US20050131451A1 - Medical device anchor and delivery system - Google Patents
Medical device anchor and delivery system Download PDFInfo
- Publication number
- US20050131451A1 US20050131451A1 US10/980,828 US98082804A US2005131451A1 US 20050131451 A1 US20050131451 A1 US 20050131451A1 US 98082804 A US98082804 A US 98082804A US 2005131451 A1 US2005131451 A1 US 2005131451A1
- Authority
- US
- United States
- Prior art keywords
- anchor
- shaft
- elongate
- expandable
- legs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
- A61B17/12109—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/12168—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
- A61B17/12172—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2/0105—Open ended, i.e. legs gathered only at one side
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
- A61B2017/12054—Details concerning the detachment of the occluding device from the introduction device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/12—Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
- A61B2017/12054—Details concerning the detachment of the occluding device from the introduction device
- A61B2017/12095—Threaded connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/01—Filters implantable into blood vessels
- A61F2002/016—Filters implantable into blood vessels made from wire-like elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0073—Quadric-shaped
- A61F2230/0078—Quadric-shaped hyperboloidal
Definitions
- a number of medical implant devices are designed to collapse for insertion within a catheter or other delivery unit and to expand to a predetermined shape when ejected after delivery. Many of these self expanding devices rely primarily upon the contact between the device and the wall of a body vessel or passageway to maintain the device in position after the delivery unit is removed. Unfortunately, changes in the dimensions of the body vessel or passageway or variations in the flow of blood or other fluids there through can cause the medical implant to migrate and change position.
- rigid hooks are often formed on the device to engage the wall of a body vessel or passageway as the implant device expands into contact with the wall. After a few weeks, the endothelium layer grows over rigid hooks which will not easily bend under the influence of withdrawal pressure, and the medical implant device will be locked in place by the embedded hooks. This may be acceptable for a permanent implant, but rigid hooks are not a viable option if the medical implant device is to be removed after several weeks or months.
- Anchoring hooks although effective in many instances, are subject to a number of disadvantages which can make it difficult to properly position and maintain the position of a medical implant device.
- the anchoring hooks are engaged due to the expansion of the device into contact with the wall of a body vessel or passageway, and if the device moves from a desired position during expansion and contact with the wall occurs, the device cannot be easily repositioned.
- the anchoring function of the hooks is not separable from the expansion of the device.
- the configuration of a hook which curves in a single direction from a shaft to a pointed end can prove to be a disadvantage.
- hooks When hooks are used to anchor a medical implant device within a blood vessel, it is important that the hook be oriented to curve in the direction of normal blood flow through the vessel as it engages the vessel wall.
- the hook When engaged, the hook will extend from the shaft toward the point substantially in the direction of the longitudinal axis of the blood vessel, and will effectively resist migration of the medical implant device in response to pressure thereon from blood flow in the normal direction through the blood vessel.
- Another object of the present invention is to provide a novel and improved medical device anchor and delivery system wherein one or more anchors are positively propelled through a body wall. Once an anchor has passed through the wall, it expands outwardly from at least two opposed sides of an anchor shaft.
- An additional object of the present invention is to provide a novel and improved medical device anchor designed to penetrate a body wall from a first side to a second side and to expand outwardly from at least two opposed sides of an anchor shaft after penetration.
- Another object of the present invention is to provide a novel and improved medical device anchor designed to penetrate the wall of a body vessel from a first side to a second side and to expand outwardly from an anchor shaft in a unique manner after penetration.
- the expanded anchor is designed to be loaded in compression against the second wall of the vessel and to change in configuration to increase the anchoring function provided thereby in response to forces applied thereto at an angle to the longitudinal axis of the vessel.
- Yet another object of the present invention is to provide a novel and improved medical device anchor designed to penetrate the wall of a body vessel from a first side to a second side and to expand outwardly from an anchor shaft in a unique manner after penetration.
- the anchor expands outwardly from the anchor shaft into one or more loops with each loop curving back to cross the anchor shaft.
- the section of the loop which crosses the anchor shaft is formed to engage the second wall of the vessel and to load the anchor in compression against the second wall of the vessel in response to forces which are applied to a medical device attached to the anchor or which result from expansion of the vessel wall.
- a further object of the present invention is to provide a novel and improved medical device anchor and delivery system wherein one or more anchors are positively propelled through a body wall subsequent to a medical implant device connected to the anchors reaching a desired position and coming to rest.
- the anchor delivery system facilitates removal and reinsertion of the anchors without requiring that the medical implant device connected thereto be compressed and/or removed.
- Yet another object of the present invention is to provide a novel and improved anchor and anchor delivery system for a medical implant device to anchor the device in position within a blood vessel or other body passageway.
- a further object of the present invention is to provide a novel and improved anchor and anchor delivery system for a medical implant device to anchor the device in position within a blood vessel or other body passageway while facilitating the subsequent withdrawal of the device.
- the anchor delivery system positively propels one or more anchors through the wall of a blood vessel or body passageway once the medical implant device has expanded into contact with the wall, and the anchors then expand outwardly from opposite sides of an anchor shaft.
- the anchors are formed to contract back toward the longitudinal axis of the anchor shaft in response to a predetermined force to permit withdrawal through the wall.
- a still further object of the present invention is to provide a novel and improved anchor and anchor delivery system for a blood clot filter
- the delivery system includes elongate, tubular filter legs which house the anchors. Once the filter legs are ejected from a catheter or delivery tube and expand into contact with the blood vessel wall, the anchor delivery system positively propels the anchors outwardly from the filter legs and through the blood vessel wall from a first side to a second side where the anchors expand outwardly from an anchor shaft against the second side of the wall.
- Each anchor is formed to contract back toward the longitudinal axis of its anchor shaft in response to a predetermined force to permit withdrawal through the wall, and this permits the anchors to be withdrawn back into the filter legs and then again propelled through the blood vessel wall without collapsing the filter legs.
- Yet a further object of the present invention is to provide a novel and improved anchor delivery system for a blood clot filter
- the delivery system includes elongate, tubular filter legs which house the anchors and which expand into contact with a blood vessel wall.
- a side opening is formed in the portion of the filter leg which will contact the blood vessel wall, and the filter leg is designed to facilitate ejection of the anchor through the side opening transverse to the filter leg.
- an anchor delivery system which houses one or more uniquely configured anchors which are connected to a medical implant device.
- the anchors remain housed until after the medical implant device has come to rest in a desired position within a body, and then the anchors are positively propelled through a body wall from a first side to a second side where each anchor expands from a single shaft configuration.
- a drive shaft extends from an anchor support sleeve back to a triggering unit which, when activated, causes the drive shaft to move the anchor support sleeve in a direction to propel the anchors through the body wall.
- the triggering unit may be spring powered or solenoid powered.
- FIG. 1 is a sectional view showing a blood clot filter with anchors formed in accordance with the present invention mounted within a catheter;
- FIG. 2 is a perspective view showing the anchor support hub and leg retention sleeve of FIG. 1 ;
- FIG. 3 is a perspective view showing the locking sleeve for the leg retention sleeve of FIG. 2 ;
- FIG. 4 is a sectional view showing the operating mechanism for the locking sleeve and anchor support hub of FIG. 1 ;
- FIG. 5 is a perspective view showing a spring powered triggering unit at the proximal end of the catheter of FIG. 1 for propelling the anchor support hub;
- FIG. 6 is a perspective view of the deployed blood clot filter of FIG. 1 ;
- FIG. 7 is a perspective view of a deployed anchor for the blood clot filter of FIG. 6 ;
- FIG. 8 is a perspective view of a second embodiment of a deployed anchor of the present invention.
- FIG. 9 is a perspective view of a third embodiment of a deployed anchor of the present invention.
- FIG. 10 is a sectional view of a single anchor and anchor delivery system of the present invention.
- FIG. 11 is a perspective view of a fourth embodiment of a deployed anchor of the present invention which deploys to form a closed loop having a wall engaging section which crosses over and extends beyond the anchor shaft;
- FIG. 12 is a perspective view of a fifth embodiment of a deployed anchor of the present invention which deploys to form a closed loop having a wall engaging section which crosses under and extends beyond the anchor shaft;
- FIG. 13 is a view in side elevation of an anchor guide boot which is secured to the end of an anchor containing blood clot filter leg,
- FIG. 14 is a sectional view of the anchor guide boot of FIG. 13 .
- FIG. 15 is a sectional view of a modification of the anchor guide boot of FIG. 14 .
- FIG. 16 is a perspective view of a deployed blood clot modified to eject anchors from the side of the filter legs above the distal ends of the legs with the anchors deployed,
- FIG. 17 is a view in front elevation of an end section of a filter leg of the filter of FIG. 16 with an anchor partially deployed, and
- FIG. 18 is a view in front elevation of an end section of a filter leg of the filter of FIG. 16 with an anchor fully deployed.
- a blood clot filter which includes anchors in accordance with the present invention is illustrated generally at 10 .
- This filter shown for illustration as a vena cava filter, is formed with a plurality of elongate legs 12 which are secured to, and extend outwardly from a leg retention sleeve 14 .
- the elongate legs are formed by small, open ended tubes each having a first open end 16 which opens at the leg retention sleeve.
- a plurality of long anchor shafts 18 are attached at a distal end to an anchor support hub 20 which is spaced from the leg retention sleeve when the vena cava filter is collapsed within a catheter or delivery tube 22 .
- Each shaft 18 extends from the anchor support hub 20 into the first open end 16 of a tubular leg 12 and through the leg to a distal end 24 at a point adjacent to a second open end 26 of the tubular leg.
- An anchor 28 is formed at the distal end of each shaft 18 in a manner to be described.
- the elongate legs 12 and the long anchor shafts 18 are formed of a material which will permit them to be compressed toward the longitudinal axis of the filter 10 for delivery by a catheter 22 .
- the legs 12 and the shafts 18 are designed to expand outwardly from the filter longitudinal axis as shown in FIG. 6 to bring the legs into contact with the wall of a blood vessel.
- spring metal and suitable plastics can be used to form the legs 12 and/or the shafts 18 , it is preferable to form the anchor shafts 18 and in most cases the legs 12 of a suitable shape memory material.
- transition between the martensitic and austenitic states of the material can be achieved by temperature transitions relative to a transition temperature.
- the material softens, thereby permitting a filter formed thereof to be compressed and loaded into a catheter.
- the transition temperature of the material is set at, or near to normal body temperature, then the filter legs will pass to the austenitic state when the filter is ejected from the catheter and expand to regain a memorized shape.
- the leg retention sleeve 14 is locked to the anchor support hub 20 by a locking sleeve 30 which surrounds both the anchor support hub and the leg retention sleeve when in the locking position as shown in FIG. 1 .
- the locking sleeve is moved longitudinally back away from the leg retention sleeve as shown in FIG. 3 .
- Two spring arms 32 are connected at one end to a housing 34 behind the anchor support hub and extend outwardly over opposite sides of the leg retention sleeve. The free end of each of the spring arms is curved to form an arcuate latch member 36 which overlies and, in the locking position of FIG. 1 , engages a locking projection 38 formed on the leg retention sleeve.
- the locking sleeve 30 When the locking sleeve 30 moves toward the locking position over the leg retention sleeve 14 , it forces the spring arms 32 and 34 together and the arcuate latch members engage the locking projections. As the locking sleeve reaches the full locking position of FIG. 1 , the arcuate latch members slide into slots 40 in the locking sleeve and the leg retention sleeve is positively locked to the anchor support hub. However, as the locking sleeve is moved longitudinally away from the leg retention sleeve, the arcuate configuration of the latch members 36 permits them to slip out of the slots 40 , and as the locking sleeve moves further, the spring arms 32 move outwardly causing the arcuate latch members to disengage the locking projections 38 .
- the locking sleeve 30 is mounted for movement toward and away from a centering shaft 42 which extends from a distal end 44 adjacent to the vena cava filter 10 back to the entry end of the catheter 22 .
- the distal end of the centering shaft is formed with a plurality of spaced lumens 46 , each of which mounts one of a plurality of centering arms 48 .
- the centering shaft moves these centering arms out of the catheter 22 behind the vena cava filter, and these centering arms then expand outwardly to engage the vessel wall and center the leading end of the filter.
- These centering arms can be formed of spring metal or plastic, but are preferably formed of shape memory material such as nitinol.
- an elongate drive shaft 50 extends from the entry or proximal end 52 of the catheter 22 through the catheter to a releasable connection 54 with the anchor support hub 20 .
- This releasable connection can be any suitable connection which facilitates release of the drive shaft from the anchor support hub by manipulation of the drive shaft at the proximal end of the catheter such as a threaded connector as shown, a hook and eye connector, engaging hook connectors, and known twist engagement and release connectors.
- This drive shaft passes through the centering shaft 42 and is both rotationally and longitudinally movable relative thereto.
- the drive shaft passes through and is both rotationally and longitudinally movable relative to a locking sleeve operator 56 which passes through slots 58 and 60 in the housing 34 .
- the locking sleeve operator is secured at 62 and 64 to the locking sleeve 30 and operates to move the locking sleeve away from the leg retention sleeve 14 as the locking sleeve operator moves away from the leg retention sleeve in the slots 58 and 60 .
- the drive shaft operates to move the locking sleeve from the locked position by means of a stop 66 secured to the drive shaft and positioned to engage the locking sleeve operator.
- the vena cava filter 10 and centering arms 48 are exposed by either ejecting them from the catheter or drawing the catheter back from around them. Now the elongate legs 12 and centering arms 48 will expand outwardly into engagement with the vessel wall. However, the anchors 28 will remain enclosed within the elongate legs, and this permits the vena cava filter to be moved relative to the blood vessel after expansion of the elongate legs until an exact position is attained. If a substantial position change is required, the centering arms and vena cava filter can be drawn back into the catheter and subsequently redeployed in a new position.
- the anchors 28 are now positively ejected out from the second open ends 26 of the elongate legs so as to penetrate through the vessel wall.
- the drive shaft 50 is connected to a triggering unit 68 at the proximal or entry end 70 of the catheter 22 .
- This triggering unit can be formed by a number of known units capable of imparting a longitudinal force to the drive shaft.
- An electrically powered solenoid unit can be used for this purpose as well as a number of spring powered units.
- the triggering unit is formed by a conventional ballistic-type lancer of the type commonly used to cause a needle to puncture a patient's skin to provide a blood sample.
- Such lancers include a hollow body 72 which contains a plunger 74 capable of moving axially back and forth within the body.
- the plunger is surrounded by a coil spring 76 which becomes compressed when the plunger is pulled back and armed by an end knob 78 .
- the armed plunger is held in place by a trigger 80 which is activated to release the plunger by a button 82 .
- the coil spring 76 propels the plunger toward an opening 84 in a nose cap 86 attached to the hollow body.
- FIG. 5 illustrates an expanded vena cava filter 10 with the anchors 28 in the configuration that they would assume after passing through the vessel wall. The structure and operation of these anchors will be subsequently described.
- a significant advantage of the vena cava filter 10 is that it can be repositioned even after the anchors are in place without the necessity to withdraw the complete filter back into the catheter 22 . So long as the elongate legs are in contact with the vessel wall, the anchors 28 can be withdrawn from the vessel wall and back into the elongate legs by causing the drive shaft 50 to move the anchor support hub 20 away from the leg retention sleeve 14 . Now the vena cava filter can be repositioned, the plunger 74 of the triggering unit 68 can be rearmed, and the anchors can again be ejected to pierce the vessel wall.
- the drive shaft 50 is disconnected from the anchor support hub 20 and is pulled away from the anchor support hub causing the stop 66 to engage and move the locking sleeve operator 56 away from the anchor support hub.
- the centering shaft 42 , locking sleeve 30 , drive shaft 50 and housing 34 may be drawn back through the catheter 22 leaving the vena cava filter in place within the blood vessel.
- a hook to be engaged by a retrieval device can be attached to the anchor support hub 20 .
- the anchors 28 are formed at the proximal ends of the long anchor shafts 18 , and within the elongate legs 12 the anchors assume the same configuration as the shafts with which they are integrally formed.
- the shafts conform in configuration to the internal configuration of the elongate legs so as to easily move longitudinally within the elongate legs, and usually the shafts will be cylindrical with a pointed end which forms the leading end of the anchor.
- An enlarged view of the anchor of FIG. 6 is shown in FIG. 7 .
- the tubular anchor shaft 18 is split down the center at 90 to form the opposed arms 92 and 94 of the anchor.
- the inner surfaces 96 and 98 of each of the arms is flat while the remaining surface 100 of each arm is arcuate, so that when the inner surfaces of the arms are contacting, a straight tubular end section is formed on the end of each long shaft 18 .
- the pointed end of each long shaft forms the pointed ends 102 and 104 on the arms 92 and 94 of the anchor.
- FIGS. 6 and 7 The expanded shape memory configuration of the anchors 28 is shown in FIGS. 6 and 7 .
- Each anchor with the inner surfaces 96 and 98 in contact is ejected from an elongate leg 12 in a straight configuration when the anchor support hub 20 is driven toward the leg retention sleeve 14 .
- the pointed lead end of each anchor will pierce the wall of a blood vessel so that the entire anchor passes through the vessel wall, at which point the anchor expands to its shape memory configuration shown in FIG. 7 .
- the end 26 of the elongate leg engages the inner surface of the blood vessel wall while the pointed ends 102 and 104 of the arms 92 and 94 engage the outer surface of the blood vessel wall.
- portions of the expanded anchor in this case the arms 92 and 94 , extend outwardly on opposite sides of the shaft 18 so that forces in either direction in the plane of the anchor arms will not dislodge the anchor in the manner which can occur with a single hook which extends outwardly in only one direction from a support shaft.
- the anchors 28 are oriented as shown in FIG. 7 so that the opposed arms 92 and 94 of the anchor expand transversely to the longitudinal direction 106 of blood flow through the filter 10 .
- the anchor arms are each formed from half of a shaft 18 of a very small diameter, a withdrawal force along the longitudinal axis of the shaft will permit the anchor arms to come together to facilitate anchor withdrawal from the vessel wall.
- anchor arms 92 and 94 curve outwardly and back toward the shaft 18 to engage the outside surface of the vessel wall. This causes the anchor to be loaded in compression against the vessel wall when forces normal to the longitudinal axis of the vessel are applied to a medical device attached to the anchor. This compression aspect greatly enhances the anchoring function provided by the anchor and facilitates the effective use of very small, fine anchor components.
- the anchors 28 may take a number of forms so long as the anchor expands from a straight configuration from within an elongate leg 12 to a shape memory configuration where the anchor extends outwardly on at least two opposite sides of the shaft 18 .
- FIG. 8 the anchor 28 expands to a spiral configuration so as to extend completely around the shaft 18 .
- the shaft is not split as shown in FIG. 7 , but instead the intact end of the shaft is used to form the spiral 108 .
- first end of the anchor to emerge from an elongate leg 12 is a straight section 110 bearing the anchor point, and this section passes through a blood vessel wall before following sections which will form curves emerge. Both the anchors of FIGS. 7 and 8 tend to flatten by spring action against the vessel wall after expanding.
- the shaft 18 is flattened at the end and split at 90 to form two opposed, flat arms 112 and 114 which expand outwardly on opposite sides of the shaft. These arms emerge from the elongate leg 12 as a straight section which passes through the vessel wall and then splits and bends outwardly at 116 and 118 to form the arms. These arms lie against the outer surface of the vessel wall and in a vena cava filter, are oriented transverse to the longitudinal direction of blood flow through the filter.
- An apparatus similar to that previously described with reference to the multiple anchor vena cava filter 10 can be employed to deploy the single anchor 120 of FIG. 10 .
- the single anchor 120 is formed at the distal end of an anchor shaft 122 mounted in an elongate tube 124 , Both the shaft 122 and the tube 124 are formed of shape memory material as described relative to the elongate legs 12 and long shafts 18 , but are normally much shorter in length than the elongate legs and shafts 18 .
- a tube retention sleeve 126 retains the single tube 124 in the same manner that the leg retention sleeve 14 operates to retain the elongate legs 12 , and this tube retention sleeve is engaged by a locking sleeve (not shown) and spring arms 32 operative in the manner previously described.
- a drive shaft 50 is connected at the entry end of the catheter 22 to a triggering unit 68 , and is also connected to a releasable connection 128 similar to the releasable connection 54 .
- This releasable connection is firmed in a shaft support hub 130 normally spaced from the tube retention sleeve 126 which is connected to the proximal end of the anchor shaft.
- the drive shaft 50 is movable in a control shaft 132 similar to the centering shaft 42 which operates to move the shaft support hub and tube retention sleeve longitudinally to expel the tube 124 containing the anchor 120 from the catheter 22 .
- the tube 124 will now assume a predetermined shape to position the anchor relative to a body wall which will receive the anchor.
- the triggering unit 68 can be operated to cause the drive shaft 50 to move the shaft support hub 130 toward the tube retention sleeve 126 to drive the anchor 120 through the body wall.
- the anchor 120 is formed of shape memory material and can take the form and operate in the manner of any of the anchors previously described.
- the spring arms 32 can be operated to release the tube retention sleeve 126 , and the drive shaft can be released from the releasable connection 128 so that the drive and control shafts, and in some cases the catheter, can be withdrawn. If the purpose of the anchor is to anchor the catheter in position, then a tether 134 is provided between the catheter and the anchor, and the catheter will not be withdrawn with the drive and control shafts.
- the catheter 22 may be a dual lumen catheter having a first lumen 136 containing the described anchor mechanism and a second lumen 138 containing an in implantable medical device 140 to be anchored by the anchor 120 .
- a tether 142 is connected between the anchor and the implant able medical device, and once the anchor is in place, the implantable medical device is ejected from the catheter.
- the tube 124 and tube retention sleeve 126 can be eliminated and replaced by the catheter lumen. Now the drive shaft 50 will drive the shaft support hub 130 longitudinally to drive the anchor from the catheter lumen and through the body wall.
- FIGS. 11 and 12 show anchors 144 and 146 respectively which each form a single, closed loop in the expanded shape memory configuration.
- Each of the anchors 144 or 146 is ejected from an elongate leg 12 in a straight configuration coextensive with the long anchor shaft 18 when the anchor support hub 20 is driven toward the leg retention sleeve 14 .
- the end of each anchor which may be pointed as indicated at 148 , will pierce the wall 150 of the vessel containing the vena cava filter 10 or other medical implant device to be anchored, so that the entire anchor passes through and expands against the outer surface of the vessel.
- the anchor 144 In its shape memory expanded configuration, the anchor 144 extends arcuately outwardly from the anchor shaft and loops back to cross over and extend beyond the anchor shaft to form a single closed loop 152 .
- the loop 152 engages the outer surface of the vessel wall 150 at 154 and is loaded in compression against the vessel wall; a compression which increases in response to forces applied in any direction which tend to force the loop 152 further against the vessel wall. As these forces increase, the loop 152 changes configuration and decreases in size becoming more rigid as a greater portion of the loop is forced across the anchor shaft 18 , thereby increasing the anchoring force of the anchor.
- the anchor 146 is oriented to be outside this angular space.
- This anchor in its shape memory expanded configuration extends arcuately outwardly from the anchor shaft and loops back to cross under and extend beyond the anchor shaft to form a single closed loop 156 which is loaded in compression against the vessel wall.
- the loop straightens rather than decreasing in size and may be withdrawn with less force than that required to withdraw the anchor 144 .
- Both the anchors 144 and 146 can be configured to provide a double looped anchor by splitting the shaft 18 and forming double, opposed closed loops similar to the open loops formed by the arms 92 and 94 of FIG. 7 . However both the double closed loops of the modified anchors 144 and 146 would extend arcuately back over or under the anchor shaft in the manner shown by FIG. 11 or 12 .
- an anchor containing filter leg 12 may be desirable to insure that the distal end 24 of an anchor containing filter leg 12 cannot follow an ejected anchor through the sidewall of a blood vessel once the anchor is deployed.
- This can be accomplished in accordance with this invention by forming a side opening in the portion of the filter leg which will contact the vessel wall with this side opening being spaced above the distal end of the filter leg.
- the anchor is then ejected through this side opening laterally of the filter leg once the filter leg has expanded into contact with the vessel wall.
- the anchor will now pass through the vessel wall at a point above the distal end of the filter leg thereby positively precluding the distal end of the filter leg from following the anchor through the vessel wall.
- the anchor guiding boot has an open end 160 which opens into an internal seat 162 for the distal end of the filter leg.
- the end of the filter leg may be secured within the seat 162 by any known means such as by a friction fit, welding, heat expansion or bonding.
- An internal passage 164 connects the seat 162 to a side opening 166 formed in the anchor guiding boot, and this side opening is spaced from the closed end 168 of the anchor guiding boot.
- the internal passage is closed by a curved, guidewall 170 which curves upwardly from the lower end of the opening 166 to the opposite side of the internal passage.
- each of the long anchor shafts 18 move an anchor 28 toward the closed end 168 of an anchor guiding boot 158 and into engagement with the curved, guidewall 170 which closes the internal passage 164 .
- the anchor is then guided along the curved, guidewall. causing the shaft 18 to bend as the anchor is ejected out through the side opening 166 and laterally through the wall of the blood vessel.
- the anchor guiding boot 158 may be formed of tantalum to provide high feasibility under fluoroscopy.
- barbs 172 may be formed on either the anchor guiding boot 158 , the filter leg 12 or both. These barbs engage the blood vessel wall when the filter leg contacts the vessel wall, and are inclined to penetrate and prevent longitudinal movement of the filter leg toward the closed end 168 of the anchor guiding boot.
- a side opening 174 to facilitate lateral anchor ejection when the triggering unit 68 is activated can be formed directly in a filter leg 12 and spaced above the distal end 24 thereof as shown in FIGS. 16-18 .
- the tubular filter leg is closed between the lower end of the side opening 174 and the distal end of the filter leg so that the anchor will be ejected laterally of the filter leg through the side opening.
- This closure may be formed by a curved wall 176 which curves upwardly from the lower end of the side opening across the tubular interior of the filter leg.
- the filter 10 of FIG. 16 is shown in the expanded configuration with the anchors 144 deployed laterally through the side openings 174 .
- FIG. 17 shows this anchor partially deployed, while FIG. 18 shows this anchor fully deployed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Reproductive Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is a Continuation-in-Part application of Ser. No. 10/705,226 filed Nov. 12, 2003.
- Recent advances in medical technology have resulted in the development of a variety of medical devices for permanent or temporary implantation in the human body. Effective positioning of such devices can prove to be a very difficult task, and maintaining an implanted device in a desired position for an extended period of time is often more difficult. This is particularly true if the implanted device is to remain only temporarily and is designed to facilitate subsequent removal.
- A number of medical implant devices are designed to collapse for insertion within a catheter or other delivery unit and to expand to a predetermined shape when ejected after delivery. Many of these self expanding devices rely primarily upon the contact between the device and the wall of a body vessel or passageway to maintain the device in position after the delivery unit is removed. Unfortunately, changes in the dimensions of the body vessel or passageway or variations in the flow of blood or other fluids there through can cause the medical implant to migrate and change position.
- It is extremely important that a medical implant device be properly positioned and oriented, and that this position and orientation be maintained. Otherwise, effective performance of such therapeutic devices will not be achieved. It is often very difficult to move such a device into position with the desired orientation, and once this is achieved, it is critical that no further motion occur.
- In an attempt to prevent migration of a medical implant device, rigid hooks are often formed on the device to engage the wall of a body vessel or passageway as the implant device expands into contact with the wall. After a few weeks, the endothelium layer grows over rigid hooks which will not easily bend under the influence of withdrawal pressure, and the medical implant device will be locked in place by the embedded hooks. This may be acceptable for a permanent implant, but rigid hooks are not a viable option if the medical implant device is to be removed after several weeks or months.
- To facilitate removal of a previously implanted medical device by withdrawal of the anchoring hooks from an enveloping endothelium layer without risking substantial damage to the wall of a body vessel or passageway, the hooks have been formed to straighten when subjected to a withdrawal force greater than a maximum migration force. U.S. Pat. Nos. 6,007,558 and 6,258,026 to Ravenscroft, et al show hooks which are formed to bend and straighten in response to a withdrawal force, while U.S. Pat. No. 4,425,908 to Simon, U.S. Pat. No. 4,817,600 to Herms, et al, U.S. Pat. No. 5,108,418 to Lefebvre, U.S. Pat. No. 5,133,733 to Rasmussen, et al, U.S. Pat. No. 5,242,462 to El-Nounou, et al, U.S. Pat. No. 5,370,657 to Irie, U.S. Pat. No. 5,601,595 to Smith, U.S. Pat. No. 5,800,457 to Gelbfish, and U.S. Pat. No. 5,853,420 to Chevillon, et al all disclose expandable medical implant devices; many with anchoring hooks.
- Anchoring hooks, although effective in many instances, are subject to a number of disadvantages which can make it difficult to properly position and maintain the position of a medical implant device. In prior devices, the anchoring hooks are engaged due to the expansion of the device into contact with the wall of a body vessel or passageway, and if the device moves from a desired position during expansion and contact with the wall occurs, the device cannot be easily repositioned. The anchoring function of the hooks is not separable from the expansion of the device.
- In cases where the operation of the hooks is tied to the expansion of a medical implant device, there can be instances where one or more of the hooks fails to properly engage the wall of a body vessel or passageway causing the device to become off center. Sometimes movement of the device longitudinally will engage the errant hooks, but this movement can also alter the position of the device.
- Also, the configuration of a hook which curves in a single direction from a shaft to a pointed end can prove to be a disadvantage. When hooks are used to anchor a medical implant device within a blood vessel, it is important that the hook be oriented to curve in the direction of normal blood flow through the vessel as it engages the vessel wall. Thus when engaged, the hook will extend from the shaft toward the point substantially in the direction of the longitudinal axis of the blood vessel, and will effectively resist migration of the medical implant device in response to pressure thereon from blood flow in the normal direction through the blood vessel. However, there are conditions which can result in a backflow of blood in a blood vessel, and pressure on the device and the anchoring hooks resulting from such backflow can cause the hooks to back out and disengage from the vessel, thus changing the orientation of the device within the blood vessel and causing deleterious changes in the performance of the implant.
- Finally, even if the hooks of an implant device are properly engaged with a vessel wall, there are conditions which result in the subsequent outward expansion of the vessel wall to an extent where the hooks tend to become disengaged.
- It is a primary object of the present invention to provide a novel and improved method for positioning and anchoring a medical implant device which includes positively propelling one or more anchors through a body wall subsequent to a medical implant device connected to the anchor reaching a desired position and coming to rest.
- Another object of the present invention is to provide a novel and improved medical device anchor and delivery system wherein one or more anchors are positively propelled through a body wall. Once an anchor has passed through the wall, it expands outwardly from at least two opposed sides of an anchor shaft.
- An additional object of the present invention is to provide a novel and improved medical device anchor designed to penetrate a body wall from a first side to a second side and to expand outwardly from at least two opposed sides of an anchor shaft after penetration.
- Another object of the present invention is to provide a novel and improved medical device anchor designed to penetrate the wall of a body vessel from a first side to a second side and to expand outwardly from an anchor shaft in a unique manner after penetration. The expanded anchor is designed to be loaded in compression against the second wall of the vessel and to change in configuration to increase the anchoring function provided thereby in response to forces applied thereto at an angle to the longitudinal axis of the vessel.
- Yet another object of the present invention is to provide a novel and improved medical device anchor designed to penetrate the wall of a body vessel from a first side to a second side and to expand outwardly from an anchor shaft in a unique manner after penetration. The anchor expands outwardly from the anchor shaft into one or more loops with each loop curving back to cross the anchor shaft. The section of the loop which crosses the anchor shaft is formed to engage the second wall of the vessel and to load the anchor in compression against the second wall of the vessel in response to forces which are applied to a medical device attached to the anchor or which result from expansion of the vessel wall.
- A further object of the present invention is to provide a novel and improved medical device anchor and delivery system wherein one or more anchors are positively propelled through a body wall subsequent to a medical implant device connected to the anchors reaching a desired position and coming to rest. The anchor delivery system facilitates removal and reinsertion of the anchors without requiring that the medical implant device connected thereto be compressed and/or removed.
- Yet another object of the present invention is to provide a novel and improved anchor and anchor delivery system for a medical implant device to anchor the device in position within a blood vessel or other body passageway. Once the medical implant device has been positioned and expanded into contact with the wall of the blood vessel or body passageway, the anchor delivery system then positively propels one or more anchors through the vessel or passageway wall where the anchors expand outwardly on opposite sides of an anchor shaft. The anchor delivery system permits the anchors to be withdrawn and then reinserted through the wall without the necessity to collapse the medical implant device.
- A further object of the present invention is to provide a novel and improved anchor and anchor delivery system for a medical implant device to anchor the device in position within a blood vessel or other body passageway while facilitating the subsequent withdrawal of the device. The anchor delivery system positively propels one or more anchors through the wall of a blood vessel or body passageway once the medical implant device has expanded into contact with the wall, and the anchors then expand outwardly from opposite sides of an anchor shaft. The anchors are formed to contract back toward the longitudinal axis of the anchor shaft in response to a predetermined force to permit withdrawal through the wall.
- A still further object of the present invention is to provide a novel and improved anchor and anchor delivery system for a blood clot filter where the delivery system includes elongate, tubular filter legs which house the anchors. Once the filter legs are ejected from a catheter or delivery tube and expand into contact with the blood vessel wall, the anchor delivery system positively propels the anchors outwardly from the filter legs and through the blood vessel wall from a first side to a second side where the anchors expand outwardly from an anchor shaft against the second side of the wall. Each anchor is formed to contract back toward the longitudinal axis of its anchor shaft in response to a predetermined force to permit withdrawal through the wall, and this permits the anchors to be withdrawn back into the filter legs and then again propelled through the blood vessel wall without collapsing the filter legs.
- Yet a further object of the present invention is to provide a novel and improved anchor delivery system for a blood clot filter where the delivery system includes elongate, tubular filter legs which house the anchors and which expand into contact with a blood vessel wall. A side opening is formed in the portion of the filter leg which will contact the blood vessel wall, and the filter leg is designed to facilitate ejection of the anchor through the side opening transverse to the filter leg. Once the filter legs expand into contact with the blood vessel wall, the anchor delivery system positively propels the anchors laterally outward from the side openings in the filter legs and through the blood vessel wall from a first side to a second side where the anchors expand outwardly from an anchor shaft against the second side of the blood vessel wall.
- These and other objects of the present invention are achieved by providing an anchor delivery system which houses one or more uniquely configured anchors which are connected to a medical implant device. The anchors remain housed until after the medical implant device has come to rest in a desired position within a body, and then the anchors are positively propelled through a body wall from a first side to a second side where each anchor expands from a single shaft configuration. To propel the anchors, a drive shaft extends from an anchor support sleeve back to a triggering unit which, when activated, causes the drive shaft to move the anchor support sleeve in a direction to propel the anchors through the body wall. The triggering unit may be spring powered or solenoid powered.
-
FIG. 1 is a sectional view showing a blood clot filter with anchors formed in accordance with the present invention mounted within a catheter; -
FIG. 2 is a perspective view showing the anchor support hub and leg retention sleeve ofFIG. 1 ; -
FIG. 3 is a perspective view showing the locking sleeve for the leg retention sleeve ofFIG. 2 ; -
FIG. 4 is a sectional view showing the operating mechanism for the locking sleeve and anchor support hub ofFIG. 1 ; -
FIG. 5 is a perspective view showing a spring powered triggering unit at the proximal end of the catheter ofFIG. 1 for propelling the anchor support hub; -
FIG. 6 is a perspective view of the deployed blood clot filter ofFIG. 1 ; -
FIG. 7 is a perspective view of a deployed anchor for the blood clot filter ofFIG. 6 ; -
FIG. 8 is a perspective view of a second embodiment of a deployed anchor of the present invention; -
FIG. 9 is a perspective view of a third embodiment of a deployed anchor of the present invention; -
FIG. 10 is a sectional view of a single anchor and anchor delivery system of the present invention; -
FIG. 11 is a perspective view of a fourth embodiment of a deployed anchor of the present invention which deploys to form a closed loop having a wall engaging section which crosses over and extends beyond the anchor shaft; -
FIG. 12 is a perspective view of a fifth embodiment of a deployed anchor of the present invention which deploys to form a closed loop having a wall engaging section which crosses under and extends beyond the anchor shaft; -
FIG. 13 is a view in side elevation of an anchor guide boot which is secured to the end of an anchor containing blood clot filter leg, -
FIG. 14 is a sectional view of the anchor guide boot ofFIG. 13 , -
FIG. 15 is a sectional view of a modification of the anchor guide boot ofFIG. 14 . -
FIG. 16 is a perspective view of a deployed blood clot modified to eject anchors from the side of the filter legs above the distal ends of the legs with the anchors deployed, -
FIG. 17 is a view in front elevation of an end section of a filter leg of the filter ofFIG. 16 with an anchor partially deployed, and -
FIG. 18 is a view in front elevation of an end section of a filter leg of the filter ofFIG. 16 with an anchor fully deployed. - Referring to
FIGS. 1-2 , a blood clot filter which includes anchors in accordance with the present invention is illustrated generally at 10. This filter, shown for illustration as a vena cava filter, is formed with a plurality ofelongate legs 12 which are secured to, and extend outwardly from aleg retention sleeve 14. The elongate legs are formed by small, open ended tubes each having a firstopen end 16 which opens at the leg retention sleeve. A plurality oflong anchor shafts 18 are attached at a distal end to ananchor support hub 20 which is spaced from the leg retention sleeve when the vena cava filter is collapsed within a catheter ordelivery tube 22. Eachshaft 18 extends from theanchor support hub 20 into the firstopen end 16 of atubular leg 12 and through the leg to adistal end 24 at a point adjacent to a secondopen end 26 of the tubular leg. Ananchor 28 is formed at the distal end of eachshaft 18 in a manner to be described. - The
elongate legs 12 and thelong anchor shafts 18 are formed of a material which will permit them to be compressed toward the longitudinal axis of thefilter 10 for delivery by acatheter 22. Once the filter is ejected from the catheter, thelegs 12 and theshafts 18 are designed to expand outwardly from the filter longitudinal axis as shown inFIG. 6 to bring the legs into contact with the wall of a blood vessel. Although spring metal and suitable plastics can be used to form thelegs 12 and/or theshafts 18, it is preferable to form theanchor shafts 18 and in most cases thelegs 12 of a suitable shape memory material. If a temperature responsive shape memory material such as nitinol is used, transition between the martensitic and austenitic states of the material can be achieved by temperature transitions relative to a transition temperature. In the martensitic state, the material softens, thereby permitting a filter formed thereof to be compressed and loaded into a catheter. If the transition temperature of the material is set at, or near to normal body temperature, then the filter legs will pass to the austenitic state when the filter is ejected from the catheter and expand to regain a memorized shape. - For delivery through the
catheter 22, theleg retention sleeve 14 is locked to theanchor support hub 20 by a lockingsleeve 30 which surrounds both the anchor support hub and the leg retention sleeve when in the locking position as shown inFIG. 1 . In the unlocked position, the locking sleeve is moved longitudinally back away from the leg retention sleeve as shown inFIG. 3 . Twospring arms 32 are connected at one end to ahousing 34 behind the anchor support hub and extend outwardly over opposite sides of the leg retention sleeve. The free end of each of the spring arms is curved to form anarcuate latch member 36 which overlies and, in the locking position ofFIG. 1 , engages a lockingprojection 38 formed on the leg retention sleeve. When the lockingsleeve 30 moves toward the locking position over theleg retention sleeve 14, it forces thespring arms FIG. 1 , the arcuate latch members slide intoslots 40 in the locking sleeve and the leg retention sleeve is positively locked to the anchor support hub. However, as the locking sleeve is moved longitudinally away from the leg retention sleeve, the arcuate configuration of thelatch members 36 permits them to slip out of theslots 40, and as the locking sleeve moves further, thespring arms 32 move outwardly causing the arcuate latch members to disengage the lockingprojections 38. - The locking
sleeve 30 is mounted for movement toward and away from a centeringshaft 42 which extends from adistal end 44 adjacent to thevena cava filter 10 back to the entry end of thecatheter 22. The distal end of the centering shaft is formed with a plurality of spacedlumens 46, each of which mounts one of a plurality of centeringarms 48. The centering shaft moves these centering arms out of thecatheter 22 behind the vena cava filter, and these centering arms then expand outwardly to engage the vessel wall and center the leading end of the filter. These centering arms can be formed of spring metal or plastic, but are preferably formed of shape memory material such as nitinol. - To control the positioning of the
vena cava filter 10 and subsequent ejection of theanchors 28 from the second open ends of thelegs 12, anelongate drive shaft 50 extends from the entry or proximal end 52 of thecatheter 22 through the catheter to areleasable connection 54 with theanchor support hub 20. This releasable connection can be any suitable connection which facilitates release of the drive shaft from the anchor support hub by manipulation of the drive shaft at the proximal end of the catheter such as a threaded connector as shown, a hook and eye connector, engaging hook connectors, and known twist engagement and release connectors. This drive shaft passes through the centeringshaft 42 and is both rotationally and longitudinally movable relative thereto. - As shown in
FIG. 4 , the drive shaft passes through and is both rotationally and longitudinally movable relative to alocking sleeve operator 56 which passes throughslots housing 34. The locking sleeve operator is secured at 62 and 64 to the lockingsleeve 30 and operates to move the locking sleeve away from theleg retention sleeve 14 as the locking sleeve operator moves away from the leg retention sleeve in theslots stop 66 secured to the drive shaft and positioned to engage the locking sleeve operator. - When the
catheter 22 reaches a desired position within a blood vessel, thevena cava filter 10 and centeringarms 48 are exposed by either ejecting them from the catheter or drawing the catheter back from around them. Now theelongate legs 12 and centeringarms 48 will expand outwardly into engagement with the vessel wall. However, theanchors 28 will remain enclosed within the elongate legs, and this permits the vena cava filter to be moved relative to the blood vessel after expansion of the elongate legs until an exact position is attained. If a substantial position change is required, the centering arms and vena cava filter can be drawn back into the catheter and subsequently redeployed in a new position. - With the vena cava filter in the desired position within a blood vessel and the
elongate legs 12 engaging the vessel wall, theanchors 28 are now positively ejected out from the second open ends 26 of the elongate legs so as to penetrate through the vessel wall. To achieve this positive ejection of the anchors subsequent to engagement of the elongate legs with the vessel wall with sufficient force to result in penetration of the vessel wall, thedrive shaft 50 is connected to a triggeringunit 68 at the proximal or entry end 70 of thecatheter 22. This triggering unit can be formed by a number of known units capable of imparting a longitudinal force to the drive shaft. An electrically powered solenoid unit can be used for this purpose as well as a number of spring powered units. InFIG. 5 , the triggering unit is formed by a conventional ballistic-type lancer of the type commonly used to cause a needle to puncture a patient's skin to provide a blood sample. Such lancers include ahollow body 72 which contains aplunger 74 capable of moving axially back and forth within the body. The plunger is surrounded by acoil spring 76 which becomes compressed when the plunger is pulled back and armed by anend knob 78. The armed plunger is held in place by atrigger 80 which is activated to release the plunger by abutton 82. When the plunger is released, thecoil spring 76 propels the plunger toward anopening 84 in anose cap 86 attached to the hollow body. For normal use of the ballistic type lancer, a needle is secured to theend 88 of the plunger and is propelled by the released plunger out through theopening 84 and into the skin of a patient. InFIG. 5 , thedrive shaft 50 is secured to theend 88 of the plunger, and when the armed plunger is released, the drive shaft is propelled longitudinally to drive theanchor support hub 20 toward theleg retention sleeve 14. This causes thelong shafts 18 to move longitudinally through theelongate legs 12 to propel the anchors out and through the vessel wall.FIG. 6 illustrates an expandedvena cava filter 10 with theanchors 28 in the configuration that they would assume after passing through the vessel wall. The structure and operation of these anchors will be subsequently described. - A significant advantage of the
vena cava filter 10 is that it can be repositioned even after the anchors are in place without the necessity to withdraw the complete filter back into thecatheter 22. So long as the elongate legs are in contact with the vessel wall, theanchors 28 can be withdrawn from the vessel wall and back into the elongate legs by causing thedrive shaft 50 to move theanchor support hub 20 away from theleg retention sleeve 14. Now the vena cava filter can be repositioned, theplunger 74 of the triggeringunit 68 can be rearmed, and the anchors can again be ejected to pierce the vessel wall. - Once the
vena cava filter 10 is properly positioned and anchored within a blood vessel, thedrive shaft 50 is disconnected from theanchor support hub 20 and is pulled away from the anchor support hub causing thestop 66 to engage and move the lockingsleeve operator 56 away from the anchor support hub. This results in movement of the lockingsleeve 30 away from theleg retention sleeve 14 so that thespring arms 32 spring outwardly and thelatch members 36 disengage from the lockingprojections 38. Now the centeringshaft 42, lockingsleeve 30,drive shaft 50 andhousing 34 may be drawn back through thecatheter 22 leaving the vena cava filter in place within the blood vessel. - To subsequently remove a previously anchored vena cava filter, standard body retrieval devices which engage the filter body may be used. For example, a hook to be engaged by a retrieval device can be attached to the
anchor support hub 20. - The
anchors 28 are formed at the proximal ends of thelong anchor shafts 18, and within theelongate legs 12 the anchors assume the same configuration as the shafts with which they are integrally formed. The shafts conform in configuration to the internal configuration of the elongate legs so as to easily move longitudinally within the elongate legs, and usually the shafts will be cylindrical with a pointed end which forms the leading end of the anchor. An enlarged view of the anchor ofFIG. 6 is shown inFIG. 7 . - Referring to
FIG. 7 , thetubular anchor shaft 18 is split down the center at 90 to form theopposed arms inner surfaces surface 100 of each arm is arcuate, so that when the inner surfaces of the arms are contacting, a straight tubular end section is formed on the end of eachlong shaft 18. The pointed end of each long shaft forms the pointed ends 102 and 104 on thearms - The expanded shape memory configuration of the
anchors 28 is shown inFIGS. 6 and 7 . Each anchor with theinner surfaces elongate leg 12 in a straight configuration when theanchor support hub 20 is driven toward theleg retention sleeve 14. The pointed lead end of each anchor will pierce the wall of a blood vessel so that the entire anchor passes through the vessel wall, at which point the anchor expands to its shape memory configuration shown inFIG. 7 . Now theend 26 of the elongate leg engages the inner surface of the blood vessel wall while the pointed ends 102 and 104 of thearms arms shaft 18 so that forces in either direction in the plane of the anchor arms will not dislodge the anchor in the manner which can occur with a single hook which extends outwardly in only one direction from a support shaft. To provide additional protection from accidental dislodgement, theanchors 28 are oriented as shown inFIG. 7 so that theopposed arms longitudinal direction 106 of blood flow through thefilter 10. Thus the forces created by direct or reverse blood flow cannot dislodge the anchor, but since the anchor arms are each formed from half of ashaft 18 of a very small diameter, a withdrawal force along the longitudinal axis of the shaft will permit the anchor arms to come together to facilitate anchor withdrawal from the vessel wall. - It is important to note that the
anchor arms shaft 18 to engage the outside surface of the vessel wall. This causes the anchor to be loaded in compression against the vessel wall when forces normal to the longitudinal axis of the vessel are applied to a medical device attached to the anchor. This compression aspect greatly enhances the anchoring function provided by the anchor and facilitates the effective use of very small, fine anchor components. - The
anchors 28 may take a number of forms so long as the anchor expands from a straight configuration from within anelongate leg 12 to a shape memory configuration where the anchor extends outwardly on at least two opposite sides of theshaft 18. InFIG. 8 , theanchor 28 expands to a spiral configuration so as to extend completely around theshaft 18. Here the shaft is not split as shown inFIG. 7 , but instead the intact end of the shaft is used to form thespiral 108. In all cases, first end of the anchor to emerge from anelongate leg 12 is astraight section 110 bearing the anchor point, and this section passes through a blood vessel wall before following sections which will form curves emerge. Both the anchors ofFIGS. 7 and 8 tend to flatten by spring action against the vessel wall after expanding. - To form the
anchor 28 ofFIG. 9 , theshaft 18 is flattened at the end and split at 90 to form two opposed,flat arms elongate leg 12 as a straight section which passes through the vessel wall and then splits and bends outwardly at 116 and 118 to form the arms. These arms lie against the outer surface of the vessel wall and in a vena cava filter, are oriented transverse to the longitudinal direction of blood flow through the filter. - For some medical applications, a need has arisen for a single anchor to tether a device within a body vessel or to a body wall. An apparatus similar to that previously described with reference to the multiple anchor
vena cava filter 10 can be employed to deploy thesingle anchor 120 ofFIG. 10 . Thesingle anchor 120 is formed at the distal end of ananchor shaft 122 mounted in anelongate tube 124, Both theshaft 122 and thetube 124 are formed of shape memory material as described relative to theelongate legs 12 andlong shafts 18, but are normally much shorter in length than the elongate legs andshafts 18. Atube retention sleeve 126 retains thesingle tube 124 in the same manner that theleg retention sleeve 14 operates to retain theelongate legs 12, and this tube retention sleeve is engaged by a locking sleeve (not shown) andspring arms 32 operative in the manner previously described. Adrive shaft 50 is connected at the entry end of thecatheter 22 to a triggeringunit 68, and is also connected to areleasable connection 128 similar to thereleasable connection 54. This releasable connection is firmed in ashaft support hub 130 normally spaced from thetube retention sleeve 126 which is connected to the proximal end of the anchor shaft. - The
drive shaft 50 is movable in acontrol shaft 132 similar to the centeringshaft 42 which operates to move the shaft support hub and tube retention sleeve longitudinally to expel thetube 124 containing theanchor 120 from thecatheter 22. Thetube 124 will now assume a predetermined shape to position the anchor relative to a body wall which will receive the anchor. Now the triggeringunit 68 can be operated to cause thedrive shaft 50 to move theshaft support hub 130 toward thetube retention sleeve 126 to drive theanchor 120 through the body wall. Theanchor 120 is formed of shape memory material and can take the form and operate in the manner of any of the anchors previously described. Once the anchor is delivered, thespring arms 32 can be operated to release thetube retention sleeve 126, and the drive shaft can be released from thereleasable connection 128 so that the drive and control shafts, and in some cases the catheter, can be withdrawn. If the purpose of the anchor is to anchor the catheter in position, then atether 134 is provided between the catheter and the anchor, and the catheter will not be withdrawn with the drive and control shafts. - In some instances, the
catheter 22 may be a dual lumen catheter having afirst lumen 136 containing the described anchor mechanism and asecond lumen 138 containing an in implantablemedical device 140 to be anchored by theanchor 120. In this case, atether 142 is connected between the anchor and the implant able medical device, and once the anchor is in place, the implantable medical device is ejected from the catheter. - When it is possible to use the catheter to properly position the
anchor 120 relative to a body wall, thetube 124 andtube retention sleeve 126 can be eliminated and replaced by the catheter lumen. Now thedrive shaft 50 will drive theshaft support hub 130 longitudinally to drive the anchor from the catheter lumen and through the body wall. -
FIGS. 11 and 12 show anchors 144 and 146 respectively which each form a single, closed loop in the expanded shape memory configuration. Each of theanchors elongate leg 12 in a straight configuration coextensive with thelong anchor shaft 18 when theanchor support hub 20 is driven toward theleg retention sleeve 14. The end of each anchor, which may be pointed as indicated at 148, will pierce thewall 150 of the vessel containing thevena cava filter 10 or other medical implant device to be anchored, so that the entire anchor passes through and expands against the outer surface of the vessel. In its shape memory expanded configuration, theanchor 144 extends arcuately outwardly from the anchor shaft and loops back to cross over and extend beyond the anchor shaft to form a singleclosed loop 152. Theloop 152 engages the outer surface of thevessel wall 150 at 154 and is loaded in compression against the vessel wall; a compression which increases in response to forces applied in any direction which tend to force theloop 152 further against the vessel wall. As these forces increase, theloop 152 changes configuration and decreases in size becoming more rigid as a greater portion of the loop is forced across theanchor shaft 18, thereby increasing the anchoring force of the anchor. - Unlike the
anchor 144 which is oriented to be confined in the angular space between theanchor shaft 18 and thevessel wall 150, theanchor 146 is oriented to be outside this angular space. This anchor in its shape memory expanded configuration extends arcuately outwardly from the anchor shaft and loops back to cross under and extend beyond the anchor shaft to form a singleclosed loop 156 which is loaded in compression against the vessel wall. However, due to the orientation and configuration of theanchor 146, as forces on the anchor increase, the loop straightens rather than decreasing in size and may be withdrawn with less force than that required to withdraw theanchor 144. - Both the
anchors shaft 18 and forming double, opposed closed loops similar to the open loops formed by thearms FIG. 7 . However both the double closed loops of the modifiedanchors FIG. 11 or 12. - It may be desirable to insure that the
distal end 24 of an anchor containingfilter leg 12 cannot follow an ejected anchor through the sidewall of a blood vessel once the anchor is deployed. This can be accomplished in accordance with this invention by forming a side opening in the portion of the filter leg which will contact the vessel wall with this side opening being spaced above the distal end of the filter leg. The anchor is then ejected through this side opening laterally of the filter leg once the filter leg has expanded into contact with the vessel wall. The anchor will now pass through the vessel wall at a point above the distal end of the filter leg thereby positively precluding the distal end of the filter leg from following the anchor through the vessel wall. - It has been found to be advantageous to attach a separate
anchor guiding boot 158 of the type shown inFIGS. 13, 14 and 15 to thedistal end 24 of each anchor containing filter leg. The anchor guiding boot has anopen end 160 which opens into aninternal seat 162 for the distal end of the filter leg. The end of the filter leg may be secured within theseat 162 by any known means such as by a friction fit, welding, heat expansion or bonding. Aninternal passage 164 connects theseat 162 to aside opening 166 formed in the anchor guiding boot, and this side opening is spaced from theclosed end 168 of the anchor guiding boot. The internal passage is closed by a curved,guidewall 170 which curves upwardly from the lower end of theopening 166 to the opposite side of the internal passage. - When the triggering
unit 68 is activated, each of thelong anchor shafts 18 move ananchor 28 toward theclosed end 168 of ananchor guiding boot 158 and into engagement with the curved,guidewall 170 which closes theinternal passage 164. The anchor is then guided along the curved, guidewall. causing theshaft 18 to bend as the anchor is ejected out through theside opening 166 and laterally through the wall of the blood vessel. Theanchor guiding boot 158 may be formed of tantalum to provide high feasibility under fluoroscopy. - To prevent longitudinal movement of a
filter leg 12 relative to the blood vessel caused by the force applied to the curved,guidewall 170 by the ejectinganchor 28, barbs 172 may be formed on either theanchor guiding boot 158, thefilter leg 12 or both. These barbs engage the blood vessel wall when the filter leg contacts the vessel wall, and are inclined to penetrate and prevent longitudinal movement of the filter leg toward theclosed end 168 of the anchor guiding boot. - To eliminate the need for the
anchor guiding boot 158, aside opening 174 to facilitate lateral anchor ejection when the triggeringunit 68 is activated can be formed directly in afilter leg 12 and spaced above thedistal end 24 thereof as shown inFIGS. 16-18 . The tubular filter leg is closed between the lower end of theside opening 174 and the distal end of the filter leg so that the anchor will be ejected laterally of the filter leg through the side opening. This closure may be formed by acurved wall 176 which curves upwardly from the lower end of the side opening across the tubular interior of the filter leg. Thefilter 10 ofFIG. 16 is shown in the expanded configuration with theanchors 144 deployed laterally through theside openings 174.FIG. 17 shows this anchor partially deployed, whileFIG. 18 shows this anchor fully deployed.
Claims (26)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/980,828 US20050131451A1 (en) | 2003-11-12 | 2004-11-04 | Medical device anchor and delivery system |
PCT/US2004/037738 WO2005046783A1 (en) | 2003-11-12 | 2004-11-12 | Medical device anchor and delivery system |
JP2006539882A JP5007124B2 (en) | 2003-11-12 | 2004-11-12 | Medical equipment fixation and transfer system |
CA002526920A CA2526920C (en) | 2003-11-12 | 2004-11-12 | Medical device anchor and delivery system |
EP04810795.7A EP1706168B1 (en) | 2003-11-12 | 2004-11-12 | Medical device anchor and delivery system |
US12/625,941 US8409239B2 (en) | 2003-11-12 | 2009-11-25 | Medical device anchor and delivery system |
US12/780,757 US8398672B2 (en) | 2003-11-12 | 2010-05-14 | Method for anchoring a medical device |
US13/854,855 US9283065B2 (en) | 2003-11-12 | 2013-04-01 | Medical device anchor and delivery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/705,226 US7056286B2 (en) | 2003-11-12 | 2003-11-12 | Medical device anchor and delivery system |
US10/980,828 US20050131451A1 (en) | 2003-11-12 | 2004-11-04 | Medical device anchor and delivery system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/705,226 Continuation-In-Part US7056286B2 (en) | 2003-11-12 | 2003-11-12 | Medical device anchor and delivery system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/625,941 Continuation US8409239B2 (en) | 2003-11-12 | 2009-11-25 | Medical device anchor and delivery system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050131451A1 true US20050131451A1 (en) | 2005-06-16 |
Family
ID=34552312
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/705,226 Expired - Lifetime US7056286B2 (en) | 2003-11-12 | 2003-11-12 | Medical device anchor and delivery system |
US10/980,828 Abandoned US20050131451A1 (en) | 2003-11-12 | 2004-11-04 | Medical device anchor and delivery system |
US12/625,941 Expired - Lifetime US8409239B2 (en) | 2003-11-12 | 2009-11-25 | Medical device anchor and delivery system |
US12/780,757 Expired - Lifetime US8398672B2 (en) | 2003-11-12 | 2010-05-14 | Method for anchoring a medical device |
US13/854,855 Expired - Lifetime US9283065B2 (en) | 2003-11-12 | 2013-04-01 | Medical device anchor and delivery system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/705,226 Expired - Lifetime US7056286B2 (en) | 2003-11-12 | 2003-11-12 | Medical device anchor and delivery system |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/625,941 Expired - Lifetime US8409239B2 (en) | 2003-11-12 | 2009-11-25 | Medical device anchor and delivery system |
US12/780,757 Expired - Lifetime US8398672B2 (en) | 2003-11-12 | 2010-05-14 | Method for anchoring a medical device |
US13/854,855 Expired - Lifetime US9283065B2 (en) | 2003-11-12 | 2013-04-01 | Medical device anchor and delivery system |
Country Status (2)
Country | Link |
---|---|
US (5) | US7056286B2 (en) |
CN (1) | CN1842354A (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080275488A1 (en) * | 2007-05-01 | 2008-11-06 | Fleming James A | Extended duration removable medical filter |
US20080294189A1 (en) * | 2007-05-23 | 2008-11-27 | Moll Fransiscus L | Vein filter |
US20090005803A1 (en) * | 2007-06-27 | 2009-01-01 | Stanley Batiste | Removable vascular filter and method of filter use |
US20090043382A1 (en) * | 2005-10-26 | 2009-02-12 | Cardiosolutions, Inc. | Mitral Spacer |
US20090187208A1 (en) * | 2008-01-18 | 2009-07-23 | William Cook Europe Aps | Introduction catheter set for a self-expandable implant |
US7704267B2 (en) | 2004-08-04 | 2010-04-27 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US7794473B2 (en) | 2004-11-12 | 2010-09-14 | C.R. Bard, Inc. | Filter delivery system |
US20100256669A1 (en) * | 2005-12-02 | 2010-10-07 | C.R. Bard, Inc. | Helical Vena Cava Filter |
US20110118833A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment device and method |
US20110118829A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment device and method |
US20110160850A1 (en) * | 2009-12-30 | 2011-06-30 | Thoratec Corporation | Blood Pump System With Mounting Cuff |
US8092525B2 (en) | 2005-10-26 | 2012-01-10 | Cardiosolutions, Inc. | Heart valve implant |
US8216302B2 (en) | 2005-10-26 | 2012-07-10 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US20120226309A1 (en) * | 2009-09-07 | 2012-09-06 | Joensson Anders | Device, Kit And Method For Closure Of A Body Lumen Puncture |
US8267954B2 (en) | 2005-02-04 | 2012-09-18 | C. R. Bard, Inc. | Vascular filter with sensing capability |
US8398672B2 (en) | 2003-11-12 | 2013-03-19 | Nitinol Devices And Components, Inc. | Method for anchoring a medical device |
US20130103073A1 (en) * | 2011-10-21 | 2013-04-25 | Cook Medical Technologies Llc | Femoral removal vena cava filter |
US8430903B2 (en) | 2005-08-09 | 2013-04-30 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US8449606B2 (en) | 2005-10-26 | 2013-05-28 | Cardiosolutions, Inc. | Balloon mitral spacer |
US8480730B2 (en) | 2007-05-14 | 2013-07-09 | Cardiosolutions, Inc. | Solid construct mitral spacer |
US8574261B2 (en) | 2005-05-12 | 2013-11-05 | C. R. Bard, Inc. | Removable embolus blood clot filter |
US8591460B2 (en) | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
US8597347B2 (en) | 2007-11-15 | 2013-12-03 | Cardiosolutions, Inc. | Heart regurgitation method and apparatus |
US8613754B2 (en) | 2005-05-12 | 2013-12-24 | C. R. Bard, Inc. | Tubular filter |
US8690906B2 (en) | 1998-09-25 | 2014-04-08 | C.R. Bard, Inc. | Removeable embolus blood clot filter and filter delivery unit |
US8778017B2 (en) | 2005-10-26 | 2014-07-15 | Cardiosolutions, Inc. | Safety for mitral valve implant |
US8852270B2 (en) | 2007-11-15 | 2014-10-07 | Cardiosolutions, Inc. | Implant delivery system and method |
US8870916B2 (en) | 2006-07-07 | 2014-10-28 | USGI Medical, Inc | Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use |
US8961557B2 (en) | 2007-01-31 | 2015-02-24 | Stanley Batiste | Intravenous filter with fluid or medication infusion capability |
US9131999B2 (en) | 2005-11-18 | 2015-09-15 | C.R. Bard Inc. | Vena cava filter with filament |
US9138228B2 (en) | 2004-08-11 | 2015-09-22 | Emory University | Vascular conduit device and system for implanting |
US9144637B2 (en) | 2011-03-02 | 2015-09-29 | Thoratec Corporation | Ventricular cuff |
US9199019B2 (en) | 2012-08-31 | 2015-12-01 | Thoratec Corporation | Ventricular cuff |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US9232998B2 (en) | 2013-03-15 | 2016-01-12 | Cardiosolutions Inc. | Trans-apical implant systems, implants and methods |
US9259317B2 (en) | 2008-06-13 | 2016-02-16 | Cardiosolutions, Inc. | System and method for implanting a heart implant |
US9289297B2 (en) | 2013-03-15 | 2016-03-22 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
US9308073B2 (en) | 2012-09-12 | 2016-04-12 | Cook Medical Technologies Llc | Vena cava filter with dual retrieval |
US9308015B2 (en) | 2007-04-24 | 2016-04-12 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US9320875B2 (en) | 2011-02-01 | 2016-04-26 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US9532773B2 (en) | 2011-01-28 | 2017-01-03 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US9545305B2 (en) | 2013-06-14 | 2017-01-17 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US9629675B2 (en) | 2011-10-19 | 2017-04-25 | Confluent Medical Technologies, Inc. | Tissue treatment device and related methods |
US9649211B2 (en) | 2009-11-04 | 2017-05-16 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
US9833305B2 (en) | 2012-09-12 | 2017-12-05 | Cook Medical Technologies Llc | Vena cava filter with dual retrieval |
US9981076B2 (en) | 2012-03-02 | 2018-05-29 | Tc1 Llc | Ventricular cuff |
US10028741B2 (en) | 2013-01-25 | 2018-07-24 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US10092427B2 (en) | 2009-11-04 | 2018-10-09 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
US10188496B2 (en) | 2006-05-02 | 2019-01-29 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US10485909B2 (en) | 2014-10-31 | 2019-11-26 | Thoratec Corporation | Apical connectors and instruments for use in a heart wall |
US10518012B2 (en) | 2013-03-15 | 2019-12-31 | Apk Advanced Medical Technologies, Inc. | Devices, systems, and methods for implanting and using a connector in a tissue wall |
US10751519B2 (en) | 2010-11-22 | 2020-08-25 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US10894116B2 (en) | 2016-08-22 | 2021-01-19 | Tc1 Llc | Heart pump cuff |
US11141581B2 (en) | 2019-09-06 | 2021-10-12 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
US11235137B2 (en) | 2017-02-24 | 2022-02-01 | Tc1 Llc | Minimally invasive methods and devices for ventricular assist device implantation |
US11331105B2 (en) | 2016-10-19 | 2022-05-17 | Aria Cv, Inc. | Diffusion resistant implantable devices for reducing pulsatile pressure |
US11511089B2 (en) | 2014-06-19 | 2022-11-29 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US11547545B2 (en) | 2007-01-31 | 2023-01-10 | Stanley Batiste | Infusion filter and method for performing thrombolysis |
US11583420B2 (en) | 2010-06-08 | 2023-02-21 | Regents Of The University Of Minnesota | Vascular elastance |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852487B1 (en) * | 1996-02-09 | 2005-02-08 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
US7931658B2 (en) | 2002-09-20 | 2011-04-26 | Interrad Medical, Inc. | Temporary retention device |
US7232462B2 (en) * | 2004-03-31 | 2007-06-19 | Cook Incorporated | Self centering delivery catheter |
US20060015137A1 (en) * | 2004-07-19 | 2006-01-19 | Wasdyke Joel M | Retrievable intravascular filter with bendable anchoring members |
US10195014B2 (en) | 2005-05-20 | 2019-02-05 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US10925587B2 (en) | 2005-05-20 | 2021-02-23 | Neotract, Inc. | Anchor delivery system |
US9549739B2 (en) | 2005-05-20 | 2017-01-24 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US8668705B2 (en) | 2005-05-20 | 2014-03-11 | Neotract, Inc. | Latching anchor device |
US8628542B2 (en) | 2005-05-20 | 2014-01-14 | Neotract, Inc. | Median lobe destruction apparatus and method |
US7758594B2 (en) | 2005-05-20 | 2010-07-20 | Neotract, Inc. | Devices, systems and methods for treating benign prostatic hyperplasia and other conditions |
US7645286B2 (en) | 2005-05-20 | 2010-01-12 | Neotract, Inc. | Devices, systems and methods for retracting, lifting, compressing, supporting or repositioning tissues or anatomical structures |
US8603106B2 (en) | 2005-05-20 | 2013-12-10 | Neotract, Inc. | Integrated handle assembly for anchor delivery system |
CA2633866A1 (en) | 2005-12-30 | 2007-07-12 | C.R. Bard Inc. | Embolus blood clot filter removal system and method |
WO2007079410A2 (en) | 2005-12-30 | 2007-07-12 | C.R Bard Inc. | Embolus blood clot filter delivery system |
US8562638B2 (en) | 2005-12-30 | 2013-10-22 | C.R. Bard, Inc. | Embolus blood clot filter with floating filter basket |
WO2007079407A2 (en) * | 2005-12-30 | 2007-07-12 | C.R. Bard Inc. | Embolus blood clot filter with post delivery actuation |
WO2007079409A2 (en) * | 2005-12-30 | 2007-07-12 | C.R. Bard Inc. | Removable blood clot filter with edge for cutting through the endothelium |
US8016794B2 (en) | 2006-03-09 | 2011-09-13 | Interrad Medical, Inc. | Anchor device and method |
WO2008131405A1 (en) * | 2007-04-23 | 2008-10-30 | Cerebro Dynamics, Inc. | Securement device for shunt catheter and implantation method therefor |
US7753889B2 (en) | 2007-06-15 | 2010-07-13 | Interrad Medical, Inc. | Anchor instrumentation and methods |
US8758366B2 (en) * | 2007-07-09 | 2014-06-24 | Neotract, Inc. | Multi-actuating trigger anchor delivery system |
AU2009236055B2 (en) | 2008-04-17 | 2014-07-17 | Apollo Endosurgery, Inc. | Implantable access port device and attachment system |
US9023063B2 (en) | 2008-04-17 | 2015-05-05 | Apollo Endosurgery, Inc. | Implantable access port device having a safety cap |
US8235948B2 (en) | 2008-06-27 | 2012-08-07 | Interrad Medical, Inc. | System for anchoring medical devices |
US8038653B2 (en) | 2008-07-16 | 2011-10-18 | Interrad Medical, Inc. | Anchor systems and methods |
US8328764B2 (en) | 2009-02-06 | 2012-12-11 | Interrad Medical, Inc. | System for anchoring medical devices |
US8545531B2 (en) | 2009-06-26 | 2013-10-01 | Safe Wire Holding, Llc | Guidewire and method for surgical procedures |
EP2445431A2 (en) | 2009-06-26 | 2012-05-02 | Safe Wire Holding, LLC | K-wire and method for surgical procedures |
US8715158B2 (en) | 2009-08-26 | 2014-05-06 | Apollo Endosurgery, Inc. | Implantable bottom exit port |
US8708979B2 (en) | 2009-08-26 | 2014-04-29 | Apollo Endosurgery, Inc. | Implantable coupling device |
US8506532B2 (en) | 2009-08-26 | 2013-08-13 | Allergan, Inc. | System including access port and applicator tool |
US8551078B2 (en) * | 2009-12-04 | 2013-10-08 | Covidien Lp | Laparoscopic scaffold assembly |
US9307980B2 (en) | 2010-01-22 | 2016-04-12 | 4Tech Inc. | Tricuspid valve repair using tension |
US9241702B2 (en) | 2010-01-22 | 2016-01-26 | 4Tech Inc. | Method and apparatus for tricuspid valve repair using tension |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US8475525B2 (en) | 2010-01-22 | 2013-07-02 | 4Tech Inc. | Tricuspid valve repair using tension |
US8882728B2 (en) | 2010-02-10 | 2014-11-11 | Apollo Endosurgery, Inc. | Implantable injection port |
US20110270025A1 (en) | 2010-04-30 | 2011-11-03 | Allergan, Inc. | Remotely powered remotely adjustable gastric band system |
US20110270021A1 (en) | 2010-04-30 | 2011-11-03 | Allergan, Inc. | Electronically enhanced access port for a fluid filled implant |
US8992415B2 (en) | 2010-04-30 | 2015-03-31 | Apollo Endosurgery, Inc. | Implantable device to protect tubing from puncture |
US20120041258A1 (en) | 2010-08-16 | 2012-02-16 | Allergan, Inc. | Implantable access port system |
CN101943015A (en) * | 2010-09-10 | 2011-01-12 | 中国恩菲工程技术有限公司 | Anchor rod for strengthening tunnels |
US20120065460A1 (en) | 2010-09-14 | 2012-03-15 | Greg Nitka | Implantable access port system |
US9872981B2 (en) | 2010-09-28 | 2018-01-23 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
AU2011312739B2 (en) | 2010-09-28 | 2015-06-11 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for positioning an electrode in tissue |
US8343108B2 (en) | 2010-09-29 | 2013-01-01 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
US10022212B2 (en) * | 2011-01-13 | 2018-07-17 | Cook Medical Technologies Llc | Temporary venous filter with anti-coagulant delivery method |
US8663190B2 (en) | 2011-04-22 | 2014-03-04 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US8821373B2 (en) | 2011-05-10 | 2014-09-02 | Apollo Endosurgery, Inc. | Directionless (orientation independent) needle injection port |
EP2741806B1 (en) | 2011-08-11 | 2018-11-07 | Medical Components, Inc. | Apparatus for the dialysis of blood |
US20130053792A1 (en) | 2011-08-24 | 2013-02-28 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
US9056185B2 (en) | 2011-08-24 | 2015-06-16 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
US8801597B2 (en) | 2011-08-25 | 2014-08-12 | Apollo Endosurgery, Inc. | Implantable access port with mesh attachment rivets |
US8936576B2 (en) | 2011-09-15 | 2015-01-20 | Interrad Medical, Inc. | System for anchoring medical devices |
US9199069B2 (en) | 2011-10-20 | 2015-12-01 | Apollo Endosurgery, Inc. | Implantable injection port |
US8858421B2 (en) | 2011-11-15 | 2014-10-14 | Apollo Endosurgery, Inc. | Interior needle stick guard stems for tubes |
US9089395B2 (en) | 2011-11-16 | 2015-07-28 | Appolo Endosurgery, Inc. | Pre-loaded septum for use with an access port |
US8932263B2 (en) * | 2012-02-17 | 2015-01-13 | Interrad Medical, Inc. | Anchoring an intravenous cannula |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US10292801B2 (en) | 2012-03-29 | 2019-05-21 | Neotract, Inc. | System for delivering anchors for treating incontinence |
US8961594B2 (en) | 2012-05-31 | 2015-02-24 | 4Tech Inc. | Heart valve repair system |
US10130353B2 (en) | 2012-06-29 | 2018-11-20 | Neotract, Inc. | Flexible system for delivering an anchor |
US10226270B2 (en) | 2012-08-10 | 2019-03-12 | W. L. Gore & Associates, Inc. | Microanchors for anchoring devices to body tissues |
US9314596B2 (en) | 2012-10-11 | 2016-04-19 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US9301795B2 (en) | 2012-10-29 | 2016-04-05 | Ablative Solutions, Inc. | Transvascular catheter for extravascular delivery |
US10945787B2 (en) | 2012-10-29 | 2021-03-16 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US9526827B2 (en) | 2012-10-29 | 2016-12-27 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US10736656B2 (en) | 2012-10-29 | 2020-08-11 | Ablative Solutions | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US10226278B2 (en) | 2012-10-29 | 2019-03-12 | Ablative Solutions, Inc. | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US9554849B2 (en) | 2012-10-29 | 2017-01-31 | Ablative Solutions, Inc. | Transvascular method of treating hypertension |
US10881458B2 (en) | 2012-10-29 | 2021-01-05 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
US9550043B2 (en) | 2012-12-13 | 2017-01-24 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
EP2943132B1 (en) | 2013-01-09 | 2018-03-28 | 4Tech Inc. | Soft tissue anchors |
US9629721B2 (en) * | 2013-02-08 | 2017-04-25 | Muffin Incorporated | Peripheral sealing venous check-valve |
US9415190B2 (en) | 2013-02-13 | 2016-08-16 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
CN105208978B (en) | 2013-03-14 | 2016-12-07 | 4科技有限公司 | There is the support of tether interface |
AU2014248072A1 (en) * | 2013-04-05 | 2015-07-30 | Sanford Health | Anchoring guidewire and methods for use |
US10004621B2 (en) | 2013-04-05 | 2018-06-26 | Sanford Health | Anchoring guidewire and methods for use |
US9381321B2 (en) | 2013-05-03 | 2016-07-05 | Interrad Medical, Inc. | Systems and methods for anchoring medical devices |
US10517666B2 (en) | 2013-10-25 | 2019-12-31 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US9931046B2 (en) | 2013-10-25 | 2018-04-03 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US9949652B2 (en) | 2013-10-25 | 2018-04-24 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
WO2015063580A2 (en) | 2013-10-30 | 2015-05-07 | 4Tech Inc. | Multiple anchoring-point tension system |
KR102407167B1 (en) * | 2013-11-25 | 2022-06-10 | 커스텀 메디컬 애플리케이션즈, 아이엔씨. | Anchor elements, medical devices including one or more anchor elements and related assemblies and methods |
CN111513662A (en) * | 2014-03-31 | 2020-08-11 | 捷锐士股份有限公司 | Anchoring mechanisms and systems for endoluminal devices |
US10159556B2 (en) * | 2014-05-02 | 2018-12-25 | Argon Medical Devices, Inc. | Method of inserting a vein filter |
WO2015172023A2 (en) | 2014-05-09 | 2015-11-12 | Biotrace Medical, Inc. | Device and method for positioning an electrode in a body cavity |
EP3157607B1 (en) | 2014-06-19 | 2019-08-07 | 4Tech Inc. | Cardiac tissue cinching |
CN104055601B (en) * | 2014-07-07 | 2016-08-24 | 宁波健世生物科技有限公司 | A kind of novel implantation instrument release device |
US10117736B2 (en) * | 2014-08-06 | 2018-11-06 | Cook Medical Technologies Llc | Low radial force filter |
GB2530313B (en) * | 2014-09-19 | 2016-09-14 | Cook Medical Technologies Llc | Spring lock implantable vascular device |
EP3068311B1 (en) | 2014-12-02 | 2017-11-15 | 4Tech Inc. | Off-center tissue anchors |
JP6585297B2 (en) | 2015-09-15 | 2019-10-02 | カスタム メディカル アプリケーションズ インク.Custom Medical Applications, Inc. | Deployment device and associated assembly and method |
MX2018013114A (en) * | 2016-04-28 | 2019-03-06 | Shenzhen Kyd Biomedical Tech Co Ltd | Inferior vena cava filter. |
CN108969030B (en) * | 2017-06-02 | 2022-01-07 | 上海佐心医疗科技有限公司 | Medical device |
EP3727171B1 (en) | 2017-12-23 | 2023-06-07 | Teleflex Life Sciences Limited | Expandable tissue engagement apparatus |
USD905853S1 (en) | 2018-02-27 | 2020-12-22 | Medical Components, Inc. | Catheter tip |
FR3080273B1 (en) * | 2018-04-18 | 2023-12-29 | A L N | UMBRELLA-TYPE FILTER WITH ANTI-TRANSFIXATION PROTECTION |
US10849685B2 (en) | 2018-07-18 | 2020-12-01 | Ablative Solutions, Inc. | Peri-vascular tissue access catheter with locking handle |
US11660444B2 (en) | 2018-07-31 | 2023-05-30 | Manicka Institute Llc | Resilient body component contact for a subcutaneous device |
US10471251B1 (en) | 2018-07-31 | 2019-11-12 | Manicka Institute Llc | Subcutaneous device for monitoring and/or providing therapies |
US10716511B2 (en) | 2018-07-31 | 2020-07-21 | Manicka Institute Llc | Subcutaneous device for monitoring and/or providing therapies |
US11433233B2 (en) | 2020-11-25 | 2022-09-06 | Calyan Technologies, Inc. | Electrode contact for a subcutaneous device |
US11717674B2 (en) | 2018-07-31 | 2023-08-08 | Manicka Institute Llc | Subcutaneous device for use with remote device |
US10576291B2 (en) | 2018-07-31 | 2020-03-03 | Manicka Institute Llc | Subcutaneous device |
WO2020139776A1 (en) | 2018-12-24 | 2020-07-02 | 4Tech Inc. | Self-locking tissue anchors |
CN110522486B (en) * | 2019-04-22 | 2021-04-09 | 上海佐心医疗科技有限公司 | Plugging bracket for left auricle |
US12097347B2 (en) * | 2020-10-26 | 2024-09-24 | Medtronic Xomed, Inc. | System and method for a shunt |
USD984880S1 (en) | 2020-11-06 | 2023-05-02 | Medical Components, Inc. | Clamp with indicator |
US20220160253A1 (en) * | 2020-11-25 | 2022-05-26 | Calyan Technologies, Inc. | Antennas for a subcutaneous device |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788328A (en) * | 1971-04-29 | 1974-01-29 | Sherwood Medical Ind Inc | Cardiovascular catheter |
US3935111A (en) * | 1973-04-06 | 1976-01-27 | Bentley Laboratories, Inc. | Device for removing blood microemboli |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4014318A (en) * | 1973-08-20 | 1977-03-29 | Dockum James M | Circulatory assist device and system |
US4073723A (en) * | 1976-11-15 | 1978-02-14 | Swank Roy L | Anti-coagulating and filtering blood |
US4374669A (en) * | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4494531A (en) * | 1982-12-06 | 1985-01-22 | Cook, Incorporated | Expandable blood clot filter |
US4565823A (en) * | 1982-07-02 | 1986-01-21 | Yamanouchi Pharmaceutical Co., Ltd. | Medical agent for suppressing arteriosclerosis |
US4642089A (en) * | 1985-01-29 | 1987-02-10 | Shiley, Inc. | Unitary venous return reservoir with cardiotomy filter |
US4643184A (en) * | 1982-09-29 | 1987-02-17 | Mobin Uddin Kazi | Embolus trap |
US4722724A (en) * | 1986-06-23 | 1988-02-02 | Stanley Schocket | Anterior chamber tube shunt to an encircling band, and related surgical procedure |
US4795446A (en) * | 1986-01-30 | 1989-01-03 | Sherwood Medical Company | Medical tube device |
US4899543A (en) * | 1989-03-29 | 1990-02-13 | Grumman Aerospace Corporation | Pre-tensioned shape memory actuator |
US4986279A (en) * | 1989-03-01 | 1991-01-22 | National-Standard Company | Localization needle assembly with reinforced needle assembly |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US5282823A (en) * | 1992-03-19 | 1994-02-01 | Medtronic, Inc. | Intravascular radially expandable stent |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US5383887A (en) * | 1992-12-28 | 1995-01-24 | Celsa Lg | Device for selectively forming a temporary blood filter |
US5480423A (en) * | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5484424A (en) * | 1992-11-19 | 1996-01-16 | Celsa L.G. (Societe Anonyme) | Blood filtering device having a catheter with longitudinally variable rigidity |
US5486193A (en) * | 1992-01-22 | 1996-01-23 | C. R. Bard, Inc. | System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder |
US5591224A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Bioelastomeric stent |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5591251A (en) * | 1993-11-29 | 1997-01-07 | Cobe Laboratories, Inc. | Side flow bubble trap apparatus and method |
US5593441A (en) * | 1992-03-04 | 1997-01-14 | C. R. Bard, Inc. | Method for limiting the incidence of postoperative adhesions |
US5595909A (en) * | 1988-05-23 | 1997-01-21 | Regents Of The University Of Minnesota | Filter device |
US5601595A (en) * | 1994-10-25 | 1997-02-11 | Scimed Life Systems, Inc. | Remobable thrombus filter |
US5704910A (en) * | 1995-06-05 | 1998-01-06 | Nephros Therapeutics, Inc. | Implantable device and use therefor |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US5709704A (en) * | 1994-11-30 | 1998-01-20 | Boston Scientific Corporation | Blood clot filtering |
US5713921A (en) * | 1996-03-29 | 1998-02-03 | Bonutti; Peter M. | Suture anchor |
US5713853A (en) * | 1995-06-07 | 1998-02-03 | Interventional Innovations Corporation | Methods for treating thrombosis |
US5713879A (en) * | 1994-02-26 | 1998-02-03 | Metec A. Schneider Gmbh | Device for collecting and filtering blood |
US5716408A (en) * | 1996-05-31 | 1998-02-10 | C.R. Bard, Inc. | Prosthesis for hernia repair and soft tissue reconstruction |
US5718717A (en) * | 1996-08-19 | 1998-02-17 | Bonutti; Peter M. | Suture anchor |
US5720764A (en) * | 1994-06-11 | 1998-02-24 | Naderlinger; Eduard | Vena cava thrombus filter |
US5860998A (en) * | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US5861003A (en) * | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US5871693A (en) * | 1996-06-07 | 1999-02-16 | Minnesota Mining And Manufacturing Company | Modular blood treatment cartridge |
US5873906A (en) * | 1994-09-08 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US6013093A (en) * | 1995-11-28 | 2000-01-11 | Boston Scientific Corporation | Blood clot filtering |
US6024096A (en) * | 1998-05-01 | 2000-02-15 | Correstore Inc | Anterior segment ventricular restoration apparatus and method |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US6171328B1 (en) * | 1999-11-09 | 2001-01-09 | Embol-X, Inc. | Intravascular catheter filter with interlocking petal design and methods of use |
US6171329B1 (en) * | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US6174322B1 (en) * | 1997-08-08 | 2001-01-16 | Cardia, Inc. | Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum |
US6334864B1 (en) * | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US6336938B1 (en) * | 1992-08-06 | 2002-01-08 | William Cook Europe A/S | Implantable self expanding prosthetic device |
US6340364B2 (en) * | 1999-10-22 | 2002-01-22 | Nozomu Kanesaka | Vascular filtering device |
US6342063B1 (en) * | 2000-01-26 | 2002-01-29 | Scimed Life Systems, Inc. | Device and method for selectively removing a thrombus filter |
US6342062B1 (en) * | 1998-09-24 | 2002-01-29 | Scimed Life Systems, Inc. | Retrieval devices for vena cava filter |
US6344053B1 (en) * | 1993-12-22 | 2002-02-05 | Medtronic Ave, Inc. | Endovascular support device and method |
US6506205B2 (en) * | 2001-02-20 | 2003-01-14 | Mark Goldberg | Blood clot filtering system |
US6506204B2 (en) * | 1996-01-24 | 2003-01-14 | Aga Medical Corporation | Method and apparatus for occluding aneurysms |
US6506408B1 (en) * | 2000-07-13 | 2003-01-14 | Scimed Life Systems, Inc. | Implantable or insertable therapeutic agent delivery device |
US6508782B1 (en) * | 1992-05-19 | 2003-01-21 | Bacchus Vascular, Inc. | Thrombolysis device |
US6508777B1 (en) * | 1998-05-08 | 2003-01-21 | Cardeon Corporation | Circulatory support system and method of use for isolated segmental perfusion |
US6508833B2 (en) * | 1998-06-02 | 2003-01-21 | Cook Incorporated | Multiple-sided intraluminal medical device |
US20030028213A1 (en) * | 2001-08-01 | 2003-02-06 | Microvena Corporation | Tissue opening occluder |
US6517573B1 (en) * | 2000-04-11 | 2003-02-11 | Endovascular Technologies, Inc. | Hook for attaching to a corporeal lumen and method of manufacturing |
US6517559B1 (en) * | 1999-05-03 | 2003-02-11 | O'connell Paul T. | Blood filter and method for treating vascular disease |
US6673102B1 (en) * | 1999-01-22 | 2004-01-06 | Gore Enterprises Holdings, Inc. | Covered endoprosthesis and delivery system |
US6676666B2 (en) * | 1999-01-11 | 2004-01-13 | Scimed Life Systems, Inc | Medical device delivery system with two sheaths |
US6676682B1 (en) * | 1997-05-08 | 2004-01-13 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6682505B2 (en) * | 1999-03-12 | 2004-01-27 | Arteria Medical Science, Inc. | Catheter for removing emboli from saphenous vein grafts and native coronary arteries |
US6685738B2 (en) * | 2000-01-31 | 2004-02-03 | Scimed Life Systems, Inc. | Braided endoluminal device having tapered filaments |
US6689150B1 (en) * | 1999-10-27 | 2004-02-10 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US6692509B2 (en) * | 1996-02-02 | 2004-02-17 | Regents Of The University Of California | Method of using a clot capture coil |
US6692459B2 (en) * | 2000-07-18 | 2004-02-17 | George P. Teitelbaum | Anti-occlusion catheter |
US6695858B1 (en) * | 1998-02-10 | 2004-02-24 | Artemis Medical, Inc. | Medical device and methods for use |
US6695864B2 (en) * | 1997-12-15 | 2004-02-24 | Cardeon Corporation | Method and apparatus for cerebral embolic protection |
US6694983B2 (en) * | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US6840950B2 (en) * | 2001-02-20 | 2005-01-11 | Scimed Life Systems, Inc. | Low profile emboli capture device |
US6843798B2 (en) * | 1999-08-27 | 2005-01-18 | Ev3 Inc. | Slideable vascular filter |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20060015137A1 (en) * | 2004-07-19 | 2006-01-19 | Wasdyke Joel M | Retrievable intravascular filter with bendable anchoring members |
US6989021B2 (en) * | 2002-10-31 | 2006-01-24 | Cordis Corporation | Retrievable medical filter |
US6988983B2 (en) * | 2000-04-14 | 2006-01-24 | Solace Therapeutics, Inc. | Implantable self-inflating attenuation device |
US6994718B2 (en) * | 2003-10-29 | 2006-02-07 | Medtronic Vascular, Inc. | Distal protection device for filtering and occlusion |
US6997939B2 (en) * | 2001-07-02 | 2006-02-14 | Rubicon Medical, Inc. | Methods, systems, and devices for deploying an embolic protection filter |
US6997938B2 (en) * | 2002-02-12 | 2006-02-14 | Scimed Life Systems, Inc. | Embolic protection device |
US7001406B2 (en) * | 2002-05-23 | 2006-02-21 | Scimed Life Systems Inc. | Cartridge embolic protection filter and methods of use |
US7004964B2 (en) * | 2002-02-22 | 2006-02-28 | Scimed Life Systems, Inc. | Apparatus and method for deployment of an endoluminal device |
US7169165B2 (en) * | 2001-01-16 | 2007-01-30 | Boston Scientific Scimed, Inc. | Rapid exchange sheath for deployment of medical devices and methods of use |
US7181261B2 (en) * | 2000-05-15 | 2007-02-20 | Silver James H | Implantable, retrievable, thrombus minimizing sensors |
US7179275B2 (en) * | 2001-06-18 | 2007-02-20 | Rex Medical, L.P. | Vein filter |
US7179291B2 (en) * | 2003-05-27 | 2007-02-20 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US7179274B2 (en) * | 2000-07-11 | 2007-02-20 | Rafael Medical Technologies Inc. | Intravascular filter |
US7316708B2 (en) * | 2002-12-05 | 2008-01-08 | Cardiac Dimensions, Inc. | Medical device delivery system |
US7319035B2 (en) * | 2002-10-17 | 2008-01-15 | Vbi Technologies, L.L.C. | Biological scaffolding material |
US7323001B2 (en) * | 2003-01-30 | 2008-01-29 | Ev3 Inc. | Embolic filters with controlled pore size |
US7323003B2 (en) * | 2004-02-13 | 2008-01-29 | Boston Scientific Scimed, Inc. | Centering intravascular filters and devices and methods for deploying and retrieving intravascular filters |
US7323002B2 (en) * | 2001-06-12 | 2008-01-29 | Cordis Corporation | Emboli extraction catheter and vascular filter system |
US7329269B2 (en) * | 2000-02-23 | 2008-02-12 | Boston Scientific Scimed, Inc. | Intravascular filtering devices and methods |
US7331992B2 (en) * | 2002-02-20 | 2008-02-19 | Bard Peripheral Vascular, Inc. | Anchoring device for an endoluminal prosthesis |
US7331976B2 (en) * | 2003-04-29 | 2008-02-19 | Rex Medical, L.P. | Distal protection device |
Family Cites Families (476)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1928052A1 (en) | 1969-12-05 | 1970-12-10 | Swank Dr Roy Laver | Method and device for blood preparation |
US3659593A (en) | 1970-04-20 | 1972-05-02 | Edwin G Vail | Cardiovascular assist device |
SE392582B (en) | 1970-05-21 | 1977-04-04 | Gore & Ass | PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE |
US3765536A (en) | 1970-11-10 | 1973-10-16 | Pall Corp | Blood filter cascade |
US3765537A (en) | 1970-11-10 | 1973-10-16 | Pall Corp | Dual blood filter |
US3843974A (en) | 1972-01-05 | 1974-10-29 | Us Health Education & Welfare | Intimal lining and pump with vertically drafted webs |
US3807401A (en) | 1972-06-21 | 1974-04-30 | Department Of Health Education | Anticoagulating blood suction device |
US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system |
SE384274B (en) | 1973-11-27 | 1976-04-26 | Stille Werner Ab | SERUM SEPARATOR |
US3952747A (en) | 1974-03-28 | 1976-04-27 | Kimmell Jr Garman O | Filter and filter insertion instrument |
US4157965A (en) | 1975-01-20 | 1979-06-12 | Bentley Laboratories, Inc. | Blood treating device |
US4101984A (en) | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4016884A (en) | 1975-07-02 | 1977-04-12 | Kwan Gett Clifford S | Atriotomy access device |
IT1085524B (en) | 1977-03-22 | 1985-05-28 | Snam Progetti | BIOCOMPATIBLE POROUS MATERIALS AND FIBERS ABLE TO ENGLISH SUBSTANCES OF BIOLOGICAL INTEREST AND METHODS FOR OBTAINING THEM |
US4115277A (en) | 1977-06-17 | 1978-09-19 | Pioneer Filters, Inc. | Blood filtering apparatus of graduated fiber density |
US4303530A (en) | 1977-10-26 | 1981-12-01 | Medical Incorporated | Blood filter |
US4319580A (en) | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US4444198A (en) | 1981-12-21 | 1984-04-24 | Petre John H | Circulatory monitoring system and method |
SE445884B (en) | 1982-04-30 | 1986-07-28 | Medinvent Sa | DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION |
US4447227A (en) | 1982-06-09 | 1984-05-08 | Endoscopy Surgical Systems, Inc. | Multi-purpose medical devices |
US4457487A (en) | 1982-06-23 | 1984-07-03 | The Kendall Company | Flushing device |
JPS5928971A (en) | 1982-08-06 | 1984-02-15 | 川澄化学工業株式会社 | Hollow yarn type mass transfer apparatus and production thereof |
FR2534801A1 (en) | 1982-10-21 | 1984-04-27 | Claracq Michel | DEVICE FOR PARTIALLY OCCLUDING A VESSEL, PARTICULARLY OF THE CAUDAL CAVE VEIN, AND CONSTITUENT PART THEREOF |
US4542748A (en) | 1983-03-07 | 1985-09-24 | American Hospital Supply Corp. | Apparatus and method for measuring cardiac output |
US4523592A (en) | 1983-04-25 | 1985-06-18 | Rollin K. Daniel P.S.C. | Anastomotic coupling means capable of end-to-end and end-to-side anastomosis |
US4774949A (en) * | 1983-06-14 | 1988-10-04 | Fogarty Thomas J | Deflector guiding catheter |
US4944727A (en) | 1986-06-05 | 1990-07-31 | Catheter Research, Inc. | Variable shape guide apparatus |
EP0146708B1 (en) | 1983-11-11 | 1990-05-23 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Device for receiving and treating blood |
US5104399A (en) | 1986-12-10 | 1992-04-14 | Endovascular Technologies, Inc. | Artificial graft and implantation method |
DE3400874C1 (en) | 1984-01-12 | 1985-02-07 | Karl Dr. 6301 Pohlheim Aigner | Double-lumen catheter for a device for in-vivo blood purification |
US4680029A (en) | 1984-02-23 | 1987-07-14 | Sherwood Medical Company | Vena caval catheter |
US4727873A (en) | 1984-04-17 | 1988-03-01 | Mobin Uddin Kazi | Embolus trap |
DK151404C (en) | 1984-05-23 | 1988-07-18 | Cook Europ Aps William | FULLY FILTER FOR IMPLANTATION IN A PATIENT'S BLOOD |
US4592356A (en) * | 1984-09-28 | 1986-06-03 | Pedro Gutierrez | Localizing device |
FR2573646B1 (en) | 1984-11-29 | 1988-11-25 | Celsa Composants Electr Sa | PERFECTED FILTER, PARTICULARLY FOR THE RETENTION OF BLOOD CLOTS |
ES8705239A1 (en) | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. |
US4616656A (en) | 1985-03-19 | 1986-10-14 | Nicholson James E | Self-actuating breast lesion probe and method of using |
US4699611A (en) | 1985-04-19 | 1987-10-13 | C. R. Bard, Inc. | Biliary stent introducer |
DE3521684A1 (en) | 1985-06-18 | 1986-12-18 | Dr. Müller-Lierheim KG, Biologische Laboratorien, 8033 Planegg | METHOD FOR COATING POLYMERS |
US4756884A (en) | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4923464A (en) | 1985-09-03 | 1990-05-08 | Becton, Dickinson And Company | Percutaneously deliverable intravascular reconstruction prosthesis |
US4662885A (en) | 1985-09-03 | 1987-05-05 | Becton, Dickinson And Company | Percutaneously deliverable intravascular filter prosthesis |
US4646656A (en) * | 1985-09-26 | 1987-03-03 | Marschak Howard J | Base shelf locking mechanism |
US4650466A (en) | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
US5102417A (en) | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4676771A (en) | 1986-03-31 | 1987-06-30 | Gelman Sciences, Inc. | Arterial blood filter |
US4826478A (en) | 1986-06-23 | 1989-05-02 | Stanley Schocket | Anterior chamber tube shunt to an encircling band, and related surgical procedure |
US4793348A (en) | 1986-11-15 | 1988-12-27 | Palmaz Julio C | Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation |
FR2606641B1 (en) | 1986-11-17 | 1991-07-12 | Promed | FILTERING DEVICE FOR BLOOD CLOTS |
US4969902A (en) | 1987-02-20 | 1990-11-13 | Biagio Ravo | Implantable device |
US4817600A (en) * | 1987-05-22 | 1989-04-04 | Medi-Tech, Inc. | Implantable filter |
US4790329A (en) * | 1987-06-12 | 1988-12-13 | Trustees Of Beth Israel Hospital | Adjustable biopsy localization device |
US4858623A (en) | 1987-07-13 | 1989-08-22 | Intermedics, Inc. | Active fixation mechanism for lead assembly of an implantable cardiac stimulator |
US4946457A (en) | 1987-12-03 | 1990-08-07 | Dimed, Incorporated | Defibrillator system with cardiac leads and method for transvenous implantation |
US4873978A (en) | 1987-12-04 | 1989-10-17 | Robert Ginsburg | Device and method for emboli retrieval |
US5282856A (en) | 1987-12-22 | 1994-02-01 | Ledergerber Walter J | Implantable prosthetic device |
FR2632864B2 (en) | 1987-12-31 | 1990-10-19 | Biomat Sarl | ANTI-EMBOLIC ELASTIC FILTERING SYSTEM FOR CELLAR VEIN AND ASSEMBLY OF MEANS FOR ITS PLACEMENT |
US4832055A (en) | 1988-07-08 | 1989-05-23 | Palestrant Aubrey M | Mechanically locking blood clot filter |
US4917089A (en) | 1988-08-29 | 1990-04-17 | Sideris Eleftherios B | Buttoned device for the transvenous occlusion of intracardiac defects |
FR2641692A1 (en) | 1989-01-17 | 1990-07-20 | Nippon Zeon Co | Plug for closing an opening for a medical application, and device for the closure plug making use thereof |
US5152777A (en) | 1989-01-25 | 1992-10-06 | Uresil Corporation | Device and method for providing protection from emboli and preventing occulsion of blood vessels |
US4954251A (en) | 1989-01-31 | 1990-09-04 | Miles Inc. | Concentric microaggregate blood filter |
US4969891A (en) | 1989-03-06 | 1990-11-13 | Gewertz Bruce L | Removable vascular filter |
US5018530A (en) * | 1989-06-15 | 1991-05-28 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5242462A (en) * | 1989-09-07 | 1993-09-07 | Boston Scientific Corp. | Percutaneous anti-migration vena cava filter |
US5059205A (en) | 1989-09-07 | 1991-10-22 | Boston Scientific Corporation | Percutaneous anti-migration vena cava filter |
US5531788A (en) | 1989-10-09 | 1996-07-02 | Foundation Pour L'avenir Pour La Recherche Medicale Appliquee | Anti-Pulmonary embolism filter |
GB2238485B (en) * | 1989-11-28 | 1993-07-14 | Cook William Europ | A collapsible filter for introduction in a blood vessel of a patient |
US5421832A (en) | 1989-12-13 | 1995-06-06 | Lefebvre; Jean-Marie | Filter-catheter and method of manufacturing same |
FR2657261A1 (en) | 1990-01-19 | 1991-07-26 | Bovyn Gilles | Device for temporary implantation of a blood filter in a vein of the human body |
FR2660189B1 (en) * | 1990-03-28 | 1992-07-31 | Lefebvre Jean Marie | DEVICE INTENDED TO BE IMPLANTED IN A VESSEL WITH SIDE LEGS WITH ANTAGONIST TEETH. |
ATE107150T1 (en) | 1990-04-02 | 1994-07-15 | Kanji Inoue | DEVICE FOR CLOSING A SHUTTLE OPENING BY A NON-OPERATIONAL METHOD. |
US5672585A (en) | 1990-04-06 | 1997-09-30 | La Jolla Cancer Research Foundation | Method and composition for treating thrombosis |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5108407A (en) | 1990-06-08 | 1992-04-28 | Rush-Presbyterian St. Luke's Medical Center | Method and apparatus for placement of an embolic coil |
FR2663217B1 (en) | 1990-06-15 | 1992-10-16 | Antheor | FILTERING DEVICE FOR THE PREVENTION OF EMBOLIES. |
US5108419A (en) | 1990-08-16 | 1992-04-28 | Evi Corporation | Endovascular filter and method for use thereof |
US5158565A (en) * | 1990-10-10 | 1992-10-27 | Dlp, Inc. | Localization needle assembly |
US5147379A (en) | 1990-11-26 | 1992-09-15 | Louisiana State University And Agricultural And Mechanical College | Insertion instrument for vena cava filter |
US5695518A (en) | 1990-12-28 | 1997-12-09 | Laerum; Frode | Filtering device for preventing embolism and/or distension of blood vessel walls |
US5127916A (en) * | 1991-01-22 | 1992-07-07 | Medical Device Technologies, Inc. | Localization needle assembly |
US5108420A (en) | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
US5092996A (en) | 1991-02-19 | 1992-03-03 | Miles Inc. | Blood filtering system |
ATE157855T1 (en) | 1991-03-14 | 1997-09-15 | Ethnor | PULMONARY EMBOLIC FILTER AND KIT FOR PRESENTATION AND USE OF THE SAME |
US5158533A (en) | 1991-03-26 | 1992-10-27 | Gish Biomedical, Inc. | Combined cardiotomy/venous/pleural drainage autotransfusion unit with filter and integral manometer and water seal |
US5197978B1 (en) | 1991-04-26 | 1996-05-28 | Advanced Coronary Tech | Removable heat-recoverable tissue supporting device |
US5350398A (en) | 1991-05-13 | 1994-09-27 | Dusan Pavcnik | Self-expanding filter for percutaneous insertion |
US5273517A (en) | 1991-07-09 | 1993-12-28 | Haemonetics Corporation | Blood processing method and apparatus with disposable cassette |
US5795325A (en) | 1991-07-16 | 1998-08-18 | Heartport, Inc. | Methods and apparatus for anchoring an occluding member |
US5415630A (en) | 1991-07-17 | 1995-05-16 | Gory; Pierre | Method for removably implanting a blood filter in a vein of the human body |
US5190657A (en) | 1991-07-22 | 1993-03-02 | Lydall, Inc. | Blood filter and method of filtration |
CH686027A5 (en) | 1991-07-26 | 1995-12-15 | Elp Rochat | Unit of recovery and blood filtration. |
US5192286A (en) | 1991-07-26 | 1993-03-09 | Regents Of The University Of California | Method and device for retrieving materials from body lumens |
US5257621A (en) | 1991-08-27 | 1993-11-02 | Medtronic, Inc. | Apparatus for detection of and discrimination between tachycardia and fibrillation and for treatment of both |
US5695489A (en) | 1991-09-30 | 1997-12-09 | Baxter International Inc. | Blood filtering container |
US5151105A (en) | 1991-10-07 | 1992-09-29 | Kwan Gett Clifford | Collapsible vessel sleeve implant |
US5366504A (en) | 1992-05-20 | 1994-11-22 | Boston Scientific Corporation | Tubular medical prosthesis |
EP0541063B1 (en) | 1991-11-05 | 1998-09-02 | The Children's Medical Center Corporation | Improved occluder for repair of cardiac and vascular defects |
EP0545091B1 (en) | 1991-11-05 | 1999-07-07 | The Children's Medical Center Corporation | Occluder for repair of cardiac and vascular defects |
US5626605A (en) * | 1991-12-30 | 1997-05-06 | Scimed Life Systems, Inc. | Thrombosis filter |
EP0623003B1 (en) | 1992-01-21 | 1999-03-31 | Regents Of The University Of Minnesota | Septal defect closure device |
US6059825A (en) | 1992-03-05 | 2000-05-09 | Angiodynamics, Inc. | Clot filter |
US5571166A (en) | 1992-03-19 | 1996-11-05 | Medtronic, Inc. | Method of making an intraluminal stent |
EP0566245B1 (en) | 1992-03-19 | 1999-10-06 | Medtronic, Inc. | Intraluminal stent |
US6497709B1 (en) | 1992-03-31 | 2002-12-24 | Boston Scientific Corporation | Metal medical device |
US5354317A (en) | 1992-04-03 | 1994-10-11 | Intermedics, Inc. | Apparatus and method for cardiac pacing responsive to patient position |
FR2689388B1 (en) | 1992-04-07 | 1999-07-16 | Celsa Lg | PERFECTIONALLY RESORBABLE BLOOD FILTER. |
US5637097A (en) | 1992-04-15 | 1997-06-10 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion |
US5707362A (en) | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5766246A (en) | 1992-05-20 | 1998-06-16 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
US5772668A (en) | 1992-06-18 | 1998-06-30 | American Biomed, Inc. | Apparatus for placing an endoprosthesis |
FR2694491B1 (en) | 1992-08-07 | 1994-09-30 | Celsa Lg | Triangular tab filters. |
US5527338A (en) | 1992-09-02 | 1996-06-18 | Board Of Regents, The University Of Texas System | Intravascular device |
US5562725A (en) | 1992-09-14 | 1996-10-08 | Meadox Medicals Inc. | Radially self-expanding implantable intraluminal device |
BE1006440A3 (en) | 1992-12-21 | 1994-08-30 | Dereume Jean Pierre Georges Em | Luminal endoprosthesis AND METHOD OF PREPARATION. |
US5356432B1 (en) | 1993-02-05 | 1997-02-04 | Bard Inc C R | Implantable mesh prosthesis and method for repairing muscle or tissue wall defects |
JPH06275095A (en) * | 1993-03-18 | 1994-09-30 | Fujitsu Ltd | Semiconductor memory and writing method for redundant address |
AU689094B2 (en) | 1993-04-22 | 1998-03-26 | C.R. Bard Inc. | Non-migrating vascular prosthesis and minimally invasive placement system therefor |
US5843167A (en) | 1993-04-22 | 1998-12-01 | C. R. Bard, Inc. | Method and apparatus for recapture of hooked endoprosthesis |
US6776754B1 (en) | 2000-10-04 | 2004-08-17 | Wilk Patent Development Corporation | Method for closing off lower portion of heart ventricle |
US5464449A (en) | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5735892A (en) | 1993-08-18 | 1998-04-07 | W. L. Gore & Associates, Inc. | Intraluminal stent graft |
FR2709947B1 (en) | 1993-09-13 | 1995-11-10 | Bard Sa Laboratoires | Curved prosthetic mesh and its manufacturing process. |
CA2173118C (en) | 1993-10-01 | 2000-09-26 | Hannah S. Kim | Improved vena cava filter |
DE59308451D1 (en) | 1993-10-20 | 1998-05-28 | Schneider Europ Ag | Endoprosthesis |
ES2135520T3 (en) | 1993-11-04 | 1999-11-01 | Bard Inc C R | NON-MIGRANT VASCULAR PROSTHESIS. |
JP3185906B2 (en) | 1993-11-26 | 2001-07-11 | ニプロ株式会社 | Prosthesis for atrial septal defect |
US5503801A (en) | 1993-11-29 | 1996-04-02 | Cobe Laboratories, Inc. | Top flow bubble trap apparatus |
US6422397B1 (en) | 1993-12-22 | 2002-07-23 | Baxter International, Inc. | Blood collection systems including an integral, flexible filter |
FR2714814B1 (en) | 1994-01-10 | 1996-03-29 | Bentex Trading Sa | Device intended to be placed in a vessel with flattened fixing lugs. |
US5423851A (en) | 1994-03-06 | 1995-06-13 | Samuels; Shaun L. W. | Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body |
US5417708A (en) | 1994-03-09 | 1995-05-23 | Cook Incorporated | Intravascular treatment system and percutaneous release mechanism therefor |
US5799350A (en) | 1994-03-30 | 1998-09-01 | Pacesetter Ab | Blood flow velocity measurement device |
US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
US5928269A (en) | 1994-04-04 | 1999-07-27 | Alt; Eckhard | Apparatus and method for temporary atrial defibrillation with external defibrillator and implanted transvenous catheter and electrodes |
US5466216A (en) | 1994-04-11 | 1995-11-14 | Gish Biomedical, Inc. | Antegrade/retrograde cardioplegia method and system |
US5853420A (en) * | 1994-04-21 | 1998-12-29 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter |
US5634942A (en) | 1994-04-21 | 1997-06-03 | B. Braun Celsa | Assembly comprising a blood filter for temporary or definitive use and a device for implanting it |
GB2290236B (en) | 1994-06-16 | 1998-08-05 | Roger Harrington Fox | Vena-cava filter |
US5617854A (en) | 1994-06-22 | 1997-04-08 | Munsif; Anand | Shaped catheter device and method |
US5522881A (en) | 1994-06-28 | 1996-06-04 | Meadox Medicals, Inc. | Implantable tubular prosthesis having integral cuffs |
US5846261A (en) | 1994-07-08 | 1998-12-08 | Aga Medical Corp. | Percutaneous catheter directed occlusion devices |
EP1221307B1 (en) | 1994-07-08 | 2010-02-17 | ev3 Inc. | System for performing an intravascular procedure |
US5725552A (en) | 1994-07-08 | 1998-03-10 | Aga Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
US6123715A (en) | 1994-07-08 | 2000-09-26 | Amplatz; Curtis | Method of forming medical devices; intravascular occlusion devices |
US5433727A (en) | 1994-08-16 | 1995-07-18 | Sideris; Eleftherios B. | Centering buttoned device for the occlusion of large defects for occluding |
US5967976A (en) | 1994-08-19 | 1999-10-19 | Novoste Corporation | Apparatus and methods for procedures related to the electrophysiology of the heart |
US5529067A (en) | 1994-08-19 | 1996-06-25 | Novoste Corporation | Methods for procedures related to the electrophysiology of the heart |
AU708360B2 (en) | 1994-09-15 | 1999-08-05 | C.R. Bard Inc. | Hooked endoprosthesis |
US5643321A (en) | 1994-11-10 | 1997-07-01 | Innovasive Devices | Suture anchor assembly and methods |
US6214025B1 (en) | 1994-11-30 | 2001-04-10 | Boston Scientific Corporation | Self-centering, self-expanding and retrievable vena cava filter |
US5499991A (en) | 1994-12-19 | 1996-03-19 | Linvatec Corporation | Endoscopic needle with suture retriever |
US5879366A (en) | 1996-12-20 | 1999-03-09 | W.L. Gore & Associates, Inc. | Self-expanding defect closure device and method of making and using |
US5545206A (en) | 1994-12-22 | 1996-08-13 | Ventritex, Inc. | Low profile lead with automatic tine activation |
US5549626A (en) | 1994-12-23 | 1996-08-27 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Vena caval filter |
US5702421A (en) | 1995-01-11 | 1997-12-30 | Schneidt; Bernhard | Closure device for closing a vascular opening, such as patent ductus arteriosus |
US5634936A (en) | 1995-02-06 | 1997-06-03 | Scimed Life Systems, Inc. | Device for closing a septal defect |
US5643320A (en) | 1995-03-13 | 1997-07-01 | Depuy Inc. | Soft tissue anchor and method |
US5722964A (en) | 1995-03-13 | 1998-03-03 | Atrium Medical Corporation | Filtered blood collection device |
US5636644A (en) | 1995-03-17 | 1997-06-10 | Applied Medical Resources Corporation | Method and apparatus for endoconduit targeting |
JPH08257031A (en) | 1995-03-24 | 1996-10-08 | Toshio Saeki | Filter |
US5795322A (en) | 1995-04-10 | 1998-08-18 | Cordis Corporation | Catheter with filter and thrombus-discharge device |
ES2206549T3 (en) | 1995-04-14 | 2004-05-16 | B. Braun Medical Sas | INSTRUMENTAL MEDICAL DEVICE SUCH AS SANGUINEO FILTER. |
US5634474A (en) | 1995-04-28 | 1997-06-03 | Becton, Dickinson And Company | Blood collection assembly including clot-accelerating glass insert |
US5681347A (en) | 1995-05-23 | 1997-10-28 | Boston Scientific Corporation | Vena cava filter delivery system |
US5827229A (en) | 1995-05-24 | 1998-10-27 | Boston Scientific Corporation Northwest Technology Center, Inc. | Percutaneous aspiration thrombectomy catheter system |
US6280413B1 (en) | 1995-06-07 | 2001-08-28 | Medtronic Ave, Inc. | Thrombolytic filtration and drug delivery catheter with a self-expanding portion |
US6132438A (en) | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
AU6396496A (en) | 1995-07-07 | 1997-02-10 | W.L. Gore & Associates, Inc. | Interior liner for tubes, pipes and blood conduits |
US5569273A (en) | 1995-07-13 | 1996-10-29 | C. R. Bard, Inc. | Surgical mesh fabric |
US5632734A (en) | 1995-10-10 | 1997-05-27 | Guided Medical Systems, Inc. | Catheter shape control by collapsible inner tubular member |
AU7383196A (en) | 1995-09-29 | 1997-04-17 | Biomedical Enterprises, Inc. | Fasteners having coordinated self-seeking conforming members and uses thereof |
DE69633411T2 (en) | 1995-10-13 | 2005-10-20 | Transvascular, Inc., Menlo Park | METHOD AND DEVICE FOR PREVENTING ARTERIAL ATTRACTIONS AND / OR FOR CARRYING OUT OTHER TRANSVASCULAR INTERVENTIONS |
BE1009746A3 (en) | 1995-11-07 | 1997-07-01 | Dereume Jean Pierre Georges Em | Capture device introduced in a cavity of a human or animal body. |
US5695519A (en) | 1995-11-30 | 1997-12-09 | American Biomed, Inc. | Percutaneous filter for carotid angioplasty |
US5957977A (en) | 1996-01-02 | 1999-09-28 | University Of Cincinnati | Activation device for the natural heart including internal and external support structures |
US5747128A (en) | 1996-01-29 | 1998-05-05 | W. L. Gore & Associates, Inc. | Radially supported polytetrafluoroethylene vascular graft |
DE19604817C2 (en) | 1996-02-09 | 2003-06-12 | Pfm Prod Fuer Die Med Ag | Device for closing defect openings in the human or animal body |
US6402736B1 (en) | 1996-02-16 | 2002-06-11 | Joe E. Brown | Apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents |
US5733294A (en) | 1996-02-28 | 1998-03-31 | B. Braun Medical, Inc. | Self expanding cardiovascular occlusion device, method of using and method of making the same |
US5830224A (en) | 1996-03-15 | 1998-11-03 | Beth Israel Deaconess Medical Center | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
US6533805B1 (en) | 1996-04-01 | 2003-03-18 | General Surgical Innovations, Inc. | Prosthesis and method for deployment within a body lumen |
US6099493A (en) | 1997-05-06 | 2000-08-08 | Sherwood Services, Ag | Continuous autotransfusion filtration system |
EP0900051A1 (en) | 1996-05-08 | 1999-03-10 | Salviac Limited | An occluder device |
WO1997042879A1 (en) | 1996-05-14 | 1997-11-20 | Embol-X, Inc. | Aortic occluder with associated filter and methods of use during cardiac surgery |
US20010049517A1 (en) | 1997-03-06 | 2001-12-06 | Gholam-Reza Zadno-Azizi | Method for containing and removing occlusions in the carotid arteries |
NL1003497C2 (en) | 1996-07-03 | 1998-01-07 | Cordis Europ | Catheter with temporary vena-cava filter. |
US5728133A (en) | 1996-07-09 | 1998-03-17 | Cardiologics, L.L.C. | Anchoring device and method for sealing percutaneous punctures in vessels |
US5792179A (en) | 1996-07-16 | 1998-08-11 | Sideris; Eleftherios B. | Retrievable cardiac balloon placement |
US5669933A (en) | 1996-07-17 | 1997-09-23 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US5849004A (en) * | 1996-07-17 | 1998-12-15 | Bramlet; Dale G. | Surgical anchor |
US5741297A (en) | 1996-08-28 | 1998-04-21 | Simon; Morris | Daisy occluder and method for septal defect repair |
US6488692B1 (en) | 1996-09-16 | 2002-12-03 | Origin Medsystems, Inc. | Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery |
DE69730617T8 (en) | 1996-10-04 | 2006-07-06 | United States Surgical Corp., Norwalk | HEART SUPPORT SYSTEM |
US5755778A (en) | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5843176A (en) | 1996-10-17 | 1998-12-01 | Cordis Corporation | Self-expanding endoprosthesis |
US6805128B1 (en) | 1996-10-22 | 2004-10-19 | Epicor Medical, Inc. | Apparatus and method for ablating tissue |
US6311692B1 (en) | 1996-10-22 | 2001-11-06 | Epicor, Inc. | Apparatus and method for diagnosis and therapy of electrophysiological disease |
US6447530B1 (en) * | 1996-11-27 | 2002-09-10 | Scimed Life Systems, Inc. | Atraumatic anchoring and disengagement mechanism for permanent implant device |
US5925074A (en) | 1996-12-03 | 1999-07-20 | Atrium Medical Corporation | Vascular endoprosthesis and method |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6048329A (en) | 1996-12-19 | 2000-04-11 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6071279A (en) | 1996-12-19 | 2000-06-06 | Ep Technologies, Inc. | Branched structures for supporting multiple electrode elements |
US6332880B1 (en) | 1996-12-19 | 2001-12-25 | Ep Technologies, Inc. | Loop structures for supporting multiple electrode elements |
FR2758078B1 (en) | 1997-01-03 | 1999-07-16 | Braun Celsa Sa | BLOOD FILTER WITH IMPROVED PERMEABILITY |
US5968053A (en) | 1997-01-31 | 1999-10-19 | Cardiac Assist Technologies, Inc. | Method and apparatus for implanting a graft in a vessel of a patient |
US6391044B1 (en) | 1997-02-03 | 2002-05-21 | Angioguard, Inc. | Vascular filter system |
EP0938276B1 (en) | 1997-02-03 | 2003-08-13 | Angioguard, Inc. | Vascular filter |
US5893869A (en) | 1997-02-19 | 1999-04-13 | University Of Iowa Research Foundation | Retrievable inferior vena cava filter system and method for use thereof |
US5795335A (en) | 1997-02-26 | 1998-08-18 | Zinreich; Eva S. | Intravenous tube restraint and cover device |
US5800457A (en) * | 1997-03-05 | 1998-09-01 | Gelbfish; Gary A. | Intravascular filter and associated methodology |
US5814064A (en) | 1997-03-06 | 1998-09-29 | Scimed Life Systems, Inc. | Distal protection device |
US6152946A (en) | 1998-03-05 | 2000-11-28 | Scimed Life Systems, Inc. | Distal protection device and method |
US7094249B1 (en) | 1997-03-06 | 2006-08-22 | Boston Scientific Scimed, Inc. | Distal protection device and method |
US6974469B2 (en) | 1997-03-06 | 2005-12-13 | Scimed Life Systems, Inc. | Distal protection device and method |
US6090096A (en) | 1997-04-23 | 2000-07-18 | Heartport, Inc. | Antegrade cardioplegia catheter and method |
US6120539A (en) | 1997-05-01 | 2000-09-19 | C. R. Bard Inc. | Prosthetic repair fabric |
US5911734A (en) | 1997-05-08 | 1999-06-15 | Embol-X, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US5947995A (en) | 1997-06-06 | 1999-09-07 | Samuels; Shaun Lawrence Wilkie | Method and apparatus for removing blood clots and other objects |
US5957940A (en) | 1997-06-30 | 1999-09-28 | Eva Corporation | Fasteners for use in the surgical repair of aneurysms |
US6080151A (en) | 1997-07-21 | 2000-06-27 | Daig Corporation | Ablation catheter |
US6245103B1 (en) | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US5941896A (en) | 1997-09-08 | 1999-08-24 | Montefiore Hospital And Medical Center | Filter and method for trapping emboli during endovascular procedures |
US6361545B1 (en) | 1997-09-26 | 2002-03-26 | Cardeon Corporation | Perfusion filter catheter |
US5980558A (en) | 1997-09-30 | 1999-11-09 | Biomet Inc. | Suture anchor system |
US6206888B1 (en) | 1997-10-01 | 2001-03-27 | Scimed Life Systems, Inc. | Stent delivery system using shape memory retraction |
CA2304733A1 (en) | 1997-10-01 | 1999-04-08 | Boston Scientific Limited | Percutaneous catheter with slip hub |
US6461370B1 (en) | 1998-11-03 | 2002-10-08 | C. R. Bard, Inc. | Temporary vascular filter guide wire |
US6443972B1 (en) | 1997-11-19 | 2002-09-03 | Cordis Europa N.V. | Vascular filter |
US6234995B1 (en) | 1998-11-12 | 2001-05-22 | Advanced Interventional Technologies, Inc. | Apparatus and method for selectively isolating a proximal anastomosis site from blood in an aorta |
US6117105A (en) | 1997-12-08 | 2000-09-12 | Cardeon Corporation | Aortic catheter and methods for inducing cardioplegic arrest and for selective aortic perfusion |
US5986169A (en) | 1997-12-31 | 1999-11-16 | Biorthex Inc. | Porous nickel-titanium alloy article |
US6129755A (en) | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
DE19802351A1 (en) | 1998-01-22 | 1999-08-05 | Fresenius Ag | Container and filter, for collection of blood aspirated during operations |
US6379378B1 (en) | 2000-03-03 | 2002-04-30 | Innercool Therapies, Inc. | Lumen design for catheter |
US5908447A (en) | 1998-02-06 | 1999-06-01 | Intermedics Inc. | Breakaway structure for body implantable medical device |
US6280467B1 (en) | 1998-02-26 | 2001-08-28 | World Medical Manufacturing Corporation | Delivery system for deployment and endovascular assembly of a multi-stage stented graft |
US6887268B2 (en) | 1998-03-30 | 2005-05-03 | Cordis Corporation | Extension prosthesis for an arterial repair |
JP3799810B2 (en) | 1998-03-30 | 2006-07-19 | ニプロ株式会社 | Transcatheter surgery closure plug and catheter assembly |
US6046381A (en) | 1998-04-30 | 2000-04-04 | The Regents Of The University Of California | Apolipoprotein E transgenic mice and assay methods |
US6544167B2 (en) | 1998-05-01 | 2003-04-08 | Correstore, Inc. | Ventricular restoration patch |
US5984947A (en) | 1998-05-04 | 1999-11-16 | Scimed Life Systems, Inc. | Removable thrombus filter |
US6267747B1 (en) | 1998-05-11 | 2001-07-31 | Cardeon Corporation | Aortic catheter with porous aortic root balloon and methods for inducing cardioplegic arrest |
US6241727B1 (en) | 1998-05-27 | 2001-06-05 | Irvine Biomedical, Inc. | Ablation catheter system having circular lesion capabilities |
WO1999061072A2 (en) | 1998-05-29 | 1999-12-02 | President And Fellows Of Harvard College | Methods of inhibiting clot formation |
US7452371B2 (en) | 1999-06-02 | 2008-11-18 | Cook Incorporated | Implantable vascular device |
US6066169A (en) | 1998-06-02 | 2000-05-23 | Ave Connaught | Expandable stent having articulated connecting rods |
FR2779340B1 (en) | 1998-06-04 | 2000-12-29 | Delab | IMPLANTABLE INTRALUMINAL DEVICE |
IL124958A0 (en) | 1998-06-16 | 1999-01-26 | Yodfat Ofer | Implantable blood filtering device |
US5928261A (en) | 1998-06-29 | 1999-07-27 | Ruiz; Carlos E. | Removable vascular filter, catheter system and methods of use |
US6241746B1 (en) | 1998-06-29 | 2001-06-05 | Cordis Corporation | Vascular filter convertible to a stent and method |
NL1009551C2 (en) | 1998-07-03 | 2000-01-07 | Cordis Europ | Vena cava filter with improvements for controlled ejection. |
US5991657A (en) | 1998-08-06 | 1999-11-23 | Cardiac Pacemakers, Inc. | Atrial cardioverter with window based atrial tachyarrhythmia detection system and method |
US6337049B1 (en) | 1998-08-28 | 2002-01-08 | Yehuda Tamari | Soft shell venous reservoir |
US6740122B1 (en) | 1998-09-11 | 2004-05-25 | C. R. Bard, Inc. | Preformed curved prosthesis that is adapted to the external iliac vessels |
US6723133B1 (en) | 1998-09-11 | 2004-04-20 | C. R. Bard, Inc. | Performed curved prosthesis having a reduced incidence of developing wrinkles or folds |
US6328755B1 (en) | 1998-09-24 | 2001-12-11 | Scimed Life Systems, Inc. | Filter delivery device |
US6331183B1 (en) | 1998-09-24 | 2001-12-18 | Scimed Life Systems, Inc. | Basket filter |
US6007558A (en) * | 1998-09-25 | 1999-12-28 | Nitinol Medical Technologies, Inc. | Removable embolus blood clot filter |
US6051014A (en) | 1998-10-13 | 2000-04-18 | Embol-X, Inc. | Percutaneous filtration catheter for valve repair surgery and methods of use |
US7044134B2 (en) | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
US6238416B1 (en) | 1998-11-13 | 2001-05-29 | Eleftherios B. Sideris | Transcatheter surgical patch |
US6231581B1 (en) | 1998-12-16 | 2001-05-15 | Boston Scientific Corporation | Implantable device anchors |
US6652554B1 (en) | 1999-01-04 | 2003-11-25 | Mark H. Wholey | Instrument for thromboembolic protection |
ES2259996T3 (en) | 1999-01-22 | 2006-11-01 | Gore Enterprise Holdings, Inc. | ENDOPROTESIS COVER. |
US20020138094A1 (en) | 1999-02-12 | 2002-09-26 | Thomas Borillo | Vascular filter system |
US6171327B1 (en) | 1999-02-24 | 2001-01-09 | Scimed Life Systems, Inc. | Intravascular filter and method |
US20020169474A1 (en) | 1999-03-08 | 2002-11-14 | Microvena Corporation | Minimally invasive medical device deployment and retrieval system |
US6673089B1 (en) | 1999-03-11 | 2004-01-06 | Mindguard Ltd. | Implantable stroke treating device |
IL128938A0 (en) | 1999-03-11 | 2000-02-17 | Mind Guard Ltd | Implantable stroke treating device |
US6245012B1 (en) | 1999-03-19 | 2001-06-12 | Nmt Medical, Inc. | Free standing filter |
US6231589B1 (en) * | 1999-03-22 | 2001-05-15 | Microvena Corporation | Body vessel filter |
US6277139B1 (en) | 1999-04-01 | 2001-08-21 | Scion Cardio-Vascular, Inc. | Vascular protection and embolic material retriever |
US20010007070A1 (en) | 1999-04-05 | 2001-07-05 | Medtronic, Inc. | Ablation catheter assembly and method for isolating a pulmonary vein |
JP4657456B2 (en) * | 1999-04-09 | 2011-03-23 | イバルブ・インコーポレーテッド | Method and apparatus for heart valve repair |
US6436120B1 (en) | 1999-04-20 | 2002-08-20 | Allen J. Meglin | Vena cava filter |
US6080178A (en) | 1999-04-20 | 2000-06-27 | Meglin; Allen J. | Vena cava filter |
US6287335B1 (en) | 1999-04-26 | 2001-09-11 | William J. Drasler | Intravascular folded tubular endoprosthesis |
US6309350B1 (en) | 1999-05-03 | 2001-10-30 | Tricardia, L.L.C. | Pressure/temperature/monitor device for heart implantation |
EP1176923A1 (en) | 1999-05-07 | 2002-02-06 | Salviac Limited | An embolic protection device |
US6258124B1 (en) | 1999-05-10 | 2001-07-10 | C. R. Bard, Inc. | Prosthetic repair fabric |
US6758830B1 (en) | 1999-05-11 | 2004-07-06 | Atrionix, Inc. | Catheter positioning system |
US6656206B2 (en) | 1999-05-13 | 2003-12-02 | Cardia, Inc. | Occlusion device with non-thrombogenic properties |
US6379368B1 (en) | 1999-05-13 | 2002-04-30 | Cardia, Inc. | Occlusion device with non-thrombogenic properties |
US6712836B1 (en) | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6585756B1 (en) | 1999-05-14 | 2003-07-01 | Ernst P. Strecker | Implantable lumen prosthesis |
US6645152B1 (en) | 1999-06-02 | 2003-11-11 | Matthew T. Jung | Apparatus for the intravascular ultrasound-guided placement of a vena cava filter |
US6440077B1 (en) | 1999-06-02 | 2002-08-27 | Matthew T. Jung | Apparatus and method for the intravascular ultrasound-guided placement of a vena cava filter |
US6068645A (en) | 1999-06-07 | 2000-05-30 | Tu; Hosheng | Filter system and methods for removing blood clots and biological material |
US6398792B1 (en) | 1999-06-21 | 2002-06-04 | O'connor Lawrence | Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
CA2377583A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US6416293B1 (en) | 1999-07-20 | 2002-07-09 | Deka Products Limited Partnership | Pumping cartridge including a bypass valve and method for directing flow in a pumping cartridge |
US6905479B1 (en) | 1999-07-20 | 2005-06-14 | Deka Products Limited Partnership | Pumping cartridge having an integrated filter and method for filtering a fluid with the cartridge |
US6616679B1 (en) | 1999-07-30 | 2003-09-09 | Incept, Llc | Rapid exchange vascular device for emboli and thrombus removal and methods of use |
US6544279B1 (en) | 2000-08-09 | 2003-04-08 | Incept, Llc | Vascular device for emboli, thrombus and foreign body removal and methods of use |
US7306618B2 (en) | 1999-07-30 | 2007-12-11 | Incept Llc | Vascular device for emboli and thrombi removal and methods of use |
US7229462B2 (en) | 1999-07-30 | 2007-06-12 | Angioguard, Inc. | Vascular filter system for carotid endarterectomy |
US6142987A (en) | 1999-08-03 | 2000-11-07 | Scimed Life Systems, Inc. | Guided filter with support wire and methods of use |
US6235044B1 (en) | 1999-08-04 | 2001-05-22 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue |
US6273901B1 (en) | 1999-08-10 | 2001-08-14 | Scimed Life Systems, Inc. | Thrombosis filter having a surface treatment |
US6251122B1 (en) | 1999-09-02 | 2001-06-26 | Scimed Life Systems, Inc. | Intravascular filter retrieval device and method |
US6146404A (en) | 1999-09-03 | 2000-11-14 | Scimed Life Systems, Inc. | Removable thrombus filter |
WO2001017435A1 (en) | 1999-09-07 | 2001-03-15 | Microvena Corporation | Retrievable septal defect closure device |
US6451257B1 (en) | 1999-09-16 | 2002-09-17 | Terumo Kabushiki Kaisha | Arterial blood filter |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US6231561B1 (en) | 1999-09-20 | 2001-05-15 | Appriva Medical, Inc. | Method and apparatus for closing a body lumen |
US6325815B1 (en) | 1999-09-21 | 2001-12-04 | Microvena Corporation | Temporary vascular filter |
US6939361B1 (en) | 1999-09-22 | 2005-09-06 | Nmt Medical, Inc. | Guidewire for a free standing intervascular device having an integral stop mechanism |
US7229469B1 (en) | 1999-10-02 | 2007-06-12 | Quantumcor, Inc. | Methods for treating and repairing mitral valve annulus |
US6626930B1 (en) * | 1999-10-21 | 2003-09-30 | Edwards Lifesciences Corporation | Minimally invasive mitral valve repair method and apparatus |
US6652555B1 (en) | 1999-10-27 | 2003-11-25 | Atritech, Inc. | Barrier device for covering the ostium of left atrial appendage |
US6551303B1 (en) | 1999-10-27 | 2003-04-22 | Atritech, Inc. | Barrier device for ostium of left atrial appendage |
US6663606B1 (en) | 1999-10-28 | 2003-12-16 | Scimed Life Systems, Inc. | Biocompatible medical devices |
US6638259B1 (en) | 1999-10-28 | 2003-10-28 | Scimed Life Systems, Inc. | Biocompatible medical devices |
US6371971B1 (en) | 1999-11-15 | 2002-04-16 | Scimed Life Systems, Inc. | Guidewire filter and methods of use |
FR2801493B1 (en) | 1999-11-26 | 2003-10-03 | Braun Celsa Sa | METHOD FOR MANUFACTURING A MONOBLOCK BLOOD FILTER |
US6669708B1 (en) | 1999-12-09 | 2003-12-30 | Michael Nissenbaum | Devices, systems and methods for creating sutureless on-demand vascular anastomoses and hollow organ communication channels |
US6790218B2 (en) | 1999-12-23 | 2004-09-14 | Swaminathan Jayaraman | Occlusive coil manufacture and delivery |
US6660021B1 (en) | 1999-12-23 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Intravascular device and system |
US6361546B1 (en) | 2000-01-13 | 2002-03-26 | Endotex Interventional Systems, Inc. | Deployable recoverable vascular filter and methods for use |
US6929633B2 (en) | 2000-01-25 | 2005-08-16 | Bacchus Vascular, Inc. | Apparatus and methods for clot dissolution |
US6217600B1 (en) | 2000-01-26 | 2001-04-17 | Scimed Life Systems, Inc. | Thrombus filter with break-away anchor members |
US6402781B1 (en) | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US6602280B2 (en) | 2000-02-02 | 2003-08-05 | Trivascular, Inc. | Delivery system and method for expandable intracorporeal device |
US6540767B1 (en) | 2000-02-08 | 2003-04-01 | Scimed Life Systems, Inc. | Recoilable thrombosis filtering device and method |
GB2359024A (en) | 2000-02-09 | 2001-08-15 | Anson Medical Ltd | Fixator for arteries |
US6540768B1 (en) | 2000-02-09 | 2003-04-01 | Cordis Corporation | Vascular filter system |
EP1227876A1 (en) | 2000-02-17 | 2002-08-07 | Gambro Dialysatoren GmbH & Co. KG | Filter comprising membranes made of hollow fibers |
US6756094B1 (en) | 2000-02-28 | 2004-06-29 | Scimed Life Systems, Inc. | Balloon structure with PTFE component |
WO2001067989A2 (en) | 2000-03-10 | 2001-09-20 | Don Michael T Anthony | Vascular embolism preventon device employing filters |
US6468303B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Retrievable self expanding shunt |
US6214029B1 (en) | 2000-04-26 | 2001-04-10 | Microvena Corporation | Septal defect occluder |
US6551344B2 (en) | 2000-04-26 | 2003-04-22 | Ev3 Inc. | Septal defect occluder |
US6442413B1 (en) | 2000-05-15 | 2002-08-27 | James H. Silver | Implantable sensor |
US6887214B1 (en) | 2000-09-12 | 2005-05-03 | Chf Solutions, Inc. | Blood pump having a disposable blood passage cartridge with integrated pressure sensors |
US6805711B2 (en) | 2000-06-02 | 2004-10-19 | 3F Therapeutics, Inc. | Expandable medical implant and percutaneous delivery |
DE60122885T2 (en) | 2000-06-14 | 2007-05-16 | Teppo Järvinen | FIXING ANCHOR |
US6808537B2 (en) | 2000-07-07 | 2004-10-26 | Gary Karlin Michelson | Expandable implant with interlocking walls |
AT408949B (en) | 2000-07-25 | 2002-04-25 | Petrovic Dragan Dipl Ing | VASCULAR ANCHORING DEVICE |
US6610006B1 (en) | 2000-07-25 | 2003-08-26 | C. R. Bard, Inc. | Implantable prosthesis |
US6491712B1 (en) | 2000-07-26 | 2002-12-10 | O'connor Lawrence R. | Double walled balloon debris collector |
US6740061B1 (en) | 2000-07-28 | 2004-05-25 | Ev3 Inc. | Distal protection device |
US6440152B1 (en) | 2000-07-28 | 2002-08-27 | Microvena Corporation | Defect occluder release assembly and method |
US7147649B2 (en) | 2000-08-04 | 2006-12-12 | Duke University | Temporary vascular filters |
CA2441874A1 (en) | 2000-09-01 | 2002-03-07 | Onux Medical, Inc. | Vascular bypass grafting instrument and method |
US6776770B1 (en) | 2000-09-07 | 2004-08-17 | Advanced Research & Technology Institute | Thromboaspiration valve-filter device and methods |
US6754528B2 (en) | 2001-11-21 | 2004-06-22 | Cameraon Health, Inc. | Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator |
US6616681B2 (en) | 2000-10-05 | 2003-09-09 | Scimed Life Systems, Inc. | Filter delivery and retrieval device |
US6616684B1 (en) | 2000-10-06 | 2003-09-09 | Myocor, Inc. | Endovascular splinting devices and methods |
CA2323252C (en) | 2000-10-12 | 2007-12-11 | Biorthex Inc. | Artificial disc |
US6582447B1 (en) | 2000-10-20 | 2003-06-24 | Angiodynamics, Inc. | Convertible blood clot filter |
US6645225B1 (en) | 2000-11-01 | 2003-11-11 | Alvan W. Atkinson | Method and apparatus for plugging a patent foramen ovale formed in the heart |
US6616680B1 (en) | 2000-11-01 | 2003-09-09 | Joseph M. Thielen | Distal protection and delivery system and method |
US6602272B2 (en) | 2000-11-02 | 2003-08-05 | Advanced Cardiovascular Systems, Inc. | Devices configured from heat shaped, strain hardened nickel-titanium |
US6740094B2 (en) | 2000-11-06 | 2004-05-25 | The Regents Of The University Of California | Shape memory polymer actuator and catheter |
US6626937B1 (en) | 2000-11-14 | 2003-09-30 | Advanced Cardiovascular Systems, Inc. | Austenitic nitinol medical devices |
US6726703B2 (en) | 2000-11-27 | 2004-04-27 | Scimed Life Systems, Inc. | Distal protection device and method |
US6783499B2 (en) | 2000-12-18 | 2004-08-31 | Biosense, Inc. | Anchoring mechanism for implantable telemetric medical sensor |
US20020087151A1 (en) | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
US6663651B2 (en) | 2001-01-16 | 2003-12-16 | Incept Llc | Systems and methods for vascular filter retrieval |
US6899727B2 (en) | 2001-01-22 | 2005-05-31 | Gore Enterprise Holdings, Inc. | Deployment system for intraluminal devices |
US20020128680A1 (en) | 2001-01-25 | 2002-09-12 | Pavlovic Jennifer L. | Distal protection device with electrospun polymer fiber matrix |
US6736839B2 (en) | 2001-02-01 | 2004-05-18 | Charles Cummings | Medical device delivery system |
WO2002062408A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
CA2437824C (en) | 2001-02-05 | 2008-09-23 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
US7226464B2 (en) | 2001-03-01 | 2007-06-05 | Scimed Life Systems, Inc. | Intravascular filter retrieval device having an actuatable dilator tip |
AU784552B2 (en) | 2001-03-02 | 2006-05-04 | Cardinal Health 529, Llc | Flexible stent |
US7214237B2 (en) | 2001-03-12 | 2007-05-08 | Don Michael T Anthony | Vascular filter with improved strength and flexibility |
CA2441886C (en) | 2001-03-23 | 2009-07-21 | Viacor, Incorporated | Method and apparatus for reducing mitral regurgitation |
US7186264B2 (en) | 2001-03-29 | 2007-03-06 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
US6428559B1 (en) | 2001-04-03 | 2002-08-06 | Cordis Corporation | Removable, variable-diameter vascular filter system |
US6660031B2 (en) | 2001-04-11 | 2003-12-09 | Scimed Life Systems, Inc. | Multi-length delivery system |
US6436121B1 (en) | 2001-04-30 | 2002-08-20 | Paul H. Blom | Removable blood filter |
DE10121210B4 (en) | 2001-04-30 | 2005-11-17 | Universitätsklinikum Freiburg | Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production |
US6623507B2 (en) | 2001-05-07 | 2003-09-23 | Fathy M.A. Saleh | Vascular filtration device |
US6716238B2 (en) | 2001-05-10 | 2004-04-06 | Scimed Life Systems, Inc. | Stent with detachable tethers and method of using same |
US6835378B2 (en) | 2001-05-11 | 2004-12-28 | The Texas A&M University System University | Method and compositions for inhibiting thrombin-induced coagulation |
US6635070B2 (en) | 2001-05-21 | 2003-10-21 | Bacchus Vascular, Inc. | Apparatus and methods for capturing particulate material within blood vessels |
US6537300B2 (en) | 2001-05-30 | 2003-03-25 | Scimed Life Systems, Inc. | Implantable obstruction device for septal defects |
US7338514B2 (en) | 2001-06-01 | 2008-03-04 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
US6797083B2 (en) | 2001-06-11 | 2004-09-28 | Ev3 Inc. | Method of training nitinol wire |
US7209783B2 (en) | 2001-06-15 | 2007-04-24 | Cardiac Pacemakers, Inc. | Ablation stent for treating atrial fibrillation |
US6623506B2 (en) | 2001-06-18 | 2003-09-23 | Rex Medical, L.P | Vein filter |
US6783538B2 (en) | 2001-06-18 | 2004-08-31 | Rex Medical, L.P | Removable vein filter |
US6951570B2 (en) | 2001-07-02 | 2005-10-04 | Rubicon Medical, Inc. | Methods, systems, and devices for deploying a filter from a filter device |
US6962598B2 (en) | 2001-07-02 | 2005-11-08 | Rubicon Medical, Inc. | Methods, systems, and devices for providing embolic protection |
US6656203B2 (en) | 2001-07-18 | 2003-12-02 | Cordis Corporation | Integral vascular filter system |
US7011671B2 (en) | 2001-07-18 | 2006-03-14 | Atritech, Inc. | Cardiac implant device tether system and method |
US6982763B2 (en) | 2001-08-01 | 2006-01-03 | Ge Medical Systems Global Technology Company, Llc | Video standards converter |
US7485088B2 (en) * | 2001-09-05 | 2009-02-03 | Chase Medical L.P. | Method and device for percutaneous surgical ventricular repair |
US6702835B2 (en) | 2001-09-07 | 2004-03-09 | Core Medical, Inc. | Needle apparatus for closing septal defects and methods for using such apparatus |
US6776784B2 (en) | 2001-09-06 | 2004-08-17 | Core Medical, Inc. | Clip apparatus for closing septal defects and methods of use |
US6811560B2 (en) | 2001-09-20 | 2004-11-02 | Cordis Neurovascular, Inc. | Stent aneurysm embolization method and device |
US6596013B2 (en) | 2001-09-20 | 2003-07-22 | Scimed Life Systems, Inc. | Method and apparatus for treating septal defects |
US6799357B2 (en) | 2001-09-20 | 2004-10-05 | Memry Corporation | Manufacture of metal tubes |
US6752825B2 (en) | 2001-10-02 | 2004-06-22 | Scimed Life Systems, Inc | Nested stent apparatus |
US6755847B2 (en) | 2001-10-05 | 2004-06-29 | Scimed Life Systems, Inc. | Emboli capturing device and method of manufacture therefor |
US6754531B1 (en) | 2001-10-19 | 2004-06-22 | Pacesetter, Inc. | Anti-tachycardia pacing methods and devices |
US6907286B1 (en) | 2001-10-19 | 2005-06-14 | Pacesetter, Inc. | Anti-tachycardia pacing methods and devices |
US7052500B2 (en) | 2001-10-19 | 2006-05-30 | Scimed Life Systems, Inc. | Embolus extractor |
US6795731B1 (en) | 2001-10-19 | 2004-09-21 | Pacesetter, Inc. | Anti-tachycardia pacing methods and devices |
US6887257B2 (en) | 2001-10-19 | 2005-05-03 | Incept Llc | Vascular embolic filter exchange devices and methods of use thereof |
US6766196B1 (en) | 2001-10-19 | 2004-07-20 | Pacesetter, Inc. | Anti-tachycardia pacing methods and devices |
US6731982B1 (en) | 2001-10-19 | 2004-05-04 | Pacesetter, Inc. | Anti-tachycardia pacing methods and devices |
US7052487B2 (en) | 2001-10-26 | 2006-05-30 | Cohn William E | Method and apparatus for reducing mitral regurgitation |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US7147656B2 (en) | 2001-12-03 | 2006-12-12 | Xtent, Inc. | Apparatus and methods for delivery of braided prostheses |
US20030176914A1 (en) | 2003-01-21 | 2003-09-18 | Rabkin Dmitry J. | Multi-segment modular stent and methods for manufacturing stents |
US7232453B2 (en) | 2001-12-05 | 2007-06-19 | Sagax, Inc. | Endovascular device for entrapment of particulate matter and method for use |
US6793666B2 (en) | 2001-12-18 | 2004-09-21 | Scimed Life Systems, Inc. | Distal protection mechanically attached filter cartridge |
US7318833B2 (en) | 2001-12-19 | 2008-01-15 | Nmt Medical, Inc. | PFO closure device with flexible thrombogenic joint and improved dislodgement resistance |
WO2003053493A2 (en) | 2001-12-19 | 2003-07-03 | Nmt Medical, Inc. | Septal occluder and associated methods |
US6790213B2 (en) | 2002-01-07 | 2004-09-14 | C.R. Bard, Inc. | Implantable prosthesis |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
EP1471835A4 (en) | 2002-01-14 | 2008-03-19 | Nmt Medical Inc | Patent foramen ovale (pfo) closure method and device |
US7125420B2 (en) | 2002-02-05 | 2006-10-24 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US6931280B1 (en) | 2002-02-11 | 2005-08-16 | Pacesetter, Inc. | Apparatus and method for bi-ventricular pacing and sensing in an implantable device |
US6976967B2 (en) | 2002-02-19 | 2005-12-20 | Medtronic, Inc. | Apparatus and method for sensing spatial displacement in a heart |
US6638257B2 (en) | 2002-03-01 | 2003-10-28 | Aga Medical Corporation | Intravascular flow restrictor |
US7192434B2 (en) | 2002-03-08 | 2007-03-20 | Ev3 Inc. | Vascular protection devices and methods of use |
US6797001B2 (en) | 2002-03-11 | 2004-09-28 | Cardiac Dimensions, Inc. | Device, assembly and method for mitral valve repair |
CA2643221A1 (en) | 2002-03-15 | 2003-09-25 | Nmt Medical, Inc. | Coupling system useful in placement of implants |
AU2003220502A1 (en) | 2002-03-25 | 2003-10-13 | Nmt Medical, Inc. | Patent foramen ovale (pfo) closure clips |
US20030187495A1 (en) | 2002-04-01 | 2003-10-02 | Cully Edward H. | Endoluminal devices, embolic filters, methods of manufacture and use |
US7007698B2 (en) * | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
US6942635B2 (en) | 2002-04-04 | 2005-09-13 | Angiodynamics, Inc. | Blood treatment catheter and method |
US7052511B2 (en) | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US6881218B2 (en) | 2002-05-01 | 2005-04-19 | Angiodynamics, Inc. | Blood clot filter |
US7976564B2 (en) | 2002-05-06 | 2011-07-12 | St. Jude Medical, Cardiology Division, Inc. | PFO closure devices and related methods of use |
US7060082B2 (en) | 2002-05-06 | 2006-06-13 | Scimed Life Systems, Inc. | Perfusion guidewire in combination with a distal filter |
US6736823B2 (en) | 2002-05-10 | 2004-05-18 | C.R. Bard, Inc. | Prosthetic repair fabric |
US6736854B2 (en) | 2002-05-10 | 2004-05-18 | C. R. Bard, Inc. | Prosthetic repair fabric with erosion resistant edge |
US20040098042A1 (en) | 2002-06-03 | 2004-05-20 | Devellian Carol A. | Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof |
EP1538994A4 (en) | 2002-06-05 | 2008-05-07 | Nmt Medical Inc | Patent foramen ovale (pfo) closure device with radial and circumferential support |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US7241257B1 (en) | 2002-06-28 | 2007-07-10 | Abbott Cardiovascular Systems, Inc. | Devices and methods to perform minimally invasive surgeries |
US6866662B2 (en) | 2002-07-23 | 2005-03-15 | Biosense Webster, Inc. | Ablation catheter having stabilizing array |
AU2003268379A1 (en) | 2002-09-03 | 2004-03-29 | John R. Fagan | Arterial embolic filter deployed from catheter |
US6780183B2 (en) | 2002-09-16 | 2004-08-24 | Biosense Webster, Inc. | Ablation catheter having shape-changing balloon |
ATE379991T1 (en) | 2002-09-23 | 2007-12-15 | Nmt Medical Inc | DEVICE FOR PUNCTURE A SEPTUM |
AU2003276999A1 (en) | 2002-09-26 | 2004-04-19 | Savacor, Inc. | Cardiovascular anchoring device and method of deploying same |
AU2003287554A1 (en) | 2002-11-06 | 2004-06-03 | Nmt Medical, Inc. | Medical devices utilizing modified shape memory alloy |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
AU2003291541A1 (en) | 2002-11-15 | 2004-06-15 | Paracor Medical, Inc. | Cardiac harness delivery device |
US6966886B2 (en) | 2002-11-20 | 2005-11-22 | Angiodynamics, Inc. | Blood treatment catheter assembly |
WO2004052213A1 (en) | 2002-12-09 | 2004-06-24 | Nmt Medical, Inc. | Septal closure devices |
US7152452B2 (en) | 2002-12-26 | 2006-12-26 | Advanced Cardiovascular Systems, Inc. | Assembly for crimping an intraluminal device and method of use |
US7294214B2 (en) | 2003-01-08 | 2007-11-13 | Scimed Life Systems, Inc. | Medical devices |
US7220271B2 (en) | 2003-01-30 | 2007-05-22 | Ev3 Inc. | Embolic filters having multiple layers and controlled pore size |
US7137991B2 (en) | 2003-02-24 | 2006-11-21 | Scimed Life Systems, Inc. | Multi-wire embolic protection filtering device |
US7942920B2 (en) | 2003-02-25 | 2011-05-17 | Cordis Corporation | Stent with nested fingers for enhanced vessel coverage |
AU2004226374B2 (en) | 2003-03-27 | 2009-11-12 | Terumo Kabushiki Kaisha | Methods and apparatus for treatment of patent foramen ovale |
US7012106B2 (en) | 2003-03-28 | 2006-03-14 | Ethicon, Inc. | Reinforced implantable medical devices |
US6902572B2 (en) | 2003-04-02 | 2005-06-07 | Scimed Life Systems, Inc. | Anchoring mechanisms for intravascular devices |
US20040267306A1 (en) | 2003-04-11 | 2004-12-30 | Velocimed, L.L.C. | Closure devices, related delivery methods, and related methods of use |
US6913614B2 (en) | 2003-05-08 | 2005-07-05 | Cardia, Inc. | Delivery system with safety tether |
US7351259B2 (en) | 2003-06-05 | 2008-04-01 | Cardiac Dimensions, Inc. | Device, system and method to affect the mitral valve annulus of a heart |
AU2003257319A1 (en) | 2003-08-08 | 2005-02-25 | Biorthex Inc. | Biocompatible porous ti-ni material |
US20050055080A1 (en) | 2003-09-05 | 2005-03-10 | Naim Istephanous | Modulated stents and methods of making the stents |
US7056286B2 (en) | 2003-11-12 | 2006-06-06 | Adrian Ravenscroft | Medical device anchor and delivery system |
US6972025B2 (en) | 2003-11-18 | 2005-12-06 | Scimed Life Systems, Inc. | Intravascular filter with bioabsorbable centering element |
US7258697B1 (en) | 2003-12-22 | 2007-08-21 | Advanced Cardiovascular Systems, Inc. | Stent with anchors to prevent vulnerable plaque rupture during deployment |
US7338512B2 (en) | 2004-01-22 | 2008-03-04 | Rex Medical, L.P. | Vein filter |
CA2553869A1 (en) | 2004-01-30 | 2005-08-18 | Nmt Medical, Inc. | Welding systems for closure of cardiac openings |
US20050192626A1 (en) | 2004-01-30 | 2005-09-01 | Nmt Medical, Inc. | Devices, systems, and methods for closure of cardiac openings |
JP4376661B2 (en) | 2004-03-02 | 2009-12-02 | 任天堂株式会社 | Game system and game program |
JP4574194B2 (en) | 2004-03-05 | 2010-11-04 | 任天堂株式会社 | Game program |
EP1742741A4 (en) | 2004-04-05 | 2009-06-03 | Bio Data Corp | Clot retainer |
ES2407684T3 (en) | 2004-05-05 | 2013-06-13 | Direct Flow Medical, Inc. | Heart valve without stent with support structure formed on site |
US8412348B2 (en) | 2004-05-06 | 2013-04-02 | Boston Scientific Neuromodulation Corporation | Intravascular self-anchoring integrated tubular electrode body |
US7250049B2 (en) | 2004-05-27 | 2007-07-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter with suspension system incorporating rigid and flexible components |
US7122034B2 (en) | 2004-05-27 | 2006-10-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Curved ablation catheter |
US7867272B2 (en) | 2004-10-26 | 2011-01-11 | Cordis Corporation | Stent having twist cancellation geometry |
-
2003
- 2003-11-12 US US10/705,226 patent/US7056286B2/en not_active Expired - Lifetime
-
2004
- 2004-11-04 US US10/980,828 patent/US20050131451A1/en not_active Abandoned
- 2004-11-12 CN CNA200480014445XA patent/CN1842354A/en active Pending
-
2009
- 2009-11-25 US US12/625,941 patent/US8409239B2/en not_active Expired - Lifetime
-
2010
- 2010-05-14 US US12/780,757 patent/US8398672B2/en not_active Expired - Lifetime
-
2013
- 2013-04-01 US US13/854,855 patent/US9283065B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788328A (en) * | 1971-04-29 | 1974-01-29 | Sherwood Medical Ind Inc | Cardiovascular catheter |
US3935111A (en) * | 1973-04-06 | 1976-01-27 | Bentley Laboratories, Inc. | Device for removing blood microemboli |
US4014318A (en) * | 1973-08-20 | 1977-03-29 | Dockum James M | Circulatory assist device and system |
US4374669A (en) * | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4007743A (en) * | 1975-10-20 | 1977-02-15 | American Hospital Supply Corporation | Opening mechanism for umbrella-like intravascular shunt defect closure device |
US4073723A (en) * | 1976-11-15 | 1978-02-14 | Swank Roy L | Anti-coagulating and filtering blood |
US4425908A (en) * | 1981-10-22 | 1984-01-17 | Beth Israel Hospital | Blood clot filter |
US4565823A (en) * | 1982-07-02 | 1986-01-21 | Yamanouchi Pharmaceutical Co., Ltd. | Medical agent for suppressing arteriosclerosis |
US4643184A (en) * | 1982-09-29 | 1987-02-17 | Mobin Uddin Kazi | Embolus trap |
US4494531A (en) * | 1982-12-06 | 1985-01-22 | Cook, Incorporated | Expandable blood clot filter |
US4642089A (en) * | 1985-01-29 | 1987-02-10 | Shiley, Inc. | Unitary venous return reservoir with cardiotomy filter |
US4795446A (en) * | 1986-01-30 | 1989-01-03 | Sherwood Medical Company | Medical tube device |
US4722724A (en) * | 1986-06-23 | 1988-02-02 | Stanley Schocket | Anterior chamber tube shunt to an encircling band, and related surgical procedure |
US5595909A (en) * | 1988-05-23 | 1997-01-21 | Regents Of The University Of Minnesota | Filter device |
US4990156A (en) * | 1988-06-21 | 1991-02-05 | Lefebvre Jean Marie | Filter for medical use |
US4986279A (en) * | 1989-03-01 | 1991-01-22 | National-Standard Company | Localization needle assembly with reinforced needle assembly |
US4899543A (en) * | 1989-03-29 | 1990-02-13 | Grumman Aerospace Corporation | Pre-tensioned shape memory actuator |
US5486193A (en) * | 1992-01-22 | 1996-01-23 | C. R. Bard, Inc. | System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder |
US5593441A (en) * | 1992-03-04 | 1997-01-14 | C. R. Bard, Inc. | Method for limiting the incidence of postoperative adhesions |
US5591224A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Bioelastomeric stent |
US5591227A (en) * | 1992-03-19 | 1997-01-07 | Medtronic, Inc. | Drug eluting stent |
US5599352A (en) * | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
US5282823A (en) * | 1992-03-19 | 1994-02-01 | Medtronic, Inc. | Intravascular radially expandable stent |
US6508782B1 (en) * | 1992-05-19 | 2003-01-21 | Bacchus Vascular, Inc. | Thrombolysis device |
US6336938B1 (en) * | 1992-08-06 | 2002-01-08 | William Cook Europe A/S | Implantable self expanding prosthetic device |
US5484424A (en) * | 1992-11-19 | 1996-01-16 | Celsa L.G. (Societe Anonyme) | Blood filtering device having a catheter with longitudinally variable rigidity |
US5284488A (en) * | 1992-12-23 | 1994-02-08 | Sideris Eleftherios B | Adjustable devices for the occlusion of cardiac defects |
US5383887A (en) * | 1992-12-28 | 1995-01-24 | Celsa Lg | Device for selectively forming a temporary blood filter |
US5480423A (en) * | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5591251A (en) * | 1993-11-29 | 1997-01-07 | Cobe Laboratories, Inc. | Side flow bubble trap apparatus and method |
US6344053B1 (en) * | 1993-12-22 | 2002-02-05 | Medtronic Ave, Inc. | Endovascular support device and method |
US5713879A (en) * | 1994-02-26 | 1998-02-03 | Metec A. Schneider Gmbh | Device for collecting and filtering blood |
US5720764A (en) * | 1994-06-11 | 1998-02-24 | Naderlinger; Eduard | Vena cava thrombus filter |
US5873906A (en) * | 1994-09-08 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Procedures for introducing stents and stent-grafts |
US5601595A (en) * | 1994-10-25 | 1997-02-11 | Scimed Life Systems, Inc. | Remobable thrombus filter |
US5709704A (en) * | 1994-11-30 | 1998-01-20 | Boston Scientific Corporation | Blood clot filtering |
US6171329B1 (en) * | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US5704910A (en) * | 1995-06-05 | 1998-01-06 | Nephros Therapeutics, Inc. | Implantable device and use therefor |
US5713853A (en) * | 1995-06-07 | 1998-02-03 | Interventional Innovations Corporation | Methods for treating thrombosis |
US5709707A (en) * | 1995-10-30 | 1998-01-20 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
US6013093A (en) * | 1995-11-28 | 2000-01-11 | Boston Scientific Corporation | Blood clot filtering |
US6506204B2 (en) * | 1996-01-24 | 2003-01-14 | Aga Medical Corporation | Method and apparatus for occluding aneurysms |
US6692508B2 (en) * | 1996-02-02 | 2004-02-17 | The Regents Of The University Of California | Method of using a clot capture coil |
US6692509B2 (en) * | 1996-02-02 | 2004-02-17 | Regents Of The University Of California | Method of using a clot capture coil |
US6024756A (en) * | 1996-03-22 | 2000-02-15 | Scimed Life Systems, Inc. | Method of reversibly closing a septal defect |
US5713921A (en) * | 1996-03-29 | 1998-02-03 | Bonutti; Peter M. | Suture anchor |
US5716408A (en) * | 1996-05-31 | 1998-02-10 | C.R. Bard, Inc. | Prosthesis for hernia repair and soft tissue reconstruction |
US5871693A (en) * | 1996-06-07 | 1999-02-16 | Minnesota Mining And Manufacturing Company | Modular blood treatment cartridge |
US5718717A (en) * | 1996-08-19 | 1998-02-17 | Bonutti; Peter M. | Suture anchor |
US5861003A (en) * | 1996-10-23 | 1999-01-19 | The Cleveland Clinic Foundation | Apparatus and method for occluding a defect or aperture within body surface |
US5860998A (en) * | 1996-11-25 | 1999-01-19 | C. R. Bard, Inc. | Deployment device for tubular expandable prosthesis |
US6676682B1 (en) * | 1997-05-08 | 2004-01-13 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire having filter and medical device deployment capabilities |
US6174322B1 (en) * | 1997-08-08 | 2001-01-16 | Cardia, Inc. | Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum |
US6695864B2 (en) * | 1997-12-15 | 2004-02-24 | Cardeon Corporation | Method and apparatus for cerebral embolic protection |
US6695858B1 (en) * | 1998-02-10 | 2004-02-24 | Artemis Medical, Inc. | Medical device and methods for use |
US6024096A (en) * | 1998-05-01 | 2000-02-15 | Correstore Inc | Anterior segment ventricular restoration apparatus and method |
US6508777B1 (en) * | 1998-05-08 | 2003-01-21 | Cardeon Corporation | Circulatory support system and method of use for isolated segmental perfusion |
US6508833B2 (en) * | 1998-06-02 | 2003-01-21 | Cook Incorporated | Multiple-sided intraluminal medical device |
US6694983B2 (en) * | 1998-09-10 | 2004-02-24 | Percardia, Inc. | Delivery methods for left ventricular conduit |
US6342062B1 (en) * | 1998-09-24 | 2002-01-29 | Scimed Life Systems, Inc. | Retrieval devices for vena cava filter |
US6676666B2 (en) * | 1999-01-11 | 2004-01-13 | Scimed Life Systems, Inc | Medical device delivery system with two sheaths |
US6673102B1 (en) * | 1999-01-22 | 2004-01-06 | Gore Enterprises Holdings, Inc. | Covered endoprosthesis and delivery system |
US6682505B2 (en) * | 1999-03-12 | 2004-01-27 | Arteria Medical Science, Inc. | Catheter for removing emboli from saphenous vein grafts and native coronary arteries |
US6517559B1 (en) * | 1999-05-03 | 2003-02-11 | O'connell Paul T. | Blood filter and method for treating vascular disease |
US6843798B2 (en) * | 1999-08-27 | 2005-01-18 | Ev3 Inc. | Slideable vascular filter |
US6340364B2 (en) * | 1999-10-22 | 2002-01-22 | Nozomu Kanesaka | Vascular filtering device |
US6689150B1 (en) * | 1999-10-27 | 2004-02-10 | Atritech, Inc. | Filter apparatus for ostium of left atrial appendage |
US6171328B1 (en) * | 1999-11-09 | 2001-01-09 | Embol-X, Inc. | Intravascular catheter filter with interlocking petal design and methods of use |
US6342063B1 (en) * | 2000-01-26 | 2002-01-29 | Scimed Life Systems, Inc. | Device and method for selectively removing a thrombus filter |
US6685738B2 (en) * | 2000-01-31 | 2004-02-03 | Scimed Life Systems, Inc. | Braided endoluminal device having tapered filaments |
US7329269B2 (en) * | 2000-02-23 | 2008-02-12 | Boston Scientific Scimed, Inc. | Intravascular filtering devices and methods |
US6517573B1 (en) * | 2000-04-11 | 2003-02-11 | Endovascular Technologies, Inc. | Hook for attaching to a corporeal lumen and method of manufacturing |
US6988983B2 (en) * | 2000-04-14 | 2006-01-24 | Solace Therapeutics, Inc. | Implantable self-inflating attenuation device |
US7181261B2 (en) * | 2000-05-15 | 2007-02-20 | Silver James H | Implantable, retrievable, thrombus minimizing sensors |
US6334864B1 (en) * | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US7179274B2 (en) * | 2000-07-11 | 2007-02-20 | Rafael Medical Technologies Inc. | Intravascular filter |
US6506408B1 (en) * | 2000-07-13 | 2003-01-14 | Scimed Life Systems, Inc. | Implantable or insertable therapeutic agent delivery device |
US6692459B2 (en) * | 2000-07-18 | 2004-02-17 | George P. Teitelbaum | Anti-occlusion catheter |
US7169165B2 (en) * | 2001-01-16 | 2007-01-30 | Boston Scientific Scimed, Inc. | Rapid exchange sheath for deployment of medical devices and methods of use |
US6506205B2 (en) * | 2001-02-20 | 2003-01-14 | Mark Goldberg | Blood clot filtering system |
US6840950B2 (en) * | 2001-02-20 | 2005-01-11 | Scimed Life Systems, Inc. | Low profile emboli capture device |
US7323002B2 (en) * | 2001-06-12 | 2008-01-29 | Cordis Corporation | Emboli extraction catheter and vascular filter system |
US7179275B2 (en) * | 2001-06-18 | 2007-02-20 | Rex Medical, L.P. | Vein filter |
US6997939B2 (en) * | 2001-07-02 | 2006-02-14 | Rubicon Medical, Inc. | Methods, systems, and devices for deploying an embolic protection filter |
US20030028213A1 (en) * | 2001-08-01 | 2003-02-06 | Microvena Corporation | Tissue opening occluder |
US6997938B2 (en) * | 2002-02-12 | 2006-02-14 | Scimed Life Systems, Inc. | Embolic protection device |
US7331992B2 (en) * | 2002-02-20 | 2008-02-19 | Bard Peripheral Vascular, Inc. | Anchoring device for an endoluminal prosthesis |
US7004964B2 (en) * | 2002-02-22 | 2006-02-28 | Scimed Life Systems, Inc. | Apparatus and method for deployment of an endoluminal device |
US7001406B2 (en) * | 2002-05-23 | 2006-02-21 | Scimed Life Systems Inc. | Cartridge embolic protection filter and methods of use |
US7319035B2 (en) * | 2002-10-17 | 2008-01-15 | Vbi Technologies, L.L.C. | Biological scaffolding material |
US6989021B2 (en) * | 2002-10-31 | 2006-01-24 | Cordis Corporation | Retrievable medical filter |
US7316708B2 (en) * | 2002-12-05 | 2008-01-08 | Cardiac Dimensions, Inc. | Medical device delivery system |
US7323001B2 (en) * | 2003-01-30 | 2008-01-29 | Ev3 Inc. | Embolic filters with controlled pore size |
US7331976B2 (en) * | 2003-04-29 | 2008-02-19 | Rex Medical, L.P. | Distal protection device |
US7179291B2 (en) * | 2003-05-27 | 2007-02-20 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US20050043759A1 (en) * | 2003-07-14 | 2005-02-24 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US6994718B2 (en) * | 2003-10-29 | 2006-02-07 | Medtronic Vascular, Inc. | Distal protection device for filtering and occlusion |
US7323003B2 (en) * | 2004-02-13 | 2008-01-29 | Boston Scientific Scimed, Inc. | Centering intravascular filters and devices and methods for deploying and retrieving intravascular filters |
US20060015137A1 (en) * | 2004-07-19 | 2006-01-19 | Wasdyke Joel M | Retrievable intravascular filter with bendable anchoring members |
Cited By (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9351821B2 (en) | 1998-09-25 | 2016-05-31 | C. R. Bard, Inc. | Removable embolus blood clot filter and filter delivery unit |
US8690906B2 (en) | 1998-09-25 | 2014-04-08 | C.R. Bard, Inc. | Removeable embolus blood clot filter and filter delivery unit |
US9615909B2 (en) | 1998-09-25 | 2017-04-11 | C.R. Bard, Inc. | Removable embolus blood clot filter and filter delivery unit |
US9204956B2 (en) | 2002-02-20 | 2015-12-08 | C. R. Bard, Inc. | IVC filter with translating hooks |
US9283065B2 (en) | 2003-11-12 | 2016-03-15 | Nitinol Devices And Components, Inc. | Medical device anchor and delivery system |
US8409239B2 (en) | 2003-11-12 | 2013-04-02 | Nitinol Devices And Components, Inc. | Medical device anchor and delivery system |
US8398672B2 (en) | 2003-11-12 | 2013-03-19 | Nitinol Devices And Components, Inc. | Method for anchoring a medical device |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US11103339B2 (en) | 2004-08-04 | 2021-08-31 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US9144484B2 (en) | 2004-08-04 | 2015-09-29 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US8628556B2 (en) | 2004-08-04 | 2014-01-14 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US7704267B2 (en) | 2004-08-04 | 2010-04-27 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US8372109B2 (en) | 2004-08-04 | 2013-02-12 | C. R. Bard, Inc. | Non-entangling vena cava filter |
US9138228B2 (en) | 2004-08-11 | 2015-09-22 | Emory University | Vascular conduit device and system for implanting |
US10512531B2 (en) | 2004-11-12 | 2019-12-24 | C. R. Bard, Inc. | Filter delivery system |
US8992562B2 (en) | 2004-11-12 | 2015-03-31 | C.R. Bard, Inc. | Filter delivery system |
US7794473B2 (en) | 2004-11-12 | 2010-09-14 | C.R. Bard, Inc. | Filter delivery system |
US8267954B2 (en) | 2005-02-04 | 2012-09-18 | C. R. Bard, Inc. | Vascular filter with sensing capability |
US9017367B2 (en) | 2005-05-12 | 2015-04-28 | C. R. Bard, Inc. | Tubular filter |
US8574261B2 (en) | 2005-05-12 | 2013-11-05 | C. R. Bard, Inc. | Removable embolus blood clot filter |
US10729527B2 (en) | 2005-05-12 | 2020-08-04 | C.R. Bard, Inc. | Removable embolus blood clot filter |
US11730583B2 (en) | 2005-05-12 | 2023-08-22 | C.R. Band. Inc. | Tubular filter |
US12115057B2 (en) | 2005-05-12 | 2024-10-15 | C.R. Bard, Inc. | Tubular filter |
US10813738B2 (en) | 2005-05-12 | 2020-10-27 | C.R. Bard, Inc. | Tubular filter |
US9498318B2 (en) | 2005-05-12 | 2016-11-22 | C.R. Bard, Inc. | Removable embolus blood clot filter |
US11554006B2 (en) | 2005-05-12 | 2023-01-17 | C. R. Bard Inc. | Removable embolus blood clot filter |
US8613754B2 (en) | 2005-05-12 | 2013-12-24 | C. R. Bard, Inc. | Tubular filter |
US11517415B2 (en) | 2005-08-09 | 2022-12-06 | C.R. Bard, Inc. | Embolus blood clot filter and delivery system |
US9387063B2 (en) | 2005-08-09 | 2016-07-12 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US10492898B2 (en) | 2005-08-09 | 2019-12-03 | C.R. Bard, Inc. | Embolus blood clot filter and delivery system |
US8430903B2 (en) | 2005-08-09 | 2013-04-30 | C. R. Bard, Inc. | Embolus blood clot filter and delivery system |
US7785366B2 (en) | 2005-10-26 | 2010-08-31 | Maurer Christopher W | Mitral spacer |
US8888844B2 (en) | 2005-10-26 | 2014-11-18 | Cardiosolutions, Inc. | Heart valve implant |
US8449606B2 (en) | 2005-10-26 | 2013-05-28 | Cardiosolutions, Inc. | Balloon mitral spacer |
US8092525B2 (en) | 2005-10-26 | 2012-01-10 | Cardiosolutions, Inc. | Heart valve implant |
US8506623B2 (en) | 2005-10-26 | 2013-08-13 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US20090043382A1 (en) * | 2005-10-26 | 2009-02-12 | Cardiosolutions, Inc. | Mitral Spacer |
US8778017B2 (en) | 2005-10-26 | 2014-07-15 | Cardiosolutions, Inc. | Safety for mitral valve implant |
US8486136B2 (en) | 2005-10-26 | 2013-07-16 | Cardiosolutions, Inc. | Mitral spacer |
US9232999B2 (en) | 2005-10-26 | 2016-01-12 | Cardiosolutions Inc. | Mitral spacer |
US9517129B2 (en) | 2005-10-26 | 2016-12-13 | Cardio Solutions, Inc. | Implant delivery and deployment system and method |
US8894705B2 (en) | 2005-10-26 | 2014-11-25 | Cardiosolutions, Inc. | Balloon mitral spacer |
US8216302B2 (en) | 2005-10-26 | 2012-07-10 | Cardiosolutions, Inc. | Implant delivery and deployment system and method |
US9131999B2 (en) | 2005-11-18 | 2015-09-15 | C.R. Bard Inc. | Vena cava filter with filament |
US10842608B2 (en) | 2005-11-18 | 2020-11-24 | C.R. Bard, Inc. | Vena cava filter with filament |
US20100256669A1 (en) * | 2005-12-02 | 2010-10-07 | C.R. Bard, Inc. | Helical Vena Cava Filter |
US10980626B2 (en) | 2006-05-02 | 2021-04-20 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US10188496B2 (en) | 2006-05-02 | 2019-01-29 | C. R. Bard, Inc. | Vena cava filter formed from a sheet |
US9326842B2 (en) | 2006-06-05 | 2016-05-03 | C. R . Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US11141257B2 (en) | 2006-06-05 | 2021-10-12 | C. R. Bard, Inc. | Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access |
US8870916B2 (en) | 2006-07-07 | 2014-10-28 | USGI Medical, Inc | Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use |
US11672640B2 (en) | 2007-01-31 | 2023-06-13 | Stanley Batiste | Thrombectomy filter and method for performing a thrombectomy |
US11547545B2 (en) | 2007-01-31 | 2023-01-10 | Stanley Batiste | Infusion filter and method for performing thrombolysis |
US8961557B2 (en) | 2007-01-31 | 2015-02-24 | Stanley Batiste | Intravenous filter with fluid or medication infusion capability |
US9950146B2 (en) | 2007-04-24 | 2018-04-24 | Emory Univeristy | Conduit device and system for implanting a conduit device in a tissue wall |
US11027103B2 (en) | 2007-04-24 | 2021-06-08 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US9308015B2 (en) | 2007-04-24 | 2016-04-12 | Emory University | Conduit device and system for implanting a conduit device in a tissue wall |
US20080275488A1 (en) * | 2007-05-01 | 2008-11-06 | Fleming James A | Extended duration removable medical filter |
US8480730B2 (en) | 2007-05-14 | 2013-07-09 | Cardiosolutions, Inc. | Solid construct mitral spacer |
US20080294189A1 (en) * | 2007-05-23 | 2008-11-27 | Moll Fransiscus L | Vein filter |
US20090005803A1 (en) * | 2007-06-27 | 2009-01-01 | Stanley Batiste | Removable vascular filter and method of filter use |
US8597347B2 (en) | 2007-11-15 | 2013-12-03 | Cardiosolutions, Inc. | Heart regurgitation method and apparatus |
US9770330B2 (en) | 2007-11-15 | 2017-09-26 | Cardiosolutions, Inc. | Implant delivery system and method |
US8852270B2 (en) | 2007-11-15 | 2014-10-07 | Cardiosolutions, Inc. | Implant delivery system and method |
US8114116B2 (en) | 2008-01-18 | 2012-02-14 | Cook Medical Technologies Llc | Introduction catheter set for a self-expandable implant |
US20090187208A1 (en) * | 2008-01-18 | 2009-07-23 | William Cook Europe Aps | Introduction catheter set for a self-expandable implant |
US9259317B2 (en) | 2008-06-13 | 2016-02-16 | Cardiosolutions, Inc. | System and method for implanting a heart implant |
US8591460B2 (en) | 2008-06-13 | 2013-11-26 | Cardiosolutions, Inc. | Steerable catheter and dilator and system and method for implanting a heart implant |
CN102665572A (en) * | 2009-09-07 | 2012-09-12 | 埃格有限公司 | Device, kit and method for closure of a body lumen puncture |
US20120226309A1 (en) * | 2009-09-07 | 2012-09-06 | Joensson Anders | Device, Kit And Method For Closure Of A Body Lumen Puncture |
US9005240B2 (en) * | 2009-09-07 | 2015-04-14 | Aeeg Ab | Device, kit and method for closure of a body lumen puncture |
US9649211B2 (en) | 2009-11-04 | 2017-05-16 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
US10092427B2 (en) | 2009-11-04 | 2018-10-09 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
US20110118829A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment device and method |
US20110118833A1 (en) * | 2009-11-15 | 2011-05-19 | Thoratec Corporation | Attachment device and method |
US8152845B2 (en) | 2009-12-30 | 2012-04-10 | Thoratec Corporation | Blood pump system with mounting cuff |
US8679177B2 (en) | 2009-12-30 | 2014-03-25 | Thoratec Corporation | Method of implanting a blood pump system |
US20110160850A1 (en) * | 2009-12-30 | 2011-06-30 | Thoratec Corporation | Blood Pump System With Mounting Cuff |
US11583420B2 (en) | 2010-06-08 | 2023-02-21 | Regents Of The University Of Minnesota | Vascular elastance |
US10751519B2 (en) | 2010-11-22 | 2020-08-25 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US11406803B2 (en) | 2010-11-22 | 2022-08-09 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US11938291B2 (en) | 2010-11-22 | 2024-03-26 | Aria Cv, Inc. | System and method for reducing pulsatile pressure |
US9532773B2 (en) | 2011-01-28 | 2017-01-03 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US10357232B2 (en) | 2011-01-28 | 2019-07-23 | Apica Cardiovascular Limited | Systems for sealing a tissue wall puncture |
US9320875B2 (en) | 2011-02-01 | 2016-04-26 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US10499949B2 (en) | 2011-02-01 | 2019-12-10 | Emory University | Systems for implanting and using a conduit within a tissue wall |
US9750858B2 (en) | 2011-03-02 | 2017-09-05 | Tc1 Llc | Ventricular cuff |
US11185683B2 (en) | 2011-03-02 | 2021-11-30 | Tc1 Llc | Ventricular cuff |
US10111993B2 (en) | 2011-03-02 | 2018-10-30 | Tc1 Llc | Ventricular cuff |
US10525177B2 (en) | 2011-03-02 | 2020-01-07 | Tc1 Llc | Ventricular cuff |
US9144637B2 (en) | 2011-03-02 | 2015-09-29 | Thoratec Corporation | Ventricular cuff |
US9629675B2 (en) | 2011-10-19 | 2017-04-25 | Confluent Medical Technologies, Inc. | Tissue treatment device and related methods |
US8702747B2 (en) * | 2011-10-21 | 2014-04-22 | Cook Medical Technologies Llc | Femoral removal vena cava filter |
US20130103073A1 (en) * | 2011-10-21 | 2013-04-25 | Cook Medical Technologies Llc | Femoral removal vena cava filter |
US9981076B2 (en) | 2012-03-02 | 2018-05-29 | Tc1 Llc | Ventricular cuff |
US11369785B2 (en) | 2012-03-02 | 2022-06-28 | Tc1 Llc | Ventricular cuff |
US9981077B2 (en) | 2012-08-31 | 2018-05-29 | Tc1 Llc | Ventricular cuff |
US9199019B2 (en) | 2012-08-31 | 2015-12-01 | Thoratec Corporation | Ventricular cuff |
US9833305B2 (en) | 2012-09-12 | 2017-12-05 | Cook Medical Technologies Llc | Vena cava filter with dual retrieval |
US10617508B2 (en) | 2012-09-12 | 2020-04-14 | Cook Medical Technologies Llc | Vena cava filter with dual retrieval |
US9308073B2 (en) | 2012-09-12 | 2016-04-12 | Cook Medical Technologies Llc | Vena cava filter with dual retrieval |
US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
US9414752B2 (en) | 2012-11-09 | 2016-08-16 | Elwha Llc | Embolism deflector |
US10028741B2 (en) | 2013-01-25 | 2018-07-24 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US11116542B2 (en) | 2013-01-25 | 2021-09-14 | Apica Cardiovascular Limited | Systems and methods for percutaneous access, stabilization and closure of organs |
US9833316B2 (en) | 2013-03-15 | 2017-12-05 | Cardiosolutions, Inc. | Trans-apical implant systems, implants and methods |
US9289297B2 (en) | 2013-03-15 | 2016-03-22 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US10518012B2 (en) | 2013-03-15 | 2019-12-31 | Apk Advanced Medical Technologies, Inc. | Devices, systems, and methods for implanting and using a connector in a tissue wall |
US9232998B2 (en) | 2013-03-15 | 2016-01-12 | Cardiosolutions Inc. | Trans-apical implant systems, implants and methods |
US9980812B2 (en) | 2013-06-14 | 2018-05-29 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US9545305B2 (en) | 2013-06-14 | 2017-01-17 | Cardiosolutions, Inc. | Mitral valve spacer and system and method for implanting the same |
US11511089B2 (en) | 2014-06-19 | 2022-11-29 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US11992636B2 (en) | 2014-06-19 | 2024-05-28 | Aria Cv, Inc. | Systems and methods for treating pulmonary hypertension |
US10485909B2 (en) | 2014-10-31 | 2019-11-26 | Thoratec Corporation | Apical connectors and instruments for use in a heart wall |
US11583671B2 (en) | 2016-08-22 | 2023-02-21 | Tc1 Llc | Heart pump cuff |
US10894116B2 (en) | 2016-08-22 | 2021-01-19 | Tc1 Llc | Heart pump cuff |
US11331105B2 (en) | 2016-10-19 | 2022-05-17 | Aria Cv, Inc. | Diffusion resistant implantable devices for reducing pulsatile pressure |
US11235137B2 (en) | 2017-02-24 | 2022-02-01 | Tc1 Llc | Minimally invasive methods and devices for ventricular assist device implantation |
US11833343B2 (en) | 2019-09-06 | 2023-12-05 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
US11141581B2 (en) | 2019-09-06 | 2021-10-12 | Aria Cv, Inc. | Diffusion and infusion resistant implantable devices for reducing pulsatile pressure |
Also Published As
Publication number | Publication date |
---|---|
US20050101982A1 (en) | 2005-05-12 |
US7056286B2 (en) | 2006-06-06 |
CN1842354A (en) | 2006-10-04 |
US20100222772A1 (en) | 2010-09-02 |
US9283065B2 (en) | 2016-03-15 |
US8398672B2 (en) | 2013-03-19 |
US8409239B2 (en) | 2013-04-02 |
US20100076545A1 (en) | 2010-03-25 |
US20130218195A1 (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8409239B2 (en) | Medical device anchor and delivery system | |
EP1706168B1 (en) | Medical device anchor and delivery system | |
US9463006B2 (en) | Over-the-wire interlock attachment/detachment mechanism | |
US3952747A (en) | Filter and filter insertion instrument | |
US9055996B2 (en) | Method of retrieving a blood clot filter | |
US4494531A (en) | Expandable blood clot filter | |
US20070198050A1 (en) | Medical implant device | |
JP4922942B2 (en) | Filter sending system | |
US20070191878A1 (en) | Body vessel filter | |
US20100063535A1 (en) | Method of removing a vein filter | |
US10932932B2 (en) | Delivery device with an expandable positioner for positioning a prosthesis | |
US9668850B2 (en) | Conical vena cava filter with jugular or femoral retrieval | |
CN210990928U (en) | Filter recovery protection device, filter recovery system and filtering system | |
EP4169453A1 (en) | Large bore vascular closure system | |
JP2017189611A (en) | Stent delivery system having anisotropic sheath | |
CN112137755A (en) | Filter recovery protection device, filter recovery system and method and filter system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHASE ONE MEDICAL LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLESHINSKI, STEPHEN J.;RAVENSCROFT, ADRIAN;REEL/FRAME:016262/0308 Effective date: 20050211 |
|
AS | Assignment |
Owner name: PHASE ONE MEDICAL LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLESHINSKI, STEPHEN J.;RAVENSCROFT, ADRIAN;REEL/FRAME:017033/0731;SIGNING DATES FROM 20051103 TO 20051110 |
|
AS | Assignment |
Owner name: NITINOL DEVICES AND COMPONENTS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHASE ONE MEDICAL, LLC;REEL/FRAME:022542/0553 Effective date: 20090410 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |