-24 2014-04-01 Oracle International Corporation Business intelligence dashboards for performance analysis
US20110238438A1 (en) * 2010-03-25 2011-09-29 Numoda Technologies, Inc. Automated method of graphically displaying predicted patient enrollment in a clinical trial study
BR112012026345A2 (en) * 2010-04-14 2020-08-25 The Dun And Bradstreet Corporation imputation of actionable attributes to data that describe a personal identity
US8665908B1 (en) 2010-05-11 2014-03-04 Marvell International Ltd. Signaling guard interval capability in a communication system
US8661009B2 (en) * 2010-06-03 2014-02-25 International Business Machines Corporation Dynamic real-time reports based on social networks
KR20110136638A (en) * 2010-06-15 2011-12-21 재단법인 게놈연구재단 Online social network construction method and system with personal genome data
NZ605709A (en) 2010-07-02 2014-08-29 Univ Virginia Patent Found Molecular genetic approach to treatment and diagnosis of alcohol and drug dependence
US20120023136A1 (en) * 2010-07-21 2012-01-26 Su-Chi Kuo Matching Technology for Users of A Social Networking Site
US8682910B2 (en) 2010-08-03 2014-03-25 Accenture Global Services Limited Database anonymization for use in testing database-centric applications
CN103201762B (en) * 2010-09-27 2016-11-09 谷歌公司 For generating the system and method for ghost profile for social networks
US8676891B2 (en) 2010-11-01 2014-03-18 Google Inc. Visibility inspector in social networks
US8639374B2 (en) 2010-11-05 2014-01-28 The Coca-Cola Company Method, apparatus and system for regulating a product attribute profile
US8626327B2 (en) 2010-11-05 2014-01-07 The Coca-Cola Company System for optimizing drink blends
US20120114813A1 (en) * 2010-11-05 2012-05-10 The Coca-Cola Company Method of juice production, apparatus and system
US8626564B2 (en) 2010-11-05 2014-01-07 The Coca-Cola Company System and method for simulating drink production
US20120114814A1 (en) * 2010-11-05 2012-05-10 The Coca-Cola Company Method of beverage production, apparatus and system
US10043129B2 (en) 2010-12-06 2018-08-07 Regents Of The University Of Minnesota Functional assessment of a network
US20120158412A1 (en) * 2010-12-15 2012-06-21 International Business Machines Corporation Identification of Contact Mode for Contacting Parties to Maximize the Probability of Achieving a Desired Outcome
US20120166229A1 (en) 2010-12-26 2012-06-28 The Travelers Indemnity Company Systems and methods for client-related risk zones
CA2824533A1 (en) * 2011-01-13 2012-07-19 Laboratory Corporation Of America Holdings Methods and systems for predictive modeling of hiv-1 replication capacity
US8352406B2 (en) 2011-02-01 2013-01-08 Bullhorn, Inc. Methods and systems for predicting job seeking behavior
US8504388B2 (en) 2011-02-08 2013-08-06 Bioinventors & Entrepeneurs Network, LLC Method and apparatus for fulfilling requests for perishable items
US9147273B1 (en) * 2011-02-16 2015-09-29 Hrl Laboratories, Llc System and method for modeling and analyzing data via hierarchical random graphs
EP2500837A1 (en) * 2011-03-11 2012-09-19 Qlucore AB Method for robust comparison of data
US9679561B2 (en) 2011-03-28 2017-06-13 Nuance Communications, Inc. System and method for rapid customization of speech recognition models
US8577873B2 (en) * 2011-03-30 2013-11-05 Indian Statistical Institute Determining a relative importance among ordered lists
US20130006961A1 (en) * 2011-06-29 2013-01-03 Microsoft Corporation Data driven natural interface for automated relational queries
US9355110B1 (en) 2011-07-14 2016-05-31 Google Inc. Dynamic presentation of data items based on prioritized associations
US20130024124A1 (en) * 2011-07-22 2013-01-24 The Travelers Companies, Inc. Systems, methods, and apparatus for preventing recidivism
US8473498B2 (en) * 2011-08-02 2013-06-25 Tom H. C. Anderson Natural language text analytics
US10790041B2 (en) 2011-08-17 2020-09-29 23Andme, Inc. Method for analyzing and displaying genetic information between family members
US8708906B1 (en) * 2011-09-07 2014-04-29 Allen J. Orehek Method for the prevention of dementia and Alzheimer's disease
CA2848211A1 (en) 2011-09-09 2013-03-14 University Of Virginia Patent Foundation Molecular genetic approach to treatment and diagnosis of alcohol and drug dependence
US11380440B1 (en) * 2011-09-14 2022-07-05 Cerner Innovation, Inc. Marker screening and signal detection
US11869671B1 (en) 2011-09-14 2024-01-09 Cerner Innovation, Inc. Context-sensitive health outcome surveillance and signal detection
CA2812342C (en) * 2011-09-26 2015-04-07 John TRAKADIS Method and system for genetic trait search based on the phenotype and the genome of a human subject
WO2013055822A2 (en) 2011-10-11 2013-04-18 Life Technologies Corporation Systems and methods for analysis and interpretation of nucleic acid sequence data
US20130246595A1 (en) * 2011-10-18 2013-09-19 Hugh O'Donoghue Method and apparatus for using an organizational structure for generating, using, or updating an enriched user profile
US8538934B2 (en) * 2011-10-28 2013-09-17 Microsoft Corporation Contextual gravitation of datasets and data services
US9292830B2 (en) 2011-11-03 2016-03-22 Cgi Technologies And Solutions Inc. Method and apparatus for social media advisor for retention and treatment (SMART)
US9319371B1 (en) * 2011-11-04 2016-04-19 Google Inc. Management of commercial messages in a social network
US9817898B2 (en) 2011-11-14 2017-11-14 Microsoft Technology Licensing, Llc Locating relevant content items across multiple disparate content sources
CN103108343B (en) * 2011-11-15 2016-01-27 中国移动通信集团设计院有限公司 Set up method and device, network performance optimizing method and the device of decision tree
US10437858B2 (en) 2011-11-23 2019-10-08 23Andme, Inc. Database and data processing system for use with a network-based personal genetics services platform
US8572107B2 (en) 2011-12-09 2013-10-29 International Business Machines Corporation Identifying inconsistencies in object similarities from multiple information sources
US8752144B1 (en) * 2011-12-14 2014-06-10 Emc Corporation Targeted biometric challenges
US11676730B2 (en) 2011-12-16 2023-06-13 Etiometry Inc. System and methods for transitioning patient care from signal based monitoring to risk based monitoring
US20130231949A1 (en) 2011-12-16 2013-09-05 Dimitar V. Baronov Systems and methods for transitioning patient care from signal-based monitoring to risk-based monitoring
US9014265B1 (en) 2011-12-29 2015-04-21 Google Inc. Video coding using edge detection and block partitioning for intra prediction
WO2013114356A1 (en) * 2012-01-31 2013-08-08 Josef Luzon System and method for automatic analysis and treatment of a condition
US8548971B2 (en) * 2012-02-10 2013-10-01 Bank Of America Corporation Financial transaction reconciliation
CN104994747B (en) 2012-02-24 2018-11-20 麦克考米克有限公司 For providing the system and method for flavor suggestion and enhancing
GB201204613D0 (en) * 2012-03-16 2012-05-02 Batchu Sumana K Net sourcing
US8762324B2 (en) * 2012-03-23 2014-06-24 Sap Ag Multi-dimensional query expansion employing semantics and usage statistics
US8700710B1 (en) * 2012-03-29 2014-04-15 Google Inc. Constructing social networks
US8805900B2 (en) * 2012-03-30 2014-08-12 Mckesson Financial Holdings Methods, apparatuses and computer program products for facilitating location and retrieval of health information in a healthcare system
US9479448B2 (en) * 2012-04-02 2016-10-25 Wipro Limited Methods for improved provisioning of information technology resources and devices thereof
WO2013151759A1 (en) * 2012-04-06 2013-10-10 Liveone Group, Ltd. A social media application for a media content providing platform
US20130282390A1 (en) * 2012-04-20 2013-10-24 International Business Machines Corporation Combining knowledge and data driven insights for identifying risk factors in healthcare
US8856082B2 (en) * 2012-05-23 2014-10-07 International Business Machines Corporation Policy based population of genealogical archive data
JP5962213B2 (en) * 2012-05-28 2016-08-03 ソニー株式会社 Information processing apparatus, information processing method, and program
US10025877B2 (en) * 2012-06-06 2018-07-17 23Andme, Inc. Determining family connections of individuals in a database
US20130339062A1 (en) 2012-06-14 2013-12-19 Seth Brewer System and method for use of social networks to respond to insurance related events
CA2878455C (en) 2012-07-06 2020-12-22 Nant Holdings Ip, Llc Healthcare analysis stream management
US8965895B2 (en) * 2012-07-30 2015-02-24 International Business Machines Corporation Relationship discovery in business analytics
US20140046696A1 (en) * 2012-08-10 2014-02-13 Assurerx Health, Inc. Systems and Methods for Pharmacogenomic Decision Support in Psychiatry
WO2014043298A1 (en) 2012-09-14 2014-03-20 Life Technologies Corporation Systems and methods for identifying sequence variation associated with genetic diseases
US20140108527A1 (en) * 2012-10-17 2014-04-17 Fabric Media, Inc. Social genetics network for providing personal and business services
US9251713B1 (en) 2012-11-20 2016-02-02 Anthony J. Giovanniello System and process for assessing a user and for assisting a user in rehabilitation
US20140172732A1 (en) * 2012-12-14 2014-06-19 Roy Baladi Psychographic based methods and systems for job seeking
CN104025076B (en) 2012-12-20 2018-02-13 英特尔公司 The offer of anonymous contextual information and the generation of specific aim content
US9710670B2 (en) * 2012-12-20 2017-07-18 Intel Corporation Publication and removal of attributes in a multi-user computing system
US20140180723A1 (en) 2012-12-21 2014-06-26 The Travelers Indemnity Company Systems and methods for surface segment data
US20140195269A1 (en) * 2013-01-08 2014-07-10 360 Health Vectors Private Limited System and method for health assessment, prediction and management
US9063991B2 (en) 2013-01-25 2015-06-23 Wipro Limited Methods for identifying unique entities across data sources and devices thereof
KR101496972B1 (en) * 2013-01-30 2015-03-12 주식회사 제로믹스 Group Recommendation System using SNS of Genotype.
US20140244561A1 (en) * 2013-02-28 2014-08-28 Linkedin Corporation Providing recommendations to members of a social network
US20140245184A1 (en) * 2013-02-28 2014-08-28 Heyning Cheng Presenting actionable recommendations to members of a social network
US9210424B1 (en) 2013-02-28 2015-12-08 Google Inc. Adaptive prediction block size in video coding
US9087295B1 (en) 2013-03-04 2015-07-21 The United States Of America As Represented By The Secretary Of The Navy Determination of sequence frequency
US9465873B1 (en) 2013-03-07 2016-10-11 Vast.com, Inc. Systems, methods, and devices for identifying and presenting identifications of significant attributes of unique items
US9104718B1 (en) 2013-03-07 2015-08-11 Vast.com, Inc. Systems, methods, and devices for measuring similarity of and generating recommendations for unique items
US10007946B1 (en) 2013-03-07 2018-06-26 Vast.com, Inc. Systems, methods, and devices for measuring similarity of and generating recommendations for unique items
US9830635B1 (en) 2013-03-13 2017-11-28 Vast.com, Inc. Systems, methods, and devices for determining and displaying market relative position of unique items
US9055097B1 (en) * 2013-03-15 2015-06-09 Zerofox, Inc. Social network scanning
US9674212B2 (en) 2013-03-15 2017-06-06 Zerofox, Inc. Social network data removal
US9674214B2 (en) 2013-03-15 2017-06-06 Zerofox, Inc. Social network profile data removal
US9191411B2 (en) 2013-03-15 2015-11-17 Zerofox, Inc. Protecting against suspect social entities
US9047488B2 (en) * 2013-03-15 2015-06-02 International Business Machines Corporation Anonymizing sensitive identifying information based on relational context across a group
US9027134B2 (en) 2013-03-15 2015-05-05 Zerofox, Inc. Social threat scoring
US9965524B2 (en) * 2013-04-03 2018-05-08 Salesforce.Com, Inc. Systems and methods for identifying anomalous data in large structured data sets and querying the data sets
US9208442B2 (en) 2013-04-26 2015-12-08 Wal-Mart Stores, Inc. Ontology-based attribute extraction from product descriptions
US9824405B2 (en) * 2013-06-17 2017-11-21 Rmark Bio, Inc. System and method for determining social connections based on experimental life sciences data
US9536053B2 (en) 2013-06-26 2017-01-03 WellDoc, Inc. Systems and methods for managing medication adherence
US11361857B2 (en) 2013-06-26 2022-06-14 WellDoc, Inc. Systems and methods for creating and selecting models for predicting medical conditions
US9792658B1 (en) * 2013-06-27 2017-10-17 EMC IP Holding Company LLC HEALTHBOOK analysis
US9313493B1 (en) 2013-06-27 2016-04-12 Google Inc. Advanced motion estimation
WO2015018517A1 (en) * 2013-08-05 2015-02-12 Mr. PD Dr. NIKOLAOS KOUTSOULERIS Adaptive pattern recognition for psychosis risk modelling
US9672469B2 (en) 2013-09-18 2017-06-06 Acxiom Corporation Apparatus and method to increase accuracy in individual attributes derived from anonymous aggregate data
US9396319B2 (en) 2013-09-30 2016-07-19 Laird H. Shuart Method of criminal profiling and person identification using cognitive/behavioral biometric fingerprint analysis
CN105706075A (en) * 2013-10-30 2016-06-22 慧与发展有限责任合伙企业 Technology recommendation for software environment
US9940606B2 (en) 2013-10-30 2018-04-10 Chegg, Inc. Correlating jobs with personalized learning activities in online education platforms
US10049416B2 (en) 2013-11-26 2018-08-14 Chegg, Inc. Job recall services in online education platforms
US10127596B1 (en) 2013-12-10 2018-11-13 Vast.com, Inc. Systems, methods, and devices for generating recommendations of unique items
US11244068B2 (en) 2013-12-24 2022-02-08 Intel Corporation Privacy enforcement via localized personalization
US11257593B2 (en) 2014-01-29 2022-02-22 Umethod Health, Inc. Interactive and analytical system that provides a dynamic tool for therapies to prevent and cure dementia-related diseases
US9860380B2 (en) 2014-01-29 2018-01-02 Avaya Inc. Agent rating prediction and routing
US10713742B1 (en) 2014-03-12 2020-07-14 II Alcides O. Pacino Shared verification of credential records
US9866454B2 (en) * 2014-03-25 2018-01-09 Verizon Patent And Licensing Inc. Generating anonymous data from web data
US10346772B2 (en) 2014-06-10 2019-07-09 International Business Machines Corporation Determining group attributes and matching tasks to a group
US20150363801A1 (en) * 2014-06-16 2015-12-17 Bottomline Technologies (De) Inc. Apparatus and method for predicting the behavior or state of a negative occurrence class
US10042944B2 (en) * 2014-06-18 2018-08-07 Microsoft Technology Licensing, Llc Suggested keywords
CN105281925B (en) * 2014-06-30 2019-05-14 腾讯科技(深圳)有限公司 The method and apparatus that network service groups of users divides
US10592781B2 (en) * 2014-07-18 2020-03-17 The Boeing Company Devices and method for scoring data to quickly identify relevant attributes for instant classification
US10320781B2 (en) 2016-12-08 2019-06-11 Sensoriant, Inc. System and methods for sharing and trading user data and preferences between computer programs and other entities while preserving user privacy
US10565561B2 (en) 2014-09-30 2020-02-18 Microsoft Technology Licensing, Llc Techniques for identifying and recommending skills
US10861027B1 (en) 2014-10-08 2020-12-08 Allstate Insurance Company Commercial insurance growth data for agents
US10482075B2 (en) * 2014-10-14 2019-11-19 Nec Corporation Information processing device, information processing method, and recording medium
US10713225B2 (en) 2014-10-30 2020-07-14 Pearson Education, Inc. Content database generation
US10116563B1 (en) 2014-10-30 2018-10-30 Pearson Education, Inc. System and method for automatically updating data packet metadata
US10110486B1 (en) 2014-10-30 2018-10-23 Pearson Education, Inc. Automatic determination of initial content difficulty
US10735402B1 (en) 2014-10-30 2020-08-04 Pearson Education, Inc. Systems and method for automated data packet selection and delivery
US10333857B1 (en) 2014-10-30 2019-06-25 Pearson Education, Inc. Systems and methods for data packet metadata stabilization
US10218630B2 (en) 2014-10-30 2019-02-26 Pearson Education, Inc. System and method for increasing data transmission rates through a content distribution network
US10318499B2 (en) 2014-10-30 2019-06-11 Pearson Education, Inc. Content database generation
US9667321B2 (en) 2014-10-31 2017-05-30 Pearson Education, Inc. Predictive recommendation engine
CA2967013C (en) 2014-11-06 2023-09-05 Ancestryhealth.Com, Llc Predicting health outcomes
JP2018505465A (en) * 2014-12-05 2018-02-22 フン チャン、キル Electronic commerce service provision method using service usage information relationship of multiple buyers
KR20160070471A (en) * 2014-12-10 2016-06-20 한국전자통신연구원 Method and apparatus for allocating ip address for direct communication mobile station
US9544325B2 (en) 2014-12-11 2017-01-10 Zerofox, Inc. Social network security monitoring
US10380181B1 (en) 2014-12-19 2019-08-13 HCA Holdings, Inc. Randomized compliant searching
CN104572869B (en) * 2014-12-22 2017-12-15 电子科技大学 Dynamic updating method based on a variety of distribution patterns in a kind of radar knowledge base
US20160182556A1 (en) * 2014-12-23 2016-06-23 Igor Tatourian Security risk score determination for fraud detection and reputation improvement
JP2018507470A (en) 2015-01-20 2018-03-15 ナントミクス,エルエルシー System and method for predicting response to chemotherapy for high-grade bladder cancer
US10360245B2 (en) * 2015-01-22 2019-07-23 Sap Se Attribute value derivation
US9619434B2 (en) 2015-02-03 2017-04-11 International Business Machines Corporation Group generation using sets of metrics and predicted success values
US11556542B2 (en) * 2015-02-07 2023-01-17 International Business Machines Corporation Optionally compressed output from command-line interface
US10102769B2 (en) * 2015-03-31 2018-10-16 Koninklijke Philips N.V. Device, system and method for providing feedback to a user relating to a behavior of the user
US11158403B1 (en) * 2015-04-29 2021-10-26 Duke University Methods, systems, and computer readable media for automated behavioral assessment
US10395759B2 (en) 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
US10957422B2 (en) * 2015-07-07 2021-03-23 Ancestry.Com Dna, Llc Genetic and genealogical analysis for identification of birth location and surname information
US10516567B2 (en) 2015-07-10 2019-12-24 Zerofox, Inc. Identification of vulnerability to social phishing
US10614368B2 (en) 2015-08-28 2020-04-07 Pearson Education, Inc. System and method for content provisioning with dual recommendation engines
US9807416B2 (en) 2015-09-21 2017-10-31 Google Inc. Low-latency two-pass video coding
US10747899B2 (en) * 2015-10-07 2020-08-18 The Board Of Trustees Of The Leland Stanford Junior University Techniques for determining whether an individual is included in ensemble genomic data
US20180342328A1 (en) * 2015-10-28 2018-11-29 Koninklijke Philips N.V. Medical data pattern discovery
US10354201B1 (en) * 2016-01-07 2019-07-16 Amazon Technologies, Inc. Scalable clustering for mixed machine learning data
US10558785B2 (en) 2016-01-27 2020-02-11 International Business Machines Corporation Variable list based caching of patient information for evaluation of patient rules
CA3014292A1 (en) 2016-02-12 2017-08-17 Regeneron Pharmaceuticals, Inc. Methods and systems for detection of abnormal karyotypes
US10685089B2 (en) 2016-02-17 2020-06-16 International Business Machines Corporation Modifying patient communications based on simulation of vendor communications
US10565309B2 (en) 2016-02-17 2020-02-18 International Business Machines Corporation Interpreting the meaning of clinical values in electronic medical records
US11037658B2 (en) * 2016-02-17 2021-06-15 International Business Machines Corporation Clinical condition based cohort identification and evaluation
US10937526B2 (en) 2016-02-17 2021-03-02 International Business Machines Corporation Cognitive evaluation of assessment questions and answers to determine patient characteristics
US10394759B2 (en) * 2016-03-14 2019-08-27 Airmagnet, Inc. System and method to configure distributed measuring devices and treat measurement data
US10311388B2 (en) 2016-03-22 2019-06-04 International Business Machines Corporation Optimization of patient care team based on correlation of patient characteristics and care provider characteristics
US10923231B2 (en) 2016-03-23 2021-02-16 International Business Machines Corporation Dynamic selection and sequencing of healthcare assessments for patients
US10789316B2 (en) 2016-04-08 2020-09-29 Pearson Education, Inc. Personalized automatic content aggregation generation
US10325215B2 (en) 2016-04-08 2019-06-18 Pearson Education, Inc. System and method for automatic content aggregation generation
US11188841B2 (en) 2016-04-08 2021-11-30 Pearson Education, Inc. Personalized content distribution
US10642848B2 (en) 2016-04-08 2020-05-05 Pearson Education, Inc. Personalized automatic content aggregation generation
US11120507B2 (en) 2016-04-14 2021-09-14 Sensoriant, Inc. Confirmation and rating of user generated activities
US20170316380A1 (en) * 2016-04-29 2017-11-02 Ceb Inc. Profile enrichment
US10252145B2 (en) 2016-05-02 2019-04-09 Bao Tran Smart device
US10740409B2 (en) 2016-05-20 2020-08-11 Magnet Forensics Inc. Systems and methods for graphical exploration of forensic data
EP3458970A4 (en) * 2016-05-20 2019-12-04 Roman Czeslaw Kordasiewicz Systems and methods for graphical exploration of forensic data
EP3475861B1 (en) * 2016-06-27 2024-10-30 Koninklijke Philips N.V. Evaluation of decision tree using ontology
WO2018018025A1 (en) * 2016-07-21 2018-01-25 Ayasdi, Inc. Topological data analysis of data from a fact table and related dimension tables
CN106227855A (en) * 2016-07-28 2016-12-14 努比亚技术有限公司 A kind of transacter, system and method
EP3285293B1 (en) * 2016-08-17 2019-04-10 EM Microelectronic-Marin SA Integrated circuit die having a split solder pad
US11514081B2 (en) * 2016-08-31 2022-11-29 Yahoo Ad Tech Llc Building profiles for clusters with smart union of individual profiles
WO2018075565A1 (en) * 2016-10-17 2018-04-26 Sneez, Llc Computer implemented method and system, and computer program product, for collecting and displaying health status information
US20180144820A1 (en) 2016-10-24 2018-05-24 Habit, Llc System and method for implementing meal selection based on vitals, genotype and phenotype
US10380552B2 (en) 2016-10-31 2019-08-13 Microsoft Technology Licensing, Llc Applicant skills inference for a job
US10970763B1 (en) * 2016-12-02 2021-04-06 Worldpay, Llc Matching engines and graphical user interfaces for partner recommendations and lead sharing
US10381105B1 (en) 2017-01-24 2019-08-13 Bao Personalized beauty system
US11256812B2 (en) 2017-01-31 2022-02-22 Zerofox, Inc. End user social network protection portal
US20180247214A1 (en) * 2017-02-28 2018-08-30 Linkedin Corporation Network node analysis and link generation system
US20180270248A1 (en) * 2017-03-14 2018-09-20 International Business Machines Corporation Secure resource access based on psychometrics
GB2561156A (en) * 2017-03-24 2018-10-10 Clinova Ltd Apparatus, method and computer program
US11394722B2 (en) 2017-04-04 2022-07-19 Zerofox, Inc. Social media rule engine
JP6903474B2 (en) * 2017-04-18 2021-07-14 キヤノンメディカルシステムズ株式会社 Medical information processing device and medical information processing method
US11990246B2 (en) 2018-06-29 2024-05-21 Health Solutions Research, Inc. Identifying patients undergoing treatment with a drug who may be misidentified as being at risk for abusing the treatment drug
US11688521B2 (en) * 2018-06-29 2023-06-27 Health Solutions Research, Inc. Risk stratification for adverse health outcomes
WO2018213112A1 (en) * 2017-05-15 2018-11-22 Bioanalytix, Inc. Systems and methods for automated design of an analytical study for the structural characterization of a biologic composition
CN107256344A (en) * 2017-06-20 2017-10-17 上海联影医疗科技有限公司 Data processing method, device and radiotherapy management system
CN107292528A (en) 2017-06-30 2017-10-24 阿里巴巴集团控股有限公司 Vehicle insurance Risk Forecast Method, device and server
US10868824B2 (en) 2017-07-31 2020-12-15 Zerofox, Inc. Organizational social threat reporting
KR20200037842A (en) * 2017-08-10 2020-04-09 더 던 앤드 브래드스트리트 코포레이션 Systems and methods for dynamic synthesis and transient clustering of semantic attributions for feedback and judgment
US11165801B2 (en) 2017-08-15 2021-11-02 Zerofox, Inc. Social threat correlation
US20190057320A1 (en) * 2017-08-16 2019-02-21 ODH, Inc. Data processing apparatus for accessing shared memory in processing structured data for modifying a parameter vector data structure
US11418527B2 (en) 2017-08-22 2022-08-16 ZeroFOX, Inc Malicious social media account identification
US11403400B2 (en) 2017-08-31 2022-08-02 Zerofox, Inc. Troll account detection
US10268704B1 (en) 2017-10-12 2019-04-23 Vast.com, Inc. Partitioned distributed database systems, devices, and methods
US11134097B2 (en) 2017-10-23 2021-09-28 Zerofox, Inc. Automated social account removal
CN108319739A (en) * 2017-10-27 2018-07-24 宜春学院 A kind of Chaos-RBF Neural Network petrol engine air admission method for predicting
JP7003574B2 (en) * 2017-10-30 2022-01-20 富士通株式会社 Information processing equipment, information processing methods and programs
US11023494B2 (en) * 2017-12-12 2021-06-01 International Business Machines Corporation Computer-implemented method and computer system for clustering data
CN108228377B (en) * 2017-12-29 2020-07-07 华中科技大学 SMART threshold value optimization method for disk fault detection
CN108090216B (en) * 2017-12-29 2021-02-05 咪咕文化科技有限公司 Label prediction method, device and storage medium
US11244340B1 (en) * 2018-01-19 2022-02-08 Intuit Inc. Method and system for using machine learning techniques to identify and recommend relevant offers
CN108509764B (en) * 2018-02-27 2020-06-16 西北大学 Ancient organism pedigree evolution analysis method based on genetic attribute reduction
CN108446342A (en) * 2018-03-02 2018-08-24 深圳市博安达信息技术股份有限公司 A kind of environmental quality assessment system, method, apparatus and storage device
US11182850B1 (en) 2018-03-13 2021-11-23 Wells Fargo Bank, N.A. User interface for interfacing with human users
US20190287658A1 (en) * 2018-03-15 2019-09-19 Arm Ltd. Systems, devices, and/or processes for omic and/or environmental content processing and/or communication
US10841299B2 (en) 2018-03-15 2020-11-17 Arm Ltd. Systems, devices, and/or processes for omic content processing and/or partitioning
US10841083B2 (en) 2018-03-15 2020-11-17 Arm Ltd. Systems, devices, and/or processes for OMIC content processing and/or communication
MX2020010414A (en) 2018-04-05 2020-10-28 Ancestry Com Dna Llc Community assignments in identity by descent networks and genetic variant origination.
US11164098B2 (en) * 2018-04-30 2021-11-02 International Business Machines Corporation Aggregating similarity metrics
WO2019217574A1 (en) * 2018-05-08 2019-11-14 Ancestry.Com Operations Inc. Genealogy item ranking and recommendation
US11694801B2 (en) 2018-05-15 2023-07-04 International Business Machines Corporation Identifying and extracting stimulus-response variables from electronic health records
US11625647B2 (en) 2018-05-25 2023-04-11 Todd Marlin Methods and systems for facilitating analysis of a model
US11527331B2 (en) 2018-06-15 2022-12-13 Xact Laboratories, LLC System and method for determining the effectiveness of medications using genetics
US20210241892A1 (en) * 2018-06-15 2021-08-05 Xact Laboratories, LLC Providing enhanced patient updates to facilitate precision therapy
US11380424B2 (en) 2018-06-15 2022-07-05 Xact Laboratories Llc System and method for genetic based efficacy testing
US20220036990A1 (en) * 2018-06-15 2022-02-03 Xact Laboratories, LLC Automated prior authorization for genetic efficacy testing with presciption dispensation
US11398312B2 (en) * 2018-06-15 2022-07-26 Xact Laboratories, LLC Preventing the fill of ineffective or under-effective medications through integration of genetic efficacy testing results with legacy electronic patient records
US20190385711A1 (en) * 2018-06-19 2019-12-19 Ellipsis Health, Inc. Systems and methods for mental health assessment
JP2021529382A (en) * 2018-06-19 2021-10-28 エリプシス・ヘルス・インコーポレイテッド Systems and methods for mental health assessment
CN108920790A (en) * 2018-06-20 2018-11-30 国网上海市电力公司 A kind of public building electricity consumption pattern recognition model method for building up based on historical data
US11062052B2 (en) * 2018-07-13 2021-07-13 Bank Of America Corporation System for provisioning validated sanitized data for application development
MX2021001839A (en) 2018-08-17 2021-05-13 Ancestry Com Dna Llc Prediction of phenotypes using recommender systems.
CN109376842B (en) * 2018-08-20 2022-04-05 安徽大学 Functional module mining method based on attribute optimization protein network
US10628180B1 (en) 2018-08-20 2020-04-21 C/Hca, Inc. Disparate data aggregation for user interface customization
CN109145990A (en) * 2018-08-22 2019-01-04 云图元睿(上海)科技有限公司 Higher-dimension market segments method and device based on canonical correlation
NZ774718A (en) 2018-09-11 2021-04-30 Global ancestry determination system
US11061937B2 (en) * 2018-09-27 2021-07-13 Salesforce.Com, Inc. Method and system for classifying user identifiers into similar segments
US10515106B1 (en) * 2018-10-01 2019-12-24 Infosum Limited Systems and methods for processing a database query
US20200135300A1 (en) * 2018-10-26 2020-04-30 Color Genomics, Inc. Applying low coverage whole genome sequencing for intelligent genomic routing
US10896742B2 (en) 2018-10-31 2021-01-19 Ancestry.Com Dna, Llc Estimation of phenotypes using DNA, pedigree, and historical data
US11813054B1 (en) 2018-11-08 2023-11-14 Duke University Methods, systems, and computer readable media for conducting an automatic assessment of postural control of a subject
US11580874B1 (en) 2018-11-08 2023-02-14 Duke University Methods, systems, and computer readable media for automated attention assessment
US11003999B1 (en) 2018-11-09 2021-05-11 Bottomline Technologies, Inc. Customized automated account opening decisioning using machine learning
JP7174377B2 (en) * 2018-11-26 2022-11-17 株式会社日立製作所 Database management system and anonymization processing method
US10936478B2 (en) * 2019-01-10 2021-03-02 Oracle International Corporation Fast change impact analysis tool for large-scale software systems
KR20200088708A (en) * 2019-01-15 2020-07-23 제노플랜코리아 주식회사 Insurance recommendation system and operation method thereof
US11756653B2 (en) * 2019-01-17 2023-09-12 Koninklijke Philips N.V. Machine learning model for predicting multidrug resistant gene targets
US11204691B2 (en) 2019-02-05 2021-12-21 International Business Machines Corporation Reducing input requests in response to learned user preferences
WO2020161710A1 (en) * 2019-02-10 2020-08-13 Tyto Care Ltd. A system and method for cluster based medical diagnosis support
CN109885797B (en) * 2019-02-18 2020-12-01 武汉大学 Relational network construction method based on multi-identity space mapping
US11409990B1 (en) 2019-03-01 2022-08-09 Bottomline Technologies (De) Inc. Machine learning archive mechanism using immutable storage
WO2020184816A1 (en) * 2019-03-13 2020-09-17 주식회사 메디리타 Data processing method for deriving new drug candidate
US10553319B1 (en) * 2019-03-14 2020-02-04 Kpn Innovations, Llc Artificial intelligence systems and methods for vibrant constitutional guidance
US10587545B1 (en) * 2019-03-23 2020-03-10 Sagely, Inc. Web-based system for enhancing user well-being
US11392854B2 (en) * 2019-04-29 2022-07-19 Kpn Innovations, Llc. Systems and methods for implementing generated alimentary instruction sets based on vibrant constitutional guidance
US10635837B1 (en) 2019-04-30 2020-04-28 HealthBlock, Inc. Dynamic data protection
US12067151B2 (en) 2019-04-30 2024-08-20 Enya Inc. Resource-efficient privacy-preserving transactions
CA3140084A1 (en) * 2019-05-22 2020-11-26 Affinio Inc. Marketing inference engine and method therefor
WO2020237048A1 (en) * 2019-05-23 2020-11-26 Prosper Dna Inc. Epigenetics-based health and disease assessments for treatment and wellness recommendations
US11200814B2 (en) * 2019-06-03 2021-12-14 Kpn Innovations, Llc Methods and systems for self-fulfillment of a dietary request
US11182729B2 (en) * 2019-06-03 2021-11-23 Kpn Innovations Llc Methods and systems for transport of an alimentary component based on dietary required eliminations
CN110619096B (en) * 2019-06-12 2022-08-23 北京无限光场科技有限公司 Method and apparatus for synchronizing data
US11651102B1 (en) 2019-06-14 2023-05-16 Ryan Welker Three-dimensional mapping for data protection
US11853435B1 (en) * 2019-06-14 2023-12-26 Ryan Welker Interactive obfuscation and interrogatories
US11687807B1 (en) 2019-06-26 2023-06-27 Bottomline Technologies, Inc. Outcome creation based upon synthesis of history
US11114193B2 (en) * 2019-07-03 2021-09-07 Kpn Innovations, Llc Methods and systems for optimizing dietary levels utilizing artificial intelligence
CN110472657B (en) * 2019-07-04 2021-09-03 西北工业大学 Image classification method based on trust function theory
US11404167B2 (en) * 2019-09-25 2022-08-02 Brilliance Center Bv System for anonymously tracking and/or analysing health in a population of subjects
WO2021059032A1 (en) 2019-09-25 2021-04-01 Brilliance Center B.V. Methods and systems for anonymously tracking and/or analysing individual subjects and/or objects
CA3167219A1 (en) 2020-02-05 2021-08-12 Marisa Marlin Methods and systems for facilitating analysis of a model
US11328820B2 (en) * 2020-02-14 2022-05-10 Doctor on Demand, Inc. Decision engine based on disparate data sources
US11461649B2 (en) * 2020-03-19 2022-10-04 Adobe Inc. Searching for music
US11545250B2 (en) * 2020-03-20 2023-01-03 Kpn Innovations, Llc. Methods and systems for generating lifestyle change recommendations based on biological extractions
KR20210121779A (en) * 2020-03-31 2021-10-08 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Provision of voice information by using printout on which attribute information of document is recorded
EP4143761A1 (en) * 2020-04-29 2023-03-08 LifeQ B.V. Epidemic monitoring system
US20210406700A1 (en) * 2020-06-25 2021-12-30 Kpn Innovations, Llc Systems and methods for temporally sensitive causal heuristics
CN111833198A (en) * 2020-07-20 2020-10-27 民生科技有限责任公司 Method for intelligently processing insurance clauses
US12106358B1 (en) 2020-07-24 2024-10-01 Vast.com, Inc. Systems, methods, and devices for unified e-commerce platforms for unique items
CA3190207A1 (en) * 2020-07-29 2022-02-03 Whoop, Inc. Pulse shape analysis
US11335443B1 (en) 2020-09-07 2022-05-17 OpenNano Pte. Ltd. Phenotypic patient data derivation from economic data
US11461193B2 (en) * 2020-09-24 2022-10-04 International Business Machines Corporation Data storage volume recovery management
EP4222658A1 (en) 2020-10-01 2023-08-09 Crowdsmart, Inc. Probabilistic graphical networks
CN112182336B (en) * 2020-10-13 2023-05-30 广西机电职业技术学院 Beijing pattern pedigree sorting and classifying system
CN112613696B (en) * 2020-11-30 2024-09-24 国网北京市电力公司 Vendor processing method, device, storage medium and processor
CA3142131A1 (en) 2020-12-15 2022-06-15 Bagne-Miller Enterprises, Inc. Complex adaptive systems metrology by computation methods and systems
US20220310229A1 (en) * 2021-03-26 2022-09-29 Vydiant, Inc Personalized health system, method and device having a sleep function
CN113220925B (en) * 2021-04-26 2022-04-12 华南师范大学 Cell image duplicate checking method and system
US20220344057A1 (en) * 2021-04-27 2022-10-27 Oura Health Oy Method and system for supplemental sleep detection
CN113470831B (en) * 2021-09-03 2021-11-16 武汉泰乐奇信息科技有限公司 Big data conversion method and device based on data degeneracy
JP2023039502A (en) * 2021-09-09 2023-03-22 株式会社日立製作所 Computer system and calculation method for amount of payment
CN113838573B (en) * 2021-09-14 2022-10-21 北京百度网讯科技有限公司 Clinical assistant decision-making diagnosis self-learning method, device, equipment and storage medium
US12045219B2 (en) 2021-11-24 2024-07-23 Ancestry.Com Dna, Llc Scoring method for matches based on age probability
WO2023129655A1 (en) * 2021-12-30 2023-07-06 The Regents Of The University Of California Algorithmic lifestyle optimization
CN114912436B (en) * 2022-05-26 2024-10-22 华中科技大学 Fine granularity entity classification-oriented noise label correction method
US11588630B1 (en) * 2022-08-10 2023-02-21 Kpn Innovations, Llc. Method and system for generating keys associated with biological extraction cluster categories
US11894116B1 (en) * 2022-12-01 2024-02-06 Oceandrive Ventures, LLC Apparatus for extending longevity and a method for its use

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769074A (en) * 1994-10-13 1998-06-23 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US5940802A (en) * 1997-03-17 1999-08-17 The Board Of Regents Of The University Of Oklahoma Digital disease management system
US5985559A (en) * 1997-04-30 1999-11-16 Health Hero Network System and method for preventing, diagnosing, and treating genetic and pathogen-caused disease
US6203993B1 (en) * 1996-08-14 2001-03-20 Exact Science Corp. Methods for the detection of nucleic acids
US20020010552A1 (en) * 2000-05-26 2002-01-24 Hugh Rienhoff System for genetically characterizing an individual for evaluation using genetic and phenotypic variation over a wide area network
US20020077775A1 (en) * 2000-05-25 2002-06-20 Schork Nicholas J. Methods of DNA marker-based genetic analysis using estimated haplotype frequencies and uses thereof
US20020094532A1 (en) * 2000-10-06 2002-07-18 Bader Joel S. Efficient tests of association for quantitative traits and affected-unaffected studies using pooled DNA
US20020123058A1 (en) * 2000-12-01 2002-09-05 Threadgill David W. Method for ultra-high resolution mapping of genes and determination of genetic networks among genes underlying phenotypic traits
US20020128860A1 (en) * 2001-01-04 2002-09-12 Leveque Joseph A. Collecting and managing clinical information
US20020133299A1 (en) * 2000-09-20 2002-09-19 Jacob Howard J. Physiological profiling
US20020137086A1 (en) * 2001-03-01 2002-09-26 Alexander Olek Method for the development of gene panels for diagnostic and therapeutic purposes based on the expression and methylation status of the genes
US6506562B1 (en) * 1998-10-26 2003-01-14 Yale University Allele frequency differences method for phenotype cloning
US20030040002A1 (en) * 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US20030065241A1 (en) * 2002-08-27 2003-04-03 Joerg Hohnloser Medical risk assessment system and method
US20030065535A1 (en) * 2001-05-01 2003-04-03 Structural Bioinformatics, Inc. Diagnosing inapparent diseases from common clinical tests using bayesian analysis
US20030130873A1 (en) * 2001-11-19 2003-07-10 Nevin William S. Health care provider information system
US20030198970A1 (en) * 1998-06-06 2003-10-23 Genostic Pharma Limited Genostics
US20030224394A1 (en) * 2002-02-01 2003-12-04 Rosetta Inpharmatics, Llc Computer systems and methods for identifying genes and determining pathways associated with traits
US20030233377A1 (en) * 2002-06-18 2003-12-18 Ilija Kovac Methods, systems, software and apparatus for prediction of polygenic conditions
US20040015337A1 (en) * 2002-01-04 2004-01-22 Thomas Austin W. Systems and methods for predicting disease behavior
US20040018500A1 (en) * 2001-11-21 2004-01-29 Norman Glassbrook Methods and systems for analyzing complex biological systems
US20040019598A1 (en) * 2002-05-17 2004-01-29 Jing Huang Binary tree for complex supervised learning
US20040024534A1 (en) * 2002-08-02 2004-02-05 Taimont Biotech Inc. Process of creating an index for diagnosis or prognosis purpose
US6730023B1 (en) * 1999-10-15 2004-05-04 Hemopet Animal genetic and health profile database management
US20040093331A1 (en) * 2002-09-20 2004-05-13 Board Of Regents, University Of Texas System Computer program products, systems and methods for information discovery and relational analyses
US20040111410A1 (en) * 2002-10-14 2004-06-10 Burgoon David Alford Information reservoir
US20040158581A1 (en) * 2001-05-21 2004-08-12 Max Kotlyar Method for determination of co-occurences of attributes
US20040175700A1 (en) * 2002-05-15 2004-09-09 Elixir Pharmaceuticals, Inc. Method for cohort selection
US20040193019A1 (en) * 2003-03-24 2004-09-30 Nien Wei Methods for predicting an individual's clinical treatment outcome from sampling a group of patient's biological profiles
US20040197799A1 (en) * 2001-05-03 2004-10-07 Robert Williamson Determination of a genetic predisposition for behavioral disorders
US20040221855A1 (en) * 2002-10-17 2004-11-11 Paul Ashton Methods for monitoring treatment of disease
US20050021240A1 (en) * 2000-11-02 2005-01-27 Epigenomics Ag Systems, methods and computer program products for guiding selection of a therapeutic treatment regimen based on the methylation status of the DNA
US20050032066A1 (en) * 2003-08-04 2005-02-10 Heng Chew Kiat Method for assessing risk of diseases with multiple contributing factors
US20050037405A1 (en) * 2003-07-11 2005-02-17 Avshalom Caspi Method for assessing behavioral predisposition
US20050090718A1 (en) * 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
US6912492B1 (en) * 1999-05-25 2005-06-28 University Of Medicine & Dentistry Of New Jersey Methods for diagnosing, preventing, and treating developmental disorders due to a combination of genetic and environmental factors
US20050143928A1 (en) * 2003-10-03 2005-06-30 Cira Discovery Sciences, Inc. Method and apparatus for discovering patterns in binary or categorical data
US20050158788A1 (en) * 1998-11-10 2005-07-21 Genset S.A. Methods, software and apparati for identifying genomic regions harboring a gene associated with a detectable trait
US20050170528A1 (en) * 2002-10-24 2005-08-04 Mike West Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications
US20050176057A1 (en) * 2003-09-26 2005-08-11 Troy Bremer Diagnostic markers of mood disorders and methods of use thereof
US6931326B1 (en) * 2000-06-26 2005-08-16 Genaissance Pharmaceuticals, Inc. Methods for obtaining and using haplotype data
US20050191678A1 (en) * 2004-02-12 2005-09-01 Geneob Usa Inc. Genetic predictability for acquiring a disease or condition
US20050216208A1 (en) * 2004-03-26 2005-09-29 Akira Saito Diagnostic decision support system and method of diagnostic decision support
US20050256649A1 (en) * 2001-12-21 2005-11-17 Roses Allen D High throughput correlation of polymorphic forms with multiple phenotypes within clinical populations
US20050260610A1 (en) * 2004-05-20 2005-11-24 Kurtz Richard E Method for diagnosing and prescribing a regimen of therapy for human health risk
US6994962B1 (en) * 1998-12-09 2006-02-07 Massachusetts Institute Of Technology Methods of identifying point mutations in a genome
US7054758B2 (en) * 2001-01-30 2006-05-30 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
US20060129034A1 (en) * 2002-08-15 2006-06-15 Pacific Edge Biotechnology, Ltd. Medical decision support systems utilizing gene expression and clinical information and method for use
US7072794B2 (en) * 2001-08-28 2006-07-04 Rockefeller University Statistical methods for multivariate ordinal data which are used for data base driven decision support
US20060200319A1 (en) * 1997-03-28 2006-09-07 Brown Stephen J System and method for identifying disease-influencing genes
US7107155B2 (en) * 2001-12-03 2006-09-12 Dnaprint Genomics, Inc. Methods for the identification of genetic features for complex genetics classifiers
US7127355B2 (en) * 2004-03-05 2006-10-24 Perlegen Sciences, Inc. Methods for genetic analysis
US20070220017A1 (en) * 2006-03-14 2007-09-20 International Business Machines Corporation Method and system to estimate the number of distinct value combinations for a set of attributes in a database system

Family Cites Families (453)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5288644A (en) 1990-04-04 1994-02-22 The Rockefeller University Instrument and method for the sequencing of genome
DK0562025T3 (en) 1990-12-06 2001-06-18 Affymetrix Inc Compounds and their use in a binary synthesis strategy
US5301105A (en) 1991-04-08 1994-04-05 Desmond D. Cummings All care health management system
US5384261A (en) 1991-11-22 1995-01-24 Affymax Technologies N.V. Very large scale immobilized polymer synthesis using mechanically directed flow paths
JP3526585B2 (en) * 1992-03-12 2004-05-17 株式会社リコー Query Processing Optimization Method for Distributed Database
US5376526A (en) 1992-05-06 1994-12-27 The Board Of Trustees Of The Leland Stanford Junior University Genomic mismatch scanning
US6303297B1 (en) * 1992-07-17 2001-10-16 Incyte Pharmaceuticals, Inc. Database for storage and analysis of full-length sequences
US6131092A (en) * 1992-08-07 2000-10-10 Masand; Brij System and method for identifying matches of query patterns to document text in a document textbase
US20030212579A1 (en) 2002-05-08 2003-11-13 Brown Stephen J. Remote health management system
US5551880A (en) 1993-01-22 1996-09-03 Bonnstetter; Bill J. Employee success prediction system
US5649181A (en) * 1993-04-16 1997-07-15 Sybase, Inc. Method and apparatus for indexing database columns with bit vectors
US5692501A (en) 1993-09-20 1997-12-02 Minturn; Paul Scientific wellness personal/clinical/laboratory assessments, profile and health risk managment system with insurability rankings on cross-correlated 10-point optical health/fitness/wellness scales
US5839120A (en) 1993-11-30 1998-11-17 Thearling; Kurt Genetic algorithm control arrangement for massively parallel computer
US5660176A (en) 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5724567A (en) 1994-04-25 1998-03-03 Apple Computer, Inc. System for directing relevance-ranked data objects to computer users
US6460036B1 (en) 1994-11-29 2002-10-01 Pinpoint Incorporated System and method for providing customized electronic newspapers and target advertisements
US5758257A (en) 1994-11-29 1998-05-26 Herz; Frederick System and method for scheduling broadcast of and access to video programs and other data using customer profiles
US5715451A (en) 1995-07-20 1998-02-03 Spacelabs Medical, Inc. Method and system for constructing formulae for processing medical data
US5941947A (en) 1995-08-18 1999-08-24 Microsoft Corporation System and method for controlling access to data entities in a computer network
US7305348B1 (en) 1996-02-20 2007-12-04 Health Hero Network, Inc. Aggregating and pooling health related information in a communication system with feedback
US5752242A (en) 1996-04-18 1998-05-12 Electronic Data Systems Corporation System and method for automated retrieval of information
US6189013B1 (en) * 1996-12-12 2001-02-13 Incyte Genomics, Inc. Project-based full length biomolecular sequence database
US6285999B1 (en) 1997-01-10 2001-09-04 The Board Of Trustees Of The Leland Stanford Junior University Method for node ranking in a linked database
US20030203008A1 (en) * 1997-01-13 2003-10-30 Subramanian Gunasekaran Preparation of collagen
US5860917A (en) * 1997-01-15 1999-01-19 Chiron Corporation Method and apparatus for predicting therapeutic outcomes
US6063028A (en) 1997-03-20 2000-05-16 Luciano; Joanne Sylvia Automated treatment selection method
WO1998043182A1 (en) 1997-03-24 1998-10-01 Queen's University At Kingston Coincidence detection method, products and apparatus
US6182068B1 (en) 1997-08-01 2001-01-30 Ask Jeeves, Inc. Personalized search methods
US20060026048A1 (en) 1997-08-08 2006-02-02 Kolawa Adam K Method and apparatus for automated selection, organization, and recommendation of items based on user preference topography
US5983234A (en) * 1997-09-17 1999-11-09 Novell, Inc. Method and apparatus for generically viewing and editing objects
US20020064792A1 (en) * 1997-11-13 2002-05-30 Lincoln Stephen E. Database for storage and analysis of full-length sequences
JPH11272676A (en) * 1998-03-26 1999-10-08 Kawasaki Steel Corp Method and device for divisional retrieval
US6014631A (en) * 1998-04-02 2000-01-11 Merck-Medco Managed Care, Llc Computer implemented patient medication review system and process for the managed care, health care and/or pharmacy industry
US7444308B2 (en) 2001-06-15 2008-10-28 Health Discovery Corporation Data mining platform for bioinformatics and other knowledge discovery
US7921068B2 (en) 1998-05-01 2011-04-05 Health Discovery Corporation Data mining platform for knowledge discovery from heterogeneous data types and/or heterogeneous data sources
US6108647A (en) 1998-05-21 2000-08-22 Lucent Technologies, Inc. Method, apparatus and programmed medium for approximating the data cube and obtaining approximate answers to queries in relational databases
CA2273616A1 (en) 1998-06-08 1999-12-08 The Board Of Trustees Of The Leland Stanford Junior University Method for parallel screening of allelic variation
AUPP398898A0 (en) 1998-06-09 1998-07-02 University Of Queensland, The Diagnostic method and apparatus
AU4555799A (en) 1998-06-12 1999-12-30 Craig Anthony Cooney Nutritional methyl supplements change epigenetics, dna methylation, phenotype, and appearance of mammalian offspring
US6216134B1 (en) 1998-06-25 2001-04-10 Microsoft Corporation Method and system for visualization of clusters and classifications
US6266649B1 (en) 1998-09-18 2001-07-24 Amazon.Com, Inc. Collaborative recommendations using item-to-item similarity mappings
US6269364B1 (en) 1998-09-25 2001-07-31 Intel Corporation Method and apparatus to automatically test and modify a searchable knowledge base
US6703228B1 (en) 1998-09-25 2004-03-09 Massachusetts Institute Of Technology Methods and products related to genotyping and DNA analysis
US6393399B1 (en) 1998-09-30 2002-05-21 Scansoft, Inc. Compound word recognition
US6253203B1 (en) 1998-10-02 2001-06-26 Ncr Corporation Privacy-enhanced database
US7076504B1 (en) 1998-11-19 2006-07-11 Accenture Llp Sharing a centralized profile
US20010000810A1 (en) 1998-12-14 2001-05-03 Oliver Alabaster Computerized visual behavior analysis and training method
US6553386B1 (en) * 1998-12-14 2003-04-22 Oliver Alabaster System and method for computerized visual diet behavior analysis and training
US6601059B1 (en) 1998-12-23 2003-07-29 Microsoft Corporation Computerized searching tool with spell checking
US6487541B1 (en) 1999-01-22 2002-11-26 International Business Machines Corporation System and method for collaborative filtering with applications to e-commerce
US6694311B1 (en) 1999-01-25 2004-02-17 International Business Machines Corporation Method and apparatus for fast query approximation using adaptive query vector projection
US6654724B1 (en) 1999-02-12 2003-11-25 Adheris, Inc. System for processing pharmaceutical data while maintaining patient confidentially
US6510430B1 (en) * 1999-02-24 2003-01-21 Acumins, Inc. Diagnosis and interpretation methods and apparatus for a personal nutrition program
GB9904585D0 (en) 1999-02-26 1999-04-21 Gemini Research Limited Clinical and diagnostic database
US7418399B2 (en) 1999-03-10 2008-08-26 Illinois Institute Of Technology Methods and kits for managing diagnosis and therapeutics of bacterial infections
DE19911130A1 (en) 1999-03-12 2000-09-21 Hager Joerg Methods for identifying chromosomal regions and genes
US20010034023A1 (en) * 1999-04-26 2001-10-25 Stanton Vincent P. Gene sequence variations with utility in determining the treatment of disease, in genes relating to drug processing
US6629097B1 (en) * 1999-04-28 2003-09-30 Douglas K. Keith Displaying implicit associations among items in loosely-structured data sets
US7162471B1 (en) 1999-05-11 2007-01-09 Maquis Techtrix Llc Content query system and method
US9486429B2 (en) 1999-06-01 2016-11-08 Vanderbilt University Therapeutic methods employing nitric oxide precursors
US20040236721A1 (en) * 2003-05-20 2004-11-25 Jordan Pollack Method and apparatus for distributing information to users
WO2001001218A2 (en) * 1999-06-25 2001-01-04 Genaissance Pharmaceuticals, Inc. Methods for obtaining and using haplotype data
US6665665B1 (en) 1999-07-30 2003-12-16 Verizon Laboratories Inc. Compressed document surrogates
US6321163B1 (en) 1999-09-02 2001-11-20 Genetics Institute, Inc. Method and apparatus for analyzing nucleic acid sequences
ATE444532T1 (en) 1999-10-13 2009-10-15 Sequenom Inc METHOD FOR IDENTIFYING POLYMORPHOIC GENETIC MARKERS
US7552039B2 (en) 1999-10-15 2009-06-23 Hemopet Method for sample processing and integrated reporting of dog health diagnosis
US6640211B1 (en) 1999-10-22 2003-10-28 First Genetic Trust Inc. Genetic profiling and banking system and method
US7630986B1 (en) 1999-10-27 2009-12-08 Pinpoint, Incorporated Secure data interchange
GB2363874B (en) 1999-11-06 2004-08-04 Dennis Sunga Fernandez Bioinformatic transaction scheme
US6560595B1 (en) * 1999-11-15 2003-05-06 Novell, Inc. Operator for correlated predicates in a query
WO2001037878A2 (en) 1999-11-29 2001-05-31 Orchid Biosciences, Inc. Methods of identifying optimal drug combinations and compositions thereof
WO2001042451A2 (en) 1999-12-08 2001-06-14 Genset FULL-LENGTH HUMAN cDNAs ENCODING POTENTIALLY SECRETED PROTEINS
US6507840B1 (en) 1999-12-21 2003-01-14 Lucent Technologies Inc. Histogram-based approximation of set-valued query-answers
US6317700B1 (en) * 1999-12-22 2001-11-13 Curtis A. Bagne Computational method and system to perform empirical induction
DE19963669A1 (en) 1999-12-29 2001-07-19 Fischer Joern Control system
AU2370901A (en) 1999-12-30 2001-07-16 Starlab Nv/Sa Methods for collecting genetic material
US6980958B1 (en) 2000-01-11 2005-12-27 Zycare, Inc. Apparatus and methods for monitoring and modifying anticoagulation therapy of remotely located patients
US7366719B2 (en) * 2000-01-21 2008-04-29 Health Discovery Corporation Method for the manipulation, storage, modeling, visualization and quantification of datasets
US6879959B1 (en) 2000-01-21 2005-04-12 Quality Care Solutions, Inc. Method of adjudicating medical claims based on scores that determine medical procedure monetary values
US20020048763A1 (en) 2000-02-04 2002-04-25 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis
US6527713B2 (en) 2000-02-14 2003-03-04 First Opinion Corporation Automated diagnostic system and method including alternative symptoms
IL134994A0 (en) * 2000-03-09 2001-05-20 Yeda Res & Dev Coupled two way clustering analysis of data
US6988075B1 (en) * 2000-03-15 2006-01-17 Hacker L Leonard Patient-controlled medical information system and method
US20020133495A1 (en) 2000-03-16 2002-09-19 Rienhoff Hugh Y. Database system and method
US6542902B2 (en) 2000-03-24 2003-04-01 Bridge Medical, Inc. Method and apparatus for displaying medication information
US6596488B2 (en) * 2000-03-30 2003-07-22 City Of Hope Tumor suppressor gene
DE10017675A1 (en) 2000-04-08 2001-12-06 Qtl Ag Ges Zur Erforschung Kom Procedure for the identification and isolation of genome fragments with coupling imbalance
WO2001079561A2 (en) 2000-04-17 2001-10-25 Liggett Stephen B Alpha-2 adrenergic receptor polymorphisms
US20020052761A1 (en) 2000-05-11 2002-05-02 Fey Christopher T. Method and system for genetic screening data collection, analysis, report generation and access
US6947174B1 (en) * 2000-05-12 2005-09-20 Xerox Corporation Simple mechanism for profile selection
US20030171876A1 (en) 2002-03-05 2003-09-11 Victor Markowitz System and method for managing gene expression data
US20020049772A1 (en) * 2000-05-26 2002-04-25 Hugh Rienhoff Computer program product for genetically characterizing an individual for evaluation using genetic and phenotypic variation over a wide area network
US6980999B1 (en) * 2000-05-31 2005-12-27 Clare Grana Method and system for providing dietary information
US7668738B2 (en) * 2000-06-01 2010-02-23 Blue Cross And Blue Shield Of South Carolina Insurance claim filing system and method
AU2001271670A1 (en) 2000-06-29 2002-01-14 Alpha Blox Corporation Caching scheme for multi-dimensional data
US6519604B1 (en) 2000-07-19 2003-02-11 Lucent Technologies Inc. Approximate querying method for databases with multiple grouping attributes
AU2001276991A1 (en) * 2000-07-20 2002-02-05 J. Alexander Marchosky Patient-controlled automated medical record, diagnosis, and treatment system andmethod
WO2002009427A1 (en) 2000-07-21 2002-01-31 Koninklijke Philips Electronics N.V. Method and system for determining a user profile
US6687696B2 (en) * 2000-07-26 2004-02-03 Recommind Inc. System and method for personalized search, information filtering, and for generating recommendations utilizing statistical latent class models
US7567870B1 (en) * 2000-07-31 2009-07-28 Institute For Systems Biology Multiparameter analysis for predictive medicine
EP1346063A2 (en) 2000-07-31 2003-09-24 The Institute for Systems Biology Multiparameter analysis for predictive medicine
WO2002017207A2 (en) 2000-08-23 2002-02-28 Arexis Ab System and method of storing genetic information
US20020072492A1 (en) 2000-09-12 2002-06-13 Myers Timothy G. Non-genetic based protein disease markers
US7406484B1 (en) * 2000-09-12 2008-07-29 Tbrix, Inc. Storage allocation in a distributed segmented file system
WO2002028275A2 (en) 2000-09-29 2002-04-11 New Health Sciences, Inc. Systems and methods for investigating blood flow
US7428494B2 (en) 2000-10-11 2008-09-23 Malik M. Hasan Method and system for generating personal/individual health records
US7054755B2 (en) * 2000-10-12 2006-05-30 Iconix Pharmaceuticals, Inc. Interactive correlation of compound information and genomic information
EP1346299A1 (en) 2000-10-18 2003-09-24 Johnson &amp; Johnson Consumer Companies, Inc. Intelligent performance-based product recommendation system
US20020095585A1 (en) * 2000-10-18 2002-07-18 Genomic Health, Inc. Genomic profile information systems and methods
US6898595B2 (en) * 2000-10-19 2005-05-24 General Electric Company Searching and matching a set of query strings used for accessing information in a database directory
US6904408B1 (en) 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
CA2425772C (en) 2000-10-20 2012-07-24 Virco Bvba Establishment of biological cut-off values for predicting resistance to therapy
EP1328808A2 (en) * 2000-10-20 2003-07-23 Children's Medical Center Corporation Methods for analyzing dynamic changes in cellular informatics and uses therefor
US6766272B2 (en) 2000-10-27 2004-07-20 Tanita Corporation Method and apparatus for deriving body fat area
US6450956B1 (en) * 2000-11-06 2002-09-17 Siemens Corporate Research, Inc. System and method for treatment and outcome measurement analysis
US20030130798A1 (en) 2000-11-14 2003-07-10 The Institute For Systems Biology Multiparameter integration methods for the analysis of biological networks
US20020059082A1 (en) 2000-11-15 2002-05-16 Roger Moczygemba Appointment setting and payment system and method
US20030195706A1 (en) 2000-11-20 2003-10-16 Michael Korenberg Method for classifying genetic data
WO2002063415A2 (en) 2000-12-04 2002-08-15 Genaissance Pharmaceuticals, Inc. System and method for the management of genomic data
US20030113727A1 (en) 2000-12-06 2003-06-19 Girn Kanwaljit Singh Family history based genetic screening method and apparatus
US7447754B2 (en) 2000-12-06 2008-11-04 Microsoft Corporation Methods and systems for processing multi-media editing projects
US20030069199A1 (en) * 2000-12-07 2003-04-10 Hanan Polansky Treatment methods based on microcompetition for a limiting GABP complex
WO2002047007A2 (en) * 2000-12-07 2002-06-13 Phase It Intelligent Solutions Ag Expert system for classification and prediction of genetic diseases
US7085834B2 (en) 2000-12-22 2006-08-01 Oracle International Corporation Determining a user's groups
US20020082868A1 (en) 2000-12-27 2002-06-27 Pories Walter J. Systems, methods and computer program products for creating and maintaining electronic medical records
KR100392331B1 (en) * 2001-02-02 2003-07-22 서오텔레콤(주) System for managing medical insurance using information communication network and method therefore
US8898021B2 (en) 2001-02-02 2014-11-25 Mark W. Perlin Method and system for DNA mixture analysis
WO2002073504A1 (en) 2001-03-14 2002-09-19 Gene Logic, Inc. A system and method for retrieving and using gene expression data from multiple sources
CA2377213A1 (en) 2001-03-20 2002-09-20 Ortho-Clinical Diagnostics, Inc. Method for providing clinical diagnostic services
US20030130991A1 (en) 2001-03-28 2003-07-10 Fidel Reijerse Knowledge discovery from data sets
US7957907B2 (en) 2001-03-30 2011-06-07 Sorenson Molecular Genealogy Foundation Method for molecular genealogical research
US7269578B2 (en) * 2001-04-10 2007-09-11 Latanya Sweeney Systems and methods for deidentifying entries in a data source
US6714929B1 (en) 2001-04-13 2004-03-30 Auguri Corporation Weighted preference data search system and method
US6996477B2 (en) * 2001-04-19 2006-02-07 Dana Farber Cancer Institute, Inc. Computational subtraction method
US20030030637A1 (en) * 2001-04-20 2003-02-13 Grinstein Georges G. Method and system for data analysis
AUPR454001A0 (en) 2001-04-20 2001-05-24 Careers Fast Track Pty Ltd Interactive learning and career management system
WO2002091234A1 (en) * 2001-04-24 2002-11-14 Takahiro Nakamura Retrieval device for database of secondary information-attached text
US20020183965A1 (en) 2001-05-02 2002-12-05 Gogolak Victor V. Method for analyzing drug adverse effects employing multivariate statistical analysis
AUPR480901A0 (en) 2001-05-04 2001-05-31 Genomics Research Partners Pty Ltd Diagnostic method for assessing a condition of a performance animal
US20050228595A1 (en) 2001-05-25 2005-10-13 Cooke Laurence H Processors for multi-dimensional sequence comparisons
US6815380B2 (en) 2001-05-29 2004-11-09 Owens Corning Fiberglas Technology, Inc. High performance kraft facing for fiberglass insulation
US6993532B1 (en) * 2001-05-30 2006-01-31 Microsoft Corporation Auto playlist generator
US6905827B2 (en) 2001-06-08 2005-06-14 Expression Diagnostics, Inc. Methods and compositions for diagnosing or monitoring auto immune and chronic inflammatory diseases
US6931399B2 (en) * 2001-06-26 2005-08-16 Igougo Inc. Method and apparatus for providing personalized relevant information
WO2003010537A1 (en) 2001-07-24 2003-02-06 Curagen Corporation Family based tests of association using pooled dna and snp markers
US7461077B1 (en) 2001-07-31 2008-12-02 Nicholas Greenwood Representation of data records
US8438042B2 (en) 2002-04-25 2013-05-07 National Biomedical Research Foundation Instruments and methods for obtaining informed consent to genetic tests
US7062752B2 (en) 2001-08-08 2006-06-13 Hewlett-Packard Development Company, L.P. Method, system and program product for multi-profile operations and expansive profile operation
US7529685B2 (en) * 2001-08-28 2009-05-05 Md Datacor, Inc. System, method, and apparatus for storing, retrieving, and integrating clinical, diagnostic, genomic, and therapeutic data
US7461006B2 (en) 2001-08-29 2008-12-02 Victor Gogolak Method and system for the analysis and association of patient-specific and population-based genomic data with drug safety adverse event data
US20030099958A1 (en) * 2001-09-05 2003-05-29 Vitivity, Inc. Diagnosis and treatment of vascular disease
WO2003030051A1 (en) * 2001-09-30 2003-04-10 Realcontacts Ltd Connection service
US7983848B2 (en) * 2001-10-16 2011-07-19 Cerner Innovation, Inc. Computerized method and system for inferring genetic findings for a patient
US20030129630A1 (en) 2001-10-17 2003-07-10 Equigene Research Inc. Genetic markers associated with desirable and undesirable traits in horses, methods of identifying and using such markers
DE10247459A1 (en) * 2001-10-31 2003-07-03 Caterpillar Inc Health information analysis method and system
US6738762B1 (en) 2001-11-26 2004-05-18 At&T Corp. Multidimensional substring selectivity estimation using set hashing of cross-counts
US20040009495A1 (en) 2001-12-07 2004-01-15 Whitehead Institute For Biomedical Research Methods and products related to drug screening using gene expression patterns
JP4011906B2 (en) * 2001-12-13 2007-11-21 富士通株式会社 Profile information search method, program, recording medium, and apparatus
AU2002367363A1 (en) * 2001-12-26 2003-07-24 The Regents Of The University Of California System and method for identifying networks of ternary relationships in complex data systems
US7117200B2 (en) * 2002-01-11 2006-10-03 International Business Machines Corporation Synthesizing information-bearing content from multiple channels
WO2003060652A2 (en) 2002-01-15 2003-07-24 Vanderbilt University Method and apparatus for multifactor dimensionality reduction
US20030217037A1 (en) 2002-01-22 2003-11-20 Uwe Bicker Method and system for anonymous test administration and user-enabled personal health risk assessment
US20040078216A1 (en) * 2002-02-01 2004-04-22 Gregory Toto Clinical trial process improvement method and system
US20030154104A1 (en) * 2002-02-12 2003-08-14 Alvin Koningsberg Method of operating a savings plan for health care services
KR20040096595A (en) * 2002-02-20 2004-11-16 엔씨씨 테크놀로지 벤쳐스 피티이 리미티드 Materials and methods relating to cancer diagnosis
US20030170597A1 (en) * 2002-02-22 2003-09-11 Rezek Edward Allen Teaching aids and methods for teaching interviewing
US7426472B2 (en) * 2002-02-22 2008-09-16 International Business Machines Corporation Method and system for connecting businesses through common interests
US7809510B2 (en) 2002-02-27 2010-10-05 Ip Genesis, Inc. Positional hashing method for performing DNA sequence similarity search
DE60323214D1 (en) * 2002-03-05 2008-10-09 Physiogenix Inc METHOD AND COMPOSITIONS FOR THE PHARMACOLOGICAL AND TOXICOLOGICAL EVALUATION OF TEST SUBSTANCES
US7324928B2 (en) 2002-03-06 2008-01-29 Kitchen Scott G Method and system for determining phenotype from genotype
US7783665B1 (en) 2002-03-27 2010-08-24 Parallels Holdings, Ltd. Effective file-sharing among virtual environments
US8855935B2 (en) 2006-10-02 2014-10-07 Ancestry.Com Dna, Llc Method and system for displaying genetic and genealogical data
US20080154566A1 (en) 2006-10-02 2008-06-26 Sorenson Molecular Genealogy Foundation Method and system for displaying genetic and genealogical data
US7908155B2 (en) 2002-04-12 2011-03-15 Becton, Dickinson And Company System for collecting, storing, presenting and analyzing immunization data having remote stations in communication with a vaccine and disease database over a network
US20030203370A1 (en) 2002-04-30 2003-10-30 Zohar Yakhini Method and system for partitioning sets of sequence groups with respect to a set of subsequence groups, useful for designing polymorphism-based typing assays
WO2003093503A2 (en) * 2002-05-02 2003-11-13 Novartis Ag Method for bioequivalence determination using expression profiling
US20040014097A1 (en) 2002-05-06 2004-01-22 Mcglennen Ronald C. Genetic test apparatus and method
US20070037182A1 (en) 2002-05-28 2007-02-15 Gaskin James Z Multiplex assays for inferring ancestry
US20040230440A1 (en) 2002-06-21 2004-11-18 Anil Malhotra System for automating purchase recommendations
SE523024C2 (en) 2002-07-25 2004-03-23 Nobel Biocare Ab Device for inducing bone by bone inductive or bioactive agent and / or increasing the stability of jaw bone implants and implants therefor
AU2003254269A1 (en) 2002-07-29 2004-02-16 Opinionlab, Inc. System and method for providing substantially real-time access to collected information concerning user interaction with a web page of a website
US7478121B1 (en) 2002-07-31 2009-01-13 Opinionlab, Inc. Receiving and reporting page-specific user feedback concerning one or more particular web pages of a website
US20040030697A1 (en) * 2002-07-31 2004-02-12 American Management Systems, Inc. System and method for online feedback
AU2003257082A1 (en) 2002-08-02 2004-02-23 Rosetta Inpharmatics Llc Computer systems and methods that use clinical and expression quantitative trait loci to associate genes with traits
US20050152905A1 (en) 2002-08-22 2005-07-14 Omoigui Osemwota S. Method of biochemical treatment of persistent pain
WO2004029298A2 (en) 2002-09-26 2004-04-08 Applera Corporation Mitochondrial dna autoscoring system
AU2003282907A1 (en) 2002-10-01 2004-04-23 Fred Hutchinson Cancer Research Center Methods for estimating haplotype frequencies and disease associations with haplotypes and environmental variables
US20090012928A1 (en) * 2002-11-06 2009-01-08 Lussier Yves A System And Method For Generating An Amalgamated Database
JP2004164036A (en) 2002-11-08 2004-06-10 Hewlett Packard Co <Hp> Method for evaluating commonality of document
US7424368B2 (en) 2002-11-11 2008-09-09 Affymetix, Inc. Methods for identifying DNA copy number changes
US20040093334A1 (en) 2002-11-13 2004-05-13 Stephen Scherer Profile management system
US7612196B2 (en) * 2002-11-14 2009-11-03 Dharmacon, Inc. siRNA targeting cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B)
US20050283386A1 (en) * 2002-11-20 2005-12-22 Aventis Pharmaceuticals Inc. Method and system for marketing a treatment regimen
AU2003284609A1 (en) * 2002-11-21 2004-06-15 Genomidea Inc. Method of isolating nucleic acid having desired functional property and kit therefor
MXPA05005398A (en) 2002-11-22 2006-03-09 Univ Johns Hopkins Target for therapy of cognitive impairment.
US7047251B2 (en) * 2002-11-22 2006-05-16 Accenture Global Services, Gmbh Standardized customer application and record for inputting customer data into analytic models
AU2003293132A1 (en) 2002-11-27 2004-06-23 Sra International, Inc. Integration of gene expression data and non-gene data
US7698155B1 (en) 2002-11-29 2010-04-13 Ingenix, Inc. System for determining a disease category probability for a healthcare plan member
AU2003300823A1 (en) 2002-12-06 2004-06-30 Sandia Corporation Outcome prediction and risk classification in childhood leukemia
US20040122705A1 (en) 2002-12-18 2004-06-24 Sabol John M. Multilevel integrated medical knowledge base system and method
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US20040146870A1 (en) 2003-01-27 2004-07-29 Guochun Liao Systems and methods for predicting specific genetic loci that affect phenotypic traits
US7230529B2 (en) 2003-02-07 2007-06-12 Theradoc, Inc. System, method, and computer program for interfacing an expert system to a clinical information system
US20040172313A1 (en) 2003-02-11 2004-09-02 Stein Robert Gary System and method for processing health care insurance claims
WO2004075010A2 (en) 2003-02-14 2004-09-02 Intergenetics Incorporated Statistically identifying an increased risk for disease
US20040172287A1 (en) 2003-02-19 2004-09-02 O'toole Michael Method and apparatus for obtaining and distributing healthcare information
US20060257888A1 (en) 2003-02-27 2006-11-16 Methexis Genomics, N.V. Genetic diagnosis using multiple sequence variant analysis
US7584058B2 (en) 2003-02-27 2009-09-01 Methexis Genomics N.V. Genetic diagnosis using multiple sequence variant analysis
GB0304612D0 (en) * 2003-02-28 2003-04-02 Koninkl Philips Electronics Nv Method and system for obtaining a profile
US20040177071A1 (en) * 2003-03-04 2004-09-09 Massey Bill Wayne System and method for outcome-based management of medical science liaisons
US7451130B2 (en) 2003-06-16 2008-11-11 Google Inc. System and method for providing preferred country biasing of search results
US20040198615A1 (en) 2003-04-04 2004-10-07 The Lubrizol Corporation Di-secondary alkyl hindered phenol antioxidants
US20050060194A1 (en) * 2003-04-04 2005-03-17 Brown Stephen J. Method and system for monitoring health of an individual
US7260480B1 (en) 2003-04-07 2007-08-21 Health Hero Network, Inc. Method and system for integrating feedback loops in medical knowledge development and healthcare management
EP1615993A4 (en) 2003-04-09 2012-01-04 Omicia Inc Methods of selection, reporting and analysis of genetic markers using broad based genetic profiling applications
US20040243545A1 (en) 2003-05-29 2004-12-02 Dictaphone Corporation Systems and methods utilizing natural language medical records
US20070078606A1 (en) 2003-04-24 2007-04-05 Vera Cherepinsky Methods, software arrangements, storage media, and systems for providing a shrinkage-based similarity metric
US20040229224A1 (en) 2003-05-13 2004-11-18 Perlegen Sciences, Inc. Allele-specific expression patterns
WO2004103057A2 (en) 2003-05-15 2004-12-02 The University Of Georgia Research Foundation, Inc. Compositions and methods for inducing adipose tissue cell death
US20040243443A1 (en) 2003-05-29 2004-12-02 Sanyo Electric Co., Ltd. Healthcare support apparatus, health care support system, health care support method and health care support program
US20040242454A1 (en) * 2003-06-02 2004-12-02 Gallant Stephen I. System and method for micro-dose, multiple drug therapy
US7069308B2 (en) 2003-06-16 2006-06-27 Friendster, Inc. System, method and apparatus for connecting users in an online computer system based on their relationships within social networks
US7617202B2 (en) * 2003-06-16 2009-11-10 Microsoft Corporation Systems and methods that employ a distributional analysis on a query log to improve search results
US7289983B2 (en) 2003-06-19 2007-10-30 International Business Machines Corporation Personalized indexing and searching for information in a distributed data processing system
US20040260680A1 (en) 2003-06-19 2004-12-23 International Business Machines Corporation Personalized indexing and searching for information in a distributed data processing system
US20080275912A1 (en) * 2003-07-11 2008-11-06 Gareth Wyn Roberts Computer-Assisted Means for Providing Personalised Healthcare Products
US20050027560A1 (en) 2003-07-28 2005-02-03 Deborah Cook Interactive multi-user medication and medical history management method
US8200775B2 (en) 2005-02-01 2012-06-12 Newsilike Media Group, Inc Enhanced syndication
US20050026119A1 (en) 2003-08-01 2005-02-03 Ellis Janet W. Career development framework
US20050055024A1 (en) 2003-09-08 2005-03-10 James Anthony H. Orthopaedic implant and screw assembly
US20050055365A1 (en) * 2003-09-09 2005-03-10 I.V. Ramakrishnan Scalable data extraction techniques for transforming electronic documents into queriable archives
WO2005027719A2 (en) * 2003-09-12 2005-03-31 Perlegen Sciences, Inc. Methods and systems for identifying predisposition to the placebo effect
US7281005B2 (en) * 2003-10-20 2007-10-09 Telenor Asa Backward and forward non-normalized link weight analysis method, system, and computer program product
US20050112684A1 (en) * 2003-11-21 2005-05-26 Eric Holzle Class I and Class II MHC Profiling for Social and Sexual Matching of Human Partners
US20050120019A1 (en) * 2003-11-29 2005-06-02 International Business Machines Corporation Method and apparatus for the automatic identification of unsolicited e-mail messages (SPAM)
ES2801379T3 (en) * 2003-12-01 2021-01-11 Epigenomics Ag Methods and nucleic acids for the analysis of gene expression associated with the development of proliferative disorders of prostate cells
US20050154627A1 (en) * 2003-12-31 2005-07-14 Bojan Zuzek Transactional data collection, compression, and processing information management system
US20050160458A1 (en) 2004-01-21 2005-07-21 United Video Properties, Inc. Interactive television system with custom video-on-demand menus based on personal profiles
US8554876B2 (en) 2004-01-23 2013-10-08 Hewlett-Packard Development Company, L.P. User profile service
US20050170321A1 (en) 2004-01-30 2005-08-04 Scully Helen M. Method and system for career assessment
US7751805B2 (en) 2004-02-20 2010-07-06 Google Inc. Mobile image-based information retrieval system
US8019552B2 (en) 2004-03-05 2011-09-13 The Netherlands Cancer Institute Classification of breast cancer patients using a combination of clinical criteria and informative genesets
JP2005251115A (en) * 2004-03-08 2005-09-15 Shogakukan Inc System and method of associative retrieval
US8566422B2 (en) 2004-03-16 2013-10-22 Uppfylla, Inc. System and method for enabling identification of network users having similar interests and facilitating communication between them
US20070067297A1 (en) * 2004-04-30 2007-03-22 Kublickis Peter J System and methods for a micropayment-enabled marketplace with permission-based, self-service, precision-targeted delivery of advertising, entertainment and informational content and relationship marketing to anonymous internet users
AU2005241496A1 (en) 2004-05-03 2005-11-17 Cygene Laboratories, Inc. Method and system for a comprehensive knowledge-based anonymous testing and reporting, and providing selective access to test results and report
US20080195594A1 (en) * 2004-05-11 2008-08-14 Gerjets Sven W Computerized Comprehensive Health Assessment and Physician Directed Systems
US20050256848A1 (en) 2004-05-13 2005-11-17 International Business Machines Corporation System and method for user rank search
US20060218111A1 (en) * 2004-05-13 2006-09-28 Cohen Hunter C Filtered search results
US20050278317A1 (en) 2004-05-14 2005-12-15 William Gross Personalized search engine
WO2005123955A2 (en) * 2004-06-09 2005-12-29 Children's Medical Center Corporation Methods and compositions for modifying gene regulation and dna damage in ageing
US7599802B2 (en) 2004-06-10 2009-10-06 Evan Harwood V-life matching and mating system
US8335652B2 (en) 2004-06-23 2012-12-18 Yougene Corp. Self-improving identification method
US7311666B2 (en) * 2004-07-10 2007-12-25 Trigeminal Solutions, Inc. Apparatus for collecting information
US20060015369A1 (en) 2004-07-15 2006-01-19 Bachus Sonja C Healthcare provider recommendation system
US7421441B1 (en) 2005-09-20 2008-09-02 Yahoo! Inc. Systems and methods for presenting information based on publisher-selected labels
US8594942B2 (en) * 2004-07-30 2013-11-26 Metabolon, Inc. Computational method and system for identifying network patterns in complex biological systems data
US20060025929A1 (en) 2004-07-30 2006-02-02 Chris Eglington Method of determining a genetic relationship to at least one individual in a group of famous individuals using a combination of genetic markers
US20060052674A1 (en) * 2004-09-04 2006-03-09 Steven Eisenstein Software method of determining and treating psychiatric disorders
US8024128B2 (en) * 2004-09-07 2011-09-20 Gene Security Network, Inc. System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data
US20060059159A1 (en) * 2004-09-15 2006-03-16 Vu Hao Thi Truong Online dating service providing response status tracking for a service subscriber
US7248907B2 (en) * 2004-10-23 2007-07-24 Hogan Josh N Correlation of concurrent non-invasively acquired signals
US7814105B2 (en) 2004-10-27 2010-10-12 Harris Corporation Method for domain identification of documents in a document database
WO2006052952A2 (en) 2004-11-09 2006-05-18 The Brigham And Women's Hospital, Inc. System and method for determining whether to issue an alert to consider prophylaxis for a risk condition
US20060129435A1 (en) 2004-12-15 2006-06-15 Critical Connection Inc. System and method for providing community health data services
US20060136143A1 (en) 2004-12-17 2006-06-22 General Electric Company Personalized genetic-based analysis of medical conditions
US20060185027A1 (en) 2004-12-23 2006-08-17 David Bartel Systems and methods for identifying miRNA targets and for altering miRNA and target expression
US20060195335A1 (en) 2005-01-21 2006-08-31 Christian Lana S System and method for career development
US20070106754A1 (en) 2005-09-10 2007-05-10 Moore James F Security facility for maintaining health care data pools
US20080040151A1 (en) 2005-02-01 2008-02-14 Moore James F Uses of managed health care data
US7951078B2 (en) 2005-02-03 2011-05-31 Maren Theresa Scheuner Method and apparatus for determining familial risk of disease
WO2006084195A2 (en) 2005-02-03 2006-08-10 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Personal assessment including familial risk analysis for personalized disease prevention plan
US20060195442A1 (en) 2005-02-03 2006-08-31 Cone Julian M Network promotional system and method
CA2598455A1 (en) 2005-02-18 2006-08-24 Dna Print Genomics, Inc. Multiplex assays for inferring ancestry
US20070061424A1 (en) 2005-03-09 2007-03-15 Wholived, Inc. System and method for providing a database of past life information using a virtual cemetery, virtual tomb and virtual safe organizational paradigm
US7624151B2 (en) 2005-03-11 2009-11-24 International Business Machines Corporation Smart size reduction of a local electronic mailbox by removing unimportant messages based on an automatically generated user interest profile
AU2006230591A1 (en) 2005-03-31 2006-10-05 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for diagnosing and treating neuropsychiatric disorders
US7657521B2 (en) 2005-04-15 2010-02-02 General Electric Company System and method for parsing medical data
US7917374B2 (en) * 2005-04-25 2011-03-29 Ingenix, Inc. System and method for early identification of safety concerns of new drugs
US8438142B2 (en) 2005-05-04 2013-05-07 Google Inc. Suggesting and refining user input based on original user input
US7606783B1 (en) * 2005-05-10 2009-10-20 Robert M. Carter Health, safety and security analysis at a client location
US20070011173A1 (en) 2005-05-23 2007-01-11 Ebags.Com Method and apparatus for providing shoe recommendations
WO2006127599A2 (en) 2005-05-23 2006-11-30 Cadbury Adams Usa Llc Confectionery composition including an elastomeric component, a cooked saccharide component, and a sensate
US20060287876A1 (en) 2005-06-20 2006-12-21 Davor Jedlicka Computer system and method for assessing family structures using affinographs
US20070166728A1 (en) 2005-07-22 2007-07-19 Alphagenics, Inc. Genetic profile imaging and data-sharing device and methodology for socially relevant traits
US20070027636A1 (en) * 2005-07-29 2007-02-01 Matthew Rabinowitz System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions
US20070027850A1 (en) * 2005-08-01 2007-02-01 Reprise Media, Llc Methods and systems for developing and managing a computer-based marketing campaign
US20070050354A1 (en) * 2005-08-18 2007-03-01 Outland Research Method and system for matching socially and epidemiologically compatible mates
US20070061166A1 (en) 2005-08-29 2007-03-15 Narayanan Ramasubramanian Techniques for improving loss ratios
US8566121B2 (en) 2005-08-29 2013-10-22 Narayanan Ramasubramanian Personalized medical adherence management system
US20070122824A1 (en) 2005-09-09 2007-05-31 Tucker Mark R Method and Kit for Assessing a Patient's Genetic Information, Lifestyle and Environment Conditions, and Providing a Tailored Therapeutic Regime
US20070198485A1 (en) 2005-09-14 2007-08-23 Jorey Ramer Mobile search service discovery
US20080009268A1 (en) 2005-09-14 2008-01-10 Jorey Ramer Authorized mobile content search results
US8364521B2 (en) 2005-09-14 2013-01-29 Jumptap, Inc. Rendering targeted advertisement on mobile communication facilities
TW200712955A (en) * 2005-09-22 2007-04-01 Asustek Comp Inc Life information integrated apparatus and program method
US7592910B2 (en) 2005-09-28 2009-09-22 Social Fabric Corporation Matching system
CA2624705A1 (en) * 2005-10-03 2007-04-12 Health Dialog Services Corporation Systems and methods for analysis of healthcare provider performance
US7752215B2 (en) 2005-10-07 2010-07-06 International Business Machines Corporation System and method for protecting sensitive data
JP2007102709A (en) 2005-10-07 2007-04-19 Toshiba Corp Gene diagnostic marker selection program, device and system executing this program, and gene diagnostic system
US20080015968A1 (en) 2005-10-14 2008-01-17 Leviathan Entertainment, Llc Fee-Based Priority Queuing for Insurance Claim Processing
US8234129B2 (en) 2005-10-18 2012-07-31 Wellstat Vaccines, Llc Systems and methods for obtaining, storing, processing and utilizing immunologic and other information of individuals and populations
TW200730825A (en) 2005-10-21 2007-08-16 Genenews Inc Method and apparatus for correlating levels of biomarker products with disease
CA2627075A1 (en) 2005-11-14 2007-05-18 Bioren, Inc. Antibody ultrahumanization by predicted mature cdr blasting and cohort library generation and screening
US7620651B2 (en) * 2005-11-15 2009-11-17 Powerreviews, Inc. System for dynamic product summary based on consumer-contributed keywords
US20070111247A1 (en) 2005-11-17 2007-05-17 Stephens Joel C Systems and methods for the biometric analysis of index founder populations
US20090029371A1 (en) 2005-12-05 2009-01-29 Ihc Intellectual Asset Management, Llc Method for determining vasoreactivity
US20090132284A1 (en) 2005-12-16 2009-05-21 Fey Christopher T Customizable Prevention Plan Platform, Expert System and Method
US7580930B2 (en) 2005-12-27 2009-08-25 Baynote, Inc. Method and apparatus for predicting destinations in a navigation context based upon observed usage patterns
US20070156691A1 (en) 2006-01-05 2007-07-05 Microsoft Corporation Management of user access to objects
US7942526B2 (en) 2006-01-23 2011-05-17 Zeavision, Llc. Diagnostic, prescriptive, and data-gathering system and method for macular pigment deficits and other eye disorders
US20070185658A1 (en) 2006-02-06 2007-08-09 Paris Steven M Determining probabilities of inherited and correlated traits
US8340950B2 (en) 2006-02-10 2012-12-25 Affymetrix, Inc. Direct to consumer genotype-based products and services
US7788358B2 (en) * 2006-03-06 2010-08-31 Aggregate Knowledge Using cross-site relationships to generate recommendations
US8738467B2 (en) 2006-03-16 2014-05-27 Microsoft Corporation Cluster-based scalable collaborative filtering
US7908091B2 (en) 2006-03-17 2011-03-15 Prometheus Laboratories Inc. Methods of predicting and monitoring tyrosine kinase inhibitor therapy
EP2008212A2 (en) * 2006-04-07 2008-12-31 Kantonsspital Bruderholz Individual assessment and classification of complex diseases by a data-based clinical disease profile
US20070238936A1 (en) * 2006-04-10 2007-10-11 Shirley Ann Becker Portable Electronic Medical Assistant
US8626764B2 (en) 2006-04-13 2014-01-07 International Business Machines Corporation Methods, systems and computer program products for organizing and/or manipulating cohort based information
JP5028847B2 (en) * 2006-04-21 2012-09-19 富士通株式会社 Gene interaction network analysis support program, recording medium recording the program, gene interaction network analysis support method, and gene interaction network analysis support device
EP2407562A1 (en) 2006-05-08 2012-01-18 Tethys Bioscience, Inc. Systems and methods for developing diagnostic tests based on biomarker information from legacy clinical sample sets
US8364711B2 (en) 2006-05-09 2013-01-29 John Wilkins Contact management system and method
US7664718B2 (en) * 2006-05-16 2010-02-16 Sony Corporation Method and system for seed based clustering of categorical data using hierarchies
JP4251652B2 (en) * 2006-06-09 2009-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション SEARCH DEVICE, SEARCH PROGRAM, AND SEARCH METHOD
US20070294113A1 (en) * 2006-06-14 2007-12-20 General Electric Company Method for evaluating correlations between structured and normalized information on genetic variations between humans and their personal clinical patient data from electronic medical patient records
US20070294109A1 (en) 2006-06-20 2007-12-20 Costello John B Method and system for creation of an integrated medical record via a communications computer network
US20070299881A1 (en) 2006-06-21 2007-12-27 Shimon Bouganim System and method for protecting selected fields in database files
CN100524307C (en) 2006-06-27 2009-08-05 国际商业机器公司 Method and device for establishing coupled relation between documents
US8521552B2 (en) 2006-06-30 2013-08-27 Coopervision International Holding Company, Lp System and method for providing a medical device to a patient
US8888697B2 (en) 2006-07-24 2014-11-18 Webmd, Llc Method and system for enabling lay users to obtain relevant, personalized health related information
US8271201B2 (en) * 2006-08-11 2012-09-18 University Of Tennesee Research Foundation Methods of associating an unknown biological specimen with a family
US7966647B1 (en) 2006-08-16 2011-06-21 Resource Consortium Limited Sending personal information to a personal information aggregator
US20080082367A1 (en) * 2006-09-29 2008-04-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational systems for biomedical data
US7984421B2 (en) 2006-10-03 2011-07-19 Ning, Inc. Web application cloning
US20080215581A1 (en) 2006-10-10 2008-09-04 Bill Messing Content/metadata selection and propagation service to propagate content/metadata to client devices
US20080189047A1 (en) 2006-11-01 2008-08-07 0752004 B.C. Ltd. Method and system for genetic research using genetic sampling via an interactive online network
US8990198B2 (en) 2006-11-02 2015-03-24 Ilan Cohn Method and system for computerized management of related data records
US8606591B2 (en) 2006-11-10 2013-12-10 The Charlotte-Mecklenburg Hospital Authority Systems, methods, and computer program products for determining an optimum hernia repair procedure
US20080114737A1 (en) * 2006-11-14 2008-05-15 Daniel Neely Method and system for automatically identifying users to participate in an electronic conversation
US8540517B2 (en) 2006-11-27 2013-09-24 Pharos Innovations, Llc Calculating a behavioral path based on a statistical profile
TWI363309B (en) 2006-11-30 2012-05-01 Navigenics Inc Genetic analysis systems, methods and on-line portal
US20080131887A1 (en) 2006-11-30 2008-06-05 Stephan Dietrich A Genetic Analysis Systems and Methods
US20080162555A1 (en) * 2006-12-27 2008-07-03 Motorola, Inc. Active lifestyle management
US7844604B2 (en) 2006-12-28 2010-11-30 Yahoo! Inc. Automatically generating user-customized notifications of changes in a social network system
US7739247B2 (en) 2006-12-28 2010-06-15 Ebay Inc. Multi-pass data organization and automatic naming
US7953613B2 (en) * 2007-01-03 2011-05-31 Gizewski Theodore M Health maintenance system
US20080167851A1 (en) 2007-01-08 2008-07-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems for genome selection
US20080201327A1 (en) 2007-02-20 2008-08-21 Ashoke Seth Identity match process
US8280877B2 (en) * 2007-02-22 2012-10-02 Microsoft Corporation Diverse topic phrase extraction
US20080228699A1 (en) 2007-03-16 2008-09-18 Expanse Networks, Inc. Creation of Attribute Combination Databases
US7908288B2 (en) * 2007-04-12 2011-03-15 Satheesh Nair Method and system for research using computer based simultaneous comparison and contrasting of a multiplicity of subjects having specific attributes within specific contexts
US20080256052A1 (en) 2007-04-16 2008-10-16 International Business Machines Corporation Methods for determining historical efficacy of a document in satisfying a user's search needs
WO2008137110A1 (en) 2007-05-03 2008-11-13 Applera Corporation Genetic polymorphisms associated with neurodegenerative diseases, methods of detection and uses thereof
US20090186347A1 (en) 2007-05-11 2009-07-23 Cox David R Markers for metabolic syndrome
US20080294607A1 (en) 2007-05-23 2008-11-27 Ali Partovi System, apparatus, and method to provide targeted content to users of social networks
US20080300958A1 (en) 2007-05-29 2008-12-04 Tasteindex.Com Llc Taste network content targeting
US9251172B2 (en) 2007-06-01 2016-02-02 Getty Images (Us), Inc. Method and system for searching for digital assets
JP4980148B2 (en) 2007-06-07 2012-07-18 株式会社日立製作所 Document search method
EP2171626A2 (en) 2007-06-15 2010-04-07 ISIS Innovation Limited Allelic determination
US7818396B2 (en) 2007-06-21 2010-10-19 Microsoft Corporation Aggregating and searching profile data from multiple services
US20090094271A1 (en) 2007-06-26 2009-04-09 Allurdata Llc Variable driven method and system for the management and display of information
US7720855B2 (en) * 2007-07-02 2010-05-18 Brown Stephen J Social network for affecting personal behavior
US8156158B2 (en) 2007-07-18 2012-04-10 Famillion Ltd. Method and system for use of a database of personal data records
US20090043752A1 (en) 2007-08-08 2009-02-12 Expanse Networks, Inc. Predicting Side Effect Attributes
US8341104B2 (en) * 2007-08-16 2012-12-25 Verizon Patent And Licensing Inc. Method and apparatus for rule-based masking of data
US8239455B2 (en) 2007-09-07 2012-08-07 Siemens Aktiengesellschaft Collaborative data and knowledge integration
US20090068114A1 (en) 2007-09-07 2009-03-12 Yousef Haik Noninvasive Thermometry Monitoring System
US8010896B2 (en) 2007-09-13 2011-08-30 International Business Machines Corporation Using profiling when a shared document is changed in a content management system
CN105861664A (en) 2007-09-26 2016-08-17 生命科技临床服务实验室公司 Methods and systems for genomic analysis using ancestral data
US20100027780A1 (en) * 2007-10-04 2010-02-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for anonymizing personally identifiable information associated with epigenetic information
US20090094261A1 (en) * 2007-10-04 2009-04-09 Jung Edward K Y Systems and methods for correlating epigenetic information with disability data
WO2009051766A1 (en) 2007-10-15 2009-04-23 23Andme, Inc. Family inheritance
US9336177B2 (en) 2007-10-15 2016-05-10 23Andme, Inc. Genome sharing
US8510057B1 (en) 2007-10-15 2013-08-13 23Andme, Inc. Summarizing an aggregate contribution to a characteristic for an individual
US8589437B1 (en) 2007-10-15 2013-11-19 23Andme, Inc. De-identification and sharing of genetic data
US20110143956A1 (en) * 2007-11-14 2011-06-16 Medtronic, Inc. Diagnostic Kits and Methods for SCD or SCA Therapy Selection
US7877398B2 (en) 2007-11-19 2011-01-25 International Business Machines Corporation Masking related sensitive data in groups
US7769740B2 (en) * 2007-12-21 2010-08-03 Yahoo! Inc. Systems and methods of ranking attention
US8078197B2 (en) 2008-02-20 2011-12-13 Agere Systems Inc. Location-based search-result ranking for blog documents and the like
WO2009105114A1 (en) 2008-02-22 2009-08-27 Lead Horse Technologies, Inc. Automated ontology generation system and method
WO2009108918A2 (en) 2008-02-29 2009-09-03 John Boyce Methods and systems for social networking based on nucleic acid sequences
US20090222517A1 (en) 2008-02-29 2009-09-03 Dimitris Kalofonos Methods, systems, and apparatus for using virtual devices with peer-to-peer groups
US20090307180A1 (en) * 2008-03-19 2009-12-10 Brandon Colby Genetic analysis
US9367800B1 (en) 2012-11-08 2016-06-14 23Andme, Inc. Ancestry painting with local ancestry inference
US20170330358A1 (en) 2008-03-19 2017-11-16 23Andme, Inc. Ancestry painting
US20100041958A1 (en) 2008-04-24 2010-02-18 Searete Llc Computational system and method for memory modification
US20090271375A1 (en) 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination treatment selection methods and systems
US9311369B2 (en) 2008-04-28 2016-04-12 Oracle International Corporation Virtual masked database
US20100136540A1 (en) 2008-06-13 2010-06-03 Pavel Hamet Methods and compositions for characterizing patients for clinical outcome trials
US9477941B2 (en) 2008-06-24 2016-10-25 Intelius, Inc. Genealogy system for interfacing with social networks
US20090326832A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Graphical models for the analysis of genome-wide associations
US8191571B2 (en) 2008-07-30 2012-06-05 Hamilton Sundstrand Corporation Fluid circuit breaker quick disconnect coupling
US8036915B2 (en) 2008-07-31 2011-10-11 Cosortium of Rheumatology Researchers of North America, Inc. System and method for collecting and managing patient data
AU2009279434A1 (en) 2008-08-08 2010-02-11 Navigenics, Inc. Methods and systems for personalized action plans
US20110137944A1 (en) 2008-08-11 2011-06-09 Famillion Ltd. Method and system for matching between a tissue donor and a tissue recipient
US8818978B2 (en) 2008-08-15 2014-08-26 Ebay Inc. Sharing item images using a similarity score
US9218451B2 (en) 2008-08-26 2015-12-22 23Andme, Inc. Processing data from genotyping chips
WO2010024894A1 (en) 2008-08-26 2010-03-04 23Andme, Inc. Processing data from genotyping chips
US20100070292A1 (en) 2008-09-10 2010-03-18 Expanse Networks, Inc. Masked Data Transaction Database
US20100063830A1 (en) 2008-09-10 2010-03-11 Expanse Networks, Inc. Masked Data Provider Selection
US20100063865A1 (en) 2008-09-10 2010-03-11 Expanse Networks, Inc. Masked Data Provider Profiling
US8200509B2 (en) 2008-09-10 2012-06-12 Expanse Networks, Inc. Masked data record access
US20100076988A1 (en) 2008-09-10 2010-03-25 Expanse Networks, Inc. Masked Data Service Profiling
US20100063835A1 (en) 2008-09-10 2010-03-11 Expanse Networks, Inc. Method for Secure Mobile Healthcare Selection
US20100076950A1 (en) 2008-09-10 2010-03-25 Expanse Networks, Inc. Masked Data Service Selection
US7917438B2 (en) 2008-09-10 2011-03-29 Expanse Networks, Inc. System for secure mobile healthcare selection
AU2009291577A1 (en) 2008-09-12 2010-03-18 Navigenics, Inc. Methods and systems for incorporating multiple environmental and genetic risk factors
WO2010042888A1 (en) 2008-10-10 2010-04-15 The Regents Of The University Of California A computational method for comparing, classifying, indexing, and cataloging of electronically stored linear information
WO2010065139A1 (en) 2008-12-05 2010-06-10 23Andme, Inc. Gamete donor selection based on genetic calculations
US20100169338A1 (en) 2008-12-30 2010-07-01 Expanse Networks, Inc. Pangenetic Web Search System
US8386519B2 (en) 2008-12-30 2013-02-26 Expanse Networks, Inc. Pangenetic web item recommendation system
US20100169262A1 (en) 2008-12-30 2010-07-01 Expanse Networks, Inc. Mobile Device for Pangenetic Web
US20100169313A1 (en) 2008-12-30 2010-07-01 Expanse Networks, Inc. Pangenetic Web Item Feedback System
US8108406B2 (en) 2008-12-30 2012-01-31 Expanse Networks, Inc. Pangenetic web user behavior prediction system
US8255403B2 (en) 2008-12-30 2012-08-28 Expanse Networks, Inc. Pangenetic web satisfaction prediction system
EP3276526A1 (en) 2008-12-31 2018-01-31 23Andme, Inc. Finding relatives in a database
US8655821B2 (en) 2009-02-04 2014-02-18 Konstantinos (Constantin) F. Aliferis Local causal and Markov blanket induction method for causal discovery and feature selection from data
US20110294681A1 (en) 2009-06-01 2011-12-01 Hinds David A Methods for breast cancer risk assessment
US20120309639A1 (en) 2009-10-08 2012-12-06 Hakon Hakonarson Compositions and Methods for Diagnosing Genome Related Diseases and Disorders
WO2011050341A1 (en) 2009-10-22 2011-04-28 National Center For Genome Resources Methods and systems for medical sequencing analysis
US8187811B2 (en) 2009-11-30 2012-05-29 23Andme, Inc. Polymorphisms associated with Parkinson's disease
US20120053845A1 (en) 2010-04-27 2012-03-01 Jeremy Bruestle Method and system for analysis and error correction of biological sequences and inference of relationship for multiple samples
DK2601609T3 (en) 2010-08-02 2017-06-06 Population Bio Inc COMPOSITIONS AND METHODS FOR DISCOVERING MUTATIONS CAUSING GENETIC DISORDERS
US20120035954A1 (en) 2010-08-05 2012-02-09 International Business Machines Corporation On-demand clinical trials utilizing emr/ehr systems
US20120172674A1 (en) * 2010-12-30 2012-07-05 General Electronic Company Systems and methods for clinical decision support
US8786603B2 (en) 2011-02-25 2014-07-22 Ancestry.Com Operations Inc. Ancestor-to-ancestor relationship linking methods and systems
US20120310539A1 (en) 2011-05-12 2012-12-06 University Of Utah Predicting gene variant pathogenicity
US20130297221A1 (en) 2011-06-01 2013-11-07 The Board Of Trustees Of The Leland Stanford Junior University Method and System for Accurate Construction Of Long Range Haplotype
US10790041B2 (en) 2011-08-17 2020-09-29 23Andme, Inc. Method for analyzing and displaying genetic information between family members
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US8990250B1 (en) 2011-10-11 2015-03-24 23Andme, Inc. Cohort selection with privacy protection
US10437858B2 (en) 2011-11-23 2019-10-08 23Andme, Inc. Database and data processing system for use with a network-based personal genetics services platform
EP3401399B1 (en) 2012-03-02 2020-04-22 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20140038836A1 (en) 2012-05-29 2014-02-06 Assurerx Health, Inc. Novel Pharmacogene Single Nucleotide Polymorphisms and Methods of Detecting Same
US10777302B2 (en) 2012-06-04 2020-09-15 23Andme, Inc. Identifying variants of interest by imputation
US10025877B2 (en) 2012-06-06 2018-07-17 23Andme, Inc. Determining family connections of individuals in a database
US9116882B1 (en) 2012-08-02 2015-08-25 23Andme, Inc. Identification of matrilineal or patrilineal relatives
CA2883245A1 (en) 2012-09-06 2014-03-13 Ancestry.Com Dna, Llc Using haplotypes to infer ancestral origins for recently admixed individuals
US10114922B2 (en) 2012-09-17 2018-10-30 Ancestry.Com Dna, Llc Identifying ancestral relationships using a continuous stream of input
US9213947B1 (en) 2012-11-08 2015-12-15 23Andme, Inc. Scalable pipeline for local ancestry inference
US20150356243A1 (en) 2013-01-11 2015-12-10 Oslo Universitetssykehus Hf Systems and methods for identifying polymorphisms
WO2014145280A1 (en) 2013-03-15 2014-09-18 Ancestry.Com Dna, Llc Family networks
US20150106115A1 (en) 2013-10-10 2015-04-16 International Business Machines Corporation Densification of longitudinal emr for improved phenotyping
US20150288780A1 (en) 2014-04-05 2015-10-08 Antoine El Daher Profile Evaluation System For Online Dating And Social Networking Websites
WO2015171457A1 (en) 2014-05-03 2015-11-12 The Regents Of The University Of California Methods of identifying biomarkers associated with or causative of the progression of disease, in particular for use in prognosticating primary open angle glaucoma
CA3103560C (en) 2014-09-26 2023-01-17 Somalogic, Inc. Cardiovascular risk event prediction and uses thereof
CA2967013C (en) 2014-11-06 2023-09-05 Ancestryhealth.Com, Llc Predicting health outcomes
EP3373726A1 (en) 2015-11-10 2018-09-19 Dow Agrosciences LLC Methods and systems for trait introgression
US10296842B2 (en) 2017-07-21 2019-05-21 Helix OpCo, LLC Genomic services system with dual-phase genotype imputation
US11435357B2 (en) * 2018-02-03 2022-09-06 Genteract Corporation System and method for discovery of gene-environment interactions
US10468141B1 (en) 2018-11-28 2019-11-05 Asia Genomics Pte. Ltd. Ancestry-specific genetic risk scores

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769074A (en) * 1994-10-13 1998-06-23 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
US6203993B1 (en) * 1996-08-14 2001-03-20 Exact Science Corp. Methods for the detection of nucleic acids
US5940802A (en) * 1997-03-17 1999-08-17 The Board Of Regents Of The University Of Oklahoma Digital disease management system
US20060200319A1 (en) * 1997-03-28 2006-09-07 Brown Stephen J System and method for identifying disease-influencing genes
US5985559A (en) * 1997-04-30 1999-11-16 Health Hero Network System and method for preventing, diagnosing, and treating genetic and pathogen-caused disease
US20030198970A1 (en) * 1998-06-06 2003-10-23 Genostic Pharma Limited Genostics
US6506562B1 (en) * 1998-10-26 2003-01-14 Yale University Allele frequency differences method for phenotype cloning
US20050158788A1 (en) * 1998-11-10 2005-07-21 Genset S.A. Methods, software and apparati for identifying genomic regions harboring a gene associated with a detectable trait
US6994962B1 (en) * 1998-12-09 2006-02-07 Massachusetts Institute Of Technology Methods of identifying point mutations in a genome
US6912492B1 (en) * 1999-05-25 2005-06-28 University Of Medicine & Dentistry Of New Jersey Methods for diagnosing, preventing, and treating developmental disorders due to a combination of genetic and environmental factors
US6730023B1 (en) * 1999-10-15 2004-05-04 Hemopet Animal genetic and health profile database management
US20050090718A1 (en) * 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
US20020077775A1 (en) * 2000-05-25 2002-06-20 Schork Nicholas J. Methods of DNA marker-based genetic analysis using estimated haplotype frequencies and uses thereof
US20020010552A1 (en) * 2000-05-26 2002-01-24 Hugh Rienhoff System for genetically characterizing an individual for evaluation using genetic and phenotypic variation over a wide area network
US6931326B1 (en) * 2000-06-26 2005-08-16 Genaissance Pharmaceuticals, Inc. Methods for obtaining and using haplotype data
US20020133299A1 (en) * 2000-09-20 2002-09-19 Jacob Howard J. Physiological profiling
US20020094532A1 (en) * 2000-10-06 2002-07-18 Bader Joel S. Efficient tests of association for quantitative traits and affected-unaffected studies using pooled DNA
US20050021240A1 (en) * 2000-11-02 2005-01-27 Epigenomics Ag Systems, methods and computer program products for guiding selection of a therapeutic treatment regimen based on the methylation status of the DNA
US20020123058A1 (en) * 2000-12-01 2002-09-05 Threadgill David W. Method for ultra-high resolution mapping of genes and determination of genetic networks among genes underlying phenotypic traits
US20020128860A1 (en) * 2001-01-04 2002-09-12 Leveque Joseph A. Collecting and managing clinical information
US7054758B2 (en) * 2001-01-30 2006-05-30 Sciona Limited Computer-assisted means for assessing lifestyle risk factors
US20020137086A1 (en) * 2001-03-01 2002-09-26 Alexander Olek Method for the development of gene panels for diagnostic and therapeutic purposes based on the expression and methylation status of the genes
US20030065535A1 (en) * 2001-05-01 2003-04-03 Structural Bioinformatics, Inc. Diagnosing inapparent diseases from common clinical tests using bayesian analysis
US20040197799A1 (en) * 2001-05-03 2004-10-07 Robert Williamson Determination of a genetic predisposition for behavioral disorders
US20040158581A1 (en) * 2001-05-21 2004-08-12 Max Kotlyar Method for determination of co-occurences of attributes
US20030040002A1 (en) * 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US7072794B2 (en) * 2001-08-28 2006-07-04 Rockefeller University Statistical methods for multivariate ordinal data which are used for data base driven decision support
US20030130873A1 (en) * 2001-11-19 2003-07-10 Nevin William S. Health care provider information system
US20040018500A1 (en) * 2001-11-21 2004-01-29 Norman Glassbrook Methods and systems for analyzing complex biological systems
US7107155B2 (en) * 2001-12-03 2006-09-12 Dnaprint Genomics, Inc. Methods for the identification of genetic features for complex genetics classifiers
US20050256649A1 (en) * 2001-12-21 2005-11-17 Roses Allen D High throughput correlation of polymorphic forms with multiple phenotypes within clinical populations
US20040015337A1 (en) * 2002-01-04 2004-01-22 Thomas Austin W. Systems and methods for predicting disease behavior
US20030224394A1 (en) * 2002-02-01 2003-12-04 Rosetta Inpharmatics, Llc Computer systems and methods for identifying genes and determining pathways associated with traits
US20040175700A1 (en) * 2002-05-15 2004-09-09 Elixir Pharmaceuticals, Inc. Method for cohort selection
US20040019598A1 (en) * 2002-05-17 2004-01-29 Jing Huang Binary tree for complex supervised learning
US20030233377A1 (en) * 2002-06-18 2003-12-18 Ilija Kovac Methods, systems, software and apparatus for prediction of polygenic conditions
US20040024534A1 (en) * 2002-08-02 2004-02-05 Taimont Biotech Inc. Process of creating an index for diagnosis or prognosis purpose
US20060129034A1 (en) * 2002-08-15 2006-06-15 Pacific Edge Biotechnology, Ltd. Medical decision support systems utilizing gene expression and clinical information and method for use
US20030065241A1 (en) * 2002-08-27 2003-04-03 Joerg Hohnloser Medical risk assessment system and method
US20040093331A1 (en) * 2002-09-20 2004-05-13 Board Of Regents, University Of Texas System Computer program products, systems and methods for information discovery and relational analyses
US20040111410A1 (en) * 2002-10-14 2004-06-10 Burgoon David Alford Information reservoir
US20040221855A1 (en) * 2002-10-17 2004-11-11 Paul Ashton Methods for monitoring treatment of disease
US20050170528A1 (en) * 2002-10-24 2005-08-04 Mike West Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications
US20040193019A1 (en) * 2003-03-24 2004-09-30 Nien Wei Methods for predicting an individual's clinical treatment outcome from sampling a group of patient's biological profiles
US20050037405A1 (en) * 2003-07-11 2005-02-17 Avshalom Caspi Method for assessing behavioral predisposition
US20050032066A1 (en) * 2003-08-04 2005-02-10 Heng Chew Kiat Method for assessing risk of diseases with multiple contributing factors
US20050176057A1 (en) * 2003-09-26 2005-08-11 Troy Bremer Diagnostic markers of mood disorders and methods of use thereof
US20050143928A1 (en) * 2003-10-03 2005-06-30 Cira Discovery Sciences, Inc. Method and apparatus for discovering patterns in binary or categorical data
US20050191678A1 (en) * 2004-02-12 2005-09-01 Geneob Usa Inc. Genetic predictability for acquiring a disease or condition
US7127355B2 (en) * 2004-03-05 2006-10-24 Perlegen Sciences, Inc. Methods for genetic analysis
US20050216208A1 (en) * 2004-03-26 2005-09-29 Akira Saito Diagnostic decision support system and method of diagnostic decision support
US20050260610A1 (en) * 2004-05-20 2005-11-24 Kurtz Richard E Method for diagnosing and prescribing a regimen of therapy for human health risk
US20070220017A1 (en) * 2006-03-14 2007-09-20 International Business Machines Corporation Method and system to estimate the number of distinct value combinations for a set of attributes in a database system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495360B2 (en) 2007-03-16 2022-11-08 23Andme, Inc. Computer implemented identification of treatments for predicted predispositions with clinician assistance
US11581098B2 (en) 2007-03-16 2023-02-14 23Andme, Inc. Computer implemented predisposition prediction in a genetics platform
US11600393B2 (en) 2007-03-16 2023-03-07 23Andme, Inc. Computer implemented modeling and prediction of phenotypes
US11581096B2 (en) 2007-03-16 2023-02-14 23Andme, Inc. Attribute identification based on seeded learning
US11348692B1 (en) 2007-03-16 2022-05-31 23Andme, Inc. Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US11348691B1 (en) 2007-03-16 2022-05-31 23Andme, Inc. Computer implemented predisposition prediction in a genetics platform
US11735323B2 (en) 2007-03-16 2023-08-22 23Andme, Inc. Computer implemented identification of genetic similarity
US11482340B1 (en) 2007-03-16 2022-10-25 23Andme, Inc. Attribute combination discovery for predisposition determination of health conditions
US12106862B2 (en) 2007-03-16 2024-10-01 23Andme, Inc. Determination and display of likelihoods over time of developing age-associated disease
US11545269B2 (en) 2007-03-16 2023-01-03 23Andme, Inc. Computer implemented identification of genetic similarity
US11515047B2 (en) 2007-03-16 2022-11-29 23Andme, Inc. Computer implemented identification of modifiable attributes associated with phenotypic predispositions in a genetics platform
US11515046B2 (en) 2007-03-16 2022-11-29 23Andme, Inc. Treatment determination and impact analysis
US11621089B2 (en) 2007-03-16 2023-04-04 23Andme, Inc. Attribute combination discovery for predisposition determination of health conditions
US11791054B2 (en) 2007-03-16 2023-10-17 23Andme, Inc. Comparison and identification of attribute similarity based on genetic markers
US11875879B1 (en) 2007-10-15 2024-01-16 23Andme, Inc. Window-based method for determining inherited segments
US11683315B2 (en) 2007-10-15 2023-06-20 23Andme, Inc. Genome sharing
US12088592B2 (en) 2007-10-15 2024-09-10 23Andme, Inc. Genome sharing
US20090144270A1 (en) * 2007-11-29 2009-06-04 Jack Thacher Leonard Methods for the prevention of diseases
US20110161469A1 (en) * 2008-03-13 2011-06-30 Claudio Luis De Amorim Method for building spontaneous virtual communities based on common interests using interest bands
US12033046B2 (en) 2008-03-19 2024-07-09 23Andme, Inc. Ancestry painting
US11531445B1 (en) 2008-03-19 2022-12-20 23Andme, Inc. Ancestry painting
US11625139B2 (en) 2008-03-19 2023-04-11 23Andme, Inc. Ancestry painting
US11803777B2 (en) 2008-03-19 2023-10-31 23Andme, Inc. Ancestry painting
US11514085B2 (en) 2008-12-30 2022-11-29 23Andme, Inc. Learning system for pangenetic-based recommendations
US11508461B2 (en) 2008-12-31 2022-11-22 23Andme, Inc. Finding relatives in a database
US11468971B2 (en) 2008-12-31 2022-10-11 23Andme, Inc. Ancestry finder
US11776662B2 (en) 2008-12-31 2023-10-03 23Andme, Inc. Finding relatives in a database
US12100487B2 (en) 2008-12-31 2024-09-24 23Andme, Inc. Finding relatives in a database
US11657902B2 (en) 2008-12-31 2023-05-23 23Andme, Inc. Finding relatives in a database
US11322227B2 (en) 2008-12-31 2022-05-03 23Andme, Inc. Finding relatives in a database
US11935628B2 (en) 2008-12-31 2024-03-19 23Andme, Inc. Finding relatives in a database
US11748383B1 (en) 2011-10-11 2023-09-05 23Andme, Inc. Cohort selection with privacy protection
US11521708B1 (en) 2012-11-08 2022-12-06 23Andme, Inc. Scalable pipeline for local ancestry inference
US12046327B1 (en) 2019-07-19 2024-07-23 23Andme, Inc. Identity-by-descent relatedness based on focal and reference segments
US11514627B2 (en) 2019-09-13 2022-11-29 23Andme, Inc. Methods and systems for determining and displaying pedigrees
US12073495B2 (en) 2019-09-13 2024-08-27 23Andme, Inc. Methods and systems for determining and displaying pedigrees
US11817176B2 (en) 2020-08-13 2023-11-14 23Andme, Inc. Ancestry composition determination
CN111933300A (en) * 2020-09-28 2020-11-13 平安科技(深圳)有限公司 Epidemic situation prevention and control effect prediction method, device, server and storage medium
US11783919B2 (en) 2020-10-09 2023-10-10 23Andme, Inc. Formatting and storage of genetic markers

Also Published As

Publication number Publication date
US20100325108A1 (en) 2010-12-23
US11600393B2 (en) 2023-03-07
US20230025453A1 (en) 2023-01-26
US20110016105A1 (en) 2011-01-20
US20080228704A1 (en) 2008-09-18
US20220254512A1 (en) 2022-08-11
US12106862B2 (en) 2024-10-01
US20080228699A1 (en) 2008-09-18
US7933912B2 (en) 2011-04-26
US20080228818A1 (en) 2008-09-18
US11581096B2 (en) 2023-02-14
US7941329B2 (en) 2011-05-10
US11621089B2 (en) 2023-04-04
US8788283B2 (en) 2014-07-22
US20080228702A1 (en) 2008-09-18
US9582647B2 (en) 2017-02-28
US20200394240A1 (en) 2020-12-17
US11791054B2 (en) 2023-10-17
US20120221350A1 (en) 2012-08-30
US20180210705A1 (en) 2018-07-26
US10803134B2 (en) 2020-10-13
US10957455B2 (en) 2021-03-23
US20080228705A1 (en) 2008-09-18
US11735323B2 (en) 2023-08-22
US8224835B2 (en) 2012-07-17
US20080228706A1 (en) 2008-09-18
US20230101425A1 (en) 2023-03-30
US8024348B2 (en) 2011-09-20
US11515046B2 (en) 2022-11-29
US20220262525A1 (en) 2022-08-18
US10379812B2 (en) 2019-08-13
US7797302B2 (en) 2010-09-14
US20080228698A1 (en) 2008-09-18
US20080228768A1 (en) 2008-09-18
US20230335300A1 (en) 2023-10-19
US20080228756A1 (en) 2008-09-18
US20170053089A1 (en) 2017-02-23
US8099424B2 (en) 2012-01-17
US20120066255A1 (en) 2012-03-15
US20220359090A1 (en) 2022-11-10
US11482340B1 (en) 2022-10-25
US20120270190A1 (en) 2012-10-25
US11515047B2 (en) 2022-11-29
US20150347566A1 (en) 2015-12-03
US20080228727A1 (en) 2008-09-18
US20080228751A1 (en) 2008-09-18
US20170185719A1 (en) 2017-06-29
US11348691B1 (en) 2022-05-31
US20200394241A1 (en) 2020-12-17
US20080228824A1 (en) 2008-09-18
US9170992B2 (en) 2015-10-27
US20080228757A1 (en) 2008-09-18
US20080228766A1 (en) 2008-09-18
US20080228765A1 (en) 2008-09-18
US20220270766A1 (en) 2022-08-25
US20080228451A1 (en) 2008-09-18
US8458121B2 (en) 2013-06-04
US20210166823A1 (en) 2021-06-03
US20230154629A1 (en) 2023-05-18
US20080228797A1 (en) 2008-09-18
US20120036128A1 (en) 2012-02-09
US11495360B2 (en) 2022-11-08
US20080227063A1 (en) 2008-09-18
US20080228708A1 (en) 2008-09-18
US7844609B2 (en) 2010-11-30
US8055643B2 (en) 2011-11-08
US8655899B2 (en) 2014-02-18
US20230057262A1 (en) 2023-02-23
US20120110010A1 (en) 2012-05-03
US7941434B2 (en) 2011-05-10
US10991467B2 (en) 2021-04-27
US11545269B2 (en) 2023-01-03
US20080228410A1 (en) 2008-09-18
US20220262526A1 (en) 2022-08-18
US11581098B2 (en) 2023-02-14
US20110295835A1 (en) 2011-12-01
US20110040791A1 (en) 2011-02-17
US8655908B2 (en) 2014-02-18
US20120036129A1 (en) 2012-02-09
US8185461B2 (en) 2012-05-22
US8065324B2 (en) 2011-11-22
US20080228677A1 (en) 2008-09-18
US20110078168A1 (en) 2011-03-31
US20080243843A1 (en) 2008-10-02
US20110184656A1 (en) 2011-07-28
US7818310B2 (en) 2010-10-19
US20080228820A1 (en) 2008-09-18
US8209319B2 (en) 2012-06-26
US20200210143A1 (en) 2020-07-02
US8606761B2 (en) 2013-12-10
US20230420145A1 (en) 2023-12-28
US20080228703A1 (en) 2008-09-18
US11348692B1 (en) 2022-05-31
US20080228730A1 (en) 2008-09-18
US20080228767A1 (en) 2008-09-18
US20080228722A1 (en) 2008-09-18
US20080228735A1 (en) 2008-09-18
US20080228701A1 (en) 2008-09-18
US20080228531A1 (en) 2008-09-18
US20190034163A1 (en) 2019-01-31
US20120265783A1 (en) 2012-10-18
US20190347070A1 (en) 2019-11-14
US10896233B2 (en) 2021-01-19
US20080228723A1 (en) 2008-09-18
US20080228043A1 (en) 2008-09-18
US20210233665A1 (en) 2021-07-29
US8051033B2 (en) 2011-11-01
US20080228753A1 (en) 2008-09-18
US20110184944A1 (en) 2011-07-28
US20160042143A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
US20200210143A1 (en) Attribute Combination Discovery for Predisposition Determination
US8788286B2 (en) Side effects prediction using co-associating bioattributes

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXPANSE NETWORKS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KENEDY, ANDREW A;REEL/FRAME:020721/0636

Effective date: 20070509

Owner name: EXPANSE NETWORKS, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELDERING, CHARLES A;REEL/FRAME:020721/0655

Effective date: 20070518

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: EXPANSE BIOINFORMATICS, INC., PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:EXPANSE NETWORKS, INC.;REEL/FRAME:031289/0223

Effective date: 20130830

AS Assignment

Owner name: 23ANDME, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXPANSE BIOINFORMATICS, INC.;REEL/FRAME:058650/0006

Effective date: 20211028