US20060252211A1 - ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS - Google Patents

ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS Download PDF

Info

Publication number
US20060252211A1
US20060252211A1 US11/457,978 US45797806A US2006252211A1 US 20060252211 A1 US20060252211 A1 US 20060252211A1 US 45797806 A US45797806 A US 45797806A US 2006252211 A1 US2006252211 A1 US 2006252211A1
Authority
US
United States
Prior art keywords
layer
forming
hafnium oxide
nanolaminate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/457,978
Inventor
Kie Ahn
Leonard Forbes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US11/457,978 priority Critical patent/US20060252211A1/en
Publication of US20060252211A1 publication Critical patent/US20060252211A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • H01L21/3142Deposition using atomic layer deposition techniques [ALD] of nano-laminates, e.g. alternating layers of Al203-Hf02
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31641Deposition of Zirconium oxides, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31683Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of metallic layers, e.g. Al deposited on the body, e.g. formation of multi-layer insulating structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/891Vapor phase deposition

Definitions

  • the invention relates to semiconductor devices and device fabrication. Specifically, the invention relates to gate dielectric layers of transistor devices and their method of fabrication.
  • the semiconductor device industry has a market driven need to improve speed performance, improve its low static (off-state) power requirements, and adapt to a wide range of power supply and output voltage requirements for it silicon based microelectronic products.
  • transistors there is continuous pressure to reduce the size of devices such as transistors.
  • the ultimate goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, or memory devices such as DRAMs.
  • ICs integrated circuits
  • the smaller devices are frequently powered by batteries, where there is also pressure to reduce the size of the batteries, and to extend the time between battery charges. This forces the industry to not only design smaller transistors, but to design them to operate reliably with lower power supplies.
  • FIG. 1 A common configuration of such a transistor is shown in FIG. 1 . While the following discussion uses FIG. 1 to illustrate a transistor from the prior art, one skilled in the art will recognize that the present invention could be incorporated into the transistor shown in FIG. 1 to form a novel transistor according to the invention.
  • the transistor 100 is fabricated in a substrate 110 that is typically silicon, but could be fabricated from other semiconductor materials as well.
  • the transistor 100 has a first source/drain region 120 and a second source/drain region 130 .
  • a body region 132 is located between the first source/drain region and the second source/drain region, where the body region 132 defines a channel of the transistor with a channel length 134 .
  • a gate dielectric, or gate oxide 140 is located on the body region 132 with a gate 150 located over the gate dielectric.
  • the gate dielectric can be formed from materials other than oxides, the gate dielectric is typically an oxide, and is commonly referred to as a gate oxide.
  • the gate may be fabricated from polycrystalline silicon (polysilicon), or other conducting materials such as metal may be used.
  • the gate dielectric 140 In fabricating transistors to be smaller in size and reliably operate on lower power supplies, one important design criteria is the gate dielectric 140 .
  • the mainstay for forming the gate dielectric has been silicon dioxide, SiO 2 .
  • a thermally grown amorphous SiO 2 layer provides an electrically and thermodynamically stable material, where the interface of the SiO 2 layer with underlying Si provides a high quality interface as well as superior electrical isolation properties.
  • use of SiO 2 on Si has provided defect charge densities on the order of 10 10 /cm 2 , midgap interface state densities of approximately 10 10 /cm 2 eV, and breakdown voltages in the range of 15 MV/cm. With such qualities, there would be no apparent need to use a material other than SiO 2 , but increased scaling and other requirements for gate dielectrics create the need to find other dielectric materials to be used for a gate dielectric.
  • FIG. 1 shows a common configuration of a transistor in which an embodiment of a gate dielectric can be formed, according to the teaching of the present invention.
  • FIG. 2A shows an embodiment of an atomic layer deposition system for processing a layer of HfO 2 and a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing a layer of HfO 2 and a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 by atomic layer deposition, according to the teachings of the present invention.
  • FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention.
  • FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO 2 to process a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 7A shows an embodiment of a zirconium layer deposited on a layer of HfO 2 , according to the teachings of the present invention.
  • FIG. 7B shows an embodiment of a partially oxidized zirconium layer deposited on a layer of HfO 2 , according to the teachings of the present invention.
  • FIG. 7C shows an embodiment of a ZrO 2 substantially completely oxidized and formed on a layer of HfO 2 to form a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and chemical vapor deposition, according to the teachings of the present invention.
  • FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention.
  • FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention.
  • FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention.
  • FIG. 12 shows an embodiment of a personal computer incorporating devices, according to the teachings of the present invention.
  • FIG. 13 illustrates a schematic view of an embodiment of a central processing unit incorporating devices, according to the teachings of the present invention.
  • FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device, according to the teachings of the present invention.
  • wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention.
  • substrate is understood to include semiconductor wafers.
  • substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art.
  • conductor is understood to include semiconductors, and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.
  • horizontal as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate.
  • vertical refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate.
  • a gate dielectric 140 of FIG. 1 when operating in a transistor, has both a physical gate dielectric thickness and an equivalent oxide thickness (t eq ).
  • the equivalent oxide thickness quantifies the electrical properties, such as capacitance, of a gate dielectric 140 in terms of a representative physical thickness.
  • t eq is defined as the thickness of a theoretical SiO 2 layer that would be required to have the same capacitance density as a given dielectric, ignoring leakage current and reliability considerations.
  • a SiO 2 layer of thickness, t, deposited on a Si surface as a gate dielectric will have a t eq larger than its thickness, t.
  • This t eq results from the capacitance in the surface channel on which the SiO 2 is deposited due to the formation of a depletion/inversion region.
  • This depletion/inversion region can result in t eq being from 3 to 6 Angstroms ( ⁇ ) larger than the SiO 2 thickness, t.
  • the gate dielectric equivalent oxide thickness to under 10 ⁇
  • the physical thickness requirement for a SiO 2 layer used for a gate dielectric would be need to be approximately 4 to 7 ⁇ .
  • SiO 2 layer Additional requirements on a SiO 2 layer would depend on the gate electrode used in conjunction with the SiO 2 gate dielectric. Using a conventional polysilicon gate would result in an additional increase in t eq for the SiO 2 layer. This additional thickness could be eliminated by using a metal gate electrode, though metal gates are not currently used in complementary metal-oxide-semiconductor field effect transistor (CMOS) technology. Thus, future devices would be designed towards a physical SiO 2 gate dielectric layer of about 5 ⁇ or less. Such a small thickness requirement for a SiO 2 oxide layer creates additional problems.
  • CMOS complementary metal-oxide-semiconductor field effect transistor
  • Silicon dioxide is used as a gate dielectric, in part, due to its electrical isolation properties in a SiO 2 -Si based structure. This electrical isolation is due to the relatively large band gap of SiO 2 (8.9 eV) making it a good insulator from electrical conduction. Signification reductions in its band gap would eliminate it as a material for a gate dielectric. As the thickness of a SiO 2 layer decreases, the number of atomic layers, or monolayers of the material in the thickness decreases. At a certain thickness, the number of monolayers will be sufficiently small that the SiO 2 layer will not have a complete arrangement of atoms as in a larger or bulk layer.
  • a thin SiO 2 layer of only one or two monolayers will not form a full band gap.
  • the lack of a full band gap in a SiO 2 gate dielectric would cause an effective short between an underlying Si channel and an overlying polysilicon gate.
  • This undesirable property sets a limit on the physical thickness to which a SiO 2 layer can be scaled.
  • the minimum thickness due to this monolayer effect is thought to be about 7-8 ⁇ . Therefore, for future devices to have a t eq less than about 10 ⁇ , other dielectrics than SiO 2 need to be considered for use as a gate dielectric.
  • materials with a dielectric constant greater than that of SiO 2 , 3.9 will have a physical thickness that can be considerably larger than a desired t eq , while providing the desired equivalent oxide thickness.
  • an alternate dielectric material with a dielectric constant of 10 could have a thickness of about 25.6 ⁇ to provide a t eq of 10 ⁇ , not including any depletion/inversion layer effects.
  • the reduced equivalent oxide thickness of transistors can be realized by using dielectric materials with higher dielectric constants than SiO 2 .
  • the thinner equivalent oxide thickness required for lower transistor operating voltages and smaller transistor dimensions may be realized by a significant number of materials, but additional fabricating requirements makes determining a suitable replacement for SiO 2 difficult.
  • the current view for the microelectronics industry is still for Si based devices. This requires that the gate dielectric employed be grown on a silicon substrate or silicon layer, which places significant restraints on the substitute dielectric material. During the formation of the dielectric on the silicon layer, there exists the possibility that a small layer of SiO 2 could be formed in addition to the desired dielectric. The result would effectively be a dielectric layer consisting of two sublayers in parallel with each other and the silicon layer on which the dielectric is formed. In such a case, the resulting capacitance would be that of two dielectrics in series.
  • the t eq is again limited by a SiO 2 layer.
  • the t eq would be limited by the layer with the lowest dielectric constant.
  • the layer interfacing with the silicon layer must provide a high quality interface to maintain a high channel carrier mobility.
  • SiO 2 as a gate dielectric
  • Having an amorphous structure for a gate dielectric is advantageous because grain boundaries in polycrystalline gate dielectrics provide high leakage paths. Additionally, grain size and orientation changes throughout a polycrystalline gate dielectric can cause variations in the film's dielectric constant.
  • the abovementioned material properties including crystal structure are for the materials in a bulk form.
  • the materials having the advantage of a high dielectric constants relative to SiO 2 also have the disadvantage of a crystalline form, at least in a bulk configuration.
  • the best candidates for replacing SiO 2 as a gate dielectric are those with high dielectric constant, which can be fabricated as a thin layer with an amorphous form.
  • a method of forming a gate dielectric on a transistor body region includes the formation of HfO 2 /ZrO 2 nanolaminates by atomic layer deposition (ALD) of HfO 2 using a HfI 4 precursor followed by the formation of ZrO 2 on the HfO 2 layer.
  • ALD atomic layer deposition
  • Various embodiments include forming the ZrO 2 layer by thermal evaporation followed by krypton/oxygen mixed plasma oxidation, pulsed-laser deposition, or jet-vapor deposition.
  • a gate dielectric formed as nanolaminates of HfO 2 /ZrO 2 has a larger dielectric constant than silicon dioxide, a relatively small leakage current, and good stability with respect to a silicon based substrate.
  • Embodiments according to the teachings of the present invention include forming transistors, memory devices, and electronic systems having dielectric layers containing nanolaminates of HfO 2 /ZrO 2.
  • gate dielectrics containing nanolaminates of HfO 2 /ZrO 2 .
  • Such gate dielectrics provide a significantly thinner equivalent oxide thickness compared with a silicon oxide gate having the same physical thickness.
  • such gate dielectrics provide a significantly thicker physical thickness than a silicon oxide gate dielectric having the same equivalent oxide thickness.
  • a gate dielectric includes thin layers of HfO 2 and ZrO 2 forming a nanolaminate.
  • nanolaminate means a composite film of ultra thin layers of two or more materials in a layered stack, where the layers are alternating layers of materials of the composite film.
  • nanolaminates typically have thicknesses of an order of magnitude in the nanometer range.
  • Each individual material layer of the nanolaminate can have thicknesses as low as a monolayer of the material.
  • a nanolaminate of HfO 2 and ZrO 2 includes at least one thin layer of HfO 2 , and one thin layer of ZrO 2 , and is typically written as a nanolaminate of HfO 2 /ZrO 2 .
  • nanolaminates of HfO 2 /ZrO 2 are grown using atomic layer deposition (ALD), also known as atomic layer epitaxy (ALE).
  • ALD atomic layer deposition
  • ALE atomic layer epitaxy
  • ALD was developed in the early 1970's as a modification of chemical vapor deposition (CVD) and is also called “alternatively pulsed-CVD.”
  • CVD chemical vapor deposition
  • gaseous precursors are introduced one at a time to the substrate surface mounted within a reaction chamber (or reactor). This introduction of the gaseous precursors takes the form of pulses of each gaseous precursor. Between the pulses, the reaction chamber is purged with a gas, which in many cases is an inert gas, or evacuated.
  • CS-ALD chemisorption-saturated ALD
  • the second pulsing phase introduces another precursor on the substrate where the growth reaction of the desired film takes place. Subsequent to the film growth reaction, reaction byproducts and precursor excess are purged from the reaction chamber.
  • precursor pulse times range from about 0.5 sec to about 2 to 3 seconds.
  • ALD In ALD, the saturation of all the reaction and purging phases makes the growth self-limiting. This self-limiting growth results in large area uniformity and conformality, which has important applications for such cases as planar substrates, deep trenches, and in the processing of porous silicon and high surface area silica and alumina powders.
  • ALD provides for controlling film thickness in a straightforward, simple manner by controlling the number of growth cycles.
  • ALD was originally developed to manufacture luminescent and dielectric films needed in electroluminescent displays. Significant efforts have been made to apply ALD to the growth of doped zinc sulfide and alkaline earth metal sulfide films. Additionally, ALD has been studied for the growth of different epitaxial II-V and II-VI films, nonepitaxial crystalline or amorphous oxide and nitride films and multilayer structures of these. There also has been considerable interest towards the ALD growth of silicon and germanium films, but due to the difficult precursor chemistry, this has not been very successful.
  • the precursors used in an ALD process may be gaseous, liquid or solid. However, liquid or solid precursors must be volatile. The vapor pressure must be high enough for effective mass transportation. Also, solid and some liquid precursors need to be heated inside the reaction chamber and introduced through heated tubes to the substrates. The necessary vapor pressure must be reached at a temperature below the substrate temperature to avoid the condensation of the precursors on the substrate. Due to the self-limiting growth mechanisms of ALD, relatively low vapor pressure solid precursors can be used though evaporation rates may somewhat vary during the process because of changes in their surface area.
  • precursors used in ALD there are several other requirements for precursors used in ALD.
  • the precursors must be thermally stable at the substrate temperature because their decomposition would destroy the surface control and accordingly the advantages of the ALD method which relies on the reactant of the precursor at the substrate surface. Of course, a slight decomposition, if slow compared to the ALD growth, can be tolerated.
  • the precursors have to chemisorb on or react with the surface, though the interaction between the precursor and the surface as well as the mechanism for the adsorption is different for different precursors.
  • the molecules at the substrate surface must react aggressively with the second precursor to form the desired solid film. Additionally, precursors should not react with the film to cause etching, and precursors should not dissolve in the film. Using highly reactive precursors in ALD contrasts with the selection of precursors for conventional CVD.
  • the by-products in the reaction must be gaseous in order to allow their easy removal from the reaction chamber. Further, the by-products should not react or adsorb on the surface.
  • RS-ALD reaction sequence ALD
  • the self-limiting process sequence involves sequential surface chemical reactions.
  • RS-ALD relies on chemistry between a reactive surface and a reactive molecular precursor.
  • molecular precursors are pulsed into the ALD reaction chamber separately.
  • the metal precursor reaction at the substrate is typically followed by an inert gas pulse to remove excess precursor and by-products from the reaction chamber prior to pulsing the next precursor of the fabrication sequence.
  • RS-ALD films can be layered in equal metered sequences that are all identical in chemical kinetics, deposition per cycle, composition, and thickness.
  • RS-ALD sequences generally deposit less than a full layer per cycle.
  • a deposition or growth rate of about 0.25 to about 2.00 ⁇ per RS-ALD cycle can be realized.
  • RS-ALD The advantages of RS-ALD include continuity at an interface, conformality over a substrate, use of low temperature and mildly oxidizing processes, growth thickness dependent solely on the number of cycles performed, and ability to engineer multilayer laminate films with resolution of one to two monolayers.
  • RS-ALD allows for deposition control on the order on monolayers and the ability to deposit monolayers of amorphous films.
  • RS-ALD processes provide for the formation of nanolaminates. These nanolaminates can be engineered in various forms. In one form, the transition between material layers of the nanolaminate can be made abrupt. In another form, the transition between material layers of the nanolaminate can be constructed with a graded composition. The graded composition can be formed by RS-ALD due its control of the deposition thickness per cycle.
  • a layer of HfO 2 is formed on a substrate mounted in a reaction chamber using ALD in a repetitive sequence including pulsing a hafnium containing precursor into the reaction chamber followed by pulsing a purging gas, and then pulsing a first oxygen containing precursor into the chamber.
  • ALD a layer of HfO 2 is formed using HfI 4 as a hafnium containing precursor, water vapor as a first oxygen containing precursor, and nitrogen as a purging gas and carrier gas.
  • a ZrO 2 layer is formed on the HfO 2 layer.
  • the layer of ZrO 2 is formed by ALD.
  • a repetitive sequence includes using ZrI 4 as a zirconium containing precursor along with a vapor solution of HO 2 -H 2 O 2 as a second oxygen containing precursor, and nitrogen as a purging gas and carrier gas.
  • the ZrO 2 layer is formed by depositing a layer of zirconium on the HfO 2 layer by thermal evaporation, and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O 2 ) mixed plasma to form a HfO 2 /ZrO 2 composite layer.
  • the ZrO 2 layer is formed by pulsed-laser deposition.
  • the ZrO 2 layer is formed by jet-vapor deposition.
  • precursor gases in particular HfI 4
  • HfI 4 are used to form the HfO 2 layer for the HfO 2 /ZrO 2 nanolaminate films used as a gate dielectric on a transistor body.
  • solid or liquid precursors can be used in an appropriately designed reaction chamber.
  • ALD formation of other materials is disclosed in co-pending, commonly assigned U.S. patent application: entitled “Atomic Layer Deposition and Conversion,” attorney docket no. 303.802US1, Ser. No. 10/137,058, and “Methods, Systems, and Apparatus for Atomic-Layer Deposition of Aluminum Oxides in Integrated Circuits,” attorney docket no. 1303.048US1, Ser. No. 10/137,168.
  • FIG. 2A shows an embodiment of an atomic layer deposition system for processing layers of HfO 2 and nanolaminates of HfO 2 /ZrO 2 according to the teachings of the present invention.
  • the elements depicted are those elements necessary for discussion of the present invention such that those skilled in the art may practice the present invention without undue experimentation.
  • a further discussion of the ALD reaction chamber can be found in co-pending, commonly assigned U.S. patent application: entitled “Methods, Systems, and Apparatus for Uniform Chemical-Vapor Depositions,” attorney docket no. 303.717US1, Ser. No. 09/797,324, incorporated herein by reference.
  • a substrate 210 is located inside a reaction chamber 220 of ALD system 200 . Also located within the reaction chamber 220 is a heating element 230 which is thermally coupled to substrate 210 to control the substrate temperature.
  • a gas-distribution fixture 240 introduces precursor gases to the substrate 210 . Each precursor gas originates from individual gas sources 251 - 254 whose flow is controlled by mass-flow controllers 256 - 259 , respectively.
  • the gas sources 251 - 254 provide a precursor gas either by storing the precursor as a gas or by providing a location and apparatus for evaporating a solid or liquid material to form the selected precursor gas.
  • purging gas sources 261 , 262 are also included in the ALD system, each of which is coupled to mass-flow controllers 266 , 267 , respectively.
  • the gas sources 251 - 254 and the purging gas sources 261 - 262 are coupled by their associated mass-flow controllers to a common gas line or conduit 270 which is coupled to the gas-distribution fixture 240 inside the reaction chamber 220 .
  • Gas conduit 270 is also coupled to vacuum pump, or exhaust pump, 281 by mass-flow controller 286 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the gas conduit.
  • Vacuum pump, or exhaust pump, 282 is coupled by mass-flow controller 287 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the reaction chamber 220 .
  • mass-flow controller 287 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the reaction chamber 220 .
  • control displays, mounting apparatus, temperature sensing devices, substrate maneuvering apparatus, and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 2A .
  • FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing layers of HfO 2 and nanolaminates of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • Gas-distribution fixture 240 includes a gas-distribution member 242 , and a gas inlet 244 .
  • Gas inlet 244 couples the gas-distribution member 242 to the gas conduit 270 of FIG. 2A .
  • Gas-distribution member 242 includes gas-distribution holes, or orifices, 246 and gas-distribution channels 248 .
  • holes 246 are substantially circular with a common diameter in the range of 15-20 microns
  • gas-distribution channels 248 have a common width in the range of 20-45 microns.
  • the surface 249 of the gas distribution member having gas-distribution holes 246 is substantially planar and parallel to the substrate 210 of FIG. 2A .
  • other embodiments use other surface forms as well as shapes and sizes of holes and channels.
  • the distribution and size of holes may also affect deposition thickness and thus might be used to assist thickness control.
  • Holes 246 are coupled through gas-distribution channels 248 to gas inlet 244 . Though the ALD system 200 is well suited for practicing the present invention, other ALD systems commercially available can be used.
  • reaction chambers for deposition of films are understood by those of ordinary skill in the art of semiconductor fabrication.
  • the present invention man be practiced on a variety of such reaction chambers without undue experimentation.
  • one of ordinary skill in the art will comprehend the necessary detection, measurement, and control techniques in the art of semiconductor fabrication upon reading the disclosure.
  • FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • This embodiment of a method for forming a HfO 2 /ZrO 2 nanolaminate includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, at block 305 , and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO 2 /ZrO 2 composite, at block 310 .
  • the HfO 2 /ZrO 2 composite formed is a HfO 2 /ZrO 2 nanolaminate.
  • the HfO 2 /ZrO 2 nanolaminate is composed of one HfO 2 layer and one layer ZrO 2 layer.
  • the HfO 2 /ZrO 2 nanolaminate includes multiple layers of the HfO 2 /ZrO 2 composite, where the initial layer disposed on a substrate is a HfO 2 layer. After this initial HfO 2 layer, there are alternating layers of HfO 2 and ZrO 2 , with the terminating layer being a ZrO 2 layer in one embodiment and HfO 2 layer in another embodiment.
  • Forming the HfO 2 layer on a substrate by atomic layer deposition involves using a deposition sequence including pulsing the HfI 4 precursor into the reaction chamber, followed by pulsing a purging gas, pulsing a first oxygen containing precursor, and pulsing the purging gas.
  • the first oxygen precursor is water vapor.
  • Each precursor is pulsed for a short time ranging from 0.5 seconds to two or three seconds.
  • a purging gas such as nitrogen is pulsed for a longer period such as five to fifteen seconds to insure that all excess precursor gases and by-products are removed from the reaction chamber. Pulsing times are selected to enable the controlled growth of the HfO 2 layer on a one to two monolayer basis.
  • the HfO 2 layer growth rate is at a relatively fixed rate, where a desired thickness of the HfO 2 layer is obtained by performing the ALD sequence for a predetermined number of cycles.
  • FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 by atomic layer deposition, according to the teachings of the present invention.
  • a method for forming a dielectric film includes forming a layer of HfO 2 on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, and forming a layer of ZrO 2 on the HfO 2 layer by atomic layer deposition to form a HfO 2 /ZrO 2 composite.
  • Using the ALD process provides for the formation of the HfO 2 /ZrO 2 composite as a nanolaminate.
  • An embodiment of this method can be implemented with the atomic layer deposition system of FIGS. 2 A,B.
  • a substrate is prepared.
  • the substrate used for forming a transistor is typically a silicon or silicon containing material.
  • germanium, gallium arsenide, silicon-on-sapphire substrates, or other suitable substrates may be used.
  • This preparation process includes cleaning of the substrate 210 and forming layers and regions of the substrate, such as drains and sources of a metal oxide semiconductor (MOS) transistor, prior to forming a gate dielectric.
  • MOS metal oxide semiconductor
  • the sequencing of the formation of the regions of the transistor being processed follows typical sequencing that is generally performed in the fabrication of a MOS transistor as is well known to those skilled in the art.
  • the processing prior to forming a gate dielectric is the masking of substrate regions to be protected during the gate dielectric formation, as is typically performed in MOS fabrication.
  • the unmasked region includes a body region of a transistor, however one skilled in the art will recognize that other semiconductor device structures may utilize this process.
  • the substrate 210 in its ready for processing form is conveyed into a position in reaction chamber 220 for ALD processing.
  • a precursor containing hafnium is pulsed into reaction chamber 220 .
  • HfI 4 is used as a source material.
  • the HfI 4 is pulsed into reaction chamber 220 through the gas-distribution fixture 240 onto substrate 210 .
  • the flow of the HfI 4 is controlled by mass-flow controller 256 from gas source 251 .
  • the substrate temperature is maintained between about 225° C. and about 500° C. In another embodiment, the substrate temperature is maintained between about 250° C. and about 325° C.
  • the lower temperature allows for forming a dielectric film suited for use as a gate dielectric, since an amorphous layer tends to more readily form at lower processing temperatures.
  • the HfI 4 reacts with the surface of the substrate 210 in the desired region defined by the unmasked areas of the substrate 210 .
  • a first purging gas is pulsed into the reaction chamber 220 .
  • pure nitrogen with a purity greater than 99.99% is used as a purging gas for HfI 4 .
  • the nitrogen flow is controlled by mass-flow controller 266 from the purging gas source 261 into the gas conduit 270 .
  • a nitrogen gas can also be used as a carrier gas for the precursors.
  • a first oxygen containing precursor is pulsed into the reaction chamber 220 , at block 420 .
  • water vapor is selected as the precursor acting as an oxidizing reactant to form a HfO 2 on the substrate 210 .
  • a vapor solution of H 2 O-H 2 O 2 can be used as the oxygen containing precursor.
  • the water vapor is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 252 by mass-flow controller 257 .
  • the water vapor aggressively reacts at the surface of substrate 210 .
  • the first purging gas is injected into the reaction chamber 220 , at block 425 .
  • pure nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287 , and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286 .
  • the substrate is held between about 250° C. and about 325° C. by the heating element 230 . In other embodiments the substrate is held between about 225° C. and 500° C.
  • the HfI 4 pulse time ranges from about 1.0 sec to about 2.0 sec.
  • the hafnium sequence continues with a purge pulse followed by a water vapor pulse followed by a purge pulse. In one embodiment, performing a purge pulse followed by a water vapor pulse followed by a purge pulse takes about 2 seconds.
  • each pulse in the hafnium sequence has a 2 second pulse period.
  • the pulse periods for the precursors are 2 seconds, while the purge gas pulse period ranges from five second to twenty seconds.
  • the thickness of a HfO 2 film after one cycle is determined by a fixed growth rate for the pulsing periods and precursors used in the hafnium sequence, set at a value such as N nm/cycle.
  • t in an application such as forming a gate dielectric of a MOS transistor, the ALD process should be repeated for t/N cycles. The desired thickness should be attained after t/N cycles.
  • the process starts over at block 410 with the pulsing of the precursor containing hafnium, which in the embodiment discussed above is a HfI 4 gas. If t/N cycles have completed, no further ALD processing of HfO 2 is required and the HfO 2 layer is ready to be formed as a composite with a ZrO 2 layer.
  • a precursor containing zirconium is pulsed into the reaction chamber 220 .
  • ZrI 4 is used as the zirconium containing precursor.
  • ZrCl 4 is used as the zirconium containing precursor.
  • the ZrI 4 is evaporated from a containment area held at about 250° C. in gas source 253 . It is pulsed to the surface of the substrate 210 through gas-distribution fixture 240 from gas source 253 by mass-flow controller 258 .
  • the ZrI 4 is introduced onto the HfO 2 layer that was formed during the HfI 4 /water vapor sequence.
  • a second purging gas is introduced into the system.
  • nitrogen gas is used as a purging and carrier gas.
  • the nitrogen flow is controlled by mass-flow controller 267 from the purging gas source 262 into the gas conduit 270 and subsequently into the reaction chamber 220 .
  • a second oxygen containing precursor is pulsed into the reaction chamber 220 .
  • a vapor solution of H 2 O-H 2 O 2 is selected as the precursor acting as an oxidizing reactant to interact with the zirconium deposited on the HfO 2 layer on the substrate 210 .
  • the H 2 O-H 2 O 2 vapor solution is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 254 , held at about room temperature, by mass-flow controller 259 .
  • the H 2 O-H 2 O 2 vapor solution aggressively reacts at the surface of substrate 210 to form a ZrO 2 layer.
  • the nitrogen purging gas is injected into the reaction chamber 200 , at block 450 .
  • nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas.
  • argon gas is used as the purging gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287 , and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286 .
  • the substrate is held between about 250° C. and about 325° C. by the heating element 230 . In other embodiments, the substrate is held between about 275° C. and about 500° C. In one embodiment, the process pressure is maintained at about 250 Pa during the zirconium sequence. Pulse times for the ZrI 4 and the H 2 O-H 2 O 2 vapor solution were about 2 sec for both precursors, with purging pulse times of about 2 secs.
  • the nanolaminate can be annealed.
  • the annealing can be performed at a temperature between about 300° C. and about 800° C. in an inert or nitrogen atmosphere.
  • processing the device containing the HfO 2 /ZrO 2 nanolaminate is completed.
  • completing the device includes completing the formation of a transistor.
  • completing the process includes completing the construction of a memory device having a array with access transistors formed with gate dielectrics containing HfO 2 /ZrO 2 nanolaminates.
  • completing the process includes the formation of an electronic system including an information handling device that uses electronic devices with transistors formed with gate dielectrics containing HfO 2 /ZrO 2 nanolaminates.
  • information handling devices such as computers include many memory devices, having many access transistors.
  • a HfO 2 /ZrO 2 nanolaminate includes one HfO 2 layer and one HfO 2 /ZrO 2 layer.
  • the completed HfO 2 /ZrO 2 nanolaminate has a thickness in which the thickness of the HfO 2 layer is about one-half the thickness of the completed HfO 2 /ZrO 2 nanolaminate.
  • a completed HfO 2 /ZrO 2 nanolaminate includes multiple alternating layers of HfO 2 and ZrO 2 , which requires that at block 455 , once a given ZrO 2 layer has been formed with a desired thickness, a hafnium sequence is then started at block 410 .
  • HfO 2 /ZrO 2 nanolaminate formation begins with forming a HfO 2 layer, but may end with forming ZrO 2 layer or a HfO 2 layer.
  • ALD provides for the engineering of a HfO 2 /ZrO 2 nanolaminate.
  • nanolaminates can be formed with n number of HfO 2 /ZrO 2 composite layers where the HfO 2 layer is formed with x number of hafnium cycles and y number of zirconium cycles.
  • nanolaminates can be formed with n number of HfO 2 /ZrO 2 composite layers where the first composite layer has a HfO 2 layer formed with x 1 number of hafnium cycles and y 1 number of zirconium cycles, a second composite layer has a HfO 2 layer formed with x 2 number of hafnium cycles and y 2 number of zirconium cycles, extended to the n th composite layer having a HfO 2 layer formed with x n number of hafnium cycles and y n number of zirconium cycles.
  • Such tailoring of the HfO 2 /ZrO 2 nanolaminate provides for forming dielectric films with a designed physical thickness, t, and equivalent oxide thickness, t eq .
  • pulsing each precursor into the reaction chamber is controlled for a predetermined period, the predetermined period being individually controlled for each precursor pulsed into the reaction chamber. Additionally, the substrate is maintained at a selected temperature for forming each layer, where the selected temperature set independently for forming each layer.
  • each material layer can be grown at about 0.75-0.80 ⁇ /cycle.
  • FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention.
  • a nanolaminate of HfO 2 /ZrO 2 is formed by a method that includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, at block 505 , forming a layer of zirconium on the layer of hafnium oxide by thermal evaporation, at block 510 , and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O 2 ) mixed plasma to form a HfO 2 /ZrO 2 composite, at block 515 .
  • the HfO 2 /ZrO 2 composite is a nanolaminate, whose thickness can be controlled by precisely controlling the ALD formation of HfO 2 , and thermal deposition of zirconium.
  • the thermal evaporation of zirconium is performed using electron beam evaporation.
  • FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO 2 to process a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • a substrate 610 is located inside a deposition chamber 660 .
  • the substrate in this embodiment is masked by a first masking structure 670 and a second masking structure 671 .
  • the unmasked region 633 includes a body region of a transistor on which a layer of HfO 2 is formed.
  • other semiconductor device structures may utilize this process.
  • the electron gun 663 provides an electron beam 664 directed at target 661 containing a source material for forming ZrO 2 on the unmasked region HfO 2 layer 633 of the substrate 610 .
  • the electron gun 663 includes a rate monitor for controlling the rate of evaporation of the material in the target 661 at which the electron beam 664 is directed. For convenience, control displays and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 6 .
  • the electron gun 663 During the evaporation process, the electron gun 663 generates an electron beam 664 that hits target 661 .
  • target 661 contains a zirconium metal source, which is evaporated due to the impact of the electron beam 664 .
  • the evaporated material 668 is then distributed throughout the chamber 660 .
  • a layer of zirconium is grown forming a film 640 on the surface of the HfO 2 layer 633 on substrate 610 , which is maintained at a temperature between 150° C. and 200° C. The growth rate can vary with a typical rate of 0.1 ⁇ /s. After depositing a zirconium layer on the HfO 2 layer 633 , the zirconium layer is oxidized.
  • the evaporation chamber 660 can be included as part of an overall processing system including ALD system 200 of FIG. 2 . To avoid contamination of the surface of the HfO 2 layer 633 , evaporation chamber 660 can be connected to ALD system 200 using sealable connections to maintain the substrate, which is substrate 210 in FIG. 2 and substrate 610 of FIG. 6 , in an appropriate environment between ALD processing of the HfO 2 layer and Zr evaporation. Other means as are known to those skilled in the art can be employed for maintaining an appropriate environment between different processing procedures.
  • FIGS. 7A-7C show a low temperature oxidation process that is used in one embodiment to form a layer of ZrO 2 on a layer of HfO 2 .
  • FIG. 7A shows an embodiment of a zirconium layer 720 deposited on a HfO 2 layer 710 , according to the teachings of the present invention.
  • the HfO 2 layer 710 is formed on substrate 700 using an ALD process, as previously discussed, having an substrate interface 730 .
  • the Zr layer 720 is deposited on the HfO 2 layer 710 by electron beam evaporation, as discussed above, forming an interface 740 with the HfO 2 layer 710 and having an outer surface 750 .
  • the combined film with the Zr layer 720 deposited on the HfO 2 layer 710 has a total thickness 752 .
  • the layers 710 , 720 are deposited over a body region of a transistor, however the layers may be deposited on any surface within the scope of the invention.
  • FIG. 7B shows an embodiment of a partially oxidized zirconium layer 770 deposited on a HfO 2 layer 710 , according to the teachings of the present invention.
  • the layer 720 is in the process of being oxidized.
  • the oxidation process includes a krypton/oxygen mixed plasma oxidation process.
  • the mixed plasma process generates atomic oxygen or oxygen radicals in contrast to molecular oxygen or O 2 used in conventional thermal oxidation.
  • the atomic oxygen is introduced to the layer from all exposed directions as indicated by arrows 760 , creating an oxide portion 770 .
  • the atomic oxygen continues to react with the layer and creates an oxidation interface 742 . As the reaction progresses, atomic oxygen diffuses through the oxide portion 770 and reacts at the oxidation interface 742 until the layer is completely converted to an oxide of the deposited material layer.
  • FIG. 7C shows an embodiment of a ZrO 2 substantially completely oxidized and formed on a layer of HfO 2 to form a nanolaminate of HfO 2 /ZrO 2 , according to the teachings of the present invention.
  • FIG. 7C shows the resulting oxide layer 770 which spans a physical thickness 772 from the outer surface 750 to the interface 740 .
  • the overall thickness 752 of the HfO 2 /ZrO 2 composite in FIG. 7C has increased from that of the Zr layer deposited on the HfO 2 layer in FIG. 7A , due to the oxidation of the zirconium.
  • the processing variables for the mixed plasma oxidation include a low ion bombardment energy of less than 7 eV, a high plasma density above 10 12 /cm 3 and a low electron temperature below 1.3 eV.
  • the substrate temperature is approximately 400° C.
  • a mixed gas of 3% oxygen with the balance being krypton at a pressure of 1 Torr is used.
  • a microwave power density of 5 W/cm 2 is used. The oxidation process provides a growth rate of 1.5 nm/min.
  • the low temperature mixed plasma oxidation process described above allows the deposited layer to be oxidized at a low temperature.
  • the mixed plasma process in one embodiment is performed at approximately 400° C. in contrast to prior thermal oxidation processes that are performed at approximately 1000° C.
  • FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and chemical vapor deposition (CVD), according to the teachings of the present invention.
  • This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, at block 805 , and forming a layer of zirconium oxide on the layer of hafnium oxide by chemical vapor deposition to form a HfO 2 /ZrO 2 composite, at block 810 .
  • the HfO 2 layer is formed by ALD as discussed in the embodiments above.
  • the ZrO 2 layer is formed by rapid thermal CVD at about 500° C. Subsequently, a nitrogen anneal is performed between about 700° C. and about 800° C. for about 30 sec. A rapid thermal CVD system, as is known to those skilled in the art, is used to form the ZrO 2 layer.
  • FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention.
  • This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, at block 905 , and forming a layer of zirconium oxide on the layer of hafnium oxide by pulsed-laser deposition to form a HfO 2 /ZrO 2 composite, at block 910 .
  • the HfO 2 layer is formed by ALD as discussed in the embodiments above.
  • a pulsed-laser deposition system is similar to the electron beam evaporation system 660 of FIG. 6 with the electron gun 663 replaced by a laser and focusing optics, though the laser and focusing optics need not be located in the evaporation reaction chamber.
  • a beam from the laser is focused on a target, which causes an ablation of material from the target.
  • the material removed from the target deposits on an unmasked HfO 2 layer located on a substrate. Controlling the focusing of the beam from the laser on the source target provides for precision growth rate of the ZrO 2 layer.
  • a substrate temperature is maintained between about 200° C. to about 800° C. during pulsed-laser deposition.
  • a beam from a laser source such as a excimer laser is focused on a rotating zirconium target source in a deposition chamber with an O 2 pressure of about 0.2 Torr to form a ZrO 2 layer on a HfO 2 layer.
  • Other laser sources and configurations can be used as is known by those skilled in the art.
  • FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO 2 /ZrO 2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention.
  • This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI 4 precursor, at block 1005 , and forming a layer of zirconium oxide on the layer of hafnium oxide by jet-vapor deposition to form a HfO 2 /ZrO 2 composite, at block 1010 .
  • the HfO 2 layer is formed by ALD as discussed in the embodiments above.
  • the ZrO 2 layer can be formed using jet-vapor deposition techniques as is known to those skilled in the art.
  • the jet-vapor deposition zirconium and oxygen vapors are directed to the HfO 2 layer out of source nozzles by supersonic Ar jets.
  • Using jet-vapor deposition in a low pressure atmosphere allows for forming the ZrO 2 layer at at room temperature.
  • annealing is performed subsequent to forming the ZrO 2 layer at a about 800° C.
  • the annealing is performed using a nitrogen rapid thermal annealing (RTA). The annealing can be performed after each ZrO 2 layer is formed in the composite of alternating layers of the HfO 2 /ZrO 2 nanolaminate and/or at the completion of the HfO 2 /ZrO 2 nanolaminate.
  • RTA nitrogen rapid thermal annealing
  • the HfO 2 /ZrO 2 nanolaminates can be annealed in a temperature range from between 300° C. to 800° C. Typically the annealing is for a short time and in performed in a nitrogen atmosphere or in some other inert atmosphere.
  • ZrO 2 formed on silicon substrates may result in an interfacial region where silicon diffuses through a layer of ZrO 2 to form a poly-silicon/ ZrO 2 /silicon interfacial region, as reported by C. H. Lee et al., IEDM 2000, 27-30 (2000). Further, nanolaminates of ZrO 2 /HfO 2 were reported to have SiO 2 interfacial layer when formed by ALD using ZrCl 4 and HfCl 4 precursors. See H. Zhang et al., Journal of the Electrochemical Society, vol. 148, no. 4, pp. F63-F66 (2001). To eliminate the SiO 2 interfacial layer, Zhang et al.
  • HfO 2 /ZrO 2 nanolaminates are formed by ALD of HfO 2 on substrates using a HfI 4 precursor. Subsequently, a layer of ZrO 2 is formed on the HfO 2 layer by various deposition techniques. These HfO 2 /ZrO 2 nanolaminates form a stable interface with a silicon substrate. Using ALD, the size and effect of interfacial layer between the silicon substrate and the first HfO 2 layer will depend on the reactivity of the HfO 2 in forming an abrupt transition from silicon surface to HfO 2 layer.
  • dielectric films containing HfO 2 /ZrO 2 nanolaminates can have dielectric constants ranging from 9 or 10 to 25. Additionally, forming the HfO 2 layer at relatively low temperatures provides a means for enabling the formation of HfO 2 /ZrO 2 nanolaminates that are amorphous.
  • Another factor setting a lower limit for the scaling of a dielectric layer is the number of monolayers of the dielectric structure necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer on the dielectric layer or film. This requirement is necessary to avoid possible short circuit effects between the underlying silicon layer and the overlying conductive layer used.
  • an expected lower limit for the physical thickness of a dielectric layer grown by forming HfO 2 /ZrO 2 nanolaminates is anticipated to be in about the 2-4 nm range.
  • HfO 2 /ZrO 2 nanolaminates having physical thickness in the range of 4 to 10 nm.
  • HfO 2 used as the initial layer is expected to provide excellent overall results with respect to reliability, current leakage, and ultra-thin t eq .
  • ALD atomic layer deposition
  • HfO 2 /ZrO 2 nanolaminates can have a wide range of thicknesses and dielectric constants.
  • the physical thicknesses can range from about 2 nm to about 10 nm with typical thickness ranging from about 4 nm to about 10 nm.
  • Such layers have an effective dielectric constant ranging from 9 or 10 to 25.
  • the lower limit on the scaling of a layer containing HfO 2 /ZrO 2 nanolaminates depends on the monolayers of the film necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer to the HfO 2 /ZrO 2 nanolaminate film. From above, it is apparent that a film containing HfO 2 /ZrO 2 nanolaminates can be attained with a t eq ranging from 3 ⁇ to 12 ⁇ . Further, a dielectric film with completely formed band structures and monolayer formations can provide a t eq significantly less than 2 or 3 ⁇ .
  • novel process described above provides significant advantages by performing atomic layer deposition of HfO 2 /ZrO 2 in a hafnium sequence using HfI 4 precursors followed by the formation of a ZrO 2 layer on the HfO 2 layer. Further, by independently controlling the various parameters for each sequence a gate dielectric with a selected dielectric constant can be formed. Additionally, the novel process can be implemented to form transistors, memory devices, and information handling devices. With careful preparation and engineering of the HfO 2 /ZrO 2 nanolaminates limiting the size of interfacial regions, a t eq down to 2.5 ⁇ or lower is anticipated.
  • a transistor 100 as depicted in FIG. 1 can be formed by forming a source/drain region 120 and another source/drain region 130 in a silicon based substrate 110 where the two source/drain regions 120 , 130 are separated by a body region 132 .
  • the body region 132 separated by the source/drain 120 and the source/drain 130 defines a channel having a channel length 134 .
  • a dielectric film is formed on the substrate 110 by forming a layer of hafnium oxide on substrate 110 in a reaction chamber by atomic layer deposition using a HfI 4 precursor and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO 2 /ZrO 2 composite.
  • the resulting HfO 2 /ZrO 2 composite is a nanolaminate.
  • These HfO 2 /ZrO 2 nanolaminates can be formed using any of the various embodiments previously discussed.
  • These HfO 2 /ZrO 2 nanolaminates are contained in a dielectric film defining the gate dielectric 140 .
  • a gate is formed over the gate dielectric 140 .
  • forming the gate includes forming a polysilicon layer, though a metal gate can be formed in an alternative process.
  • Forming the substrate, source/region regions, and the gate is performed using standard processes known to those skilled in the art. Additionally, the sequencing of the various elements of the process for forming a transistor is conducted with standard fabrication processes, also as known to those skilled in the art.
  • FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention.
  • the transistor 1100 includes a silicon based substrate 1110 with two source/drain regions 1120 , 1130 separated by a body region 1132 .
  • the body region 1132 between the two source/drain regions 1120 , 1130 defines a channel region having a channel length 1134 .
  • a stack 1155 including a gate dielectric 1140 , a floating gate 1152 , a floating gate dielectric 1142 , and control gate 1150 .
  • the gate dielectric 1140 containing HfO 2 /ZrO 2 nanolaminates is formed according to the teachings of the present invention as described above with the remaining elements of the transistor 1100 formed using processes known to those skilled in the art. Alternately, both the gate dielectric 1140 and the floating gate dielectric 1142 can be formed containing HfO 2 /ZrO 2 nanolaminates, in accordance with the present invention as described above.
  • Transistors created by the methods described above may be implemented into memory devices and electronic systems including information handling devices.
  • Information handling devices having a dielectric layer containing HfO 2 /ZrO 2 nanolaminates can be constructed using various embodiments of the methods described above. Such information devices can include wireless systems, telecommunication systems, and computers.
  • An embodiment of a computer having a dielectric layer containing HfO 2 /ZrO 2 nanolaminates is shown in FIGS. 12-14 and described below. While specific types of memory devices and computing devices are shown below, it will be recognized by one skilled in the art that several types of memory devices and electronic systems including information handling devices utilize the invention.
  • FIG. 12 shows an embodiment of a personal computer 1200 incorporating devices, according to the teachings of the present invention.
  • Personal computer 1200 includes a monitor 1201 , keyboard input 1202 and a central processing unit 1204 .
  • FIG. 13 illustrates a schematic view of an embodiment of a central processing unit 1204 incorporating devices, according to the teachings of the present invention.
  • the central processing unit 1204 typically includes microprocessor 1306 , memory bus circuit 1308 having a plurality of memory slots 1312 ( a - n ), and other peripheral circuitry 1310 .
  • Peripheral circuitry 1310 permits various peripheral devices 1324 to interface processor-memory bus 1320 over input/output (I/O) bus 1322 .
  • the personal computer 1200 shown in FIGS. 12 and 13 also includes at least one transistor having a gate dielectric containing HfO 2 /ZrO 2 nanolaminates in an embodiment according to the teachings of the present invention.
  • Microprocessor 1306 produces control and address signals to control the exchange of data between memory bus circuit 1308 and microprocessor 1306 and between memory bus circuit 1308 and peripheral circuitry 1310 . This exchange of data is accomplished over high speed memory bus 1320 and over high speed I/O bus 1322 .
  • Coupled to memory bus 1320 are a plurality of memory slots 1312 ( a - n ) which receive memory devices well known to those skilled in the art.
  • memory slots 1312 a - n
  • SIMMs single in-line memory modules
  • DIMMs dual in-line memory modules
  • Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed. Page mode DRAMs require access steps which limit the communication speed of memory circuit 1308 .
  • EDO extended data output
  • DDR SDRAM DDR SDRAM
  • SLDRAM Direct RDRAM
  • FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device 1400 according to the teachings of the present invention.
  • DRAM device 1400 is compatible with memory slots 1312 ( a - n ).
  • the description of DRAM 1400 has been simplified for purposes of illustrating a DRAM memory device and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices may be used in the implementation of the present invention.
  • the example of a DRAM memory device shown in FIG. 14 includes at least one transistor having a gate dielectric containing HfO 2 /ZrO 2 nanolaminates in an embodiment according to the teachings of the present invention.
  • Control, address and data information provided over memory bus 1320 is further represented by individual inputs to DRAM 1400 , as shown in FIG. 14 . These individual representations are illustrated by data lines 1402 , address lines 1404 and various discrete lines directed to control logic 1406 .
  • DRAM 1400 includes memory array 1410 which in turn comprises rows and columns of addressable memory cells. Each memory cell in a row is coupled to a common word line. The word line is coupled to gates of individual transistors, where at least one transistor has a gate coupled to a gate dielectric containing HfO 2 /ZrO 2 nanolaminates in accordance with the method and structure previously described above. Additionally, each memory cell in a column is coupled to a common bit line. Each cell in memory array 1410 includes a storage capacitor and an access transistor as is conventional in the art.
  • DRAM 1400 interfaces with, for example, microprocessor 1306 through address lines 1404 and data lines 1402 .
  • DRAM 1400 may interface with a DRAM controller, a micro-controller, a chip set or other electronic system.
  • Microprocessor 1306 also provides a number of control signals to DRAM 1400 , including but not limited to, row and column address strobe signals RAS and CAS, write enable signal WE, an output enable signal OE and other conventional control signals.
  • Row address buffer 1412 and row decoder 1414 receive and decode row addresses from row address signals provided on address lines 1404 by microprocessor 1306 . Each unique row address corresponds to a row of cells in memory array 1410 .
  • Row decoder 1414 includes a word line driver, an address decoder tree, and circuitry which translates a given row address received from row address buffers 1412 and selectively activates the appropriate word line of memory array 1410 via the word line drivers.
  • Column address buffer 1416 and column decoder 1418 receive and decode column address signals provided on address lines 1404 .
  • Column decoder 1418 also determines when a column is defective and the address of a replacement column.
  • Column decoder 1418 is coupled to sense amplifiers 1420 .
  • Sense amplifiers 1420 are coupled to complementary pairs of bit lines of memory array 1410 .
  • Sense amplifiers 1420 are coupled to data-in buffers 1422 and data-out buffers 1424 .
  • Data-in buffers 1422 and data-out buffers 1424 are coupled to data lines 1402 .
  • data lines 1402 provide data to data-in buffers 1422 .
  • Sense amplifier 1420 receives data from data-in buffers 1422 and stores the data in memory array 1410 as a charge on a capacitor of a cell at an address specified on address lines 1404 .
  • DRAM 1400 transfers data to microprocessor 1306 from memory array 1410 .
  • Complementary bit lines for the accessed cell are equilibrated during a precharge operation to a reference voltage provided by an equilibration circuit and a reference voltage supply.
  • the charge stored in the accessed cell is then shared with the associated bit lines.
  • a sense amplifier of sense amplifiers 1420 detects and amplifies a difference in voltage between the complementary bit lines.
  • the sense amplifier passes the amplified voltage to data-out buffers 1424 .
  • Control logic 1406 is used to control the many available functions of DRAM 1400 .
  • various control circuits and signals not detailed herein initiate and synchronize DRAM 1400 operation as known to those skilled in the art.
  • the description of DRAM 1400 has been simplified for purposes of illustrating the present invention and is not intended to be a complete description of all the features of a DRAM.
  • memory devices including but not limited to, SDRAMs, SLDRAMs, RDRAMs and other DRAMs and SRAMs, VRAMs and EEPROMs, may be used in the implementation of the present invention.
  • the DRAM implementation described herein is illustrative only and not intended to be exclusive or limiting.
  • a gate dielectric containing HfO 2 /ZrO 2 nanolaminates and a method of fabricating such a gate produces a reliable gate dielectric having an equivalent oxide thickness thinner than attainable using SiO 2 .
  • Gate dielectrics containing HfO 2 /ZrO 2 nanolaminates formed using the methods described herein are thermodynamically stable such that the gate dielectrics formed will have minimal reactions with a silicon substrate or other structures during processing.
  • Transistors, higher level ICs or devices, and systems are constructed utilizing the novel process for forming a gate dielectric having an ultra thin equivalent oxide thickness, t eq .
  • Gate dielectric layers or films containing HfO 2 /ZrO 2 nanolaminates are formed having a high dielectric constant ( ⁇ ), where the gate dielectrics are capable of a t eq thinner than 10 ⁇ , thinner than the expected limit for SiO 2 gate dielectrics.
  • the physical thickness of the HfO 2 /ZrO 2 nanolaminates is much larger than the SiO 2 thickness associated with the t eq limit of SiO 2 . Forming the larger thickness provides advantages in processing the gate dielectric.
  • HfO 2 /ZrO 2 nanolaminates processed in relatively low temperatures can provide amorphous dielectric films having relatively low leakage current for use as dielectric layers in electronic devices and systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A dielectric film containing a nanolaminate with a hafnium oxide layer and a zirconium oxide layer and a method of fabricating such a dielectric film produce a reliable gate dielectric having an equivalent oxide thickness thinner than attainable using silicon oxide.

Description

    RELATED APPLICATIONS
  • The present application is a Divisional of U.S. application Ser. No. 11/148,505 filed on Jun. 9, 2005 that is a Divisional of U.S. application Ser. No. 10/209,581, filed Jul. 30, 2002, now U.S. Pat. No. 6,921,702, both applications are incorporated herein by reference.
  • This application is related to the following, co-pending, commonly assigned applications, incorporated herein by reference:
  • U.S. application Ser. No. 10/163481, entitled: “Atomic Layer-Deposited HfAlO3 Films for Gate Dielectrics;”
  • U.S. Pat. No. 7,045,430, entitled: “Atomic Layer-Deposited LaAlO3 Films for Gate Dielectrics;”
  • U.S. application Ser. No. 10/137,058, entitled: “Atomic Layer Deposition and Conversion;”
  • U.S. application Ser. No. 09/945,535, entitled: “Highly Reliable Amorphous High-K Gate Oxide ZrO2;”
  • U.S. application Ser. No. 10/137,168, entitled: “Methods, Systems, and Apparatus for Atomic-Layer Deposition of Aluminum Oxides in Integrated Circuits;” and
  • U.S. Pat. No. 6,852,167, entitled: “Methods, Systems, and Apparatus for Uniform Chemical-Vapor Depositions.”
  • FIELD OF THE INVENTION
  • The invention relates to semiconductor devices and device fabrication. Specifically, the invention relates to gate dielectric layers of transistor devices and their method of fabrication.
  • BACKGROUND OF THE INVENTION
  • The semiconductor device industry has a market driven need to improve speed performance, improve its low static (off-state) power requirements, and adapt to a wide range of power supply and output voltage requirements for it silicon based microelectronic products. In particular, in the fabrication of transistors, there is continuous pressure to reduce the size of devices such as transistors. The ultimate goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, or memory devices such as DRAMs. The smaller devices are frequently powered by batteries, where there is also pressure to reduce the size of the batteries, and to extend the time between battery charges. This forces the industry to not only design smaller transistors, but to design them to operate reliably with lower power supplies.
  • Currently, the semiconductor industry relies on the ability to reduce or scale the dimensions of its basic devices, primarily, the silicon based metal-oxide-semiconductor field effect transistor (MOSFET). A common configuration of such a transistor is shown in FIG. 1. While the following discussion uses FIG. 1 to illustrate a transistor from the prior art, one skilled in the art will recognize that the present invention could be incorporated into the transistor shown in FIG. 1 to form a novel transistor according to the invention. The transistor 100 is fabricated in a substrate 110 that is typically silicon, but could be fabricated from other semiconductor materials as well. The transistor 100 has a first source/drain region 120 and a second source/drain region 130. A body region 132 is located between the first source/drain region and the second source/drain region, where the body region 132 defines a channel of the transistor with a channel length 134. A gate dielectric, or gate oxide 140 is located on the body region 132 with a gate 150 located over the gate dielectric. Although the gate dielectric can be formed from materials other than oxides, the gate dielectric is typically an oxide, and is commonly referred to as a gate oxide. The gate may be fabricated from polycrystalline silicon (polysilicon), or other conducting materials such as metal may be used.
  • In fabricating transistors to be smaller in size and reliably operate on lower power supplies, one important design criteria is the gate dielectric 140. The mainstay for forming the gate dielectric has been silicon dioxide, SiO2. A thermally grown amorphous SiO2 layer provides an electrically and thermodynamically stable material, where the interface of the SiO2 layer with underlying Si provides a high quality interface as well as superior electrical isolation properties. In typical processing, use of SiO2 on Si has provided defect charge densities on the order of 1010/cm2, midgap interface state densities of approximately 1010/cm2 eV, and breakdown voltages in the range of 15 MV/cm. With such qualities, there would be no apparent need to use a material other than SiO2, but increased scaling and other requirements for gate dielectrics create the need to find other dielectric materials to be used for a gate dielectric.
  • What is needed is an alternate dielectric material for forming a gate dielectric that has a high dielectric constant relative to SiO2, and is thermodynamically stable with respect to silicon such that forming the dielectric on a silicon layer will not result in SiO2 formation, or diffusion of material, such as dopants, into the gate dielectric from the underlying silicon layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a common configuration of a transistor in which an embodiment of a gate dielectric can be formed, according to the teaching of the present invention.
  • FIG. 2A shows an embodiment of an atomic layer deposition system for processing a layer of HfO2 and a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.
  • FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing a layer of HfO2 and a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.
  • FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.
  • FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO2/ZrO2 by atomic layer deposition, according to the teachings of the present invention.
  • FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention.
  • FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO2 to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.
  • FIG. 7A shows an embodiment of a zirconium layer deposited on a layer of HfO2, according to the teachings of the present invention.
  • FIG. 7B shows an embodiment of a partially oxidized zirconium layer deposited on a layer of HfO2, according to the teachings of the present invention.
  • FIG. 7C shows an embodiment of a ZrO2 substantially completely oxidized and formed on a layer of HfO2 to form a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention.
  • FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and chemical vapor deposition, according to the teachings of the present invention.
  • FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention.
  • FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention.
  • FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention.
  • FIG. 12 shows an embodiment of a personal computer incorporating devices, according to the teachings of the present invention.
  • FIG. 13 illustrates a schematic view of an embodiment of a central processing unit incorporating devices, according to the teachings of the present invention.
  • FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device, according to the teachings of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
  • The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.
  • The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • A gate dielectric 140 of FIG. 1, when operating in a transistor, has both a physical gate dielectric thickness and an equivalent oxide thickness (teq). The equivalent oxide thickness quantifies the electrical properties, such as capacitance, of a gate dielectric 140 in terms of a representative physical thickness. teq is defined as the thickness of a theoretical SiO2 layer that would be required to have the same capacitance density as a given dielectric, ignoring leakage current and reliability considerations.
  • A SiO2 layer of thickness, t, deposited on a Si surface as a gate dielectric will have a teq larger than its thickness, t. This teq results from the capacitance in the surface channel on which the SiO2 is deposited due to the formation of a depletion/inversion region. This depletion/inversion region can result in teq being from 3 to 6 Angstroms (Å) larger than the SiO2 thickness, t. Thus, with the semiconductor industry driving to someday scale the gate dielectric equivalent oxide thickness to under 10 Å, the physical thickness requirement for a SiO2 layer used for a gate dielectric would be need to be approximately 4 to 7 Å.
  • Additional requirements on a SiO2 layer would depend on the gate electrode used in conjunction with the SiO2 gate dielectric. Using a conventional polysilicon gate would result in an additional increase in teq for the SiO2 layer. This additional thickness could be eliminated by using a metal gate electrode, though metal gates are not currently used in complementary metal-oxide-semiconductor field effect transistor (CMOS) technology. Thus, future devices would be designed towards a physical SiO2 gate dielectric layer of about 5 Å or less. Such a small thickness requirement for a SiO2 oxide layer creates additional problems.
  • Silicon dioxide is used as a gate dielectric, in part, due to its electrical isolation properties in a SiO2-Si based structure. This electrical isolation is due to the relatively large band gap of SiO2 (8.9 eV) making it a good insulator from electrical conduction. Signification reductions in its band gap would eliminate it as a material for a gate dielectric. As the thickness of a SiO2 layer decreases, the number of atomic layers, or monolayers of the material in the thickness decreases. At a certain thickness, the number of monolayers will be sufficiently small that the SiO2 layer will not have a complete arrangement of atoms as in a larger or bulk layer. As a result of incomplete formation relative to a bulk structure, a thin SiO2 layer of only one or two monolayers will not form a full band gap. The lack of a full band gap in a SiO2 gate dielectric would cause an effective short between an underlying Si channel and an overlying polysilicon gate. This undesirable property sets a limit on the physical thickness to which a SiO2 layer can be scaled. The minimum thickness due to this monolayer effect is thought to be about 7-8 Å. Therefore, for future devices to have a teq less than about 10 Å, other dielectrics than SiO2 need to be considered for use as a gate dielectric.
  • For a typical dielectric layer used as a gate dielectric, the capacitance is determined as one for a parallel plate capacitance: C=κε0A/t, where κ is the dielectric constant, ε0 is the permittivity of free space, A is the area of the capacitor, and t is the thickness of the dielectric. The thickness, t, of a material is related to teq for a given capacitance with the dielectric constant of SiO2, κox=3.9, associated with teq, as
    t=(κ/κox)t eq=(κ/3.9)t eq.
    Thus, materials with a dielectric constant greater than that of SiO2, 3.9, will have a physical thickness that can be considerably larger than a desired teq, while providing the desired equivalent oxide thickness. For example, an alternate dielectric material with a dielectric constant of 10 could have a thickness of about 25.6 Å to provide a teq of 10 Å, not including any depletion/inversion layer effects. Thus, the reduced equivalent oxide thickness of transistors can be realized by using dielectric materials with higher dielectric constants than SiO2.
  • The thinner equivalent oxide thickness required for lower transistor operating voltages and smaller transistor dimensions may be realized by a significant number of materials, but additional fabricating requirements makes determining a suitable replacement for SiO2 difficult. The current view for the microelectronics industry is still for Si based devices. This requires that the gate dielectric employed be grown on a silicon substrate or silicon layer, which places significant restraints on the substitute dielectric material. During the formation of the dielectric on the silicon layer, there exists the possibility that a small layer of SiO2 could be formed in addition to the desired dielectric. The result would effectively be a dielectric layer consisting of two sublayers in parallel with each other and the silicon layer on which the dielectric is formed. In such a case, the resulting capacitance would be that of two dielectrics in series. As a result, the teq of the dielectric layer would be the sum of the SiO2 thickness and a multiplicative factor of the thickness of the dielectric being formed, written as
    t eq =t SiO2+(κox/κ)t.
    Thus, if a SiO2 layer is formed in the process, the teq is again limited by a SiO2 layer. In the event that a barrier layer is formed between the silicon layer and the desired dielectric in which the barrier layer prevents the formation of a SiO2 layer, the teq would be limited by the layer with the lowest dielectric constant. However, whether a single dielectric layer with a high dielectric constant or a barrier layer with a higher dielectric constant than SiO2 is employed, the layer interfacing with the silicon layer must provide a high quality interface to maintain a high channel carrier mobility.
  • In a recent article by G. D. Wilk et al., Journal of Applied Physics, vol. 89: no. 10, pp. 5243-5275 (2001), material properties of high dielectric materials for gate dielectrics were discussed. Among the information disclosed was the viability of Al2O3 as a substitute for SiO2. Al2O3 was disclosed has having favourable properties for use as a gate dielectric such as high band gap, thermodynamic stability on Si up to high temperatures, and an amorphous structure. In addition, Wilk disclosed that forming a layer of Al2O3 on silicon does not result in a SiO2 interfacial layer. However, the dielectric constant of Al2O3 is only 9, where thin layers may have a dielectric constant of about 8 to about 10. Though the dielectric constant of Al2O3 is in an improvement over SiO2, a higher dielectric constant for a gate dielectric is desirable. Other dielectrics and their properties discussed by Wilk include
    Dielectric Band gap
    Material Constant (κ) Eg (eV) Crystal Structure(s)
    SiO2 3.9 8.9 Amorphous
    Si3N4 7 5.1 Amorphous
    Al2O3 9 8.7 Amorphous
    Y2O3 15 5.6 Cubic
    La2O3 30 4.3 Hexagonal, Cubic
    Ta2O5 26 4.5 Orthorhombic
    TiO2 80 3.5 Tetrag. (rutile,
    anatase)
    HfO2 25 5.7 Mono., Tetrag., Cubic
    ZrO2 25 7.8 Mono., Tetrag., Cubic
  • One of the advantages using SiO2 as a gate dielectric has been that the formation of the SiO2 layer results in an amorphous gate dielectric. Having an amorphous structure for a gate dielectric is advantageous because grain boundaries in polycrystalline gate dielectrics provide high leakage paths. Additionally, grain size and orientation changes throughout a polycrystalline gate dielectric can cause variations in the film's dielectric constant. The abovementioned material properties including crystal structure are for the materials in a bulk form. The materials having the advantage of a high dielectric constants relative to SiO2 also have the disadvantage of a crystalline form, at least in a bulk configuration. The best candidates for replacing SiO2 as a gate dielectric are those with high dielectric constant, which can be fabricated as a thin layer with an amorphous form.
  • In one embodiment, a method of forming a gate dielectric on a transistor body region includes the formation of HfO2/ZrO2 nanolaminates by atomic layer deposition (ALD) of HfO2 using a HfI4 precursor followed by the formation of ZrO2 on the HfO2 layer. Various embodiments include forming the ZrO2 layer by thermal evaporation followed by krypton/oxygen mixed plasma oxidation, pulsed-laser deposition, or jet-vapor deposition.
  • A gate dielectric formed as nanolaminates of HfO2/ZrO2 has a larger dielectric constant than silicon dioxide, a relatively small leakage current, and good stability with respect to a silicon based substrate. Embodiments according to the teachings of the present invention include forming transistors, memory devices, and electronic systems having dielectric layers containing nanolaminates of HfO2/ZrO2.
  • Other embodiments include structures for transistors, memory devices, and electronic systems with gate dielectrics containing nanolaminates of HfO2/ZrO2. Such gate dielectrics provide a significantly thinner equivalent oxide thickness compared with a silicon oxide gate having the same physical thickness. Alternatively, such gate dielectrics provide a significantly thicker physical thickness than a silicon oxide gate dielectric having the same equivalent oxide thickness.
  • In an embodiment according to the teachings of the present invention, a gate dielectric includes thin layers of HfO2 and ZrO2 forming a nanolaminate. The term “nanolaminate” means a composite film of ultra thin layers of two or more materials in a layered stack, where the layers are alternating layers of materials of the composite film. Typically, nanolaminates have thicknesses of an order of magnitude in the nanometer range. Each individual material layer of the nanolaminate can have thicknesses as low as a monolayer of the material. A nanolaminate of HfO2 and ZrO2 includes at least one thin layer of HfO2, and one thin layer of ZrO2, and is typically written as a nanolaminate of HfO2/ZrO2. In one embodiment, nanolaminates of HfO2/ZrO2 are grown using atomic layer deposition (ALD), also known as atomic layer epitaxy (ALE).
  • ALD was developed in the early 1970's as a modification of chemical vapor deposition (CVD) and is also called “alternatively pulsed-CVD.” In ALD, gaseous precursors are introduced one at a time to the substrate surface mounted within a reaction chamber (or reactor). This introduction of the gaseous precursors takes the form of pulses of each gaseous precursor. Between the pulses, the reaction chamber is purged with a gas, which in many cases is an inert gas, or evacuated.
  • In a chemisorption-saturated ALD (CS-ALD) process, during the first pulsing phase, reaction with the substrate occurs with the precursor saturatively chemisorbed at the substrate surface. Subsequent pulsing with a purging gas removes precursor excess from the reaction chamber.
  • The second pulsing phase introduces another precursor on the substrate where the growth reaction of the desired film takes place. Subsequent to the film growth reaction, reaction byproducts and precursor excess are purged from the reaction chamber. With favourable precursor chemistry where the precursors adsorb and react with each other on the substrate aggressively, one ALD cycle can be preformed in less than one second in properly designed flow type reaction chambers. Typically, precursor pulse times range from about 0.5 sec to about 2 to 3 seconds.
  • In ALD, the saturation of all the reaction and purging phases makes the growth self-limiting. This self-limiting growth results in large area uniformity and conformality, which has important applications for such cases as planar substrates, deep trenches, and in the processing of porous silicon and high surface area silica and alumina powders. Significantly, ALD provides for controlling film thickness in a straightforward, simple manner by controlling the number of growth cycles.
  • ALD was originally developed to manufacture luminescent and dielectric films needed in electroluminescent displays. Significant efforts have been made to apply ALD to the growth of doped zinc sulfide and alkaline earth metal sulfide films. Additionally, ALD has been studied for the growth of different epitaxial II-V and II-VI films, nonepitaxial crystalline or amorphous oxide and nitride films and multilayer structures of these. There also has been considerable interest towards the ALD growth of silicon and germanium films, but due to the difficult precursor chemistry, this has not been very successful.
  • The precursors used in an ALD process may be gaseous, liquid or solid. However, liquid or solid precursors must be volatile. The vapor pressure must be high enough for effective mass transportation. Also, solid and some liquid precursors need to be heated inside the reaction chamber and introduced through heated tubes to the substrates. The necessary vapor pressure must be reached at a temperature below the substrate temperature to avoid the condensation of the precursors on the substrate. Due to the self-limiting growth mechanisms of ALD, relatively low vapor pressure solid precursors can be used though evaporation rates may somewhat vary during the process because of changes in their surface area.
  • There are several other requirements for precursors used in ALD. The precursors must be thermally stable at the substrate temperature because their decomposition would destroy the surface control and accordingly the advantages of the ALD method which relies on the reactant of the precursor at the substrate surface. Of course, a slight decomposition, if slow compared to the ALD growth, can be tolerated.
  • The precursors have to chemisorb on or react with the surface, though the interaction between the precursor and the surface as well as the mechanism for the adsorption is different for different precursors. The molecules at the substrate surface must react aggressively with the second precursor to form the desired solid film. Additionally, precursors should not react with the film to cause etching, and precursors should not dissolve in the film. Using highly reactive precursors in ALD contrasts with the selection of precursors for conventional CVD.
  • The by-products in the reaction must be gaseous in order to allow their easy removal from the reaction chamber. Further, the by-products should not react or adsorb on the surface.
  • In a reaction sequence ALD (RS-ALD) process, the self-limiting process sequence involves sequential surface chemical reactions. RS-ALD relies on chemistry between a reactive surface and a reactive molecular precursor. In an RS-ALD process, molecular precursors are pulsed into the ALD reaction chamber separately. The metal precursor reaction at the substrate is typically followed by an inert gas pulse to remove excess precursor and by-products from the reaction chamber prior to pulsing the next precursor of the fabrication sequence.
  • By RS-ALD, films can be layered in equal metered sequences that are all identical in chemical kinetics, deposition per cycle, composition, and thickness. RS-ALD sequences generally deposit less than a full layer per cycle. Typically, a deposition or growth rate of about 0.25 to about 2.00 Å per RS-ALD cycle can be realized.
  • The advantages of RS-ALD include continuity at an interface, conformality over a substrate, use of low temperature and mildly oxidizing processes, growth thickness dependent solely on the number of cycles performed, and ability to engineer multilayer laminate films with resolution of one to two monolayers. RS-ALD allows for deposition control on the order on monolayers and the ability to deposit monolayers of amorphous films.
  • RS-ALD processes provide for the formation of nanolaminates. These nanolaminates can be engineered in various forms. In one form, the transition between material layers of the nanolaminate can be made abrupt. In another form, the transition between material layers of the nanolaminate can be constructed with a graded composition. The graded composition can be formed by RS-ALD due its control of the deposition thickness per cycle.
  • In an embodiment, a layer of HfO2 is formed on a substrate mounted in a reaction chamber using ALD in a repetitive sequence including pulsing a hafnium containing precursor into the reaction chamber followed by pulsing a purging gas, and then pulsing a first oxygen containing precursor into the chamber. In one embodiment using ALD, a layer of HfO2 is formed using HfI4 as a hafnium containing precursor, water vapor as a first oxygen containing precursor, and nitrogen as a purging gas and carrier gas. After forming a HfO2 layer, a ZrO2 layer is formed on the HfO2 layer.
  • In one embodiment, the layer of ZrO2 is formed by ALD. In particular, a repetitive sequence includes using ZrI4 as a zirconium containing precursor along with a vapor solution of HO2-H2O2 as a second oxygen containing precursor, and nitrogen as a purging gas and carrier gas. In another embodiment, the ZrO2 layer is formed by depositing a layer of zirconium on the HfO2 layer by thermal evaporation, and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O2) mixed plasma to form a HfO2/ZrO2 composite layer. In another embodiment, the ZrO2 layer is formed by pulsed-laser deposition. In yet another embodiment, the ZrO2 layer is formed by jet-vapor deposition.
  • In one embodiment, precursor gases, in particular HfI4, are used to form the HfO2 layer for the HfO2/ZrO2 nanolaminate films used as a gate dielectric on a transistor body. Alternately, solid or liquid precursors can be used in an appropriately designed reaction chamber. ALD formation of other materials is disclosed in co-pending, commonly assigned U.S. patent application: entitled “Atomic Layer Deposition and Conversion,” attorney docket no. 303.802US1, Ser. No. 10/137,058, and “Methods, Systems, and Apparatus for Atomic-Layer Deposition of Aluminum Oxides in Integrated Circuits,” attorney docket no. 1303.048US1, Ser. No. 10/137,168.
  • FIG. 2A shows an embodiment of an atomic layer deposition system for processing layers of HfO2 and nanolaminates of HfO2/ZrO2 according to the teachings of the present invention. The elements depicted are those elements necessary for discussion of the present invention such that those skilled in the art may practice the present invention without undue experimentation. A further discussion of the ALD reaction chamber can be found in co-pending, commonly assigned U.S. patent application: entitled “Methods, Systems, and Apparatus for Uniform Chemical-Vapor Depositions,” attorney docket no. 303.717US1, Ser. No. 09/797,324, incorporated herein by reference.
  • In FIG. 2A, a substrate 210 is located inside a reaction chamber 220 of ALD system 200. Also located within the reaction chamber 220 is a heating element 230 which is thermally coupled to substrate 210 to control the substrate temperature. A gas-distribution fixture 240 introduces precursor gases to the substrate 210. Each precursor gas originates from individual gas sources 251-254 whose flow is controlled by mass-flow controllers 256-259, respectively. The gas sources 251-254 provide a precursor gas either by storing the precursor as a gas or by providing a location and apparatus for evaporating a solid or liquid material to form the selected precursor gas.
  • Also included in the ALD system are purging gas sources 261, 262, each of which is coupled to mass- flow controllers 266, 267, respectively. The gas sources 251-254 and the purging gas sources 261-262 are coupled by their associated mass-flow controllers to a common gas line or conduit 270 which is coupled to the gas-distribution fixture 240 inside the reaction chamber 220. Gas conduit 270 is also coupled to vacuum pump, or exhaust pump, 281 by mass-flow controller 286 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the gas conduit.
  • Vacuum pump, or exhaust pump, 282 is coupled by mass-flow controller 287 to remove excess precursor gases, purging gases, and by-product gases at the end of a purging sequence from the reaction chamber 220. For convenience, control displays, mounting apparatus, temperature sensing devices, substrate maneuvering apparatus, and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 2A.
  • FIG. 2B shows an embodiment of a gas-distribution fixture of an atomic layer deposition chamber for processing layers of HfO2 and nanolaminates of HfO2/ZrO2, according to the teachings of the present invention. Gas-distribution fixture 240 includes a gas-distribution member 242, and a gas inlet 244. Gas inlet 244 couples the gas-distribution member 242 to the gas conduit 270 of FIG. 2A. Gas-distribution member 242 includes gas-distribution holes, or orifices, 246 and gas-distribution channels 248. In the exemplary embodiment, holes 246 are substantially circular with a common diameter in the range of 15-20 microns, gas-distribution channels 248 have a common width in the range of 20-45 microns. The surface 249 of the gas distribution member having gas-distribution holes 246 is substantially planar and parallel to the substrate 210 of FIG. 2A. However, other embodiments use other surface forms as well as shapes and sizes of holes and channels. The distribution and size of holes may also affect deposition thickness and thus might be used to assist thickness control. Holes 246 are coupled through gas-distribution channels 248 to gas inlet 244. Though the ALD system 200 is well suited for practicing the present invention, other ALD systems commercially available can be used.
  • The use, construction and fundamental operation of reaction chambers for deposition of films are understood by those of ordinary skill in the art of semiconductor fabrication. The present invention man be practiced on a variety of such reaction chambers without undue experimentation. Furthermore, one of ordinary skill in the art will comprehend the necessary detection, measurement, and control techniques in the art of semiconductor fabrication upon reading the disclosure.
  • FIG. 3 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. This embodiment of a method for forming a HfO2/ZrO2 nanolaminate includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 305, and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO2/ZrO2 composite, at block 310. By strictly controlling the processing of the HfO2 layer and the ZrO2 layer, the HfO2/ZrO2 composite formed is a HfO2/ZrO2 nanolaminate. In one embodiment, the HfO2/ZrO2 nanolaminate is composed of one HfO2 layer and one layer ZrO2 layer. In another embodiment, the HfO2/ZrO2 nanolaminate includes multiple layers of the HfO2/ZrO2 composite, where the initial layer disposed on a substrate is a HfO2 layer. After this initial HfO2 layer, there are alternating layers of HfO2 and ZrO2, with the terminating layer being a ZrO2 layer in one embodiment and HfO2 layer in another embodiment.
  • Forming the HfO2 layer on a substrate by atomic layer deposition involves using a deposition sequence including pulsing the HfI4 precursor into the reaction chamber, followed by pulsing a purging gas, pulsing a first oxygen containing precursor, and pulsing the purging gas. In one embodiment, the first oxygen precursor is water vapor. Each precursor is pulsed for a short time ranging from 0.5 seconds to two or three seconds. A purging gas such as nitrogen is pulsed for a longer period such as five to fifteen seconds to insure that all excess precursor gases and by-products are removed from the reaction chamber. Pulsing times are selected to enable the controlled growth of the HfO2 layer on a one to two monolayer basis. For a fixed ALD sequence or cycle, including fixed pulsing times and substrate temperatures, the HfO2 layer growth rate is at a relatively fixed rate, where a desired thickness of the HfO2 layer is obtained by performing the ALD sequence for a predetermined number of cycles.
  • FIG. 4 illustrates a flow diagram of elements for another embodiment of a method to process a nanolaminate of HfO2/ZrO2 by atomic layer deposition, according to the teachings of the present invention. In this embodiment, a method for forming a dielectric film includes forming a layer of HfO2 on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, and forming a layer of ZrO2 on the HfO2 layer by atomic layer deposition to form a HfO2/ZrO2 composite. Using the ALD process provides for the formation of the HfO2/ZrO2 composite as a nanolaminate. An embodiment of this method can be implemented with the atomic layer deposition system of FIGS. 2A,B.
  • At block 405, a substrate is prepared. The substrate used for forming a transistor is typically a silicon or silicon containing material. In other embodiments, germanium, gallium arsenide, silicon-on-sapphire substrates, or other suitable substrates may be used. This preparation process includes cleaning of the substrate 210 and forming layers and regions of the substrate, such as drains and sources of a metal oxide semiconductor (MOS) transistor, prior to forming a gate dielectric. The sequencing of the formation of the regions of the transistor being processed follows typical sequencing that is generally performed in the fabrication of a MOS transistor as is well known to those skilled in the art. Included in the processing prior to forming a gate dielectric is the masking of substrate regions to be protected during the gate dielectric formation, as is typically performed in MOS fabrication. In this embodiment, the unmasked region includes a body region of a transistor, however one skilled in the art will recognize that other semiconductor device structures may utilize this process. Additionally, the substrate 210 in its ready for processing form is conveyed into a position in reaction chamber 220 for ALD processing.
  • At block 410, a precursor containing hafnium is pulsed into reaction chamber 220. In particular, HfI4 is used as a source material. The HfI4 is pulsed into reaction chamber 220 through the gas-distribution fixture 240 onto substrate 210. The flow of the HfI4 is controlled by mass-flow controller 256 from gas source 251. In one embodiment, the substrate temperature is maintained between about 225° C. and about 500° C. In another embodiment, the substrate temperature is maintained between about 250° C. and about 325° C. The lower temperature allows for forming a dielectric film suited for use as a gate dielectric, since an amorphous layer tends to more readily form at lower processing temperatures. The HfI4 reacts with the surface of the substrate 210 in the desired region defined by the unmasked areas of the substrate 210.
  • At block 415, a first purging gas is pulsed into the reaction chamber 220. In particular, pure nitrogen with a purity greater than 99.99% is used as a purging gas for HfI4. The nitrogen flow is controlled by mass-flow controller 266 from the purging gas source 261 into the gas conduit 270. Using the pure nitrogen purge avoids overlap of the precursor pulses and possible gas phase reactions. A nitrogen gas can also be used as a carrier gas for the precursors. Following the purge, a first oxygen containing precursor is pulsed into the reaction chamber 220, at block 420. For the hafnium sequence using HfI4 as the precursor, water vapor is selected as the precursor acting as an oxidizing reactant to form a HfO2 on the substrate 210. Alternately, a vapor solution of H2O-H2O2 can be used as the oxygen containing precursor. The water vapor is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 252 by mass-flow controller 257. The water vapor aggressively reacts at the surface of substrate 210.
  • Following the pulsing of oxidizing reactant water vapor, the first purging gas is injected into the reaction chamber 220, at block 425. In the HfI4/water vapor sequence, pure nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287, and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286.
  • During the HfI4/water vapor sequence, the substrate is held between about 250° C. and about 325° C. by the heating element 230. In other embodiments the substrate is held between about 225° C. and 500° C. The HfI4 pulse time ranges from about 1.0 sec to about 2.0 sec. After the HfI4 pulse, the hafnium sequence continues with a purge pulse followed by a water vapor pulse followed by a purge pulse. In one embodiment, performing a purge pulse followed by a water vapor pulse followed by a purge pulse takes about 2 seconds. In another embodiment, each pulse in the hafnium sequence has a 2 second pulse period. In another embodiment, the pulse periods for the precursors are 2 seconds, while the purge gas pulse period ranges from five second to twenty seconds.
  • At block 430, a determination is made as to whether a desired thickness of the HfO2 layer has been formed. The thickness of a HfO2 film after one cycle is determined by a fixed growth rate for the pulsing periods and precursors used in the hafnium sequence, set at a value such as N nm/cycle. For a desired HfO2 film thickness, t, in an application such as forming a gate dielectric of a MOS transistor, the ALD process should be repeated for t/N cycles. The desired thickness should be attained after t/N cycles. If less than t/N cycles have been completed, the process starts over at block 410 with the pulsing of the precursor containing hafnium, which in the embodiment discussed above is a HfI4 gas. If t/N cycles have completed, no further ALD processing of HfO2 is required and the HfO2 layer is ready to be formed as a composite with a ZrO2 layer.
  • At block 435, a precursor containing zirconium is pulsed into the reaction chamber 220. In one embodiment, ZrI4 is used as the zirconium containing precursor. In another embodiment, ZrCl4 is used as the zirconium containing precursor. The ZrI4 is evaporated from a containment area held at about 250° C. in gas source 253. It is pulsed to the surface of the substrate 210 through gas-distribution fixture 240 from gas source 253 by mass-flow controller 258. The ZrI4 is introduced onto the HfO2 layer that was formed during the HfI4/water vapor sequence.
  • At block 440, a second purging gas is introduced into the system. For a ZrI4 precursor, nitrogen gas is used as a purging and carrier gas. The nitrogen flow is controlled by mass-flow controller 267 from the purging gas source 262 into the gas conduit 270 and subsequently into the reaction chamber 220. Following the nitrogen purge, at block 445, a second oxygen containing precursor is pulsed into the reaction chamber 220. For the zirconium sequence using ZrI4 as the precursor, a vapor solution of H2O-H2O2 is selected as the precursor acting as an oxidizing reactant to interact with the zirconium deposited on the HfO2 layer on the substrate 210. The H2O-H2O2 vapor solution is pulsed into the reaction chamber 220 through gas conduit 270 from gas source 254, held at about room temperature, by mass-flow controller 259. The H2O-H2O2 vapor solution aggressively reacts at the surface of substrate 210 to form a ZrO2 layer.
  • Following the pulsing of the H2O-H2O2 vapor solution acting as an oxidizing reactant, the nitrogen purging gas is injected into the reaction chamber 200, at block 450. In the ZrI4/H2-H2O2 vapor solution sequence, nitrogen gas is used to purge the reaction chamber after pulsing each precursor gas. In another embodiment, argon gas is used as the purging gas. Excess precursor gas, and reaction by-products are removed from the system by the purge gas in conjunction with the exhausting of the reaction chamber 220 using vacuum pump 282 through mass-flow controller 287, and exhausting of the gas conduit 270 by the vacuum pump 281 through mass-flow controller 286.
  • During the ZrI4/H2O-H2O2 vapor solution sequence, the substrate is held between about 250° C. and about 325° C. by the heating element 230. In other embodiments, the substrate is held between about 275° C. and about 500° C. In one embodiment, the process pressure is maintained at about 250 Pa during the zirconium sequence. Pulse times for the ZrI4 and the H2O-H2O2 vapor solution were about 2 sec for both precursors, with purging pulse times of about 2 secs.
  • At 455, similar to the HfO2 layer formation, a determination is made as to whether the ZrO2 layer has the desired thickness by determining if a desired number of zirconium cycles have been performed. If the number of zirconium cycles performed is less than the number needed to form the desired thickness, the zirconium containing precursor is pulsed into the reaction chamber, at block 435, and the process continues. If the desired number of zirconium cycles has been performed, this completes not only the ZrI4/H2O-H2O2 vapor solution sequence, but it also completes a hafnium sequence/zirconium sequence cycle forming a HfO2/ZrO2 nanolaminate.
  • Upon completing the formation of the HfO2/ZrO2 nanolaminate, the nanolaminate can be annealed. The annealing can be performed at a temperature between about 300° C. and about 800° C. in an inert or nitrogen atmosphere.
  • At block 460, after forming the HfO2/ZrO2 nanolaminate, processing the device containing the HfO2/ZrO2 nanolaminate is completed. In one embodiment, completing the device includes completing the formation of a transistor. Alternately, completing the process includes completing the construction of a memory device having a array with access transistors formed with gate dielectrics containing HfO2/ZrO2 nanolaminates. Further, in another embodiment, completing the process includes the formation of an electronic system including an information handling device that uses electronic devices with transistors formed with gate dielectrics containing HfO2/ZrO2 nanolaminates. Typically, information handling devices such as computers include many memory devices, having many access transistors.
  • In one embodiment, a HfO2/ZrO2 nanolaminate includes one HfO2 layer and one HfO2/ZrO2 layer. The completed HfO2/ZrO2 nanolaminate has a thickness in which the thickness of the HfO2 layer is about one-half the thickness of the completed HfO2/ZrO2 nanolaminate. In another embodiment, a completed HfO2/ZrO2 nanolaminate includes multiple alternating layers of HfO2 and ZrO2, which requires that at block 455, once a given ZrO2 layer has been formed with a desired thickness, a hafnium sequence is then started at block 410. This process, proceeding from completing the zirconium sequence at block 455 to starting the hafnium sequence at block 410, continues until the desired number of alternating layers of HfO2 and ZrO2 have been formed. The HfO2/ZrO2 nanolaminate formation begins with forming a HfO2 layer, but may end with forming ZrO2 layer or a HfO2 layer. ALD provides for the engineering of a HfO2/ZrO2 nanolaminate. For example, nanolaminates can be formed with n number of HfO2/ZrO2 composite layers where the HfO2 layer is formed with x number of hafnium cycles and y number of zirconium cycles. Alternately, nanolaminates can be formed with n number of HfO2/ZrO2 composite layers where the first composite layer has a HfO2 layer formed with x1 number of hafnium cycles and y1 number of zirconium cycles, a second composite layer has a HfO2 layer formed with x2 number of hafnium cycles and y2 number of zirconium cycles, extended to the nth composite layer having a HfO2 layer formed with xn number of hafnium cycles and yn number of zirconium cycles. Such tailoring of the HfO2/ZrO2 nanolaminate provides for forming dielectric films with a designed physical thickness, t, and equivalent oxide thickness, teq.
  • In the hafnium sequence and in the zirconium sequence, pulsing each precursor into the reaction chamber is controlled for a predetermined period, the predetermined period being individually controlled for each precursor pulsed into the reaction chamber. Additionally, the substrate is maintained at a selected temperature for forming each layer, where the selected temperature set independently for forming each layer.
  • In a recent article by O. Sneh et al., Thin Solid Films, vol. 402, pp. 248-261 (2002), atomic layer deposition of thin films was discussed. The article noted that the growth rate for HfO2 is, typically, about 0.8 Å/cycle. Similarly, in a recent article by K. Kukli et al., Journal of the Electrochemical Society, vol. 148, no. 12, pp. F227-F232 (2001), dealing with ZrO2 formed by ALD using ZrI4, it was noted that at about a growth temperature of about 300° C., ZrO2 growth rate was about 0.075 nm/cycle. Thus, in the embodiments for forming HfO2/ZrO2 nanolaminates using ALD for all composite layers, each material layer can be grown at about 0.75-0.80 Å/cycle.
  • FIG. 5 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and thermal evaporation/plasma oxidation, according to the teachings of the present invention. In one embodiment, a nanolaminate of HfO2/ZrO2 is formed by a method that includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 505, forming a layer of zirconium on the layer of hafnium oxide by thermal evaporation, at block 510, and oxidizing the zirconium layer using a krypton(Kr)/oxygen(O2) mixed plasma to form a HfO2/ZrO2 composite, at block 515. The HfO2/ZrO2 composite is a nanolaminate, whose thickness can be controlled by precisely controlling the ALD formation of HfO2, and thermal deposition of zirconium. In one embodiment, the thermal evaporation of zirconium is performed using electron beam evaporation.
  • FIG. 6 shows an embodiment of an electron beam evaporation process for forming a layer of zirconium on a layer of HfO2 to process a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. In the embodiment of FIG. 6, a substrate 610 is located inside a deposition chamber 660. The substrate in this embodiment is masked by a first masking structure 670 and a second masking structure 671. In this embodiment, the unmasked region 633 includes a body region of a transistor on which a layer of HfO2 is formed. However one skilled in the art will recognize that other semiconductor device structures may utilize this process. Also located within the deposition chamber 660 is an electron gun 663 and a target 661. The electron gun 663 provides an electron beam 664 directed at target 661 containing a source material for forming ZrO2 on the unmasked region HfO2 layer 633 of the substrate 610. The electron gun 663 includes a rate monitor for controlling the rate of evaporation of the material in the target 661 at which the electron beam 664 is directed. For convenience, control displays and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 6.
  • During the evaporation process, the electron gun 663 generates an electron beam 664 that hits target 661. In one embodiment, target 661 contains a zirconium metal source, which is evaporated due to the impact of the electron beam 664. The evaporated material 668 is then distributed throughout the chamber 660. A layer of zirconium is grown forming a film 640 on the surface of the HfO2 layer 633 on substrate 610, which is maintained at a temperature between 150° C. and 200° C. The growth rate can vary with a typical rate of 0.1 Å/s. After depositing a zirconium layer on the HfO2 layer 633, the zirconium layer is oxidized.
  • The evaporation chamber 660 can be included as part of an overall processing system including ALD system 200 of FIG. 2. To avoid contamination of the surface of the HfO2 layer 633, evaporation chamber 660 can be connected to ALD system 200 using sealable connections to maintain the substrate, which is substrate 210 in FIG. 2 and substrate 610 of FIG. 6, in an appropriate environment between ALD processing of the HfO2 layer and Zr evaporation. Other means as are known to those skilled in the art can be employed for maintaining an appropriate environment between different processing procedures.
  • FIGS. 7A-7C show a low temperature oxidation process that is used in one embodiment to form a layer of ZrO2 on a layer of HfO2. FIG. 7A shows an embodiment of a zirconium layer 720 deposited on a HfO2 layer 710, according to the teachings of the present invention. The HfO2 layer 710 is formed on substrate 700 using an ALD process, as previously discussed, having an substrate interface 730. The Zr layer 720 is deposited on the HfO2 layer 710 by electron beam evaporation, as discussed above, forming an interface 740 with the HfO2 layer 710 and having an outer surface 750. The combined film with the Zr layer 720 deposited on the HfO2 layer 710 has a total thickness 752. The layers 710, 720 are deposited over a body region of a transistor, however the layers may be deposited on any surface within the scope of the invention.
  • FIG. 7B shows an embodiment of a partially oxidized zirconium layer 770 deposited on a HfO2 layer 710, according to the teachings of the present invention. In FIG. 7B, the layer 720 is in the process of being oxidized. In one embodiment, the oxidation process includes a krypton/oxygen mixed plasma oxidation process. The mixed plasma process generates atomic oxygen or oxygen radicals in contrast to molecular oxygen or O2 used in conventional thermal oxidation. The atomic oxygen is introduced to the layer from all exposed directions as indicated by arrows 760, creating an oxide portion 770. The atomic oxygen continues to react with the layer and creates an oxidation interface 742. As the reaction progresses, atomic oxygen diffuses through the oxide portion 770 and reacts at the oxidation interface 742 until the layer is completely converted to an oxide of the deposited material layer.
  • FIG. 7C shows an embodiment of a ZrO2 substantially completely oxidized and formed on a layer of HfO2 to form a nanolaminate of HfO2/ZrO2, according to the teachings of the present invention. FIG. 7C shows the resulting oxide layer 770 which spans a physical thickness 772 from the outer surface 750 to the interface 740. The overall thickness 752 of the HfO2/ZrO2 composite in FIG. 7C has increased from that of the Zr layer deposited on the HfO2 layer in FIG. 7A, due to the oxidation of the zirconium.
  • In an embodiment, the processing variables for the mixed plasma oxidation include a low ion bombardment energy of less than 7 eV, a high plasma density above 1012/cm3 and a low electron temperature below 1.3 eV. In another embodiment, the substrate temperature is approximately 400° C. In another embodiment, a mixed gas of 3% oxygen with the balance being krypton at a pressure of 1 Torr is used. In one embodiment, a microwave power density of 5 W/cm2 is used. The oxidation process provides a growth rate of 1.5 nm/min.
  • The low temperature mixed plasma oxidation process described above allows the deposited layer to be oxidized at a low temperature. The mixed plasma process in one embodiment is performed at approximately 400° C. in contrast to prior thermal oxidation processes that are performed at approximately 1000° C.
  • FIG. 8 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and chemical vapor deposition (CVD), according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 805, and forming a layer of zirconium oxide on the layer of hafnium oxide by chemical vapor deposition to form a HfO2/ZrO2 composite, at block 810. The HfO2 layer is formed by ALD as discussed in the embodiments above. In one embodiment, the ZrO2 layer is formed by rapid thermal CVD at about 500° C. Subsequently, a nitrogen anneal is performed between about 700° C. and about 800° C. for about 30 sec. A rapid thermal CVD system, as is known to those skilled in the art, is used to form the ZrO2 layer.
  • FIG. 9 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and pulsed-laser deposition, according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 905, and forming a layer of zirconium oxide on the layer of hafnium oxide by pulsed-laser deposition to form a HfO2/ZrO2 composite, at block 910. The HfO2 layer is formed by ALD as discussed in the embodiments above. A pulsed-laser deposition system is similar to the electron beam evaporation system 660 of FIG. 6 with the electron gun 663 replaced by a laser and focusing optics, though the laser and focusing optics need not be located in the evaporation reaction chamber. A beam from the laser is focused on a target, which causes an ablation of material from the target. The material removed from the target deposits on an unmasked HfO2 layer located on a substrate. Controlling the focusing of the beam from the laser on the source target provides for precision growth rate of the ZrO2 layer.
  • In one embodiment, a substrate temperature is maintained between about 200° C. to about 800° C. during pulsed-laser deposition. A beam from a laser source such as a excimer laser is focused on a rotating zirconium target source in a deposition chamber with an O2 pressure of about 0.2 Torr to form a ZrO2 layer on a HfO2 layer. Other laser sources and configurations can be used as is known by those skilled in the art.
  • FIG. 10 illustrates a flow diagram of elements for an embodiment of a method to process a nanolaminate of HfO2/ZrO2 using atomic layer deposition and jet-vapor deposition, according to the teachings of the present invention. This embodiment of the method includes forming a layer of hafnium oxide on a substrate in a reaction chamber by atomic layer deposition using a HfI4 precursor, at block 1005, and forming a layer of zirconium oxide on the layer of hafnium oxide by jet-vapor deposition to form a HfO2/ZrO2 composite, at block 1010. The HfO2 layer is formed by ALD as discussed in the embodiments above. The ZrO2 layer can be formed using jet-vapor deposition techniques as is known to those skilled in the art.
  • In one embodiment, the jet-vapor deposition zirconium and oxygen vapors are directed to the HfO2 layer out of source nozzles by supersonic Ar jets. Using jet-vapor deposition in a low pressure atmosphere allows for forming the ZrO2 layer at at room temperature. In one embodiment, annealing is performed subsequent to forming the ZrO2 layer at a about 800° C. In one embodiment, the annealing is performed using a nitrogen rapid thermal annealing (RTA). The annealing can be performed after each ZrO2 layer is formed in the composite of alternating layers of the HfO2/ZrO2 nanolaminate and/or at the completion of the HfO2/ZrO2 nanolaminate.
  • In each of the various embodiments for forming ZrO2 layers, the HfO2/ZrO2 nanolaminates can be annealed in a temperature range from between 300° C. to 800° C. Typically the annealing is for a short time and in performed in a nitrogen atmosphere or in some other inert atmosphere.
  • Bulk layers of HfO2 and bulk layers of ZrO2 both have a dielectric constant of about 25. Consequently, a material film composed of bulk layers of HfO2 and ZrO2 will also have a dielectric constant of about 25. However, thin layers of a material, typically, have dielectric constants somewhat less than their bulk counterparts. The reduced value of the dielectric constants for ultra thin material films is due in part to the formation of an interfacial layer between the material film and the substrate. Some materials formed on silicon substrates form a SiO2 interfacial layer, while other materials form an silicide interfacial layer. The material silicide in many cases will have a dielectric greater than SiO2, but less than the bulk material dielectric constant. ZrO2 formed on silicon substrates may result in an interfacial region where silicon diffuses through a layer of ZrO2 to form a poly-silicon/ ZrO2/silicon interfacial region, as reported by C. H. Lee et al., IEDM 2000, 27-30 (2000). Further, nanolaminates of ZrO2/HfO2 were reported to have SiO2 interfacial layer when formed by ALD using ZrCl4 and HfCl4 precursors. See H. Zhang et al., Journal of the Electrochemical Society, vol. 148, no. 4, pp. F63-F66 (2001). To eliminate the SiO2 interfacial layer, Zhang et al. grew ZrO2/HfO2 nanolaminates on nitrated Si substrates producing dielectric constants ranging from 9 to 14 with low leakage currents ranging from 2.2×10−6 to 1.2×10−8 A/cm3 at 1 MV/cm.
  • In the various embodiments according to the teachings of the present invention, HfO2/ZrO2 nanolaminates are formed by ALD of HfO2 on substrates using a HfI4 precursor. Subsequently, a layer of ZrO2 is formed on the HfO2 layer by various deposition techniques. These HfO2/ZrO2 nanolaminates form a stable interface with a silicon substrate. Using ALD, the size and effect of interfacial layer between the silicon substrate and the first HfO2 layer will depend on the reactivity of the HfO2 in forming an abrupt transition from silicon surface to HfO2 layer. Consequently, dielectric films containing HfO2/ZrO2 nanolaminates can have dielectric constants ranging from 9 or 10 to 25. Additionally, forming the HfO2 layer at relatively low temperatures provides a means for enabling the formation of HfO2/ZrO2 nanolaminates that are amorphous.
  • Another factor setting a lower limit for the scaling of a dielectric layer is the number of monolayers of the dielectric structure necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer on the dielectric layer or film. This requirement is necessary to avoid possible short circuit effects between the underlying silicon layer and the overlying conductive layer used. In one embodiment, for several HfO2 monolayers and several ZrO2 monolayers forming a nanolaminate, an expected lower limit for the physical thickness of a dielectric layer grown by forming HfO2/ZrO2 nanolaminates is anticipated to be in about the 2-4 nm range. Consequently, typical dielectric layers or films can be grown by forming HfO2/ZrO2 nanolaminates having physical thickness in the range of 4 to 10 nm. HfO2 used as the initial layer is expected to provide excellent overall results with respect to reliability, current leakage, and ultra-thin teq. Further, using ALD for processing all layers of a HfO2/ZrO2 nanolaminate, the transitions between such oxide layers can be engineered to be abrupt or graded. Thus, the number of layers used, the thickness of each layer, and the nature of the interface between each layer can be engineered to provide the desired electrical characteristics.
  • With HfO2 layers formed by ALD and ZrO2 layers formed according to one of the various embodiments described herein, HfO2/ZrO2 nanolaminates can have a wide range of thicknesses and dielectric constants. The physical thicknesses can range from about 2 nm to about 10 nm with typical thickness ranging from about 4 nm to about 10 nm. Such layers have an effective dielectric constant ranging from 9 or 10 to 25. The expected teq ranges for various effective dielectric constants are shown in the following:
    Physical Thickness Physical Thickness Physical Thickness
    t = 0.5 nm (5 Å) t = 1.0 nm (10 Å) t = 5.0 nm (50 Å)
    κ teq (Å) teq (Å) teq (Å)
    9 2.17 4.33 21.67
    17 1.15 2.29 11.47
    21 .93 1.86 9.29
    25 .78 1.56 7.8
  • As mentioned, the lower limit on the scaling of a layer containing HfO2/ZrO2 nanolaminates depends on the monolayers of the film necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer to the HfO2/ZrO2 nanolaminate film. From above, it is apparent that a film containing HfO2/ZrO2 nanolaminates can be attained with a teq ranging from 3 Å to 12 Å. Further, a dielectric film with completely formed band structures and monolayer formations can provide a teq significantly less than 2 or 3 Å.
  • The novel process described above provides significant advantages by performing atomic layer deposition of HfO2/ZrO2 in a hafnium sequence using HfI4 precursors followed by the formation of a ZrO2 layer on the HfO2 layer. Further, by independently controlling the various parameters for each sequence a gate dielectric with a selected dielectric constant can be formed. Additionally, the novel process can be implemented to form transistors, memory devices, and information handling devices. With careful preparation and engineering of the HfO2/ZrO2 nanolaminates limiting the size of interfacial regions, a teq down to 2.5 Å or lower is anticipated.
  • A transistor 100 as depicted in FIG. 1 can be formed by forming a source/drain region 120 and another source/drain region 130 in a silicon based substrate 110 where the two source/ drain regions 120, 130 are separated by a body region 132. The body region 132 separated by the source/drain 120 and the source/drain 130 defines a channel having a channel length 134. A dielectric film is formed on the substrate 110 by forming a layer of hafnium oxide on substrate 110 in a reaction chamber by atomic layer deposition using a HfI4 precursor and forming a layer of zirconium oxide on the layer of hafnium oxide to form a HfO2/ZrO2 composite. The resulting HfO2/ZrO2 composite is a nanolaminate. These HfO2/ZrO2 nanolaminates can be formed using any of the various embodiments previously discussed. These HfO2/ZrO2 nanolaminates are contained in a dielectric film defining the gate dielectric 140.
  • A gate is formed over the gate dielectric 140. Typically, forming the gate includes forming a polysilicon layer, though a metal gate can be formed in an alternative process. Forming the substrate, source/region regions, and the gate is performed using standard processes known to those skilled in the art. Additionally, the sequencing of the various elements of the process for forming a transistor is conducted with standard fabrication processes, also as known to those skilled in the art.
  • Embodiments of the method of forming HfO2/ZrO2 nanolaminates as a gate dielectric can be applied to other transistor structures having dielectric layers. For example, FIG. 11 shows an embodiment of a configuration of a transistor capable of being fabricated, according to the teachings of the present invention. The transistor 1100 includes a silicon based substrate 1110 with two source/ drain regions 1120, 1130 separated by a body region 1132. The body region 1132 between the two source/ drain regions 1120, 1130 defines a channel region having a channel length 1134. Located above the body region 1132 is a stack 1155 including a gate dielectric 1140, a floating gate 1152, a floating gate dielectric 1142, and control gate 1150. The gate dielectric 1140 containing HfO2/ZrO2 nanolaminates is formed according to the teachings of the present invention as described above with the remaining elements of the transistor 1100 formed using processes known to those skilled in the art. Alternately, both the gate dielectric 1140 and the floating gate dielectric 1142 can be formed containing HfO2/ZrO2 nanolaminates, in accordance with the present invention as described above.
  • Transistors created by the methods described above may be implemented into memory devices and electronic systems including information handling devices. Information handling devices having a dielectric layer containing HfO2/ZrO2 nanolaminates can be constructed using various embodiments of the methods described above. Such information devices can include wireless systems, telecommunication systems, and computers. An embodiment of a computer having a dielectric layer containing HfO2/ZrO2 nanolaminates is shown in FIGS. 12-14 and described below. While specific types of memory devices and computing devices are shown below, it will be recognized by one skilled in the art that several types of memory devices and electronic systems including information handling devices utilize the invention.
  • FIG. 12 shows an embodiment of a personal computer 1200 incorporating devices, according to the teachings of the present invention. Personal computer 1200 includes a monitor 1201, keyboard input 1202 and a central processing unit 1204.
  • FIG. 13 illustrates a schematic view of an embodiment of a central processing unit 1204 incorporating devices, according to the teachings of the present invention. The central processing unit 1204 typically includes microprocessor 1306, memory bus circuit 1308 having a plurality of memory slots 1312(a-n), and other peripheral circuitry 1310. Peripheral circuitry 1310 permits various peripheral devices 1324 to interface processor-memory bus 1320 over input/output (I/O) bus 1322. The personal computer 1200 shown in FIGS. 12 and 13 also includes at least one transistor having a gate dielectric containing HfO2/ZrO2 nanolaminates in an embodiment according to the teachings of the present invention.
  • Microprocessor 1306 produces control and address signals to control the exchange of data between memory bus circuit 1308 and microprocessor 1306 and between memory bus circuit 1308 and peripheral circuitry 1310. This exchange of data is accomplished over high speed memory bus 1320 and over high speed I/O bus 1322.
  • Coupled to memory bus 1320 are a plurality of memory slots 1312(a-n) which receive memory devices well known to those skilled in the art. For example, single in-line memory modules (SIMMs) and dual in-line memory modules (DIMMs) may be used in the implementation of the present invention.
  • These memory devices can be produced in a variety of designs which provide different methods of reading from and writing to the dynamic memory cells of memory slots 1312. One such method is the page mode operation. Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed. Page mode DRAMs require access steps which limit the communication speed of memory circuit 1308.
  • An alternate type of device is the extended data output (EDO) memory which allows data stored at a memory array address to be available as output after the addressed column has been closed. This memory can increase some communication speeds by allowing shorter access signals without reducing the time in which memory output data is available on memory bus 1320. Other alternative types of devices include SDRAM, DDR SDRAM, SLDRAM and Direct RDRAM as well as others such as SRAM or Flash memories.
  • FIG. 14 illustrates a schematic view of an embodiment of a DRAM memory device 1400 according to the teachings of the present invention. DRAM device 1400 is compatible with memory slots 1312(a-n). The description of DRAM 1400 has been simplified for purposes of illustrating a DRAM memory device and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices may be used in the implementation of the present invention. The example of a DRAM memory device shown in FIG. 14 includes at least one transistor having a gate dielectric containing HfO2/ZrO2 nanolaminates in an embodiment according to the teachings of the present invention.
  • Control, address and data information provided over memory bus 1320 is further represented by individual inputs to DRAM 1400, as shown in FIG. 14. These individual representations are illustrated by data lines 1402, address lines 1404 and various discrete lines directed to control logic 1406.
  • As is well known in the art, DRAM 1400 includes memory array 1410 which in turn comprises rows and columns of addressable memory cells. Each memory cell in a row is coupled to a common word line. The word line is coupled to gates of individual transistors, where at least one transistor has a gate coupled to a gate dielectric containing HfO2/ZrO2 nanolaminates in accordance with the method and structure previously described above. Additionally, each memory cell in a column is coupled to a common bit line. Each cell in memory array 1410 includes a storage capacitor and an access transistor as is conventional in the art.
  • DRAM 1400 interfaces with, for example, microprocessor 1306 through address lines 1404 and data lines 1402. Alternatively, DRAM 1400 may interface with a DRAM controller, a micro-controller, a chip set or other electronic system. Microprocessor 1306 also provides a number of control signals to DRAM 1400, including but not limited to, row and column address strobe signals RAS and CAS, write enable signal WE, an output enable signal OE and other conventional control signals.
  • Row address buffer 1412 and row decoder 1414 receive and decode row addresses from row address signals provided on address lines 1404 by microprocessor 1306. Each unique row address corresponds to a row of cells in memory array 1410. Row decoder 1414 includes a word line driver, an address decoder tree, and circuitry which translates a given row address received from row address buffers 1412 and selectively activates the appropriate word line of memory array 1410 via the word line drivers.
  • Column address buffer 1416 and column decoder 1418 receive and decode column address signals provided on address lines 1404. Column decoder 1418 also determines when a column is defective and the address of a replacement column. Column decoder 1418 is coupled to sense amplifiers 1420. Sense amplifiers 1420 are coupled to complementary pairs of bit lines of memory array 1410.
  • Sense amplifiers 1420 are coupled to data-in buffers 1422 and data-out buffers 1424. Data-in buffers 1422 and data-out buffers 1424 are coupled to data lines 1402. During a write operation, data lines 1402 provide data to data-in buffers 1422. Sense amplifier 1420 receives data from data-in buffers 1422 and stores the data in memory array 1410 as a charge on a capacitor of a cell at an address specified on address lines 1404.
  • During a read operation, DRAM 1400 transfers data to microprocessor 1306 from memory array 1410. Complementary bit lines for the accessed cell are equilibrated during a precharge operation to a reference voltage provided by an equilibration circuit and a reference voltage supply. The charge stored in the accessed cell is then shared with the associated bit lines. A sense amplifier of sense amplifiers 1420 detects and amplifies a difference in voltage between the complementary bit lines. The sense amplifier passes the amplified voltage to data-out buffers 1424.
  • Control logic 1406 is used to control the many available functions of DRAM 1400. In addition, various control circuits and signals not detailed herein initiate and synchronize DRAM 1400 operation as known to those skilled in the art. As stated above, the description of DRAM 1400 has been simplified for purposes of illustrating the present invention and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices, including but not limited to, SDRAMs, SLDRAMs, RDRAMs and other DRAMs and SRAMs, VRAMs and EEPROMs, may be used in the implementation of the present invention. The DRAM implementation described herein is illustrative only and not intended to be exclusive or limiting.
  • Conclusion
  • A gate dielectric containing HfO2/ZrO2 nanolaminates and a method of fabricating such a gate produces a reliable gate dielectric having an equivalent oxide thickness thinner than attainable using SiO2. Gate dielectrics containing HfO2/ZrO2 nanolaminates formed using the methods described herein are thermodynamically stable such that the gate dielectrics formed will have minimal reactions with a silicon substrate or other structures during processing.
  • Transistors, higher level ICs or devices, and systems are constructed utilizing the novel process for forming a gate dielectric having an ultra thin equivalent oxide thickness, teq. Gate dielectric layers or films containing HfO2/ZrO2 nanolaminates are formed having a high dielectric constant (κ), where the gate dielectrics are capable of a teq thinner than 10 Å, thinner than the expected limit for SiO2 gate dielectrics. At the same time, the physical thickness of the HfO2/ZrO2 nanolaminates is much larger than the SiO2 thickness associated with the teq limit of SiO2. Forming the larger thickness provides advantages in processing the gate dielectric. Further, HfO2/ZrO2 nanolaminates processed in relatively low temperatures can provide amorphous dielectric films having relatively low leakage current for use as dielectric layers in electronic devices and systems.
  • Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (33)

1. A method comprising:
forming a layer of hafnium oxide by layering one or more individual monolayers of hafnium oxide;
forming a layer of zirconium oxide on the layer of hafnium oxide to form a nanolaminate including the layer of hafnium oxide and the layer of zirconium oxide, wherein the layer of zirconium oxide is formed by chemical vapor deposition.
2. The method of claim 1, wherein the method includes forming the layer of hafnium oxide as an initial layer of the nanolaminate and forming another layer of hafnium oxide as the final layer of the nanolaminate.
3. The method of claim 1, wherein forming a layer of hafnium oxide by layering one or more individual monolayers includes forming the layer of hafnium oxide by atomic layer deposition.
4. The method of claim 3, wherein forming the layer of hafnium oxide by atomic layer deposition includes using a HfI4 precursor in the atomic layer deposition.
5. The method of claim 1, wherein the method includes forming the nanolaminate as a gate dielectric in a transistor.
6. The method of claim 1, wherein the method includes forming the nanolaminate as a floating gate dielectric in a transistor.
7. The method of claim 1, wherein the method includes forming the nanolaminate as a dielectric in a transistor of a memory array in a memory device.
8. The method of claim 7, wherein the method includes providing a bus to couple the memory device to a processor in an electronic system.
9. A method comprising:
forming a dielectric film on a substrate, the dielectric layer having a hafnium oxide/zirconium oxide nanolaminate, the hafnium oxide/zirconium oxide nanolaminate fabricated by
forming a layer of hafnium oxide by layering one or more individual monolayers of hafnium oxide;
forming a layer of zirconium oxide on the layer of hafnium oxide, the layer of zirconium oxide formed by chemical vapor deposition.
10. The method of claim 9, wherein the method includes forming the layer of hafnium oxide as an initial layer of the nanolaminate on the substrate and forming another layer of hafnium oxide as the final layer of the nanolaminate.
11. The method of claim 9, wherein forming a layer of hafnium oxide by layering one or more individual monolayers includes forming the layer of hafnium oxide by atomic layer deposition.
12. The method of claim 9, wherein forming a layer of zirconium oxide includes forming a layer of zirconium oxide by rapid thermal chemical vapor deposition.
13. The method of claim 9, wherein the method further includes annealing the dielectric film after forming the layer of zirconium oxide.
14. The method of claim 9, wherein forming a layer of hafnium oxide on a substrate by atomic layer deposition includes pulsing a first oxygen containing precursor into the reaction chamber after pulsing a HfI4 precursor into the reaction chamber.
15. The method of claim 14, wherein pulsing a first oxygen containing precursor includes pulsing water vapor.
16. A method of forming a transistor comprising:
forming first and second source/drain regions in a substrate;
forming a body region between the first and second source/drain regions;
forming a dielectric film above the body region between the first and second source/drain regions, the dielectric film having a nanolaminate containing a layer of hafnium oxide and a layer of zirconium oxide; and
coupling a gate to the dielectric film, wherein forming the nanolaminate includes:
forming the layer of hafnium oxide by layering one or more individual monolayers of hafnium oxide; and
forming the layer of zirconium oxide on the layer of hafnium oxide, wherein the layer of zirconium oxide is formed by chemical vapor deposition.
17. The method of claim 16, wherein the method includes forming the layer of hafnium oxide as an initial layer of the nanolaminate and forming another layer of hafnium oxide as the final layer of the nanolaminate.
18. The method of claim 16, wherein forming a layer of hafnium oxide by layering one or more individual monolayers includes forming the layer of hafnium oxide by atomic layer deposition.
19. The method of claim 18, wherein forming the layer of hafnium oxide by atomic layer deposition includes using a HfI4 precursor in the atomic layer deposition.
20. The method of claim 16, wherein forming a layer of zirconium oxide includes forming the layer of zirconium oxide at about 500° C.
21. The method of claim 16, wherein the method further includes annealing in a nitrogen environment between about 700° C. and about 900° C., after forming the layer of zirconium oxide.
22. The method of claim 16, wherein the method includes forming the dielectric film as a gate dielectric contacting the body region.
23. The method of claim 16, wherein the method includes forming the dielectric film as a floating gate dielectric contacting a floating gate and contacting a control gate.
24. A method of forming a memory comprising:
forming a transistor, the transistor including a dielectric film containing a hafnium oxide/zirconium oxide nanolaminate, the dielectric film formed above a body region between a first source/drain region and a second source/drain region, the hafnium oxide/zirconium oxide nanolaminate formed by:
forming a layer of hafnium oxide by layering one or more individual monolayers of hafnium oxide;
forming a layer of zirconium oxide on the layer of hafnium oxide, the layer of zirconium oxide formed by chemical vapor deposition; and
forming a word line coupled to a gate of the transistor.
25. The method of claim 24, wherein the method includes forming the layer of hafnium oxide as an initial layer of the nanolaminate and forming another layer of hafnium oxide as the final layer of the nanolaminate.
26. The method of claim 24, wherein forming a layer of hafnium oxide by layering one or more individual monolayers includes forming the layer of hafnium oxide by atomic layer deposition.
27. The method of claim 24, wherein forming a layer of hafnium oxide includes using a H2O-H2O2 gas mixture as an oxidizing reactant after pulsing a hafnium-containing precursor to a substrate on which the memory is being structured.
28. The method of claim 24, wherein the method includes forming the transistor in a memory cell and forming a capacitor in the memory cell.
29. A method of forming an electronic system comprising:
providing a processor;
coupling a memory to the processor, the memory including a transistor having a dielectric film containing a hafnium oxide/zirconium oxide nanolaminate, the dielectric film formed above a body region between a first source/drain region and a second source/drain region, the hafnium oxide/zirconium oxide nanolaminate formed by:
forming a layer of hafnium oxide by layering one or more individual monolayers of hafnium oxide;
forming a layer of zirconium oxide on the layer of hafnium oxide, the layer of zirconium oxide formed by chemical vapor deposition; and
providing a bus to couple the processor to the memory.
30. The method of claim 29, wherein the method includes forming the layer of hafnium oxide as an initial layer of the nanolaminate and forming another layer of hafnium oxide as the final layer of the nanolaminate.
31. The method of claim 29, wherein forming a layer of hafnium oxide by layering one or more individual monolayers includes forming the layer of hafnium oxide by atomic layer deposition.
32. The method of claim 29, wherein the method includes forming an information handling system.
33. The method of claim 29, wherein the method includes forming a wireless system.
US11/457,978 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS Abandoned US20060252211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/457,978 US20060252211A1 (en) 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/209,581 US6921702B2 (en) 2002-07-30 2002-07-30 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/148,505 US7169673B2 (en) 2002-07-30 2005-06-09 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/457,978 US20060252211A1 (en) 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/148,505 Division US7169673B2 (en) 2002-07-30 2005-06-09 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics

Publications (1)

Publication Number Publication Date
US20060252211A1 true US20060252211A1 (en) 2006-11-09

Family

ID=31187088

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/209,581 Expired - Lifetime US6921702B2 (en) 2002-07-30 2002-07-30 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/148,505 Expired - Lifetime US7169673B2 (en) 2002-07-30 2005-06-09 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/178,914 Expired - Lifetime US8125038B2 (en) 2002-07-30 2005-07-11 Nanolaminates of hafnium oxide and zirconium oxide
US11/457,978 Abandoned US20060252211A1 (en) 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS
US11/457,987 Abandoned US20060246741A1 (en) 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/209,581 Expired - Lifetime US6921702B2 (en) 2002-07-30 2002-07-30 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/148,505 Expired - Lifetime US7169673B2 (en) 2002-07-30 2005-06-09 Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US11/178,914 Expired - Lifetime US8125038B2 (en) 2002-07-30 2005-07-11 Nanolaminates of hafnium oxide and zirconium oxide

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/457,987 Abandoned US20060246741A1 (en) 2002-07-30 2006-07-17 ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS

Country Status (1)

Country Link
US (5) US6921702B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7670646B2 (en) 2002-05-02 2010-03-02 Micron Technology, Inc. Methods for atomic-layer deposition
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7700989B2 (en) 2005-05-27 2010-04-20 Micron Technology, Inc. Hafnium titanium oxide films
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7719065B2 (en) 2004-08-26 2010-05-18 Micron Technology, Inc. Ruthenium layer for a dielectric layer containing a lanthanide oxide
US7727905B2 (en) 2004-08-02 2010-06-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7867919B2 (en) 2004-08-31 2011-01-11 Micron Technology, Inc. Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer
US7915174B2 (en) 2004-12-13 2011-03-29 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US7923381B2 (en) 2002-12-04 2011-04-12 Micron Technology, Inc. Methods of forming electronic devices containing Zr-Sn-Ti-O films
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7960803B2 (en) 2005-02-23 2011-06-14 Micron Technology, Inc. Electronic device having a hafnium nitride and hafnium oxide film
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US8084370B2 (en) 2006-08-31 2011-12-27 Micron Technology, Inc. Hafnium tantalum oxynitride dielectric
US8084808B2 (en) 2005-04-28 2011-12-27 Micron Technology, Inc. Zirconium silicon oxide films
US8102013B2 (en) 2005-03-29 2012-01-24 Micron Technology, Inc. Lanthanide doped TiOx films
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US8125038B2 (en) 2002-07-30 2012-02-28 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US8154066B2 (en) 2004-08-31 2012-04-10 Micron Technology, Inc. Titanium aluminum oxide films
US8278225B2 (en) 2005-01-05 2012-10-02 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US8445952B2 (en) 2002-12-04 2013-05-21 Micron Technology, Inc. Zr-Sn-Ti-O films
US9496355B2 (en) 2005-08-04 2016-11-15 Micron Technology, Inc. Conductive nanoparticles

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554829B2 (en) * 1999-07-30 2009-06-30 Micron Technology, Inc. Transmission lines for CMOS integrated circuits
US6620723B1 (en) * 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US7068544B2 (en) * 2001-08-30 2006-06-27 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US6900122B2 (en) 2001-12-20 2005-05-31 Micron Technology, Inc. Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics
US6846516B2 (en) * 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US20030235961A1 (en) * 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
US7589029B2 (en) * 2002-05-02 2009-09-15 Micron Technology, Inc. Atomic layer deposition and conversion
US7045430B2 (en) * 2002-05-02 2006-05-16 Micron Technology Inc. Atomic layer-deposited LaAlO3 films for gate dielectrics
US7135421B2 (en) * 2002-06-05 2006-11-14 Micron Technology, Inc. Atomic layer-deposited hafnium aluminum oxide
US7205218B2 (en) 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
US7067439B2 (en) * 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
US20030232501A1 (en) * 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
US6858547B2 (en) 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7221017B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide-conductor nanolaminates
US6884739B2 (en) * 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6790791B2 (en) * 2002-08-15 2004-09-14 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US20040036129A1 (en) * 2002-08-22 2004-02-26 Micron Technology, Inc. Atomic layer deposition of CMOS gates with variable work functions
US7199023B2 (en) * 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US7084078B2 (en) * 2002-08-29 2006-08-01 Micron Technology, Inc. Atomic layer deposited lanthanide doped TiOx dielectric films
US7037863B2 (en) * 2002-09-10 2006-05-02 Samsung Electronics Co., Ltd. Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices
JP4681886B2 (en) * 2003-01-17 2011-05-11 富士通セミコンダクター株式会社 Semiconductor device
US20040266211A1 (en) * 2003-02-28 2004-12-30 Board Of Regents, The University Of Texas System Semiconductor interfaces
US20070262363A1 (en) * 2003-02-28 2007-11-15 Board Of Regents, University Of Texas System Low temperature fabrication of discrete silicon-containing substrates and devices
US7534729B2 (en) * 2003-02-28 2009-05-19 Board Of Regents, The University Of Texas System Modification of semiconductor surfaces in a liquid
US7192892B2 (en) * 2003-03-04 2007-03-20 Micron Technology, Inc. Atomic layer deposited dielectric layers
US7135369B2 (en) * 2003-03-31 2006-11-14 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9
US20040198069A1 (en) * 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
US7183186B2 (en) * 2003-04-22 2007-02-27 Micro Technology, Inc. Atomic layer deposited ZrTiO4 films
US20040212025A1 (en) * 2003-04-28 2004-10-28 Wilman Tsai High k oxide
US6970053B2 (en) * 2003-05-22 2005-11-29 Micron Technology, Inc. Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection
US7192824B2 (en) * 2003-06-24 2007-03-20 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US7456476B2 (en) * 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US20050153571A1 (en) * 2003-11-17 2005-07-14 Yoshihide Senzaki Nitridation of high-k dielectric films
US7154779B2 (en) * 2004-01-21 2006-12-26 Sandisk Corporation Non-volatile memory cell using high-k material inter-gate programming
US7221018B2 (en) * 2004-02-10 2007-05-22 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US7098150B2 (en) * 2004-03-05 2006-08-29 Air Liquide America L.P. Method for novel deposition of high-k MSiON dielectric films
US7154118B2 (en) 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
FR2869325B1 (en) * 2004-04-27 2006-06-16 Commissariat Energie Atomique METHOD FOR DEPOSITING A THIN LAYER ON AN OXIDE LAYER OF A SUBSTRATE
US7312165B2 (en) * 2004-05-05 2007-12-25 Jursich Gregory M Codeposition of hafnium-germanium oxides on substrates used in or for semiconductor devices
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US20060019033A1 (en) * 2004-05-21 2006-01-26 Applied Materials, Inc. Plasma treatment of hafnium-containing materials
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US20060153995A1 (en) * 2004-05-21 2006-07-13 Applied Materials, Inc. Method for fabricating a dielectric stack
US20060062917A1 (en) * 2004-05-21 2006-03-23 Shankar Muthukrishnan Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane
US8323754B2 (en) * 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US7473278B2 (en) * 2004-09-16 2009-01-06 Smith & Nephew, Inc. Method of surface oxidizing zirconium and zirconium alloys and resulting product
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7877112B2 (en) * 2004-11-19 2011-01-25 Nextel Communications Inc. SIM card data transfer system and methods
DE102004058958B4 (en) * 2004-12-08 2006-10-26 Forschungszentrum Jülich GmbH Semiconductor device made of a high band gap material and dielectric constant
US20060125030A1 (en) * 2004-12-13 2006-06-15 Micron Technology, Inc. Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics
US7091568B2 (en) * 2004-12-22 2006-08-15 Freescale Semiconductor, Inc. Electronic device including dielectric layer, and a process for forming the electronic device
US7316962B2 (en) * 2005-01-07 2008-01-08 Infineon Technologies Ag High dielectric constant materials
US7508648B2 (en) * 2005-02-08 2009-03-24 Micron Technology, Inc. Atomic layer deposition of Dy doped HfO2 films as gate dielectrics
US7374964B2 (en) 2005-02-10 2008-05-20 Micron Technology, Inc. Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics
US7399666B2 (en) * 2005-02-15 2008-07-15 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
KR100634262B1 (en) * 2005-03-05 2006-10-13 삼성전자주식회사 Method of manufacturing a semiconductor device having a composite dielectric layer
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US8088676B2 (en) * 2005-04-28 2012-01-03 The Hong Kong University Of Science And Technology Metal-induced crystallization of amorphous silicon, polycrystalline silicon thin films produced thereby and thin film transistors produced therefrom
US20060273370A1 (en) * 2005-06-07 2006-12-07 Micron Technology, Inc. NROM flash memory with vertical transistors and surrounding gates
US7510983B2 (en) 2005-06-14 2009-03-31 Micron Technology, Inc. Iridium/zirconium oxide structure
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
JP2007005534A (en) * 2005-06-23 2007-01-11 Toshiba Corp Semiconductor device
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7195999B2 (en) * 2005-07-07 2007-03-27 Micron Technology, Inc. Metal-substituted transistor gates
KR100640654B1 (en) * 2005-07-16 2006-11-01 삼성전자주식회사 Method of forming zro2 thin film using plasma enhanced atomic layer deposition and method of manufacturing capacitor of semiconductor memory device having the thin film
US20070020890A1 (en) * 2005-07-19 2007-01-25 Applied Materials, Inc. Method and apparatus for semiconductor processing
US7473637B2 (en) 2005-07-20 2009-01-06 Micron Technology, Inc. ALD formed titanium nitride films
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US20070049043A1 (en) * 2005-08-23 2007-03-01 Applied Materials, Inc. Nitrogen profile engineering in HI-K nitridation for device performance enhancement and reliability improvement
US7402534B2 (en) * 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US7393736B2 (en) * 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US8071476B2 (en) 2005-08-31 2011-12-06 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US7410910B2 (en) * 2005-08-31 2008-08-12 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US7214994B2 (en) * 2005-08-31 2007-05-08 Micron Technology, Inc. Self aligned metal gates on high-k dielectrics
US20070059945A1 (en) * 2005-09-12 2007-03-15 Nima Mohklesi Atomic layer deposition with nitridation and oxidation
US20070065578A1 (en) * 2005-09-21 2007-03-22 Applied Materials, Inc. Treatment processes for a batch ALD reactor
FR2890982B1 (en) * 2005-09-21 2008-05-02 St Microelectronics Sa METHOD FOR PRODUCING A DIELECTRIC LAYER ON A CARRIER MATERIAL AND AN INTEGRATED CIRCUIT COMPRISING A CAPACITOR INCORPORATING A DIELECTRIC LAYER
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
TW200720499A (en) * 2005-11-24 2007-06-01 Univ Nat Tsing Hua Manufacturing method of substrate used for forming MOSFET device and products thereof
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7972974B2 (en) 2006-01-10 2011-07-05 Micron Technology, Inc. Gallium lanthanide oxide films
US20070164323A1 (en) * 2006-01-18 2007-07-19 Micron Technology, Inc. CMOS gates with intermetallic compound tunable work functions
US8273407B2 (en) * 2006-01-30 2012-09-25 Bergendahl Albert S Systems and methods for forming magnetic nanocomposite materials
US7964514B2 (en) * 2006-03-02 2011-06-21 Applied Materials, Inc. Multiple nitrogen plasma treatments for thin SiON dielectrics
US7582161B2 (en) 2006-04-07 2009-09-01 Micron Technology, Inc. Atomic layer deposited titanium-doped indium oxide films
US20070252299A1 (en) * 2006-04-27 2007-11-01 Applied Materials, Inc. Synchronization of precursor pulsing and wafer rotation
US7798096B2 (en) * 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US20070281105A1 (en) * 2006-06-02 2007-12-06 Nima Mokhlesi Atomic Layer Deposition of Oxides Using Krypton as an Ion Generating Feeding Gas
KR20090038461A (en) * 2006-07-21 2009-04-20 린드 인코포레이티드 Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7727908B2 (en) 2006-08-03 2010-06-01 Micron Technology, Inc. Deposition of ZrA1ON films
US7985995B2 (en) * 2006-08-03 2011-07-26 Micron Technology, Inc. Zr-substituted BaTiO3 films
US7749879B2 (en) 2006-08-03 2010-07-06 Micron Technology, Inc. ALD of silicon films on germanium
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US7563730B2 (en) 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
US7432548B2 (en) 2006-08-31 2008-10-07 Micron Technology, Inc. Silicon lanthanide oxynitride films
US7544604B2 (en) 2006-08-31 2009-06-09 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US20080087890A1 (en) * 2006-10-16 2008-04-17 Micron Technology, Inc. Methods to form dielectric structures in semiconductor devices and resulting devices
KR100819002B1 (en) * 2006-10-20 2008-04-02 삼성전자주식회사 Method for fabricating non-volatile memory device
US7875559B2 (en) * 2007-01-09 2011-01-25 Electronics And Telecommunications Research Institute Method of manufacturing P-type ZnO semiconductor layer using atomic layer deposition and thin film transistor including the P-type ZnO semiconductor layer
US7498230B2 (en) * 2007-02-13 2009-03-03 Micron Technology, Inc. Magnesium-doped zinc oxide structures and methods
US7833913B2 (en) * 2007-03-20 2010-11-16 Tokyo Electron Limited Method of forming crystallographically stabilized doped hafnium zirconium based films
KR100805018B1 (en) * 2007-03-23 2008-02-20 주식회사 하이닉스반도체 Method of manufacturing in semiconductor device
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
US8017182B2 (en) * 2007-06-21 2011-09-13 Asm International N.V. Method for depositing thin films by mixed pulsed CVD and ALD
US7910497B2 (en) * 2007-07-30 2011-03-22 Applied Materials, Inc. Method of forming dielectric layers on a substrate and apparatus therefor
US20090085082A1 (en) * 2007-09-27 2009-04-02 Gilbert Dewey Controlled intermixing of hfo2 and zro2 dielectrics enabling higher dielectric constant and reduced gate leakage
US8673080B2 (en) 2007-10-16 2014-03-18 Novellus Systems, Inc. Temperature controlled showerhead
GB2455991B (en) * 2007-12-28 2010-12-01 Hauzer Techno Coating Bv A method of giving an article a coloured appearance and an article having a coloured appearance
GB2455993B (en) * 2007-12-28 2012-09-05 Hauzer Techno Coating Bv A corrosion resistant coated article
WO2009093171A1 (en) * 2008-01-23 2009-07-30 Nxp B.V. Improved phase control in hf- or zr-based high-k oxides
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
KR101451716B1 (en) * 2008-08-11 2014-10-16 도쿄엘렉트론가부시키가이샤 Film forming method and film forming apparatus
US8491967B2 (en) * 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8361381B2 (en) * 2008-09-25 2013-01-29 Smith & Nephew, Inc. Medical implants having a porous coated surface
US8106487B2 (en) * 2008-12-23 2012-01-31 Pratt & Whitney Rocketdyne, Inc. Semiconductor device having an inorganic coating layer applied over a junction termination extension
SG192967A1 (en) 2011-03-04 2013-09-30 Novellus Systems Inc Hybrid ceramic showerhead
US20120282783A1 (en) * 2011-05-03 2012-11-08 Jui-Chen Chang Method for fabricating high-k dielectric layer
EP2628817B1 (en) 2012-02-15 2016-11-02 IHI Hauzer Techno Coating B.V. A coated article of martensitic steel and a method of forming a coated article of steel
EP2628822B1 (en) 2012-02-15 2015-05-20 IHI Hauzer Techno Coating B.V. Current insulated bearing components and bearings
US9478627B2 (en) * 2012-05-18 2016-10-25 United Microelectronics Corp. Semiconductor structure and process thereof
US9984874B2 (en) 2013-12-18 2018-05-29 Imec Vzw Method of producing transition metal dichalcogenide layer
US10741365B2 (en) 2014-05-05 2020-08-11 Lam Research Corporation Low volume showerhead with porous baffle
KR102264257B1 (en) * 2014-12-30 2021-06-14 삼성전자주식회사 Method of forming a layer band method of manufacturing a semiconductor device using the same
EP3231007B1 (en) 2015-01-30 2021-04-14 Hewlett-Packard Development Company, L.P. Atomic layer deposition passivation for via
US10378107B2 (en) * 2015-05-22 2019-08-13 Lam Research Corporation Low volume showerhead with faceplate holes for improved flow uniformity
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead
WO2018017360A2 (en) 2016-07-19 2018-01-25 Applied Materials, Inc. High-k dielectric materials comprising zirconium oxide utilized in display devices
US10816891B2 (en) 2016-12-14 2020-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Photomask and fabrication method therefor
CN106835020B (en) * 2017-01-03 2019-05-17 中国科学院上海光学精密机械研究所 Reduce hafnium oxide-silicon oxide multi-layer surface roughness method
US10668511B2 (en) * 2018-03-20 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of cleaning process chamber
US11417517B2 (en) 2019-05-03 2022-08-16 Applied Materials, Inc. Treatments to enhance material structures
US10872763B2 (en) 2019-05-03 2020-12-22 Applied Materials, Inc. Treatments to enhance material structures
US11424271B2 (en) * 2019-08-23 2022-08-23 University Of Florida Research Foundation, Inc. Ferroelectricity and thermal retention through in situ hydrogen plasma treatment of doped hafnium oxide
KR20210037973A (en) * 2019-09-30 2021-04-07 삼성전자주식회사 Thin film structure and electronic device including the same
KR20210047119A (en) 2019-10-21 2021-04-29 삼성전자주식회사 Method of manufacturing a metal nitride layer and electronic device including the metal nitride layer
US11271097B2 (en) 2019-11-01 2022-03-08 Applied Materials, Inc. Cap oxidation for FinFET formation
KR20210140858A (en) 2020-05-14 2021-11-23 삼성전자주식회사 Semiconductor device
US11145710B1 (en) 2020-06-26 2021-10-12 Micron Technology, Inc. Electrode/dielectric barrier material formation and structures
CN115968501A (en) * 2020-07-16 2023-04-14 恩特格里斯公司 Carbon-free laminated hafnium oxide/zirconium oxide film for ferroelectric memory
US11706928B2 (en) 2020-10-30 2023-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method for fabricating the same

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491482A (en) * 1982-03-29 1985-01-01 Kureha Kagaku Kogyo Kabushiki Kaisha Powdery material of minute composite ceramic particles having a dual structure and a process and an apparatus producing thereof
US4636833A (en) * 1983-03-18 1987-01-13 Hitachi, Ltd. Semiconductor device
US4647947A (en) * 1982-03-15 1987-03-03 Tokyo Shibaura Denki Kabushiki Kaisha Optical protuberant bubble recording medium
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5100825A (en) * 1990-11-16 1992-03-31 Micron Technology, Inc. Method of making stacked surrounding reintrant wall capacitor
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6044016A (en) * 1997-05-15 2000-03-28 Sony Corporation Nand-type semiconductor memory device
US6171900B1 (en) * 1999-04-15 2001-01-09 Taiwan Semiconductor Manufacturing Company CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6206972B1 (en) * 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6207589B1 (en) * 1999-07-19 2001-03-27 Sharp Laboratories Of America, Inc. Method of forming a doped metal oxide dielectric film
US20020000593A1 (en) * 2000-06-27 2002-01-03 Akira Nishiyama Semiconductor device and method of manufacturing the same
US20020001971A1 (en) * 2000-06-27 2002-01-03 Hag-Ju Cho Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same
US20020014647A1 (en) * 2000-07-07 2002-02-07 Infineon Technologies Ag Trench capacitor with isolation collar and corresponding method of production
US6348386B1 (en) * 2001-04-16 2002-02-19 Motorola, Inc. Method for making a hafnium-based insulating film
US6352591B1 (en) * 1996-11-13 2002-03-05 Applied Materials, Inc. Methods and apparatus for shallow trench isolation
US20020028541A1 (en) * 2000-08-14 2002-03-07 Lee Thomas H. Dense arrays and charge storage devices, and methods for making same
US20030003635A1 (en) * 2001-05-23 2003-01-02 Paranjpe Ajit P. Atomic layer deposition for fabricating thin films
US6509280B2 (en) * 2001-02-22 2003-01-21 Samsung Electronics Co., Ltd. Method for forming a dielectric layer of a semiconductor device
US20030017717A1 (en) * 2001-07-18 2003-01-23 Ahn Kie Y. Methods for forming dielectric materials and methods for forming semiconductor devices
US6511873B2 (en) * 2001-06-15 2003-01-28 International Business Machines Corporation High-dielectric constant insulators for FEOL capacitors
US6514828B2 (en) * 2001-04-20 2003-02-04 Micron Technology, Inc. Method of fabricating a highly reliable gate oxide
US6521911B2 (en) * 2000-07-20 2003-02-18 North Carolina State University High dielectric constant metal silicates formed by controlled metal-surface reactions
US20030040196A1 (en) * 2001-08-27 2003-02-27 Lim Jung Wook Method of forming insulation layer in semiconductor devices for controlling the composition and the doping concentration
US6528858B1 (en) * 2002-01-11 2003-03-04 Advanced Micro Devices, Inc. MOSFETs with differing gate dielectrics and method of formation
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US6537613B1 (en) * 2000-04-10 2003-03-25 Air Products And Chemicals, Inc. Process for metal metalloid oxides and nitrides with compositional gradients
US20040004859A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20040012043A1 (en) * 2002-07-17 2004-01-22 Gealy F. Daniel Novel dielectric stack and method of making same
US20040023516A1 (en) * 2001-10-02 2004-02-05 Londergan Ana R. Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US20040038525A1 (en) * 2002-08-26 2004-02-26 Shuang Meng Enhanced atomic layer deposition
US20040043604A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using disilazanes
US20040043600A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using organic amines
US20040040494A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming strontium- and/or barium-containing layers
US20040040501A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming zirconium and/or hafnium-containing layers
US20040043151A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming tantalum silicide layers
US20050009368A1 (en) * 2003-07-07 2005-01-13 Vaartstra Brian A. Methods of forming a phosphorus doped silicon dioxide comprising layer, and methods of forming trench isolation in the fabrication of integrated circuitry
US20050009266A1 (en) * 2002-08-28 2005-01-13 Micron Technology, Inc. Systems and methods for forming refractory metal oxide layers
US6844604B2 (en) * 2001-02-02 2005-01-18 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US20050019978A1 (en) * 2002-08-28 2005-01-27 Micron Technology, Inc. Systems and methods for forming tantalum oxide layers and tantalum precursor compounds
US6849908B2 (en) * 2003-02-26 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20050023595A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory devices with asymmetrical tunnel barriers
US20050023574A1 (en) * 2002-07-08 2005-02-03 Micron Technology, Inc. Memory utilizing oxide-nitride nanolaminates
US20050026349A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US20050023603A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators
US20050023602A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers
US20050037574A1 (en) * 2002-03-27 2005-02-17 Fujitsu Limited Semiconductor memory device and manufacturing method thereof
US6858444B2 (en) * 2001-03-15 2005-02-22 Micron Technology, Inc. Method for making a ferroelectric memory transistor
US6858546B2 (en) * 2001-08-03 2005-02-22 Asm International, Nv Method of depositing rare earth oxide thin films
US6984592B2 (en) * 2002-08-28 2006-01-10 Micron Technology, Inc. Systems and methods for forming metal-doped alumina
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
US6989565B1 (en) * 2002-04-15 2006-01-24 Lsi Logic Corporation Memory device having an electron trapping layer in a high-K dielectric gate stack
US20060019453A1 (en) * 2004-02-10 2006-01-26 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20060033144A1 (en) * 2004-08-11 2006-02-16 Micron Technology, Inc. Non-planar flash memory array with shielded floating gates on silicon mesas
US7005697B2 (en) * 2002-06-21 2006-02-28 Micron Technology, Inc. Method of forming a non-volatile electron storage memory and the resulting device
US7157769B2 (en) * 2003-12-18 2007-01-02 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
US20070006798A1 (en) * 2002-08-28 2007-01-11 Micron Technology, Inc. Systems and methods for forming strontium-and/or barium-containing layers
US7164168B2 (en) * 2004-08-03 2007-01-16 Micron Technology, Inc. Non-planar flash memory having shielding between floating gates
US20070018214A1 (en) * 2005-07-25 2007-01-25 Micron Technology, Inc. Magnesium titanium oxide films
US20070020856A1 (en) * 2005-07-25 2007-01-25 Freescale Semiconductor, Inc. Process for forming an electronic device including discontinuous storage elements
US7316962B2 (en) * 2005-01-07 2008-01-08 Infineon Technologies Ag High dielectric constant materials
US7323424B2 (en) * 2004-06-29 2008-01-29 Micron Technology, Inc. Semiconductor constructions comprising cerium oxide and titanium oxide
US7323423B2 (en) * 2004-06-30 2008-01-29 Intel Corporation Forming high-k dielectric layers on smooth substrates
US20080029790A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. ALD of silicon films on germanium
US20080032465A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. Deposition of ZrAION films
US20080032424A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. ALD of Zr-substituted BaTiO3 films as gate dielectrics
US7332442B2 (en) * 2003-04-29 2008-02-19 Micron Technology, Inc. Systems and methods for forming metal oxide layers
US20080048225A1 (en) * 2006-08-25 2008-02-28 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20090004801A1 (en) * 2007-06-28 2009-01-01 Micron Technology, Inc. Method of forming lutetium and lanthanum dielectric structures
US20090032910A1 (en) * 2004-12-13 2009-02-05 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US7494939B2 (en) * 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US20100004771A1 (en) * 2005-05-04 2010-01-07 Abb Patent Gmbh Method and System for Corrective Planning and Optimization of Processing Processes
US20100006918A1 (en) * 2005-12-08 2010-01-14 Ahn Kie Y Hafnium tantalum titanium oxide films
US20100029054A1 (en) * 2005-01-05 2010-02-04 Ahn Kie Y Hafnium tantalum oxide dielectrics
US20100035749A1 (en) * 2008-08-08 2010-02-11 Ji-Won Choi Dielectric Thin Film Composition Showing Linear Dielectric Properties
US7662729B2 (en) * 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7863667B2 (en) * 2003-04-22 2011-01-04 Micron Technology, Inc. Zirconium titanium oxide films
US20110014767A1 (en) * 2001-12-20 2011-01-20 Ahn Kie Y LOW-TEMPERATURE GROWN HIGH QUALITY ULTRA-THIN CoTiO3 GATE DIELECTRICS
US8093666B2 (en) * 2005-12-08 2012-01-10 Micron Technology, Inc. Lanthanide yttrium aluminum oxide dielectric films
US20120015488A1 (en) * 2001-08-30 2012-01-19 Ahn Kie Y High-k gate dielectric oxide
US8102013B2 (en) * 2005-03-29 2012-01-24 Micron Technology, Inc. Lanthanide doped TiOx films
US8110469B2 (en) * 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US8125038B2 (en) * 2002-07-30 2012-02-28 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US20130012034A1 (en) * 2004-08-02 2013-01-10 Ahn Kie Y Zirconium-doped tantalum oxide films

Family Cites Families (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2501563A (en) * 1946-02-20 1950-03-21 Libbey Owens Ford Glass Co Method of forming strongly adherent metallic compound films by glow discharge
FI118158B (en) * 1999-10-15 2007-07-31 Asm Int Process for modifying the starting chemical in an ALD process
US3381114A (en) 1963-12-28 1968-04-30 Nippon Electric Co Device for manufacturing epitaxial crystals
SE393967B (en) * 1974-11-29 1977-05-31 Sateko Oy PROCEDURE AND PERFORMANCE OF LAYING BETWEEN THE STORAGE IN A LABOR PACKAGE
US4215156A (en) 1977-08-26 1980-07-29 International Business Machines Corporation Method for fabricating tantalum semiconductor contacts
FI57975C (en) 1979-02-28 1980-11-10 Lohja Ab Oy OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY
US4333808A (en) 1979-10-30 1982-06-08 International Business Machines Corporation Method for manufacture of ultra-thin film capacitor
GB2085166A (en) 1980-10-07 1982-04-21 Itt Ind Ltd Semiconductor gas sensor
US4608215A (en) 1983-12-23 1986-08-26 Allied Corporation Preparation of ceramics
US4641313A (en) * 1984-06-15 1987-02-03 Monash University Room temperature metal vapour laser
DE3445251A1 (en) 1984-12-12 1986-06-12 Dornier System Gmbh, 7990 Friedrichshafen ELECTRICALLY CONDUCTIVE CERAMICS
US4590042A (en) 1984-12-24 1986-05-20 Tegal Corporation Plasma reactor having slotted manifold
US4920071A (en) 1985-03-15 1990-04-24 Fairchild Camera And Instrument Corporation High temperature interconnect system for an integrated circuit
JPS62199019A (en) 1986-02-27 1987-09-02 Oki Electric Ind Co Ltd Wafer treatment device
DE3606959A1 (en) 1986-03-04 1987-09-10 Leybold Heraeus Gmbh & Co Kg DEVICE FOR PLASMA TREATMENT OF SUBSTRATES IN A PLASMA DISCHARGE EXCITED BY HIGH FREQUENCY
JPH029115A (en) 1988-06-28 1990-01-12 Mitsubishi Electric Corp Semiconductor manufacturing equipment
DE69030365T2 (en) 1989-12-22 1997-10-23 Sumitomo Electric Industries Method for producing a superconducting microwave component
US5055319A (en) * 1990-04-02 1991-10-08 The Regents Of The University Of California Controlled high rate deposition of metal oxide films
US6110529A (en) 1990-07-06 2000-08-29 Advanced Tech Materials Method of forming metal films on a substrate by chemical vapor deposition
US5840897A (en) 1990-07-06 1998-11-24 Advanced Technology Materials, Inc. Metal complex source reagents for chemical vapor deposition
JPH0590169A (en) 1991-09-25 1993-04-09 Hitachi Ltd Gas feeder, and microwave plasma film forming device equipped with same
EP0540993A1 (en) 1991-11-06 1993-05-12 Ramtron International Corporation Structure and fabrication of high transconductance MOS field effect transistor using a buffer layer/ferroelectric/buffer layer stack as the gate dielectric
US5302461A (en) 1992-06-05 1994-04-12 Hewlett-Packard Company Dielectric films for use in magnetoresistive transducers
US5592415A (en) 1992-07-06 1997-01-07 Hitachi, Ltd. Non-volatile semiconductor memory
US5572052A (en) 1992-07-24 1996-11-05 Mitsubishi Denki Kabushiki Kaisha Electronic device using zirconate titanate and barium titanate ferroelectrics in insulating layer
JP3328389B2 (en) 1993-09-14 2002-09-24 康夫 垂井 Manufacturing method of ferroelectric thin film
JPH07263751A (en) * 1994-03-24 1995-10-13 Sharp Corp Ii-vi compound semiconductor device and manufacture of it
US5828080A (en) 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US5822256A (en) 1994-09-06 1998-10-13 Intel Corporation Method and circuitry for usage of partially functional nonvolatile memory
US5625233A (en) 1995-01-13 1997-04-29 Ibm Corporation Thin film multi-layer oxygen diffusion barrier consisting of refractory metal, refractory metal aluminide, and aluminum oxide
US5749937A (en) * 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
KR0164072B1 (en) 1995-11-13 1999-02-01 김주용 Method of forming shallow junction in a semiconductor device
US5735960A (en) 1996-04-02 1998-04-07 Micron Technology, Inc. Apparatus and method to increase gas residence time in a reactor
US5765214A (en) * 1996-04-22 1998-06-09 Cypress Semiconductor Corporation Memory access method and apparatus and multi-plane memory device with prefetch
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
JP3193302B2 (en) 1996-06-26 2001-07-30 ティーディーケイ株式会社 Film structure, electronic device, recording medium, and method of manufacturing ferroelectric thin film
US5698022A (en) 1996-08-14 1997-12-16 Advanced Technology Materials, Inc. Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US5950925A (en) 1996-10-11 1999-09-14 Ebara Corporation Reactant gas ejector head
EP0854210B1 (en) 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
DE19709002A1 (en) 1997-03-05 1998-09-24 Siemens Ag Bridged doped zone manufacturing method e.g. for DMOS transistor
US6060743A (en) 1997-05-21 2000-05-09 Kabushiki Kaisha Toshiba Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same
US5912797A (en) * 1997-09-24 1999-06-15 Lucent Technologies Inc. Dielectric materials of amorphous compositions and devices employing same
US6063202A (en) 1997-09-26 2000-05-16 Novellus Systems, Inc. Apparatus for backside and edge exclusion of polymer film during chemical vapor deposition
US6161500A (en) 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US5998264A (en) 1998-03-06 1999-12-07 Wu; Shye-Lin Method of forming high density flash memories with MIM structure
US6025627A (en) 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
US6225168B1 (en) 1998-06-04 2001-05-01 Advanced Micro Devices, Inc. Semiconductor device having metal gate electrode and titanium or tantalum nitride gate dielectric barrier layer and process of fabrication thereof
US6093944A (en) 1998-06-04 2000-07-25 Lucent Technologies Inc. Dielectric materials of amorphous compositions of TI-O2 doped with rare earth elements and devices employing same
US6302964B1 (en) 1998-06-16 2001-10-16 Applied Materials, Inc. One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system
US6391769B1 (en) 1998-08-19 2002-05-21 Samsung Electronics Co., Ltd. Method for forming metal interconnection in semiconductor device and interconnection structure fabricated thereby
JP2000133633A (en) 1998-09-09 2000-05-12 Texas Instr Inc <Ti> Etching of material using hard mask and plasma activating etchant
US6423613B1 (en) 1998-11-10 2002-07-23 Micron Technology, Inc. Low temperature silicon wafer bond process with bulk material bond strength
JP2000208508A (en) * 1999-01-13 2000-07-28 Texas Instr Inc <Ti> Vacuum deposition of high-dielectric material made of silicate
US6436801B1 (en) 1999-02-26 2002-08-20 Texas Instruments Incorporated Hafnium nitride gate dielectric
US6445023B1 (en) 1999-03-16 2002-09-03 Micron Technology, Inc. Mixed metal nitride and boride barrier layers
KR100319884B1 (en) 1999-04-12 2002-01-10 윤종용 Capacitor of semiconductor device and method for fabricating the same
US6297539B1 (en) * 1999-07-19 2001-10-02 Sharp Laboratories Of America, Inc. Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same
US6498362B1 (en) * 1999-08-26 2002-12-24 Micron Technology, Inc. Weak ferroelectric transistor
FI117942B (en) 1999-10-14 2007-04-30 Asm Int Process for making oxide thin films
KR100304714B1 (en) 1999-10-20 2001-11-02 윤종용 Method for fabricating metal layer of semiconductor device using metal-halide gas
US6541079B1 (en) 1999-10-25 2003-04-01 International Business Machines Corporation Engineered high dielectric constant oxide and oxynitride heterostructure gate dielectrics by an atomic beam deposition technique
SG99871A1 (en) 1999-10-25 2003-11-27 Motorola Inc Method for fabricating a semiconductor structure including a metal oxide interface with silicon
JP4397491B2 (en) * 1999-11-30 2010-01-13 財団法人国際科学振興財団 Semiconductor device using silicon having 111 plane orientation on surface and method of forming the same
US6780704B1 (en) 1999-12-03 2004-08-24 Asm International Nv Conformal thin films over textured capacitor electrodes
US6503330B1 (en) 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
KR100313091B1 (en) 1999-12-29 2001-11-07 박종섭 Method of forming gate dielectric layer with TaON
FI20000099A0 (en) * 2000-01-18 2000-01-18 Asm Microchemistry Ltd A method for growing thin metal films
US6417537B1 (en) 2000-01-18 2002-07-09 Micron Technology, Inc. Metal oxynitride capacitor barrier layer
US6527866B1 (en) 2000-02-09 2003-03-04 Conductus, Inc. Apparatus and method for deposition of thin films
US6407435B1 (en) * 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
US6319766B1 (en) 2000-02-22 2001-11-20 Applied Materials, Inc. Method of tantalum nitride deposition by tantalum oxide densification
DE10010821A1 (en) 2000-02-29 2001-09-13 Infineon Technologies Ag Increasing capacity in a storage trench comprises depositing a first silicon oxide layer in the trench, depositing a silicon layer over the first layer to sufficiently
US6444039B1 (en) 2000-03-07 2002-09-03 Simplus Systems Corporation Three-dimensional showerhead apparatus
US20020009695A1 (en) * 2000-03-24 2002-01-24 Raheela Rasheed Drawing kit for imparting the appearance of texture to paper
FI117979B (en) 2000-04-14 2007-05-15 Asm Int Process for making oxide thin films
US20020195056A1 (en) 2000-05-12 2002-12-26 Gurtej Sandhu Versatile atomic layer deposition apparatus
TW508658B (en) * 2000-05-15 2002-11-01 Asm Microchemistry Oy Process for producing integrated circuits
US6432779B1 (en) 2000-05-18 2002-08-13 Motorola, Inc. Selective removal of a metal oxide dielectric
JP2001332546A (en) 2000-05-24 2001-11-30 Rohm Co Ltd Oxidizing method, manufacturing method of silicon oxide film, and oxidizing device
US6573160B2 (en) 2000-05-26 2003-06-03 Motorola, Inc. Method of recrystallizing an amorphous region of a semiconductor
US6444512B1 (en) 2000-06-12 2002-09-03 Motorola, Inc. Dual metal gate transistors for CMOS process
US6444592B1 (en) * 2000-06-20 2002-09-03 International Business Machines Corporation Interfacial oxidation process for high-k gate dielectric process integration
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6592942B1 (en) * 2000-07-07 2003-07-15 Asm International N.V. Method for vapour deposition of a film onto a substrate
US6835278B2 (en) 2000-07-07 2004-12-28 Mattson Technology Inc. Systems and methods for remote plasma clean
US6458416B1 (en) 2000-07-19 2002-10-01 Micron Technology, Inc. Deposition methods
DE10039327A1 (en) * 2000-08-03 2002-02-14 Ihp Gmbh Electronic component and manufacturing method for electronic component
AU2001277755A1 (en) 2000-08-11 2002-02-25 Tokyo Electron Limited Device and method for processing substrate
JP3875470B2 (en) * 2000-08-29 2007-01-31 三星エスディアイ株式会社 Display drive circuit and display device
US6541353B1 (en) 2000-08-31 2003-04-01 Micron Technology, Inc. Atomic layer doping apparatus and method
US7094690B1 (en) 2000-08-31 2006-08-22 Micron Technology, Inc. Deposition methods and apparatuses providing surface activation
US6420230B1 (en) 2000-08-31 2002-07-16 Micron Technology, Inc. Capacitor fabrication methods and capacitor constructions
US7112503B1 (en) * 2000-08-31 2006-09-26 Micron Technology, Inc. Enhanced surface area capacitor fabrication methods
US7217615B1 (en) 2000-08-31 2007-05-15 Micron Technology, Inc. Capacitor fabrication methods including forming a conductive layer
US6300203B1 (en) 2000-10-05 2001-10-09 Advanced Micro Devices, Inc. Electrolytic deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US6465334B1 (en) * 2000-10-05 2002-10-15 Advanced Micro Devices, Inc. Enhanced electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
JP3681632B2 (en) * 2000-11-06 2005-08-10 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
US6368941B1 (en) 2000-11-08 2002-04-09 United Microelectronics Corp. Fabrication of a shallow trench isolation by plasma oxidation
US6355561B1 (en) 2000-11-21 2002-03-12 Micron Technology, Inc. ALD method to improve surface coverage
US6613695B2 (en) 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
KR100385947B1 (en) 2000-12-06 2003-06-02 삼성전자주식회사 Method of forming thin film by atomic layer deposition
KR20020056260A (en) 2000-12-29 2002-07-10 박종섭 Method for forming metal gate of semiconductor devoie
US7112543B2 (en) 2001-01-04 2006-09-26 Micron Technology, Inc. Methods of forming assemblies comprising silicon-doped aluminum oxide
US20020089023A1 (en) 2001-01-05 2002-07-11 Motorola, Inc. Low leakage current metal oxide-nitrides and method of fabricating same
US20020089063A1 (en) 2001-01-08 2002-07-11 Ahn Kie Y. Copper dual damascene interconnect technology
US7087482B2 (en) 2001-01-19 2006-08-08 Samsung Electronics Co., Ltd. Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same
US6713846B1 (en) * 2001-01-26 2004-03-30 Aviza Technology, Inc. Multilayer high κ dielectric films
US6528374B2 (en) 2001-02-05 2003-03-04 International Business Machines Corporation Method for forming dielectric stack without interfacial layer
US6495436B2 (en) 2001-02-09 2002-12-17 Micron Technology, Inc. Formation of metal oxide gate dielectric
US6495437B1 (en) 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
US6613656B2 (en) 2001-02-13 2003-09-02 Micron Technology, Inc. Sequential pulse deposition
US6858865B2 (en) 2001-02-23 2005-02-22 Micron Technology, Inc. Doped aluminum oxide dielectrics
US6852167B2 (en) 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US6441417B1 (en) * 2001-03-28 2002-08-27 Sharp Laboratories Of America, Inc. Single c-axis PGO thin film on ZrO2 for non-volatile memory applications and methods of making the same
JP3792589B2 (en) * 2001-03-29 2006-07-05 富士通株式会社 Manufacturing method of semiconductor device
US6448192B1 (en) * 2001-04-16 2002-09-10 Motorola, Inc. Method for forming a high dielectric constant material
US20020167089A1 (en) 2001-05-14 2002-11-14 Micron Technology, Inc. Copper dual damascene interconnect technology
US7037862B2 (en) 2001-06-13 2006-05-02 Micron Technology, Inc. Dielectric layer forming method and devices formed therewith
JP3863391B2 (en) 2001-06-13 2006-12-27 Necエレクトロニクス株式会社 Semiconductor device
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6420279B1 (en) * 2001-06-28 2002-07-16 Sharp Laboratories Of America, Inc. Methods of using atomic layer deposition to deposit a high dielectric constant material on a substrate
US20030008243A1 (en) 2001-07-09 2003-01-09 Micron Technology, Inc. Copper electroless deposition technology for ULSI metalization
US6746930B2 (en) 2001-07-11 2004-06-08 Micron Technology, Inc. Oxygen barrier for cell container process
US6919266B2 (en) 2001-07-24 2005-07-19 Micron Technology, Inc. Copper technology for ULSI metallization
US6730575B2 (en) 2001-08-30 2004-05-04 Micron Technology, Inc. Methods of forming perovskite-type material and capacitor dielectric having perovskite-type crystalline structure
US6844203B2 (en) 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US6573199B2 (en) 2001-08-30 2003-06-03 Micron Technology, Inc. Methods of treating dielectric materials with oxygen, and methods of forming capacitor constructions
US6778441B2 (en) * 2001-08-30 2004-08-17 Micron Technology, Inc. Integrated circuit memory device and method
US6754108B2 (en) * 2001-08-30 2004-06-22 Micron Technology, Inc. DRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators
US6806145B2 (en) 2001-08-31 2004-10-19 Asm International, N.V. Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer
US6542229B1 (en) 2001-09-12 2003-04-01 Peter J. Kalal Sensors, methods of manufacture and sensing methods
US6960537B2 (en) 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
US7524528B2 (en) 2001-10-05 2009-04-28 Cabot Corporation Precursor compositions and methods for the deposition of passive electrical components on a substrate
US6562491B1 (en) * 2001-10-15 2003-05-13 Advanced Micro Devices, Inc. Preparation of composite high-K dielectrics
US6559014B1 (en) 2001-10-15 2003-05-06 Advanced Micro Devices, Inc. Preparation of composite high-K / standard-K dielectrics for semiconductor devices
US6683011B2 (en) 2001-11-14 2004-01-27 Regents Of The University Of Minnesota Process for forming hafnium oxide films
US6551893B1 (en) 2001-11-27 2003-04-22 Micron Technology, Inc. Atomic layer deposition of capacitor dielectric
US6900122B2 (en) 2001-12-20 2005-05-31 Micron Technology, Inc. Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics
US6674138B1 (en) 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices
US6821873B2 (en) 2002-01-10 2004-11-23 Texas Instruments Incorporated Anneal sequence for high-κ film property optimization
US6645882B1 (en) * 2002-01-17 2003-11-11 Advanced Micro Devices, Inc. Preparation of composite high-K/standard-K dielectrics for semiconductor devices
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US20030141560A1 (en) 2002-01-25 2003-07-31 Shi-Chung Sun Incorporating TCS-SiN barrier layer in dual gate CMOS devices
US6455330B1 (en) 2002-01-28 2002-09-24 Taiwan Semiconductor Manufacturing Company Methods to create high-k dielectric gate electrodes with backside cleaning
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US6586349B1 (en) * 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6787185B2 (en) 2002-02-25 2004-09-07 Micron Technology, Inc. Deposition methods for improved delivery of metastable species
US6451641B1 (en) * 2002-02-27 2002-09-17 Advanced Micro Devices, Inc. Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material
US6730367B2 (en) 2002-03-05 2004-05-04 Micron Technology, Inc. Atomic layer deposition method with point of use generated reactive gas species
US6893506B2 (en) 2002-03-11 2005-05-17 Micron Technology, Inc. Atomic layer deposition apparatus and method
US6812100B2 (en) * 2002-03-13 2004-11-02 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-k dielectrics
US6717226B2 (en) * 2002-03-15 2004-04-06 Motorola, Inc. Transistor with layered high-K gate dielectric and method therefor
US6800134B2 (en) 2002-03-26 2004-10-05 Micron Technology, Inc. Chemical vapor deposition methods and atomic layer deposition methods
US6750066B1 (en) 2002-04-08 2004-06-15 Advanced Micro Devices, Inc. Precision high-K intergate dielectric layer
US20030235961A1 (en) 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
US7589029B2 (en) 2002-05-02 2009-09-15 Micron Technology, Inc. Atomic layer deposition and conversion
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7045430B2 (en) 2002-05-02 2006-05-16 Micron Technology Inc. Atomic layer-deposited LaAlO3 films for gate dielectrics
WO2003096385A2 (en) 2002-05-07 2003-11-20 Asm America, Inc. Silicon-on-insulator structures and methods
US6656764B1 (en) * 2002-05-15 2003-12-02 Taiwan Semiconductor Manufacturing Company Process for integration of a high dielectric constant gate insulator layer in a CMOS device
US7164165B2 (en) 2002-05-16 2007-01-16 Micron Technology, Inc. MIS capacitor
US7205218B2 (en) 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
US7135421B2 (en) 2002-06-05 2006-11-14 Micron Technology, Inc. Atomic layer-deposited hafnium aluminum oxide
US7067439B2 (en) 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
US6888739B2 (en) * 2002-06-21 2005-05-03 Micron Technology Inc. Nanocrystal write once read only memory for archival storage
US6804136B2 (en) 2002-06-21 2004-10-12 Micron Technology, Inc. Write once read only memory employing charge trapping in insulators
US6617639B1 (en) * 2002-06-21 2003-09-09 Advanced Micro Devices, Inc. Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
US7221017B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide-conductor nanolaminates
US6884739B2 (en) 2002-08-15 2005-04-26 Micron Technology Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6790791B2 (en) 2002-08-15 2004-09-14 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US6960538B2 (en) 2002-08-21 2005-11-01 Micron Technology, Inc. Composite dielectric forming methods and composite dielectrics
US6673701B1 (en) 2002-08-27 2004-01-06 Micron Technology, Inc. Atomic layer deposition methods
US7253122B2 (en) 2002-08-28 2007-08-07 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US7199023B2 (en) 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US7084078B2 (en) 2002-08-29 2006-08-01 Micron Technology, Inc. Atomic layer deposited lanthanide doped TiOx dielectric films
US7101813B2 (en) 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
US6958302B2 (en) 2002-12-04 2005-10-25 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20040144980A1 (en) 2003-01-27 2004-07-29 Ahn Kie Y. Atomic layer deposition of metal oxynitride layers as gate dielectrics and semiconductor device structures utilizing metal oxynitride layers
US7192892B2 (en) 2003-03-04 2007-03-20 Micron Technology, Inc. Atomic layer deposited dielectric layers
US7135369B2 (en) 2003-03-31 2006-11-14 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9
US6740605B1 (en) * 2003-05-05 2004-05-25 Advanced Micro Devices, Inc. Process for reducing hydrogen contamination in dielectric materials in memory devices
US6970053B2 (en) 2003-05-22 2005-11-29 Micron Technology, Inc. Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection
JP4153833B2 (en) * 2003-06-03 2008-09-24 日本電産サンキョー株式会社 Data reading method for card reader and card reader using the same
US7192824B2 (en) 2003-06-24 2007-03-20 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US7049192B2 (en) 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US6785120B1 (en) 2003-07-03 2004-08-31 Micron Technology, Inc. Methods of forming hafnium-containing materials, methods of forming hafnium oxide, and capacitor constructions comprising hafnium oxide
JP2005044593A (en) * 2003-07-28 2005-02-17 Toyota Industries Corp Vacuum film formation method and vacuum film formation device
US6989573B2 (en) 2003-10-10 2006-01-24 Micron Technology, Inc. Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics
US7508648B2 (en) 2005-02-08 2009-03-24 Micron Technology, Inc. Atomic layer deposition of Dy doped HfO2 films as gate dielectrics
US7399666B2 (en) 2005-02-15 2008-07-15 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US7498247B2 (en) 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7390756B2 (en) 2005-04-28 2008-06-24 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US7510983B2 (en) 2005-06-14 2009-03-31 Micron Technology, Inc. Iridium/zirconium oxide structure
US7393736B2 (en) 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US8071476B2 (en) 2005-08-31 2011-12-06 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US7410910B2 (en) 2005-08-31 2008-08-12 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
US7605030B2 (en) 2006-08-31 2009-10-20 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7563730B2 (en) 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US20080087890A1 (en) 2006-10-16 2008-04-17 Micron Technology, Inc. Methods to form dielectric structures in semiconductor devices and resulting devices
US7498230B2 (en) 2007-02-13 2009-03-03 Micron Technology, Inc. Magnesium-doped zinc oxide structures and methods
US7727910B2 (en) 2007-02-13 2010-06-01 Micron Technology, Inc. Zirconium-doped zinc oxide structures and methods
US7517783B2 (en) 2007-02-13 2009-04-14 Micron Technology, Inc. Molybdenum-doped indium oxide structures and methods
US7927996B2 (en) 2007-02-13 2011-04-19 Micron Technology, Inc. Tungsten-doped indium oxide structures and methods

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647947A (en) * 1982-03-15 1987-03-03 Tokyo Shibaura Denki Kabushiki Kaisha Optical protuberant bubble recording medium
US4491482A (en) * 1982-03-29 1985-01-01 Kureha Kagaku Kogyo Kabushiki Kaisha Powdery material of minute composite ceramic particles having a dual structure and a process and an apparatus producing thereof
US4636833A (en) * 1983-03-18 1987-01-13 Hitachi, Ltd. Semiconductor device
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5100825A (en) * 1990-11-16 1992-03-31 Micron Technology, Inc. Method of making stacked surrounding reintrant wall capacitor
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US6352591B1 (en) * 1996-11-13 2002-03-05 Applied Materials, Inc. Methods and apparatus for shallow trench isolation
US6044016A (en) * 1997-05-15 2000-03-28 Sony Corporation Nand-type semiconductor memory device
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6171900B1 (en) * 1999-04-15 2001-01-09 Taiwan Semiconductor Manufacturing Company CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET
US6206972B1 (en) * 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6207589B1 (en) * 1999-07-19 2001-03-27 Sharp Laboratories Of America, Inc. Method of forming a doped metal oxide dielectric film
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6537613B1 (en) * 2000-04-10 2003-03-25 Air Products And Chemicals, Inc. Process for metal metalloid oxides and nitrides with compositional gradients
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
US20020000593A1 (en) * 2000-06-27 2002-01-03 Akira Nishiyama Semiconductor device and method of manufacturing the same
US20020001971A1 (en) * 2000-06-27 2002-01-03 Hag-Ju Cho Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same
US20020014647A1 (en) * 2000-07-07 2002-02-07 Infineon Technologies Ag Trench capacitor with isolation collar and corresponding method of production
US6521911B2 (en) * 2000-07-20 2003-02-18 North Carolina State University High dielectric constant metal silicates formed by controlled metal-surface reactions
US20020028541A1 (en) * 2000-08-14 2002-03-07 Lee Thomas H. Dense arrays and charge storage devices, and methods for making same
US6844604B2 (en) * 2001-02-02 2005-01-18 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US6509280B2 (en) * 2001-02-22 2003-01-21 Samsung Electronics Co., Ltd. Method for forming a dielectric layer of a semiconductor device
US6858444B2 (en) * 2001-03-15 2005-02-22 Micron Technology, Inc. Method for making a ferroelectric memory transistor
US6348386B1 (en) * 2001-04-16 2002-02-19 Motorola, Inc. Method for making a hafnium-based insulating film
US6514828B2 (en) * 2001-04-20 2003-02-04 Micron Technology, Inc. Method of fabricating a highly reliable gate oxide
US20030003635A1 (en) * 2001-05-23 2003-01-02 Paranjpe Ajit P. Atomic layer deposition for fabricating thin films
US6511873B2 (en) * 2001-06-15 2003-01-28 International Business Machines Corporation High-dielectric constant insulators for FEOL capacitors
US20030017717A1 (en) * 2001-07-18 2003-01-23 Ahn Kie Y. Methods for forming dielectric materials and methods for forming semiconductor devices
US6534420B2 (en) * 2001-07-18 2003-03-18 Micron Technology, Inc. Methods for forming dielectric materials and methods for forming semiconductor devices
US6858546B2 (en) * 2001-08-03 2005-02-22 Asm International, Nv Method of depositing rare earth oxide thin films
US20030040196A1 (en) * 2001-08-27 2003-02-27 Lim Jung Wook Method of forming insulation layer in semiconductor devices for controlling the composition and the doping concentration
US20050023602A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers
US20120015488A1 (en) * 2001-08-30 2012-01-19 Ahn Kie Y High-k gate dielectric oxide
US7473956B2 (en) * 2001-08-30 2009-01-06 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low assymmetrical tunnel barrier interpoly insulators
US20050023595A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory devices with asymmetrical tunnel barriers
US20050026349A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US20050023603A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators
US20040023516A1 (en) * 2001-10-02 2004-02-05 Londergan Ana R. Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
US20110014767A1 (en) * 2001-12-20 2011-01-20 Ahn Kie Y LOW-TEMPERATURE GROWN HIGH QUALITY ULTRA-THIN CoTiO3 GATE DIELECTRICS
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US6528858B1 (en) * 2002-01-11 2003-03-04 Advanced Micro Devices, Inc. MOSFETs with differing gate dielectrics and method of formation
US20050037574A1 (en) * 2002-03-27 2005-02-17 Fujitsu Limited Semiconductor memory device and manufacturing method thereof
US6989565B1 (en) * 2002-04-15 2006-01-24 Lsi Logic Corporation Memory device having an electron trapping layer in a high-K dielectric gate stack
US7005697B2 (en) * 2002-06-21 2006-02-28 Micron Technology, Inc. Method of forming a non-volatile electron storage memory and the resulting device
US20050023574A1 (en) * 2002-07-08 2005-02-03 Micron Technology, Inc. Memory utilizing oxide-nitride nanolaminates
US20040004859A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20040012043A1 (en) * 2002-07-17 2004-01-22 Gealy F. Daniel Novel dielectric stack and method of making same
US8125038B2 (en) * 2002-07-30 2012-02-28 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US20040038525A1 (en) * 2002-08-26 2004-02-26 Shuang Meng Enhanced atomic layer deposition
US6984592B2 (en) * 2002-08-28 2006-01-10 Micron Technology, Inc. Systems and methods for forming metal-doped alumina
US20050032360A1 (en) * 2002-08-28 2005-02-10 Micron Technology, Inc. Systems and methods of forming refractory metal nitride layers using disilazanes
US20040043151A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming tantalum silicide layers
US20040040501A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming zirconium and/or hafnium-containing layers
US20050028733A1 (en) * 2002-08-28 2005-02-10 Micron Technology, Inc. Systems and methods of forming refractory metal nitride layers using disilazanes
US20040040494A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming strontium- and/or barium-containing layers
US20040043600A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using organic amines
US20050019978A1 (en) * 2002-08-28 2005-01-27 Micron Technology, Inc. Systems and methods for forming tantalum oxide layers and tantalum precursor compounds
US6995081B2 (en) * 2002-08-28 2006-02-07 Micron Technology, Inc. Systems and methods for forming tantalum silicide layers
US20050009266A1 (en) * 2002-08-28 2005-01-13 Micron Technology, Inc. Systems and methods for forming refractory metal oxide layers
US20040043604A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using disilazanes
US20070006798A1 (en) * 2002-08-28 2007-01-11 Micron Technology, Inc. Systems and methods for forming strontium-and/or barium-containing layers
US6849908B2 (en) * 2003-02-26 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US7863667B2 (en) * 2003-04-22 2011-01-04 Micron Technology, Inc. Zirconium titanium oxide films
US7332442B2 (en) * 2003-04-29 2008-02-19 Micron Technology, Inc. Systems and methods for forming metal oxide layers
US20050009368A1 (en) * 2003-07-07 2005-01-13 Vaartstra Brian A. Methods of forming a phosphorus doped silicon dioxide comprising layer, and methods of forming trench isolation in the fabrication of integrated circuitry
US7157769B2 (en) * 2003-12-18 2007-01-02 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
US7479428B2 (en) * 2004-02-10 2009-01-20 Leonard Forbes NROM flash memory with a high-permittivity gate dielectric
US20060019453A1 (en) * 2004-02-10 2006-01-26 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US7323424B2 (en) * 2004-06-29 2008-01-29 Micron Technology, Inc. Semiconductor constructions comprising cerium oxide and titanium oxide
US7323423B2 (en) * 2004-06-30 2008-01-29 Intel Corporation Forming high-k dielectric layers on smooth substrates
US20130012034A1 (en) * 2004-08-02 2013-01-10 Ahn Kie Y Zirconium-doped tantalum oxide films
US7164168B2 (en) * 2004-08-03 2007-01-16 Micron Technology, Inc. Non-planar flash memory having shielding between floating gates
US20060033144A1 (en) * 2004-08-11 2006-02-16 Micron Technology, Inc. Non-planar flash memory array with shielded floating gates on silicon mesas
US7494939B2 (en) * 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US20110037117A1 (en) * 2004-08-31 2011-02-17 Ahn Kie Y Lanthanum-metal oxide dielectric apparatus, methods, and systems
US7867919B2 (en) * 2004-08-31 2011-01-11 Micron Technology, Inc. Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer
US20090032910A1 (en) * 2004-12-13 2009-02-05 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US20130012031A1 (en) * 2005-01-05 2013-01-10 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US20100029054A1 (en) * 2005-01-05 2010-02-04 Ahn Kie Y Hafnium tantalum oxide dielectrics
US7316962B2 (en) * 2005-01-07 2008-01-08 Infineon Technologies Ag High dielectric constant materials
US8102013B2 (en) * 2005-03-29 2012-01-24 Micron Technology, Inc. Lanthanide doped TiOx films
US7662729B2 (en) * 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US20100004771A1 (en) * 2005-05-04 2010-01-07 Abb Patent Gmbh Method and System for Corrective Planning and Optimization of Processing Processes
US20070018214A1 (en) * 2005-07-25 2007-01-25 Micron Technology, Inc. Magnesium titanium oxide films
US20070020856A1 (en) * 2005-07-25 2007-01-25 Freescale Semiconductor, Inc. Process for forming an electronic device including discontinuous storage elements
US8110469B2 (en) * 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US20100006918A1 (en) * 2005-12-08 2010-01-14 Ahn Kie Y Hafnium tantalum titanium oxide films
US8093666B2 (en) * 2005-12-08 2012-01-10 Micron Technology, Inc. Lanthanide yttrium aluminum oxide dielectric films
US20080032465A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. Deposition of ZrAION films
US20080032424A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. ALD of Zr-substituted BaTiO3 films as gate dielectrics
US20080029790A1 (en) * 2006-08-03 2008-02-07 Micron Technology, Inc. ALD of silicon films on germanium
US20080048225A1 (en) * 2006-08-25 2008-02-28 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20090004801A1 (en) * 2007-06-28 2009-01-01 Micron Technology, Inc. Method of forming lutetium and lanthanum dielectric structures
US20100035749A1 (en) * 2008-08-08 2010-02-11 Ji-Won Choi Dielectric Thin Film Composition Showing Linear Dielectric Properties

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US8652957B2 (en) 2001-08-30 2014-02-18 Micron Technology, Inc. High-K gate dielectric oxide
US7670646B2 (en) 2002-05-02 2010-03-02 Micron Technology, Inc. Methods for atomic-layer deposition
US8125038B2 (en) 2002-07-30 2012-02-28 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US7923381B2 (en) 2002-12-04 2011-04-12 Micron Technology, Inc. Methods of forming electronic devices containing Zr-Sn-Ti-O films
US8445952B2 (en) 2002-12-04 2013-05-21 Micron Technology, Inc. Zr-Sn-Ti-O films
US7727905B2 (en) 2004-08-02 2010-06-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7776762B2 (en) 2004-08-02 2010-08-17 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US8765616B2 (en) 2004-08-02 2014-07-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US8288809B2 (en) 2004-08-02 2012-10-16 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US8907486B2 (en) 2004-08-26 2014-12-09 Micron Technology, Inc. Ruthenium for a dielectric containing a lanthanide
US8558325B2 (en) 2004-08-26 2013-10-15 Micron Technology, Inc. Ruthenium for a dielectric containing a lanthanide
US7719065B2 (en) 2004-08-26 2010-05-18 Micron Technology, Inc. Ruthenium layer for a dielectric layer containing a lanthanide oxide
US8237216B2 (en) 2004-08-31 2012-08-07 Micron Technology, Inc. Apparatus having a lanthanum-metal oxide semiconductor device
US8154066B2 (en) 2004-08-31 2012-04-10 Micron Technology, Inc. Titanium aluminum oxide films
US7867919B2 (en) 2004-08-31 2011-01-11 Micron Technology, Inc. Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer
US8541276B2 (en) 2004-08-31 2013-09-24 Micron Technology, Inc. Methods of forming an insulating metal oxide
US7915174B2 (en) 2004-12-13 2011-03-29 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US8524618B2 (en) 2005-01-05 2013-09-03 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US8278225B2 (en) 2005-01-05 2012-10-02 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US7960803B2 (en) 2005-02-23 2011-06-14 Micron Technology, Inc. Electronic device having a hafnium nitride and hafnium oxide film
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US8399365B2 (en) 2005-03-29 2013-03-19 Micron Technology, Inc. Methods of forming titanium silicon oxide
US8102013B2 (en) 2005-03-29 2012-01-24 Micron Technology, Inc. Lanthanide doped TiOx films
US8076249B2 (en) 2005-03-29 2011-12-13 Micron Technology, Inc. Structures containing titanium silicon oxide
US8084808B2 (en) 2005-04-28 2011-12-27 Micron Technology, Inc. Zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7700989B2 (en) 2005-05-27 2010-04-20 Micron Technology, Inc. Hafnium titanium oxide films
US8921914B2 (en) 2005-07-20 2014-12-30 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8288818B2 (en) 2005-07-20 2012-10-16 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8501563B2 (en) 2005-07-20 2013-08-06 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8314456B2 (en) 2005-08-04 2012-11-20 Micron Technology, Inc. Apparatus including rhodium-based charge traps
US9496355B2 (en) 2005-08-04 2016-11-15 Micron Technology, Inc. Conductive nanoparticles
US8951903B2 (en) 2005-08-30 2015-02-10 Micron Technology, Inc. Graded dielectric structures
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US9627501B2 (en) 2005-08-30 2017-04-18 Micron Technology, Inc. Graded dielectric structures
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US8785312B2 (en) 2006-02-16 2014-07-22 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride
US8759170B2 (en) 2006-08-31 2014-06-24 Micron Technology, Inc. Hafnium tantalum oxynitride dielectric
US8466016B2 (en) 2006-08-31 2013-06-18 Micron Technolgy, Inc. Hafnium tantalum oxynitride dielectric
US8084370B2 (en) 2006-08-31 2011-12-27 Micron Technology, Inc. Hafnium tantalum oxynitride dielectric

Also Published As

Publication number Publication date
US20060246741A1 (en) 2006-11-02
US6921702B2 (en) 2005-07-26
US7169673B2 (en) 2007-01-30
US20050277256A1 (en) 2005-12-15
US20050227442A1 (en) 2005-10-13
US8125038B2 (en) 2012-02-28
US20040023461A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US6921702B2 (en) Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US7554161B2 (en) HfAlO3 films for gate dielectrics
US7326980B2 (en) Devices with HfSiON dielectric films which are Hf-O rich
US7045430B2 (en) Atomic layer-deposited LaAlO3 films for gate dielectrics
US7084078B2 (en) Atomic layer deposited lanthanide doped TiOx dielectric films
US7192892B2 (en) Atomic layer deposited dielectric layers
US8445952B2 (en) Zr-Sn-Ti-O films
US7923381B2 (en) Methods of forming electronic devices containing Zr-Sn-Ti-O films
US7135369B2 (en) Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION