US20060271163A1 - Endoluminal vascular prosthesis - Google Patents
Endoluminal vascular prosthesis Download PDFInfo
- Publication number
- US20060271163A1 US20060271163A1 US11/417,651 US41765106A US2006271163A1 US 20060271163 A1 US20060271163 A1 US 20060271163A1 US 41765106 A US41765106 A US 41765106A US 2006271163 A1 US2006271163 A1 US 2006271163A1
- Authority
- US
- United States
- Prior art keywords
- prosthesis
- tubular
- segment
- wire
- endoluminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/061—Blood vessels provided with means for allowing access to secondary lumens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
- A61F2220/0016—Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0075—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
Definitions
- the present invention relates to endoluminal vascular prostheses, and, in one application, to self-expanding endoluminal vascular prostheses for use in the treatment of abdominal aortic aneurysms.
- An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen.
- the abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum.
- the aorta is the main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
- the aneurysm usually arises in the infrarenal portion of the diseased aorta, for example, below the kidneys. When left untreated, the aneurysm may eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture led initially to transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks.
- a prosthetic device which typically is a synthetic tube, or graft, usually fabricated of Polyester, Urethane, P, DACRON®, TEFLON®, or other suitable material.
- aorta To perform the surgical procedure requires exposure of the aorta through an abdominal incision which can extend from the rib cage to the pubis.
- the aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed.
- Small arterial branches from the back wall of the aorta are tied off.
- the DACRON® tube, or graft, of approximately the same size of the normal aorta is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
- the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically slightly less than 10%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.5%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
- Disadvantages associated with the conventional, prior art surgery, in addition to the high mortality rate include the extended recovery period associated with such surgery; difficulties in suturing the graft, or tube, to the aorta; the loss of the existing aorta wall and thrombosis to support and reinforce the graft; the unsuitability of the surgery for many patients having abdominal aortic aneurysms; and the problems associated with performing the surgery on an emergency basis after the aneurysm has ruptured.
- a patient can expect to spend from one to two weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from two to three months, particularly if the patient has other illnesses such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. Since the graft must be secured, or sutured, to the remaining portion of the aorta, it is many times difficult to perform the suturing step because the thrombosis present on the remaining portion of the aorta, and that remaining portion of the aorta wall may many times be friable, or easily crumbled.
- Parodi, et al. provide one of the first clinical descriptions of this therapy.
- Parodi, J. C., et al. “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms,” 5 Annals of Vascular Surgery 491 (1991).
- Endovascular grafting involves the transluminal placement of a prosthetic arterial graft in the endoluminal position (within the lumen of the artery).
- the graft is attached to the internal surface of an arterial wall by means of attachment devices (expandable stents), typically one above the aneurysm and a second stent below the aneurysm.
- Stents permit fixation of a graft to the internal surface of an arterial wall without sewing or an open surgical procedure.
- Expansion of radially expandable stents is conventionally accomplished by dilating a balloon at the distal end of a balloon catheter.
- Palmaz describes a balloon-expandable stent for endovascular treatments.
- self-expanding stents such as described in U.S. Pat. No. 4,655,771 to Wallsten.
- the tubular prosthesis can be self expanded at the site to treat the abdominal aortic aneurysm.
- the endoluminal prosthesis comprises a tubular wire support having a proximal end, a distal end and central lumen extending therethrough.
- the wire support comprises at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween.
- the first and second segments and the connector are formed from a single length of wire.
- the wire in each segment comprises a series of proximal bends, a series of distal bends, and a series of wall (strut) segments connecting the proximal bends and distal bends to form a tubular segment wall.
- a proximal bend on a first segment is connected to at least one corresponding distal bend on a second segment.
- the connection may be provided by a metal link, a suture, or other connection means known in the art.
- the endoluminal prosthesis further comprises a polymeric layer such as a tubular PTFE sleeve, on the support.
- a polymeric layer such as a tubular PTFE sleeve
- a method of making an endoluminal prosthesis comprises the steps of providing a length of wire, and forming the wire into two or more zig zag sections, each zig zag section connected by a link.
- the formed wire is thereafter rolled about an axis to produce a series of tubular elements positioned along the axis such that each tubular element is connected to the adjacent tubular element by a link.
- the method further comprises the step of positioning a tubular polymeric sleeve concentrically on at least a portion of the endoluminal prosthesis.
- a multizone endoluminal prosthesis comprising a tubular wire support having a proximal end, a distal end and a central lumen extending therethrough.
- the wire support comprises at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween.
- the first tubular segment has a different radial strength than the second tubular segment.
- the prosthesis further comprises a third tubular segment. At least one of the tubular segments has a different radial strength than the other two tubular segments.
- a proximal end of the prosthesis is self expandable to a greater diameter than a central region of the prosthesis.
- an endoluminal prosthesis comprising an elongate flexible wire, formed into a plurality of axially adjacent tubular segments spaced along an axis. Each tubular segment comprises a zig zag section of wire, having a plurality of proximal bends and distal bends, with the wire continuing between each adjacent tubular segment creating an integral structural support system throughout the longitudinal length of the device.
- the prothesis is radially collapsible into a first, reduced cross sectional configuration for implantation into a body lumen, and self expandable to a second, enlarged cross sectional configuration at a treatment site in a body lumen.
- the prosthesis further comprises an outer tubular sleeve surrounding at least a portion of the prosthesis.
- One or more lateral perfusion ports may be provided through the tubular sleeve.
- the prosthesis has an expansion ratio of at least about 1:5, and, preferably at least about 1:6.
- the prosthesis in another embodiment has an expanded diameter of at least about 20 mm in an unconstrained expansion, and the prosthesis is implantable using a catheter no greater than about 16 French.
- the prosthesis has an expanded diameter of at least about 25 mm, and is implantable on a delivery device having a diameter of no more than about 16 French.
- a method of implanting an endoluminal vascular prosthesis comprises the steps of providing a self expandable endoluminal vascular prosthesis, having a proximal end, a distal end, and a central lumen extending therethrough.
- the prosthesis is expandable from a first, reduced diameter to a second, enlarged diameter.
- the prosthesis is mounted on a catheter, such that when the prosthesis is in the reduced diameter configuration on the catheter, the catheter diameter through the prosthesis is no more than about 16 French.
- the catheter is thereafter introduced into the body lumen and positioned such that the prosthesis is at a treatment site in the body lumen.
- the prosthesis is released at the treatment site, such that it expands from the first diameter to the second diameter, wherein the second diameter is at least about 20 mm.
- FIG. 1 is a schematic representation of an endoluminal vascular prosthesis in accordance with the present invention, positioned within a symmetric abdominal aortic aneurysm.
- FIG. 2 is an exploded view of an endoluminal vascular prosthesis in accordance with the present invention, showing a self expandable wire support structure separated from an outer tubular sleeve.
- FIG. 3 is a plan view of a formed wire useful for rolling about an axis into a multi-segment support structure in accordance with the present invention.
- FIG. 4 is an enlarged detail view of a portion of the formed wire illustrated in FIG. 3 .
- FIG. 5 is a cross sectional view taken along the lines 5 - 5 of FIG. 4 .
- FIG. 6 is an alternate cross sectional view taken along the lines 5 - 5 of FIG. 4 .
- FIG. 7 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention.
- FIG. 8 is an elevational view of a crosslinked wire layout in accordance with the present invention.
- FIG. 8A is a plan view of a formed wire layout useful for forming the crosslinked embodiment of FIG. 8 .
- FIG. 9 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention.
- FIG. 10 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention.
- FIG. 11 is a fragmentary view of an apex in accordance with one aspect of the present invention.
- FIG. 12 is a fragmentary view of an alternate embodiment of an apex in accordance with the present invention.
- FIG. 13 is a further embodiment of an apex in accordance with the present invention.
- FIG. 14 is a fragmentary view of a further wire layout in accordance with the present invention.
- FIG. 15 is a fragmentary view of a further wire layout in accordance with the present invention.
- FIG. 16 is a fragmentary view of a further wire layout in accordance with the present invention.
- FIG. 17 is a schematic illustration of a delivery catheter in accordance with the present invention, positioned within an abdominal aortic aneurysm.
- FIG. 18 is an illustration as in FIG. 17 , with the endoluminal prosthesis partially deployed from the delivery catheter.
- FIG. 19 is a cross sectional view taken along the lines 19 - 19 of FIG. 17 .
- FIG. 20 is a detailed fragmentary view of a tapered wire embodiment in accordance with a further aspect of the present invention.
- FIG. 21 is a schematic representation of the abdominal aortic anatomy, with an endoluminal vascular prosthesis of the present invention positioned within each of the right renal artery and the right common iliac.
- FIG. 1 there is disclosed a schematic representation of the abdominal part of the aorta and its principal branches.
- the abdominal aorta 30 is characterized by a right renal artery 32 and left renal artery 34 .
- the large terminal branches of the aorta are the right and left common iliac arteries 36 and 38 .
- Additional vessels e.g., second lumbar, testicular, inferior mesenteric, middle sacral
- a generally symmetrical aneurysm 40 is illustrated in the infrarenal portion of the diseased aorta
- An expanded endoluminal vascular prosthesis 42 in accordance with the present invention, is illustrated spanning the aneurysm 40 .
- endoluminal vascular prosthesis of the present invention can be modified for use in a bifurcation aneurysm, such as the common iliac bifurcation, the endoluminal prosthesis of the present invention will be described herein primarily in terms of its application in the straight segment of the abdominal aorta, or Thoracic or iliac arteries.
- the endoluminal vascular prosthesis 42 includes a polymeric sleeve 44 and a tubular wire support 46 , which are illustrated in situ in FIG. 1 .
- the sleeve 44 and wire support 46 are more readily visualized in the exploded view shown in FIG. 2 .
- the endoluminal prosthesis 42 illustrated and described herein depicts an embodiment in which the polymeric sleeve 44 is situated concentrically outside of the tubular wire support 46 .
- other embodiments may include a sleeve situated instead concentrically inside the wire support or on both of the inside and the outside of the wire support.
- the wire support may be embedded within a polymeric matrix which makes up the sleeve.
- the sleeve 44 may be attached to the wire support by any of a variety of means, including laser bonding, adhesives, clips, sutures, dipping or spraying or others, depending upon the composition of the sleeve 44 and overall graft design.
- the polymeric sleeve 44 may be formed from any of a variety of synthetic polymeric materials, or combinations thereof, including PTFE, PE, PET, Urethane, Dacron, nylon, polyester or woven textiles.
- the sleeve material exhibits relatively low inherent elasticity, or low elasticity out to the intended enlarged diameter of the wire cage 46 .
- the sleeve material preferably has a thin profile, such as no larger than about 0.002 inches to about 0.005 inches.
- the material of sleeve 44 is sufficiently porous to permit ingrowth of endothelial cells, thereby providing more secure anchorage of the prosthesis and potentially reducing flow resistance, sheer forces, and leakage of blood around the prosthesis.
- Porosity in polymeric sleeve materials may be estimated by measuring water permeability as a function of hydrostatic pressure, which will preferably range from about 3 to 6 psi.
- the porosity characteristics of the polymeric sleeve 44 may be either homogeneous throughout the axial length of the prosthesis 42 , or may vary according to the axial position along the prosthesis 42 . For example, referring to FIGS. 1 and 2 , different physical properties will be called upon at different axial positions along the prosthesis 42 in use. At least a proximal portion 55 and a distal portion 59 of the prosthesis 42 will seat against the native vessel wall, proximally and distally of the aneurysm. In these proximal and distal portions, the prosthesis preferably encourages endothelial growth, or, at least, permits endothelial growth to infiltrate portions of the prosthesis in order to enhance anchoring and minimize leakage.
- a central portion 57 of the prosthesis spans the aneurysm, and anchoring is less of an issue. Instead, minimizing blood flow through the prosthesis wall becomes a primary objective.
- the polymeric sleeve 44 may either be nonporous, or provided with pores of no greater than about 60% to 80%.
- a multi-zoned prosthesis 42 may also be provided in accordance with the present invention by positioning a tubular sleeve 44 on a central portion 57 of the prosthesis, such that it spans the aneurysm to be treated, but leaving a proximal attachment zone 55 and a distal attachment zone 59 of the prosthesis 42 having exposed wires from the wire support 46 .
- the exposed wires 46 are positioned in contact with the vessel wall both proximally and distally of the aneurysm, such that the wire, over time, becomes embedded in cell growth on the interior surface of the vessel wall.
- the sleeve 44 and/or the wire support 46 is tapered, having a relatively larger expanded diameter at the proximal end 50 compared to the distal end 52 .
- the tapered design may allow the prosthesis to conform better to the natural decreasing distal cross section of the vessel, to reduce the risk of graft migration and potentially create better flow dynamics.
- the tubular wire support 46 is preferably formed from a continuous single length of round (shown in FIG. 5 ) or flattened (shown in FIG. 6 ) wire.
- the wire support 46 is preferably formed in a plurality of discrete segments 54 , connected together and oriented about a common axis. Each pair of adjacent segments 54 is connected by a connector 66 as will be discussed.
- the connectors 66 collectively produce a generally axially extending backbone which adds axial strength to the prosthesis 42 .
- Adjacent segments can be connected both by the backbone, as well as by other structures, including circumferentially extending sutures 56 (illustrated in FIGS. 1 and 2 ), solder joints, wire loops and any of a variety of interlocking relationships.
- the suture can be made from any of a variety of biocompatible polymeric materials or alloys, such as nylon, polypropylene, or stainless steel. Other means of securing the segments 54 to one another are discussed below (see FIG. 8 ).
- Each segment 54 though joined to adjacent segments, may be independently engineered to yield desired parameters. Each segment may range in axial length from about 0.3 to about 5 cm. Generally, the shorter their length the greater the radial strength.
- An endoluminal prosthesis may include from about 1 to about 50 segments, preferably from about 3 to about 10 segments.
- a short graft patch in accordance with the invention, may comprise only 2 segments and span a total of 2 to 3 cm, a complete graft may comprise 4 or more segments and span the entire aortic aneurysm.
- further flexibility can be achieved through adjustments in the number, angle, or configuration of the wire bends associated with the tubular support. Potential bend configurations are discussed in greater detail below (see FIGS. 4-16 ).
- the wire cage 46 is dividable into a proximal zone 55 , a central zone 57 and a distal zone 59 .
- the wire cage 46 can be configured to taper from a relatively larger diameter in the proximal zone 55 to a relatively smaller diameter in the distal zone 59 .
- the wire cage 46 can have a transitional tapered and or stepped diameter within a given zone.
- the cage 46 can also be provided with a proximal zone 55 and distal zone 59 that have a larger relative expanded diameter than the central zone 57 , as illustrated in FIG. 2 .
- This configuration may desirably resist migration of the prosthesis within the vessel.
- the proximal zone 55 and/or distal zone 59 can be left without an outer covering 44 , with the outer sleeve 44 covering only the central zone 57 . This permits the proximal and distal zones 55 , 59 to be in direct contact with tissue proximally and distal to the lesion, which may facilitate endothelial cell growth.
- different zones can be provided with a different radial expansion force, such as ranging from about 0.2 lbs to about 0.8 lbs.
- the proximal zone 55 is provided with a greater radial force than the central zone 57 and/or distal zone 59 .
- the greater radial force can be provided in any of a variety of manners discussed elsewhere herein, such as through the use of an additional one or two or three or more proximal bends 60 , distal bends 62 and wall sections 64 compared to a reference segment 54 in the central zone 57 or distal zone 59 .
- proximal zone 55 can be achieved through the use of the same number of proximal bends 60 as in the rest of the prosthesis, but with a heavier gauge wire.
- Radial force beyond the expanded diameter limit of the central zone 57 can be achieved by tightening the suture 56 as illustrated in FIG. 2 such that the central zone 57 is retained under compression even in the expanded configuration.
- the proximal end and distal end will flair radially outwardly to a fully expanded configuration as illustrated in FIG. 2 .
- the wire may be made from any of a variety of different alloys, such as elgiloy, nitinol or MP35N, or other alloys which include nickel, titanium, tantalum, or stainless steel, high Co—Cr alloys or other temperature sensitive materials.
- elgiloy, nitinol or MP35N or other alloys which include nickel, titanium, tantalum, or stainless steel, high Co—Cr alloys or other temperature sensitive materials.
- an alloy comprising Ni 15%, Co 40%, Cr 20%, Mo 7% and balance Fe may be used.
- the tensile strength of suitable wire is generally above about 300 K psi and often between about 300 and about 340 K psi for many embodiments.
- a Chromium-Nickel-Molybdenum alloy such as that marketed under the name Conichrom (Fort Wayne Metals, Ind.) has a tensile strength ranging from 300 to 320 K psi, elongation of 3.5-4.0% and breaking load at approximately 80 lbs to 70 lbs.
- the wire may be treated with a plasma coating and be provided with/without coating such as: PTFE, Teflon, Perlyne and Drugs.
- radial strength measured at 50% of the collapsed profile, preferably ranges from about 0.2 lb to 0.8 lb, and generally from about 0.4 lb to about 0.5 lb. or more.
- Preferred wire diameters in accordance with the present invention range from about 0.004 inches to about 0.020 inches. More preferably, the wire diameters range from about 0.006 inches to about 0.018 inches. In general, the greater the wire diameter, the greater the radial strength for a given wire layout.
- the wire gauge can be varied depending upon the application of the finished graft, in combination with/or separate from variation in other design parameters (such as the number of struts, or proximal bends 60 and distal bends 62 per segment), as will be discussed.
- a wire diameter of approximately 0.018 inches may be useful in a graft having four segments each having 2.5 cm length per segment, each segment having six struts intended for use in the aorta, while a smaller diameter such as 0.006 inches might be useful for a 0.5 cm segment graft having 5 struts per segment intended for the iliac artery.
- the length of cage 42 could be as long as about 28 cm.
- the wire diameter is tapered from the proximal to distal ends.
- the wire diameter may be tapered incrementally or stepped down, or stepped up, depending on the radial strength requirements of each particular clinical application.
- the wire has a cross section of about 0.018 inches in the proximal zone 55 and the wire tapers down to a diameter of about 0.006 inches in the distal zone 59 of the graft 42 . End point dimensions and rates of taper can be varied widely, within the spirit of the present invention, depending upon the desired clinical performance.
- FIG. 3 there is illustrated a plan view of the single formed wire used for rolling about a longitudinal axis to produce a four segment tubular wire support.
- the formed wire exhibits distinct segments, each corresponding to an individual tubular segment 54 in the tubular support (see FIGS. 1 and 2 ).
- Each segment has a repeating pattern of proximal bends 60 connected to corresponding distal bends 62 by wall sections 64 which extend in a generally zig zag configuration when the segment 54 is radially expanded
- Each segment 54 is connected to the adjacent segment 54 through a connector 66 , except at the terminal ends of the graft.
- the connector 66 in the illustrated embodiment comprises two wall sections 64 which connect a proximal bend 60 on a first segment 54 with a distal bend 62 on a second, adjacent segment 54 .
- the connector 66 may additionally be provided with a connector bend 68 , which may be used to impart increased radial strength to the graft and/or provide a tie site for a circumferentially extending suture.
- a proximal bend 60 comprises about a 180 degree arc, having a radial diameter of (w) (Ranging from 0.070 to 0.009 inches), depending on wire diameter followed by a relatively short length of parallel wire spanning an axial distance of d 1 .
- the parallel wires thereafter diverge outwardly from one another and form the strut sections 64 , or the proximal half of a connector 66 .
- the wire forms a distal bend 62 , preferably having identical characteristics as the proximal bend 60 , except being concave in the opposite direction.
- the axial direction component of the distance between the apices of the corresponding proximal and distal bends 60 , 62 is referred to as (d) and represents the axial length of that segment.
- the total expanded angle defined by the bend 60 and the divergent strut sections 64 is represented by ⁇ .
- ⁇ is generally within the range of from about 35° to about 45°.
- the expanded circumferential distance between any two adjacent distal bends 62 (or proximal bends 60 ) is defined as (s).
- the diameter W of each proximal bend 60 or distal bend 62 is within the range of from about 0.009 inches to about 0.070 inches depending upon the wire diameter.
- Diameter W is preferably as small as possible for a given wire diameter and wire characteristics. As will be appreciated by those of skill in the art, as the distance W is reduced to approach two times the cross section of the wire, the bend 60 or 62 will exceed the elastic limit of the wire, and radial strength of the finished segment will be lost. Determination of a minimum value for W, in the context of a particular wire diameter and wire material, can be readily determined through routine experimentation by those of skill in the art.
- the distance d 1 is preferably minimized within the desired radial strength performance requirements. As d 1 increases, it may disadvantageously increase the collapsed profile of the graft.
- the sum of the distances (s) in a plane transverse to the longitudinal axis of the finished graft will correspond to the circumference of the finished graft in that plane.
- the number of proximal bends 60 or distal bends 62 is directly related to the distance (s) in the corresponding plane.
- the finished graft in any single transverse plane will have from about 3 to about 10 (s) dimensions, preferably from about 4 to about 8 (s) dimensions and, more preferably, about 5 or 6 (s) dimensions for an aortic application.
- Each (s) dimension corresponds to the distance between any two adjacent bends 60 - 60 or 62 - 62 as will be apparent from the discussion herein.
- Each segment 54 can thus be visualized as a series of triangles extending circumferentially around the axis of the graft, defined by a proximal bend 60 and two distal bends 62 or the reverse.
- wire support parameters such as d, d 1 , s, alpha and alpha′
- the manufacturer enjoys tremendous design control with respect to the total axial length, axial and radial flexibility, radial force and expansion ratios, and consequently prosthesis performance.
- an increase in the dimension (w) translates directly into an increased collapsed profile since the circumference of the collapsed profile can be no smaller than the sun of the distances (w) in a given transverse plane.
- an increase in the number of proximal bends 60 in a given segment may increase radial strength, but will similarly increase the collapsed profile.
- the wall sections 64 act as a lever arm for translating that force into radial strength.
- decreasing the length of strut sections 64 for a given number of proximal bends 60 will increase the radial strength of the segment but call for additional segments to maintain overall graft length.
- radial strength is best accomplished by decreasing the length of wall sections 64 rather than increasing the number of proximal bends 60 .
- increasing the number of (shorter) segments 54 in a given overall length graft will increase the degree of axial shortening upon radial expansion of the graft.
- increased radial strength may be optimized through selection of wire material or wire gauge and other parameters, while minimizing the number of total segments in the graft.
- Other geometry consequences of the present invention will be apparent to those of skill in the art in view of the disclosure herein.
- w is about 2.0 mm ⁇ 1 mm for a 0.018 inch wire diameter.
- D 1 is about 3 mm ⁇ 1 mm
- d is about 20 mm ⁇ 1 mm
- c is about 23 mm ⁇ 1 mm
- g is about 17 mm
- ⁇ 1 mm is about 3 mm ⁇ 1 mm
- b is about 3 mm ⁇ 1 mm.
- Specific dimensions for all of the foregoing variables can be varied considerably, depending upon the desired wire configuration, in view of the disclosure herein.
- FIG. 7 there is shown an alternative wire layout having a plurality of radiussed bends 70 in one or more sections of strut 64 which may be included to provide additional flex points to provide enhanced fluid dynamic characteristics and maintain the tubular shape.
- each pair of adjacent proximal and distal segments, 76 and 78 may be joined by crosslinking of the corresponding proximal and distal bends.
- a proximal bend 60 from a distal segment 78 is connected to the corresponding distal bend 62 of a proximal segment 76 , thereby coupling the proximal segment 76 and distal segment 78 .
- the connection between corresponding proximal bends 60 and distal bends 62 can be accomplished in any of a variety of ways as will be apparent to those of skill in the art in view of the disclosure herein. In the illustrated embodiment, the connection is accomplished through the use of a link 72 .
- Link 72 may be a loop of metal such as stainless steel, a suture, a welded joint or other type of connection.
- link 72 comprises a metal loop or ring which permits pivotable movement of a proximal segment 76 with respect to a distal segment 78 .
- the proximal segment 76 is provided with six distal bends 62 .
- the corresponding distal segment 78 is provided with six proximal bends 60 such that a one to one correspondence exists.
- a link 72 may be provided at each pair of corresponding bends 60 , 62 , such that six links 72 exist in a plane transverse to the longitudinal axis of the graft at the interface between the proximal segment 76 and the distal segment 78 .
- links 72 can be provided at less than all of the corresponding bends, such as at every other bend, every third bend, or only on opposing sides of the graft.
- the distribution of the links 72 in any given embodiment can be selected to optimize the desired flexibility characteristics and other performance criteria in a given design.
- connectors such as cross link 72 enables improved tracking of the graft around curved sections of the vessel.
- the wire cage 46 as illustrated in FIG. 8 can be bent around a gentle curve, such that it will both retain the curved configuration and retain patency of the central lumen extending axially therethrough.
- the embodiment illustrated in FIG. 2 may be more difficult to track curved anatomy while maintaining full patency of the central lumen.
- the ability to maintain full patency while extending around a curve may be desirable in certain anatomies, such as where the aorta fails to follow the linear infrarenal path illustrated in FIG. 1 .
- FIG. 8 a there is illustrated a plan view of a formed wire useful for rolling about an axis to produce a multi-segmented support structure of the type illustrated in FIG. 8 .
- the formed wire of FIG. 8 a is similar to that illustrated in FIG. 3 .
- any given pair of corresponding distal bends 62 and proximal bends 60 of the embodiment of FIG. 3 overlap in the axial direction to facilitate threading a circumferential suture therethrough
- the corresponding distal bend 62 and proximal bend 60 of the embodiment illustrated in FIG. 8 a may abut end to end against each other or near each other as illustrated in FIG. 8 to receive a connector 72 thereon.
- a distal bend 62 with respect to a corresponding proximal bend 60 can be accomplished in a variety of ways, most conveniently by appropriate formation of the connector bend 68 between adjacent segments of the wire cage.
- FIGS. 9-16 illustrate alternative bend configurations in accordance with the present invention.
- FIG. 9 shows one embodiment having the proximal and distal bends as eyelets, but the connector bend 68 , remaining in the usual configuration.
- the embodiment illustrated in FIG. 10 has the proximal and distal bends as well as the connector bend in the eyelet configuration.
- Various eyelet designs in accordance with the present invention are shown in greater detail in FIGS. 11-13 , including a double-looped circular eyelet ( FIG. 11 ), a double-looped triangular eyelet ( FIG. 12 ), and a single-looped triangular eyelet ( FIG. 13 ).
- the eyelets can be used to receive a circumferentially extending suture or wire as has been described.
- FIGS. 14-16 Additional embodiments of the wire configuration are illustrated in FIGS. 14-16 .
- FIG. 14 shows an embodiment of the proximal 60 and distal 62 bends in which double bends are employed to increase the flexion.
- FIG. 15 shows triangular bends having a more pronounced length (d 1 ) of parallel wire, and accordingly shorter wall sections 64 .
- FIG. 16 shows another embodiment of the proximal and distal bends, wherein the triangular bends include additional flexion points in the form of wall segment bends 70 .
- a delivery catheter 80 having a dilator tip 82 , is advanced along guidewire 84 until the (anatomically) proximal end 50 of the collapsed endoluminal vascular prosthesis 86 is positioned between the renal arteries 32 and 34 and the aneurysm 40 .
- the collapsed prosthesis in accordance with the present invention has a diameter in the range of about 2 to about 10 mm.
- the diameter of the collapsed prosthesis is in the range of about 3 to 6 mm (12 to 18 French). More preferably, the delivery catheter including the prosthesis will be 16 F, or 15 F or 14 F or smaller.
- the prosthesis 86 is maintained in its collapsed configuration by the restraining walls of the tubular delivery catheter 80 , such that removal of this restraint would allow the prosthesis to self expand.
- Radiopaque marker material may be incorporated into the delivery catheter 80 , and/or the prosthesis 86 , at least at both the proximal and distal ends, to facilitate monitoring of prosthesis position.
- the dilator tip 82 is bonded to an internal catheter core 92 , as illustrated in FIG. 18 , wherein the internal catheter core 92 and the partially expanded prosthesis 88 are revealed as the outer sheath of the delivery catheter 80 is retracted.
- the internal catheter core 92 is also depicted in the cross-sectional view in FIG. 19 .
- the collapsed prosthesis 86 remains substantially fixed axially relative to the internal catheter core 92 and consequently, self-expands at a predetermined vascular site as illustrated in FIG. 18 .
- the expanded endoluminal vascular prosthesis has radially self-expanded to a diameter anywhere in the range of about 20 to 40 mm, corresponding to expansion ratios of about 1:2 to 1:20.
- the expansion ratios range from about 1:4 to 1:8, more preferably from about 1:4 to 1:6.
- the prosthesis 86 may be maintained in its collapsed configuration by a restraining lace, which may be woven through the prosthesis or wrapped around the outside of the prosthesis in the collapsed reduced diameter. Following placement of the prosthesis at the treatment site, the lace can be proximally retracted from the prosthesis thereby releasing it to self expand at the treatment site.
- the lace may comprise any of a variety of materials, such as sutures, strips of PTFE, FEP, polyester fiber, and others as will be apparent to those of skill in the art in view of the disclosure herein.
- the restraining lace may extend proximally through a lumen in the delivery catheter or outside of the catheter to a proximal control.
- the control may be a pull tab or ring, rotatable reel, slider switch or other structure for permitting proximal retraction of the lace.
- the lace may extend continuously throughout the length of the catheter, or may be joined to another axially moveable element such as a pull wire.
- the expanded diameter of the graft in accordance with the present invention can be any diameter useful for the intended lumen or hollow organ in which the graft is to be deployed.
- the expanded size will be within the range of from about 10 to about 40 mm.
- Abdominal aortic applications will generally require a graft having an expanded diameter within the range of from about 20 to about 28 mm, and, for example, a graft on the order of about 45 mm may be useful in the thoracic artery.
- the foregoing dimensions refer to the expanded size of the graft in an unconstrained configuration, such as on the table.
- the graft will be positioned within an artery having a slightly smaller interior cross section than the expanded size of the graft. This enables the graft to maintain a slight positive pressure against the wall of the artery, to assist in retention of the graft during the period of time prior to endothelialization of the polymeric sleeve 44 .
- radial force exerted by the proximal segment 94 of the prosthesis against the walls of the aorta 30 provides a seal against the leakage of blood around the vascular prosthesis and tends to prevent axial migration of the deployed prosthesis.
- this radial force can be modified as required through manipulation of various design parameters, including the axial length of the segment and the bend configurations.
- radial tension can be enhanced at the proximal, upstream end by changes in the wire gauge as illustrated in FIG. 20 . Note that the wire gauge increases progressively along the wall segments 64 from T 1 at the proximal bends 60 to T 2 at the distal bends 62 .
- T 1 may range from about 0.001 to 0.01 inches whereas T 2 may range from about 0.01 to 0.03 inches.
- An alternative embodiment of the wire layout which would cause the radial tension to progressively decrease from the proximal segments to the distal segments involves a progressive or step-wise decrease in the wire gauge throughout the entire wire support, from about 0.01 to 0.03 inches at the proximal end to about 0.002 to 0.01 inches at the distal end.
- Such an embodiment may be used to create a tapered prosthesis.
- the wire gauge may be thicker at both the proximal and distal ends, in order to insure greater radial tension and thus, sealing capacity.
- the wire gauge in the proximal and distal segments may about 0.01 to 0.03 inches, whereas the intervening segments may be constructed of thinner wire, in the range of about 0.001 to 0.01 inches.
- FIG. 21 there is illustrated two alternative deployment sites for the endoluminal vascular prosthesis 42 of the present invention.
- a symmetrical aneurysm 33 is illustrated in the right renal artery 32 .
- An expanded endoluminal vascular prosthesis 42 is illustrated spanning that aneurysm 33 .
- an aneurysm of the right common iliac 37 is shown, with a prosthesis 42 deployed to span the iliac aneurysm 37 .
- the endovascular prosthesis 96 is provided with a wire cage 46 having six axially aligned segments 54 .
- the endovascular prosthesis 96 may be provided with anywhere from about 2 to about 10 or more axially spaced or adjacent segments 54 , depending upon the clinical performance objectives of the particular embodiment.
- the wire support 46 is provided with a tubular polymeric sleeve 44 as has been discussed. In the present embodiment, however, one or more lateral perfusion ports or openings are provided in the polymeric sleeve 44 , such as a right renal artery perfusion port 98 and a left renal artery perfusion port 100 as illustrated.
- Perfusion ports in the polymeric sleeve 44 may be desirable in embodiments of the endovascular prosthesis 96 in a variety of clinical contexts.
- FIGS. 1 and 22 illustrate a generally symmetrical aneurysm 40 positioned within a linear infrarenal portion of the abdominal aorta, spaced axially apart both from bilaterally symmetrical right and left renal arteries and bilaterally symmetrical right and left common iliacs
- both the position and symmetry of the aneurysm 40 as well as the layout of the abdominal aortic architecture may differ significantly from patient to patient.
- the endovascular prosthesis 96 may need to extend across one or both of the renal arteries in order to adequately anchor the endovascular prosthesis 96 and/or span the aneurysm 40 .
- the provision of one or more lateral perfusion ports enables the endovascular prosthesis 96 to span the renal arteries while permitting perfusion therethrough, thereby preventing “stent jailing” of the renals.
- Lateral perfusion through the endovascular prosthesis 96 may also be provided, if desired, for a variety of other arteries including the second lumbar, testicular, inferior mesenteric, middle sacral, and alike as will be well understood to those of skill in the art.
- the endovascular prosthesis 96 is preferably provided with at least one, and preferably two or more radiopaque markers, to facilitate proper positioning of the prosthesis 96 within the artery.
- the prosthesis 96 should be properly aligned both axially and rotationally, thereby requiring the ability to visualize both the axial and rotational position of the device.
- the rotational orientation of the graft maybe coordinated with an indexed marker on the proximal end of the catheter, so that the catheter may be rotated and determined by an external indicium of rotational orientation to be appropriately aligned with the right and left renal arteries.
- the polymeric sleeve 44 extends across the aneurysm 40 , but terminates in the infrarenal zone.
- a proximal zone 55 on the prosthesis 96 comprises a wire cage 46 but no polymeric sleeve 44 .
- the prosthesis 96 still accomplishes the anchoring function across the renal arteries, yet does not materially interfere with renal perfusion.
- the polymeric sleeve 44 may cover anywhere from about 50% to about 100% of the axial length of the prosthesis 96 depending upon the desired length of uncovered wire cage 46 such as for anchoring and/or lateral perfusion purposes.
- the polymeric sleeve 44 may cover within the range of from about 70% to about 80%, and, in one four segment embodiment having a single exposed segment, 75%, of the overall length of the prosthesis 96 .
- the uncovered wire cage 46 may reside at only a single end of the prosthesis 96 , such as for traversing the renal arteries. Alternatively, exposed portions of the wire cage 46 may be provided at both ends of the prosthesis such as for anchoring purposes.
- a two part polymeric sleeve 44 is provided.
- a first distal part spans the aneurysm 40 , and has a proximal end which terminates distally of the renal arteries.
- a second, proximal part of the polymeric sleeve 44 is carried by the proximal portion of the wire cage 46 which is positioned superiorly of the renal arteries. This leaves an annular lateral flow path through the side wall of the vascular prosthesis 96 , which can be axially aligned with the renal arteries, without regard to rotational orientation.
- the axial length of the gap between the proximal and distal segments of polymeric sleeve 44 can be adjusted, depending upon the anticipated cross sectional size of the ostium of the renal artery, as well as the potential axial misalignment between the right and left renal arteries.
- the right renal artery 32 and left renal artery 34 are illustrated in FIG. 22 as being concentrically disposed on opposite sides of the abdominal aorta, the take off point for the right or left renal arteries from the abdominal aorta may be spaced apart along the abdominal aorta as will be familiar to those of skill in the art.
- the diameter of the ostium of the renal artery measured in the axial direction along the abdominal aorta falls within the range of from about 7 cm to about 20 cm for a typical adult patient.
- Clinical and design challenges which are satisfied by the present invention, include providing a sufficient seal between the upstream end of the vascular prosthesis and the arterial wall, providing a sufficient length to span the abdominal aortic aneurysm, providing sufficient wall strength or support across the span of the aneurysm, and providing a sufficient expansion ratio, such that a minimal percutaneous axis diameter may be utilized for introduction of the vascular prosthesis in its collapsed configuration.
- Embodiments of the present invention can be constructed having a 16 French or 15 French or 14 French or smaller profile (e.g. 34 mm) thereby enabling placement of the endoluminal vascular prosthesis of the present invention by way of a percutaneous procedure.
- the endoluminal vascular prosthesis of the present invention does not require a post implantation balloon dilatation, can be constructed to have minimal axial shrinkage upon radial expansion, and avoids the disadvantages associated with nitinol grafts.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
Disclosed is a tubular endoluminal vascular prosthesis, useful in treating, for example, an abdominal aortic aneurysm. The prosthesis comprises a self expandable wire support structure surrounded by a flexible tubular membrane. A delivery catheter and methods are also disclosed.
Description
- This application is a continuation of U.S. application Ser. No. 09/034,689 filed on Mar. 4, 1998.
- The present invention relates to endoluminal vascular prostheses, and, in one application, to self-expanding endoluminal vascular prostheses for use in the treatment of abdominal aortic aneurysms.
- An abdominal aortic aneurysm is a sac caused by an abnormal dilation of the wall of the aorta, a major artery of the body, as it passes through the abdomen. The abdomen is that portion of the body which lies between the thorax and the pelvis. It contains a cavity, known as the abdominal cavity, separated by the diaphragm from the thoracic cavity and lined with a serous membrane, the peritoneum. The aorta is the main trunk, or artery, from which the systemic arterial system proceeds. It arises from the left ventricle of the heart, passes upward, bends over and passes down through the thorax and through the abdomen to about the level of the fourth lumbar vertebra, where it divides into the two common iliac arteries.
- The aneurysm usually arises in the infrarenal portion of the diseased aorta, for example, below the kidneys. When left untreated, the aneurysm may eventually cause rupture of the sac with ensuing fatal hemorrhaging in a very short time. High mortality associated with the rupture led initially to transabdominal surgical repair of abdominal aortic aneurysms. Surgery involving the abdominal wall, however, is a major undertaking with associated high risks. There is considerable mortality and morbidity associated with this magnitude of surgical intervention, which in essence involves replacing the diseased and aneurysmal segment of blood vessel with a prosthetic device which typically is a synthetic tube, or graft, usually fabricated of Polyester, Urethane, P, DACRON®, TEFLON®, or other suitable material.
- To perform the surgical procedure requires exposure of the aorta through an abdominal incision which can extend from the rib cage to the pubis. The aorta must be closed both above and below the aneurysm, so that the aneurysm can then be opened and the thrombus, or blood clot, and arteriosclerotic debris removed. Small arterial branches from the back wall of the aorta are tied off. The DACRON® tube, or graft, of approximately the same size of the normal aorta is sutured in place, thereby replacing the aneurysm. Blood flow is then reestablished through the graft. It is necessary to move the intestines in order to get to the back wall of the abdomen prior to clamping off the aorta.
- If the surgery is performed prior to rupturing of the abdominal aortic aneurysm, the survival rate of treated patients is markedly higher than if the surgery is performed after the aneurysm ruptures, although the mortality rate is still quite high. If the surgery is performed prior to the aneurysm rupturing, the mortality rate is typically slightly less than 10%. Conventional surgery performed after the rupture of the aneurysm is significantly higher, one study reporting a mortality rate of 66.5%. Although abdominal aortic aneurysms can be detected from routine examinations, the patient does not experience any pain from the condition. Thus, if the patient is not receiving routine examinations, it is possible that the aneurysm will progress to the rupture stage, wherein the mortality rates are significantly higher.
- Disadvantages associated with the conventional, prior art surgery, in addition to the high mortality rate include the extended recovery period associated with such surgery; difficulties in suturing the graft, or tube, to the aorta; the loss of the existing aorta wall and thrombosis to support and reinforce the graft; the unsuitability of the surgery for many patients having abdominal aortic aneurysms; and the problems associated with performing the surgery on an emergency basis after the aneurysm has ruptured. A patient can expect to spend from one to two weeks in the hospital after the surgery, a major portion of which is spent in the intensive care unit, and a convalescence period at home from two to three months, particularly if the patient has other illnesses such as heart, lung, liver, and/or kidney disease, in which case the hospital stay is also lengthened. Since the graft must be secured, or sutured, to the remaining portion of the aorta, it is many times difficult to perform the suturing step because the thrombosis present on the remaining portion of the aorta, and that remaining portion of the aorta wall may many times be friable, or easily crumbled.
- Since many patients having abdominal aortic aneurysms have other chronic illnesses, such as heart, lung, liver, and/or kidney disease, coupled with the fact that many of these patients are older, the average age being approximately 67 years old, these patients are not ideal candidates for such major surgery.
- More recently, a significantly less invasive clinical approach to aneurysm repair, known as endovascular grafting, has been developed. Parodi, et al. provide one of the first clinical descriptions of this therapy. Parodi, J. C., et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms,” 5 Annals of Vascular Surgery 491 (1991). Endovascular grafting involves the transluminal placement of a prosthetic arterial graft in the endoluminal position (within the lumen of the artery). By this method, the graft is attached to the internal surface of an arterial wall by means of attachment devices (expandable stents), typically one above the aneurysm and a second stent below the aneurysm.
- Stents permit fixation of a graft to the internal surface of an arterial wall without sewing or an open surgical procedure. Expansion of radially expandable stents is conventionally accomplished by dilating a balloon at the distal end of a balloon catheter. In U.S. Pat. No. 4,776,337, for example, Palmaz describes a balloon-expandable stent for endovascular treatments. Also known are self-expanding stents, such as described in U.S. Pat. No. 4,655,771 to Wallsten.
- Notwithstanding the foregoing, there remains a need for a transluminally implantable endovascular prosthesis, such as for spanning an abdominal aortic aneurysm. Preferably, the tubular prosthesis can be self expanded at the site to treat the abdominal aortic aneurysm.
- There is provided in accordance with one aspect of the present invention an endoluminal prosthesis. The endoluminal prosthesis comprises a tubular wire support having a proximal end, a distal end and central lumen extending therethrough. The wire support comprises at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween. The first and second segments and the connector are formed from a single length of wire.
- In one embodiment, the wire in each segment comprises a series of proximal bends, a series of distal bends, and a series of wall (strut) segments connecting the proximal bends and distal bends to form a tubular segment wall. Preferably, at least one proximal bend on a first segment is connected to at least one corresponding distal bend on a second segment. The connection may be provided by a metal link, a suture, or other connection means known in the art.
- Preferably, the endoluminal prosthesis further comprises a polymeric layer such as a tubular PTFE sleeve, on the support.
- In accordance with another aspect of the present invention, there is provided a method of making an endoluminal prosthesis. The method comprises the steps of providing a length of wire, and forming the wire into two or more zig zag sections, each zig zag section connected by a link. The formed wire is thereafter rolled about an axis to produce a series of tubular elements positioned along the axis such that each tubular element is connected to the adjacent tubular element by a link. Preferably, the method further comprises the step of positioning a tubular polymeric sleeve concentrically on at least a portion of the endoluminal prosthesis.
- In accordance with another aspect of the present invention, there is provided a multizone endoluminal prosthesis. The multizone prosthesis comprises a tubular wire support having a proximal end, a distal end and a central lumen extending therethrough. The wire support comprises at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween. The first tubular segment has a different radial strength than the second tubular segment. In one embodiment, the prosthesis further comprises a third tubular segment. At least one of the tubular segments has a different radial strength than the other two tubular segments. In another embodiment, a proximal end of the prosthesis is self expandable to a greater diameter than a central region of the prosthesis.
- In accordance with another aspect of the present invention, there is provided an endoluminal prosthesis. The prosthesis comprises an elongate flexible wire, formed into a plurality of axially adjacent tubular segments spaced along an axis. Each tubular segment comprises a zig zag section of wire, having a plurality of proximal bends and distal bends, with the wire continuing between each adjacent tubular segment creating an integral structural support system throughout the longitudinal length of the device. The prothesis is radially collapsible into a first, reduced cross sectional configuration for implantation into a body lumen, and self expandable to a second, enlarged cross sectional configuration at a treatment site in a body lumen.
- Preferably, the prosthesis further comprises an outer tubular sleeve surrounding at least a portion of the prosthesis. One or more lateral perfusion ports may be provided through the tubular sleeve.
- In one embodiment, the prosthesis has an expansion ratio of at least about 1:5, and, preferably at least about 1:6. The prosthesis in another embodiment has an expanded diameter of at least about 20 mm in an unconstrained expansion, and the prosthesis is implantable using a catheter no greater than about 16 French. Preferably, the prosthesis has an expanded diameter of at least about 25 mm, and is implantable on a delivery device having a diameter of no more than about 16 French.
- In accordance with a further aspect of the present invention, there is provided a method of implanting an endoluminal vascular prosthesis. The method comprises the steps of providing a self expandable endoluminal vascular prosthesis, having a proximal end, a distal end, and a central lumen extending therethrough. The prosthesis is expandable from a first, reduced diameter to a second, enlarged diameter. The prosthesis is mounted on a catheter, such that when the prosthesis is in the reduced diameter configuration on the catheter, the catheter diameter through the prosthesis is no more than about 16 French. The catheter is thereafter introduced into the body lumen and positioned such that the prosthesis is at a treatment site in the body lumen. The prosthesis is released at the treatment site, such that it expands from the first diameter to the second diameter, wherein the second diameter is at least about 20 mm.
- Further features and advantages of the present invention will become apparent to those of ordinary skill in the art in view of the disclosure herein, when considered together with the attached drawings and claims.
-
FIG. 1 is a schematic representation of an endoluminal vascular prosthesis in accordance with the present invention, positioned within a symmetric abdominal aortic aneurysm. -
FIG. 2 is an exploded view of an endoluminal vascular prosthesis in accordance with the present invention, showing a self expandable wire support structure separated from an outer tubular sleeve. -
FIG. 3 is a plan view of a formed wire useful for rolling about an axis into a multi-segment support structure in accordance with the present invention. -
FIG. 4 is an enlarged detail view of a portion of the formed wire illustrated inFIG. 3 . -
FIG. 5 is a cross sectional view taken along the lines 5-5 ofFIG. 4 . -
FIG. 6 is an alternate cross sectional view taken along the lines 5-5 ofFIG. 4 . -
FIG. 7 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention. -
FIG. 8 is an elevational view of a crosslinked wire layout in accordance with the present invention. -
FIG. 8A is a plan view of a formed wire layout useful for forming the crosslinked embodiment ofFIG. 8 . -
FIG. 9 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention. -
FIG. 10 is a fragmentary view of an alternate wire layout in accordance with a further aspect of the present invention. -
FIG. 11 is a fragmentary view of an apex in accordance with one aspect of the present invention. -
FIG. 12 is a fragmentary view of an alternate embodiment of an apex in accordance with the present invention. -
FIG. 13 is a further embodiment of an apex in accordance with the present invention. -
FIG. 14 is a fragmentary view of a further wire layout in accordance with the present invention. -
FIG. 15 is a fragmentary view of a further wire layout in accordance with the present invention. -
FIG. 16 is a fragmentary view of a further wire layout in accordance with the present invention. -
FIG. 17 is a schematic illustration of a delivery catheter in accordance with the present invention, positioned within an abdominal aortic aneurysm. -
FIG. 18 is an illustration as inFIG. 17 , with the endoluminal prosthesis partially deployed from the delivery catheter. -
FIG. 19 is a cross sectional view taken along the lines 19-19 ofFIG. 17 . -
FIG. 20 is a detailed fragmentary view of a tapered wire embodiment in accordance with a further aspect of the present invention. -
FIG. 21 is a schematic representation of the abdominal aortic anatomy, with an endoluminal vascular prosthesis of the present invention positioned within each of the right renal artery and the right common iliac. - Referring to
FIG. 1 , there is disclosed a schematic representation of the abdominal part of the aorta and its principal branches. In particular, theabdominal aorta 30 is characterized by a rightrenal artery 32 and leftrenal artery 34. The large terminal branches of the aorta are the right and left commoniliac arteries symmetrical aneurysm 40 is illustrated in the infrarenal portion of the diseased aorta An expanded endoluminalvascular prosthesis 42, in accordance with the present invention, is illustrated spanning theaneurysm 40. Although features of the endoluminal vascular prosthesis of the present invention can be modified for use in a bifurcation aneurysm, such as the common iliac bifurcation, the endoluminal prosthesis of the present invention will be described herein primarily in terms of its application in the straight segment of the abdominal aorta, or Thoracic or iliac arteries. - The endoluminal
vascular prosthesis 42 includes apolymeric sleeve 44 and atubular wire support 46, which are illustrated in situ inFIG. 1 . Thesleeve 44 andwire support 46 are more readily visualized in the exploded view shown inFIG. 2 . Theendoluminal prosthesis 42 illustrated and described herein depicts an embodiment in which thepolymeric sleeve 44 is situated concentrically outside of thetubular wire support 46. However, other embodiments may include a sleeve situated instead concentrically inside the wire support or on both of the inside and the outside of the wire support. Alternatively, the wire support may be embedded within a polymeric matrix which makes up the sleeve. Regardless of whether thesleeve 44 is inside or outside thewire support 46, the sleeve may be attached to the wire support by any of a variety of means, including laser bonding, adhesives, clips, sutures, dipping or spraying or others, depending upon the composition of thesleeve 44 and overall graft design. - The
polymeric sleeve 44 may be formed from any of a variety of synthetic polymeric materials, or combinations thereof, including PTFE, PE, PET, Urethane, Dacron, nylon, polyester or woven textiles. Preferably, the sleeve material exhibits relatively low inherent elasticity, or low elasticity out to the intended enlarged diameter of thewire cage 46. The sleeve material preferably has a thin profile, such as no larger than about 0.002 inches to about 0.005 inches. - In a preferred embodiment of the invention, the material of
sleeve 44 is sufficiently porous to permit ingrowth of endothelial cells, thereby providing more secure anchorage of the prosthesis and potentially reducing flow resistance, sheer forces, and leakage of blood around the prosthesis. Porosity in polymeric sleeve materials may be estimated by measuring water permeability as a function of hydrostatic pressure, which will preferably range from about 3 to 6 psi. - The porosity characteristics of the
polymeric sleeve 44 may be either homogeneous throughout the axial length of theprosthesis 42, or may vary according to the axial position along theprosthesis 42. For example, referring toFIGS. 1 and 2 , different physical properties will be called upon at different axial positions along theprosthesis 42 in use. At least aproximal portion 55 and adistal portion 59 of theprosthesis 42 will seat against the native vessel wall, proximally and distally of the aneurysm. In these proximal and distal portions, the prosthesis preferably encourages endothelial growth, or, at least, permits endothelial growth to infiltrate portions of the prosthesis in order to enhance anchoring and minimize leakage. Acentral portion 57 of the prosthesis spans the aneurysm, and anchoring is less of an issue. Instead, minimizing blood flow through the prosthesis wall becomes a primary objective. Thus, in acentral zone 57 of theprosthesis 42, thepolymeric sleeve 44 may either be nonporous, or provided with pores of no greater than about 60% to 80%. - A
multi-zoned prosthesis 42 may also be provided in accordance with the present invention by positioning atubular sleeve 44 on acentral portion 57 of the prosthesis, such that it spans the aneurysm to be treated, but leaving aproximal attachment zone 55 and adistal attachment zone 59 of theprosthesis 42 having exposed wires from thewire support 46. In this embodiment, the exposedwires 46 are positioned in contact with the vessel wall both proximally and distally of the aneurysm, such that the wire, over time, becomes embedded in cell growth on the interior surface of the vessel wall. - In one embodiment of the
prosthesis 42, thesleeve 44 and/or thewire support 46 is tapered, having a relatively larger expanded diameter at theproximal end 50 compared to thedistal end 52. The tapered design may allow the prosthesis to conform better to the natural decreasing distal cross section of the vessel, to reduce the risk of graft migration and potentially create better flow dynamics. - The
tubular wire support 46 is preferably formed from a continuous single length of round (shown inFIG. 5 ) or flattened (shown inFIG. 6 ) wire. Thewire support 46 is preferably formed in a plurality ofdiscrete segments 54, connected together and oriented about a common axis. Each pair ofadjacent segments 54 is connected by aconnector 66 as will be discussed. Theconnectors 66 collectively produce a generally axially extending backbone which adds axial strength to theprosthesis 42. Adjacent segments can be connected both by the backbone, as well as by other structures, including circumferentially extending sutures 56 (illustrated inFIGS. 1 and 2 ), solder joints, wire loops and any of a variety of interlocking relationships. The suture can be made from any of a variety of biocompatible polymeric materials or alloys, such as nylon, polypropylene, or stainless steel. Other means of securing thesegments 54 to one another are discussed below (seeFIG. 8 ). - The segmented configuration of the
tubular wire support 46 facilitates a great deal of flexibility. Eachsegment 54, though joined to adjacent segments, may be independently engineered to yield desired parameters. Each segment may range in axial length from about 0.3 to about 5 cm. Generally, the shorter their length the greater the radial strength. An endoluminal prosthesis may include from about 1 to about 50 segments, preferably from about 3 to about 10 segments. For example, while a short graft patch, in accordance with the invention, may comprise only 2 segments and span a total of 2 to 3 cm, a complete graft may comprise 4 or more segments and span the entire aortic aneurysm. In addition to the flexibility and other functional benefits available through employment of different length segments, further flexibility can be achieved through adjustments in the number, angle, or configuration of the wire bends associated with the tubular support. Potential bend configurations are discussed in greater detail below (seeFIGS. 4-16 ). - A variety of additional advantages can be achieved through the multi-segment configuration of the present invention. For example, referring to
FIG. 2 , thewire cage 46 is dividable into aproximal zone 55, acentral zone 57 and adistal zone 59. As has been discussed, thewire cage 46 can be configured to taper from a relatively larger diameter in theproximal zone 55 to a relatively smaller diameter in thedistal zone 59. In addition, thewire cage 46 can have a transitional tapered and or stepped diameter within a given zone. - The
cage 46 can also be provided with aproximal zone 55 anddistal zone 59 that have a larger relative expanded diameter than thecentral zone 57, as illustrated inFIG. 2 . This configuration may desirably resist migration of the prosthesis within the vessel. Theproximal zone 55 and/ordistal zone 59 can be left without anouter covering 44, with theouter sleeve 44 covering only thecentral zone 57. This permits the proximal anddistal zones - In addition to having differing expanded diameters in different zones of the
prosthesis 42, different zones can be provided with a different radial expansion force, such as ranging from about 0.2 lbs to about 0.8 lbs. In one embodiment, theproximal zone 55 is provided with a greater radial force than thecentral zone 57 and/ordistal zone 59. The greater radial force can be provided in any of a variety of manners discussed elsewhere herein, such as through the use of an additional one or two or three or moreproximal bends 60,distal bends 62 andwall sections 64 compared to areference segment 54 in thecentral zone 57 ordistal zone 59. Alternatively, additional spring force can be achieved in theproximal zone 55 through the use of the same number ofproximal bends 60 as in the rest of the prosthesis, but with a heavier gauge wire. Radial force beyond the expanded diameter limit of thecentral zone 57 can be achieved by tightening thesuture 56 as illustrated inFIG. 2 such that thecentral zone 57 is retained under compression even in the expanded configuration. By omitting a suture at the proximal end and/or distal end of the prosthesis, the proximal end and distal end will flair radially outwardly to a fully expanded configuration as illustrated inFIG. 2 . - The wire may be made from any of a variety of different alloys, such as elgiloy, nitinol or MP35N, or other alloys which include nickel, titanium, tantalum, or stainless steel, high Co—Cr alloys or other temperature sensitive materials. For example, an alloy comprising Ni 15%,
Co 40%, Cr 20%, Mo 7% and balance Fe may be used. The tensile strength of suitable wire is generally above about 300 K psi and often between about 300 and about 340 K psi for many embodiments. In one embodiment, a Chromium-Nickel-Molybdenum alloy such as that marketed under the name Conichrom (Fort Wayne Metals, Ind.) has a tensile strength ranging from 300 to 320 K psi, elongation of 3.5-4.0% and breaking load at approximately 80 lbs to 70 lbs. The wire may be treated with a plasma coating and be provided with/without coating such as: PTFE, Teflon, Perlyne and Drugs. - In addition to segment length and bend configuration, discussed above, another determinant of radial strength is wire gauge. The radial strength, measured at 50% of the collapsed profile, preferably ranges from about 0.2 lb to 0.8 lb, and generally from about 0.4 lb to about 0.5 lb. or more. Preferred wire diameters in accordance with the present invention, range from about 0.004 inches to about 0.020 inches. More preferably, the wire diameters range from about 0.006 inches to about 0.018 inches. In general, the greater the wire diameter, the greater the radial strength for a given wire layout. Thus, the wire gauge can be varied depending upon the application of the finished graft, in combination with/or separate from variation in other design parameters (such as the number of struts, or
proximal bends 60 anddistal bends 62 per segment), as will be discussed. A wire diameter of approximately 0.018 inches may be useful in a graft having four segments each having 2.5 cm length per segment, each segment having six struts intended for use in the aorta, while a smaller diameter such as 0.006 inches might be useful for a 0.5 cm segment graft having 5 struts per segment intended for the iliac artery. The length ofcage 42 could be as long as about 28 cm. - In one embodiment of the present invention, the wire diameter is tapered from the proximal to distal ends. Alternatively, the wire diameter may be tapered incrementally or stepped down, or stepped up, depending on the radial strength requirements of each particular clinical application. In one embodiment, intended for the abdominal aortic artery, the wire has a cross section of about 0.018 inches in the
proximal zone 55 and the wire tapers down to a diameter of about 0.006 inches in thedistal zone 59 of thegraft 42. End point dimensions and rates of taper can be varied widely, within the spirit of the present invention, depending upon the desired clinical performance. - Referring to
FIG. 3 , there is illustrated a plan view of the single formed wire used for rolling about a longitudinal axis to produce a four segment tubular wire support. The formed wire exhibits distinct segments, each corresponding to anindividual tubular segment 54 in the tubular support (seeFIGS. 1 and 2 ). - Each segment has a repeating pattern of
proximal bends 60 connected to correspondingdistal bends 62 bywall sections 64 which extend in a generally zig zag configuration when thesegment 54 is radially expanded Eachsegment 54 is connected to theadjacent segment 54 through aconnector 66, except at the terminal ends of the graft. Theconnector 66 in the illustrated embodiment comprises twowall sections 64 which connect aproximal bend 60 on afirst segment 54 with adistal bend 62 on a second,adjacent segment 54. Theconnector 66 may additionally be provided with aconnector bend 68, which may be used to impart increased radial strength to the graft and/or provide a tie site for a circumferentially extending suture. - Referring to
FIG. 4 , there is shown an enlarged view of the wire support illustrating aconnector 66 portion betweenadjacent segments 54. In the embodiment shown inFIG. 4 , aproximal bend 60 comprises about a 180 degree arc, having a radial diameter of (w) (Ranging from 0.070 to 0.009 inches), depending on wire diameter followed by a relatively short length of parallel wire spanning an axial distance of d1. The parallel wires thereafter diverge outwardly from one another and form thestrut sections 64, or the proximal half of aconnector 66. At the distal end of thestrut sections 64, the wire forms adistal bend 62, preferably having identical characteristics as theproximal bend 60, except being concave in the opposite direction. The axial direction component of the distance between the apices of the corresponding proximal anddistal bends bend 60 and thedivergent strut sections 64 is represented by α. Upon compression to a collapsed state, such as when the graft is within the deployment catheter, the angle α is reduced to α′. In the expanded configuration, α is generally within the range of from about 35° to about 45°. The expanded circumferential distance between any two adjacent distal bends 62 (or proximal bends 60) is defined as (s). - In general, the diameter W of each
proximal bend 60 ordistal bend 62 is within the range of from about 0.009 inches to about 0.070 inches depending upon the wire diameter. Diameter W is preferably as small as possible for a given wire diameter and wire characteristics. As will be appreciated by those of skill in the art, as the distance W is reduced to approach two times the cross section of the wire, thebend wall section 64, the distance d1 is preferably minimized within the desired radial strength performance requirements. As d1 increases, it may disadvantageously increase the collapsed profile of the graft. - As will be appreciated from
FIG. 3 and 4, the sum of the distances (s) in a plane transverse to the longitudinal axis of the finished graft will correspond to the circumference of the finished graft in that plane. For a given circumference, the number ofproximal bends 60 ordistal bends 62 is directly related to the distance (s) in the corresponding plane. Preferably, the finished graft in any single transverse plane will have from about 3 to about 10 (s) dimensions, preferably from about 4 to about 8 (s) dimensions and, more preferably, about 5 or 6 (s) dimensions for an aortic application. Each (s) dimension corresponds to the distance between any two adjacent bends 60-60 or 62-62 as will be apparent from the discussion herein. Eachsegment 54 can thus be visualized as a series of triangles extending circumferentially around the axis of the graft, defined by aproximal bend 60 and twodistal bends 62 or the reverse. - By modifying wire support parameters (such as d, d1, s, alpha and alpha′), the manufacturer enjoys tremendous design control with respect to the total axial length, axial and radial flexibility, radial force and expansion ratios, and consequently prosthesis performance. For example, an increase in the dimension (w) translates directly into an increased collapsed profile since the circumference of the collapsed profile can be no smaller than the sun of the distances (w) in a given transverse plane. Similarly, an increase in the number of
proximal bends 60 in a given segment may increase radial strength, but will similarly increase the collapsed profile. Since the primary radial force comes from the proximal bends 60 anddistal bends 62, thewall sections 64 act as a lever arm for translating that force into radial strength. As a consequence, decreasing the length ofstrut sections 64 for a given number ofproximal bends 60 will increase the radial strength of the segment but call for additional segments to maintain overall graft length. Where a minimal entry profile is desired, radial strength is best accomplished by decreasing the length ofwall sections 64 rather than increasing the number of proximal bends 60. On the other hand, increasing the number of (shorter)segments 54 in a given overall length graft will increase the degree of axial shortening upon radial expansion of the graft. Thus, in an embodiment where axial shortening is to be avoided, increased radial strength may be optimized through selection of wire material or wire gauge and other parameters, while minimizing the number of total segments in the graft. Other geometry consequences of the present invention will be apparent to those of skill in the art in view of the disclosure herein. - In one embodiment of the type illustrated in
FIG. 8A , w is about 2.0 mm±1 mm for a 0.018 inch wire diameter. D1 is about 3 mm±1 mm, d is about 20 mm±1 mm, c is about 23 mm±1 mm, g is about 17 mm,±1 mm, a is about 3 mm±1 mm and b is about 3 mm±1 mm. Specific dimensions for all of the foregoing variables can be varied considerably, depending upon the desired wire configuration, in view of the disclosure herein. - Referring to
FIG. 7 , there is shown an alternative wire layout having a plurality of radiussed bends 70 in one or more sections ofstrut 64 which may be included to provide additional flex points to provide enhanced fluid dynamic characteristics and maintain the tubular shape. - In another embodiment of the wire support, illustrated in
FIG. 8 , each pair of adjacent proximal and distal segments, 76 and 78, may be joined by crosslinking of the corresponding proximal and distal bends. Thus, aproximal bend 60 from adistal segment 78 is connected to the correspondingdistal bend 62 of aproximal segment 76, thereby coupling theproximal segment 76 anddistal segment 78. The connection between correspondingproximal bends 60 anddistal bends 62 can be accomplished in any of a variety of ways as will be apparent to those of skill in the art in view of the disclosure herein. In the illustrated embodiment, the connection is accomplished through the use of alink 72.Link 72 may be a loop of metal such as stainless steel, a suture, a welded joint or other type of connection. Preferably, link 72 comprises a metal loop or ring which permits pivotable movement of aproximal segment 76 with respect to adistal segment 78. - In one example of an endoluminal vascular prosthesis in accordance with the present invention, the
proximal segment 76 is provided with sixdistal bends 62. The correspondingdistal segment 78 is provided with sixproximal bends 60 such that a one to one correspondence exists. Alink 72 may be provided at each pair ofcorresponding bends links 72 exist in a plane transverse to the longitudinal axis of the graft at the interface between theproximal segment 76 and thedistal segment 78. Alternatively, links 72 can be provided at less than all of the corresponding bends, such as at every other bend, every third bend, or only on opposing sides of the graft. The distribution of thelinks 72 in any given embodiment can be selected to optimize the desired flexibility characteristics and other performance criteria in a given design. - The use of connectors such as
cross link 72 enables improved tracking of the graft around curved sections of the vessel. In particular, thewire cage 46 as illustrated inFIG. 8 can be bent around a gentle curve, such that it will both retain the curved configuration and retain patency of the central lumen extending axially therethrough. The embodiment illustrated inFIG. 2 may be more difficult to track curved anatomy while maintaining full patency of the central lumen. The ability to maintain full patency while extending around a curve may be desirable in certain anatomies, such as where the aorta fails to follow the linear infrarenal path illustrated inFIG. 1 . - Referring to
FIG. 8 a, there is illustrated a plan view of a formed wire useful for rolling about an axis to produce a multi-segmented support structure of the type illustrated inFIG. 8 . In general, the formed wire ofFIG. 8 a is similar to that illustrated inFIG. 3 . However, whereas any given pair of correspondingdistal bends 62 andproximal bends 60 of the embodiment ofFIG. 3 overlap in the axial direction to facilitate threading a circumferential suture therethrough, the correspondingdistal bend 62 andproximal bend 60 of the embodiment illustrated inFIG. 8 a may abut end to end against each other or near each other as illustrated inFIG. 8 to receive aconnector 72 thereon. - The appropriate axial positioning of a
distal bend 62 with respect to a correspondingproximal bend 60 can be accomplished in a variety of ways, most conveniently by appropriate formation of theconnector bend 68 between adjacent segments of the wire cage. -
FIGS. 9-16 illustrate alternative bend configurations in accordance with the present invention.FIG. 9 shows one embodiment having the proximal and distal bends as eyelets, but theconnector bend 68, remaining in the usual configuration. The embodiment illustrated inFIG. 10 has the proximal and distal bends as well as the connector bend in the eyelet configuration. Various eyelet designs in accordance with the present invention are shown in greater detail inFIGS. 11-13 , including a double-looped circular eyelet (FIG. 11 ), a double-looped triangular eyelet (FIG. 12 ), and a single-looped triangular eyelet (FIG. 13 ). The eyelets can be used to receive a circumferentially extending suture or wire as has been described. - Additional embodiments of the wire configuration are illustrated in
FIGS. 14-16 .FIG. 14 shows an embodiment of the proximal 60 and distal 62 bends in which double bends are employed to increase the flexion. Alternatively,FIG. 15 shows triangular bends having a more pronounced length (d1) of parallel wire, and accordinglyshorter wall sections 64. Another embodiment of the proximal and distal bends is shown inFIG. 16 , wherein the triangular bends include additional flexion points in the form of wall segment bends 70. - Referring to
FIG. 17 and 18, a deployment device and method in accordance with a preferred embodiment of the present invention are illustrated. Adelivery catheter 80, having adilator tip 82, is advanced alongguidewire 84 until the (anatomically)proximal end 50 of the collapsed endoluminalvascular prosthesis 86 is positioned between therenal arteries aneurysm 40. The collapsed prosthesis in accordance with the present invention has a diameter in the range of about 2 to about 10 mm. Preferably, the diameter of the collapsed prosthesis is in the range of about 3 to 6 mm (12 to 18 French). More preferably, the delivery catheter including the prosthesis will be 16 F, or 15 F or 14 F or smaller. - The
prosthesis 86 is maintained in its collapsed configuration by the restraining walls of thetubular delivery catheter 80, such that removal of this restraint would allow the prosthesis to self expand. Radiopaque marker material may be incorporated into thedelivery catheter 80, and/or theprosthesis 86, at least at both the proximal and distal ends, to facilitate monitoring of prosthesis position. Thedilator tip 82 is bonded to aninternal catheter core 92, as illustrated inFIG. 18 , wherein theinternal catheter core 92 and the partially expandedprosthesis 88 are revealed as the outer sheath of thedelivery catheter 80 is retracted. Theinternal catheter core 92 is also depicted in the cross-sectional view inFIG. 19 . - As the outer sheath is retracted, the
collapsed prosthesis 86 remains substantially fixed axially relative to theinternal catheter core 92 and consequently, self-expands at a predetermined vascular site as illustrated inFIG. 18 . Continued retraction of the outer sheath results in complete deployment of the graft. After deployment, the expanded endoluminal vascular prosthesis has radially self-expanded to a diameter anywhere in the range of about 20 to 40 mm, corresponding to expansion ratios of about 1:2 to 1:20. In a preferred embodiment, the expansion ratios range from about 1:4 to 1:8, more preferably from about 1:4 to 1:6. - In addition to, or in place of, the outer sheath described above, the
prosthesis 86 may be maintained in its collapsed configuration by a restraining lace, which may be woven through the prosthesis or wrapped around the outside of the prosthesis in the collapsed reduced diameter. Following placement of the prosthesis at the treatment site, the lace can be proximally retracted from the prosthesis thereby releasing it to self expand at the treatment site. The lace may comprise any of a variety of materials, such as sutures, strips of PTFE, FEP, polyester fiber, and others as will be apparent to those of skill in the art in view of the disclosure herein. The restraining lace may extend proximally through a lumen in the delivery catheter or outside of the catheter to a proximal control. The control may be a pull tab or ring, rotatable reel, slider switch or other structure for permitting proximal retraction of the lace. The lace may extend continuously throughout the length of the catheter, or may be joined to another axially moveable element such as a pull wire. - In general, the expanded diameter of the graft in accordance with the present invention can be any diameter useful for the intended lumen or hollow organ in which the graft is to be deployed. For most arterial vascular applications, the expanded size will be within the range of from about 10 to about 40 mm. Abdominal aortic applications will generally require a graft having an expanded diameter within the range of from about 20 to about 28 mm, and, for example, a graft on the order of about 45 mm may be useful in the thoracic artery. The foregoing dimensions refer to the expanded size of the graft in an unconstrained configuration, such as on the table. In general, the graft will be positioned within an artery having a slightly smaller interior cross section than the expanded size of the graft. This enables the graft to maintain a slight positive pressure against the wall of the artery, to assist in retention of the graft during the period of time prior to endothelialization of the
polymeric sleeve 44. - The radial force exerted by the
proximal segment 94 of the prosthesis against the walls of theaorta 30 provides a seal against the leakage of blood around the vascular prosthesis and tends to prevent axial migration of the deployed prosthesis. As discussed above, this radial force can be modified as required through manipulation of various design parameters, including the axial length of the segment and the bend configurations. In another embodiment of the present invention, radial tension can be enhanced at the proximal, upstream end by changes in the wire gauge as illustrated inFIG. 20 . Note that the wire gauge increases progressively along thewall segments 64 from T1 at the proximal bends 60 to T2 at the distal bends 62. Consequently, the radial flex exerted by the distal bends 62 is greater than that exerted by the proximal bends 60 and the radial tension is thereby increased at theproximal end 50 of the prosthesis. T1 may range from about 0.001 to 0.01 inches whereas T2 may range from about 0.01 to 0.03 inches. - An alternative embodiment of the wire layout which would cause the radial tension to progressively decrease from the proximal segments to the distal segments, involves a progressive or step-wise decrease in the wire gauge throughout the entire wire support, from about 0.01 to 0.03 inches at the proximal end to about 0.002 to 0.01 inches at the distal end. Such an embodiment, may be used to create a tapered prosthesis. Alternatively, the wire gauge may be thicker at both the proximal and distal ends, in order to insure greater radial tension and thus, sealing capacity. Thus, for instance, the wire gauge in the proximal and distal segments may about 0.01 to 0.03 inches, whereas the intervening segments may be constructed of thinner wire, in the range of about 0.001 to 0.01 inches.
- Referring to
FIG. 21 , there is illustrated two alternative deployment sites for the endoluminalvascular prosthesis 42 of the present invention. For example, asymmetrical aneurysm 33 is illustrated in the rightrenal artery 32. An expanded endoluminalvascular prosthesis 42, in accordance with the present invention, is illustrated spanning thataneurysm 33. Similarly, an aneurysm of the rightcommon iliac 37 is shown, with aprosthesis 42 deployed to span theiliac aneurysm 37. - Referring to
FIG. 22 , there is illustrated a modified embodiment of theendovascular prosthesis 96 in accordance with the present invention. In the embodiment illustrated inFIG. 22 , theendovascular prosthesis 96 is provided with awire cage 46 having six axially alignedsegments 54. As with the previous embodiments, however, theendovascular prosthesis 96 may be provided with anywhere from about 2 to about 10 or more axially spaced oradjacent segments 54, depending upon the clinical performance objectives of the particular embodiment. - The
wire support 46 is provided with a tubularpolymeric sleeve 44 as has been discussed. In the present embodiment, however, one or more lateral perfusion ports or openings are provided in thepolymeric sleeve 44, such as a right renalartery perfusion port 98 and a left renalartery perfusion port 100 as illustrated. - Perfusion ports in the
polymeric sleeve 44 may be desirable in embodiments of theendovascular prosthesis 96 in a variety of clinical contexts. For example, althoughFIGS. 1 and 22 illustrate a generallysymmetrical aneurysm 40 positioned within a linear infrarenal portion of the abdominal aorta, spaced axially apart both from bilaterally symmetrical right and left renal arteries and bilaterally symmetrical right and left common iliacs, both the position and symmetry of theaneurysm 40 as well as the layout of the abdominal aortic architecture may differ significantly from patient to patient. As a consequence, theendovascular prosthesis 96 may need to extend across one or both of the renal arteries in order to adequately anchor theendovascular prosthesis 96 and/or span theaneurysm 40. The provision of one or more lateral perfusion ports enables theendovascular prosthesis 96 to span the renal arteries while permitting perfusion therethrough, thereby preventing “stent jailing” of the renals. Lateral perfusion through theendovascular prosthesis 96 may also be provided, if desired, for a variety of other arteries including the second lumbar, testicular, inferior mesenteric, middle sacral, and alike as will be well understood to those of skill in the art. - The
endovascular prosthesis 96 is preferably provided with at least one, and preferably two or more radiopaque markers, to facilitate proper positioning of theprosthesis 96 within the artery. In an embodiment havingperfusion ports prosthesis 96 should be properly aligned both axially and rotationally, thereby requiring the ability to visualize both the axial and rotational position of the device. Alternatively, provided that the delivery catheter design exhibits sufficient torque transmission, the rotational orientation of the graft maybe coordinated with an indexed marker on the proximal end of the catheter, so that the catheter may be rotated and determined by an external indicium of rotational orientation to be appropriately aligned with the right and left renal arteries. - In an alterative embodiment, the
polymeric sleeve 44 extends across theaneurysm 40, but terminates in the infrarenal zone. In this embodiment, aproximal zone 55 on theprosthesis 96 comprises awire cage 46 but nopolymeric sleeve 44. In this embodiment, theprosthesis 96 still accomplishes the anchoring function across the renal arteries, yet does not materially interfere with renal perfusion. Thus, thepolymeric sleeve 44 may cover anywhere from about 50% to about 100% of the axial length of theprosthesis 96 depending upon the desired length of uncoveredwire cage 46 such as for anchoring and/or lateral perfusion purposes. In particular embodiments, thepolymeric sleeve 44 may cover within the range of from about 70% to about 80%, and, in one four segment embodiment having a single exposed segment, 75%, of the overall length of theprosthesis 96. The uncoveredwire cage 46 may reside at only a single end of theprosthesis 96, such as for traversing the renal arteries. Alternatively, exposed portions of thewire cage 46 may be provided at both ends of the prosthesis such as for anchoring purposes. - In a further alternative, a two
part polymeric sleeve 44 is provided. A first distal part spans theaneurysm 40, and has a proximal end which terminates distally of the renal arteries. A second, proximal part of thepolymeric sleeve 44 is carried by the proximal portion of thewire cage 46 which is positioned superiorly of the renal arteries. This leaves an annular lateral flow path through the side wall of thevascular prosthesis 96, which can be axially aligned with the renal arteries, without regard to rotational orientation. - The axial length of the gap between the proximal and distal segments of
polymeric sleeve 44 can be adjusted, depending upon the anticipated cross sectional size of the ostium of the renal artery, as well as the potential axial misalignment between the right and left renal arteries. Although the rightrenal artery 32 and leftrenal artery 34 are illustrated inFIG. 22 as being concentrically disposed on opposite sides of the abdominal aorta, the take off point for the right or left renal arteries from the abdominal aorta may be spaced apart along the abdominal aorta as will be familiar to those of skill in the art. In general, the diameter of the ostium of the renal artery measured in the axial direction along the abdominal aorta falls within the range of from about 7 cm to about 20 cm for a typical adult patient. - Clinical and design challenges, which are satisfied by the present invention, include providing a sufficient seal between the upstream end of the vascular prosthesis and the arterial wall, providing a sufficient length to span the abdominal aortic aneurysm, providing sufficient wall strength or support across the span of the aneurysm, and providing a sufficient expansion ratio, such that a minimal percutaneous axis diameter may be utilized for introduction of the vascular prosthesis in its collapsed configuration.
- Prior art procedures presently use a 7 mm introducer (18 French) which involves a surgical procedure for introduction of the graft delivery device. In accordance with the present invention, the introduction profile is significantly reduced. Embodiments of the present invention can be constructed having a 16 French or 15 French or 14 French or smaller profile (e.g. 34 mm) thereby enabling placement of the endoluminal vascular prosthesis of the present invention by way of a percutaneous procedure. In addition, the endoluminal vascular prosthesis of the present invention does not require a post implantation balloon dilatation, can be constructed to have minimal axial shrinkage upon radial expansion, and avoids the disadvantages associated with nitinol grafts.
- While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of using and medical applications for the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, and substitutions may be made of equivalents without departing from the spirit of the invention or the scope of the claims.
Claims (34)
1. An endoluminal prosthesis, comprising:
a tubular wire support having a proximal end, a distal end and a central lumen extending therethrough;
the wire support comprising at least a first and a second axially adjacent tubular segment, joined by a connector extending therebetween;
wherein the first and second segments and the connector are formed from a single length of wire.
2. An endoluminal prosthesis as in claim 1 , comprising at least three segments and two connectors.
3. An endoluminal prosthesis as in claim 1 , comprising at least five segments and four connectors.
4. An endoluminal prosthesis as in claim 1 , wherein the wire in each segment comprises a series of proximal bends, a series of distal bends, creating a series of strut segments connecting the proximal bends and distal bends to form a tubular segment wall.
5. An endoluminal prosthesis as in claim 4 , wherein at least some of the strut segments are substantially linear.
6. An endoluminal prosthesis as in claim 4 , further comprising an eye on at least some of the bends.
7. An endoluminal prosthesis as in claim 6 , wherein one or more eyes on a distal end of the first tubular segment are connected to one or more corresponding eyes on a proximal end of the second tubular segment.
8. An endoluminal prosthesis as in claim 7 , wherein the corresponding eyes are connected with a suture, or ring.
9. An endoluminal prosthesis as in claim 4 , wherein each segment comprises from about 4 proximal bends to about 12 proximal bends.
10. An endoluminal prosthesis as in claim 1 , having at least a proximal segment, an intermediate segment and a distal segment, wherein the prosthesis is expandable from a reduced cross section to an expanded cross section.
11. An endoluminal prosthesis as in claim 10 , wherein at least a portion of the proximal segment and distal segment is larger in cross section than the central segment when the prosthesis is in the expanded cross section.
12. An endoluminal prosthesis as in claim 1 , further comprising a polymeric layer on the wire support.
13. An endoluminal prosthesis as in claim 12 , wherein the layer comprises a tubular PTFE sleeve surrounding at least a central portion of the prosthesis.
14. A method of making an endoluminal prosthesis, comprising the steps of:
providing a length of wire;
forming the wire into two or more zig-zag sections, each zig-zag section separated by a crosslink;
rolling the formed wire about an axis to produce a series of tubular elements positioned along the axis such that each tubular element is connected to the adjacent tubular element by a link.
15. A method as in claim 14 , further comprising the step of positioning a tubular polymeric sleeve concentrically on at least one of the tubular elements.
16. A method as in claim 15 , wherein the positioning step comprises positioning the tubular polymeric sleeve concentrically on the outside surface of the tubular element.
17. A method as in claim 16 , wherein the tubular polymeric sleeve comprises PTFE.
18. A multizone endoluminal prosthesis, comprising:
a tubular wire support having a proximal end, a distal end, and a central lumen extending therethrough;
the wire support comprising at least a first and a second axially adjacent tubular segments, joined by a connector extending therebetween;
wherein the first tubular segment has a different radial strength than the second tubular segment.
19. An endoluminal prosthesis as in claim 18 , further comprising a third tubular segment, wherein at least one of the tubular segments has a different radial strength than the other two tubular segments.
20. An endoluminal prosthesis as in claim 19 , wherein a proximal end of the prosthesis is self expandable to a greater diameter than a central region of the prosthesis.
21. An endoluminal prosthesis, comprising an elongate flexible wire, formed into a plurality of axially adjacent tubular segments spaced along an axis, each tubular segment comprising a zig zag section of the wire, having a plurality of proximal bends and distal bends, with the wire continuing between each adjacent tubular segment, wherein the prosthesis is radially compressible into a first, reduced cross sectional configuration for implantation into a body lumen, and self expandable to a second, enlarged cross sectional configuration at a treatment site in a body lumen.
22. An endoluminal prosthesis as in claim 21 , comprising at least three segments formed from said wire.
23. An endoluminal prosthesis as in claim 22 , further comprising an outer tubular sleeve surrounding at least a portion of the prosthesis.
24. An endoluminal prosthesis as in claim 23 , wherein the sleeve further comprises at least one lateral perfusion port extending therethrough.
25. An endoluminal prosthesis as in claim 22 , wherein the prosthesis has a proximal end and a distal end, and at least one of the proximal end and distal end as expandable to a larger diameter than a central section of the prosthesis in an unconstrained expansion.
26. An endoluminal prosthesis as in claim 21 , wherein at least one distal bend on a first segment is connected to at least one proximal bend from an adjacent segment.
27. An endoluminal prosthesis as in claim 26 , wherein the connection comprises a pivotable connection.
28. An endoluminal prosthesis as in claim 27 , wherein the connection comprises a metal link.
29. An endoluminal prosthesis as in claim 27 , wherein the connection comprises a suture.
30. An endoluminal prosthesis as in claim 21 , wherein the prosthesis has an expansion ratio of at least about 1:4.
31. An endoluminal prosthesis as in claim 30 , wherein the prosthesis has an expansion ratio of at least about 1:5.
32. An endoluminal prosthesis as in claim 21 , wherein the prosthesis has an expanded diameter of at least about 20 mm-30 mm in an unconstrained expansion, and the prosthesis is implantable using a catheter no greater than about 16 French.
33. A prosthesis as in claim 32 , wherein the prosthesis has an expanded diameter of at least about 25 mm, and is implantable on a delivery device having a diameter of no more than about 16 French.
34. A method of implanting an endoluminal vascular prosthesis, comprising the steps of:
providing a self expandable endoluminal vascular prosthesis, having a proximal end, a distal end and a central lumen extending therethrough, said prosthesis expandable from a first, reduced diameter to a second, enlarged diameter;
mounting the prosthesis on a catheter, such that when the prosthesis is in the reduced diameter configuration on the catheter, the catheter diameter through the prosthesis is no more than about 16 French;
introducing the catheter into a body lumen, and positioning the prosthesis at a treatment site in the body lumen;
releasing the prosthesis at the treatment site, such that the prosthesis expands from the first diameter to the second diameter;
wherein the second diameter is at least about 20 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/417,651 US20060271163A1 (en) | 1998-03-04 | 2006-05-03 | Endoluminal vascular prosthesis |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/034,689 US6077296A (en) | 1998-03-04 | 1998-03-04 | Endoluminal vascular prosthesis |
US09/483,411 US6331190B1 (en) | 1998-03-04 | 2000-01-14 | Endoluminal vascular prosthesis |
US10/032,230 US20020147492A1 (en) | 1998-03-04 | 2001-12-18 | Endoluminal vascular prosthesis |
US10/755,703 US20040204753A1 (en) | 1998-03-04 | 2004-01-12 | Endoluminal vascular prosthesis |
US11/417,651 US20060271163A1 (en) | 1998-03-04 | 2006-05-03 | Endoluminal vascular prosthesis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/755,703 Continuation US20040204753A1 (en) | 1998-03-04 | 2004-01-12 | Endoluminal vascular prosthesis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060271163A1 true US20060271163A1 (en) | 2006-11-30 |
Family
ID=21877986
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/034,689 Expired - Lifetime US6077296A (en) | 1998-03-04 | 1998-03-04 | Endoluminal vascular prosthesis |
US09/483,411 Expired - Fee Related US6331190B1 (en) | 1998-03-04 | 2000-01-14 | Endoluminal vascular prosthesis |
US10/032,230 Abandoned US20020147492A1 (en) | 1998-03-04 | 2001-12-18 | Endoluminal vascular prosthesis |
US10/755,703 Abandoned US20040204753A1 (en) | 1998-03-04 | 2004-01-12 | Endoluminal vascular prosthesis |
US11/417,651 Abandoned US20060271163A1 (en) | 1998-03-04 | 2006-05-03 | Endoluminal vascular prosthesis |
US11/623,679 Abandoned US20070112412A1 (en) | 1998-03-04 | 2007-01-16 | Endoluminal vascular prosthesis |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/034,689 Expired - Lifetime US6077296A (en) | 1998-03-04 | 1998-03-04 | Endoluminal vascular prosthesis |
US09/483,411 Expired - Fee Related US6331190B1 (en) | 1998-03-04 | 2000-01-14 | Endoluminal vascular prosthesis |
US10/032,230 Abandoned US20020147492A1 (en) | 1998-03-04 | 2001-12-18 | Endoluminal vascular prosthesis |
US10/755,703 Abandoned US20040204753A1 (en) | 1998-03-04 | 2004-01-12 | Endoluminal vascular prosthesis |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/623,679 Abandoned US20070112412A1 (en) | 1998-03-04 | 2007-01-16 | Endoluminal vascular prosthesis |
Country Status (10)
Country | Link |
---|---|
US (6) | US6077296A (en) |
EP (1) | EP1059893B1 (en) |
JP (1) | JP4143749B2 (en) |
KR (1) | KR20010041603A (en) |
CN (1) | CN1301139A (en) |
AT (1) | ATE304330T1 (en) |
AU (1) | AU7960098A (en) |
DE (1) | DE69831608T2 (en) |
RU (1) | RU2207826C2 (en) |
WO (1) | WO1999044536A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050228480A1 (en) * | 2004-04-08 | 2005-10-13 | Douglas Myles S | Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve |
US7892277B2 (en) | 1998-06-19 | 2011-02-22 | Endologix, Inc. | Self expanding bifurcated endovascular prosthesis |
US8147535B2 (en) | 1998-12-11 | 2012-04-03 | Endologix, Inc. | Bifurcation graft deployment catheter |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8945202B2 (en) | 2009-04-28 | 2015-02-03 | Endologix, Inc. | Fenestrated prosthesis |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10245166B2 (en) | 2008-02-22 | 2019-04-02 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10806609B2 (en) | 2004-05-25 | 2020-10-20 | Covidien Lp | Vascular stenting for aneurysms |
US10888414B2 (en) | 2019-03-20 | 2021-01-12 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
Families Citing this family (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2089131C1 (en) * | 1993-12-28 | 1997-09-10 | Сергей Апполонович Пульнев | Stent-expander |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US7238197B2 (en) * | 2000-05-30 | 2007-07-03 | Devax, Inc. | Endoprosthesis deployment system for treating vascular bifurcations |
US8728143B2 (en) | 1996-06-06 | 2014-05-20 | Biosensors International Group, Ltd. | Endoprosthesis deployment system for treating vascular bifurcations |
US7686846B2 (en) | 1996-06-06 | 2010-03-30 | Devax, Inc. | Bifurcation stent and method of positioning in a body lumen |
DE19722384A1 (en) * | 1997-05-28 | 1998-12-03 | Gfe Ges Fuer Forschung Und Ent | Flexible expandable stent |
AUPP083597A0 (en) * | 1997-12-10 | 1998-01-08 | William A Cook Australia Pty Ltd | Endoluminal aortic stents |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US6077296A (en) * | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20040254635A1 (en) | 1998-03-30 | 2004-12-16 | Shanley John F. | Expandable medical device for delivery of beneficial agent |
US6755856B2 (en) * | 1998-09-05 | 2004-06-29 | Abbott Laboratories Vascular Enterprises Limited | Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation |
US6187036B1 (en) | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US20100318174A1 (en) * | 1998-12-11 | 2010-12-16 | Endologix, Inc. | Implantable vascular graft |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
EP1146833B1 (en) | 1998-12-11 | 2005-08-31 | Endologix, Inc. | Endoluminal vascular prosthesis |
ATE382310T1 (en) * | 1999-01-22 | 2008-01-15 | Gore Enterprise Holdings Inc | METHOD FOR COMPRESSING AN ENDOPROSTHESIS |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US8034100B2 (en) | 1999-03-11 | 2011-10-11 | Endologix, Inc. | Graft deployment system |
SE514718C2 (en) * | 1999-06-29 | 2001-04-09 | Jan Otto Solem | Apparatus for treating defective closure of the mitral valve apparatus |
US7192442B2 (en) * | 1999-06-30 | 2007-03-20 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6997951B2 (en) * | 1999-06-30 | 2006-02-14 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6440161B1 (en) | 1999-07-07 | 2002-08-27 | Endologix, Inc. | Dual wire placement catheter |
US6554857B1 (en) * | 1999-07-20 | 2003-04-29 | Medtronic, Inc | Transmural concentric multilayer ingrowth matrix within well-defined porosity |
FR2797388B1 (en) * | 1999-08-09 | 2001-11-30 | Novatech Inc | STRUCTURE OF A PROSTHESIS INTENDED TO BE IMPLANTED IN A HUMAN OR ANIMAL DUCT AND PROSTHESIS PROVIDED WITH SUCH A STRUCTURE |
AU1594301A (en) | 1999-12-02 | 2001-06-12 | Endologix, Inc. | Ptfe embedded low profile endoluminal prosthesis |
US7507252B2 (en) * | 2000-01-31 | 2009-03-24 | Edwards Lifesciences Ag | Adjustable transluminal annuloplasty system |
US6325822B1 (en) * | 2000-01-31 | 2001-12-04 | Scimed Life Systems, Inc. | Braided stent having tapered filaments |
US6402781B1 (en) | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US6989028B2 (en) | 2000-01-31 | 2006-01-24 | Edwards Lifesciences Ag | Medical system and method for remodeling an extravascular tissue structure |
WO2001066037A2 (en) * | 2000-03-09 | 2001-09-13 | Diseño Y Desarrollo Médico, S.A. De C.V. | Intraluminal prosthesis |
US6929658B1 (en) | 2000-03-09 | 2005-08-16 | Design & Performance-Cyprus Limited | Stent with cover connectors |
AU2001240956A1 (en) * | 2000-03-09 | 2001-09-17 | Diseno Y Desarrollo Medico, S.A. De C.V. | Stent with cover connectors |
US6436132B1 (en) * | 2000-03-30 | 2002-08-20 | Advanced Cardiovascular Systems, Inc. | Composite intraluminal prostheses |
US7510572B2 (en) * | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
US6652574B1 (en) * | 2000-09-28 | 2003-11-25 | Vascular Concepts Holdings Limited | Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer |
US6764507B2 (en) * | 2000-10-16 | 2004-07-20 | Conor Medsystems, Inc. | Expandable medical device with improved spatial distribution |
KR100819895B1 (en) | 2000-10-16 | 2008-04-07 | 코너 메드시스템즈 인코포레이티드 | Expandable medical device for delivery of beneficial agent |
US6641607B1 (en) | 2000-12-29 | 2003-11-04 | Advanced Cardiovascular Systems, Inc. | Double tube stent |
US6810882B2 (en) | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
EP1355590B1 (en) * | 2001-01-30 | 2008-12-10 | Edwards Lifesciences AG | Medical system for remodeling an extravascular tissue structure |
US7510576B2 (en) * | 2001-01-30 | 2009-03-31 | Edwards Lifesciences Ag | Transluminal mitral annuloplasty |
US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
US6761733B2 (en) | 2001-04-11 | 2004-07-13 | Trivascular, Inc. | Delivery system and method for bifurcated endovascular graft |
US6733521B2 (en) | 2001-04-11 | 2004-05-11 | Trivascular, Inc. | Delivery system and method for endovascular graft |
KR100497512B1 (en) * | 2001-09-24 | 2005-08-01 | (주) 태웅메디칼 | A stent expanding vascular |
US20060106415A1 (en) * | 2004-11-12 | 2006-05-18 | Shlomo Gabbay | Apparatus to facilitate implantation |
US20030074055A1 (en) * | 2001-10-17 | 2003-04-17 | Haverkost Patrick A. | Method and system for fixation of endoluminal devices |
US7029496B2 (en) * | 2001-11-07 | 2006-04-18 | Scimed Life Systems, Inc. | Interlocking endoluminal device |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
US20100016943A1 (en) | 2001-12-20 | 2010-01-21 | Trivascular2, Inc. | Method of delivering advanced endovascular graft |
SE524709C2 (en) * | 2002-01-11 | 2004-09-21 | Edwards Lifesciences Ag | Device for delayed reshaping of a heart vessel and a heart valve |
WO2003055417A1 (en) * | 2001-12-28 | 2003-07-10 | Edwards Lifesciences Ag | Delayed memory device |
US7163556B2 (en) * | 2002-03-21 | 2007-01-16 | Providence Health System - Oregon | Bioprosthesis and method for suturelessly making same |
MXPA05001845A (en) | 2002-08-15 | 2005-11-17 | Gmp Cardiac Care Inc | Stent-graft with rails. |
GB0220340D0 (en) * | 2002-09-02 | 2002-10-09 | Anson Medical Ltd | Flexible stent-graft |
US8920432B2 (en) * | 2002-09-24 | 2014-12-30 | Medtronic, Inc. | Lead delivery device and method |
US9480839B2 (en) | 2002-09-24 | 2016-11-01 | Medtronic, Inc. | Lead delivery device and method |
US9849279B2 (en) * | 2008-06-27 | 2017-12-26 | Medtronic, Inc. | Lead delivery device and method |
US9636499B2 (en) * | 2002-09-24 | 2017-05-02 | Medtronic, Inc. | Lead delivery device and method |
JP4995420B2 (en) | 2002-09-26 | 2012-08-08 | アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド | High strength vacuum deposited Nitinol alloy film, medical thin film graft material, and method of making same. |
DE60231843D1 (en) | 2002-11-08 | 2009-05-14 | Jacques Seguin | ENDOPROTHESIS FOR VESSEL FORKING |
US7704276B2 (en) * | 2002-11-15 | 2010-04-27 | Synecor, Llc | Endoprostheses and methods of manufacture |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7122058B2 (en) | 2002-12-02 | 2006-10-17 | Gi Dynamics, Inc. | Anti-obesity devices |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7025791B2 (en) * | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
ATE421302T1 (en) * | 2002-12-04 | 2009-02-15 | Cook Inc | METHOD AND DEVICE FOR TREATING AORTA SECTION |
US8105373B2 (en) * | 2002-12-16 | 2012-01-31 | Boston Scientific Scimed, Inc. | Flexible stent with improved axial strength |
US7407509B2 (en) | 2003-01-14 | 2008-08-05 | The Cleveland Clinic Foundation | Branched vessel endoluminal device with fenestration |
US9125733B2 (en) * | 2003-01-14 | 2015-09-08 | The Cleveland Clinic Foundation | Branched vessel endoluminal device |
EP2298239B1 (en) * | 2003-01-14 | 2017-02-22 | The Cleveland Clinic Foundation | Method of connecting modules of an endoluminal prosthesis |
US7025779B2 (en) | 2003-02-26 | 2006-04-11 | Scimed Life Systems, Inc. | Endoluminal device having enhanced affixation characteristics |
JP5021298B2 (en) * | 2003-03-19 | 2012-09-05 | アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド | Lumen stent with intermediate strut interconnection member |
CA2519711C (en) | 2003-03-28 | 2012-01-17 | Conor Medsystems, Inc. | Implantable medical device with beneficial agent concentration gradient |
EP1615593B1 (en) * | 2003-04-08 | 2010-01-06 | Cook Incorporated | Intraluminal support device with graft |
WO2005018507A2 (en) * | 2003-07-18 | 2005-03-03 | Ev3 Santa Rosa, Inc. | Remotely activated mitral annuloplasty system and methods |
US7344559B2 (en) * | 2003-08-25 | 2008-03-18 | Biophan Technologies, Inc. | Electromagnetic radiation transparent device and method of making thereof |
US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device |
EP1673038B1 (en) | 2003-10-10 | 2008-04-23 | William A. Cook Australia Pty. Ltd. | Fenestrated stent grafts |
US9078780B2 (en) * | 2003-11-08 | 2015-07-14 | Cook Medical Technologies Llc | Balloon flareable branch vessel prosthesis and method |
EP1708655A1 (en) | 2003-12-09 | 2006-10-11 | GI Dynamics, Inc. | Apparatus to be anchored within the gastrointestinal tract and anchoring method |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US20050177228A1 (en) * | 2003-12-16 | 2005-08-11 | Solem Jan O. | Device for changing the shape of the mitral annulus |
WO2005070338A1 (en) * | 2004-01-20 | 2005-08-04 | Cook Incorporated | Multiple stitches for attaching stent to graft |
EP1706069B1 (en) * | 2004-01-20 | 2009-07-01 | Cook Incorporated | Endoluminal stent-graft with sutured attachment |
US7803178B2 (en) | 2004-01-30 | 2010-09-28 | Trivascular, Inc. | Inflatable porous implants and methods for drug delivery |
EP1729684B1 (en) | 2004-03-31 | 2010-12-15 | Cook Incorporated | Stent deployment device |
US8048140B2 (en) | 2004-03-31 | 2011-11-01 | Cook Medical Technologies Llc | Fenestrated intraluminal stent system |
US7993397B2 (en) * | 2004-04-05 | 2011-08-09 | Edwards Lifesciences Ag | Remotely adjustable coronary sinus implant |
DE102004030391A1 (en) * | 2004-06-23 | 2006-01-26 | Somatex Medical Technologies Gmbh | marker |
US7837643B2 (en) | 2004-07-09 | 2010-11-23 | Gi Dynamics, Inc. | Methods and devices for placing a gastrointestinal sleeve |
US7763066B2 (en) * | 2004-07-28 | 2010-07-27 | Cook Incorporated | Stent with an end member having a lateral extension |
WO2006034062A1 (en) | 2004-09-17 | 2006-03-30 | Gi Dynamics, Inc. | Gastrointestinal anchor |
US20060167468A1 (en) * | 2004-11-12 | 2006-07-27 | Shlomo Gabbay | Implantation system and method for loading an implanter with a prosthesis |
US8262720B2 (en) * | 2004-12-02 | 2012-09-11 | Nitinol Development Corporation | Prosthesis comprising dual tapered stent |
US7211110B2 (en) | 2004-12-09 | 2007-05-01 | Edwards Lifesciences Corporation | Diagnostic kit to assist with heart valve annulus adjustment |
US7641681B2 (en) * | 2004-12-28 | 2010-01-05 | Boston Scientific Scimed, Inc. | Low profile stent-graft attachment |
US20060149364A1 (en) * | 2004-12-31 | 2006-07-06 | Steven Walak | Low profile vascular graft |
US8287583B2 (en) * | 2005-01-10 | 2012-10-16 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US20070150051A1 (en) * | 2005-01-10 | 2007-06-28 | Duke Fiduciary, Llc | Vascular implants and methods of fabricating the same |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
WO2006104942A2 (en) * | 2005-03-25 | 2006-10-05 | The Brigham And Women's Hospital | Large vessel stents |
US20060248698A1 (en) * | 2005-05-05 | 2006-11-09 | Hanson Brian J | Tubular stent and methods of making the same |
US7500989B2 (en) * | 2005-06-03 | 2009-03-10 | Edwards Lifesciences Corp. | Devices and methods for percutaneous repair of the mitral valve via the coronary sinus |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
CA2615535C (en) | 2005-07-27 | 2013-12-24 | Cook Critical Care Incorporated | Stent/graft device and method for open surgical placement |
WO2007021893A1 (en) * | 2005-08-12 | 2007-02-22 | Edwards Lifesciences Corporation | Medical implant with reinforcement mechanism |
US20080221673A1 (en) * | 2005-08-12 | 2008-09-11 | Donald Bobo | Medical implant with reinforcement mechanism |
US20070061003A1 (en) * | 2005-09-15 | 2007-03-15 | Cappella, Inc. | Segmented ostial protection device |
US20070067029A1 (en) * | 2005-09-16 | 2007-03-22 | Shlomo Gabbay | Support apparatus to facilitate implantation of cardiac prosthesis |
US20070073391A1 (en) * | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
WO2007067820A2 (en) * | 2005-12-09 | 2007-06-14 | Edwards Lifesciences Corporation | Improved anchoring system for medical implant |
US7637946B2 (en) | 2006-02-09 | 2009-12-29 | Edwards Lifesciences Corporation | Coiled implant for mitral valve repair |
US9707113B2 (en) * | 2006-04-19 | 2017-07-18 | Cook Medical Technologies Llc | Twin bifurcated stent graft |
US20080039926A1 (en) * | 2006-08-11 | 2008-02-14 | Majercak David C | Stent graft sealing zone connecting structure |
US20080065205A1 (en) * | 2006-09-11 | 2008-03-13 | Duy Nguyen | Retrievable implant and method for treatment of mitral regurgitation |
US9622888B2 (en) | 2006-11-16 | 2017-04-18 | W. L. Gore & Associates, Inc. | Stent having flexibly connected adjacent stent elements |
US8523931B2 (en) | 2007-01-12 | 2013-09-03 | Endologix, Inc. | Dual concentric guidewire and methods of bifurcated graft deployment |
JP2010517703A (en) | 2007-02-09 | 2010-05-27 | タヘリ ラドュカ エルエルシー | Vascular graft and method for processing the same |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
US8974514B2 (en) * | 2007-03-13 | 2015-03-10 | Abbott Cardiovascular Systems Inc. | Intravascular stent with integrated link and ring strut |
BRPI0721499A2 (en) * | 2007-03-23 | 2013-01-08 | Invatec Technology Ct Gmbh | endoluminal prosthesis |
US20080255447A1 (en) * | 2007-04-16 | 2008-10-16 | Henry Bourang | Diagnostic catheter |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
US8100820B2 (en) | 2007-08-22 | 2012-01-24 | Edwards Lifesciences Corporation | Implantable device for treatment of ventricular dilation |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
CN101917929A (en) | 2007-10-04 | 2010-12-15 | 特里瓦斯库拉尔公司 | Modular vascular graft for low profile percutaneous delivery |
WO2009055615A1 (en) * | 2007-10-23 | 2009-04-30 | Endologix, Inc. | Stent |
BRPI0819215A2 (en) | 2007-10-26 | 2015-05-05 | Cook Critical Care Inc | Vascular conductor and delivery system for open surgical placement |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US20090182355A1 (en) * | 2007-12-20 | 2009-07-16 | Levine Andy H | Porous barbs for long-term anchoring in the gastrointestinal tract |
WO2009082654A1 (en) * | 2007-12-21 | 2009-07-02 | Cleveland Clinic Foundation | Prosthesis for implantation in aorta |
US8303650B2 (en) * | 2008-01-10 | 2012-11-06 | Telesis Research, Llc | Biodegradable self-expanding drug-eluting prosthesis |
US8317857B2 (en) * | 2008-01-10 | 2012-11-27 | Telesis Research, Llc | Biodegradable self-expanding prosthesis |
US8926688B2 (en) | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
US20100121437A1 (en) | 2008-04-16 | 2010-05-13 | Cardiovascular Technologies, Llc | Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy |
US20100121435A1 (en) | 2008-04-16 | 2010-05-13 | Cardiovascular Technologies, Llc | Percutaneous transvalvular intrannular band for mitral valve repair |
US10456259B2 (en) | 2008-04-16 | 2019-10-29 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for mitral valve repair |
US11013599B2 (en) | 2008-04-16 | 2021-05-25 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US8262725B2 (en) | 2008-04-16 | 2012-09-11 | Cardiovascular Technologies, Llc | Transvalvular intraannular band for valve repair |
US11083579B2 (en) | 2008-04-16 | 2021-08-10 | Heart Repair Technologies, Inc. | Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy |
US20100131057A1 (en) | 2008-04-16 | 2010-05-27 | Cardiovascular Technologies, Llc | Transvalvular intraannular band for aortic valve repair |
US20090287145A1 (en) * | 2008-05-15 | 2009-11-19 | Altura Interventional, Inc. | Devices and methods for treatment of abdominal aortic aneurysms |
US9775990B2 (en) | 2008-06-27 | 2017-10-03 | Medtronic, Inc. | Lead delivery device and method |
US9775989B2 (en) | 2008-06-27 | 2017-10-03 | Medtronic, Inc. | Lead delivery device and method |
US11931523B2 (en) | 2008-06-27 | 2024-03-19 | Medtronic, Inc. | Lead delivery device and method |
EP2293838B1 (en) | 2008-07-01 | 2012-08-08 | Endologix, Inc. | Catheter system |
WO2010014413A2 (en) * | 2008-07-31 | 2010-02-04 | Medtronic, Inc. | Lead delivery device and method |
US8128678B2 (en) * | 2008-09-02 | 2012-03-06 | Cook Medical Technologies Llc | Stent having less invasive ends and improved radial force |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
US8734502B2 (en) | 2008-12-17 | 2014-05-27 | Cook Medical Technologies Llc | Tapered stent and flexible prosthesis |
US8641753B2 (en) * | 2009-01-31 | 2014-02-04 | Cook Medical Technologies Llc | Preform for and an endoluminal prosthesis |
KR101810379B1 (en) * | 2009-02-02 | 2017-12-20 | 코디스 코포레이션 | Flexible stent design |
NZ595936A (en) * | 2009-04-24 | 2014-06-27 | Flexible Stenting Solutions Inc | Flexible devices |
US8771333B2 (en) | 2009-06-23 | 2014-07-08 | Cordis Corporation | Stent-graft securement device |
WO2011008989A2 (en) | 2009-07-15 | 2011-01-20 | Endologix, Inc. | Stent graft |
JP5588511B2 (en) | 2009-07-27 | 2014-09-10 | エンドロジックス、インク | Stent graft |
US20110087318A1 (en) | 2009-10-09 | 2011-04-14 | Daugherty John R | Bifurcated highly conformable medical device branch access |
EP2559401B1 (en) * | 2009-12-01 | 2016-05-04 | Altura Medical, Inc. | Modular endograft devices |
WO2011081814A1 (en) | 2009-12-28 | 2011-07-07 | Cook Medical Technologies Llc | Endoluminal device with kink-resistant regions |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US8628554B2 (en) | 2010-06-13 | 2014-01-14 | Virender K. Sharma | Intragastric device for treating obesity |
US10010439B2 (en) | 2010-06-13 | 2018-07-03 | Synerz Medical, Inc. | Intragastric device for treating obesity |
WO2012040240A1 (en) | 2010-09-20 | 2012-03-29 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US9393100B2 (en) | 2010-11-17 | 2016-07-19 | Endologix, Inc. | Devices and methods to treat vascular dissections |
EP2658484A1 (en) | 2010-12-30 | 2013-11-06 | Boston Scientific Scimed, Inc. | Multi stage opening stent designs |
CN105232195B (en) | 2011-03-01 | 2018-06-08 | 恩朵罗杰克斯股份有限公司 | Delivery catheter system |
WO2012119037A1 (en) | 2011-03-03 | 2012-09-07 | Boston Scientific Scimed, Inc. | Stent with reduced profile |
CN103391757B (en) | 2011-03-03 | 2016-01-20 | 波士顿科学国际有限公司 | Low strain dynamic high strength support |
US20120283811A1 (en) * | 2011-05-02 | 2012-11-08 | Cook Medical Technologies Llc | Biodegradable, bioabsorbable stent anchors |
AU2012203620B9 (en) | 2011-06-24 | 2014-10-02 | Cook Medical Technologies Llc | Helical Stent |
KR101330397B1 (en) * | 2011-11-01 | 2013-11-15 | 재단법인 아산사회복지재단 | A device for blood vessel anastomosis using the self-expandable material or structure and a method for blood vessel anastomosis using the same |
WO2013120082A1 (en) | 2012-02-10 | 2013-08-15 | Kassab Ghassan S | Methods and uses of biological tissues for various stent and other medical applications |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
US9144510B2 (en) | 2012-06-13 | 2015-09-29 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using at least one coiled member |
US9364355B2 (en) | 2012-06-13 | 2016-06-14 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using at least one coiled member |
WO2014026173A1 (en) | 2012-08-10 | 2014-02-13 | Cragg Andrew H | Stent delivery systems and associated methods |
RU2522383C2 (en) * | 2012-10-18 | 2014-07-10 | Заза Александрович Кавтеладзе | Device for installation of coated stent into blood vessels |
US9655756B2 (en) | 2012-12-21 | 2017-05-23 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using an auger-style device |
US9687373B2 (en) | 2012-12-21 | 2017-06-27 | Cook Medical Technologies Llc | Systems and methods for securing and releasing a portion of a stent |
US20140228937A1 (en) | 2013-02-11 | 2014-08-14 | Joshua Krieger | Expandable Support Frame and Medical Device |
WO2014144809A1 (en) | 2013-03-15 | 2014-09-18 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
KR101318485B1 (en) * | 2013-05-08 | 2013-10-16 | 재단법인 아산사회복지재단 | A device for blood vessel anastomosis using the self-expandable material or structure and a method for blood vessel anastomosis using the same |
KR101318477B1 (en) * | 2013-05-08 | 2013-10-16 | 재단법인 아산사회복지재단 | A device for blood vessel anastomosis using the self-expandable material or structure and a method for blood vessel anastomosis using the same |
US10959826B2 (en) | 2014-10-16 | 2021-03-30 | Cook Medical Technology LLC | Support structure for scalloped grafts |
US10299948B2 (en) | 2014-11-26 | 2019-05-28 | W. L. Gore & Associates, Inc. | Balloon expandable endoprosthesis |
WO2017015498A1 (en) | 2015-07-22 | 2017-01-26 | Nitinol Devices And Components, Inc. | Graft dimpling to improve crimp profile and reduce delivery forces |
CN105193530B (en) * | 2015-11-13 | 2017-10-13 | 丛海波 | It is connected the trans-articular intravascular stent of pattern with turning joint |
CN110742709B (en) * | 2016-03-18 | 2022-06-28 | 复旦大学附属中山医院 | Aorta bare stent and aorta interlayer stent |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10568752B2 (en) | 2016-05-25 | 2020-02-25 | W. L. Gore & Associates, Inc. | Controlled endoprosthesis balloon expansion |
KR101791462B1 (en) | 2016-05-26 | 2017-11-01 | 주식회사서륭 | Plate type-artificial blood stent having a flap |
AU2017382273A1 (en) | 2016-12-22 | 2019-08-08 | Heart Repair Technologies, Inc. | Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus |
WO2018144271A1 (en) * | 2017-02-01 | 2018-08-09 | Endologix, Inc. | Longitudinally extendable stent graft systems and methods |
CN112638319A (en) * | 2018-05-31 | 2021-04-09 | 恩朵罗杰克斯有限责任公司 | System and method having an anchoring device for fixing a filling structure in a blood vessel |
CN114052820B (en) * | 2021-11-30 | 2023-09-29 | 珠海通桥医疗科技有限公司 | Vascular stent |
Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2127903A (en) * | 1936-05-05 | 1938-08-23 | Davis & Geck Inc | Tube for surgical purposes and method of preparing and using the same |
US2990605A (en) * | 1957-01-30 | 1961-07-04 | Demsyk Paul | Method of forming artificial vascular members |
US3029819A (en) * | 1959-07-30 | 1962-04-17 | J L Mcatee | Artery graft and method of producing artery grafts |
US3096560A (en) * | 1958-11-21 | 1963-07-09 | William J Liebig | Process for synthetic vascular implants |
US3805301A (en) * | 1972-07-28 | 1974-04-23 | Meadox Medicals Inc | Tubular grafts having indicia thereon |
US3953566A (en) * | 1970-05-21 | 1976-04-27 | W. L. Gore & Associates, Inc. | Process for producing porous products |
US4497074A (en) * | 1976-04-05 | 1985-02-05 | Agence National De Valorisation De La Recherche (Anvar) | Organ prostheses |
US4501263A (en) * | 1982-03-31 | 1985-02-26 | Harbuck Stanley C | Method for reducing hypertension of a liver |
US4503568A (en) * | 1981-11-25 | 1985-03-12 | New England Deaconess Hospital | Small diameter vascular bypass and method |
US4592754A (en) * | 1983-09-09 | 1986-06-03 | Gupte Pradeep M | Surgical prosthetic vessel graft and catheter combination and method |
US4816028A (en) * | 1987-07-01 | 1989-03-28 | Indu Kapadia | Woven vascular graft |
US4840940A (en) * | 1987-10-21 | 1989-06-20 | Sottiurai Vikrom S | Method for reducing the occurrence of distal anastomotic intimal hyperplasia using fractionated heparin |
US4907336A (en) * | 1987-03-13 | 1990-03-13 | Cook Incorporated | Method of making an endovascular stent and delivery system |
US4922905A (en) * | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
US4994071A (en) * | 1989-05-22 | 1991-02-19 | Cordis Corporation | Bifurcating stent apparatus and method |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5078726A (en) * | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5104399A (en) * | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US5108424A (en) * | 1984-01-30 | 1992-04-28 | Meadox Medicals, Inc. | Collagen-impregnated dacron graft |
US5133732A (en) * | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5178634A (en) * | 1989-03-31 | 1993-01-12 | Wilson Ramos Martinez | Aortic valved tubes for human implants |
US5197976A (en) * | 1991-09-16 | 1993-03-30 | Atrium Medical Corporation | Manually separable multi-lumen vascular graft |
US5275622A (en) * | 1983-12-09 | 1994-01-04 | Harrison Medical Technologies, Inc. | Endovascular grafting apparatus, system and method and devices for use therewith |
US5282824A (en) * | 1990-10-09 | 1994-02-01 | Cook, Incorporated | Percutaneous stent assembly |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5304200A (en) * | 1991-05-29 | 1994-04-19 | Cordis Corporation | Welded radially expandable endoprosthesis and the like |
US5314444A (en) * | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US5314472A (en) * | 1991-10-01 | 1994-05-24 | Cook Incorporated | Vascular stent |
US5316023A (en) * | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5330500A (en) * | 1990-10-18 | 1994-07-19 | Song Ho Y | Self-expanding endovascular stent with silicone coating |
US5383892A (en) * | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5387235A (en) * | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5397355A (en) * | 1994-07-19 | 1995-03-14 | Stentco, Inc. | Intraluminal stent |
US5405377A (en) * | 1992-02-21 | 1995-04-11 | Endotech Ltd. | Intraluminal stent |
US5423886A (en) * | 1987-05-11 | 1995-06-13 | Sorin Biomedica S.P.A. | Cyclically deformable haemocompatible and biocompatible devices coated with biocompatible carbonaceous material |
US5425765A (en) * | 1993-06-25 | 1995-06-20 | Tiefenbrun; Jonathan | Surgical bypass method |
US5489295A (en) * | 1991-04-11 | 1996-02-06 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5496365A (en) * | 1992-07-02 | 1996-03-05 | Sgro; Jean-Claude | Autoexpandable vascular endoprosthesis |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5507771A (en) * | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5522883A (en) * | 1995-02-17 | 1996-06-04 | Meadox Medicals, Inc. | Endoprosthesis stent/graft deployment system |
US5522881A (en) * | 1994-06-28 | 1996-06-04 | Meadox Medicals, Inc. | Implantable tubular prosthesis having integral cuffs |
US5522880A (en) * | 1990-06-11 | 1996-06-04 | Barone; Hector D. | Method for repairing an abdominal aortic aneurysm |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
US5591229A (en) * | 1990-06-11 | 1997-01-07 | Parodi; Juan C. | Aortic graft for repairing an abdominal aortic aneurysm |
US5593417A (en) * | 1995-11-27 | 1997-01-14 | Rhodes; Valentine J. | Intravascular stent with secure mounting means |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5628783A (en) * | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5641373A (en) * | 1995-04-17 | 1997-06-24 | Baxter International Inc. | Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft |
US5643339A (en) * | 1992-08-06 | 1997-07-01 | William Cook Europe A/S | Prosthetic device for sustaining a blood-vessel or hollow organ lumen |
US5647857A (en) * | 1995-03-16 | 1997-07-15 | Endotex Interventional Systems, Inc. | Protective intraluminal sheath |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5720776A (en) * | 1991-10-25 | 1998-02-24 | Cook Incorporated | Barb and expandable transluminal graft prosthesis for repair of aneurysm |
US5723004A (en) * | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5733325A (en) * | 1993-11-04 | 1998-03-31 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system |
US5746776A (en) * | 1995-06-05 | 1998-05-05 | Creative Products Resource, Inc. | Dry-cleaning kit for in-dryer use |
US5746766A (en) * | 1995-05-09 | 1998-05-05 | Edoga; John K. | Surgical stent |
US5749880A (en) * | 1995-03-10 | 1998-05-12 | Impra, Inc. | Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US5755770A (en) * | 1995-01-31 | 1998-05-26 | Boston Scientific Corporatiion | Endovascular aortic graft |
US5769884A (en) * | 1996-06-27 | 1998-06-23 | Cordis Corporation | Controlled porosity endovascular implant |
US5769887A (en) * | 1994-11-09 | 1998-06-23 | Endotex Interventional Systems, Inc. | Delivery catheter and graft for aneurysm repair |
US5855599A (en) * | 1997-09-02 | 1999-01-05 | Sitek, Inc. | Silicon micro machined occlusion implant |
US5860998A (en) * | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US5902334A (en) * | 1993-04-22 | 1999-05-11 | C.R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5928279A (en) * | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US6027811A (en) * | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall intraluminal graft |
US6027779A (en) * | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall polytetrafluoroethylene tube |
US6030415A (en) * | 1997-01-29 | 2000-02-29 | Endovascular Technologies, Inc. | Bell-bottom modular stent-graft |
US6039758A (en) * | 1994-05-12 | 2000-03-21 | Endovascular Technologies, Inc. | Method for intraluminally deploying a bifurcated graft |
US6039755A (en) * | 1997-02-05 | 2000-03-21 | Impra, Inc., A Division Of C.R. Bard, Inc. | Radially expandable tubular polytetrafluoroethylene grafts and method of making same |
US6039749A (en) * | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US6051020A (en) * | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6070589A (en) * | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US6074398A (en) * | 1998-01-13 | 2000-06-13 | Datascope Investment Corp. | Reduced diameter stent/graft deployment catheter |
US6077296A (en) * | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6090128A (en) * | 1997-02-20 | 2000-07-18 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6187036B1 (en) * | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6192944B1 (en) * | 1998-08-14 | 2001-02-27 | Prodesco, Inc. | Method of forming a textile member with undulating wire |
US6197049B1 (en) * | 1999-02-17 | 2001-03-06 | Endologix, Inc. | Articulating bifurcation graft |
US6261316B1 (en) * | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6379382B1 (en) * | 2000-03-13 | 2002-04-30 | Jun Yang | Stent having cover with drug delivery capability |
US6689157B2 (en) * | 1999-07-07 | 2004-02-10 | Endologix, Inc. | Dual wire placement catheter |
US6733523B2 (en) * | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US20070078506A1 (en) * | 2004-04-13 | 2007-04-05 | Mccormick Paul | Method and apparatus for decompressing aneurysms |
US7520895B2 (en) * | 1998-06-19 | 2009-04-21 | Endologix, Inc. | Self expanding bifurcated endovascular prosthesis |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2845959A (en) * | 1956-03-26 | 1958-08-05 | John B Sidebotham | Bifurcated textile tubes and method of weaving the same |
SE445884B (en) | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US5669936A (en) * | 1983-12-09 | 1997-09-23 | Endovascular Technologies, Inc. | Endovascular grafting system and method for use therewith |
US4617932A (en) * | 1984-04-25 | 1986-10-21 | Elliot Kornberg | Device and method for performing an intraluminal abdominal aortic aneurysm repair |
US4580568A (en) * | 1984-10-01 | 1986-04-08 | Cook, Incorporated | Percutaneous endovascular stent and method for insertion thereof |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4878906A (en) * | 1986-03-25 | 1989-11-07 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
US4816026A (en) * | 1987-06-25 | 1989-03-28 | The Procter & Gamble Company | Disposable diaper having an improved leg conforming cuff |
JPH01196978A (en) * | 1988-01-30 | 1989-08-08 | Fuji Photo Film Co Ltd | Video camera for document photographing |
US4856516A (en) * | 1989-01-09 | 1989-08-15 | Cordis Corporation | Endovascular stent apparatus and method |
CH678393A5 (en) * | 1989-01-26 | 1991-09-13 | Ulrich Prof Dr Med Sigwart | |
US5156619A (en) * | 1990-06-15 | 1992-10-20 | Ehrenfeld William K | Flanged end-to-side vascular graft |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5135536A (en) * | 1991-02-05 | 1992-08-04 | Cordis Corporation | Endovascular stent and method |
US5443498A (en) * | 1991-10-01 | 1995-08-22 | Cook Incorporated | Vascular stent and method of making and implanting a vacsular stent |
US5366504A (en) * | 1992-05-20 | 1994-11-22 | Boston Scientific Corporation | Tubular medical prosthesis |
US5693084A (en) * | 1991-10-25 | 1997-12-02 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
CA2081424C (en) | 1991-10-25 | 2008-12-30 | Timothy A. Chuter | Expandable transluminal graft prosthesis for repair of aneurysm |
US5456713A (en) * | 1991-10-25 | 1995-10-10 | Cook Incorporated | Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting |
US5683448A (en) * | 1992-02-21 | 1997-11-04 | Boston Scientific Technology, Inc. | Intraluminal stent and graft |
US5370683A (en) * | 1992-03-25 | 1994-12-06 | Cook Incorporated | Vascular stent |
US5386504A (en) * | 1992-05-29 | 1995-01-31 | Kabushiki Kaisha Toshiba | Information display apparatus having multiwindow system |
US5342387A (en) * | 1992-06-18 | 1994-08-30 | American Biomed, Inc. | Artificial support for a blood vessel |
ES2089342T3 (en) * | 1992-10-31 | 1996-10-01 | Schneider Europ Ag | DISPOSITION OF INTRODUCTION OF A SELF-EXPANDING ENDOPROTESIS. |
BE1006440A3 (en) * | 1992-12-21 | 1994-08-30 | Dereume Jean Pierre Georges Em | Luminal endoprosthesis AND METHOD OF PREPARATION. |
US5256141A (en) * | 1992-12-22 | 1993-10-26 | Nelson Gencheff | Biological material deployment method and apparatus |
JPH08500757A (en) * | 1992-12-30 | 1996-01-30 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Device for deploying a stent implantable in the body |
AU689094B2 (en) | 1993-04-22 | 1998-03-26 | C.R. Bard Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
ES2114964T3 (en) * | 1993-04-23 | 1998-06-16 | Schneider Europ Ag | ENDOPROTESIS WITH A COAT OF ELASTIC MATERIAL COATING AND METHOD FOR APPLYING THE COAT ON ENDOPROTESIS. |
US5464650A (en) * | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
CA2125258C (en) | 1993-08-05 | 1998-12-22 | Dinah B Quiachon | Multicapsule intraluminal grafting system and method |
KR970004845Y1 (en) * | 1993-09-27 | 1997-05-21 | 주식회사 수호메디테크 | Stent for expanding a lumen |
DE59308451D1 (en) * | 1993-10-20 | 1998-05-28 | Schneider Europ Ag | Endoprosthesis |
WO1995013033A1 (en) * | 1993-11-08 | 1995-05-18 | Lazarus Harrison M | Intraluminal vascular graft and method |
US5507769A (en) * | 1994-10-18 | 1996-04-16 | Stentco, Inc. | Method and apparatus for forming an endoluminal bifurcated graft |
US5653746A (en) * | 1994-03-08 | 1997-08-05 | Meadox Medicals, Inc. | Radially expandable tubular prosthesis |
US5554181A (en) * | 1994-05-04 | 1996-09-10 | Regents Of The University Of Minnesota | Stent |
US5456694A (en) | 1994-05-13 | 1995-10-10 | Stentco, Inc. | Device for delivering and deploying intraluminal devices |
US5824041A (en) | 1994-06-08 | 1998-10-20 | Medtronic, Inc. | Apparatus and methods for placement and repositioning of intraluminal prostheses |
US5683451A (en) * | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses |
US5653743A (en) * | 1994-09-09 | 1997-08-05 | Martin; Eric C. | Hypogastric artery bifurcation graft and method of implantation |
US5622881A (en) * | 1994-10-06 | 1997-04-22 | International Business Machines Corporation | Packing density for flash memories |
AU3783195A (en) | 1994-11-15 | 1996-05-23 | Advanced Cardiovascular Systems Inc. | Intraluminal stent for attaching a graft |
US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
WO1996025897A2 (en) * | 1995-02-22 | 1996-08-29 | Menlo Care, Inc. | Covered expanding mesh stent |
US5683449A (en) * | 1995-02-24 | 1997-11-04 | Marcade; Jean Paul | Modular bifurcated intraluminal grafts and methods for delivering and assembling same |
DE69632844T2 (en) * | 1995-04-12 | 2005-07-14 | Corvita Europe | Self-expanding stent for introducing a medical device into a body cavity and manufacturing process |
US5609628A (en) * | 1995-04-20 | 1997-03-11 | Keranen; Victor J. | Intravascular graft and catheter |
ATE314022T1 (en) * | 1995-06-01 | 2006-01-15 | Meadox Medicals Inc | IMPLANTABLE INTRALUMINAL PROSTHESIS |
US5824037A (en) | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US6193745B1 (en) | 1995-10-03 | 2001-02-27 | Medtronic, Inc. | Modular intraluminal prosteheses construction and methods |
ATE177928T1 (en) * | 1995-11-14 | 1999-04-15 | Schneider Europ Gmbh | DEVICE FOR STENT IMPLANTATION |
US5665117A (en) * | 1995-11-27 | 1997-09-09 | Rhodes; Valentine J. | Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use |
US5693066A (en) * | 1995-12-21 | 1997-12-02 | Medtronic, Inc. | Stent mounting and transfer device and method |
US5695516A (en) * | 1996-02-21 | 1997-12-09 | Iso Stent, Inc. | Longitudinally elongating balloon expandable stent |
US5810836A (en) | 1996-03-04 | 1998-09-22 | Myocardial Stents, Inc. | Device and method for trans myocardial revascularization (TMR) |
US5843160A (en) | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US5676697A (en) * | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US5824053A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Helical mesh endoprosthesis and methods of use |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US6129756A (en) | 1998-03-16 | 2000-10-10 | Teramed, Inc. | Biluminal endovascular graft system |
-
1998
- 1998-03-04 US US09/034,689 patent/US6077296A/en not_active Expired - Lifetime
- 1998-06-15 WO PCT/US1998/012114 patent/WO1999044536A1/en active IP Right Grant
- 1998-06-15 CN CN98813843A patent/CN1301139A/en active Pending
- 1998-06-15 AT AT98930137T patent/ATE304330T1/en not_active IP Right Cessation
- 1998-06-15 KR KR1020007009800A patent/KR20010041603A/en not_active Application Discontinuation
- 1998-06-15 RU RU2000123558/14A patent/RU2207826C2/en not_active IP Right Cessation
- 1998-06-15 DE DE69831608T patent/DE69831608T2/en not_active Revoked
- 1998-06-15 AU AU79600/98A patent/AU7960098A/en not_active Abandoned
- 1998-06-15 JP JP2000534144A patent/JP4143749B2/en not_active Expired - Fee Related
- 1998-06-15 EP EP98930137A patent/EP1059893B1/en not_active Revoked
-
2000
- 2000-01-14 US US09/483,411 patent/US6331190B1/en not_active Expired - Fee Related
-
2001
- 2001-12-18 US US10/032,230 patent/US20020147492A1/en not_active Abandoned
-
2004
- 2004-01-12 US US10/755,703 patent/US20040204753A1/en not_active Abandoned
-
2006
- 2006-05-03 US US11/417,651 patent/US20060271163A1/en not_active Abandoned
-
2007
- 2007-01-16 US US11/623,679 patent/US20070112412A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2127903A (en) * | 1936-05-05 | 1938-08-23 | Davis & Geck Inc | Tube for surgical purposes and method of preparing and using the same |
US2990605A (en) * | 1957-01-30 | 1961-07-04 | Demsyk Paul | Method of forming artificial vascular members |
US3096560A (en) * | 1958-11-21 | 1963-07-09 | William J Liebig | Process for synthetic vascular implants |
US3029819A (en) * | 1959-07-30 | 1962-04-17 | J L Mcatee | Artery graft and method of producing artery grafts |
US4187390A (en) * | 1970-05-21 | 1980-02-05 | W. L. Gore & Associates, Inc. | Porous products and process therefor |
US3953566A (en) * | 1970-05-21 | 1976-04-27 | W. L. Gore & Associates, Inc. | Process for producing porous products |
US3805301A (en) * | 1972-07-28 | 1974-04-23 | Meadox Medicals Inc | Tubular grafts having indicia thereon |
US4497074A (en) * | 1976-04-05 | 1985-02-05 | Agence National De Valorisation De La Recherche (Anvar) | Organ prostheses |
US4503568A (en) * | 1981-11-25 | 1985-03-12 | New England Deaconess Hospital | Small diameter vascular bypass and method |
US4501263A (en) * | 1982-03-31 | 1985-02-26 | Harbuck Stanley C | Method for reducing hypertension of a liver |
US4592754A (en) * | 1983-09-09 | 1986-06-03 | Gupte Pradeep M | Surgical prosthetic vessel graft and catheter combination and method |
US5275622A (en) * | 1983-12-09 | 1994-01-04 | Harrison Medical Technologies, Inc. | Endovascular grafting apparatus, system and method and devices for use therewith |
US5108424A (en) * | 1984-01-30 | 1992-04-28 | Meadox Medicals, Inc. | Collagen-impregnated dacron graft |
US4922905A (en) * | 1985-11-30 | 1990-05-08 | Strecker Ernst P | Dilatation catheter |
US5104399A (en) * | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
US4907336A (en) * | 1987-03-13 | 1990-03-13 | Cook Incorporated | Method of making an endovascular stent and delivery system |
US5314444A (en) * | 1987-03-13 | 1994-05-24 | Cook Incorporated | Endovascular stent and delivery system |
US5423886A (en) * | 1987-05-11 | 1995-06-13 | Sorin Biomedica S.P.A. | Cyclically deformable haemocompatible and biocompatible devices coated with biocompatible carbonaceous material |
US4816028A (en) * | 1987-07-01 | 1989-03-28 | Indu Kapadia | Woven vascular graft |
US5133732A (en) * | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US4840940A (en) * | 1987-10-21 | 1989-06-20 | Sottiurai Vikrom S | Method for reducing the occurrence of distal anastomotic intimal hyperplasia using fractionated heparin |
US5019090A (en) * | 1988-09-01 | 1991-05-28 | Corvita Corporation | Radially expandable endoprosthesis and the like |
US5078726A (en) * | 1989-02-01 | 1992-01-07 | Kreamer Jeffry W | Graft stent and method of repairing blood vessels |
US5178634A (en) * | 1989-03-31 | 1993-01-12 | Wilson Ramos Martinez | Aortic valved tubes for human implants |
US4994071A (en) * | 1989-05-22 | 1991-02-19 | Cordis Corporation | Bifurcating stent apparatus and method |
US5591229A (en) * | 1990-06-11 | 1997-01-07 | Parodi; Juan C. | Aortic graft for repairing an abdominal aortic aneurysm |
US5522880A (en) * | 1990-06-11 | 1996-06-04 | Barone; Hector D. | Method for repairing an abdominal aortic aneurysm |
US5282824A (en) * | 1990-10-09 | 1994-02-01 | Cook, Incorporated | Percutaneous stent assembly |
US5330500A (en) * | 1990-10-18 | 1994-07-19 | Song Ho Y | Self-expanding endovascular stent with silicone coating |
US5628783A (en) * | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5769885A (en) * | 1991-04-11 | 1998-06-23 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5489295A (en) * | 1991-04-11 | 1996-02-06 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5609625A (en) * | 1991-04-11 | 1997-03-11 | Endovascular Technologies, Inc. | Endovascular graft having bifurcation and apparatus and method for deploying the same |
US5304200A (en) * | 1991-05-29 | 1994-04-19 | Cordis Corporation | Welded radially expandable endoprosthesis and the like |
US5197976A (en) * | 1991-09-16 | 1993-03-30 | Atrium Medical Corporation | Manually separable multi-lumen vascular graft |
US5314472A (en) * | 1991-10-01 | 1994-05-24 | Cook Incorporated | Vascular stent |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5387235A (en) * | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5720776A (en) * | 1991-10-25 | 1998-02-24 | Cook Incorporated | Barb and expandable transluminal graft prosthesis for repair of aneurysm |
US5383892A (en) * | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5316023A (en) * | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5507767A (en) * | 1992-01-15 | 1996-04-16 | Cook Incorporated | Spiral stent |
US5405377A (en) * | 1992-02-21 | 1995-04-11 | Endotech Ltd. | Intraluminal stent |
US5507771A (en) * | 1992-06-15 | 1996-04-16 | Cook Incorporated | Stent assembly |
US5496365A (en) * | 1992-07-02 | 1996-03-05 | Sgro; Jean-Claude | Autoexpandable vascular endoprosthesis |
US5643339A (en) * | 1992-08-06 | 1997-07-01 | William Cook Europe A/S | Prosthetic device for sustaining a blood-vessel or hollow organ lumen |
US5902334A (en) * | 1993-04-22 | 1999-05-11 | C.R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US5425765A (en) * | 1993-06-25 | 1995-06-20 | Tiefenbrun; Jonathan | Surgical bypass method |
US6027811A (en) * | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall intraluminal graft |
US6027779A (en) * | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall polytetrafluoroethylene tube |
US5723004A (en) * | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5733325A (en) * | 1993-11-04 | 1998-03-31 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system |
US6077297A (en) * | 1993-11-04 | 2000-06-20 | C. R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5891193A (en) * | 1993-11-04 | 1999-04-06 | C.R. Bard, Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5718724A (en) * | 1994-02-09 | 1998-02-17 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6051020A (en) * | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US5716365A (en) * | 1994-02-09 | 1998-02-10 | Boston Scientific Technologies, Inc. | Bifurcated endoluminal prosthesis |
US6039749A (en) * | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US6168610B1 (en) * | 1994-02-10 | 2001-01-02 | Endovascular Systems, Inc. | Method for endoluminally excluding an aortic aneurysm |
US6039758A (en) * | 1994-05-12 | 2000-03-21 | Endovascular Technologies, Inc. | Method for intraluminally deploying a bifurcated graft |
US5716393A (en) * | 1994-05-26 | 1998-02-10 | Angiomed Gmbh & Co. Medizintechnik Kg | Stent with an end of greater diameter than its main body |
US5522881A (en) * | 1994-06-28 | 1996-06-04 | Meadox Medicals, Inc. | Implantable tubular prosthesis having integral cuffs |
US5397355A (en) * | 1994-07-19 | 1995-03-14 | Stentco, Inc. | Intraluminal stent |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US5769887A (en) * | 1994-11-09 | 1998-06-23 | Endotex Interventional Systems, Inc. | Delivery catheter and graft for aneurysm repair |
US5755770A (en) * | 1995-01-31 | 1998-05-26 | Boston Scientific Corporatiion | Endovascular aortic graft |
US5522883A (en) * | 1995-02-17 | 1996-06-04 | Meadox Medicals, Inc. | Endoprosthesis stent/graft deployment system |
US5749880A (en) * | 1995-03-10 | 1998-05-12 | Impra, Inc. | Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery |
US5591197A (en) * | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
US5647857A (en) * | 1995-03-16 | 1997-07-15 | Endotex Interventional Systems, Inc. | Protective intraluminal sheath |
US5641373A (en) * | 1995-04-17 | 1997-06-24 | Baxter International Inc. | Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft |
US5746766A (en) * | 1995-05-09 | 1998-05-05 | Edoga; John K. | Surgical stent |
US5746776A (en) * | 1995-06-05 | 1998-05-05 | Creative Products Resource, Inc. | Dry-cleaning kit for in-dryer use |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5593417A (en) * | 1995-11-27 | 1997-01-14 | Rhodes; Valentine J. | Intravascular stent with secure mounting means |
US5769884A (en) * | 1996-06-27 | 1998-06-23 | Cordis Corporation | Controlled porosity endovascular implant |
US5928279A (en) * | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US5860998A (en) * | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US6030415A (en) * | 1997-01-29 | 2000-02-29 | Endovascular Technologies, Inc. | Bell-bottom modular stent-graft |
US6039755A (en) * | 1997-02-05 | 2000-03-21 | Impra, Inc., A Division Of C.R. Bard, Inc. | Radially expandable tubular polytetrafluoroethylene grafts and method of making same |
US6210422B1 (en) * | 1997-02-20 | 2001-04-03 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6090128A (en) * | 1997-02-20 | 2000-07-18 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6070589A (en) * | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US5855599A (en) * | 1997-09-02 | 1999-01-05 | Sitek, Inc. | Silicon micro machined occlusion implant |
US6074398A (en) * | 1998-01-13 | 2000-06-13 | Datascope Investment Corp. | Reduced diameter stent/graft deployment catheter |
US6077296A (en) * | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US7520895B2 (en) * | 1998-06-19 | 2009-04-21 | Endologix, Inc. | Self expanding bifurcated endovascular prosthesis |
US6192944B1 (en) * | 1998-08-14 | 2001-02-27 | Prodesco, Inc. | Method of forming a textile member with undulating wire |
US6187036B1 (en) * | 1998-12-11 | 2001-02-13 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6508835B1 (en) * | 1998-12-11 | 2003-01-21 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6733523B2 (en) * | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US6197049B1 (en) * | 1999-02-17 | 2001-03-06 | Endologix, Inc. | Articulating bifurcation graft |
US6261316B1 (en) * | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US7691135B2 (en) * | 1999-03-11 | 2010-04-06 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6689157B2 (en) * | 1999-07-07 | 2004-02-10 | Endologix, Inc. | Dual wire placement catheter |
US6379382B1 (en) * | 2000-03-13 | 2002-04-30 | Jun Yang | Stent having cover with drug delivery capability |
US20070078506A1 (en) * | 2004-04-13 | 2007-04-05 | Mccormick Paul | Method and apparatus for decompressing aneurysms |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7892277B2 (en) | 1998-06-19 | 2011-02-22 | Endologix, Inc. | Self expanding bifurcated endovascular prosthesis |
US8147535B2 (en) | 1998-12-11 | 2012-04-03 | Endologix, Inc. | Bifurcation graft deployment catheter |
US20050228480A1 (en) * | 2004-04-08 | 2005-10-13 | Douglas Myles S | Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve |
US8377110B2 (en) | 2004-04-08 | 2013-02-19 | Endologix, Inc. | Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve |
US10806609B2 (en) | 2004-05-25 | 2020-10-20 | Covidien Lp | Vascular stenting for aneurysms |
US10245166B2 (en) | 2008-02-22 | 2019-04-02 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US8357192B2 (en) | 2008-04-11 | 2013-01-22 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8764812B2 (en) | 2008-04-11 | 2014-07-01 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8236040B2 (en) | 2008-04-11 | 2012-08-07 | Endologix, Inc. | Bifurcated graft deployment systems and methods |
US8945202B2 (en) | 2009-04-28 | 2015-02-03 | Endologix, Inc. | Fenestrated prosthesis |
US10603196B2 (en) | 2009-04-28 | 2020-03-31 | Endologix, Inc. | Fenestrated prosthesis |
US9579103B2 (en) | 2009-05-01 | 2017-02-28 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US10772717B2 (en) | 2009-05-01 | 2020-09-15 | Endologix, Inc. | Percutaneous method and device to treat dissections |
US11406518B2 (en) | 2010-11-02 | 2022-08-09 | Endologix Llc | Apparatus and method of placement of a graft or graft system |
US11129737B2 (en) | 2015-06-30 | 2021-09-28 | Endologix Llc | Locking assembly for coupling guidewire to delivery system |
US10888414B2 (en) | 2019-03-20 | 2021-01-12 | inQB8 Medical Technologies, LLC | Aortic dissection implant |
Also Published As
Publication number | Publication date |
---|---|
EP1059893B1 (en) | 2005-09-14 |
WO1999044536A1 (en) | 1999-09-10 |
ATE304330T1 (en) | 2005-09-15 |
KR20010041603A (en) | 2001-05-25 |
US6077296A (en) | 2000-06-20 |
EP1059893A4 (en) | 2001-11-21 |
DE69831608T2 (en) | 2006-02-02 |
DE69831608D1 (en) | 2005-10-20 |
JP2002505147A (en) | 2002-02-19 |
JP4143749B2 (en) | 2008-09-03 |
RU2207826C2 (en) | 2003-07-10 |
US20070112412A1 (en) | 2007-05-17 |
AU7960098A (en) | 1999-09-20 |
US6331190B1 (en) | 2001-12-18 |
US20040204753A1 (en) | 2004-10-14 |
US20020147492A1 (en) | 2002-10-10 |
CN1301139A (en) | 2001-06-27 |
EP1059893A1 (en) | 2000-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6077296A (en) | Endoluminal vascular prosthesis | |
US6508835B1 (en) | Endoluminal vascular prosthesis | |
US6733523B2 (en) | Implantable vascular graft | |
US6197049B1 (en) | Articulating bifurcation graft | |
CA2350499C (en) | Endoluminal vascular prosthesis | |
US7520895B2 (en) | Self expanding bifurcated endovascular prosthesis | |
US20070299497A1 (en) | Implantable vascular graft | |
US8377110B2 (en) | Endolumenal vascular prosthesis with neointima inhibiting polymeric sleeve | |
US20100318181A1 (en) | Implantable vascular graft | |
US20040064146A1 (en) | Bifurcation graft deployment catheter | |
US20110218617A1 (en) | Endoluminal vascular prosthesis | |
MXPA00008590A (en) | Endoluminal vascular prosthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |