US20040167482A1 - Personally portable vacuum desiccator - Google Patents
Personally portable vacuum desiccator Download PDFInfo
- Publication number
- US20040167482A1 US20040167482A1 US10/715,164 US71516403A US2004167482A1 US 20040167482 A1 US20040167482 A1 US 20040167482A1 US 71516403 A US71516403 A US 71516403A US 2004167482 A1 US2004167482 A1 US 2004167482A1
- Authority
- US
- United States
- Prior art keywords
- desiccator
- vacuum
- cartridge
- control circuit
- pump member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007788 liquid Substances 0.000 claims abstract description 38
- 230000037361 pathway Effects 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 22
- 239000002274 desiccant Substances 0.000 claims description 10
- 241000894006 Bacteria Species 0.000 claims description 5
- 239000002250 absorbent Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims description 3
- 239000003463 adsorbent Substances 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 3
- 206010052428 Wound Diseases 0.000 abstract description 34
- 208000027418 Wounds and injury Diseases 0.000 abstract description 34
- 239000012530 fluid Substances 0.000 abstract description 23
- 239000000463 material Substances 0.000 description 10
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 210000000416 exudates and transudate Anatomy 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 4
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 201000007848 Arts syndrome Diseases 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000010796 biological waste Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
- A61M1/78—Means for preventing overflow or contamination of the pumping systems
- A61M1/784—Means for preventing overflow or contamination of the pumping systems by filtering, sterilising or disinfecting the exhaust air, e.g. swellable filter valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/60—Containers for suction drainage, adapted to be used with an external suction source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
Definitions
- a number of portable, low pressure vacuum apparatuses capable of producing vacuum pressures down to about 500 mm HG currently exist. Medicine, particularly the wound healing arts, is a field where such devices have a specific utility. In the wound healing arts, it has been recognized that the removal of excess fluid from a wound site can improve the healing of the wound. This recognition has motivated the field to develop wound treatment regimens that include the use of vacuum devices for removing excess exudate from a wound site. For example, in full thickness dermal wounds devices to assist in the removal of excess fluid from these wounds have been developed and used. Further, because of the recognized benefits of encouraging patients to be active and mobile if possible, these devices need to be portable, and preferably, personally portable.
- One strategy for providing a personally portable, low pressure vacuum source for drainage of wound site involves the use of a passive vacuum reservoir.
- this types of device includes those disclosed by Fell, U.S. Pat. No. 5,073,172; Seddon et al., U.S. Pat. No. 6,024,731; and Dixon et al., U.S. Pat. No. 5,944,703.
- these devices comprise an evacuated cannister attached to a drainage tube. Because the vacuum pressure in the reservoir of these devices continuously decreases as the wound is drained (and the reservoir filled), they often include a means for regulating the pressure delivered to the wound site at some level below the maximum pressure of the vacuum reservoir. Additionally, these devices require a reservoir of a relatively larger volume than that of the volume of fluid they are capable of removing from a wound site.
- a strategy for accomplishing this objective includes having the device comprise a vacuum pump to provide a constant low pressure vacuum source, or to replenish a separate vacuum reservoir.
- An example of this type of device includes that disclosed by McNeil et al., U.S. Pat. No. 4,710,165. Also see U.S. Pat. No. 5,134,994 to Say.
- these devices are bulky and obvious to an observer of the user, and may subject the user to embarrassment or personal questions. It would be beneficial to have a portable vacuum device that was personally portable by the user without being obvious to an observer.
- the Hunt apparatus is intended to be worn by a patient at waist level or higher. This means that wound sites below and distal to the user's waist can be subjected to a higher vacuum pressure than with a device that may be located more proximal the wound site than the Hunt apparatus.
- the present desiccator is a personally portable vacuum pump and moisture trapping device.
- the invention is useful where a user desires to carry a device for collecting and trapping small volumes of liquids.
- the present invention is therapeutically useful to provide a personally portable low negative pressure source and trap for aspirating and collecting fluid exudate from a wound or incision.
- a further benefit of the present invention for such applications involving biological waste is that the trap and all other components of the desiccator device that contact the aspirated biological materials are removable from the device and are replaceable.
- the desiccator device includes a trap, a vacuum pump head member, an electric motive mechanism and an electric control and power circuit.
- the trap comprises a desiccator cartridge enclosing an interior space or chamber.
- An inlet port and an outlet port provide gas/liquid flow communication with the interior chamber of the desiccator cartridge.
- the desiccator cartridge is of a design and construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial.
- a trapping agent is contained within the interior chamber for retaining the fluid that enter the chamber. The composition of the trapping agent is selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
- a vacuum pump member or pump head is connected in gas flow communication with the interior chamber of the trap by having the low pressure port of the vacuum pump member being connected to the outlet port of the trap.
- the exhaust port of the vacuum pump member is vented to atmosphere. Operation of the vacuum pump member develops a low vacuum pressure which is communicated to the interior chamber of the desiccator cartridge and then to the inlet port of the trap.
- the vacuum pressure at the inlet port of the trap is selectable by the ordinary skilled artisan depending on the intended use of the present device.
- the selected vacuum pressures range less than about 250 mm Hg, and in part depends on the vacuum pressure to be delivered to the wound site and the any loss of vacuum pressure across the delivery tube connecting the inlet port to the wound site.
- An electric motive means (an electric motor) is coupled to the vacuum pump member and drives the pump head.
- An electrical control circuit including an electrical power source, is in electrical communication with the electric motive means. The control circuit is operable to control the operation of the electric motive means.
- the desiccator cartridge of the trap has only a single, ingress gas/liquid flow pathway, which is the inlet port. Additionally, the flow path at the inlet port is unidirectional, in that gas/liquid flow can enter the trap via the inlet port, but not exit or back flow out of the trap via the inlet port.
- the personally portable vacuum desiccator includes a single passage gas/liquid flow path delivery tube for connecting the trap to a source of gas or liquids to be delivered into the trap.
- the delivery tube has an input end for communicating with the gas/liquid source and an output end connectable to the inlet port of the desiccator cartridge.
- a one-way valve is located proximate the inlet port of the desiccator cartridge.
- the one-way valve prevents the contents of the desiccator cartridge from back-flowing out of the inlet port.
- the one way valve may be separate from or incorporated into the inlet port.
- the desiccator cartridge is removable from the vacuum desiccator and separately disposable. A fresh desiccator cartridge is installed in the desiccator to replace the removed cartridge.
- the desiccator cartridge contains a trapping agent for containing the liquids or moisture delivered to the trap under the force of the vacuum.
- the trapping agent combines with the liquid or moisture to alter its physical features, i.e., from a liquid or vapor to a mixed phase or solid state.
- Compositions suitable for use as trapping agents in the present invention are selectable by one of ordinary skill in the art in view of the present disclosure and teachings herein.
- the trapping agent should adsorb, absorb or in some way combine with the liquid or moisture to immobilize and keep it from sloshing in the desiccator cartridge as it is accumulated in the interior chamber. Examples of potentially suitable trapping agents include: a desiccant, an adsorbent and an absorbent.
- Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins.
- the level of moisture in the desiccant chamber is monitored by the moisture sensor circuit. When the amount of moisture trapped in desiccant material approaches saturation, the chamber may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
- the present vacuum desiccator can further comprise a filter for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere.
- the filter may be located proximate the outlet port to protect the pump member and/or proximate the exhaust port to prevent venting bacteria or moisture to atmosphere.
- the electric motive means of the vacuum desiccator includes an electric motor.
- the motor is coupled to the vacuum pump member to drive the pump.
- the motor may be coupled to the pump head by any of a number of means known to and practicable by the ordinary skilled artisan.
- the motor shaft may be integrated with the vacuum pump head, it may be mechanically coupled to the vacuum pump so as to be readily separable from the pump head, or it may be magnetically coupled to the pump head so as to, again, be readily separable from the vacuum pump member.
- a readily separable motive means is particularly useful where the vacuum pump member and the desiccator cartridge are integrated together as a unit.
- a purpose of the electrical control circuit is to monitor the condition of the device and to control operation of the motive means.
- the electrical control circuit includes the electrical power source for the device.
- the power source comprises an electrical power storage means, such as a battery.
- a feature of the power source is that the electrical storage means is removable from the electrical control circuit and is replaceable. Additionally, the electric control circuit optionally includes other ancillary circuits for the operation and control of the device.
- These circuits include: a moisture sensor circuit for detecting the presence of moisture proximate the low pressure port of the vacuum pump member; a timer circuit for intermittently operating the electric motive means; a vacuum pressure sensor circuit for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
- the component parts of the vacuum desiccator device which are in gas/liquid flow communication are replaceable. This allows the components of the device which are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components.
- the present personally portable vacuum desiccator can further comprise a housing for containing some or all of the component parts of the device.
- the housing may contain the electric motive means and the electrical control circuit, while the other components are simply attached to the housing, e.g., an integrated pump head/trap combination assembly.
- Other configurations obviously are possible, such as a housing containing the electric motive means and the electrical control circuit and additionally either or both of the trap (desiccator cartridge) and the vacuum pump member.
- the present vacuum desiccator device may comprise the battery being housed in a battery compartment attached or integral to the desiccator cartridge of the moisture trap.
- the battery and the desiccator cartridge are replaceable in the device as a single unit.
- the personally portable vacuum desiccator can be used as part of a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site.
- a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site.
- an open, full thickness dermal wound is covered with an air tight dressing, such as are commercially available.
- the input end of the gas/liquid flow delivery tube is positioned under the dressing in flow communication with the wound site.
- the vacuum desiccator is activated, a low negative pressure is produced at the wound site via the delivery tube and excess fluids excreted by the wound are removed under the force of the low negative pressure.
- FIG. 1 is a schematic diagram of the major components of the present vacuum desiccator showing the electric control circuit contained in a housing with the motor coupled to the trap and vacuum pump member.
- FIG. 2A is a side elevation and partial cross-sectional view of the desiccator cartridge of the present device, showing the interior chamber containing a trapping agent.
- FIG. 2B is a top plan and partial cross-section view of the desiccator cartridge showing the interior chamber containing alternative trapping agents and showing alternative moisture/fluid sensors for detecting fluid in flow path proximate the outlet port of the cartridge. Also shown is a separately mountable outlet micro-filter.
- FIG. 3 is a partial top plan view of the outlet port portion of the desiccator cartridge showing in phantom a micro-filter integral to the desiccator cartridge flow path, and also a vacuum pressure sensor mountable to the outlet port of the cartridge.
- FIG. 4 is a cross-sectional view through a side elevation of a combination of a desiccator cartridge and vacuum pump head as an integral unit.
- FIG. 5A is a partial top plan view of the inlet portion of the desiccator cartridge showing the inlet port with a one-way gas/fluid flow valve installed.
- FIGS. 5B and 5C are partial cross-sectional views of two types of one-way gas/liquid flow valves.
- FIG. 6 is a block diagram of the electric control circuit of the desiccator device indicating its sub-circuits and the interconnect relationship with certain ancillary components.
- FIGS. 7A and 7B show alternative strain-gauge means for monitoring vacuum pressure in the interior chamber of the desiccator cartridge.
- FIG. 8 is a partial cross-section of a side elevation of a desiccator cartridge showing the interior components and their layout.
- FIG. 9A is an exploded view of a side elevation of a desiccator cartridge showing a cover member incorporating an integral gas flow channel.
- FIG. 9B is a bottom plan view of the cover member of FIG. 9A illustrating an example of an integral gas flow channel layout (in phantom) and the perforations by which the integral channel is in gas flow communication with the interior chamber of the desiccator cartridge.
- the personally portable vacuum desiccator is a device useful as a source for providing a low vacuum pressure for removing excess wound exudate from dressed dermal wounds. This application of present personally portable vacuum desiccator is useful for promoting wound healing by draining such excess wound exudate from the wound site.
- the present invention is a personally portable vacuum desiccator 10 comprises a trap 12 , a vacuum pump member operable to provide a source of low vacuum pressure, an electric motive or drive means 36 for operating the vacuum pump member, and an electrical control circuit, including an electrical power source.
- the control circuit is electrically connected to the electric motive means to control its operation, i.e., to turn it on and off.
- the trap 12 includes a desiccator cartridge 14
- the desiccator cartridge 14 has an interior chamber 16 containing a trapping agent 54 (see FIG. 2). Additionally, the desiccator cartridge 14 has an inlet port 18 and an outlet port 20 in gas/liquid communication with the interior chamber 16 of the cartridge 14 .
- a vacuum pump head or member 22 serves as a source for a low pressure vacuum of about 250 mm Hg or less.
- the vacuum pump member 22 is placed after desiccant chamber 14 in the gas/liquid flow pathway to facilitate preventing fluid from entering the vacuum pump member.
- the vacuum pump head 22 has a low pressure port 24 and an exhaust port 26 .
- the low pressure port 22 is in gas/liquid flow communication with the outlet port 20 of the desiccator cartridge 14 .
- the exhaust port 26 of the vacuum pump head 22 is vented to atmosphere.
- the vacuum pump member 22 provides a low vacuum pressure to the interior chamber 16 of the desiccator cartridge.
- an electric motive means 36 is in communication with the vacuum pump member 22 via a coupling 38 .
- the electric motive means 36 is a low voltage electric motor, which is operable to drive the vacuum pump member 22 , thus providing a low vacuum pressure at the pump member's low pressure port 24 .
- the electrical control circuit 40 including an electrical power source 46 , is in electrical communication with the electric motive means 36 via an electric motor lead 42 .
- the control circuit 40 controls the operation of the electric motive means.
- a delivery tube 32 is included with the desiccator device 10 to put the trap 14 in gas/liquid flow communication with a location to which a low negative vacuum pressure is to be applied, such as a wound site covered by an occlusive dressing (not shown).
- the delivery tube 32 consists of a single passage gas/liquid flow path, having an input end 33 and an output end 24 , the output end 34 being connected to the inlet port 18 of the desiccator cartridge 14 .
- the components of the personally portable vacuum desiccator 10 can further comprise a housing 50 for containing or mounting the component parts of the vacuum desiccator 10 .
- the housing 50 contains the electric motive means 26 and the electrical control circuit 40 .
- the housing 50 can contain the electric motive means 36 , the electrical control circuit 40 and additionally, the desiccator cartridge 14 and/or the vacuum pump member 22 .
- the trap 12 comprises a desiccator cartridge 14 .
- the desiccator cartridge 14 encloses an interior space or chamber 16 .
- the desiccator cartridge 14 is of a design and material construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber 16 . Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial or distortion of the chamber 16 is used as an index of the vacuum pressure within the interior chamber 16 .
- a trapping agent 54 is contained within the interior chamber 16 to retain (trap) fluids and moisture that enter the chamber 16 .
- compositions available in the art that are appropriate trapping agents for practice in the present invention.
- a specific composition or combination of compositions useful as the trapping agent 54 is readily selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
- classes of such compositions suitable as trapping agents 54 include desiccants, adsorbents, absorbents and the combination of any of these. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in femnine napkins.
- compositions may be particulate trapping agents 54 a or fibrous trapping agents 54 b .
- the trapping agent 54 was a pillow-like structure (see FIG. 8), which included a fiber matrix material which served to contain and somewhat immobilize the other loose components of the trapping agent, and to act as a wick to distribute the fluid as it entered the interior chamber.
- the level of moisture in the interior chamber 16 proximate the outlet port 20 is monitored by a moisture sensor 84 (see FIG. 1).
- the desiccator cartridge 14 may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
- Other means for detecting the degree of saturation of the trapping agent 54 are available.
- the desiccant cartridge 14 may be constructed in part from a transparent material, allowing the trapping agent 54 to be directly observed.
- the degree of saturation of the trapping agent 54 maybe indicated by a color change in a component of the trapping agent 54 in response, for example, to a pH change or degree of hydration.
- the desiccator cartridge 14 is removable from the device 10 and separately disposable.
- a fresh desiccator cartridge 14 is installed in the desiccator 10 to replace the removed cartridge.
- the cartridge 14 can be constructed to make its interior chamber 16 accessible, e.g., through a lid or by disassembly, whereby the used trapping agent 54 can be replaced with fresh.
- the refreshed desiccator cartridge may then be reattached to vacuum desiccator 10 . This feature may be useful where the desiccator cartridge and vacuum pump head are combined as a single integrated unit (see FIG. 4).
- the desiccator cartridge 14 has a single, gas/liquid flow pathway, which is the inlet port 18 , as the only inlet path into the trap 12 .
- the flow path at the inlet port 18 is unidirectional, in that gas/liquid flow can enter the trap via the inlet port 18 , but not exit or back flow out of the trap 14 via the inlet port 18 .
- Unidirectional flow at the inlet port is accomplished by a one-way valve 30 located proximate the inlet port 18 of the desiccator cartridge 14 (see FIG. 5A).
- the one-way valve 30 prevents the contents of the desiccator cartridge 14 from back-flowing out of the inletport 18 .
- the one-way valve 30 maybe separable from the desiccator cartridge 14 , as shown in FIG. 5A, or it may be incorporated into the cartridge 14 proximate the inlet port 18 (not shown).
- One-way gas/liquid flow valves practicable in the present invention are known in the art and selectable by the ordinary skilled artisan for use in the present invention. Examples of such one-way valves include biased and/or unbiased piston-type 30 a and ball-stop 30 b valves as exemplified in FIGS. 5B and 5C.
- a micro-filter 28 useful for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere is located in the gas/liquid flow path of the device 10 after the interior chamber 16 of the desiccator cartridge.
- the micro-filter 28 may be located proximate the outlet port 20 to protect the pump member 22 and/or proximate the exhaust port 26 to prevent venting bacteria (or moisture) to atmosphere.
- the micro-filter may be an in-line micro-filter 28 a separate from the desiccator cartridge as shown in FIG. 2B, or an integral micro-filter 28 b incorporated into the cartridge 14 proximate the outlet port 20 as shown in FIG. 3.
- an electric motive means 36 is coupled to the vacuum pump member 22 of the vacuum desiccator 10 .
- the motive means 36 is an electric motor.
- Electric motors practicable in the present invention are known to and selectable by one of ordinary skill in the art in view of the teachings and figures contained herein.
- a miniature, oil-less diaphragm pump is commercially available from the Gast Manufacturing, Inc. (Michigan): series 3D1060, model 101-1028.
- the electric motor 36 communicates with the vacuum pump member 22 via a drive coupling 38 to drive the pump.
- the drive coupling 38 for connecting the motor 36 to the pump head 22 may be accomplished by any of a number of means known to and practicable by the ordinary skilled artisan.
- a motor shaft coupling 38 may be integrated with the vacuum pump head, i.e., the motor 36 and pump member 22 are substantially a single unit.
- a motor shaft coupling 38 may be mechanically coupled to the vacuum pump head 22 so as to be readily separable from the pump head 22 .
- the hub 100 of a rotary-vane pump head 22 a has a motor shaft receiver 102 for accepting the end or spindle of a shaft coupling 38 of a motor 36 .
- the shaft receiver 102 has a threaded, keyed or similar interfacing configuration (not shown) complementary to the spindle or end of the shaft coupling 38 of the motor 36 .
- the motor 36 may be magnetically coupled (not shown) to the pump head 22 so as to again be readily separable from the vacuum pump member 22 .
- a readily separable motive means 36 is particularly useful where the vacuum pump member 22 and the desiccator cartridge 14 are integrated together as a unit, as shown in FIG. 4.
- the present vacuum desiccator device 10 includes an electrical control circuit 40 that comprises logic and switching circuits and a number of ancillary circuits and functions, external sensors, electrical connections and a power source.
- the purpose of the electrical control circuit 40 is to monitor the condition of the device 10 and to control operation of the motive means 36 .
- the ancillary circuits can be chosen for inclusion in an embodiment of the device 10 to affect one or more of the following functions: device data Input/Output, electrical power, sensor signal processing and motor control (power to the motor).
- An I/O unit 70 for accomplishing device data input and out put can include data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms.
- data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms.
- I/O units 70 are well known in the art, and are readily practicable in the present invention by the ordinary skilled artisan.
- Other ancillary circuits and other sensors 88 may be provided at the user's option, and are similarly accomplishable by the ordinary skilled artisan.
- the power source 46 for storing and providing electrical energy for the device 10 is a battery 60 .
- the power source 46 is removable from the electrical control circuit 40 and is easily replaceable.
- the POLAROID® P100 PolapulseTM battery is an example of an appropriate battery 60 useful as a power source 46 in the present vacuum desiccator device 10 in a preferred embodiment because of its planar configuration and low profile. See FIGS. 7A and 7B.
- the electrical control circuit have sensory capabilities to detect certain physical conditions of the device 10 , and to utilize the conditions to control operation of the motor 36 , and other appropriate functions of the control circuit 40 .
- These ancillary sensory circuits include: a moisture sensor 84 and circuit, for detecting the presence of moisture proximate the outlet port 20 of the desiccant cartridge 14 ; at least one vacuum pressure sensor 76 and circuit, for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit, for sensing a difference in pressure between two sections of the gas/liquid flow pathway of the device 10 , e.g., between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14 .
- the sensors are interconnected to the control circuit 40 via electrical leads 44 .
- Sensors appropriate for accomplishing the various sensory functions of an electrical control circuit are known in the art and are readily adaptable for practice in the present invention by the ordinary skilled artisan.
- a vacuum pressure sensor 76 MPL model 500, diaphragm-type pressure differential sensor
- MPL model 500, diaphragm-type pressure differential sensor suitable for practice in the present device is commercially available from Micro Pneumatic Logic, Inc. (Florida) from a line of pressure sensors.
- Other types of sensors are adaptable for use in the present invention for detecting or sensing pressure, such as surface strain gauges mounted on the surface of the desiccator cartridge 14 , and optical displacement gauges mounted to transmit light through the surfaces of desiccator cartridge 14 .
- an optical fiber strain gauge 77 is commercially available from FISO Technologies (Quebec, model FOS “C” or “N”) from a line of optical strain gauges. This sensor can be used to monitor and indicate the presence of a vacuum in the desiccator cartridge by displacement (bending) of the cartridge surface under the force of a vacuum in the interior chamber 16 .
- Optical displacement/strain gauges 78 are also commercially, including for the detection of fluid intrusion into a section of tubing. These gauges typically comprise a combination light source/detector 78 a and a mirror 78 b .
- Distortion of the surface of the desiccator cartridge 14 on which the mirror 78 b is mounted alters the reflection path of the emitted light as it passes through the cartridge to return to the detector, which alteration is detectable. Of course, this requires the walls of the cartridge 14 proximate the optical displacement gauge 78 to be transparent to the light.
- the use of more than one pressure sensor 76 can allow sensing and/or measurement of the pressure differential between two different points in the gas/liquid flow pathway, such as between the inlet and outlet ports 18 & 20 of the desiccator cartridge 14 .
- the vacuum pressure sensor 76 is used to monitor the vacuum pressure in the interior chamber 16 of the desiccator cartridge 14 .
- the electric control circuit 40 may switch off the motor 36 , thereby conserving electrical power.
- the control circuit 40 may switch on the motor 36 to reestablish an appropriate vacuum pressure in the interior chamber 16 of the desiccator cartridge 14 .
- the electrical control circuit 40 can include a clock/timer circuit for intermittently operating the electric motive means 36 , as another way of conserving electrical power.
- the I/O unit 70 can be utilized to set the time interval for the control circuit's intermittent operation of the motor 36 .
- the battery 60 of the power source 46 is integral with the desiccator cartridge 14 a .
- the battery 60 is contained in a battery compartment 110 , which is integral to the structure of the desiccator cartridge 14 a .
- Battery leads 112 connect the battery 60 to electrical battery contacts 114 on the exterior surface 120 of the desiccator cartridge 14 a .
- the desiccator cartridge 14 a and battery 60 are replaceable as a unit.
- FIG. 8 also illustrates another preferred feature of a desiccator cartridge 14 , in which a gas flow channel is disposed inside the interior chamber 16 of the cartridge 14 a .
- the flow channel 120 is a tube connected to the outlet port 20 and having a length sufficient to allow it to be coiled or snaked about the interior chamber 16 (also see FIG. 9B).
- the flow channel tube 120 has perforations 122 along its length, or is otherwise constructed, to allow gas flow from the interior chamber 16 into the lumen of the flow channel tube 120 under the force of the vacuum pressure from the pump member 22 .
- trapping agent 54 c having a pillow-like structure.
- the flow channel tube 120 is laid out on one side of the pillow trapping agent 54 c .
- the pillow trapping agent 54 c was constructed using 10 grams of sodium polyacrylate distributed between two layers of an elastic mesh material (nylon stocking).
- an elastic mesh material nylon stocking
- other fabrics are suitable for practice with the moisture trapping pillow 54 c , including knitted fabric mesh materials like gauze and similar fabrics.
- the two layers of elastic mesh material were sewn together to form compartments.
- the volume of the interior chamber 16 of the desiccator cartridge 14 was sufficient to hold the pillow and about 50 cc of trapped moisture.
- a flow channel may be accomplished by means other than a tube.
- a flow channel may be integrated into the desiccator cartridge 14 and be in gas flow communication with the interior chamber 16 .
- This embodiment of a desiccator cartridge 14 can be accomplished as shown in FIGS. 9A and 9B, wherein the cartridge 14 b has a cover member 124 and a body member 126 (FIG. 9A).
- the cartridge cover member 124 has a gas flow channel 120 a integrated into it.
- the integral flow channel 120 a has perforations 122 a along its length, or is otherwise constructed, to allow gas flow from the interior chamber into the lumen of the integral channel 120 a under the force of the vacuum pressure from the pump member 22 .
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
Abstract
The vacuum desiccator low pressure vacuum pump and trap and is transportable upon a user's person. The device is especially useful to remove excess fluids from wounds and incisions as they heal. The device includes a desiccator cartridge containing a fluid trapping agent. The desiccator cartridge is connected to a vacuum pump member providing a low vacuum pressure to the interior chamber of the desiccator cartridge. A small battery powered, electric motor drives the pump member. An electrical control circuit, including the battery power source, controls the operation of the electric motor. A single passage, one-way, gas/liquid flow pathway connects the inlet port of the desiccator cartridge to an occlusive dressing covering the wound to be drained. The control circuit includes one or more ancillary circuits for controlling operation of the device, such as: a power circuit, a moisture sensor, a timer circuit, a vacuum pressure sensor, and a pressure differential sensor.
Description
- A number of portable, low pressure vacuum apparatuses capable of producing vacuum pressures down to about 500 mm HG currently exist. Medicine, particularly the wound healing arts, is a field where such devices have a specific utility. In the wound healing arts, it has been recognized that the removal of excess fluid from a wound site can improve the healing of the wound. This recognition has motivated the field to develop wound treatment regimens that include the use of vacuum devices for removing excess exudate from a wound site. For example, in full thickness dermal wounds devices to assist in the removal of excess fluid from these wounds have been developed and used. Further, because of the recognized benefits of encouraging patients to be active and mobile if possible, these devices need to be portable, and preferably, personally portable.
- One strategy for providing a personally portable, low pressure vacuum source for drainage of wound site involves the use of a passive vacuum reservoir. Examples of this types of device includes those disclosed by Fell, U.S. Pat. No. 5,073,172; Seddon et al., U.S. Pat. No. 6,024,731; and Dixon et al., U.S. Pat. No. 5,944,703. Typically, these devices comprise an evacuated cannister attached to a drainage tube. Because the vacuum pressure in the reservoir of these devices continuously decreases as the wound is drained (and the reservoir filled), they often include a means for regulating the pressure delivered to the wound site at some level below the maximum pressure of the vacuum reservoir. Additionally, these devices require a reservoir of a relatively larger volume than that of the volume of fluid they are capable of removing from a wound site.
- Recognizing these limitations, the field has been further motivated to develop means for providing a portable, low pressure vacuum source for drainage of a user's wound site which provides a relatively constant vacuum pressure. A strategy for accomplishing this objective includes having the device comprise a vacuum pump to provide a constant low pressure vacuum source, or to replenish a separate vacuum reservoir. An example of this type of device includes that disclosed by McNeil et al., U.S. Pat. No. 4,710,165. Also see U.S. Pat. No. 5,134,994 to Say. Although portable, these devices are bulky and obvious to an observer of the user, and may subject the user to embarrassment or personal questions. It would be beneficial to have a portable vacuum device that was personally portable by the user without being obvious to an observer.
- An apparatus which addresses this latter benefit is disclosed in U.S. Pat. No. 6,142,892 to Hunt et al. The Hunt apparatus is supported on a belt or harness worn by the user, and is small enough to be unobtrusive when worn under a jacket or the like. However, the Hunt apparatus utilizes a liquid reservoir containing the fluids drained from a wound site. Fluids contained in the liquid reservoir of Hunt are subject to slouching, which may adversely affect the function of the Hunt apparatus if the fluid prematurely enters an inappropriate pathway (the outlet end of the cannister). Also, the Hunt device requires multiple tubes or a multi-lumen tube running from the device to the wound site to accomplish its full utility. Additionally, the Hunt apparatus is intended to be worn by a patient at waist level or higher. This means that wound sites below and distal to the user's waist can be subjected to a higher vacuum pressure than with a device that may be located more proximal the wound site than the Hunt apparatus.
- Although the above apparatuses may be useful in the field for accomplishing their intended purposes, it would be beneficial to have an alternative personally portable vacuum device that can be worn unobtrusively by the user, and which is not subject to slouching of the fluid it retains, and further which does not require special tubing to connect it to a wound site.
- The present desiccator is a personally portable vacuum pump and moisture trapping device. The invention is useful where a user desires to carry a device for collecting and trapping small volumes of liquids. As a specific example, the present invention is therapeutically useful to provide a personally portable low negative pressure source and trap for aspirating and collecting fluid exudate from a wound or incision. A further benefit of the present invention for such applications involving biological waste is that the trap and all other components of the desiccator device that contact the aspirated biological materials are removable from the device and are replaceable. The desiccator device includes a trap, a vacuum pump head member, an electric motive mechanism and an electric control and power circuit.
- The trap comprises a desiccator cartridge enclosing an interior space or chamber. An inlet port and an outlet port provide gas/liquid flow communication with the interior chamber of the desiccator cartridge. The desiccator cartridge is of a design and construction to withstand the application of an appropriate vacuum without substantial collapse of the interior chamber. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial. A trapping agent is contained within the interior chamber for retaining the fluid that enter the chamber. The composition of the trapping agent is selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped.
- A vacuum pump member or pump head is connected in gas flow communication with the interior chamber of the trap by having the low pressure port of the vacuum pump member being connected to the outlet port of the trap. The exhaust port of the vacuum pump member is vented to atmosphere. Operation of the vacuum pump member develops a low vacuum pressure which is communicated to the interior chamber of the desiccator cartridge and then to the inlet port of the trap. The vacuum pressure at the inlet port of the trap is selectable by the ordinary skilled artisan depending on the intended use of the present device. Typically, the selected vacuum pressures range less than about 250 mm Hg, and in part depends on the vacuum pressure to be delivered to the wound site and the any loss of vacuum pressure across the delivery tube connecting the inlet port to the wound site. An electric motive means (an electric motor) is coupled to the vacuum pump member and drives the pump head. An electrical control circuit, including an electrical power source, is in electrical communication with the electric motive means. The control circuit is operable to control the operation of the electric motive means.
- The desiccator cartridge of the trap has only a single, ingress gas/liquid flow pathway, which is the inlet port. Additionally, the flow path at the inlet port is unidirectional, in that gas/liquid flow can enter the trap via the inlet port, but not exit or back flow out of the trap via the inlet port. Optionally, the personally portable vacuum desiccator includes a single passage gas/liquid flow path delivery tube for connecting the trap to a source of gas or liquids to be delivered into the trap. The delivery tube has an input end for communicating with the gas/liquid source and an output end connectable to the inlet port of the desiccator cartridge. A one-way valve is located proximate the inlet port of the desiccator cartridge. The one-way valve prevents the contents of the desiccator cartridge from back-flowing out of the inlet port. The one way valve may be separate from or incorporated into the inlet port. The desiccator cartridge is removable from the vacuum desiccator and separately disposable. A fresh desiccator cartridge is installed in the desiccator to replace the removed cartridge.
- The desiccator cartridge contains a trapping agent for containing the liquids or moisture delivered to the trap under the force of the vacuum. The trapping agent combines with the liquid or moisture to alter its physical features, i.e., from a liquid or vapor to a mixed phase or solid state. Compositions suitable for use as trapping agents in the present invention are selectable by one of ordinary skill in the art in view of the present disclosure and teachings herein. The trapping agent should adsorb, absorb or in some way combine with the liquid or moisture to immobilize and keep it from sloshing in the desiccator cartridge as it is accumulated in the interior chamber. Examples of potentially suitable trapping agents include: a desiccant, an adsorbent and an absorbent. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in feminine napkins. The level of moisture in the desiccant chamber is monitored by the moisture sensor circuit. When the amount of moisture trapped in desiccant material approaches saturation, the chamber may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge).
- The present vacuum desiccator can further comprise a filter for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere. The filter may be located proximate the outlet port to protect the pump member and/or proximate the exhaust port to prevent venting bacteria or moisture to atmosphere.
- The electric motive means of the vacuum desiccator includes an electric motor. The motor is coupled to the vacuum pump member to drive the pump. The motor may be coupled to the pump head by any of a number of means known to and practicable by the ordinary skilled artisan. For example, the motor shaft may be integrated with the vacuum pump head, it may be mechanically coupled to the vacuum pump so as to be readily separable from the pump head, or it may be magnetically coupled to the pump head so as to, again, be readily separable from the vacuum pump member. A readily separable motive means is particularly useful where the vacuum pump member and the desiccator cartridge are integrated together as a unit.
- A purpose of the electrical control circuit is to monitor the condition of the device and to control operation of the motive means. The electrical control circuit includes the electrical power source for the device. The power source comprises an electrical power storage means, such as a battery. A feature of the power source is that the electrical storage means is removable from the electrical control circuit and is replaceable. Additionally, the electric control circuit optionally includes other ancillary circuits for the operation and control of the device. These circuits include: a moisture sensor circuit for detecting the presence of moisture proximate the low pressure port of the vacuum pump member; a timer circuit for intermittently operating the electric motive means; a vacuum pressure sensor circuit for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
- The component parts of the vacuum desiccator device which are in gas/liquid flow communication are replaceable. This allows the components of the device which are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components.
- The present personally portable vacuum desiccator can further comprise a housing for containing some or all of the component parts of the device. For example, the housing may contain the electric motive means and the electrical control circuit, while the other components are simply attached to the housing, e.g., an integrated pump head/trap combination assembly. Other configurations obviously are possible, such as a housing containing the electric motive means and the electrical control circuit and additionally either or both of the trap (desiccator cartridge) and the vacuum pump member.
- Additionally, the present vacuum desiccator device may comprise the battery being housed in a battery compartment attached or integral to the desiccator cartridge of the moisture trap. In this configuration, the battery and the desiccator cartridge are replaceable in the device as a single unit.
- It is a feature of the present invention that the personally portable vacuum desiccator can be used as part of a treatment regimen to promote wound healing by drawing excess wound exudate away from the wound site. As an example of using the desiccator for this purpose, an open, full thickness dermal wound is covered with an air tight dressing, such as are commercially available. The input end of the gas/liquid flow delivery tube is positioned under the dressing in flow communication with the wound site. The vacuum desiccator is activated, a low negative pressure is produced at the wound site via the delivery tube and excess fluids excreted by the wound are removed under the force of the low negative pressure.
- FIG. 1 is a schematic diagram of the major components of the present vacuum desiccator showing the electric control circuit contained in a housing with the motor coupled to the trap and vacuum pump member.
- FIG. 2A is a side elevation and partial cross-sectional view of the desiccator cartridge of the present device, showing the interior chamber containing a trapping agent.
- FIG. 2B is a top plan and partial cross-section view of the desiccator cartridge showing the interior chamber containing alternative trapping agents and showing alternative moisture/fluid sensors for detecting fluid in flow path proximate the outlet port of the cartridge. Also shown is a separately mountable outlet micro-filter.
- FIG. 3 is a partial top plan view of the outlet port portion of the desiccator cartridge showing in phantom a micro-filter integral to the desiccator cartridge flow path, and also a vacuum pressure sensor mountable to the outlet port of the cartridge.
- FIG. 4 is a cross-sectional view through a side elevation of a combination of a desiccator cartridge and vacuum pump head as an integral unit.
- FIG. 5A is a partial top plan view of the inlet portion of the desiccator cartridge showing the inlet port with a one-way gas/fluid flow valve installed.
- FIGS. 5B and 5C are partial cross-sectional views of two types of one-way gas/liquid flow valves.
- FIG. 6 is a block diagram of the electric control circuit of the desiccator device indicating its sub-circuits and the interconnect relationship with certain ancillary components.
- FIGS. 7A and 7B show alternative strain-gauge means for monitoring vacuum pressure in the interior chamber of the desiccator cartridge.
- FIG. 8 is a partial cross-section of a side elevation of a desiccator cartridge showing the interior components and their layout.
- FIG. 9A is an exploded view of a side elevation of a desiccator cartridge showing a cover member incorporating an integral gas flow channel.
- FIG. 9B is a bottom plan view of the cover member of FIG. 9A illustrating an example of an integral gas flow channel layout (in phantom) and the perforations by which the integral channel is in gas flow communication with the interior chamber of the desiccator cartridge.
- The personally portable vacuum desiccator is a device useful as a source for providing a low vacuum pressure for removing excess wound exudate from dressed dermal wounds. This application of present personally portable vacuum desiccator is useful for promoting wound healing by draining such excess wound exudate from the wound site.
- Referring now to the drawings, the details of preferred embodiments of the present invention are graphically and schematically illustrated. Like elements in the drawings are represented by like numbers, and any similar elements are represented by like numbers with a different lower case letter suffix.
- As shown in FIG. 1, the present invention is a personally
portable vacuum desiccator 10 comprises atrap 12, a vacuum pump member operable to provide a source of low vacuum pressure, an electric motive or drive means 36 for operating the vacuum pump member, and an electrical control circuit, including an electrical power source. The control circuit is electrically connected to the electric motive means to control its operation, i.e., to turn it on and off. Thetrap 12 includes adesiccator cartridge 14 Thedesiccator cartridge 14 has aninterior chamber 16 containing a trapping agent 54 (see FIG. 2). Additionally, thedesiccator cartridge 14 has aninlet port 18 and anoutlet port 20 in gas/liquid communication with theinterior chamber 16 of thecartridge 14. A vacuum pump head ormember 22 serves as a source for a low pressure vacuum of about 250 mm Hg or less. Thevacuum pump member 22 is placed afterdesiccant chamber 14 in the gas/liquid flow pathway to facilitate preventing fluid from entering the vacuum pump member. Thevacuum pump head 22 has alow pressure port 24 and anexhaust port 26. Thelow pressure port 22 is in gas/liquid flow communication with theoutlet port 20 of thedesiccator cartridge 14. Theexhaust port 26 of thevacuum pump head 22 is vented to atmosphere. When operated, thevacuum pump member 22 provides a low vacuum pressure to theinterior chamber 16 of the desiccator cartridge. As further shown in FIG. 1., an electric motive means 36 is in communication with thevacuum pump member 22 via acoupling 38. The electric motive means 36 is a low voltage electric motor, which is operable to drive thevacuum pump member 22, thus providing a low vacuum pressure at the pump member'slow pressure port 24. Theelectrical control circuit 40, including anelectrical power source 46, is in electrical communication with the electric motive means 36 via anelectric motor lead 42. Thecontrol circuit 40 controls the operation of the electric motive means. - Optionally, a
delivery tube 32 is included with thedesiccator device 10 to put thetrap 14 in gas/liquid flow communication with a location to which a low negative vacuum pressure is to be applied, such as a wound site covered by an occlusive dressing (not shown). Thedelivery tube 32 consists of a single passage gas/liquid flow path, having aninput end 33 and anoutput end 24, theoutput end 34 being connected to theinlet port 18 of thedesiccator cartridge 14. - The components of the personally
portable vacuum desiccator 10 can further comprise ahousing 50 for containing or mounting the component parts of thevacuum desiccator 10. As exemplified in FIG. 1, thehousing 50 contains the electric motive means 26 and theelectrical control circuit 40. Alternatively, thehousing 50 can contain the electric motive means 36, theelectrical control circuit 40 and additionally, thedesiccator cartridge 14 and/or thevacuum pump member 22. - The
trap 12 comprises adesiccator cartridge 14. As shown in FIGS. 2A and 2B, thedesiccator cartridge 14 encloses an interior space orchamber 16. Thedesiccator cartridge 14 is of a design and material construction to withstand the application of an appropriate vacuum without substantial collapse of theinterior chamber 16. Some distortion of the cartridge while under vacuum is desirable in some applications, e.g., where buffering of the vacuum pressure of the system is beneficial or distortion of thechamber 16 is used as an index of the vacuum pressure within theinterior chamber 16. - A trapping
agent 54 is contained within theinterior chamber 16 to retain (trap) fluids and moisture that enter thechamber 16. There are a variety of compositions available in the art that are appropriate trapping agents for practice in the present invention. A specific composition or combination of compositions useful as the trappingagent 54 is readily selectable by one of ordinary skill in the art in view of the teaching herein and in consideration of the characteristics of the fluid to be trapped. Examples of classes of such compositions suitable as trappingagents 54 include desiccants, adsorbents, absorbents and the combination of any of these. Specific examples include silica gel, sodium polyacrylate, potassium polyacrylamide and related compounds. Such moisture trapping materials are often found in disposable baby diapers and in femnine napkins. These compositions may be particulate trappingagents 54 a orfibrous trapping agents 54 b. In a preferred embodiment, the trappingagent 54 was a pillow-like structure (see FIG. 8), which included a fiber matrix material which served to contain and somewhat immobilize the other loose components of the trapping agent, and to act as a wick to distribute the fluid as it entered the interior chamber. The level of moisture in theinterior chamber 16 proximate theoutlet port 20 is monitored by a moisture sensor 84 (see FIG. 1). When the amount of moisture retained by the trappingagent 54 approaches saturation (as detected by themoisture sensor 84 or indicated by other means), thedesiccator cartridge 14 may either be removed and disposed of or recharged with fresh desiccant material and repositioned in the device (depending on the design of the desiccator cartridge). Other means for detecting the degree of saturation of the trappingagent 54 are available. For example, thedesiccant cartridge 14 may be constructed in part from a transparent material, allowing the trappingagent 54 to be directly observed. The degree of saturation of the trappingagent 54 maybe indicated by a color change in a component of the trappingagent 54 in response, for example, to a pH change or degree of hydration. - In a preferred embodiment of the
vacuum desiccator 10, all of the components in gas/liquid flow communication are replaceable. This allows the components of the device that are exposed to contact with the wound fluids to be separable from the other components of the device to facilitate cleaning or disposal of contaminated components. In particular, thedesiccator cartridge 14 is removable from thedevice 10 and separately disposable. Afresh desiccator cartridge 14 is installed in thedesiccator 10 to replace the removed cartridge. Alternatively, thecartridge 14 can be constructed to make itsinterior chamber 16 accessible, e.g., through a lid or by disassembly, whereby the used trappingagent 54 can be replaced with fresh. The refreshed desiccator cartridge may then be reattached tovacuum desiccator 10. This feature may be useful where the desiccator cartridge and vacuum pump head are combined as a single integrated unit (see FIG. 4). - The
desiccator cartridge 14 has a single, gas/liquid flow pathway, which is theinlet port 18, as the only inlet path into thetrap 12. The flow path at theinlet port 18 is unidirectional, in that gas/liquid flow can enter the trap via theinlet port 18, but not exit or back flow out of thetrap 14 via theinlet port 18. Unidirectional flow at the inlet port is accomplished by a one-way valve 30 located proximate theinlet port 18 of the desiccator cartridge 14 (see FIG. 5A). The one-way valve 30 prevents the contents of thedesiccator cartridge 14 from back-flowing out of theinletport 18. The one-way valve 30 maybe separable from thedesiccator cartridge 14, as shown in FIG. 5A, or it may be incorporated into thecartridge 14 proximate the inlet port 18 (not shown). One-way gas/liquid flow valves practicable in the present invention are known in the art and selectable by the ordinary skilled artisan for use in the present invention. Examples of such one-way valves include biased and/or unbiased piston-type 30 a and ball-stop 30 b valves as exemplified in FIGS. 5B and 5C. - A micro-filter28 useful for blocking bacteria and/or untrapped moisture from passing into the vacuum pump member or from being vented to atmosphere is located in the gas/liquid flow path of the
device 10 after theinterior chamber 16 of the desiccator cartridge. The micro-filter 28 may be located proximate theoutlet port 20 to protect thepump member 22 and/or proximate theexhaust port 26 to prevent venting bacteria (or moisture) to atmosphere. The micro-filter may be an in-line micro-filter 28a separate from the desiccator cartridge as shown in FIG. 2B, or anintegral micro-filter 28b incorporated into thecartridge 14 proximate theoutlet port 20 as shown in FIG. 3. - As shown in FIG. 1, an electric motive means36 is coupled to the
vacuum pump member 22 of thevacuum desiccator 10. In the preferred embodiment, the motive means 36 is an electric motor. Electric motors practicable in the present invention are known to and selectable by one of ordinary skill in the art in view of the teachings and figures contained herein. For example, a miniature, oil-less diaphragm pump is commercially available from the Gast Manufacturing, Inc. (Michigan): series 3D1060, model 101-1028. Theelectric motor 36 communicates with thevacuum pump member 22 via adrive coupling 38 to drive the pump. Thedrive coupling 38 for connecting themotor 36 to thepump head 22 may be accomplished by any of a number of means known to and practicable by the ordinary skilled artisan. For example, amotor shaft coupling 38 may be integrated with the vacuum pump head, i.e., themotor 36 andpump member 22 are substantially a single unit. Alternatively, amotor shaft coupling 38 may be mechanically coupled to thevacuum pump head 22 so as to be readily separable from thepump head 22. For instance, as exemplified in FIG. 4, thehub 100 of a rotary-vane pump head 22 a has amotor shaft receiver 102 for accepting the end or spindle of ashaft coupling 38 of amotor 36. Theshaft receiver 102 has a threaded, keyed or similar interfacing configuration (not shown) complementary to the spindle or end of theshaft coupling 38 of themotor 36. As a further alternative, themotor 36 may be magnetically coupled (not shown) to thepump head 22 so as to again be readily separable from thevacuum pump member 22. A readily separable motive means 36 is particularly useful where thevacuum pump member 22 and thedesiccator cartridge 14 are integrated together as a unit, as shown in FIG. 4. - As shown in FIG. 6, the present
vacuum desiccator device 10 includes anelectrical control circuit 40 that comprises logic and switching circuits and a number of ancillary circuits and functions, external sensors, electrical connections and a power source. In the preferred embodiment, the purpose of theelectrical control circuit 40 is to monitor the condition of thedevice 10 and to control operation of the motive means 36. The ancillary circuits can be chosen for inclusion in an embodiment of thedevice 10 to affect one or more of the following functions: device data Input/Output, electrical power, sensor signal processing and motor control (power to the motor). An I/O unit 70 for accomplishing device data input and out put can include data input means such as a power and data entry switches (e.g., a key pad and/or on-off switch), and a readout display and alarms. Such I/O units 70 are well known in the art, and are readily practicable in the present invention by the ordinary skilled artisan. Other ancillary circuits andother sensors 88 may be provided at the user's option, and are similarly accomplishable by the ordinary skilled artisan. - In the preferred embodiment exemplified in FIG. 1, the
power source 46 for storing and providing electrical energy for thedevice 10 is abattery 60. In the preferred embodiment, thepower source 46 is removable from theelectrical control circuit 40 and is easily replaceable. The POLAROID® P100 Polapulse™ battery is an example of anappropriate battery 60 useful as apower source 46 in the presentvacuum desiccator device 10 in a preferred embodiment because of its planar configuration and low profile. See FIGS. 7A and 7B. - It is intended that the electrical control circuit have sensory capabilities to detect certain physical conditions of the
device 10, and to utilize the conditions to control operation of themotor 36, and other appropriate functions of thecontrol circuit 40. These ancillary sensory circuits include: amoisture sensor 84 and circuit, for detecting the presence of moisture proximate theoutlet port 20 of thedesiccant cartridge 14; at least onevacuum pressure sensor 76 and circuit, for detecting a vacuum pressure in the interior chamber or elsewhere in the device; and a pressure differential sensor circuit, for sensing a difference in pressure between two sections of the gas/liquid flow pathway of thedevice 10, e.g., between the inlet andoutlet ports 18 & 20 of thedesiccator cartridge 14. The sensors are interconnected to thecontrol circuit 40 via electrical leads 44. Sensors appropriate for accomplishing the various sensory functions of an electrical control circuit are known in the art and are readily adaptable for practice in the present invention by the ordinary skilled artisan. For example, a vacuum pressure sensor 76 (MPL model 500, diaphragm-type pressure differential sensor) suitable for practice in the present device is commercially available from Micro Pneumatic Logic, Inc. (Florida) from a line of pressure sensors. Other types of sensors are adaptable for use in the present invention for detecting or sensing pressure, such as surface strain gauges mounted on the surface of thedesiccator cartridge 14, and optical displacement gauges mounted to transmit light through the surfaces ofdesiccator cartridge 14. For example, an opticalfiber strain gauge 77 is commercially available from FISO Technologies (Quebec, model FOS “C” or “N”) from a line of optical strain gauges. This sensor can be used to monitor and indicate the presence of a vacuum in the desiccator cartridge by displacement (bending) of the cartridge surface under the force of a vacuum in theinterior chamber 16. Optical displacement/strain gauges 78 are also commercially, including for the detection of fluid intrusion into a section of tubing. These gauges typically comprise a combination light source/detector 78 a and amirror 78 b. Distortion of the surface of thedesiccator cartridge 14 on which themirror 78 b is mounted alters the reflection path of the emitted light as it passes through the cartridge to return to the detector, which alteration is detectable. Of course, this requires the walls of thecartridge 14 proximate theoptical displacement gauge 78 to be transparent to the light. The use of more than onepressure sensor 76 can allow sensing and/or measurement of the pressure differential between two different points in the gas/liquid flow pathway, such as between the inlet andoutlet ports 18 & 20 of thedesiccator cartridge 14. - The
vacuum pressure sensor 76 is used to monitor the vacuum pressure in theinterior chamber 16 of thedesiccator cartridge 14. When the vacuum pressure detected in thechamber 16 by thepressure sensor 76 is sufficient, theelectric control circuit 40 may switch off themotor 36, thereby conserving electrical power. When the vacuum pressure detected in thechamber 16 by thepressure sensor 76 is no longer sufficient, thecontrol circuit 40 may switch on themotor 36 to reestablish an appropriate vacuum pressure in theinterior chamber 16 of thedesiccator cartridge 14. Also, theelectrical control circuit 40 can include a clock/timer circuit for intermittently operating the electric motive means 36, as another way of conserving electrical power. The I/O unit 70 can be utilized to set the time interval for the control circuit's intermittent operation of themotor 36. - In an alternative preferred embodiment of the
vacuum desiccator 10, thebattery 60 of thepower source 46 is integral with thedesiccator cartridge 14 a. As exemplified in FIG. 8, thebattery 60 is contained in abattery compartment 110, which is integral to the structure of thedesiccator cartridge 14 a. Battery leads 112 connect thebattery 60 toelectrical battery contacts 114 on theexterior surface 120 of thedesiccator cartridge 14 a. In this embodiment, thedesiccator cartridge 14 a andbattery 60 are replaceable as a unit. - FIG. 8 also illustrates another preferred feature of a
desiccator cartridge 14, in which a gas flow channel is disposed inside theinterior chamber 16 of thecartridge 14 a. In the embodiment illustrated, theflow channel 120 is a tube connected to theoutlet port 20 and having a length sufficient to allow it to be coiled or snaked about the interior chamber 16 (also see FIG. 9B). Theflow channel tube 120 hasperforations 122 along its length, or is otherwise constructed, to allow gas flow from theinterior chamber 16 into the lumen of theflow channel tube 120 under the force of the vacuum pressure from thepump member 22. Further shown in FIG. 8, is trappingagent 54 c having a pillow-like structure. Theflow channel tube 120 is laid out on one side of thepillow trapping agent 54 c. In the preferred embodiment, thepillow trapping agent 54 c was constructed using 10 grams of sodium polyacrylate distributed between two layers of an elastic mesh material (nylon stocking). In addition to elastic mesh material, other fabrics are suitable for practice with themoisture trapping pillow 54 c, including knitted fabric mesh materials like gauze and similar fabrics. To maintain even distribution of the sodium polyacrylate, the two layers of elastic mesh material were sewn together to form compartments. The volume of theinterior chamber 16 of thedesiccator cartridge 14 was sufficient to hold the pillow and about 50 cc of trapped moisture. - A flow channel may be accomplished by means other than a tube. For example, a flow channel may be integrated into the
desiccator cartridge 14 and be in gas flow communication with theinterior chamber 16. This embodiment of adesiccator cartridge 14 can be accomplished as shown in FIGS. 9A and 9B, wherein thecartridge 14 b has acover member 124 and a body member 126 (FIG. 9A). Thecartridge cover member 124 has agas flow channel 120 a integrated into it. Theintegral flow channel 120 a hasperforations 122 a along its length, or is otherwise constructed, to allow gas flow from the interior chamber into the lumen of theintegral channel 120 a under the force of the vacuum pressure from thepump member 22. - While the above description contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of one or another preferred embodiment thereof. Many other variations are possible, which would be obvious to one skilled in the art. Accordingly, the scope of the invention should be determined by the scope of the appended claims and their equivalents, and not just by the embodiments.
Claims (20)
1. A personally portable vacuum desiccator comprising:
moisture trap, the trap further comprising a desiccator cartridge having an interior chamber containing a trapping agent, and an inlet port and an outlet port in gas/liquid communication with the interior chamber;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means.
2. The personally portable vacuum desiccator of claim 1 , further comprising a single passage gas/liquid flow path delivery tube, having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge.
3. The personally portable vacuum desiccator of claim 1 , further comprising a housing containing the electric motive means and the electrical control circuit.
4. The personally portable vacuum desiccator of claim 1 , further comprising a housing containing the electric motive means and the electrical control circuit and at least one additional element selected from the group consisting of the desiccator cartridge and the vacuum pump member.
5. The personally portable vacuum desiccator of claim 1 , wherein the vacuum pump member is integral with the desiccator cartridge.
6. The personally portable vacuum desiccator of claim 1 , wherein the electric motive means includes an electric motor mechanically coupled to the vacuum pump member.
7. The personally portable vacuum desiccator of claim 1 , wherein the electric motive means includes an electric motor magnetically coupled to the vacuum pump member.
8. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes an electrical power source comprising a battery.
9. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes an electrical power source comprising a battery, and the battery is removable from the electrical control circuit and replaceable.
10. The personally portable vacuum desiccator of claim 1 , further comprising a one-way valve disposed proximate the inlet port of the desiccator cartridge, the one-way valve preventing gas/liquid and particulate flow out of the inlet port.
11. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member.
12. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes a timer circuit for intermittently operating the electric motive means.
13. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge.
14. The personally portable vacuum desiccator of claim 1 , wherein the electrical control circuit includes a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
15. The personally portable vacuum desiccator of claim 1 , wherein the desiccator cartridge is removable from the vacuum desiccator and replaceable.
16. The personally portable vacuum desiccator of claim 1 , wherein components in gas/liquid flow communication are replaceable.
17. The personally portable vacuum desiccator of claim 1 , wherein the desiccator cartridge contains a trapping agent selected from the group consisting of: a desiccant, an adsorbent and an absorbent.
18. The personally portable vacuum desiccator of claim 1 , further comprising a micro-filter positioned after the outlet port of the desiccator cartridge and before the exhaust port of the vacuum pump member, the micro-filter blocking the passage of bacteria.
19. The personally portable vacuum desiccator of claim 1 , where in the power source is integrally combined with the desiccator cartridge, and the combined desiccator-power source being installable in and removable from the vacuum desiccator as a single unit.
20. A personally portable vacuum desiccator comprising:
a desiccator cartridge, the cartridge being removable from the vacuum desiccator and replaceable, and having an interior chamber containing a trapping agent, the trapping agent being a moisture trapping pillow, and an inlet port and an outlet port in gas/liquid communication with the interior chamber, and a one-way valve disposed proximate the inlet port for preventing gas/liquid and particulate flow out of the input port;
a single passage gas/liquid flow pathway having an input end and an output end, the output end being connected to the inlet port of the desiccator cartridge;
a vacuum pump member having a low pressure port and an exhaust port, the low pressure port in gas/liquid flow communication with the outlet port of the desiccator cartridge and with the exhaust port vented to atmosphere, and the vacuum pump member being operable to provide a low vacuum pressure to the interior chamber;
an electric motive means in communication with the vacuum pump member and operative to drive the vacuum pump member, the electric motive means including an electric motor coupled to the vacuum pump member; and
an electrical control circuit, including an electrical power source, the control circuit in electrical communication with and operative to control operation of the electric motive means, the electrical power source comprising a battery, with the battery being removable from the electrical control circuit and replaceable, and wherein the electrical control circuit includes one or more ancillary circuits selected from the group consisting of a power circuit for turning the electrical control circuit on and off, a moisture sensor for detecting the presence of moisture proximate the low pressure port of the vacuum pump member, a timer circuit for intermittently operating the electric motive means, a vacuum pressure sensor for detecting a vacuum pressure in the interior chamber of the desiccator cartridge, a pressure differential sensor for sensing a difference in pressure between the inlet and outlet ports of the desiccator cartridge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/715,164 US20040167482A1 (en) | 2001-11-20 | 2003-11-17 | Personally portable vacuum desiccator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/996,970 US6648862B2 (en) | 2001-11-20 | 2001-11-20 | Personally portable vacuum desiccator |
US10/715,164 US20040167482A1 (en) | 2001-11-20 | 2003-11-17 | Personally portable vacuum desiccator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/996,970 Continuation US6648862B2 (en) | 2001-11-20 | 2001-11-20 | Personally portable vacuum desiccator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040167482A1 true US20040167482A1 (en) | 2004-08-26 |
Family
ID=25543492
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/996,970 Ceased US6648862B2 (en) | 2001-11-20 | 2001-11-20 | Personally portable vacuum desiccator |
US10/715,164 Abandoned US20040167482A1 (en) | 2001-11-20 | 2003-11-17 | Personally portable vacuum desiccator |
US12/580,991 Expired - Fee Related USRE42834E1 (en) | 2001-11-20 | 2009-10-16 | Personally portable vacuum desiccator |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/996,970 Ceased US6648862B2 (en) | 2001-11-20 | 2001-11-20 | Personally portable vacuum desiccator |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/580,991 Expired - Fee Related USRE42834E1 (en) | 2001-11-20 | 2009-10-16 | Personally portable vacuum desiccator |
Country Status (1)
Country | Link |
---|---|
US (3) | US6648862B2 (en) |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070055209A1 (en) * | 2005-09-07 | 2007-03-08 | Patel Harish A | Self contained wound dressing apparatus |
US20070066946A1 (en) * | 2005-09-07 | 2007-03-22 | Kurt Haggstrom | Wound dressing with vacuum reservoir |
US20070078366A1 (en) * | 2005-09-07 | 2007-04-05 | Kurt Haggstrom | Self contained wound dressing with micropump |
US20070282309A1 (en) * | 2006-06-02 | 2007-12-06 | Bengtson Bradley P | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
US20090012441A1 (en) * | 2007-07-06 | 2009-01-08 | Sharon Mulligan | Subatmospheric pressure wound therapy dressing |
US20100063484A1 (en) * | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Three-Dimensional Porous Film Contact Layer With Improved Wound Healing |
US7678090B2 (en) | 1999-11-29 | 2010-03-16 | Risk Jr James R | Wound treatment apparatus |
US20100100075A1 (en) * | 2006-10-13 | 2010-04-22 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US7723560B2 (en) | 2001-12-26 | 2010-05-25 | Lockwood Jeffrey S | Wound vacuum therapy dressing kit |
US7763000B2 (en) | 1999-11-29 | 2010-07-27 | Risk Jr James R | Wound treatment apparatus having a display |
US20100211029A1 (en) * | 2007-10-18 | 2010-08-19 | Convatec Technologies Inc. | Aspiration system for removing liquid other than urine discharged by the human body |
US7794438B2 (en) | 1998-08-07 | 2010-09-14 | Alan Wayne Henley | Wound treatment apparatus |
US7867206B2 (en) | 2000-11-29 | 2011-01-11 | Kci Licensing, Inc. | Vacuum therapy and cleansing dressing for wounds |
US7896864B2 (en) | 2001-12-26 | 2011-03-01 | Lockwood Jeffrey S | Vented vacuum bandage with irrigation for wound healing and method |
US7896856B2 (en) | 2002-08-21 | 2011-03-01 | Robert Petrosenko | Wound packing for preventing wound closure |
US20110054421A1 (en) * | 2007-11-21 | 2011-03-03 | Smith & Nephew Plc | Wound dressing |
US7910791B2 (en) | 2000-05-22 | 2011-03-22 | Coffey Arthur C | Combination SIS and vacuum bandage and method |
US20110071483A1 (en) * | 2007-08-06 | 2011-03-24 | Benjamin Gordon | Apparatus |
US7927318B2 (en) | 2001-10-11 | 2011-04-19 | Risk Jr James Robert | Waste container for negative pressure therapy |
US7931651B2 (en) | 2006-11-17 | 2011-04-26 | Wake Lake University Health Sciences | External fixation assembly and method of use |
US7988680B2 (en) | 2000-11-29 | 2011-08-02 | Kci Medical Resources | Vacuum therapy and cleansing dressing for wounds |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
US8062273B2 (en) * | 2002-09-03 | 2011-11-22 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US8168848B2 (en) | 2002-04-10 | 2012-05-01 | KCI Medical Resources, Inc. | Access openings in vacuum bandage |
US8257328B2 (en) | 2008-07-08 | 2012-09-04 | Tyco Healthcare Group Lp | Portable negative pressure wound therapy device |
US8257326B2 (en) | 2008-06-30 | 2012-09-04 | Tyco Healthcare Group Lp | Apparatus for enhancing wound healing |
US8267960B2 (en) | 2008-01-09 | 2012-09-18 | Wake Forest University Health Sciences | Device and method for treating central nervous system pathology |
US8298200B2 (en) | 2009-06-01 | 2012-10-30 | Tyco Healthcare Group Lp | System for providing continual drainage in negative pressure wound therapy |
US8350116B2 (en) | 2001-12-26 | 2013-01-08 | Kci Medical Resources | Vacuum bandage packing |
US8377016B2 (en) | 2007-01-10 | 2013-02-19 | Wake Forest University Health Sciences | Apparatus and method for wound treatment employing periodic sub-atmospheric pressure |
CN103096947A (en) * | 2010-08-18 | 2013-05-08 | 凯希特许有限公司 | Reduced-pressure, multi-orientation, liquid-collection canister |
US8449509B2 (en) | 2004-04-05 | 2013-05-28 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
US8460255B2 (en) | 2006-05-11 | 2013-06-11 | Kalypto Medical, Inc. | Device and method for wound therapy |
US8569566B2 (en) | 2003-10-28 | 2013-10-29 | Smith & Nephew, Plc | Wound cleansing apparatus in-situ |
US8663198B2 (en) | 2009-04-17 | 2014-03-04 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
CN103751903A (en) * | 2014-02-17 | 2014-04-30 | 浙江双安医药包装有限公司医疗科技设备分公司 | Portable impulse type negative-pressure wound drainage instrument with wound negative-pressure paster |
US8715256B2 (en) | 2007-11-21 | 2014-05-06 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US8764732B2 (en) | 2007-11-21 | 2014-07-01 | Smith & Nephew Plc | Wound dressing |
US8777911B2 (en) | 2008-08-08 | 2014-07-15 | Smith & Nephew, Inc. | Wound dressing of continuous fibers |
US8834520B2 (en) | 2007-10-10 | 2014-09-16 | Wake Forest University | Devices and methods for treating spinal cord tissue |
US8945074B2 (en) | 2011-05-24 | 2015-02-03 | Kalypto Medical, Inc. | Device with controller and pump modules for providing negative pressure for wound therapy |
US9058634B2 (en) | 2011-05-24 | 2015-06-16 | Kalypto Medical, Inc. | Method for providing a negative pressure wound therapy pump device |
US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
US9155821B2 (en) | 2009-06-10 | 2015-10-13 | Smith & Nephew, Inc. | Fluid collection canister including canister top with filter membrane and negative pressure wound therapy systems including same |
CN104984418A (en) * | 2015-06-30 | 2015-10-21 | 昆山韦睿医疗科技有限公司 | Negative-pressure therapy system and exudate collecting box thereof |
US9289193B2 (en) | 2008-07-18 | 2016-03-22 | Wake Forest University Health Sciences | Apparatus and method for cardiac tissue modulation by topical application of vacuum to minimize cell death and damage |
US9302034B2 (en) | 2011-04-04 | 2016-04-05 | Smith & Nephew, Inc. | Negative pressure wound therapy dressing |
US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
US20170312471A1 (en) * | 2014-11-13 | 2017-11-02 | Tni Medical Ag | Multifunctonal applicator for mobile use |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9956327B2 (en) | 2007-07-02 | 2018-05-01 | Smith & Nephew Plc | Wound treatment apparatus with exudate volume reduction by heat |
US9974890B2 (en) | 2008-05-21 | 2018-05-22 | Smith & Nephew, Inc. | Wound therapy system and related methods therefor |
US10004835B2 (en) | 2008-09-05 | 2018-06-26 | Smith & Nephew, Inc. | Canister membrane for wound therapy system |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US10071190B2 (en) | 2008-02-27 | 2018-09-11 | Smith & Nephew Plc | Fluid collection |
US10130526B2 (en) | 2006-09-28 | 2018-11-20 | Smith & Nephew, Inc. | Portable wound therapy system |
US10207035B2 (en) | 2004-05-21 | 2019-02-19 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US10245185B2 (en) | 2011-06-07 | 2019-04-02 | Smith & Nephew Plc | Wound contacting members and methods |
US10406036B2 (en) | 2009-06-18 | 2019-09-10 | Smith & Nephew, Inc. | Apparatus for vacuum bridging and/or exudate collection |
US10737000B2 (en) | 2008-08-21 | 2020-08-11 | Smith & Nephew, Inc. | Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same |
USD898925S1 (en) | 2018-09-13 | 2020-10-13 | Smith & Nephew Plc | Medical dressing |
USRE48282E1 (en) | 2010-10-15 | 2020-10-27 | Smith & Nephew Plc | Medical dressing |
US10898388B2 (en) | 2015-04-27 | 2021-01-26 | Smith & Nephew Plc | Reduced pressure apparatuses and methods |
US10912869B2 (en) | 2008-05-21 | 2021-02-09 | Smith & Nephew, Inc. | Wound therapy system with related methods therefor |
US11096831B2 (en) | 2016-05-03 | 2021-08-24 | Smith & Nephew Plc | Negative pressure wound therapy device activation and control |
US11116669B2 (en) | 2016-08-25 | 2021-09-14 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US11123471B2 (en) | 2017-03-08 | 2021-09-21 | Smith & Nephew Plc | Negative pressure wound therapy device control in presence of fault condition |
US11160915B2 (en) | 2017-05-09 | 2021-11-02 | Smith & Nephew Plc | Redundant controls for negative pressure wound therapy systems |
US11173240B2 (en) | 2016-05-03 | 2021-11-16 | Smith & Nephew Plc | Optimizing power transfer to negative pressure sources in negative pressure therapy systems |
WO2021257421A1 (en) * | 2020-06-18 | 2021-12-23 | Milwaukee Electric Tool Corporation | Vacuum pump with a solenoid valve |
US11285047B2 (en) | 2016-04-26 | 2022-03-29 | Smith & Nephew Plc | Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component |
US11305047B2 (en) | 2016-05-03 | 2022-04-19 | Smith & Nephew Plc | Systems and methods for driving negative pressure sources in negative pressure therapy systems |
US11357903B2 (en) | 2009-02-13 | 2022-06-14 | Smith & Nephew Plc | Wound packing |
USRE49227E1 (en) | 2010-10-15 | 2022-10-04 | Smith & Nephew Plc | Medical dressing |
US11471571B2 (en) | 2017-04-19 | 2022-10-18 | Smith & Nephew, Inc. | Negative pressure wound therapy canisters |
US11484443B2 (en) | 2010-02-26 | 2022-11-01 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US11497653B2 (en) | 2017-11-01 | 2022-11-15 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11554203B2 (en) | 2017-11-01 | 2023-01-17 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11554051B2 (en) | 2017-06-30 | 2023-01-17 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
US11564847B2 (en) | 2016-09-30 | 2023-01-31 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11564845B2 (en) | 2017-09-13 | 2023-01-31 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
USD977624S1 (en) | 2016-02-29 | 2023-02-07 | Smith & Nephew Plc | Portable negative pressure apparatus |
US11701263B2 (en) | 2006-09-26 | 2023-07-18 | Smith & Nephew, Inc. | Wound dressing |
US11701265B2 (en) | 2017-09-13 | 2023-07-18 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11707564B2 (en) | 2017-11-01 | 2023-07-25 | Smith & Nephew Plc | Safe operation of integrated negative pressure wound treatment apparatuses |
US11723809B2 (en) | 2016-03-07 | 2023-08-15 | Smith & Nephew Plc | Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing |
US11771796B2 (en) | 2013-03-15 | 2023-10-03 | Smith & Nephew Plc | Wound dressing and method of treatment |
US12005181B2 (en) | 2016-12-12 | 2024-06-11 | Smith & Nephew Plc | Pressure wound therapy status indication via external device |
US12005182B2 (en) | 2019-05-31 | 2024-06-11 | T.J.Smith And Nephew, Limited | Systems and methods for extending operational time of negative pressure wound treatment apparatuses |
US12083263B2 (en) | 2019-03-20 | 2024-09-10 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
Families Citing this family (169)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6648862B2 (en) | 2001-11-20 | 2003-11-18 | Spheric Products, Ltd. | Personally portable vacuum desiccator |
WO2003074106A2 (en) * | 2002-02-28 | 2003-09-12 | Say Samuel L | Portable battery operated aspirator |
EP1556120A4 (en) * | 2002-06-11 | 2011-03-09 | Cms Surgical Llc | System for efficient drainage of body cavity |
US7625362B2 (en) * | 2003-09-16 | 2009-12-01 | Boehringer Technologies, L.P. | Apparatus and method for suction-assisted wound healing |
US7814021B2 (en) * | 2003-01-23 | 2010-10-12 | Verdasys, Inc. | Managed distribution of digital assets |
JP4411929B2 (en) * | 2003-02-28 | 2010-02-10 | 株式会社日立製作所 | Backup method, system, and program |
US7533667B2 (en) * | 2003-05-29 | 2009-05-19 | Portaero, Inc. | Methods and devices to assist pulmonary decompression |
US7361184B2 (en) * | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
KR20070029109A (en) * | 2003-10-14 | 2007-03-13 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Video encoding method and device |
US7790945B1 (en) | 2004-04-05 | 2010-09-07 | Kci Licensing, Inc. | Wound dressing with absorption and suction capabilities |
US7776028B2 (en) | 2004-04-05 | 2010-08-17 | Bluesky Medical Group Incorporated | Adjustable overlay reduced pressure wound treatment system |
US7708724B2 (en) | 2004-04-05 | 2010-05-04 | Blue Sky Medical Group Incorporated | Reduced pressure wound cupping treatment system |
GB0409446D0 (en) * | 2004-04-28 | 2004-06-02 | Smith & Nephew | Apparatus |
US8529548B2 (en) | 2004-04-27 | 2013-09-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
US7824384B2 (en) * | 2004-08-10 | 2010-11-02 | Kci Licensing, Inc. | Chest tube drainage system |
US8512301B2 (en) * | 2005-02-08 | 2013-08-20 | Feng Ma | Canned vacuum |
ITUD20050051A1 (en) * | 2005-04-05 | 2006-10-06 | Cps Color Equipment Spa | DEVICE AND PROCEDURE TO PREVENT DRYING OF FLUID PRODUCTS IN A DRAWING MACHINE OF THESE PRODUCTS |
US7857806B2 (en) * | 2005-07-14 | 2010-12-28 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
US7438705B2 (en) * | 2005-07-14 | 2008-10-21 | Boehringer Technologies, L.P. | System for treating a wound with suction and method detecting loss of suction |
US20110077605A1 (en) * | 2005-07-14 | 2011-03-31 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
AU2005330067B1 (en) * | 2005-07-24 | 2006-12-14 | Carmeli Adahan | Wound closure and drainage system |
EP2127690B2 (en) | 2005-07-24 | 2017-06-14 | M.E.A.C. Engineering Ltd. | Wound closure and drainage system |
CA2614797A1 (en) * | 2005-07-24 | 2007-02-01 | Carmeli Adahan | Suctioning system, method and kit |
US7503910B2 (en) * | 2006-02-01 | 2009-03-17 | Carmeli Adahan | Suctioning system, method and kit |
WO2007024230A1 (en) * | 2005-08-26 | 2007-03-01 | Spheric Products, Ltd. | Chest tube drainage system |
US20070106214A1 (en) * | 2005-10-17 | 2007-05-10 | Coaptus Medical Corporation | Systems and methods for securing cardiovascular tissue, including via asymmetric inflatable members |
AU2007211736A1 (en) * | 2006-02-02 | 2007-08-09 | Coloplast A/S | Pump and system for treatment of a wound |
WO2007087810A2 (en) * | 2006-02-02 | 2007-08-09 | Coloplast A/S | A suction method and a wound suction system |
AU2007211737A1 (en) * | 2006-02-02 | 2007-08-09 | Coloplast A/S | Device, pump and system for stimulating the healing of a wound |
WO2007087811A1 (en) * | 2006-02-02 | 2007-08-09 | Coloplast A/S | A suction system |
US8235939B2 (en) | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
KR101045751B1 (en) | 2006-02-06 | 2011-06-30 | 케이씨아이 라이센싱 인코포레이티드 | Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems |
US8852149B2 (en) | 2006-04-06 | 2014-10-07 | Bluesky Medical Group, Inc. | Instructional medical treatment system |
US7615036B2 (en) * | 2006-05-11 | 2009-11-10 | Kalypto Medical, Inc. | Device and method for wound therapy |
US8025650B2 (en) | 2006-06-12 | 2011-09-27 | Wound Care Technologies, Inc. | Negative pressure wound treatment device, and methods |
US8366690B2 (en) | 2006-09-19 | 2013-02-05 | Kci Licensing, Inc. | System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system |
AU2016203841B2 (en) * | 2006-09-19 | 2018-02-22 | Solventum Intellectual Properties Company | Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities |
US8061360B2 (en) | 2006-09-19 | 2011-11-22 | Kci Licensing, Inc. | System and method for locating fluid leaks at a drape of a reduced pressure delivery system |
EP3251706B2 (en) * | 2006-09-19 | 2022-11-16 | 3M Innovative Properties Company | Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities |
AU2013205545B2 (en) * | 2006-09-19 | 2016-03-17 | Solventum Intellectual Properties Company | Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities |
US8287507B2 (en) | 2006-10-13 | 2012-10-16 | Kci Licensing, Inc. | Reduced pressure indicator for a reduced pressure source |
BRPI0715320A2 (en) | 2006-10-13 | 2013-07-09 | Kci Licensing Inc | manually activated reduced pressure treatment system, activating method of a reduced pressure treatment pump and low profile reduced pressure treatment system |
WO2008049029A2 (en) | 2006-10-17 | 2008-04-24 | Bluesky Medical Group Inc. | Auxiliary powered negative pressure wound therapy apparatuses and methods |
US20080103462A1 (en) * | 2006-10-30 | 2008-05-01 | Stuart Wenzel | Wound healing patch with integral passive vacuum and electrostimulation |
KR101217918B1 (en) | 2007-02-09 | 2013-01-02 | 케이씨아이 라이센싱 인코포레이티드 | Apparatus and method for managing reduced pressure at a tissue site |
JP5038439B2 (en) | 2007-02-09 | 2012-10-03 | ケーシーアイ ライセンシング インコーポレイテッド | Apparatus and method for applying reduced pressure treatment to a tissue site |
US8267908B2 (en) * | 2007-02-09 | 2012-09-18 | Kci Licensing, Inc. | Delivery tube, system, and method for storing liquid from a tissue site |
JP5345555B2 (en) | 2007-02-09 | 2013-11-20 | ケーシーアイ ライセンシング インコーポレイテッド | System and method for applying reduced pressure to a tissue site |
RU2440150C2 (en) | 2007-02-20 | 2012-01-20 | КейСиАй Лайсензинг Инк. | System and method of differentiating state of leak and state of reservoir disconnection in system of processing with lower pressure |
US8317774B2 (en) * | 2007-05-07 | 2012-11-27 | Carmeli Adahan | Suction system |
GB0712739D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
GB0712758D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Battery recharging |
GB0712737D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
GB0712760D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Status indication |
GB0712736D0 (en) * | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
GB0715259D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Canister status determination |
GB0712764D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Carrying Bag |
WO2009006944A1 (en) * | 2007-07-12 | 2009-01-15 | Abb Research Ltd | Pressure sensor |
US12121648B2 (en) | 2007-08-06 | 2024-10-22 | Smith & Nephew Plc | Canister status determination |
GB0715212D0 (en) * | 2007-08-06 | 2007-09-12 | Smith & Nephew | Apparatus |
WO2009068667A2 (en) * | 2007-11-30 | 2009-06-04 | Coloplast A/S | Collecting container for wound exudate |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US20130096518A1 (en) | 2007-12-06 | 2013-04-18 | Smith & Nephew Plc | Wound filling apparatuses and methods |
GB0723875D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Wound management |
GB0723872D0 (en) * | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus for topical negative pressure therapy |
GB0724564D0 (en) * | 2007-12-18 | 2008-01-30 | Smith & Nephew | Portable wound therapy apparatus and method |
GB2455962A (en) | 2007-12-24 | 2009-07-01 | Ethicon Inc | Reinforced adhesive backing sheet, for plaster |
JP5451636B2 (en) * | 2007-12-31 | 2014-03-26 | スリーエム イノベイティブ プロパティズ カンパニー | Medical care product having an edge port and method of use |
JP5118213B2 (en) | 2008-03-05 | 2013-01-16 | ケーシーアイ ライセンシング インコーポレイテッド | Method for applying pressure to a dressing and a tissue site to collect and contain liquid from the tissue site |
US9033942B2 (en) | 2008-03-07 | 2015-05-19 | Smith & Nephew, Inc. | Wound dressing port and associated wound dressing |
US8152785B2 (en) | 2008-03-13 | 2012-04-10 | Tyco Healthcare Group Lp | Vacuum port for vacuum wound therapy |
EP2282707A1 (en) * | 2008-04-04 | 2011-02-16 | 3M Innovative Properties Company | Wound dressing with micropump |
US8267909B2 (en) * | 2008-05-01 | 2012-09-18 | Devilbiss Healthcare, Llc | Canister having fluid flow control |
MX2010011909A (en) | 2008-05-02 | 2010-11-26 | Kci Licensing Inc | Manually-actuated reduced pressure pump having regulated pressure capabilities. |
US8007481B2 (en) | 2008-07-17 | 2011-08-30 | Tyco Healthcare Group Lp | Subatmospheric pressure mechanism for wound therapy system |
US8048046B2 (en) * | 2008-05-21 | 2011-11-01 | Tyco Healthcare Group Lp | Wound therapy system with housing and canister support |
MX2010013068A (en) | 2008-05-30 | 2010-12-21 | Kci Licensing Inc | Reduced-pressure, linear wound closing bolsters and systems. |
US8399730B2 (en) | 2008-05-30 | 2013-03-19 | Kci Licensing, Inc. | Reduced-pressure dressing assemblies for use in applying a closing force |
GB0811572D0 (en) * | 2008-06-24 | 2008-07-30 | Smith & Nephew | Negitive pressure wound theraphy device |
MX2011000286A (en) | 2008-07-11 | 2011-03-02 | Kci Licensing Inc | Manually-actuated, reduced-pressure systems for treating wounds. |
EP3311856B1 (en) | 2008-08-08 | 2019-07-17 | KCI Licensing, Inc. | Reduced-pressure treatment systems with reservoir control |
US8216198B2 (en) | 2009-01-09 | 2012-07-10 | Tyco Healthcare Group Lp | Canister for receiving wound exudate in a negative pressure therapy system |
US8251979B2 (en) | 2009-05-11 | 2012-08-28 | Tyco Healthcare Group Lp | Orientation independent canister for a negative pressure wound therapy device |
TW201021867A (en) * | 2008-12-12 | 2010-06-16 | Ind Tech Res Inst | Fluid processing system and collecting device thereof |
TWI418374B (en) * | 2008-12-31 | 2013-12-11 | Ind Tech Res Inst | Wound treatment apparatus and guiding unit thereof |
CN102333555B (en) | 2008-12-31 | 2013-03-27 | 凯希特许有限公司 | Manifolds, systems, and methods for administering reduced pressure to a subcutaneous tissue site |
US8162907B2 (en) | 2009-01-20 | 2012-04-24 | Tyco Healthcare Group Lp | Method and apparatus for bridging from a dressing in negative pressure wound therapy |
US8246591B2 (en) | 2009-01-23 | 2012-08-21 | Tyco Healthcare Group Lp | Flanged connector for wound therapy |
US8167869B2 (en) | 2009-02-10 | 2012-05-01 | Tyco Healthcare Group Lp | Wound therapy system with proportional valve mechanism |
GB0902816D0 (en) | 2009-02-19 | 2009-04-08 | Smith & Nephew | Fluid communication path |
US8591485B2 (en) * | 2009-04-23 | 2013-11-26 | Prospera Technologies, LLC | System, method, and pump to prevent pump contamination during negative pressure wound therapy |
CN102802571B (en) | 2009-06-16 | 2016-08-03 | 3M创新有限公司 | There is the conformable Medical of self-supporting substrate |
CA2770182C (en) | 2009-08-05 | 2016-09-27 | Tyco Healthcare Group Lp | Surgical wound dressing incorporating connected hydrogel beads having an embedded electrode therein and related methods therefor |
US8529526B2 (en) | 2009-10-20 | 2013-09-10 | Kci Licensing, Inc. | Dressing reduced-pressure indicators, systems, and methods |
US8292863B2 (en) | 2009-10-21 | 2012-10-23 | Donoho Christopher D | Disposable diaper with pouches |
ES2731200T3 (en) | 2009-12-22 | 2019-11-14 | Smith & Nephew Inc | Apparatus for negative pressure wound therapy |
US8377018B2 (en) | 2009-12-23 | 2013-02-19 | Kci Licensing, Inc. | Reduced-pressure, multi-orientation, liquid-collection canister |
US8814842B2 (en) * | 2010-03-16 | 2014-08-26 | Kci Licensing, Inc. | Delivery-and-fluid-storage bridges for use with reduced-pressure systems |
US8604265B2 (en) | 2010-04-16 | 2013-12-10 | Kci Licensing, Inc. | Dressings and methods for treating a tissue site on a patient |
US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
US8623047B2 (en) | 2010-04-30 | 2014-01-07 | Kci Licensing, Inc. | System and method for sealing an incisional wound |
USRE48117E1 (en) | 2010-05-07 | 2020-07-28 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
US8641693B2 (en) * | 2010-05-18 | 2014-02-04 | Kci Licensing, Inc. | Reduced-pressure canisters and methods for recycling |
GB201011173D0 (en) | 2010-07-02 | 2010-08-18 | Smith & Nephew | Provision of wound filler |
US8986269B2 (en) * | 2010-11-11 | 2015-03-24 | Ulcerx Medical Inc. | Wound leakage vacuum collection device |
GB201020005D0 (en) | 2010-11-25 | 2011-01-12 | Smith & Nephew | Composition 1-1 |
MX337627B (en) | 2010-11-25 | 2016-03-10 | Smith & Nephew | Composition i-ii and products and uses thereof. |
USD714433S1 (en) | 2010-12-22 | 2014-09-30 | Smith & Nephew, Inc. | Suction adapter |
US9050398B2 (en) | 2010-12-22 | 2015-06-09 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
US9050175B2 (en) | 2011-01-20 | 2015-06-09 | Scott Stephan | Therapeutic treatment pad |
GB2488749A (en) | 2011-01-31 | 2012-09-12 | Systagenix Wound Man Ip Co Bv | Laminated silicone coated wound dressing |
GB201106491D0 (en) | 2011-04-15 | 2011-06-01 | Systagenix Wound Man Ip Co Bv | Patterened silicone coating |
WO2012144668A1 (en) * | 2011-04-20 | 2012-10-26 | Moon Myung Sun | Medical suction apparatus |
US8827973B2 (en) | 2011-06-24 | 2014-09-09 | Kci Licensing, Inc. | Medical drapes, devices, and systems employing a holographically-formed polymer dispersed liquid crystal (H-PDLC) device |
AU2012282287B2 (en) | 2011-07-14 | 2017-06-01 | Smith & Nephew Plc | Wound dressing and method of treatment |
CA2844480C (en) * | 2011-09-13 | 2020-10-13 | Kci Licensing, Inc. | Reduced-pressure canisters having hydrophobic pores |
CA2850639A1 (en) * | 2011-10-17 | 2013-04-25 | Kci Licensing, Inc. | System and apparatus for treating a tissue site having an in-line canister |
US20150159066A1 (en) | 2011-11-25 | 2015-06-11 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
US10940047B2 (en) | 2011-12-16 | 2021-03-09 | Kci Licensing, Inc. | Sealing systems and methods employing a hybrid switchable drape |
JP6320930B2 (en) | 2011-12-16 | 2018-05-09 | ケーシーアイ ライセンシング インコーポレイテッド | Peelable medical drape |
CN103203068B (en) * | 2012-01-13 | 2015-07-22 | 雃博股份有限公司 | Negative-pressure wound nursing system with buffering unit |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
AU346291S (en) | 2012-05-15 | 2013-01-09 | Smith & Nephew | Medical dressing |
US20130317463A1 (en) * | 2012-05-22 | 2013-11-28 | Apex Medical Corp. | Negative pressure wound therapy system with a buffering unit |
WO2013175306A2 (en) | 2012-05-23 | 2013-11-28 | Smith & Nephew Plc | Apparatuses and methods for negative pressure wound therapy |
CA2880148C (en) | 2012-08-01 | 2021-07-20 | Smith & Nephew Plc | Wound dressing and method of treatment |
CA3178997A1 (en) | 2012-08-01 | 2014-02-06 | Smith & Nephew Plc | Wound dressing |
CN111991092A (en) | 2012-11-16 | 2020-11-27 | 凯希特许有限公司 | Medical drape having patterned adhesive layer and method of making same |
GB201222770D0 (en) | 2012-12-18 | 2013-01-30 | Systagenix Wound Man Ip Co Bv | Wound dressing with adhesive margin |
US9533081B1 (en) * | 2013-03-11 | 2017-01-03 | Quint Barefoot | Wound canister waste solidification system |
USD764654S1 (en) | 2014-03-13 | 2016-08-23 | Smith & Nephew, Inc. | Canister for collecting wound exudate |
US20160120706A1 (en) | 2013-03-15 | 2016-05-05 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
DE102013208107A1 (en) * | 2013-05-03 | 2014-11-06 | Paul Hartmann Ag | Fluid receptacle for a device for providing negative pressure for medical applications, and device |
US10010658B2 (en) | 2013-05-10 | 2018-07-03 | Smith & Nephew Plc | Fluidic connector for irrigation and aspiration of wounds |
EP3578209B1 (en) | 2013-08-26 | 2023-12-20 | 3M Innovative Properties Company | Dressing interface with moisture controlling feature and sealing function |
US10946124B2 (en) | 2013-10-28 | 2021-03-16 | Kci Licensing, Inc. | Hybrid sealing tape |
EP3744361B1 (en) | 2013-10-30 | 2024-07-24 | Solventum Intellectual Properties Company | Absorbent conduit and system |
CN110652396B (en) | 2013-10-30 | 2021-11-23 | 3M创新知识产权公司 | Dressing with perforations of different sizes |
WO2015065616A1 (en) | 2013-10-30 | 2015-05-07 | Kci Licensing, Inc. | Dressing with sealing and retention intereface |
EP3656362A1 (en) | 2013-10-30 | 2020-05-27 | KCI Licensing, Inc. | Condensate absorbing and dissipating system related application |
US20150133897A1 (en) * | 2013-11-12 | 2015-05-14 | Constantino G. Mendieta | Liposuction absorption cartridge |
EP3479803B1 (en) | 2014-02-28 | 2021-03-31 | 3M Innovative Properties Company | Hybrid drape having a gel-coated perforated mesh |
US11026844B2 (en) | 2014-03-03 | 2021-06-08 | Kci Licensing, Inc. | Low profile flexible pressure transmission conduit |
US10406266B2 (en) | 2014-05-02 | 2019-09-10 | Kci Licensing, Inc. | Fluid storage devices, systems, and methods |
USD764653S1 (en) | 2014-05-28 | 2016-08-23 | Smith & Nephew, Inc. | Canister for collecting wound exudate |
USD764048S1 (en) | 2014-05-28 | 2016-08-16 | Smith & Nephew, Inc. | Device for applying negative pressure to a wound |
USD764047S1 (en) | 2014-05-28 | 2016-08-16 | Smith & Nephew, Inc. | Therapy unit assembly |
USD765830S1 (en) | 2014-06-02 | 2016-09-06 | Smith & Nephew, Inc. | Therapy unit assembly |
USD770173S1 (en) | 2014-06-02 | 2016-11-01 | Smith & Nephew, Inc. | Bag |
EP3151795B1 (en) | 2014-06-05 | 2017-09-27 | KCI Licensing, Inc. | Dressing with fluid acquisition and distribution characteristics |
US12133789B2 (en) | 2014-07-31 | 2024-11-05 | Smith & Nephew, Inc. | Reduced pressure therapy apparatus construction and control |
JP6644764B2 (en) | 2014-07-31 | 2020-02-12 | スミス アンド ネフュー インコーポレイテッド | Systems and methods for delivering decompression therapy |
EP3017869A1 (en) * | 2014-11-05 | 2016-05-11 | Deutsche Sporthochschule Köln | Dried-Blood-Spot-card shipping and storage container |
US10398604B2 (en) | 2014-12-17 | 2019-09-03 | Kci Licensing, Inc. | Dressing with offloading capability |
AU2015370584B2 (en) | 2014-12-22 | 2020-06-25 | Smith & Nephew Plc | Negative pressure wound therapy apparatus and methods |
US11246975B2 (en) | 2015-05-08 | 2022-02-15 | Kci Licensing, Inc. | Low acuity dressing with integral pump |
US10076594B2 (en) | 2015-05-18 | 2018-09-18 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
US10583228B2 (en) | 2015-07-28 | 2020-03-10 | J&M Shuler Medical, Inc. | Sub-atmospheric wound therapy systems and methods |
US11096830B2 (en) | 2015-09-01 | 2021-08-24 | Kci Licensing, Inc. | Dressing with increased apposition force |
WO2017048866A1 (en) | 2015-09-17 | 2017-03-23 | Kci Licensing, Inc. | Hybrid silicone and acrylic adhesive cover for use with wound treatment |
GB2555584B (en) | 2016-10-28 | 2020-05-27 | Smith & Nephew | Multi-layered wound dressing and method of manufacture |
GB201718014D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Dressing for negative pressure wound therapy with filter |
GB201811449D0 (en) | 2018-07-12 | 2018-08-29 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy |
EP3880270A4 (en) * | 2019-02-07 | 2022-07-06 | Bearpac Medical, LLC | Fluid removal system |
CN110479024A (en) * | 2019-09-17 | 2019-11-22 | 杭州溢达机电制造有限公司 | Zero gas consumption waste heat absorption drier |
US10828202B1 (en) * | 2019-10-03 | 2020-11-10 | Aatru Medical, LLC | Negative pressure treatment including mechanical and chemical pump |
GB202000574D0 (en) | 2020-01-15 | 2020-02-26 | Smith & Nephew | Fluidic connectors for negative pressure wound therapy |
US11160917B2 (en) | 2020-01-22 | 2021-11-02 | J&M Shuler Medical Inc. | Negative pressure wound therapy barrier |
CN111228531A (en) * | 2020-03-25 | 2020-06-05 | 杨刚 | Sterilization and disinfection device |
Citations (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2547758A (en) * | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) * | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
US2969057A (en) * | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3026874A (en) * | 1959-11-06 | 1962-03-27 | Robert C Stevens | Wound shield |
US3089492A (en) * | 1961-05-11 | 1963-05-14 | Owens Neal | Wet surgical dressing |
US3367332A (en) * | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3568675A (en) * | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3648692A (en) * | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US4080970A (en) * | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4096853A (en) * | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
US4139004A (en) * | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4184510A (en) * | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4245630A (en) * | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4256109A (en) * | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4261363A (en) * | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4261360A (en) * | 1979-11-05 | 1981-04-14 | Urethral Devices Research, Inc. | Transurethral irrigation pressure controller |
US4275721A (en) * | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4333468A (en) * | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4382441A (en) * | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
US4444545A (en) * | 1982-04-08 | 1984-04-24 | Sanders David F | Pump control system |
US4525166A (en) * | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4525374A (en) * | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
US4569348A (en) * | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
US4640688A (en) * | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4655754A (en) * | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4664662A (en) * | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
US4733659A (en) * | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
US4743232A (en) * | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
US4753230A (en) * | 1985-06-12 | 1988-06-28 | J. R. Crompton P.L.C. | Wound dressing |
US4820291A (en) * | 1986-02-27 | 1989-04-11 | Nippon Medical Supply Corporation | Urinary applicance |
US4826494A (en) * | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4838883A (en) * | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4840187A (en) * | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
US4897081A (en) * | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US4906233A (en) * | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4906240A (en) * | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4919654A (en) * | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
US4930997A (en) * | 1987-08-19 | 1990-06-05 | Bennett Alan N | Portable medical suction device |
US4985019A (en) * | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
US4996128A (en) * | 1990-03-12 | 1991-02-26 | Nova Manufacturing, Inc. | Rechargeable battery |
US5002541A (en) * | 1984-06-19 | 1991-03-26 | Martin And Associates, Inc. | Method and device for removing and collecting urine |
US5086170A (en) * | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
US5092858A (en) * | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
US5100395A (en) * | 1989-10-06 | 1992-03-31 | Lior Rosenberg | Fluid drain for wounds |
US5100396A (en) * | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5176663A (en) * | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US5180375A (en) * | 1991-05-02 | 1993-01-19 | Feibus Miriam H | Woven surgical drain and woven surgical sponge |
US5211639A (en) * | 1990-05-30 | 1993-05-18 | Wilk Peter J | Evacuator assembly |
US5215522A (en) * | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US5278100A (en) * | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5279602A (en) * | 1989-03-30 | 1994-01-18 | Abbott Laboratories | Suction drainage infection control system |
US5279550A (en) * | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5298015A (en) * | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5419769A (en) * | 1992-10-23 | 1995-05-30 | Smiths Industries Medical Systems, Inc. | Suction systems |
US5522808A (en) * | 1992-03-16 | 1996-06-04 | Envirosurgical, Inc. | Surgery plume filter device and method of filtering |
US5527293A (en) * | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5599292A (en) * | 1990-07-24 | 1997-02-04 | Yoon; Inbae | Multifunctional devices for use in endoscopic surgical procedures and methods therefor |
US5607388A (en) * | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US5628735A (en) * | 1996-01-11 | 1997-05-13 | Skow; Joseph I. | Surgical device for wicking and removing fluid |
US5634893A (en) * | 1995-04-24 | 1997-06-03 | Haemonetics Corporation | Autotransfusion apparatus |
US5733337A (en) * | 1995-04-07 | 1998-03-31 | Organogenesis, Inc. | Tissue repair fabric |
US5741237A (en) * | 1995-04-10 | 1998-04-21 | Walker; Kenneth Gordon | System for disposal of fluids |
US5885237A (en) * | 1993-10-05 | 1999-03-23 | Bristol-Myers Squibb Company | Trimmable wound dressing |
US5891111A (en) * | 1997-04-14 | 1999-04-06 | Porges | Flexible surgical drain with a plurality of individual ducts |
US6024731A (en) * | 1995-10-18 | 2000-02-15 | Summit Medical Ltd. | Wound drainage system |
US6175053B1 (en) * | 1997-06-18 | 2001-01-16 | Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forrestry And Fisheries | Wound dressing material containing silk fibroin and sericin as main component and method for preparing same |
US6179804B1 (en) * | 1999-08-18 | 2001-01-30 | Oxypatch, Llc | Treatment apparatus for wounds |
US6210360B1 (en) * | 1999-05-26 | 2001-04-03 | Carl Cheung Tung Kong | Fluid displacement pumps |
US20010001835A1 (en) * | 1998-07-06 | 2001-05-24 | Greene George R. | Vascular embolization with an expansible implant |
US6345623B1 (en) * | 1997-09-12 | 2002-02-12 | Keith Patrick Heaton | Surgical drape and suction head for wound treatment |
US6352525B1 (en) * | 1999-09-22 | 2002-03-05 | Akio Wakabayashi | Portable modular chest drainage system |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6365149B2 (en) * | 1999-06-30 | 2002-04-02 | Ethicon, Inc. | Porous tissue scaffoldings for the repair or regeneration of tissue |
US6503450B1 (en) * | 1998-12-30 | 2003-01-07 | Cardiovention, Inc. | Integrated blood oxygenator and pump system |
US20030015203A1 (en) * | 1995-12-01 | 2003-01-23 | Joshua Makower | Device, system and method for implantation of filaments and particles in the body |
US6514515B1 (en) * | 1999-03-04 | 2003-02-04 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
US20030040809A1 (en) * | 1999-03-20 | 2003-02-27 | Helmut Goldmann | Flat implant for use in surgery |
US6530472B2 (en) * | 2000-02-25 | 2003-03-11 | Technicor, Inc. | Shipping container with anti-leak material |
US6536291B1 (en) * | 1999-07-02 | 2003-03-25 | Weatherford/Lamb, Inc. | Optical flow rate measurement using unsteady pressures |
US6548569B1 (en) * | 1999-03-25 | 2003-04-15 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6557704B1 (en) * | 1999-09-08 | 2003-05-06 | Kci Licensing, Inc. | Arrangement for portable pumping unit |
US6566575B1 (en) * | 2000-02-15 | 2003-05-20 | 3M Innovative Properties Company | Patterned absorbent article for wound dressing |
US6685681B2 (en) * | 2000-11-29 | 2004-02-03 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US20040030304A1 (en) * | 2000-05-09 | 2004-02-12 | Kenneth Hunt | Abdominal wound dressing |
US6693180B2 (en) * | 2002-04-04 | 2004-02-17 | China Textile Institute | Composite sponge wound dressing made of β-Chitin and Chitosan and method for producing the same |
US6695823B1 (en) * | 1999-04-09 | 2004-02-24 | Kci Licensing, Inc. | Wound therapy device |
US20040073151A1 (en) * | 2002-09-03 | 2004-04-15 | Weston Richard Scott | Reduced pressure treatment system |
US6840960B2 (en) * | 2002-09-27 | 2005-01-11 | Stephen K. Bubb | Porous implant system and treatment method |
US6855153B2 (en) * | 2001-05-01 | 2005-02-15 | Vahid Saadat | Embolic balloon |
US6856821B2 (en) * | 2000-05-26 | 2005-02-15 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US6860873B2 (en) * | 1999-03-12 | 2005-03-01 | Integ, Inc. | Methods for collecting body fluid |
US20050065484A1 (en) * | 2003-09-10 | 2005-03-24 | Watson Richard L. | Wound healing apparatus with bioabsorbable material and suction tubes |
US6994702B1 (en) * | 1999-04-06 | 2006-02-07 | Kci Licensing, Inc. | Vacuum assisted closure pad with adaptation for phototherapy |
US7182758B2 (en) * | 2003-11-17 | 2007-02-27 | Mccraw John B | Apparatus and method for drainage |
US7361184B2 (en) * | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1355846A (en) | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
US2682873A (en) | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
NL189176B (en) | 1956-07-13 | 1900-01-01 | Hisamitsu Pharmaceutical Co | PLASTER BASED ON A SYNTHETIC RUBBER. |
US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
US3142298A (en) | 1962-01-29 | 1964-07-28 | William L Koski | Stomach pump apparatus |
US3472230A (en) | 1966-12-19 | 1969-10-14 | Fogarty T J | Umbrella catheter |
US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
US3682180A (en) | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
US4370983A (en) | 1971-01-20 | 1983-02-01 | Lichtenstein Eric Stefan | Computer-control medical care system |
US3826254A (en) | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
DE2640413C3 (en) | 1976-09-08 | 1980-03-27 | Richard Wolf Gmbh, 7134 Knittlingen | Catheter monitor |
GB1562244A (en) | 1976-11-11 | 1980-03-05 | Lock P M | Wound dressing materials |
US4165748A (en) | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4266545A (en) | 1979-04-06 | 1981-05-12 | Moss James P | Portable suction device for collecting fluids from a closed wound |
IE49193B1 (en) | 1979-04-18 | 1985-08-21 | Courtaulds Ltd | Process for making a non-woven alginate fabric useful as a wound dressing |
US4284079A (en) | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
EP0035583B1 (en) | 1980-03-11 | 1985-08-14 | Schmid, Eduard, Dr.Dr.med. | Skin graft pressure bandage |
US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
US4536217A (en) | 1980-07-30 | 1985-08-20 | Ceskoslovenska Akademie Ved Of Praha | Absorbing cover for wounds and the method for manufacturing thereof |
US4465485A (en) | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
US4392853A (en) | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4409974A (en) | 1981-06-29 | 1983-10-18 | Freedland Jeffrey A | Bone-fixating surgical implant device |
US4392858A (en) | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
SE429197B (en) | 1981-10-14 | 1983-08-22 | Frese Nielsen | SAR TREATMENT DEVICE |
US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
US4475909A (en) | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
EP0100148B1 (en) | 1982-07-06 | 1986-01-08 | Dow Corning Limited | Medical-surgical dressing and a process for the production thereof |
NZ206837A (en) | 1983-01-27 | 1986-08-08 | Johnson & Johnson Prod Inc | Thin film adhesive dressing:backing material in three sections |
US4533352A (en) | 1983-03-07 | 1985-08-06 | Pmt Inc. | Microsurgical flexible suction mat |
US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
US4540412A (en) | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
US4468219A (en) | 1983-12-20 | 1984-08-28 | International Business Machines Corporation | Pump flow rate compensation system |
GB2157958A (en) | 1984-05-03 | 1985-11-06 | Ernest Edward Austen Bedding | Ball game net support |
US4872450A (en) | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
US5037397A (en) | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
US4758220A (en) | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
WO1987004626A1 (en) | 1986-01-31 | 1987-08-13 | Osmond, Roger, L., W. | Suction system for wound and gastro-intestinal drainage |
GB2195255B (en) | 1986-09-30 | 1991-05-01 | Vacutec Uk Limited | Apparatus for vacuum treatment of an epidermal surface |
DE3634569A1 (en) | 1986-10-10 | 1988-04-21 | Sachse Hans E | CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS |
NL8602662A (en) | 1986-10-23 | 1988-05-16 | Patentico Ltd | COVER PLATE TO BE ADAPTED. |
US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
JPS63135179A (en) | 1986-11-26 | 1988-06-07 | 立花 俊郎 | Subcataneous drug administration set |
GB8628564D0 (en) | 1986-11-28 | 1987-01-07 | Smiths Industries Plc | Anti-foaming agent suction apparatus |
DE3880129D1 (en) | 1987-01-20 | 1993-05-13 | Medinorm Ag | DEVICE FOR SUCTIONING WINDING LIQUIDS. |
GB8706116D0 (en) | 1987-03-14 | 1987-04-15 | Smith & Nephew Ass | Adhesive dressings |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
US5356386A (en) | 1987-06-05 | 1994-10-18 | Uresil Corporation | Apparatus for locating body cavities |
US4863449A (en) | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
GB8812803D0 (en) | 1988-05-28 | 1988-06-29 | Smiths Industries Plc | Medico-surgical containers |
US4957484A (en) | 1988-07-26 | 1990-09-18 | Automedix Sciences, Inc. | Lymph access catheters and methods of administration |
US5000741A (en) | 1988-08-22 | 1991-03-19 | Kalt Medical Corporation | Transparent tracheostomy tube dressing |
US5456251A (en) | 1988-08-26 | 1995-10-10 | Mountpelier Investments, S.A. | Remote sensing tonometric catheter apparatus and method |
GB8906100D0 (en) | 1989-03-16 | 1989-04-26 | Smith & Nephew | Laminates |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US5358494A (en) | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
US5232453A (en) | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
GB2235877A (en) | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
US5134994A (en) | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
DE4037931A1 (en) | 1990-11-23 | 1992-05-27 | Detlef Dr Ing Behrend | Swab for resorbable protection of wound cavity - with soft foam body in soft foam casing with embedded resorbable hollow fibres connected to tube |
US5149331A (en) | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
US5636643A (en) | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US5645081A (en) | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US5242404A (en) * | 1992-02-12 | 1993-09-07 | American Cyanamid Company | Aspiration control system |
US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
GB9206504D0 (en) | 1992-03-25 | 1992-05-06 | Jevco Ltd | Heteromorphic sponges as wound implants |
FR2690617B1 (en) | 1992-04-29 | 1994-06-24 | Cbh Textile | TRANSPARENT ADHESIVE DRESSING. |
US5458582A (en) | 1992-06-15 | 1995-10-17 | Nakao; Naomi L. | Postoperative anesthetic delivery device and associated method for the postoperative treatment of pain |
US5678564A (en) | 1992-08-07 | 1997-10-21 | Bristol Myers Squibb | Liquid removal system |
DE4306478A1 (en) | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
US5681579A (en) | 1993-03-22 | 1997-10-28 | E.R. Squibb & Sons, Inc. | Polymeric support wound dressing |
US5565210A (en) | 1993-03-22 | 1996-10-15 | Johnson & Johnson Medical, Inc. | Bioabsorbable wound implant materials |
US5254084A (en) | 1993-03-26 | 1993-10-19 | Geary Gregory L | Peritoneal catheter device for dialysis |
US5342376A (en) | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US6241747B1 (en) | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US5344415A (en) | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
IE69360B1 (en) | 1993-07-01 | 1996-09-04 | Abbott Lab | Gelling treatment for suction drainage system |
US5466229A (en) * | 1993-08-06 | 1995-11-14 | Davstar, Inc. | Fluid collection system |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US5556375A (en) | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5449347A (en) * | 1994-07-05 | 1995-09-12 | The United States Of America As Represented By The Secretary Of The Air Force | Patient transport, plural power source suction apparatus |
US5664270A (en) | 1994-07-19 | 1997-09-09 | Kinetic Concepts, Inc. | Patient interface system |
ATE226838T1 (en) | 1994-08-22 | 2002-11-15 | Kinetic Concepts Inc | CANISTER FOR WOUND DRAINAGE |
JP3712413B2 (en) | 1994-10-11 | 2005-11-02 | リサーチ メディカル プロプライエタリー リミテッド | Improved wound drain system |
EP0716098B1 (en) | 1994-12-08 | 1999-03-17 | Kuraray Co., Ltd. | Wound dressing |
DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
US20020095218A1 (en) | 1996-03-12 | 2002-07-18 | Carr Robert M. | Tissue repair fabric |
GB9509943D0 (en) | 1995-05-17 | 1995-07-12 | British United Shoe Machinery | Wound dressing |
GB9523253D0 (en) | 1995-11-14 | 1996-01-17 | Mediscus Prod Ltd | Portable wound treatment apparatus |
US5945004A (en) | 1996-02-01 | 1999-08-31 | Daiken Iki Co., Ltd. | Method and apparatus for treating waste liquids containing body fluids |
US5827246A (en) | 1996-02-28 | 1998-10-27 | Tecnol Medical Products, Inc. | Vacuum pad for collecting potentially hazardous fluids |
US6949116B2 (en) | 1996-05-08 | 2005-09-27 | Carag Ag | Device for plugging an opening such as in a wall of a hollow or tubular organ including biodegradable elements |
US5836970A (en) | 1996-08-02 | 1998-11-17 | The Kendall Company | Hemostatic wound dressing |
US5776119A (en) | 1996-09-30 | 1998-07-07 | Bilbo; Sharon C. | Portable suction unit |
US5977428A (en) | 1996-12-20 | 1999-11-02 | Procyte Corporation | Absorbent hydrogel particles and use thereof in wound dressings |
GB2324732B (en) | 1997-05-02 | 2001-09-26 | Johnson & Johnson Medical | Absorbent wound dressings |
DE19722075C1 (en) | 1997-05-27 | 1998-10-01 | Wilhelm Dr Med Fleischmann | Medication supply to open wounds |
US6152902A (en) | 1997-06-03 | 2000-11-28 | Ethicon, Inc. | Method and apparatus for collecting surgical fluids |
FR2766376B1 (en) | 1997-07-25 | 1999-10-22 | Lhd Lab Hygiene Dietetique | WOUND THERAPEUTIC TREATMENT DEVICE |
US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US5928174A (en) | 1997-11-14 | 1999-07-27 | Acrymed | Wound dressing device |
SE516777C2 (en) | 1997-12-03 | 2002-02-26 | Sca Hygiene Prod Ab | Absorbent articles with layers of continuous fibers |
US6071267A (en) | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US5974344A (en) | 1998-03-02 | 1999-10-26 | Shoemaker, Ii; Charles | Wound care electrode |
US6095998A (en) | 1998-07-29 | 2000-08-01 | The Procter & Gamble Company | Expandable bag tampon and spreading tampon applicator therefor |
US6248112B1 (en) | 1998-09-30 | 2001-06-19 | C. R. Bard, Inc. | Implant delivery system |
US6296657B1 (en) | 1998-10-07 | 2001-10-02 | Gregory G. Brucker | Vascular sealing device and method |
US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
US6767334B1 (en) | 1998-12-23 | 2004-07-27 | Kci Licensing, Inc. | Method and apparatus for wound treatment |
US6126675A (en) | 1999-01-11 | 2000-10-03 | Ethicon, Inc. | Bioabsorbable device and method for sealing vascular punctures |
US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
US7799004B2 (en) | 2001-03-05 | 2010-09-21 | Kci Licensing, Inc. | Negative pressure wound treatment apparatus and infection identification system and method |
US6991643B2 (en) | 2000-12-20 | 2006-01-31 | Usgi Medical Inc. | Multi-barbed device for retaining tissue in apposition and methods of use |
ES2307552T3 (en) | 1999-11-29 | 2008-12-01 | Hill-Rom Services, Inc. | WOUND TREATMENT DEVICE. |
US6764462B2 (en) | 2000-11-29 | 2004-07-20 | Hill-Rom Services Inc. | Wound treatment apparatus |
ES2220734T3 (en) | 2000-02-24 | 2004-12-16 | Venetec International, Inc. | UNIVERSAL FIXING SYSTEM FOR CATETER. |
SK17982002A3 (en) | 2000-05-22 | 2003-04-01 | Arthur C. Coffey | Combination SIS and vacuum bandage and method |
US6855135B2 (en) | 2000-11-29 | 2005-02-15 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US6695867B2 (en) | 2002-02-21 | 2004-02-24 | Integrated Vascular Systems, Inc. | Plunger apparatus and methods for delivering a closure device |
US7700819B2 (en) | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
US7070584B2 (en) | 2001-02-20 | 2006-07-04 | Kci Licensing, Inc. | Biocompatible wound dressing |
US6540705B2 (en) | 2001-02-22 | 2003-04-01 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
US6656488B2 (en) | 2001-04-11 | 2003-12-02 | Ethicon Endo-Surgery, Inc. | Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering |
WO2002092783A2 (en) | 2001-05-15 | 2002-11-21 | Children's Medical Center Corporation | Methods and apparatus for application of micro-mechanical forces to tissues |
US20050261780A1 (en) | 2001-06-08 | 2005-11-24 | Harri Heino | Form-fitting bioabsorbable mesh implant |
SE524111C2 (en) | 2001-09-28 | 2004-06-29 | Jan Otto Solem | A method and device for organ recovery |
US6648862B2 (en) | 2001-11-20 | 2003-11-18 | Spheric Products, Ltd. | Personally portable vacuum desiccator |
US20030212357A1 (en) | 2002-05-10 | 2003-11-13 | Pace Edgar Alan | Method and apparatus for treating wounds with oxygen and reduced pressure |
US20030225347A1 (en) | 2002-06-03 | 2003-12-04 | Argenta Louis C. | Directed tissue growth employing reduced pressure |
EP1599124B1 (en) | 2003-02-07 | 2010-03-31 | Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California | Surgical drain with sensors for tissue monitoring |
US7790945B1 (en) | 2004-04-05 | 2010-09-07 | Kci Licensing, Inc. | Wound dressing with absorption and suction capabilities |
-
2001
- 2001-11-20 US US09/996,970 patent/US6648862B2/en not_active Ceased
-
2003
- 2003-11-17 US US10/715,164 patent/US20040167482A1/en not_active Abandoned
-
2009
- 2009-10-16 US US12/580,991 patent/USRE42834E1/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2547758A (en) * | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) * | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
US2969057A (en) * | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US3026874A (en) * | 1959-11-06 | 1962-03-27 | Robert C Stevens | Wound shield |
US3089492A (en) * | 1961-05-11 | 1963-05-14 | Owens Neal | Wet surgical dressing |
US3367332A (en) * | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3568675A (en) * | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
US3648692A (en) * | 1970-12-07 | 1972-03-14 | Parke Davis & Co | Medical-surgical dressing for burns and the like |
US4096853A (en) * | 1975-06-21 | 1978-06-27 | Hoechst Aktiengesellschaft | Device for the introduction of contrast medium into an anus praeter |
US4245630A (en) * | 1976-10-08 | 1981-01-20 | T. J. Smith & Nephew, Ltd. | Tearable composite strip of materials |
US4080970A (en) * | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4139004A (en) * | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4184510A (en) * | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4256109A (en) * | 1978-07-10 | 1981-03-17 | Nichols Robert L | Shut off valve for medical suction apparatus |
US4275721A (en) * | 1978-11-28 | 1981-06-30 | Landstingens Inkopscentral Lic, Ekonomisk Forening | Vein catheter bandage |
US4382441A (en) * | 1978-12-06 | 1983-05-10 | Svedman Paul | Device for treating tissues, for example skin |
US4261360A (en) * | 1979-11-05 | 1981-04-14 | Urethral Devices Research, Inc. | Transurethral irrigation pressure controller |
US4261363A (en) * | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4569348A (en) * | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
US4333468A (en) * | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4525166A (en) * | 1981-11-21 | 1985-06-25 | Intermedicat Gmbh | Rolled flexible medical suction drainage device |
US4444545A (en) * | 1982-04-08 | 1984-04-24 | Sanders David F | Pump control system |
US4525374A (en) * | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
US4897081A (en) * | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US5002541A (en) * | 1984-06-19 | 1991-03-26 | Martin And Associates, Inc. | Method and device for removing and collecting urine |
US5215522A (en) * | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
US4664662A (en) * | 1984-08-02 | 1987-05-12 | Smith And Nephew Associated Companies Plc | Wound dressing |
US4655754A (en) * | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4826494A (en) * | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4753230A (en) * | 1985-06-12 | 1988-06-28 | J. R. Crompton P.L.C. | Wound dressing |
US4640688A (en) * | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4733659A (en) * | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
US4820291A (en) * | 1986-02-27 | 1989-04-11 | Nippon Medical Supply Corporation | Urinary applicance |
US4838883A (en) * | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4906233A (en) * | 1986-05-29 | 1990-03-06 | Terumo Kabushiki Kaisha | Method of securing a catheter body to a human skin surface |
US4840187A (en) * | 1986-09-11 | 1989-06-20 | Bard Limited | Sheath applicator |
US4743232A (en) * | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
US4930997A (en) * | 1987-08-19 | 1990-06-05 | Bennett Alan N | Portable medical suction device |
US5176663A (en) * | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US4906240A (en) * | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4985019A (en) * | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
US4919654A (en) * | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
US5086170A (en) * | 1989-01-16 | 1992-02-04 | Roussel Uclaf | Process for the preparation of azabicyclo compounds |
US5279602A (en) * | 1989-03-30 | 1994-01-18 | Abbott Laboratories | Suction drainage infection control system |
US5100396A (en) * | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
US5527293A (en) * | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5298015A (en) * | 1989-07-11 | 1994-03-29 | Nippon Zeon Co., Ltd. | Wound dressing having a porous structure |
US5100395A (en) * | 1989-10-06 | 1992-03-31 | Lior Rosenberg | Fluid drain for wounds |
US4996128A (en) * | 1990-03-12 | 1991-02-26 | Nova Manufacturing, Inc. | Rechargeable battery |
US5092858A (en) * | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
US5211639A (en) * | 1990-05-30 | 1993-05-18 | Wilk Peter J | Evacuator assembly |
US5599292A (en) * | 1990-07-24 | 1997-02-04 | Yoon; Inbae | Multifunctional devices for use in endoscopic surgical procedures and methods therefor |
US5180375A (en) * | 1991-05-02 | 1993-01-19 | Feibus Miriam H | Woven surgical drain and woven surgical sponge |
US5278100A (en) * | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5279550A (en) * | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5522808A (en) * | 1992-03-16 | 1996-06-04 | Envirosurgical, Inc. | Surgery plume filter device and method of filtering |
US5419769A (en) * | 1992-10-23 | 1995-05-30 | Smiths Industries Medical Systems, Inc. | Suction systems |
US5885237A (en) * | 1993-10-05 | 1999-03-23 | Bristol-Myers Squibb Company | Trimmable wound dressing |
US5607388A (en) * | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US5733337A (en) * | 1995-04-07 | 1998-03-31 | Organogenesis, Inc. | Tissue repair fabric |
US5741237A (en) * | 1995-04-10 | 1998-04-21 | Walker; Kenneth Gordon | System for disposal of fluids |
US5634893A (en) * | 1995-04-24 | 1997-06-03 | Haemonetics Corporation | Autotransfusion apparatus |
US6024731A (en) * | 1995-10-18 | 2000-02-15 | Summit Medical Ltd. | Wound drainage system |
US20030015203A1 (en) * | 1995-12-01 | 2003-01-23 | Joshua Makower | Device, system and method for implantation of filaments and particles in the body |
US6235009B1 (en) * | 1996-01-11 | 2001-05-22 | Joseph I. Skow | Surgical wicking and fluid removal platform |
US5628735A (en) * | 1996-01-11 | 1997-05-13 | Skow; Joseph I. | Surgical device for wicking and removing fluid |
US5891111A (en) * | 1997-04-14 | 1999-04-06 | Porges | Flexible surgical drain with a plurality of individual ducts |
US6175053B1 (en) * | 1997-06-18 | 2001-01-16 | Japan As Represented By Director General Of National Institute Of Sericultural And Entomological Science Ministry Of Agriculture, Forrestry And Fisheries | Wound dressing material containing silk fibroin and sericin as main component and method for preparing same |
US6345623B1 (en) * | 1997-09-12 | 2002-02-12 | Keith Patrick Heaton | Surgical drape and suction head for wound treatment |
US6553998B2 (en) * | 1997-09-12 | 2003-04-29 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US20010001835A1 (en) * | 1998-07-06 | 2001-05-24 | Greene George R. | Vascular embolization with an expansible implant |
US6356782B1 (en) * | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6503450B1 (en) * | 1998-12-30 | 2003-01-07 | Cardiovention, Inc. | Integrated blood oxygenator and pump system |
US20030072784A1 (en) * | 1999-03-04 | 2003-04-17 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
US6514515B1 (en) * | 1999-03-04 | 2003-02-04 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
US6860873B2 (en) * | 1999-03-12 | 2005-03-01 | Integ, Inc. | Methods for collecting body fluid |
US20030040809A1 (en) * | 1999-03-20 | 2003-02-27 | Helmut Goldmann | Flat implant for use in surgery |
US6548569B1 (en) * | 1999-03-25 | 2003-04-15 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US6994702B1 (en) * | 1999-04-06 | 2006-02-07 | Kci Licensing, Inc. | Vacuum assisted closure pad with adaptation for phototherapy |
US6695823B1 (en) * | 1999-04-09 | 2004-02-24 | Kci Licensing, Inc. | Wound therapy device |
US6210360B1 (en) * | 1999-05-26 | 2001-04-03 | Carl Cheung Tung Kong | Fluid displacement pumps |
US6365149B2 (en) * | 1999-06-30 | 2002-04-02 | Ethicon, Inc. | Porous tissue scaffoldings for the repair or regeneration of tissue |
US6536291B1 (en) * | 1999-07-02 | 2003-03-25 | Weatherford/Lamb, Inc. | Optical flow rate measurement using unsteady pressures |
US6179804B1 (en) * | 1999-08-18 | 2001-01-30 | Oxypatch, Llc | Treatment apparatus for wounds |
US6557704B1 (en) * | 1999-09-08 | 2003-05-06 | Kci Licensing, Inc. | Arrangement for portable pumping unit |
US6352525B1 (en) * | 1999-09-22 | 2002-03-05 | Akio Wakabayashi | Portable modular chest drainage system |
US6566575B1 (en) * | 2000-02-15 | 2003-05-20 | 3M Innovative Properties Company | Patterned absorbent article for wound dressing |
US6530472B2 (en) * | 2000-02-25 | 2003-03-11 | Technicor, Inc. | Shipping container with anti-leak material |
US20040030304A1 (en) * | 2000-05-09 | 2004-02-12 | Kenneth Hunt | Abdominal wound dressing |
US6856821B2 (en) * | 2000-05-26 | 2005-02-15 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US6685681B2 (en) * | 2000-11-29 | 2004-02-03 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US6855153B2 (en) * | 2001-05-01 | 2005-02-15 | Vahid Saadat | Embolic balloon |
US6693180B2 (en) * | 2002-04-04 | 2004-02-17 | China Textile Institute | Composite sponge wound dressing made of β-Chitin and Chitosan and method for producing the same |
US20040073151A1 (en) * | 2002-09-03 | 2004-04-15 | Weston Richard Scott | Reduced pressure treatment system |
US6840960B2 (en) * | 2002-09-27 | 2005-01-11 | Stephen K. Bubb | Porous implant system and treatment method |
US7361184B2 (en) * | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
US20050065484A1 (en) * | 2003-09-10 | 2005-03-24 | Watson Richard L. | Wound healing apparatus with bioabsorbable material and suction tubes |
US7182758B2 (en) * | 2003-11-17 | 2007-02-27 | Mccraw John B | Apparatus and method for drainage |
Cited By (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8540687B2 (en) | 1998-08-07 | 2013-09-24 | Kci Licensing, Inc. | Wound treatment apparatus |
US7794438B2 (en) | 1998-08-07 | 2010-09-14 | Alan Wayne Henley | Wound treatment apparatus |
US8021348B2 (en) | 1999-11-29 | 2011-09-20 | Kci Medical Resources | Wound treatment apparatus |
US7678090B2 (en) | 1999-11-29 | 2010-03-16 | Risk Jr James R | Wound treatment apparatus |
US7763000B2 (en) | 1999-11-29 | 2010-07-27 | Risk Jr James R | Wound treatment apparatus having a display |
US8747887B2 (en) | 2000-05-22 | 2014-06-10 | Kci Medical Resources | Combination SIS and vacuum bandage and method |
US7910791B2 (en) | 2000-05-22 | 2011-03-22 | Coffey Arthur C | Combination SIS and vacuum bandage and method |
US7988680B2 (en) | 2000-11-29 | 2011-08-02 | Kci Medical Resources | Vacuum therapy and cleansing dressing for wounds |
US7867206B2 (en) | 2000-11-29 | 2011-01-11 | Kci Licensing, Inc. | Vacuum therapy and cleansing dressing for wounds |
US8246592B2 (en) | 2000-11-29 | 2012-08-21 | Kci Medical Resources | Vacuum therapy and cleansing dressing for wounds |
US10357404B2 (en) | 2000-11-29 | 2019-07-23 | Kci Medical Resources Unlimited Company | Vacuum therapy and cleansing dressing for wounds |
US7927318B2 (en) | 2001-10-11 | 2011-04-19 | Risk Jr James Robert | Waste container for negative pressure therapy |
US8350116B2 (en) | 2001-12-26 | 2013-01-08 | Kci Medical Resources | Vacuum bandage packing |
US7723560B2 (en) | 2001-12-26 | 2010-05-25 | Lockwood Jeffrey S | Wound vacuum therapy dressing kit |
US7896864B2 (en) | 2001-12-26 | 2011-03-01 | Lockwood Jeffrey S | Vented vacuum bandage with irrigation for wound healing and method |
US8168848B2 (en) | 2002-04-10 | 2012-05-01 | KCI Medical Resources, Inc. | Access openings in vacuum bandage |
US7896856B2 (en) | 2002-08-21 | 2011-03-01 | Robert Petrosenko | Wound packing for preventing wound closure |
US10265445B2 (en) | 2002-09-03 | 2019-04-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US11298454B2 (en) | 2002-09-03 | 2022-04-12 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US8545464B2 (en) | 2002-09-03 | 2013-10-01 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US8628505B2 (en) | 2002-09-03 | 2014-01-14 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US8062273B2 (en) * | 2002-09-03 | 2011-11-22 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US11376356B2 (en) | 2002-09-03 | 2022-07-05 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US9211365B2 (en) | 2002-09-03 | 2015-12-15 | Bluesky Medical Group, Inc. | Reduced pressure treatment system |
US10278869B2 (en) | 2002-10-28 | 2019-05-07 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10842678B2 (en) | 2002-10-28 | 2020-11-24 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9452248B2 (en) | 2003-10-28 | 2016-09-27 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US8569566B2 (en) | 2003-10-28 | 2013-10-29 | Smith & Nephew, Plc | Wound cleansing apparatus in-situ |
US9446178B2 (en) | 2003-10-28 | 2016-09-20 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US11857746B2 (en) | 2003-10-28 | 2024-01-02 | Smith & Nephew Plc | Wound cleansing apparatus in-situ |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US10350339B2 (en) | 2004-04-05 | 2019-07-16 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US10105471B2 (en) | 2004-04-05 | 2018-10-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10363346B2 (en) | 2004-04-05 | 2019-07-30 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US8449509B2 (en) | 2004-04-05 | 2013-05-28 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
US9198801B2 (en) | 2004-04-05 | 2015-12-01 | Bluesky Medical Group, Inc. | Flexible reduced pressure treatment appliance |
US11730874B2 (en) | 2004-04-05 | 2023-08-22 | Smith & Nephew, Inc. | Reduced pressure treatment appliance |
US10842919B2 (en) | 2004-04-05 | 2020-11-24 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10207035B2 (en) | 2004-05-21 | 2019-02-19 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US20070055209A1 (en) * | 2005-09-07 | 2007-03-08 | Patel Harish A | Self contained wound dressing apparatus |
US9629986B2 (en) | 2005-09-07 | 2017-04-25 | Smith & Nephew, Inc. | Self contained wound dressing apparatus |
US20130138060A1 (en) * | 2005-09-07 | 2013-05-30 | Tyco Healthcare Group Lp | Self contained wound dressing with micropump |
US7699823B2 (en) | 2005-09-07 | 2010-04-20 | Tyco Healthcare Group Lp | Wound dressing with vacuum reservoir |
US10384041B2 (en) | 2005-09-07 | 2019-08-20 | Smith & Nephew, Inc. | Self contained wound dressing apparatus |
US11737925B2 (en) | 2005-09-07 | 2023-08-29 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US7569742B2 (en) | 2005-09-07 | 2009-08-04 | Tyco Healthcare Group Lp | Self contained wound dressing with micropump |
US9456928B2 (en) | 2005-09-07 | 2016-10-04 | Smith & Nephew, Inc. | Wound dressing with vacuum reservoir |
US8409157B2 (en) | 2005-09-07 | 2013-04-02 | Covidien Lp | Wound dressing with vacuum reservoir |
US10463773B2 (en) | 2005-09-07 | 2019-11-05 | Smith & Nephew, Inc. | Wound dressing with vacuum reservoir |
US20070066946A1 (en) * | 2005-09-07 | 2007-03-22 | Kurt Haggstrom | Wound dressing with vacuum reservoir |
US8207392B2 (en) | 2005-09-07 | 2012-06-26 | Tyco Healthcare Group Lp | Self contained wound dressing with micropump |
US8444612B2 (en) | 2005-09-07 | 2013-05-21 | Covidien Lp | Self contained wound dressing apparatus |
US20150065965A1 (en) * | 2005-09-07 | 2015-03-05 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US10201644B2 (en) * | 2005-09-07 | 2019-02-12 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US8956336B2 (en) | 2005-09-07 | 2015-02-17 | Smith & Nephew, Inc. | Wound dressing with vacuum reservoir |
US11896754B2 (en) | 2005-09-07 | 2024-02-13 | Smith & Nephew, Inc. | Wound dressing with vacuum reservoir |
US11278658B2 (en) | 2005-09-07 | 2022-03-22 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US8829263B2 (en) * | 2005-09-07 | 2014-09-09 | Smith & Nephew, Inc. | Self contained wound dressing with micropump |
US20070078366A1 (en) * | 2005-09-07 | 2007-04-05 | Kurt Haggstrom | Self contained wound dressing with micropump |
US7838717B2 (en) | 2005-09-07 | 2010-11-23 | Tyco Healthcare Group Lp | Self contained wound dressing with micropump |
US11813394B2 (en) | 2006-05-11 | 2023-11-14 | Smith & Nephew, Inc. | Device and method for wound therapy |
US11517656B2 (en) | 2006-05-11 | 2022-12-06 | Smith & Nephew, Inc. | Device and method for wound therapy |
US8460255B2 (en) | 2006-05-11 | 2013-06-11 | Kalypto Medical, Inc. | Device and method for wound therapy |
US10744242B2 (en) | 2006-05-11 | 2020-08-18 | Smith & Nephew, Inc. | Device and method for wound therapy |
US12128169B2 (en) | 2006-05-11 | 2024-10-29 | Smith & Nephew, Inc. | Device and method for wound therapy |
US20070282309A1 (en) * | 2006-06-02 | 2007-12-06 | Bengtson Bradley P | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
US8715267B2 (en) * | 2006-06-02 | 2014-05-06 | Kci Medical Resources | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
US11701263B2 (en) | 2006-09-26 | 2023-07-18 | Smith & Nephew, Inc. | Wound dressing |
US11801165B2 (en) | 2006-09-26 | 2023-10-31 | Smith & Nephew, Inc. | Wound dressing |
US11141325B2 (en) | 2006-09-28 | 2021-10-12 | Smith & Nephew, Inc. | Portable wound therapy system |
US12115302B2 (en) | 2006-09-28 | 2024-10-15 | Smith & Nephew, Inc. | Portable wound therapy system |
US10130526B2 (en) | 2006-09-28 | 2018-11-20 | Smith & Nephew, Inc. | Portable wound therapy system |
US11850348B2 (en) | 2006-10-13 | 2023-12-26 | Smith & Nephew, Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US8308714B2 (en) | 2006-10-13 | 2012-11-13 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US10709826B2 (en) | 2006-10-13 | 2020-07-14 | Smith & Nephew, Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US8663200B2 (en) | 2006-10-13 | 2014-03-04 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US9636440B2 (en) | 2006-10-13 | 2017-05-02 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US20100100075A1 (en) * | 2006-10-13 | 2010-04-22 | Bluesky Medical Group Inc. | Control circuit and method for negative pressure wound treatment apparatus |
US9050136B2 (en) | 2006-11-17 | 2015-06-09 | Wake Forest University Health Sciences | External fixation assembly and method of use |
US8454603B2 (en) | 2006-11-17 | 2013-06-04 | Wake Forest University Health Sciences | External fixation assembly and method of use |
US7931651B2 (en) | 2006-11-17 | 2011-04-26 | Wake Lake University Health Sciences | External fixation assembly and method of use |
US8377016B2 (en) | 2007-01-10 | 2013-02-19 | Wake Forest University Health Sciences | Apparatus and method for wound treatment employing periodic sub-atmospheric pressure |
US9737455B2 (en) | 2007-01-10 | 2017-08-22 | Wake Forest Univeristy Health Sciences | Apparatus and method for wound treatment employing periodic sub-atmospheric pressure |
US11969541B2 (en) | 2007-07-02 | 2024-04-30 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US10328187B2 (en) | 2007-07-02 | 2019-06-25 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
US9956327B2 (en) | 2007-07-02 | 2018-05-01 | Smith & Nephew Plc | Wound treatment apparatus with exudate volume reduction by heat |
US20090012441A1 (en) * | 2007-07-06 | 2009-01-08 | Sharon Mulligan | Subatmospheric pressure wound therapy dressing |
US7790946B2 (en) | 2007-07-06 | 2010-09-07 | Tyco Healthcare Group Lp | Subatmospheric pressure wound therapy dressing |
US20110071483A1 (en) * | 2007-08-06 | 2011-03-24 | Benjamin Gordon | Apparatus |
US8974429B2 (en) * | 2007-08-06 | 2015-03-10 | Smith & Nephew Plc | Apparatus and method for applying topical negative pressure |
US8834520B2 (en) | 2007-10-10 | 2014-09-16 | Wake Forest University | Devices and methods for treating spinal cord tissue |
US20100211029A1 (en) * | 2007-10-18 | 2010-08-19 | Convatec Technologies Inc. | Aspiration system for removing liquid other than urine discharged by the human body |
US10555839B2 (en) | 2007-11-21 | 2020-02-11 | Smith & Nephew Plc | Wound dressing |
US11179276B2 (en) | 2007-11-21 | 2021-11-23 | Smith & Nephew Plc | Wound dressing |
US9956121B2 (en) | 2007-11-21 | 2018-05-01 | Smith & Nephew Plc | Wound dressing |
US9962474B2 (en) | 2007-11-21 | 2018-05-08 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US10744041B2 (en) | 2007-11-21 | 2020-08-18 | Smith & Nephew Plc | Wound dressing |
US8808274B2 (en) | 2007-11-21 | 2014-08-19 | Smith & Nephew Plc | Wound dressing |
US10016309B2 (en) | 2007-11-21 | 2018-07-10 | Smith & Nephew Plc | Wound dressing |
US20110054421A1 (en) * | 2007-11-21 | 2011-03-03 | Smith & Nephew Plc | Wound dressing |
US11364151B2 (en) | 2007-11-21 | 2022-06-21 | Smith & Nephew Plc | Wound dressing |
US9844475B2 (en) | 2007-11-21 | 2017-12-19 | Smith & Nephew Plc | Wound dressing |
US11129751B2 (en) | 2007-11-21 | 2021-09-28 | Smith & Nephew Plc | Wound dressing |
US11701266B2 (en) | 2007-11-21 | 2023-07-18 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US8764732B2 (en) | 2007-11-21 | 2014-07-01 | Smith & Nephew Plc | Wound dressing |
US11110010B2 (en) | 2007-11-21 | 2021-09-07 | Smith & Nephew Plc | Wound dressing |
US10123909B2 (en) | 2007-11-21 | 2018-11-13 | Smith & Nephew Plc | Wound dressing |
US9220822B2 (en) | 2007-11-21 | 2015-12-29 | Smith & Nephew Plc | Wound dressing |
US11351064B2 (en) | 2007-11-21 | 2022-06-07 | Smith & Nephew Plc | Wound dressing |
US8715256B2 (en) | 2007-11-21 | 2014-05-06 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11974902B2 (en) | 2007-11-21 | 2024-05-07 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US10231875B2 (en) | 2007-11-21 | 2019-03-19 | Smith & Nephew Plc | Wound dressing |
US11045598B2 (en) | 2007-11-21 | 2021-06-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US8764794B2 (en) | 2008-01-09 | 2014-07-01 | Wake Forest University Health Sciences | Device and method for treating central nervous system pathology |
US8267960B2 (en) | 2008-01-09 | 2012-09-18 | Wake Forest University Health Sciences | Device and method for treating central nervous system pathology |
US10071190B2 (en) | 2008-02-27 | 2018-09-11 | Smith & Nephew Plc | Fluid collection |
US11141520B2 (en) | 2008-02-27 | 2021-10-12 | Smith & Nephew Plc | Fluid collection |
US9974890B2 (en) | 2008-05-21 | 2018-05-22 | Smith & Nephew, Inc. | Wound therapy system and related methods therefor |
US10967106B2 (en) | 2008-05-21 | 2021-04-06 | Smith & Nephew, Inc. | Wound therapy system and related methods therefor |
US10912869B2 (en) | 2008-05-21 | 2021-02-09 | Smith & Nephew, Inc. | Wound therapy system with related methods therefor |
US8257326B2 (en) | 2008-06-30 | 2012-09-04 | Tyco Healthcare Group Lp | Apparatus for enhancing wound healing |
US8257328B2 (en) | 2008-07-08 | 2012-09-04 | Tyco Healthcare Group Lp | Portable negative pressure wound therapy device |
US9289193B2 (en) | 2008-07-18 | 2016-03-22 | Wake Forest University Health Sciences | Apparatus and method for cardiac tissue modulation by topical application of vacuum to minimize cell death and damage |
US10076318B2 (en) | 2008-07-18 | 2018-09-18 | Wake Forest University Health Sciences | Apparatus and method for cardiac tissue modulation by topical application of vacuum to minimize cell death and damage |
US10016545B2 (en) | 2008-07-21 | 2018-07-10 | Smith & Nephew, Inc. | Thin film wound dressing |
US9017302B2 (en) | 2008-07-21 | 2015-04-28 | Smith & Nephew, Inc. | Thin film wound dressing |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
US8777911B2 (en) | 2008-08-08 | 2014-07-15 | Smith & Nephew, Inc. | Wound dressing of continuous fibers |
US9474654B2 (en) | 2008-08-08 | 2016-10-25 | Smith & Nephew, Inc. | Wound dressing of continuous fibers |
US10737000B2 (en) | 2008-08-21 | 2020-08-11 | Smith & Nephew, Inc. | Sensor with electrical contact protection for use in fluid collection canister and negative pressure wound therapy systems including same |
US10258779B2 (en) | 2008-09-05 | 2019-04-16 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
US10004835B2 (en) | 2008-09-05 | 2018-06-26 | Smith & Nephew, Inc. | Canister membrane for wound therapy system |
US9414968B2 (en) | 2008-09-05 | 2016-08-16 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
US9597489B2 (en) | 2008-09-05 | 2017-03-21 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
US20100063484A1 (en) * | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Three-Dimensional Porous Film Contact Layer With Improved Wound Healing |
US12121417B2 (en) | 2009-02-13 | 2024-10-22 | Smith & Nephew Plc | Negative pressure wound treatment apparatus |
US11357903B2 (en) | 2009-02-13 | 2022-06-14 | Smith & Nephew Plc | Wound packing |
US8663198B2 (en) | 2009-04-17 | 2014-03-04 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
US9579431B2 (en) | 2009-04-17 | 2017-02-28 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
US10111991B2 (en) | 2009-04-17 | 2018-10-30 | Smith & Nephew, Inc. | Negative pressure wound therapy device |
US8784392B2 (en) | 2009-06-01 | 2014-07-22 | Smith & Nephew, Inc. | System for providing continual drainage in negative pressure wound therapy |
US10828404B2 (en) | 2009-06-01 | 2020-11-10 | Smith & Nephew, Inc. | System for providing continual drainage in negative pressure wound therapy |
US8298200B2 (en) | 2009-06-01 | 2012-10-30 | Tyco Healthcare Group Lp | System for providing continual drainage in negative pressure wound therapy |
US9889241B2 (en) | 2009-06-01 | 2018-02-13 | Smith & Nephew, Inc. | System for providing continual drainage in negative pressure wound therapy |
US11992601B2 (en) | 2009-06-01 | 2024-05-28 | Smith & Nephew, Inc. | System for providing continual drainage in negative pressure wound therapy |
US9155821B2 (en) | 2009-06-10 | 2015-10-13 | Smith & Nephew, Inc. | Fluid collection canister including canister top with filter membrane and negative pressure wound therapy systems including same |
US10406036B2 (en) | 2009-06-18 | 2019-09-10 | Smith & Nephew, Inc. | Apparatus for vacuum bridging and/or exudate collection |
US11484443B2 (en) | 2010-02-26 | 2022-11-01 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US10556043B2 (en) * | 2010-08-18 | 2020-02-11 | Kci Licensing, Inc. | Reduced-pressure, multi-orientation, liquid-collection canister |
CN107185061A (en) * | 2010-08-18 | 2017-09-22 | 凯希特许有限公司 | The multi-orientation of decompression |
JP2013538604A (en) * | 2010-08-18 | 2013-10-17 | ケーシーアイ ライセンシング インコーポレイテッド | Depressurized liquid collection canister in multiple orientations |
CN103096947A (en) * | 2010-08-18 | 2013-05-08 | 凯希特许有限公司 | Reduced-pressure, multi-orientation, liquid-collection canister |
USRE49227E1 (en) | 2010-10-15 | 2022-10-04 | Smith & Nephew Plc | Medical dressing |
USRE48282E1 (en) | 2010-10-15 | 2020-10-27 | Smith & Nephew Plc | Medical dressing |
US10154929B2 (en) | 2011-04-04 | 2018-12-18 | Smith & Nephew, Inc. | Negative pressure wound therapy dressing |
US9302034B2 (en) | 2011-04-04 | 2016-04-05 | Smith & Nephew, Inc. | Negative pressure wound therapy dressing |
US8945074B2 (en) | 2011-05-24 | 2015-02-03 | Kalypto Medical, Inc. | Device with controller and pump modules for providing negative pressure for wound therapy |
US9058634B2 (en) | 2011-05-24 | 2015-06-16 | Kalypto Medical, Inc. | Method for providing a negative pressure wound therapy pump device |
US10300178B2 (en) | 2011-05-26 | 2019-05-28 | Smith & Nephew, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
US12097095B2 (en) | 2011-05-26 | 2024-09-24 | Smith & Nephew, Inc. | Method and apparatus for providing negative pressure to a negative pressure wound therapy bandage |
US10245185B2 (en) | 2011-06-07 | 2019-04-02 | Smith & Nephew Plc | Wound contacting members and methods |
US10660994B2 (en) | 2012-03-12 | 2020-05-26 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11903798B2 (en) | 2012-03-12 | 2024-02-20 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11129931B2 (en) | 2012-03-12 | 2021-09-28 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US10046096B2 (en) | 2012-03-12 | 2018-08-14 | Smith & Nephew Plc | Reduced pressure apparatus and methods |
US11771796B2 (en) | 2013-03-15 | 2023-10-03 | Smith & Nephew Plc | Wound dressing and method of treatment |
CN103751903A (en) * | 2014-02-17 | 2014-04-30 | 浙江双安医药包装有限公司医疗科技设备分公司 | Portable impulse type negative-pressure wound drainage instrument with wound negative-pressure paster |
US20170312471A1 (en) * | 2014-11-13 | 2017-11-02 | Tni Medical Ag | Multifunctonal applicator for mobile use |
US11224712B2 (en) * | 2014-11-13 | 2022-01-18 | Tni Medical Ag | Multifunctonal applicator which can be used in a mobile manner for mobile use |
US10898388B2 (en) | 2015-04-27 | 2021-01-26 | Smith & Nephew Plc | Reduced pressure apparatuses and methods |
US12059325B2 (en) | 2015-04-27 | 2024-08-13 | Smith & Nephew Plc | Reduced pressure apparatuses and methods |
CN104984418A (en) * | 2015-06-30 | 2015-10-21 | 昆山韦睿医疗科技有限公司 | Negative-pressure therapy system and exudate collecting box thereof |
USD985755S1 (en) | 2016-02-29 | 2023-05-09 | Smith & Nephew Plc | Portable negative pressure apparatus |
USD977624S1 (en) | 2016-02-29 | 2023-02-07 | Smith & Nephew Plc | Portable negative pressure apparatus |
USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
US11723809B2 (en) | 2016-03-07 | 2023-08-15 | Smith & Nephew Plc | Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing |
US12121420B2 (en) | 2016-04-26 | 2024-10-22 | Smith & Nephew Plc | Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component |
US11285047B2 (en) | 2016-04-26 | 2022-03-29 | Smith & Nephew Plc | Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component |
US11096831B2 (en) | 2016-05-03 | 2021-08-24 | Smith & Nephew Plc | Negative pressure wound therapy device activation and control |
US11896465B2 (en) | 2016-05-03 | 2024-02-13 | Smith & Nephew Plc | Negative pressure wound therapy device activation and control |
US11173240B2 (en) | 2016-05-03 | 2021-11-16 | Smith & Nephew Plc | Optimizing power transfer to negative pressure sources in negative pressure therapy systems |
US11305047B2 (en) | 2016-05-03 | 2022-04-19 | Smith & Nephew Plc | Systems and methods for driving negative pressure sources in negative pressure therapy systems |
US11648152B2 (en) | 2016-08-25 | 2023-05-16 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US11116669B2 (en) | 2016-08-25 | 2021-09-14 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US12127919B2 (en) | 2016-09-30 | 2024-10-29 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11564847B2 (en) | 2016-09-30 | 2023-01-31 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12005181B2 (en) | 2016-12-12 | 2024-06-11 | Smith & Nephew Plc | Pressure wound therapy status indication via external device |
US11123471B2 (en) | 2017-03-08 | 2021-09-21 | Smith & Nephew Plc | Negative pressure wound therapy device control in presence of fault condition |
US11471571B2 (en) | 2017-04-19 | 2022-10-18 | Smith & Nephew, Inc. | Negative pressure wound therapy canisters |
US11160915B2 (en) | 2017-05-09 | 2021-11-02 | Smith & Nephew Plc | Redundant controls for negative pressure wound therapy systems |
US11554051B2 (en) | 2017-06-30 | 2023-01-17 | T.J. Smith And Nephew, Limited | Negative pressure wound therapy apparatus |
US11701265B2 (en) | 2017-09-13 | 2023-07-18 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11564845B2 (en) | 2017-09-13 | 2023-01-31 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12097097B2 (en) | 2017-09-13 | 2024-09-24 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12128170B2 (en) | 2017-11-01 | 2024-10-29 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11992392B2 (en) | 2017-11-01 | 2024-05-28 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11497653B2 (en) | 2017-11-01 | 2022-11-15 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11707564B2 (en) | 2017-11-01 | 2023-07-25 | Smith & Nephew Plc | Safe operation of integrated negative pressure wound treatment apparatuses |
US11554203B2 (en) | 2017-11-01 | 2023-01-17 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
USD898925S1 (en) | 2018-09-13 | 2020-10-13 | Smith & Nephew Plc | Medical dressing |
USD999914S1 (en) | 2018-09-13 | 2023-09-26 | Smith & Nephew Plc | Medical dressing |
US12083263B2 (en) | 2019-03-20 | 2024-09-10 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12005182B2 (en) | 2019-05-31 | 2024-06-11 | T.J.Smith And Nephew, Limited | Systems and methods for extending operational time of negative pressure wound treatment apparatuses |
WO2021257421A1 (en) * | 2020-06-18 | 2021-12-23 | Milwaukee Electric Tool Corporation | Vacuum pump with a solenoid valve |
Also Published As
Publication number | Publication date |
---|---|
US6648862B2 (en) | 2003-11-18 |
US20030097100A1 (en) | 2003-05-22 |
USRE42834E1 (en) | 2011-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6648862B2 (en) | Personally portable vacuum desiccator | |
US12128169B2 (en) | Device and method for wound therapy | |
JP5571663B2 (en) | Portable negative pressure wound therapy device | |
US7857806B2 (en) | Pump system for negative pressure wound therapy | |
US20200129340A1 (en) | Wound Dressing containing a vacuum pump | |
AU2007300614A1 (en) | Pump system for negative pressure wound therapy | |
AU2012258379B2 (en) | Device and method for wound therapy | |
AU2015200966A1 (en) | Device and method for wound therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VITAL NEEDS INTERNATIONAL, LTD., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WATSON, JR., RICHARD L.;REEL/FRAME:017970/0056 Effective date: 20060531 |
|
AS | Assignment |
Owner name: KCI LICENSING, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VITAL NEEDS INTERNATIONAL;REEL/FRAME:018097/0366 Effective date: 20060606 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |