US20040162637A1 - Medical tele-robotic system with a master remote station with an arbitrator - Google Patents
Medical tele-robotic system with a master remote station with an arbitrator Download PDFInfo
- Publication number
- US20040162637A1 US20040162637A1 US10/783,760 US78376004A US2004162637A1 US 20040162637 A1 US20040162637 A1 US 20040162637A1 US 78376004 A US78376004 A US 78376004A US 2004162637 A1 US2004162637 A1 US 2004162637A1
- Authority
- US
- United States
- Prior art keywords
- mobile robot
- remote station
- access
- robot
- remote
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 description 9
- 230000036541 health Effects 0.000 description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000013200 Stress disease Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
- B25J19/023—Optical sensing devices including video camera means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0022—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/01—Mobile robot
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/46—Sensing device
- Y10S901/47—Optical
Definitions
- the subject matter disclosed generally relates to the field of robotics.
- Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery.
- U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments.
- One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.
- Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site.
- Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and monitor.
- the teleconferencing platform disclosed in the Canadian patent is stationary and cannot move about a building.
- Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.
- a robotic system that includes a mobile robot coupled to a first remote station and a second remote station.
- the second remote station includes an arbitrator that controls access to the robot.
- the robot includes a camera and a monitor.
- FIG. 1 is an illustration of a robotic system
- FIG. 2 is a schematic of an electrical system of a robot
- FIG. 3 is a further schematic of the electrical system of the robot
- FIG. 4 is side view of the robot
- FIG. 5 is a top perspective view of a holonomic platform of the robot
- FIG. 6 is a side perspective view of a roller assembly of the holonomic platform
- FIG. 7 is a bottom perspective view showing a pedestal assembly of the robot
- FIG. 8 is a sectional view showing an actuator of the pedestal assembly
- FIG. 9 is a schematic of a robotic system wherein multiple remote stations are coupled to the robot;
- FIG. 10 is a flowchart showing an arbitration scheme for allowing access to the robot
- FIG. 11 is a side view of a robot head.
- a robotic system that includes a mobile robot linked to a plurality of remote stations.
- One of the remote stations includes an arbitrator that controls access to the robot.
- Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot.
- the arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.
- FIG. 1 shows a robotic system 10 .
- the robotic system 10 includes a robot 12 , a base station 14 and a plurality of remote control stations 16 .
- Each remote control station 16 may be coupled to the base station 14 through a network 18 .
- the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system.
- PSTN Public Switched Telephone Network
- the base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.
- Each remote control station 16 may include a computer 22 that has a monitor 24 , a camera 26 , a microphone 28 and a speaker 30 .
- the computer 22 may also contain an input device 32 such as a joystick or a mouse.
- Each control station 16 is typically located in a place that is remote from the robot 12 .
- the system 10 may have a plurality of robots 12 .
- any number of robots 12 may be controlled by any number of remote stations.
- one remote station 16 may be coupled to a plurality of robots 12
- one robot 12 may be coupled to a plurality of remote stations 16 .
- the robot 12 includes a movement platform 34 that is attached to a robot housing 36 . Also attached to the robot housing 36 are a camera 38 , a monitor 40 , a microphone(s) 42 and a speaker 44 . The microphone 42 and speaker 30 may create a stereophonic sound.
- the robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14 .
- the system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32 .
- the robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient.
- the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user.
- the microphones 28 and 42 , and speakers 30 and 44 allow for audible communication between the patient and the user.
- the robot 12 may further have a handle 48 that can be rotated to a down position which allows someone to manually push or pull the robot 12 .
- Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX.
- the remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver.
- the video images may be transmitted and received with compression software such as MPEG CODEC.
- FIGS. 2 and 3 show an embodiment of the robot 12 .
- the robot 12 may include a high level control system 50 and a low level control system 52 .
- the high level control system 50 may include a processor 54 that is connected to a bus 56 .
- the bus is coupled to the camera 38 by an input/output (I/O) port 58 , and to the monitor 40 by a serial output port 60 and a VGA driver 62 .
- the monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.
- the speaker 44 is coupled to the bus 56 by a digital to analog converter 64 .
- the microphone 42 is coupled to the bus 56 by an analog to digital converter 66 .
- the high level controller 50 may also contain random access memory (RAM) device 68 , a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62 .
- the mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16 .
- the mass storage device 72 may contain a picture of the patient.
- the user particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38 .
- the robot antennae 45 may be coupled to a wireless transceiver 74 .
- the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b.
- the controller 54 may operate with a LINUX OS operating system.
- the controller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16 .
- Video information may be transceived using MPEG CODEC compression techniques.
- the software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet.
- the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16 .
- the high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78 .
- the low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86 .
- the robot 12 contains a plurality of motors 88 and motor encoders 90 .
- the encoders 90 provide feedback information regarding the output of the motors 88 .
- the motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94 .
- the encoders 90 can be coupled to the bus 86 by a decoder 96 .
- the robot 12 also has a number of proximity sensors 98 (see also FIG. 1).
- the position sensors 98 can be coupled to the bus 86 by a signal conditioning circuit 100 and an analog to digital converter 102 .
- the low level controller 52 runs software routines that mechanically actuate the robot 12 .
- the low level controller 52 provides instructions to actuate the movement platform to move the robot 12 .
- the low level controller 52 may receive movement instructions from the high level controller 50 .
- the movement instructions may be received as movement commands from the remote control station.
- two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.
- the various electrical devices of the robot 12 may be powered by a battery(ies) 104 .
- the battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1).
- the low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104 .
- the low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50 .
- the high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value.
- the user can direct the robot 12 to the battery recharger 106 .
- the battery 104 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).
- FIG. 4 shows an embodiment of the robot 12 .
- the robot 12 may include a holonomic platform 110 that is attached to a robot housing 112 .
- the holonomic platform 110 provides three degrees of freedom to allow the robot 12 to move in any direction.
- the robot 12 may have an pedestal assembly 114 that supports the camera 38 and the monitor 40 .
- the pedestal assembly 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.
- the holonomic platform 110 may include three roller assemblies 120 that are mounted to a base plate 121 .
- the roller assemblies 120 are typically equally spaced about the platform 110 and allow for movement in any direction, although it is to be understood that the assemblies may not be equally spaced.
- the robot housing 112 may include a bumper 122 .
- the bumper 122 may be coupled to optical position sensors 123 that detect when the bumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.
- FIG. 6 shows an embodiment of a roller assembly 120 .
- Each assembly 120 may include a drive ball 124 that is driven by a pair of transmission rollers 126 .
- the assembly 120 may include a retainer ring 128 and a plurality of bushings 130 that captures and allows the ball 124 to rotate in an x and y direction but prevents movement in a z direction.
- the assembly also holds the ball under the transmission rollers 126 .
- the transmission rollers 126 are coupled to a motor assembly 132 .
- the assembly 132 corresponds to the motor 88 shown in FIG. 3.
- the motor assembly 132 includes an output pulley 134 attached to a motor 136 .
- the output pulley 134 is coupled to a pair of ball pulleys 138 by a drive belt 140 .
- the ball pulleys 138 are each attached to a transmission bracket 142 .
- the transmission rollers 126 are attached to the transmission brackets 142 .
- Rotation of the output pulley 134 rotates the ball pulleys 138 .
- Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12 .
- the transmission rollers 126 are constructed to always be in contact with the drive ball 124 .
- the brackets 142 allow the transmission rollers 126 to freely spin and allow orthogonal directional passive movement of 124 when one of the other roller assemblies 120 is driving and moving the robot 12 .
- the pedestal assembly 114 may include a motor 150 that is coupled to a gear 152 by a belt 154 .
- the gear 152 is attached to a shaft 156 .
- the shaft 156 is attached to an arm 158 that is coupled to the camera 38 and monitor 40 by a bracket 160 .
- Activation of the motor 150 rotates the gear 152 and sleeve 156 , and causes the camera 38 and monitor 40 to swivel (see also FIG. 4) as indicated by the arrows 4 .
- the assembly 114 may further include a tilt motor 162 within the arm 158 that can cause the monitor 40 and camera 38 to pivot as indicated by the arrows 5 .
- the tilt motor 162 may rotate a worm 164 that rotates a worm gear 166 .
- the pin 168 is rigidly attached to both the worm gear 166 and the bracket 160 so that rotation of the gear 166 pivots the camera 38 and the monitor 40 .
- the camera 38 may also include a zoom feature to provide yet another degree of freedom for the operator.
- the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted.
- the facility may be a hospital or a residential care facility.
- the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient.
- a friend or family member may communicate with the patient.
- the cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).
- the robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at a remote station 16 .
- FIG. 9 shows a plurality of remote stations 16 A-C that can access a robot 12 through a network 18 .
- One of the remote stations 12 B can be designated a master station which contains an arbitrator 250 .
- the remote stations 16 may be configured so that all messages, commands, etc. provided to the robot 12 are initially routed to the master remote station 16 B.
- Each message packet may include a priority field that contains the priority number of the station 16 A, 16 B or 16 C sending the message.
- the arbitrator 250 determines which station has priority and then forwards the message from that station 16 A, 16 B or 16 C to the robot 12 .
- the arbitrator 250 may also send a call back message to the other remote station(s) stating that the station(s) with lower priority does not have access to the robot 12 .
- the arbitrator 250 can cut-off access to the robot from one station and provide access to another station with a higher priority number.
- a remote station may route a message, command, etc. to the robot 12 which then forwards a message, command, etc. to the arbitrator 250 to determine whether the station should have access.
- the arbitrator 250 can then provide a reply message either granting or denying access to the robot.
- FIG. 10 shows a flowchart describing a process for access the robot 12 .
- a remote station 16 A, 16 B or 16 C may generate a request message to access the robot in block 300 .
- the message may include the priority number of the remote station.
- the arbitrator 250 determines whether the request includes a priority number higher than any existing priority number in decision block 302 . If a remote station has the same priority number the station first in time maintains access to the robot.
- the arbitrator allows access to the robot in block 304 . If the request does not contain the highest priority number, then arbitrator 250 sends a call-back message in block 306 .
- the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider.
- the robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall.
- a local user is a person who is physically present with the robot.
- the robot could have an input device that allows local operation.
- the robot may incorporate a voice recognition system that receives and interprets audible commands.
- a caregiver is someone who remotely monitors the patient.
- a doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory.
- the family and service users remotely access the robot.
- the service user may service the system such as by upgrading software, or setting operational parameters.
- Message packets may be transmitted between a robot 12 and a remote station 16 .
- the packets provide commands and feedback.
- Each packet may have multiple fields.
- a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.
- the identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12 .
- a user may enter a user ID into a setup table in the application software run by the remote control station 16 .
- the user ID is then sent with each message transmitted to the robot.
- the robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode.
- an exclusive mode only one user has access control of the robot.
- the exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user.
- the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous teleconference with the patient.
- the arbitrator may have one of four mechanisms; notification, timeouts, queue and call back.
- the notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot.
- the timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot.
- the queue mechanism is an orderly waiting list for access to the robot.
- the call back mechanism informs a user that the robot can be accessed.
- a family user may receive an e-mail message that the robot is free for usage.
- Tables 1 and 2 show how the mechanisms resolve access request from the various users.
- the information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10 . A selected robot is then given an electronic key by the station 16 . The robot 12 validates the key and returns another key to the station 16 . The keys are used to encrypt information transmitted in the session.
- FIG. 11 shows a robot head 350 that can both pivot and spin the camera 38 and the monitor 40 .
- the robot head 350 can be similar to the robot 12 but without the platform 110 .
- the robot head 350 may have the same mechanisms and parts to both pivot the camera 38 and monitor 40 about the pivot axis 4 , and spin the camera 38 and monitor 40 about the spin axis 5 .
- the pivot axis may intersect the spin axis. Having a robot head 350 that both pivots and spins provides a wide viewing area.
- the robot head 350 may be in the system either with or instead of the mobile robot 12 .
- the arbitrator is described and shown as being in one of the remote stations, the arbitrator could be within a server, robot or any device, that is connected to the network and in communication with both the remote stations and the robot.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Public Health (AREA)
- Aviation & Aerospace Engineering (AREA)
- Multimedia (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 10/206,457 filed on Jul. 25, 2002, pending, and claims priority to Provisional Application No.60/449,762 filed on Feb. 24, 2003.
- 1. Field of the Invention
- The subject matter disclosed generally relates to the field of robotics.
- 2. Background Information
- There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel. It would be desirable to provide a system that would allow a health care provider to remotely care for a patient without being physically present.
- Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.
- Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and monitor. The teleconferencing platform disclosed in the Canadian patent is stationary and cannot move about a building.
- Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.
- A robotic system that includes a mobile robot coupled to a first remote station and a second remote station. The second remote station includes an arbitrator that controls access to the robot. The robot includes a camera and a monitor.
- FIG. 1 is an illustration of a robotic system;
- FIG. 2 is a schematic of an electrical system of a robot;
- FIG. 3 is a further schematic of the electrical system of the robot;
- FIG. 4 is side view of the robot;
- FIG. 5 is a top perspective view of a holonomic platform of the robot;
- FIG. 6 is a side perspective view of a roller assembly of the holonomic platform;
- FIG. 7 is a bottom perspective view showing a pedestal assembly of the robot;
- FIG. 8 is a sectional view showing an actuator of the pedestal assembly;
- FIG. 9 is a schematic of a robotic system wherein multiple remote stations are coupled to the robot;
- FIG. 10 is a flowchart showing an arbitration scheme for allowing access to the robot;
- FIG. 11 is a side view of a robot head.
- Disclosed is a robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.
- Referring to the drawings more particularly by reference numbers, FIG. 1 shows a
robotic system 10. Therobotic system 10 includes arobot 12, a base station 14 and a plurality ofremote control stations 16. Eachremote control station 16 may be coupled to the base station 14 through anetwork 18. By way of example, thenetwork 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to thenetwork 18 by amodem 20 or other broadband network interface device. - Each
remote control station 16 may include acomputer 22 that has amonitor 24, acamera 26, amicrophone 28 and aspeaker 30. Thecomputer 22 may also contain aninput device 32 such as a joystick or a mouse. Eachcontrol station 16 is typically located in a place that is remote from therobot 12. Although only onerobot 12 is shown, it is to be understood that thesystem 10 may have a plurality ofrobots 12. In general any number ofrobots 12 may be controlled by any number of remote stations. For example, oneremote station 16 may be coupled to a plurality ofrobots 12, or onerobot 12 may be coupled to a plurality ofremote stations 16. - The
robot 12 includes amovement platform 34 that is attached to arobot housing 36. Also attached to therobot housing 36 are acamera 38, amonitor 40, a microphone(s) 42 and aspeaker 44. Themicrophone 42 andspeaker 30 may create a stereophonic sound. Therobot 12 may also have anantenna 45 that is wirelessly coupled to anantenna 46 of the base station 14. Thesystem 10 allows a user at theremote control station 16 to move therobot 12 through theinput device 32. Therobot camera 38 is coupled to theremote monitor 24 so that a user at theremote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to theremote camera 26 so that the patient can view the user. Themicrophones speakers robot 12 may further have ahandle 48 that can be rotated to a down position which allows someone to manually push or pull therobot 12. - Each
remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. Theremote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC. - FIGS. 2 and 3 show an embodiment of the
robot 12. Therobot 12 may include a highlevel control system 50 and a lowlevel control system 52. The highlevel control system 50 may include aprocessor 54 that is connected to abus 56. The bus is coupled to thecamera 38 by an input/output (I/O)port 58, and to themonitor 40 by aserial output port 60 and aVGA driver 62. Themonitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen. - The
speaker 44 is coupled to thebus 56 by a digital toanalog converter 64. Themicrophone 42 is coupled to thebus 56 by an analog todigital converter 66. Thehigh level controller 50 may also contain random access memory (RAM)device 68, anon-volatile RAM device 70 and amass storage device 72 that are all coupled to thebus 62. Themass storage device 72 may contain medical files of the patient that can be accessed by the user at theremote control station 16. For example, themass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on themonitor 24 with a present video image of the patient provided by thecamera 38. Therobot antennae 45 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b. - The
controller 54 may operate with a LINUX OS operating system. Thecontroller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with theremote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general thehigh level controller 50 operates to control the communication between therobot 12 and theremote control station 16. - The
high level controller 50 may be linked to thelow level controller 52 byserial ports low level controller 52 includes aprocessor 80 that is coupled to aRAM device 82 andnon-volatile RAM device 84 by abus 86. Therobot 12 contains a plurality ofmotors 88 andmotor encoders 90. Theencoders 90 provide feedback information regarding the output of themotors 88. Themotors 88 can be coupled to thebus 86 by a digital toanalog converter 92 and adriver amplifier 94. Theencoders 90 can be coupled to thebus 86 by adecoder 96. Therobot 12 also has a number of proximity sensors 98 (see also FIG. 1). Theposition sensors 98 can be coupled to thebus 86 by asignal conditioning circuit 100 and an analog todigital converter 102. - The
low level controller 52 runs software routines that mechanically actuate therobot 12. For example, thelow level controller 52 provides instructions to actuate the movement platform to move therobot 12. Thelow level controller 52 may receive movement instructions from thehigh level controller 50. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that therobot 12 may have one controller controlling the high and low level functions. - The various electrical devices of the
robot 12 may be powered by a battery(ies) 104. Thebattery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). Thelow level controller 52 may include abattery control circuit 108 that senses the power level of thebattery 104. Thelow level controller 52 can sense when the power falls below a threshold and then send a message to thehigh level controller 50. Thehigh level controller 50 may include a power management software routine that causes therobot 12 to move so that thebattery 104 is coupled to therecharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct therobot 12 to thebattery recharger 106. Additionally, thebattery 104 may be replaced or therobot 12 may be coupled to a wall power outlet by an electrical cord (not shown). - FIG. 4 shows an embodiment of the
robot 12. Therobot 12 may include aholonomic platform 110 that is attached to arobot housing 112. Theholonomic platform 110 provides three degrees of freedom to allow therobot 12 to move in any direction. - The
robot 12 may have anpedestal assembly 114 that supports thecamera 38 and themonitor 40. Thepedestal assembly 114 may have two degrees of freedom so that thecamera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows. - As shown in FIG. 5 the
holonomic platform 110 may include threeroller assemblies 120 that are mounted to abase plate 121. Theroller assemblies 120 are typically equally spaced about theplatform 110 and allow for movement in any direction, although it is to be understood that the assemblies may not be equally spaced. - The
robot housing 112 may include abumper 122. Thebumper 122 may be coupled tooptical position sensors 123 that detect when thebumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object. - FIG. 6 shows an embodiment of a
roller assembly 120. Eachassembly 120 may include adrive ball 124 that is driven by a pair oftransmission rollers 126. Theassembly 120 may include aretainer ring 128 and a plurality ofbushings 130 that captures and allows theball 124 to rotate in an x and y direction but prevents movement in a z direction. The assembly also holds the ball under thetransmission rollers 126. - The
transmission rollers 126 are coupled to amotor assembly 132. Theassembly 132 corresponds to themotor 88 shown in FIG. 3. Themotor assembly 132 includes anoutput pulley 134 attached to amotor 136. Theoutput pulley 134 is coupled to a pair of ball pulleys 138 by adrive belt 140. The ball pulleys 138 are each attached to atransmission bracket 142. Thetransmission rollers 126 are attached to thetransmission brackets 142. - Rotation of the
output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes thetransmission rollers 126 to rotate and spin theball 124 through frictional forces. Spinning theball 124 will move therobot 12. Thetransmission rollers 126 are constructed to always be in contact with thedrive ball 124. Thebrackets 142 allow thetransmission rollers 126 to freely spin and allow orthogonal directional passive movement of 124 when one of theother roller assemblies 120 is driving and moving therobot 12. - As shown in FIG. 7, the
pedestal assembly 114 may include amotor 150 that is coupled to agear 152 by abelt 154. Thegear 152 is attached to ashaft 156. Theshaft 156 is attached to anarm 158 that is coupled to thecamera 38 and monitor 40 by abracket 160. Activation of themotor 150 rotates thegear 152 andsleeve 156, and causes thecamera 38 and monitor 40 to swivel (see also FIG. 4) as indicated by thearrows 4. - As shown in FIG. 8, the
assembly 114 may further include atilt motor 162 within thearm 158 that can cause themonitor 40 andcamera 38 to pivot as indicated by thearrows 5. Thetilt motor 162 may rotate aworm 164 that rotates aworm gear 166. Thepin 168 is rigidly attached to both theworm gear 166 and thebracket 160 so that rotation of thegear 166 pivots thecamera 38 and themonitor 40. Thecamera 38 may also include a zoom feature to provide yet another degree of freedom for the operator. - In operation, the
robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, therobot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s). - The
robot 12 can be maneuvered through the home or facility by manipulating theinput device 32 at aremote station 16. - FIG. 9 shows a plurality of
remote stations 16A-C that can access arobot 12 through anetwork 18. One of the remote stations 12B can be designated a master station which contains anarbitrator 250. Theremote stations 16 may be configured so that all messages, commands, etc. provided to therobot 12 are initially routed to the masterremote station 16B. Each message packet may include a priority field that contains the priority number of thestation arbitrator 250 determines which station has priority and then forwards the message from thatstation robot 12. Thearbitrator 250 may also send a call back message to the other remote station(s) stating that the station(s) with lower priority does not have access to therobot 12. Thearbitrator 250 can cut-off access to the robot from one station and provide access to another station with a higher priority number. - Alternatively, a remote station may route a message, command, etc. to the
robot 12 which then forwards a message, command, etc. to thearbitrator 250 to determine whether the station should have access. Thearbitrator 250 can then provide a reply message either granting or denying access to the robot. - FIG. 10 shows a flowchart describing a process for access the
robot 12. Aremote station block 300. The message may include the priority number of the remote station. Thearbitrator 250 determines whether the request includes a priority number higher than any existing priority number indecision block 302. If a remote station has the same priority number the station first in time maintains access to the robot. - If the request included the highest priority number the arbitrator allows access to the robot in
block 304. If the request does not contain the highest priority number, thenarbitrator 250 sends a call-back message inblock 306. To establish priority, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. Therobot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands. - A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.
- Message packets may be transmitted between a
robot 12 and aremote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field. - The identification of remote users can be set in an ID field of the information that is transmitted from the
remote control station 16 to therobot 12. For example, a user may enter a user ID into a setup table in the application software run by theremote control station 16. The user ID is then sent with each message transmitted to the robot. - The
robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous teleconference with the patient. - The arbitrator may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.
TABLE I Access Medical Command Software/Debug Set User Control Record Override Access Priority Robot No No Yes (1) No No Local No No Yes (2) No No Caregiver Yes Yes Yes (3) No No Doctor No Yes No No No Family No No No No No Service Yes No Yes Yes Yes -
TABLE II Requesting User Local Caregiver Doctor Family Service Current Local Not Allowed Warn current user of Warn current user of Warn current user of Warn current user of User pending user pending user pending user pending user Notify requesting Notify requesting user Notify requesting user Notify requesting user that system is in that system is in use that system is in use user that system use Set timeout = 5 m Set timeout = 5 m is in use Set timeout Call back No timeout Call back Caregiver Warn current user Not Allowed Warn current user of Warn current user of Warn current user of of pending user. pending user pending user pending user Notify requesting Notify requesting user Notify requesting user Notify requesting user that system is that system is in use that system is in use user that system in use. Set timeout = 5 m Set timeout = 5 m is in use Release control Queue or callback No timeout Callback Doctor Warn current user Warn current user of Warn current user of Notify requesting user Warn current user of of pending user pending user pending user that system is in use pending user Notify requesting Notify requesting Notify requesting user No timeout Notify requesting user that system is user that system is in that system is in use Queue or callback user that system in use use No timeout is in use Release control Set timeout = 5 m Callback No timeout Callback Family Warn current user Notify requesting Warn current user of Warn current user of Warn current user of of pending user user that system is in pending user pending user pending user Notify requesting use Notify requesting user Notify requesting user Notify requesting user that system is No timeout that system is in use that system is in use user that system in use Put in queue or Set timeout = 1 m Set timeout = 5 m is in use Release Control callback Queue or callback No timeout Callback Service Warn current user Notify requesting Warn current user of Warn current user of Not Allowed of pending user user that system is in request pending user Notify requesting use Notify requesting user Notify requesting user user that system is No timeout that system is in use that system is in use in use Callback No timeout No timeout No timeout Callback Queue or callback - The information transmitted between the
station 16 and therobot 12 may be encrypted. Additionally, the user may have to enter a password to enter thesystem 10. A selected robot is then given an electronic key by thestation 16. Therobot 12 validates the key and returns another key to thestation 16. The keys are used to encrypt information transmitted in the session. - FIG. 11 shows a
robot head 350 that can both pivot and spin thecamera 38 and themonitor 40. Therobot head 350 can be similar to therobot 12 but without theplatform 110. Therobot head 350 may have the same mechanisms and parts to both pivot thecamera 38 and monitor 40 about thepivot axis 4, and spin thecamera 38 and monitor 40 about thespin axis 5. The pivot axis may intersect the spin axis. Having arobot head 350 that both pivots and spins provides a wide viewing area. Therobot head 350 may be in the system either with or instead of themobile robot 12. - While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
- For example, although the arbitrator is described and shown as being in one of the remote stations, the arbitrator could be within a server, robot or any device, that is connected to the network and in communication with both the remote stations and the robot.
Claims (60)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/783,760 US20040162637A1 (en) | 2002-07-25 | 2004-02-20 | Medical tele-robotic system with a master remote station with an arbitrator |
US10/966,539 US7593030B2 (en) | 2002-07-25 | 2004-10-15 | Tele-robotic videoconferencing in a corporate environment |
US11/983,058 US8515577B2 (en) | 2002-07-25 | 2007-11-05 | Medical tele-robotic system with a master remote station with an arbitrator |
US13/944,526 US8682486B2 (en) | 2002-07-25 | 2013-07-17 | Medical tele-robotic system with a master remote station with an arbitrator |
US14/175,988 US9849593B2 (en) | 2002-07-25 | 2014-02-07 | Medical tele-robotic system with a master remote station with an arbitrator |
US15/818,420 US10315312B2 (en) | 2002-07-25 | 2017-11-20 | Medical tele-robotic system with a master remote station with an arbitrator |
US16/395,053 US10889000B2 (en) | 2002-07-25 | 2019-04-25 | Medical tele-robotic system with a master remote station with an arbitrator |
US17/146,129 US20210241902A1 (en) | 2002-07-25 | 2021-01-11 | Medical tele-robotic system with a master remote station with an arbitrator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/206,457 US6925357B2 (en) | 2002-07-25 | 2002-07-25 | Medical tele-robotic system |
US44976203P | 2003-02-24 | 2003-02-24 | |
US10/783,760 US20040162637A1 (en) | 2002-07-25 | 2004-02-20 | Medical tele-robotic system with a master remote station with an arbitrator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/206,457 Continuation-In-Part US6925357B2 (en) | 2002-07-25 | 2002-07-25 | Medical tele-robotic system |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/966,539 Continuation-In-Part US7593030B2 (en) | 2002-07-25 | 2004-10-15 | Tele-robotic videoconferencing in a corporate environment |
US11/983,058 Continuation US8515577B2 (en) | 2002-07-25 | 2007-11-05 | Medical tele-robotic system with a master remote station with an arbitrator |
US11/983,058 Continuation-In-Part US8515577B2 (en) | 2002-07-25 | 2007-11-05 | Medical tele-robotic system with a master remote station with an arbitrator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040162637A1 true US20040162637A1 (en) | 2004-08-19 |
Family
ID=39170811
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/783,760 Abandoned US20040162637A1 (en) | 2002-07-25 | 2004-02-20 | Medical tele-robotic system with a master remote station with an arbitrator |
US11/983,058 Expired - Lifetime US8515577B2 (en) | 2002-07-25 | 2007-11-05 | Medical tele-robotic system with a master remote station with an arbitrator |
US13/944,526 Expired - Lifetime US8682486B2 (en) | 2002-07-25 | 2013-07-17 | Medical tele-robotic system with a master remote station with an arbitrator |
US14/175,988 Expired - Lifetime US9849593B2 (en) | 2002-07-25 | 2014-02-07 | Medical tele-robotic system with a master remote station with an arbitrator |
US15/818,420 Expired - Lifetime US10315312B2 (en) | 2002-07-25 | 2017-11-20 | Medical tele-robotic system with a master remote station with an arbitrator |
US16/395,053 Expired - Lifetime US10889000B2 (en) | 2002-07-25 | 2019-04-25 | Medical tele-robotic system with a master remote station with an arbitrator |
US17/146,129 Abandoned US20210241902A1 (en) | 2002-07-25 | 2021-01-11 | Medical tele-robotic system with a master remote station with an arbitrator |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/983,058 Expired - Lifetime US8515577B2 (en) | 2002-07-25 | 2007-11-05 | Medical tele-robotic system with a master remote station with an arbitrator |
US13/944,526 Expired - Lifetime US8682486B2 (en) | 2002-07-25 | 2013-07-17 | Medical tele-robotic system with a master remote station with an arbitrator |
US14/175,988 Expired - Lifetime US9849593B2 (en) | 2002-07-25 | 2014-02-07 | Medical tele-robotic system with a master remote station with an arbitrator |
US15/818,420 Expired - Lifetime US10315312B2 (en) | 2002-07-25 | 2017-11-20 | Medical tele-robotic system with a master remote station with an arbitrator |
US16/395,053 Expired - Lifetime US10889000B2 (en) | 2002-07-25 | 2019-04-25 | Medical tele-robotic system with a master remote station with an arbitrator |
US17/146,129 Abandoned US20210241902A1 (en) | 2002-07-25 | 2021-01-11 | Medical tele-robotic system with a master remote station with an arbitrator |
Country Status (1)
Country | Link |
---|---|
US (7) | US20040162637A1 (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050021187A1 (en) * | 2002-07-25 | 2005-01-27 | Yulun Wang | Medical tele-robotic system |
US20050215171A1 (en) * | 2004-03-25 | 2005-09-29 | Shinichi Oonaka | Child-care robot and a method of controlling the robot |
US20060082642A1 (en) * | 2002-07-25 | 2006-04-20 | Yulun Wang | Tele-robotic videoconferencing in a corporate environment |
US20060161303A1 (en) * | 2005-01-18 | 2006-07-20 | Yulun Wang | Mobile videoconferencing platform with automatic shut-off features |
US20060259193A1 (en) * | 2005-05-12 | 2006-11-16 | Yulun Wang | Telerobotic system with a dual application screen presentation |
WO2005098729A3 (en) * | 2004-03-27 | 2006-12-21 | Harvey Koselka | Autonomous personal service robot |
US20070198130A1 (en) * | 2006-02-22 | 2007-08-23 | Yulun Wang | Graphical interface for a remote presence system |
US20070199108A1 (en) * | 2005-09-30 | 2007-08-23 | Colin Angle | Companion robot for personal interaction |
US20070291109A1 (en) * | 2006-06-15 | 2007-12-20 | Yulun Wang | Remote controlled mobile robot with auxillary input ports |
US20080082211A1 (en) * | 2006-10-03 | 2008-04-03 | Yulun Wang | Remote presence display through remotely controlled robot |
US20090055023A1 (en) * | 2007-08-23 | 2009-02-26 | Derek Walters | Telepresence robot with a printer |
US20100010673A1 (en) * | 2008-07-11 | 2010-01-14 | Yulun Wang | Tele-presence robot system with multi-cast features |
US20100019715A1 (en) * | 2008-04-17 | 2010-01-28 | David Bjorn Roe | Mobile tele-presence system with a microphone system |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US20140114475A1 (en) * | 2012-10-18 | 2014-04-24 | Electronics And Telecommunications Research Institute | Apparatus and method for sharing device resources between robot software components |
US8718837B2 (en) | 2011-01-28 | 2014-05-06 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US8892260B2 (en) | 2007-03-20 | 2014-11-18 | Irobot Corporation | Mobile robot for telecommunication |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8930019B2 (en) | 2010-12-30 | 2015-01-06 | Irobot Corporation | Mobile human interface robot |
US8935005B2 (en) | 2010-05-20 | 2015-01-13 | Irobot Corporation | Operating a mobile robot |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US20150100461A1 (en) * | 2011-04-12 | 2015-04-09 | Dan Baryakar | Robotic System Controlled by Multi Participants |
US9014848B2 (en) | 2010-05-20 | 2015-04-21 | Irobot Corporation | Mobile robot system |
US20150160654A1 (en) * | 2012-05-18 | 2015-06-11 | Hitachi, Ltd. | Autonomous Mobile Apparatus, Control Device, and Autonomous Mobile Method |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US9160783B2 (en) * | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US9174342B2 (en) | 2012-05-22 | 2015-11-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US9296107B2 (en) | 2003-12-09 | 2016-03-29 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
WO2016083870A1 (en) * | 2014-11-26 | 2016-06-02 | Husqvarna Ab | Remote interaction with a robotic vehicle |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US9498886B2 (en) | 2010-05-20 | 2016-11-22 | Irobot Corporation | Mobile human interface robot |
US9610685B2 (en) | 2004-02-26 | 2017-04-04 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
EP3258336A1 (en) * | 2016-06-14 | 2017-12-20 | Fuji Xerox Co., Ltd. | Robot control system and a program |
US9849593B2 (en) | 2002-07-25 | 2017-12-26 | Intouch Technologies, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US9974612B2 (en) | 2011-05-19 | 2018-05-22 | Intouch Technologies, Inc. | Enhanced diagnostics for a telepresence robot |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US11389064B2 (en) | 2018-04-27 | 2022-07-19 | Teladoc Health, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US11565421B2 (en) | 2017-11-28 | 2023-01-31 | Fanuc Corporation | Robot and robot system |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US11742094B2 (en) | 2017-07-25 | 2023-08-29 | Teladoc Health, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US12138808B2 (en) | 2020-12-28 | 2024-11-12 | Teladoc Health, Inc. | Server connectivity control for tele-presence robots |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7693757B2 (en) * | 2006-09-21 | 2010-04-06 | International Business Machines Corporation | System and method for performing inventory using a mobile inventory robot |
KR101169674B1 (en) * | 2010-03-11 | 2012-08-06 | 한국과학기술연구원 | Telepresence robot, telepresence system comprising the same and method for controlling the same |
JP5273213B2 (en) * | 2011-06-27 | 2013-08-28 | 株式会社デンソー | Driving support system and vehicle wireless communication device |
WO2014088994A1 (en) * | 2012-12-03 | 2014-06-12 | Abb Technology Ag | Teleoperation of machines having at least one actuated mechanism |
US9701023B2 (en) * | 2012-12-03 | 2017-07-11 | Abb Schweiz Ag | Teleoperation of machines having at least one actuated mechanism and one machine controller comprising a program code including instructions for transferring control of the machine from said controller to a remote control station |
EP2973460B1 (en) | 2013-03-11 | 2020-03-04 | Hill-Rom Services, Inc. | Wireless bed power |
US10713503B2 (en) * | 2017-01-31 | 2020-07-14 | General Electric Company | Visual object detection system |
US9655034B2 (en) | 2014-10-31 | 2017-05-16 | At&T Intellectual Property I, L.P. | Transaction sensitive access network discovery and selection |
US9629076B2 (en) | 2014-11-20 | 2017-04-18 | At&T Intellectual Property I, L.P. | Network edge based access network discovery and selection |
US10129706B2 (en) | 2015-06-05 | 2018-11-13 | At&T Intellectual Property I, L.P. | Context sensitive communication augmentation |
US10162351B2 (en) | 2015-06-05 | 2018-12-25 | At&T Intellectual Property I, L.P. | Remote provisioning of a drone resource |
US10471611B2 (en) | 2016-01-15 | 2019-11-12 | Irobot Corporation | Autonomous monitoring robot systems |
US20170316705A1 (en) | 2016-04-27 | 2017-11-02 | David Paul Schultz | System, Apparatus and Methods for Telesurgical Mentoring Platform |
CN106003037A (en) * | 2016-06-17 | 2016-10-12 | 小船信息科技(上海)有限公司 | Household and medical service robot and working method thereof |
US10470241B2 (en) | 2016-11-15 | 2019-11-05 | At&T Intellectual Property I, L.P. | Multiple mesh drone communication |
US10949940B2 (en) * | 2017-04-19 | 2021-03-16 | Global Tel*Link Corporation | Mobile correctional facility robots |
US10690466B2 (en) | 2017-04-19 | 2020-06-23 | Global Tel*Link Corporation | Mobile correctional facility robots |
JP6761990B2 (en) * | 2017-05-22 | 2020-09-30 | パナソニックIpマネジメント株式会社 | Communication control method, communication control device, telepresence robot, and communication control program |
EP3409230B1 (en) * | 2017-05-31 | 2019-05-22 | Siemens Healthcare GmbH | Movement of a robot arm |
US10100968B1 (en) | 2017-06-12 | 2018-10-16 | Irobot Corporation | Mast systems for autonomous mobile robots |
US10239370B2 (en) * | 2017-08-02 | 2019-03-26 | AI Incorporated | Wheel suspension system |
CN109829665B (en) | 2017-11-23 | 2023-11-07 | 菜鸟智能物流控股有限公司 | Method for processing item picking and dispatching request and related equipment |
US11583997B2 (en) * | 2018-09-20 | 2023-02-21 | Sony Group Corporation | Autonomous robot |
US11110595B2 (en) | 2018-12-11 | 2021-09-07 | Irobot Corporation | Mast systems for autonomous mobile robots |
WO2020183557A1 (en) * | 2019-03-11 | 2020-09-17 | 楽天株式会社 | Delivery system, control device, delivery method, and control method |
CN110834330B (en) * | 2019-10-25 | 2020-11-13 | 清华大学深圳国际研究生院 | Flexible mechanical arm teleoperation man-machine interaction terminal and method |
CN111086012B (en) * | 2019-12-30 | 2021-09-17 | 深圳市优必选科技股份有限公司 | Head structure and robot |
CN111421560A (en) * | 2020-04-10 | 2020-07-17 | 前元运立(北京)机器人智能科技有限公司 | Isolation space virus diagnosis robot system |
US11619935B2 (en) | 2020-07-17 | 2023-04-04 | Blue Ocean Robotics Aps | Methods of controlling a mobile robot device from one or more remote user devices |
KR20220016384A (en) | 2020-07-31 | 2022-02-09 | 삼성디스플레이 주식회사 | Electronic apparatus |
US11837363B2 (en) | 2020-11-04 | 2023-12-05 | Hill-Rom Services, Inc. | Remote management of patient environment |
EP4170994B1 (en) | 2021-10-19 | 2024-01-17 | Tata Consultancy Services Limited | A multi-master hybrid telerobotics system with federated avatar control |
DE102022205047A1 (en) | 2022-04-26 | 2023-10-26 | Siemens Healthcare Gmbh | Procedure for recognizing a conflict |
DE102022207751A1 (en) | 2022-07-28 | 2024-02-08 | Siemens Healthcare Gmbh | Intervention system and procedures for supporting groups of people in using an intervention system |
US12089906B1 (en) | 2023-09-27 | 2024-09-17 | Sovato Health, Inc. | Systems and methods for remotely controlling robotic surgery |
US12042239B1 (en) | 2023-11-15 | 2024-07-23 | Sovato Health, Inc. | Systems and methods for remotely controlling multiple robotic-assisted surgery systems |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709265A (en) * | 1985-10-15 | 1987-11-24 | Advanced Resource Development Corporation | Remote control mobile surveillance system |
US4803625A (en) * | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4977971A (en) * | 1989-05-17 | 1990-12-18 | University Of Florida | Hybrid robotic vehicle |
US5084828A (en) * | 1989-09-29 | 1992-01-28 | Healthtech Services Corp. | Interactive medication delivery system |
US5130794A (en) * | 1990-03-29 | 1992-07-14 | Ritchey Kurtis J | Panoramic display system |
US5341242A (en) * | 1991-09-05 | 1994-08-23 | Elbit Ltd. | Helmet mounted display |
US5441047A (en) * | 1992-03-25 | 1995-08-15 | David; Daniel | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
US5442728A (en) * | 1988-05-12 | 1995-08-15 | Healthtech Services Corp. | Interactive patient assistance device for storing and dispensing a testing device |
US5462051A (en) * | 1994-08-31 | 1995-10-31 | Colin Corporation | Medical communication system |
US5553609A (en) * | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
US5572229A (en) * | 1991-04-22 | 1996-11-05 | Evans & Sutherland Computer Corp. | Head-mounted projection display system featuring beam splitter and method of making same |
US5701904A (en) * | 1996-01-11 | 1997-12-30 | Krug International | Telemedicine instrumentation pack |
US5786846A (en) * | 1995-03-09 | 1998-07-28 | Nec Corporation | User interface of a video communication terminal unit and a method for notifying a terminal user's deviation from an appropriate shoot range |
US5836872A (en) * | 1989-04-13 | 1998-11-17 | Vanguard Imaging, Ltd. | Digital optical visualization, enhancement, quantification, and classification of surface and subsurface features of body surfaces |
US5867653A (en) * | 1996-04-18 | 1999-02-02 | International Business Machines Corporation | Method and apparatus for multi-cast based video conferencing |
US5917958A (en) * | 1996-10-31 | 1999-06-29 | Sensormatic Electronics Corporation | Distributed video data base with remote searching for image data features |
US5927423A (en) * | 1997-03-05 | 1999-07-27 | Massachusetts Institute Of Technology | Reconfigurable footprint mechanism for omnidirectional vehicles |
US6133944A (en) * | 1995-12-18 | 2000-10-17 | Telcordia Technologies, Inc. | Head mounted displays linked to networked electronic panning cameras |
US6170929B1 (en) * | 1998-12-02 | 2001-01-09 | Ronald H. Wilson | Automated medication-dispensing cart |
US6211903B1 (en) * | 1997-01-14 | 2001-04-03 | Cambridge Technology Development, Inc. | Video telephone headset |
US6219587B1 (en) * | 1998-05-27 | 2001-04-17 | Nextrx Corporation | Automated pharmaceutical management and dispensing system |
US6232735B1 (en) * | 1998-11-24 | 2001-05-15 | Thames Co., Ltd. | Robot remote control system and robot image remote control processing system |
US6233504B1 (en) * | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6256556B1 (en) * | 1999-11-16 | 2001-07-03 | Mitsubishi Denki Kabushiki Kaisha | Remote operation system for a robot |
US20010010053A1 (en) * | 1997-11-13 | 2001-07-26 | Ofer Ben-Shachar | Service framework for a distributed object network system |
US6289263B1 (en) * | 1997-12-16 | 2001-09-11 | Board Of Trustees Operating Michigan State University | Spherical mobile robot |
US6292713B1 (en) * | 1999-05-20 | 2001-09-18 | Compaq Computer Corporation | Robotic telepresence system |
US6321137B1 (en) * | 1997-09-04 | 2001-11-20 | Dynalog, Inc. | Method for calibration of a robot inspection system |
US6325756B1 (en) * | 1997-03-27 | 2001-12-04 | Medtronic, Inc. | Concepts to implement medconnect |
US6330493B1 (en) * | 1999-09-16 | 2001-12-11 | Fanuc Ltd. | Control system for synchronously cooperative operation of plurality of robots |
US6369847B1 (en) * | 2000-03-17 | 2002-04-09 | Emtel, Inc. | Emergency facility video-conferencing system |
US6430475B2 (en) * | 2000-04-10 | 2002-08-06 | National Aerospace Laboratory Of Japan | Pressure-distribution sensor for controlling multi-jointed nursing robot |
US6466844B1 (en) * | 2000-03-06 | 2002-10-15 | Matsushita Electric Industrial Co., Ltd. | Robot, robot system, and robot control method |
US20020177925A1 (en) * | 2001-05-25 | 2002-11-28 | Ken Onishi | Method and system for providing service by robot |
US6532404B2 (en) * | 1997-11-27 | 2003-03-11 | Colens Andre | Mobile robots and their control system |
US6535793B2 (en) * | 2000-05-01 | 2003-03-18 | Irobot Corporation | Method and system for remote control of mobile robot |
US6535182B2 (en) * | 1998-12-07 | 2003-03-18 | Koninklijke Philips Electronics N.V. | Head-mounted projection display system |
US6540039B1 (en) * | 1999-08-19 | 2003-04-01 | Massachusetts Institute Of Technology | Omnidirectional vehicle with offset wheel pairs |
US6543899B2 (en) * | 2000-12-05 | 2003-04-08 | Eastman Kodak Company | Auto-stereoscopic viewing system using mounted projection |
US6691000B2 (en) * | 2001-10-26 | 2004-02-10 | Communications Research Laboratory, Independent Administrative Institution | Robot-arm telemanipulating system presenting auditory information |
US20050065659A1 (en) * | 2002-02-19 | 2005-03-24 | Michiharu Tanaka | Robot control device |
Family Cites Families (728)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US597446A (en) * | 1898-01-18 | tucker | ||
US3623013A (en) * | 1969-08-13 | 1971-11-23 | Burroughs Corp | Data processing network and improved terminal |
US3821995A (en) | 1971-10-15 | 1974-07-02 | E Aghnides | Vehicle with composite wheel |
US4107689A (en) | 1976-06-07 | 1978-08-15 | Rca Corporation | System for automatic vehicle location |
US4213182A (en) | 1978-12-06 | 1980-07-15 | General Electric Company | Programmable energy load controller system and methods |
US4413693A (en) | 1981-03-27 | 1983-11-08 | Derby Sherwin L | Mobile chair |
US5148591A (en) | 1981-05-11 | 1992-09-22 | Sensor Adaptive Machines, Inc. | Vision target based assembly |
US6317953B1 (en) | 1981-05-11 | 2001-11-20 | Lmi-Diffracto | Vision target based assembly |
US4471354A (en) | 1981-11-23 | 1984-09-11 | Marathon Medical Equipment Corporation | Apparatus and method for remotely measuring temperature |
US4519466A (en) | 1982-03-30 | 1985-05-28 | Eiko Shiraishi | Omnidirectional drive system |
EP0108657B1 (en) | 1982-09-25 | 1987-08-12 | Fujitsu Limited | A multi-articulated robot |
US4625274A (en) | 1983-12-05 | 1986-11-25 | Motorola, Inc. | Microprocessor reset system |
US4572594A (en) * | 1984-02-08 | 1986-02-25 | Schwartz C Bruce | Arthroscopy support stand |
US4638445A (en) | 1984-06-08 | 1987-01-20 | Mattaboni Paul J | Autonomous mobile robot |
US4766581A (en) * | 1984-08-07 | 1988-08-23 | Justin Korn | Information retrieval system and method using independent user stations |
US4553309A (en) | 1984-09-26 | 1985-11-19 | General Motors Corporation | Robotic assembly of vehicle headliners |
JPS6180410A (en) | 1984-09-28 | 1986-04-24 | Yutaka Kanayama | Drive command system of mobile robot |
JPS61111863A (en) | 1984-11-05 | 1986-05-29 | Nissan Motor Co Ltd | Assembling work by using robots |
US4679152A (en) | 1985-02-20 | 1987-07-07 | Heath Company | Navigation system and method for a mobile robot |
US4697278A (en) | 1985-03-01 | 1987-09-29 | Veeder Industries Inc. | Electronic hub odometer |
US4652204A (en) * | 1985-08-02 | 1987-03-24 | Arnett Edward M | Apparatus for handling hazardous materials |
US4733737A (en) * | 1985-08-29 | 1988-03-29 | Reza Falamak | Drivable steerable platform for industrial, domestic, entertainment and like uses |
US4751658A (en) | 1986-05-16 | 1988-06-14 | Denning Mobile Robotics, Inc. | Obstacle avoidance system |
US4777416A (en) | 1986-05-16 | 1988-10-11 | Denning Mobile Robotics, Inc. | Recharge docking system for mobile robot |
SE455539B (en) * | 1986-05-23 | 1988-07-18 | Electrolux Ab | ELECTROOPTIC POSITION KNOWLEDGE SYSTEM FOR A PLAN REALLY FORMULA, PREFERRED A MOBILE ROBOT |
US4878501A (en) | 1986-09-24 | 1989-11-07 | Shue Ming Jeng | Electronic stethoscopic apparatus |
JPS63289607A (en) * | 1987-05-21 | 1988-11-28 | Toshiba Corp | Inter-module communication control system for intelligent robot |
US4847764C1 (en) | 1987-05-21 | 2001-09-11 | Meditrol Inc | System for dispensing drugs in health care instituions |
JPH0191834A (en) | 1987-08-20 | 1989-04-11 | Tsuruta Hiroko | Abnormal data detection and information method in individual medical data central control system |
US4942538A (en) | 1988-01-05 | 1990-07-17 | Spar Aerospace Limited | Telerobotic tracker |
US5193143A (en) * | 1988-01-12 | 1993-03-09 | Honeywell Inc. | Problem state monitoring |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5008804A (en) | 1988-06-23 | 1991-04-16 | Total Spectrum Manufacturing Inc. | Robotic television-camera dolly system |
US5040116A (en) | 1988-09-06 | 1991-08-13 | Transitions Research Corporation | Visual navigation and obstacle avoidance structured light system |
US5157491A (en) * | 1988-10-17 | 1992-10-20 | Kassatly L Samuel A | Method and apparatus for video broadcasting and teleconferencing |
US5155684A (en) | 1988-10-25 | 1992-10-13 | Tennant Company | Guiding an unmanned vehicle by reference to overhead features |
US4953159A (en) | 1989-01-03 | 1990-08-28 | American Telephone And Telegraph Company | Audiographics conferencing arrangement |
US5006988A (en) * | 1989-04-28 | 1991-04-09 | University Of Michigan | Obstacle-avoiding navigation system |
US5224157A (en) | 1989-05-22 | 1993-06-29 | Minolta Camera Kabushiki Kaisha | Management system for managing maintenance information of image forming apparatus |
US5051906A (en) | 1989-06-07 | 1991-09-24 | Transitions Research Corporation | Mobile robot navigation employing retroreflective ceiling features |
JP3002206B2 (en) | 1989-06-22 | 2000-01-24 | 神鋼電機株式会社 | Travel control method for mobile robot |
US5341854A (en) | 1989-09-28 | 1994-08-30 | Alberta Research Council | Robotic drug dispensing system |
JP2964518B2 (en) * | 1990-01-30 | 1999-10-18 | 日本電気株式会社 | Voice control method |
JP2679346B2 (en) | 1990-03-28 | 1997-11-19 | 神鋼電機株式会社 | Charging control method for mobile robot system |
JP2921936B2 (en) | 1990-07-13 | 1999-07-19 | 株式会社東芝 | Image monitoring device |
US6958706B2 (en) | 1990-07-27 | 2005-10-25 | Hill-Rom Services, Inc. | Patient care and communication system |
JP2541353B2 (en) | 1990-09-18 | 1996-10-09 | 三菱自動車工業株式会社 | Active suspension system for vehicles |
US5563998A (en) | 1990-10-19 | 1996-10-08 | Moore Business Forms, Inc. | Forms automation system implementation |
US5276445A (en) | 1990-11-30 | 1994-01-04 | Sony Corporation | Polling control system for switching units in a plural stage switching matrix |
US5310464A (en) | 1991-01-04 | 1994-05-10 | Redepenning Jody G | Electrocrystallization of strongly adherent brushite coatings on prosthetic alloys |
JPH0530502A (en) | 1991-07-24 | 1993-02-05 | Hitachi Ltd | Integrated video telephone set |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5231693A (en) | 1991-05-09 | 1993-07-27 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Telerobot control system |
US5341459A (en) | 1991-05-09 | 1994-08-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Generalized compliant motion primitive |
US7382399B1 (en) | 1991-05-13 | 2008-06-03 | Sony Coporation | Omniview motionless camera orientation system |
JP3173042B2 (en) | 1991-05-21 | 2001-06-04 | ソニー株式会社 | Robot numerical controller |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5182641A (en) * | 1991-06-17 | 1993-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite video and graphics display for camera viewing systems in robotics and teleoperation |
US5366896A (en) | 1991-07-30 | 1994-11-22 | University Of Virginia Alumni Patents Foundation | Robotically operated laboratory system |
US5441042A (en) | 1991-08-05 | 1995-08-15 | Putman; John M. | Endoscope instrument holder |
WO1993006690A1 (en) | 1991-09-17 | 1993-04-01 | Radamec Epo Limited | Setting-up system for remotely controlled cameras |
US5419008A (en) | 1991-10-24 | 1995-05-30 | West; Mark | Ball joint |
US5186270A (en) | 1991-10-24 | 1993-02-16 | Massachusetts Institute Of Technology | Omnidirectional vehicle |
ATE155059T1 (en) | 1992-01-21 | 1997-07-15 | Stanford Res Inst Int | TELEOPERATOR SYSTEM AND TELEPRESENCE METHOD |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
EP0559348A3 (en) | 1992-03-02 | 1993-11-03 | AT&T Corp. | Rate control loop processor for perceptual encoder/decoder |
US5544649A (en) | 1992-03-25 | 1996-08-13 | Cardiomedix, Inc. | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
US5262944A (en) | 1992-05-15 | 1993-11-16 | Hewlett-Packard Company | Method for use of color and selective highlighting to indicate patient critical events in a centralized patient monitoring system |
US5594859A (en) * | 1992-06-03 | 1997-01-14 | Digital Equipment Corporation | Graphical user interface for video teleconferencing |
US5375195A (en) | 1992-06-29 | 1994-12-20 | Johnston; Victor S. | Method and apparatus for generating composites of human faces |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5374879A (en) | 1992-11-04 | 1994-12-20 | Martin Marietta Energy Systems, Inc. | Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom |
IL103976A0 (en) * | 1992-12-04 | 1994-05-30 | Mintz Yossi | Method and system for iteratively targeting participants according to their priorities |
US5600573A (en) * | 1992-12-09 | 1997-02-04 | Discovery Communications, Inc. | Operations center with video storage for a television program packaging and delivery system |
US5315287A (en) | 1993-01-13 | 1994-05-24 | David Sol | Energy monitoring system for recreational vehicles and marine vessels |
EP0617914B1 (en) | 1993-03-31 | 1998-09-30 | Siemens Medical Systems, Inc. | Apparatus and method for providing dual output signals in a telemetry transmitter |
US5319611A (en) | 1993-03-31 | 1994-06-07 | National Research Council Of Canada | Method of determining range data in a time-of-flight ranging system |
US5350033A (en) | 1993-04-26 | 1994-09-27 | Kraft Brett W | Robotic inspection vehicle |
ES2112976T3 (en) | 1993-05-19 | 1998-04-16 | Alsthom Cge Alcatel | VIDEO NETWORK ON REQUEST. |
DE69434779T2 (en) | 1993-09-20 | 2007-06-14 | Canon K.K. | video system |
US5689641A (en) | 1993-10-01 | 1997-11-18 | Vicor, Inc. | Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal |
US6594688B2 (en) | 1993-10-01 | 2003-07-15 | Collaboration Properties, Inc. | Dedicated echo canceler for a workstation |
EP0724809A1 (en) | 1993-10-20 | 1996-08-07 | Videoconferencing Systems, Inc. | Adaptive videoconferencing system |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5623679A (en) | 1993-11-19 | 1997-04-22 | Waverley Holdings, Inc. | System and method for creating and manipulating notes each containing multiple sub-notes, and linking the sub-notes to portions of data objects |
US5510832A (en) | 1993-12-01 | 1996-04-23 | Medi-Vision Technologies, Inc. | Synthesized stereoscopic imaging system and method |
US5347306A (en) | 1993-12-17 | 1994-09-13 | Mitsubishi Electric Research Laboratories, Inc. | Animated electronic meeting place |
GB2284968A (en) | 1993-12-18 | 1995-06-21 | Ibm | Audio conferencing system |
JP3339953B2 (en) | 1993-12-29 | 2002-10-28 | オリンパス光学工業株式会社 | Medical master-slave manipulator |
US5511147A (en) | 1994-01-12 | 1996-04-23 | Uti Corporation | Graphical interface for robot |
US5436542A (en) | 1994-01-28 | 1995-07-25 | Surgix, Inc. | Telescopic camera mount with remotely controlled positioning |
JPH07213753A (en) | 1994-02-02 | 1995-08-15 | Hitachi Ltd | Personal robot device |
JPH07248823A (en) | 1994-03-11 | 1995-09-26 | Hitachi Ltd | Personal robot device |
DE4408329C2 (en) | 1994-03-11 | 1996-04-18 | Siemens Ag | Method for building up a cellular structured environment map of a self-moving mobile unit, which is oriented with the help of sensors based on wave reflection |
JPH07257422A (en) | 1994-03-19 | 1995-10-09 | Hideaki Maehara | Omnidirectional drive wheel and omnidirectional traveling vehicle providing the same |
US5659779A (en) | 1994-04-25 | 1997-08-19 | The United States Of America As Represented By The Secretary Of The Navy | System for assigning computer resources to control multiple computer directed devices |
US5784546A (en) | 1994-05-12 | 1998-07-21 | Integrated Virtual Networks | Integrated virtual networks |
US5734805A (en) | 1994-06-17 | 1998-03-31 | International Business Machines Corporation | Apparatus and method for controlling navigation in 3-D space |
CA2148631C (en) | 1994-06-20 | 2000-06-13 | John J. Hildin | Voice-following video system |
JPH0811074A (en) | 1994-06-29 | 1996-01-16 | Fanuc Ltd | Robot system |
BE1008470A3 (en) | 1994-07-04 | 1996-05-07 | Colens Andre | Device and automatic system and equipment dedusting sol y adapted. |
JP3302188B2 (en) | 1994-09-13 | 2002-07-15 | 日本電信電話株式会社 | Telexistence-type video phone |
US5675229A (en) | 1994-09-21 | 1997-10-07 | Abb Robotics Inc. | Apparatus and method for adjusting robot positioning |
US6463361B1 (en) | 1994-09-22 | 2002-10-08 | Computer Motion, Inc. | Speech interface for an automated endoscopic system |
US5764731A (en) | 1994-10-13 | 1998-06-09 | Yablon; Jay R. | Enhanced system for transferring, storing and using signaling information in a switched telephone network |
US5767897A (en) | 1994-10-31 | 1998-06-16 | Picturetel Corporation | Video conferencing system |
JPH08139900A (en) | 1994-11-14 | 1996-05-31 | Canon Inc | Image communication equipment |
JP2726630B2 (en) | 1994-12-07 | 1998-03-11 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Gateway device and gateway method |
US5486853A (en) | 1994-12-13 | 1996-01-23 | Picturetel Corporation | Electrical cable interface for electronic camera |
US5619341A (en) | 1995-02-23 | 1997-04-08 | Motorola, Inc. | Method and apparatus for preventing overflow and underflow of an encoder buffer in a video compression system |
US5973724A (en) | 1995-02-24 | 1999-10-26 | Apple Computer, Inc. | Merging multiple teleconferences |
US5854898A (en) | 1995-02-24 | 1998-12-29 | Apple Computer, Inc. | System for automatically adding additional data stream to existing media connection between two end points upon exchange of notifying and confirmation messages therebetween |
US5657246A (en) | 1995-03-07 | 1997-08-12 | Vtel Corporation | Method and apparatus for a video conference user interface |
US5652849A (en) | 1995-03-16 | 1997-07-29 | Regents Of The University Of Michigan | Apparatus and method for remote control using a visual information stream |
US5673082A (en) | 1995-04-10 | 1997-09-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Light-directed ranging system implementing single camera system for telerobotics applications |
JP3241564B2 (en) * | 1995-05-10 | 2001-12-25 | 富士通株式会社 | Control device and method for motion control of normal wheel type omnidirectional mobile robot |
JPH08320727A (en) | 1995-05-24 | 1996-12-03 | Shinko Electric Co Ltd | Moving device |
US5630566A (en) | 1995-05-30 | 1997-05-20 | Case; Laura | Portable ergonomic work station |
JPH08335112A (en) | 1995-06-08 | 1996-12-17 | Minolta Co Ltd | Mobile working robot system |
US5872769A (en) | 1995-07-19 | 1999-02-16 | Fujitsu Network Communications, Inc. | Linked list structures for multiple levels of control in an ATM switch |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US6710797B1 (en) * | 1995-09-20 | 2004-03-23 | Videotronic Systems | Adaptable teleconferencing eye contact terminal |
US5961446A (en) | 1995-10-06 | 1999-10-05 | Tevital Incorporated | Patient terminal for home health care system |
US5797515A (en) | 1995-10-18 | 1998-08-25 | Adds, Inc. | Method for controlling a drug dispensing system |
JP3401789B2 (en) | 1995-11-13 | 2003-04-28 | ソニー株式会社 | Near video on demand system and broadcasting method thereof |
US20010034475A1 (en) | 1995-11-13 | 2001-10-25 | Flach Terry E. | Wireless lan system with cellular architecture |
US6219032B1 (en) | 1995-12-01 | 2001-04-17 | Immersion Corporation | Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface |
US5838575A (en) | 1995-12-14 | 1998-11-17 | Rx Excell Inc. | System for dispensing drugs |
US5793365A (en) | 1996-01-02 | 1998-08-11 | Sun Microsystems, Inc. | System and method providing a computer user interface enabling access to distributed workgroup members |
US5732074A (en) * | 1996-01-16 | 1998-03-24 | Cellport Labs, Inc. | Mobile portable wireless communication system |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
CN1094277C (en) | 1996-03-18 | 2002-11-13 | 通用仪器公司 | Dynamic bandwidth allocation for communication network |
US5682199A (en) | 1996-03-28 | 1997-10-28 | Jedmed Instrument Company | Video endoscope with interchangeable endoscope heads |
JP3601737B2 (en) | 1996-03-30 | 2004-12-15 | 技術研究組合医療福祉機器研究所 | Transfer robot system |
US5801755A (en) | 1996-04-09 | 1998-09-01 | Echerer; Scott J. | Interactive communciation system for medical treatment of remotely located patients |
WO1997039715A1 (en) | 1996-04-25 | 1997-10-30 | Massachusetts Institute Of Technology | Human transport system with dead reckoning facilitating docking |
WO1997042761A1 (en) | 1996-05-06 | 1997-11-13 | The Camelot Corporation | Videophone system |
US6189034B1 (en) | 1996-05-08 | 2001-02-13 | Apple Computer, Inc. | Method and apparatus for dynamic launching of a teleconferencing application upon receipt of a call |
US6006191A (en) | 1996-05-13 | 1999-12-21 | Dirienzo; Andrew L. | Remote access medical image exchange system and methods of operation therefor |
US5761736A (en) * | 1996-05-16 | 1998-06-02 | Advanced Micro Devices, Inc. | Apparatus and method for implementing multiple scaled states in a state machine |
US6496099B2 (en) | 1996-06-24 | 2002-12-17 | Computer Motion, Inc. | General purpose distributed operating room control system |
US5949758A (en) | 1996-06-27 | 1999-09-07 | International Business Machines Corporation | Bandwidth reservation for multiple file transfer in a high speed communication network |
US5941363A (en) * | 1996-07-31 | 1999-08-24 | Proactive Vending Technology, Llc | Vending data collection system |
JPH1079097A (en) | 1996-09-04 | 1998-03-24 | Toyota Motor Corp | Mobile object communication method |
US6195357B1 (en) | 1996-09-24 | 2001-02-27 | Intervoice Limited Partnership | Interactive information transaction processing system with universal telephony gateway capabilities |
US5754631A (en) | 1996-09-30 | 1998-05-19 | Intervoice Limited Partnership | Voice response unit having robot conference capability on ports |
US5974446A (en) | 1996-10-24 | 1999-10-26 | Academy Of Applied Science | Internet based distance learning system for communicating between server and clients wherein clients communicate with each other or with teacher using different communication techniques via common user interface |
US6646677B2 (en) | 1996-10-25 | 2003-11-11 | Canon Kabushiki Kaisha | Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method |
US5867494A (en) | 1996-11-18 | 1999-02-02 | Mci Communication Corporation | System, method and article of manufacture with integrated video conferencing billing in a communication system architecture |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US8182469B2 (en) | 1997-11-21 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and method |
US6113343A (en) | 1996-12-16 | 2000-09-05 | Goldenberg; Andrew | Explosives disposal robot |
US6148100A (en) | 1996-12-20 | 2000-11-14 | Bechtel Bwxt Idaho, Llc | 3-dimensional telepresence system for a robotic environment |
US6501740B1 (en) | 1997-03-07 | 2002-12-31 | At&T Corp. | System and method for teleconferencing on an internetwork comprising connection-oriented and connectionless networks |
US5995884A (en) | 1997-03-07 | 1999-11-30 | Allen; Timothy P. | Computer peripheral floor cleaning system and navigation method |
JPH10288689A (en) | 1997-04-14 | 1998-10-27 | Hitachi Ltd | Remote monitoring system |
US20040157612A1 (en) | 1997-04-25 | 2004-08-12 | Minerva Industries, Inc. | Mobile communication and stethoscope system |
US6914622B1 (en) | 1997-05-07 | 2005-07-05 | Telbotics Inc. | Teleconferencing robot with swiveling video monitor |
DE69803451T2 (en) | 1997-05-07 | 2002-09-26 | Ryerson Polytechnic University, Toronto | TELECONFERENCE ROBOT WITH ROTATING VIDEO SCREEN |
GB2325376B (en) | 1997-05-14 | 2001-09-19 | Dsc Telecom Lp | Allocation of bandwidth to calls in a wireless telecommunications system |
US5857534A (en) | 1997-06-05 | 1999-01-12 | Kansas State University Research Foundation | Robotic inspection apparatus and method |
US5995119A (en) | 1997-06-06 | 1999-11-30 | At&T Corp. | Method for generating photo-realistic animated characters |
EP0991529B1 (en) | 1997-07-02 | 2002-04-24 | Borringia Industrie AG | Drive wheel |
US6330486B1 (en) | 1997-07-16 | 2001-12-11 | Silicon Graphics, Inc. | Acoustic perspective in a virtual three-dimensional environment |
US6445964B1 (en) | 1997-08-04 | 2002-09-03 | Harris Corporation | Virtual reality simulation-based training of telekinegenesis system for training sequential kinematic behavior of automated kinematic machine |
JPH11126017A (en) | 1997-08-22 | 1999-05-11 | Sony Corp | Storage medium, robot, information processing device and electronic pet system |
US6714839B2 (en) | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
US6400378B1 (en) | 1997-09-26 | 2002-06-04 | Sony Corporation | Home movie maker |
JPH11175118A (en) | 1997-10-08 | 1999-07-02 | Denso Corp | Robot controller |
US6597392B1 (en) | 1997-10-14 | 2003-07-22 | Healthcare Vision, Inc. | Apparatus and method for computerized multi-media data organization and transmission |
US7956894B2 (en) | 1997-10-14 | 2011-06-07 | William Rex Akers | Apparatus and method for computerized multi-media medical and pharmaceutical data organization and transmission |
US7885822B2 (en) | 2001-05-09 | 2011-02-08 | William Rex Akers | System and method for electronic medical file management |
KR20010032583A (en) | 1997-11-27 | 2001-04-25 | 콜렌스 안드레 | Improvements to mobile robots and their control system |
JP3919040B2 (en) | 1997-11-30 | 2007-05-23 | ソニー株式会社 | Robot equipment |
US6006946A (en) | 1997-12-05 | 1999-12-28 | Automated Prescriptions System, Inc. | Pill dispensing system |
US6036812A (en) | 1997-12-05 | 2000-03-14 | Automated Prescription Systems, Inc. | Pill dispensing system |
US6047259A (en) * | 1997-12-30 | 2000-04-04 | Medical Management International, Inc. | Interactive method and system for managing physical exams, diagnosis and treatment protocols in a health care practice |
US5983263A (en) | 1998-01-02 | 1999-11-09 | Intel Corporation | Method and apparatus for transmitting images during a multimedia teleconference |
US6563533B1 (en) | 1998-01-06 | 2003-05-13 | Sony Corporation | Ergonomically designed apparatus for selectively actuating remote robotics cameras |
US6380968B1 (en) | 1998-01-06 | 2002-04-30 | Intel Corporation | Method and apparatus for controlling a remote video camera in a video conferencing system |
DE19803494A1 (en) | 1998-01-29 | 1999-08-05 | Berchtold Gmbh & Co Geb | Procedure for manipulating an operating light |
JPH11220706A (en) | 1998-02-03 | 1999-08-10 | Nikon Corp | Video telephone system |
JPH11249725A (en) | 1998-02-26 | 1999-09-17 | Fanuc Ltd | Robot controller |
US6346962B1 (en) * | 1998-02-27 | 2002-02-12 | International Business Machines Corporation | Control of video conferencing system with pointing device |
US6373855B1 (en) | 1998-03-05 | 2002-04-16 | Intel Corporation | System and method for using audio performance to control video bandwidth |
US6643496B1 (en) | 1998-03-31 | 2003-11-04 | Canon Kabushiki Kaisha | System, method, and apparatus for adjusting packet transmission rates based on dynamic evaluation of network characteristics |
GB9807540D0 (en) | 1998-04-09 | 1998-06-10 | Orad Hi Tec Systems Ltd | Tracking system for sports |
US6650748B1 (en) | 1998-04-13 | 2003-11-18 | Avaya Technology Corp. | Multiple call handling in a call center |
US6313853B1 (en) * | 1998-04-16 | 2001-11-06 | Nortel Networks Limited | Multi-service user interface |
US6529765B1 (en) * | 1998-04-21 | 2003-03-04 | Neutar L.L.C. | Instrumented and actuated guidance fixture for sterotactic surgery |
US20020151514A1 (en) | 1998-05-11 | 2002-10-17 | Paz Einat | Genes associated with mechanical stress, expression products therefrom, and uses thereof |
US6250928B1 (en) | 1998-06-22 | 2001-06-26 | Massachusetts Institute Of Technology | Talking facial display method and apparatus |
JP4328997B2 (en) * | 1998-06-23 | 2009-09-09 | ソニー株式会社 | Robot device |
JP3792901B2 (en) | 1998-07-08 | 2006-07-05 | キヤノン株式会社 | Camera control system and control method thereof |
US6452915B1 (en) | 1998-07-10 | 2002-09-17 | Malibu Networks, Inc. | IP-flow classification in a wireless point to multi-point (PTMP) transmission system |
US6266577B1 (en) | 1998-07-13 | 2001-07-24 | Gte Internetworking Incorporated | System for dynamically reconfigure wireless robot network |
JP3487186B2 (en) | 1998-07-28 | 2004-01-13 | 日本ビクター株式会社 | Network remote control system |
JP4100773B2 (en) | 1998-09-04 | 2008-06-11 | 富士通株式会社 | Robot remote control method and system |
JP2000153476A (en) | 1998-09-14 | 2000-06-06 | Honda Motor Co Ltd | Leg type movable robot |
US6594527B2 (en) | 1998-09-18 | 2003-07-15 | Nexmed Holdings, Inc. | Electrical stimulation apparatus and method |
US6175779B1 (en) * | 1998-09-29 | 2001-01-16 | J. Todd Barrett | Computerized unit dose medication dispensing cart |
US6457043B1 (en) | 1998-10-23 | 2002-09-24 | Verizon Laboratories Inc. | Speaker identifier for multi-party conference |
AU1216200A (en) | 1998-10-24 | 2000-05-15 | Vtel Corporation | Graphical menu items for a user interface menu of a video teleconferencing system |
US6602469B1 (en) | 1998-11-09 | 2003-08-05 | Lifestream Technologies, Inc. | Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system |
US6951535B2 (en) * | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6852107B2 (en) * | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
JP2000196876A (en) | 1998-12-28 | 2000-07-14 | Canon Inc | Image processing system, image forming controller, image forming device, control method for image processing system, control method for the image forming controller, and control method for the image forming device |
ATE460127T1 (en) | 1998-12-08 | 2010-03-15 | Intuitive Surgical Inc | TELEROBOT FOR MOVING PICTURES |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
JP3980205B2 (en) | 1998-12-17 | 2007-09-26 | コニカミノルタホールディングス株式会社 | Work robot |
US6259956B1 (en) | 1999-01-14 | 2001-07-10 | Rawl & Winstead, Inc. | Method and apparatus for site management |
US6463352B1 (en) | 1999-01-21 | 2002-10-08 | Amada Cutting Technologies, Inc. | System for management of cutting machines |
JP4366617B2 (en) * | 1999-01-25 | 2009-11-18 | ソニー株式会社 | Robot device |
US6338013B1 (en) * | 1999-03-19 | 2002-01-08 | Bryan John Ruffner | Multifunctional mobile appliance |
WO2000060522A2 (en) | 1999-04-01 | 2000-10-12 | Acist Medical Systems, Inc. | An integrated medical information management and medical device control system and method |
US7007235B1 (en) | 1999-04-02 | 2006-02-28 | Massachusetts Institute Of Technology | Collaborative agent interaction control and synchronization system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
US6788651B1 (en) | 1999-04-21 | 2004-09-07 | Mindspeed Technologies, Inc. | Methods and apparatus for data communications on packet networks |
US6346950B1 (en) | 1999-05-20 | 2002-02-12 | Compaq Computer Corporation | System and method for display images using anamorphic video |
US6781606B2 (en) | 1999-05-20 | 2004-08-24 | Hewlett-Packard Development Company, L.P. | System and method for displaying images using foveal video |
US6523629B1 (en) * | 1999-06-07 | 2003-02-25 | Sandia Corporation | Tandem mobile robot system |
US6804656B1 (en) | 1999-06-23 | 2004-10-12 | Visicu, Inc. | System and method for providing continuous, expert network critical care services from a remote location(s) |
US7256708B2 (en) | 1999-06-23 | 2007-08-14 | Visicu, Inc. | Telecommunications network for remote patient monitoring |
US6304050B1 (en) | 1999-07-19 | 2001-10-16 | Steven B. Skaar | Means and method of robot control relative to an arbitrary surface using camera-space manipulation |
US7606164B2 (en) | 1999-12-14 | 2009-10-20 | Texas Instruments Incorporated | Process of increasing source rate on acceptable side of threshold |
DE69927590T2 (en) | 1999-08-31 | 2006-07-06 | Swisscom Ag | Mobile robot and control method for a mobile robot |
US6810411B1 (en) | 1999-09-13 | 2004-10-26 | Intel Corporation | Method and system for selecting a host in a communications network |
JP2001094989A (en) | 1999-09-20 | 2001-04-06 | Toshiba Corp | Dynamic image transmitter and dynamic image communications equipment |
US6480762B1 (en) | 1999-09-27 | 2002-11-12 | Olympus Optical Co., Ltd. | Medical apparatus supporting system |
US6449762B1 (en) | 1999-10-07 | 2002-09-10 | Synplicity, Inc. | Maintaining correspondence between text and schematic representations of circuit elements in circuit synthesis |
US6798753B1 (en) | 1999-10-14 | 2004-09-28 | International Business Machines Corporation | Automatically establishing conferences from desktop applications over the Internet |
US7467211B1 (en) | 1999-10-18 | 2008-12-16 | Cisco Technology Inc. | Remote computer system management through an FTP internet connection |
WO2001031861A1 (en) | 1999-10-22 | 2001-05-03 | Nomadix, Inc. | Systems and methods for dynamic bandwidth management on a per subscriber basis in a communications network |
JP4207336B2 (en) | 1999-10-29 | 2009-01-14 | ソニー株式会社 | Charging system for mobile robot, method for searching for charging station, mobile robot, connector, and electrical connection structure |
AT409238B (en) | 1999-11-05 | 2002-06-25 | Fronius Schweissmasch Prod | DETERMINING AND / OR DETERMINING USER AUTHORIZATIONS BY MEANS OF A TRANSPONDER, A FINGERPRINT IDENTIFIER OR THE LIKE |
JP2001134309A (en) | 1999-11-09 | 2001-05-18 | Mitsubishi Electric Corp | Robot operation terminal and remote control system for robot |
IL149558A0 (en) | 1999-11-18 | 2002-11-10 | Procter & Gamble | Home cleaning robot |
JP2001147718A (en) | 1999-11-19 | 2001-05-29 | Sony Corp | Information communication robot device, information communication method and information communication robot system |
US6374155B1 (en) | 1999-11-24 | 2002-04-16 | Personal Robotics, Inc. | Autonomous multi-platform robot system |
US6443359B1 (en) | 1999-12-03 | 2002-09-03 | Diebold, Incorporated | Automated transaction system and method |
US7156809B2 (en) * | 1999-12-17 | 2007-01-02 | Q-Tec Systems Llc | Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity |
US20010051881A1 (en) | 1999-12-22 | 2001-12-13 | Aaron G. Filler | System, method and article of manufacture for managing a medical services network |
DE60028815T2 (en) * | 1999-12-23 | 2006-10-05 | Hill-Rom Services, Inc., Wilmington | OPERATING ROOM SYSTEM |
JP2001179663A (en) | 1999-12-24 | 2001-07-03 | Sony Corp | Leg type mobile robot, its control method and charging station |
JP2001188124A (en) | 1999-12-27 | 2001-07-10 | Ge Toshiba Silicones Co Ltd | Saponified cellulose acetate composite polarizing base plate, its manufacturing method and liquid crystal display device |
US7389252B2 (en) | 2000-01-06 | 2008-06-17 | Anne E. Robb | Recursive method and system for accessing classification information |
JP2001198868A (en) | 2000-01-17 | 2001-07-24 | Atr Media Integration & Communications Res Lab | Robot for cyber two man comic dialogue and support device |
JP3791663B2 (en) | 2000-01-17 | 2006-06-28 | 富士電機ホールディングス株式会社 | Omnidirectional moving vehicle and its control method |
WO2001054044A1 (en) * | 2000-01-19 | 2001-07-26 | Kline & Walker, Llc | Protected accountable primary focal node interface |
JP2001198865A (en) | 2000-01-20 | 2001-07-24 | Toshiba Corp | Bipedal robot device and its operating method |
JP2001222309A (en) * | 2000-02-10 | 2001-08-17 | Yaskawa Electric Corp | Robot controller |
US20010054071A1 (en) | 2000-03-10 | 2001-12-20 | Loeb Gerald E. | Audio/video conference system for electronic caregiving |
FR2806561B1 (en) | 2000-03-16 | 2002-08-09 | France Telecom | HOME TELE ASSISTANCE SYSTEM |
KR100351816B1 (en) | 2000-03-24 | 2002-09-11 | 엘지전자 주식회사 | Apparatus for conversing format |
US6590604B1 (en) | 2000-04-07 | 2003-07-08 | Polycom, Inc. | Personal videoconferencing system having distributed processing architecture |
US20010048464A1 (en) | 2000-04-07 | 2001-12-06 | Barnett Howard S. | Portable videoconferencing system |
US6845297B2 (en) * | 2000-05-01 | 2005-01-18 | Irobot Corporation | Method and system for remote control of mobile robot |
US6292714B1 (en) | 2000-05-12 | 2001-09-18 | Fujitsu Limited | Robot cooperation device, and robot cooperation program storage medium |
AU2001264799A1 (en) | 2000-05-24 | 2001-12-03 | Virtual Clinic, Inc. | Method and apparatus for providing personalized services |
DE60141403D1 (en) | 2000-06-09 | 2010-04-08 | Japan Science & Tech Agency | Hearing device for a robot |
JP2001353678A (en) | 2000-06-12 | 2001-12-25 | Sony Corp | Authoring system and method and storage medium |
JP3513084B2 (en) | 2000-06-14 | 2004-03-31 | 株式会社東芝 | Information processing system, information equipment and information processing method |
JP2002000574A (en) | 2000-06-22 | 2002-01-08 | Matsushita Electric Ind Co Ltd | Robot for nursing care support and nursing care support system |
US7782363B2 (en) | 2000-06-27 | 2010-08-24 | Front Row Technologies, Llc | Providing multiple video perspectives of activities through a data network to a remote multimedia server for selective display by remote viewing audiences |
US6629028B2 (en) | 2000-06-29 | 2003-09-30 | Riken | Method and system of optical guidance of mobile body |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US8126960B2 (en) | 2000-07-28 | 2012-02-28 | Silver State Intellectual Technologies, Inc. | Technique for effective organization and communication of information |
US8751248B2 (en) | 2000-07-28 | 2014-06-10 | Visual Telecommunications Network, Inc. | Method, apparatus, and medium using a master control file for computer software interoperability between disparate operating systems |
US7886054B1 (en) | 2000-10-11 | 2011-02-08 | Siddhartha Nag | Graphical user interface (GUI) for administering a network implementing media aggregation |
US6738076B1 (en) | 2000-07-31 | 2004-05-18 | Hewlett-Packard Development Company, L.P. | Method and system for maintaining persistance of graphical markups in a collaborative graphical viewing system |
JP2002046088A (en) | 2000-08-03 | 2002-02-12 | Matsushita Electric Ind Co Ltd | Robot device |
US20020027597A1 (en) | 2000-09-05 | 2002-03-07 | John Sachau | System for mobile videoconferencing |
US20070273751A1 (en) | 2000-09-05 | 2007-11-29 | Sachau John A | System and methods for mobile videoconferencing |
EP1189169A1 (en) | 2000-09-07 | 2002-03-20 | STMicroelectronics S.r.l. | A VLSI architecture, particularly for motion estimation applications |
WO2002023403A2 (en) | 2000-09-11 | 2002-03-21 | Pinotage, Llc. | System and method for obtaining and utilizing maintenance information |
US7027965B2 (en) * | 2000-09-13 | 2006-04-11 | The University Of Washington | Time domain passivity control of haptic interfaces |
KR100373323B1 (en) | 2000-09-19 | 2003-02-25 | 한국전자통신연구원 | Method of multipoint video conference in video conferencing system |
US6741911B2 (en) * | 2000-09-20 | 2004-05-25 | John Castle Simmons | Natural robot control |
JP2002101333A (en) | 2000-09-26 | 2002-04-05 | Casio Comput Co Ltd | Remote controller and remote control service system, and recording medium for recording program for them |
EP1323014A2 (en) * | 2000-09-28 | 2003-07-02 | Vigilos, Inc. | Method and process for configuring a premises for monitoring |
US20030060808A1 (en) | 2000-10-04 | 2003-03-27 | Wilk Peter J. | Telemedical method and system |
JP2004538538A (en) | 2000-10-05 | 2004-12-24 | シーメンス コーポレイト リサーチ インコーポレイテツド | Intraoperative image-guided neurosurgery and surgical devices with augmented reality visualization |
US20050149364A1 (en) | 2000-10-06 | 2005-07-07 | Ombrellaro Mark P. | Multifunction telemedicine software with integrated electronic medical record |
US6674259B1 (en) | 2000-10-06 | 2004-01-06 | Innovation First, Inc. | System and method for managing and controlling a robot competition |
JP2002112970A (en) | 2000-10-10 | 2002-04-16 | Daito Seiki Co Ltd | Device and method for observing surface of skin |
JP2002113675A (en) * | 2000-10-11 | 2002-04-16 | Sony Corp | Robot control system and introducing method for robot controlling software |
AU2002211598A1 (en) | 2000-10-16 | 2002-04-29 | Cardionow, Inc. | Medical image capture system and method |
US8348675B2 (en) | 2000-10-19 | 2013-01-08 | Life Success Academy | Apparatus and method for delivery of instructional information |
US6636780B1 (en) | 2000-11-07 | 2003-10-21 | Mdg Medical Inc. | Medication dispensing system including medicine cabinet and tray therefor |
JP4310916B2 (en) | 2000-11-08 | 2009-08-12 | コニカミノルタホールディングス株式会社 | Video display device |
US7219364B2 (en) | 2000-11-22 | 2007-05-15 | International Business Machines Corporation | System and method for selectable semantic codec pairs for very low data-rate video transmission |
US20020104094A1 (en) | 2000-12-01 | 2002-08-01 | Bruce Alexander | System and method for processing video data utilizing motion detection and subdivided video fields |
US6411209B1 (en) | 2000-12-06 | 2002-06-25 | Koninklijke Philips Electronics N.V. | Method and apparatus to select the best video frame to transmit to a remote station for CCTV based residential security monitoring |
EP1350157A4 (en) | 2000-12-06 | 2005-08-10 | Vigilos Inc | System and method for implementing open-protocol remote device control |
US6791550B2 (en) | 2000-12-12 | 2004-09-14 | Enounce, Inc. | Management of presentation time in a digital media presentation system with variable rate presentation capability |
US20040260790A1 (en) | 2000-12-21 | 2004-12-23 | Ge Medical System Global Technology Company, Llc | Method and apparatus for remote or collaborative control of an imaging system |
US7339605B2 (en) | 2004-04-16 | 2008-03-04 | Polycom, Inc. | Conference link between a speakerphone and a video conference unit |
US6442451B1 (en) | 2000-12-28 | 2002-08-27 | Robotic Workspace Technologies, Inc. | Versatile robot control system |
US20020085030A1 (en) | 2000-12-29 | 2002-07-04 | Jamal Ghani | Graphical user interface for an interactive collaboration system |
KR20020061961A (en) | 2001-01-19 | 2002-07-25 | 사성동 | Intelligent pet robot |
JP2002342759A (en) | 2001-01-30 | 2002-11-29 | Nec Corp | System and method for providing information and its program |
US20020106998A1 (en) | 2001-02-05 | 2002-08-08 | Presley Herbert L. | Wireless rich media conferencing |
JP3736358B2 (en) | 2001-02-08 | 2006-01-18 | 株式会社チューオー | Wall material |
JP4182464B2 (en) | 2001-02-09 | 2008-11-19 | 富士フイルム株式会社 | Video conferencing system |
US20020109775A1 (en) | 2001-02-09 | 2002-08-15 | Excellon Automation Co. | Back-lighted fiducial recognition system and method of use |
US7184559B2 (en) * | 2001-02-23 | 2007-02-27 | Hewlett-Packard Development Company, L.P. | System and method for audio telepresence |
WO2002069609A2 (en) | 2001-02-27 | 2002-09-06 | Anthrotronix, Inc. | Robotic apparatus and wireless communication system |
US20020128985A1 (en) | 2001-03-09 | 2002-09-12 | Brad Greenwald | Vehicle value appraisal system |
US20020133062A1 (en) | 2001-03-15 | 2002-09-19 | Arling Robert Stanley | Embedded measurement values in medical reports |
JP4739556B2 (en) | 2001-03-27 | 2011-08-03 | 株式会社安川電機 | Remote adjustment and abnormality judgment device for control target |
US6965394B2 (en) | 2001-03-30 | 2005-11-15 | Koninklijke Philips Electronics N.V. | Remote camera control device |
WO2002082301A1 (en) | 2001-04-03 | 2002-10-17 | Vigilos, Inc. | System and method for managing a device network |
JP2002305743A (en) | 2001-04-04 | 2002-10-18 | Rita Security Engineering:Kk | Remote moving picture transmission system compatible with adsl |
US6920373B2 (en) | 2001-04-13 | 2005-07-19 | Board Of Trusstees Operating Michigan State University | Synchronization and task control of real-time internet based super-media |
US20030199000A1 (en) | 2001-08-20 | 2003-10-23 | Valkirs Gunars E. | Diagnostic markers of stroke and cerebral injury and methods of use thereof |
AU767561B2 (en) | 2001-04-18 | 2003-11-13 | Samsung Kwangju Electronics Co., Ltd. | Robot cleaner, system employing the same and method for reconnecting to external recharging device |
KR100437372B1 (en) | 2001-04-18 | 2004-06-25 | 삼성광주전자 주식회사 | Robot cleaning System using by mobile communication network |
JP2002321180A (en) | 2001-04-24 | 2002-11-05 | Matsushita Electric Ind Co Ltd | Robot control system |
WO2002088908A2 (en) | 2001-05-02 | 2002-11-07 | Bitstream Inc. | Methods, systems, and programming for producing and displaying subpixel-optimized font bitmaps using non-linear color balancing |
US7202851B2 (en) | 2001-05-04 | 2007-04-10 | Immersion Medical Inc. | Haptic interface for palpation simulation |
US6723086B2 (en) | 2001-05-07 | 2004-04-20 | Logiq Wireless Solutions, Inc. | Remote controlled transdermal medication delivery device |
US7242306B2 (en) * | 2001-05-08 | 2007-07-10 | Hill-Rom Services, Inc. | Article locating and tracking apparatus and method |
CN1529838A (en) | 2001-05-25 | 2004-09-15 | Toy robot programming | |
JP2002352354A (en) | 2001-05-30 | 2002-12-06 | Denso Corp | Remote care method |
JP2002355779A (en) | 2001-06-01 | 2002-12-10 | Sharp Corp | Robot type interface device and control method for the same |
US6763282B2 (en) | 2001-06-04 | 2004-07-13 | Time Domain Corp. | Method and system for controlling a robot |
US20020186243A1 (en) | 2001-06-06 | 2002-12-12 | Robert Ellis | Method and system for providing combined video and physiological data over a communication network for patient monitoring |
US6507773B2 (en) | 2001-06-14 | 2003-01-14 | Sharper Image Corporation | Multi-functional robot with remote and video system |
US6995664B1 (en) | 2001-06-20 | 2006-02-07 | Jeffrey Darling | Remote supervision system and method |
US6604021B2 (en) | 2001-06-21 | 2003-08-05 | Advanced Telecommunications Research Institute International | Communication robot |
WO2003000015A2 (en) | 2001-06-25 | 2003-01-03 | Science Applications International Corporation | Identification by analysis of physiometric variation |
US7483867B2 (en) | 2001-06-26 | 2009-01-27 | Intuition Intelligence, Inc. | Processing device with intuitive learning capability |
GB2377117B (en) | 2001-06-27 | 2004-08-18 | Cambridge Broadband Ltd | Method and apparatus for providing communications bandwidth |
NO20013450L (en) | 2001-07-11 | 2003-01-13 | Simsurgery As | Systems and methods for interactive training of procedures |
GB2393350B (en) | 2001-07-25 | 2006-03-08 | Neil J Stevenson | A camera control apparatus and method |
US7831575B2 (en) * | 2001-08-02 | 2010-11-09 | Bridge Works, Ltd | Library virtualisation module |
US6580246B2 (en) | 2001-08-13 | 2003-06-17 | Steven Jacobs | Robot touch shield |
US6667592B2 (en) | 2001-08-13 | 2003-12-23 | Intellibot, L.L.C. | Mapped robot system |
JP4689107B2 (en) * | 2001-08-22 | 2011-05-25 | 本田技研工業株式会社 | Autonomous robot |
US6952470B1 (en) | 2001-08-23 | 2005-10-04 | Bellsouth Intellectual Property Corp. | Apparatus and method for managing a call center |
WO2003019450A2 (en) * | 2001-08-24 | 2003-03-06 | March Networks Corporation | Remote health-monitoring system and method |
JP2003070804A (en) | 2001-09-05 | 2003-03-11 | Olympus Optical Co Ltd | Remote medical support system |
JP4378072B2 (en) | 2001-09-07 | 2009-12-02 | キヤノン株式会社 | Electronic device, imaging device, portable communication device, video display control method and program |
US6728599B2 (en) | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
CN1555244A (en) | 2001-09-13 | 2004-12-15 | Method for transmitting vital health statistics to a remote location form an aircraft | |
US7027097B2 (en) | 2001-09-17 | 2006-04-11 | Adam Zadok | Support for hand held camera |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
JP2003110652A (en) * | 2001-10-01 | 2003-04-11 | Matsushita Graphic Communication Systems Inc | Method of reinitializing adsl modem and the adsl modem |
US20030069828A1 (en) * | 2001-10-04 | 2003-04-10 | Eastman Kodak Company | System for and managing assets using priority tokens |
US6840904B2 (en) | 2001-10-11 | 2005-01-11 | Jason Goldberg | Medical monitoring device and system |
US7058689B2 (en) | 2001-10-16 | 2006-06-06 | Sprint Communications Company L.P. | Sharing of still images within a video telephony call |
US7307653B2 (en) | 2001-10-19 | 2007-12-11 | Nokia Corporation | Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device |
WO2003036557A1 (en) | 2001-10-22 | 2003-05-01 | Intel Zao | Method and apparatus for background segmentation based on motion localization |
US20030080901A1 (en) | 2001-10-25 | 2003-05-01 | Koninklijke Philips Electronics N.V. | RFID navigation system |
JP2003205483A (en) | 2001-11-07 | 2003-07-22 | Sony Corp | Robot system and control method for robot device |
US20030152145A1 (en) | 2001-11-15 | 2003-08-14 | Kevin Kawakita | Crash prevention recorder (CPR)/video-flight data recorder (V-FDR)/cockpit-cabin voice recorder for light aircraft with an add-on option for large commercial jets |
US7317685B1 (en) | 2001-11-26 | 2008-01-08 | Polycom, Inc. | System and method for dynamic bandwidth allocation for videoconferencing in lossy packet switched networks |
US6785589B2 (en) | 2001-11-30 | 2004-08-31 | Mckesson Automation, Inc. | Dispensing cabinet with unit dose dispensing drawer |
US20050101841A9 (en) | 2001-12-04 | 2005-05-12 | Kimberly-Clark Worldwide, Inc. | Healthcare networks with biosensors |
US7539504B2 (en) | 2001-12-05 | 2009-05-26 | Espre Solutions, Inc. | Wireless telepresence collaboration system |
US6839612B2 (en) | 2001-12-07 | 2005-01-04 | Institute Surgical, Inc. | Microwrist system for surgical procedures |
JP3709393B2 (en) | 2001-12-14 | 2005-10-26 | 富士ソフトエービーシ株式会社 | Remote control system and remote control method |
US7227864B2 (en) | 2001-12-17 | 2007-06-05 | Microsoft Corporation | Methods and systems for establishing communications through firewalls and network address translators |
US7305114B2 (en) | 2001-12-26 | 2007-12-04 | Cognex Technology And Investment Corporation | Human/machine interface for a machine vision sensor and method for installing and operating the same |
US7082497B2 (en) * | 2001-12-28 | 2006-07-25 | Hewlett-Packard Development Company, L.P. | System and method for managing a moveable media library with library partitions |
US7647320B2 (en) | 2002-01-18 | 2010-01-12 | Peoplechart Corporation | Patient directed system and method for managing medical information |
US7167448B2 (en) | 2002-02-04 | 2007-01-23 | Sun Microsystems, Inc. | Prioritization of remote services messages within a low bandwidth environment |
US6693585B1 (en) | 2002-02-07 | 2004-02-17 | Aradiant Corporation | Self-contained selectively activated mobile object position reporting device with reduced power consumption and minimized wireless service fees. |
US6784916B2 (en) | 2002-02-11 | 2004-08-31 | Telbotics Inc. | Video conferencing apparatus |
WO2003068461A1 (en) | 2002-02-13 | 2003-08-21 | Toudai Tlo, Ltd. | Robot-phone |
JP4100934B2 (en) | 2002-02-28 | 2008-06-11 | シャープ株式会社 | Composite camera system, zoom camera control method, and zoom camera control program |
TW200304608A (en) | 2002-03-06 | 2003-10-01 | Z Kat Inc | System and method for using a haptic device in combination with a computer-assisted surgery system |
US7860680B2 (en) | 2002-03-07 | 2010-12-28 | Microstrain, Inc. | Robotic system for powering and interrogating sensors |
US6915871B2 (en) | 2002-03-12 | 2005-07-12 | Dan Gavish | Method and apparatus for improving child safety and adult convenience while using a mobile ride-on toy |
US6769771B2 (en) | 2002-03-14 | 2004-08-03 | Entertainment Design Workshop, Llc | Method and apparatus for producing dynamic imagery in a visual medium |
JP3945279B2 (en) * | 2002-03-15 | 2007-07-18 | ソニー株式会社 | Obstacle recognition apparatus, obstacle recognition method, obstacle recognition program, and mobile robot apparatus |
WO2003077745A1 (en) | 2002-03-18 | 2003-09-25 | Medic4All Ag | Monitoring method and monitoring system for assessing physiological parameters of a subject |
KR100483790B1 (en) | 2002-03-22 | 2005-04-20 | 한국과학기술연구원 | Multi-degree of freedom telerobotic system for micro assembly |
JP4032793B2 (en) * | 2002-03-27 | 2008-01-16 | ソニー株式会社 | Charging system, charging control method, robot apparatus, charging control program, and recording medium |
US7117067B2 (en) * | 2002-04-16 | 2006-10-03 | Irobot Corporation | System and methods for adaptive control of robotic devices |
US20030231244A1 (en) | 2002-04-22 | 2003-12-18 | Bonilla Victor G. | Method and system for manipulating a field of view of a video image from a remote vehicle |
US20040172301A1 (en) | 2002-04-30 | 2004-09-02 | Mihai Dan M. | Remote multi-purpose user interface for a healthcare system |
US6898484B2 (en) | 2002-05-01 | 2005-05-24 | Dorothy Lemelson | Robotic manufacturing and assembly with relative radio positioning using radio based location determination |
CA2484825A1 (en) * | 2002-05-07 | 2003-11-20 | Kyoto University | Medical cockpit system |
US6836701B2 (en) | 2002-05-10 | 2004-12-28 | Royal Appliance Mfg. Co. | Autonomous multi-platform robotic system |
JP4081747B2 (en) | 2002-05-17 | 2008-04-30 | 技研株式会社 | Robot drive control method and apparatus |
AU2003239555A1 (en) | 2002-05-20 | 2003-12-12 | Vigilos, Inc. | System and method for providing data communication in a device network |
US6807461B2 (en) * | 2002-05-22 | 2004-10-19 | Kuka Roboter Gmbh | Coordinated robot control from multiple remote instruction sources |
US6743721B2 (en) | 2002-06-10 | 2004-06-01 | United Microelectronics Corp. | Method and system for making cobalt silicide |
KR100478452B1 (en) | 2002-06-12 | 2005-03-23 | 삼성전자주식회사 | Localization apparatus and method for mobile robot |
US20030232649A1 (en) | 2002-06-18 | 2003-12-18 | Gizis Alexander C.M. | Gaming system and method |
JP3910112B2 (en) | 2002-06-21 | 2007-04-25 | シャープ株式会社 | Camera phone |
US7181455B2 (en) | 2002-06-27 | 2007-02-20 | Sun Microsystems, Inc. | Bandwidth management for remote services system |
US6752539B2 (en) | 2002-06-28 | 2004-06-22 | International Buisness Machines Corporation | Apparatus and system for providing optical bus interprocessor interconnection |
KR100556612B1 (en) | 2002-06-29 | 2006-03-06 | 삼성전자주식회사 | Apparatus and method of localization using laser |
DE10231391A1 (en) | 2002-07-08 | 2004-02-12 | Alfred Kärcher Gmbh & Co. Kg | Tillage system |
DE10231388A1 (en) | 2002-07-08 | 2004-02-05 | Alfred Kärcher Gmbh & Co. Kg | Tillage system |
FR2842320A1 (en) | 2002-07-12 | 2004-01-16 | Thomson Licensing Sa | MULTIMEDIA DATA PROCESSING DEVICE |
US7084809B2 (en) | 2002-07-15 | 2006-08-01 | Qualcomm, Incorporated | Apparatus and method of position determination using shared information |
JP2004042230A (en) * | 2002-07-15 | 2004-02-12 | Kawasaki Heavy Ind Ltd | Remote control method and remote control system of robot controller |
US20120072024A1 (en) | 2002-07-25 | 2012-03-22 | Yulun Wang | Telerobotic system with dual application screen presentation |
US7593030B2 (en) | 2002-07-25 | 2009-09-22 | Intouch Technologies, Inc. | Tele-robotic videoconferencing in a corporate environment |
US6925357B2 (en) * | 2002-07-25 | 2005-08-02 | Intouch Health, Inc. | Medical tele-robotic system |
US20040162637A1 (en) * | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
DE10234233A1 (en) | 2002-07-27 | 2004-02-05 | Kuka Roboter Gmbh | Process for the exchange of data between controls of machines, in particular robots |
WO2004013029A1 (en) | 2002-08-06 | 2004-02-12 | Mitsubishi Denki Kabushiki Kaisha | Elevator device |
EP1388813A2 (en) * | 2002-08-09 | 2004-02-11 | Matsushita Electric Industrial Co., Ltd. | Apparatus and method for image watermarking |
US7523505B2 (en) | 2002-08-16 | 2009-04-21 | Hx Technologies, Inc. | Methods and systems for managing distributed digital medical data |
US20050288571A1 (en) | 2002-08-20 | 2005-12-29 | Welch Allyn, Inc. | Mobile medical workstation |
US6753899B2 (en) * | 2002-09-03 | 2004-06-22 | Audisoft | Method and apparatus for telepresence |
AU2003270581A1 (en) * | 2002-09-13 | 2004-04-30 | Mark J. Chiappetta | A navigational control system for a robotic device |
US20040065073A1 (en) * | 2002-10-08 | 2004-04-08 | Ingersoll-Rand Energy Systems Corporation | Flexible recuperator mounting system |
US7881658B2 (en) | 2002-10-10 | 2011-02-01 | Znl Enterprises, Llc | Method and apparatus for entertainment and information services delivered via mobile telecommunication devices |
US7587512B2 (en) | 2002-10-16 | 2009-09-08 | Eric White | System and method for dynamic bandwidth provisioning |
US6804579B1 (en) * | 2002-10-16 | 2004-10-12 | Abb, Inc. | Robotic wash cell using recycled pure water |
AU2003288947A1 (en) | 2002-10-28 | 2004-05-25 | The General Hospital Corporation | Tissue disorder imaging analysis |
US6879879B2 (en) | 2002-10-31 | 2005-04-12 | Hewlett-Packard Development Company, L.P. | Telepresence system with automatic user-surrogate height matching |
US6920376B2 (en) | 2002-10-31 | 2005-07-19 | Hewlett-Packard Development Company, L.P. | Mutually-immersive mobile telepresence system with user rotation and surrogate translation |
US20040093409A1 (en) | 2002-11-07 | 2004-05-13 | Vigilos, Inc. | System and method for external event determination utilizing an integrated information system |
US8073304B2 (en) | 2002-11-16 | 2011-12-06 | Gregory Karel Rohlicek | Portable recorded television viewer |
KR100542340B1 (en) | 2002-11-18 | 2006-01-11 | 삼성전자주식회사 | home network system and method for controlling home network system |
US7123974B1 (en) | 2002-11-19 | 2006-10-17 | Rockwell Software Inc. | System and methodology providing audit recording and tracking in real time industrial controller environment |
JP2004181229A (en) | 2002-11-20 | 2004-07-02 | Olympus Corp | System and method for supporting remote operation |
KR20040046071A (en) | 2002-11-26 | 2004-06-05 | 삼성전자주식회사 | Method for displaying antenna-ba of terminal |
JP3885019B2 (en) | 2002-11-29 | 2007-02-21 | 株式会社東芝 | Security system and mobile robot |
US20040172306A1 (en) | 2002-12-02 | 2004-09-02 | Recare, Inc. | Medical data entry interface |
US6889120B2 (en) | 2002-12-14 | 2005-05-03 | Hewlett-Packard Development Company, L.P. | Mutually-immersive mobile telepresence with gaze and eye contact preservation |
US7015831B2 (en) | 2002-12-17 | 2006-03-21 | Evolution Robotics, Inc. | Systems and methods for incrementally updating a pose of a mobile device calculated by visual simultaneous localization and mapping techniques |
US20090030552A1 (en) * | 2002-12-17 | 2009-01-29 | Japan Science And Technology Agency | Robotics visual and auditory system |
US6938167B2 (en) * | 2002-12-18 | 2005-08-30 | America Online, Inc. | Using trusted communication channel to combat user name/password theft |
US7584019B2 (en) | 2003-12-15 | 2009-09-01 | Dako Denmark A/S | Systems and methods for the automated pre-treatment and processing of biological samples |
US20040135879A1 (en) | 2003-01-03 | 2004-07-15 | Stacy Marco A. | Portable wireless indoor/outdoor camera |
US6745115B1 (en) | 2003-01-07 | 2004-06-01 | Garmin Ltd. | System, method and apparatus for searching geographic area using prioritized spacial order |
US7158859B2 (en) * | 2003-01-15 | 2007-01-02 | Intouch Technologies, Inc. | 5 degrees of freedom mobile robot |
CN101390098A (en) | 2003-01-15 | 2009-03-18 | 英塔茨科技公司 | 5 degress of freedom mobile robot |
ITMI20030121A1 (en) * | 2003-01-27 | 2004-07-28 | Giuseppe Donato | MODULAR SURVEILLANCE SYSTEM FOR MONITORING OF CRITICAL ENVIRONMENTS. |
US7404140B2 (en) | 2003-01-31 | 2008-07-22 | Siemens Medical Solutions Usa, Inc. | System for managing form information for use by portable devices |
US7171286B2 (en) * | 2003-02-24 | 2007-01-30 | Intouch Technologies, Inc. | Healthcare tele-robotic system with a robot that also functions as a remote station |
US7158860B2 (en) * | 2003-02-24 | 2007-01-02 | Intouch Technologies, Inc. | Healthcare tele-robotic system which allows parallel remote station observation |
US7388981B2 (en) | 2003-02-27 | 2008-06-17 | Hewlett-Packard Development Company, L.P. | Telepresence system with automatic preservation of user head size |
JP2004261941A (en) | 2003-03-04 | 2004-09-24 | Sharp Corp | Communication robot and communication system |
US7262573B2 (en) | 2003-03-06 | 2007-08-28 | Intouch Technologies, Inc. | Medical tele-robotic system with a head worn device |
US7593546B2 (en) | 2003-03-11 | 2009-09-22 | Hewlett-Packard Development Company, L.P. | Telepresence system with simultaneous automatic preservation of user height, perspective, and vertical gaze |
US20050065813A1 (en) * | 2003-03-11 | 2005-03-24 | Mishelevich David J. | Online medical evaluation system |
WO2004086748A2 (en) | 2003-03-20 | 2004-10-07 | Covi Technologies Inc. | Systems and methods for multi-resolution image processing |
JP4124682B2 (en) | 2003-03-20 | 2008-07-23 | 日本放送協会 | Camera control device |
US20040205664A1 (en) | 2003-03-25 | 2004-10-14 | Prendergast Thomas V. | Claim data and document processing system |
JP2004298977A (en) | 2003-03-28 | 2004-10-28 | Sony Corp | Action control device, action control method, action control program and mobile robot device |
US6804580B1 (en) | 2003-04-03 | 2004-10-12 | Kuka Roboter Gmbh | Method and control system for controlling a plurality of robots |
US20040201602A1 (en) | 2003-04-14 | 2004-10-14 | Invensys Systems, Inc. | Tablet computer system for industrial process design, supervisory control, and data management |
US7346429B2 (en) * | 2003-05-05 | 2008-03-18 | Engineering Services, Inc. | Mobile robot hybrid communication link |
WO2005008804A2 (en) | 2003-05-08 | 2005-01-27 | Power Estimate Company | Apparatus and method for providing electrical energy generated from motion to an electrically powered device |
GB2391361B (en) * | 2003-05-23 | 2005-09-21 | Bridgeworks Ltd | Library element management |
US20040240981A1 (en) * | 2003-05-29 | 2004-12-02 | I-Scan Robotics | Robot stacking system for flat glass |
US6905941B2 (en) | 2003-06-02 | 2005-06-14 | International Business Machines Corporation | Structure and method to fabricate ultra-thin Si channel devices |
US20050003330A1 (en) * | 2003-07-02 | 2005-01-06 | Mehdi Asgarinejad | Interactive virtual classroom |
US6888333B2 (en) | 2003-07-02 | 2005-05-03 | Intouch Health, Inc. | Holonomic platform for a robot |
JP2005028066A (en) | 2003-07-08 | 2005-02-03 | Kikuta Sogo Kikaku:Kk | Remote cleaning management system |
US7154526B2 (en) * | 2003-07-11 | 2006-12-26 | Fuji Xerox Co., Ltd. | Telepresence system and method for video teleconferencing |
US20050065435A1 (en) * | 2003-07-22 | 2005-03-24 | John Rauch | User interface for remote control of medical devices |
US7995090B2 (en) | 2003-07-28 | 2011-08-09 | Fuji Xerox Co., Ltd. | Video enabled tele-presence control host |
US7395126B2 (en) | 2003-07-29 | 2008-07-01 | Far Touch, Inc. | Remote control of wireless electromechanical device using a web browser |
US20050027567A1 (en) * | 2003-07-29 | 2005-02-03 | Taha Amer Jamil | System and method for health care data collection and management |
US7133062B2 (en) | 2003-07-31 | 2006-11-07 | Polycom, Inc. | Graphical user interface for video feed on videoconference terminal |
DE20312211U1 (en) | 2003-08-07 | 2003-10-30 | Yueh, Wen Hsiang, Hsinchuang, Taipeh | Swiveling USB plug |
US7413040B2 (en) * | 2003-08-12 | 2008-08-19 | White Box Robotics, Inc. | Robot with removable mounting elements |
JP2005059170A (en) | 2003-08-18 | 2005-03-10 | Honda Motor Co Ltd | Information collecting robot |
US7432949B2 (en) * | 2003-08-20 | 2008-10-07 | Christophe Remy | Mobile videoimaging, videocommunication, video production (VCVP) system |
US7982763B2 (en) | 2003-08-20 | 2011-07-19 | King Simon P | Portable pan-tilt camera and lighting unit for videoimaging, videoconferencing, production and recording |
WO2005033832A2 (en) | 2003-08-28 | 2005-04-14 | University Of Maryland, Baltimore | Techniques for delivering coordination data for a shared facility |
US20050049898A1 (en) * | 2003-09-01 | 2005-03-03 | Maiko Hirakawa | Telemedicine system using the internet |
US7174238B1 (en) * | 2003-09-02 | 2007-02-06 | Stephen Eliot Zweig | Mobile robotic system with web server and digital radio links |
US20070061041A1 (en) * | 2003-09-02 | 2007-03-15 | Zweig Stephen E | Mobile robot with wireless location sensing apparatus |
US20050065438A1 (en) * | 2003-09-08 | 2005-03-24 | Miller Landon C.G. | System and method of capturing and managing information during a medical diagnostic imaging procedure |
JP2005103680A (en) * | 2003-09-29 | 2005-04-21 | Toshiba Corp | Monitoring system and monitoring robot |
IL158276A (en) | 2003-10-02 | 2010-04-29 | Radvision Ltd | Method for dynamically optimizing bandwidth allocation in variable bitrate (multi-rate) conferences |
JP2007511110A (en) | 2003-10-07 | 2007-04-26 | リブレストリーム テクノロジーズ インコーポレイテッド | A camera that transmits streaming media to remote clients |
JP2005111083A (en) | 2003-10-09 | 2005-04-28 | Olympus Corp | Medical integrated system |
US7307651B2 (en) | 2003-10-16 | 2007-12-11 | Mark A. Chew | Two-way mobile video/audio/data interactive companion (MVIC) system |
KR100820743B1 (en) | 2003-10-21 | 2008-04-10 | 삼성전자주식회사 | Charging Apparatus For Mobile Robot |
JP4325853B2 (en) | 2003-10-31 | 2009-09-02 | 富士通株式会社 | Communication adapter device |
US7096090B1 (en) | 2003-11-03 | 2006-08-22 | Stephen Eliot Zweig | Mobile robotic router with web server and digital radio links |
US20050125083A1 (en) | 2003-11-10 | 2005-06-09 | Kiko Frederick J. | Automation apparatus and methods |
US20060010028A1 (en) | 2003-11-14 | 2006-01-12 | Herb Sorensen | Video shopper tracking system and method |
US7115102B2 (en) | 2003-11-17 | 2006-10-03 | Abbruscato Charles R | Electronic stethoscope system |
US7161322B2 (en) * | 2003-11-18 | 2007-01-09 | Intouch Technologies, Inc. | Robot with a manipulator arm |
US7092001B2 (en) | 2003-11-26 | 2006-08-15 | Sap Aktiengesellschaft | Video conferencing system with physical cues |
GB2408655B (en) | 2003-11-27 | 2007-02-28 | Motorola Inc | Communication system, communication units and method of ambience listening thereto |
US7624166B2 (en) | 2003-12-02 | 2009-11-24 | Fuji Xerox Co., Ltd. | System and methods for remote control of multiple display and devices |
US7292912B2 (en) | 2003-12-05 | 2007-11-06 | Lntouch Technologies, Inc. | Door knocker control system for a remote controlled teleconferencing robot |
US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
EP1704710A4 (en) | 2003-12-24 | 2007-09-19 | Walker Digital Llc | Method and apparatus for automatically capturing and managing images |
US8824730B2 (en) | 2004-01-09 | 2014-09-02 | Hewlett-Packard Development Company, L.P. | System and method for control of video bandwidth based on pose of a person |
US7613313B2 (en) | 2004-01-09 | 2009-11-03 | Hewlett-Packard Development Company, L.P. | System and method for control of audio field based on position of user |
US20050154265A1 (en) | 2004-01-12 | 2005-07-14 | Miro Xavier A. | Intelligent nurse robot |
US20050234592A1 (en) | 2004-01-15 | 2005-10-20 | Mega Robot, Inc. | System and method for reconfiguring an autonomous robot |
CA2553627A1 (en) | 2004-01-15 | 2005-07-28 | Algotec Systems Ltd. | Vessel centerline determination |
WO2005068270A1 (en) | 2004-01-16 | 2005-07-28 | Yoshiaki Takida | Robot arm type automatic car washing device |
US7332890B2 (en) | 2004-01-21 | 2008-02-19 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US7729801B2 (en) | 2004-02-03 | 2010-06-01 | F Robotics Acquisitions Ltd. | Robot docking station and robot for use therewith |
US7079173B2 (en) | 2004-02-04 | 2006-07-18 | Hewlett-Packard Development Company, L.P. | Displaying a wide field of view video image |
US20050182322A1 (en) | 2004-02-17 | 2005-08-18 | Liebel-Flarsheim Company | Injector auto purge |
US20050204438A1 (en) | 2004-02-26 | 2005-09-15 | Yulun Wang | Graphical interface for a remote presence system |
US7756614B2 (en) | 2004-02-27 | 2010-07-13 | Hewlett-Packard Development Company, L.P. | Mobile device control system |
CN1259891C (en) | 2004-03-17 | 2006-06-21 | 哈尔滨工业大学 | Robot assisted bone setting operation medical system with lock marrow internal nail |
JP2005270430A (en) | 2004-03-25 | 2005-10-06 | Funai Electric Co Ltd | Station for mobile robot |
ATE429010T1 (en) | 2004-03-29 | 2009-05-15 | Koninkl Philips Electronics Nv | METHOD FOR CONTROLLING MULTIPLE APPLICATIONS AND DIALOGUE MANAGEMENT SYSTEM |
US20050264649A1 (en) | 2004-03-29 | 2005-12-01 | Calvin Chang | Mobile video-interpreting mounting system |
US20050225634A1 (en) | 2004-04-05 | 2005-10-13 | Sam Brunetti | Closed circuit TV security system |
JP2005312096A (en) | 2004-04-16 | 2005-11-04 | Funai Electric Co Ltd | Electric apparatus |
TWI258259B (en) | 2004-04-20 | 2006-07-11 | Jason Yan | Automatic charging system of mobile robotic electronic device |
KR20070011495A (en) | 2004-04-22 | 2007-01-24 | 프론트라인 로보틱스 | Open control system architecture for mobile autonomous systems |
US7769705B1 (en) | 2004-05-21 | 2010-08-03 | Ray Anthony Luechtefeld | Method, artificially intelligent system and networked complex for facilitating group interactions |
US7949616B2 (en) | 2004-06-01 | 2011-05-24 | George Samuel Levy | Telepresence by human-assisted remote controlled devices and robots |
US7011538B2 (en) | 2004-06-02 | 2006-03-14 | Elementech International Co., Ltd. | Dual input charger with cable storing mechanism |
CN100461212C (en) | 2004-06-04 | 2009-02-11 | 松下电器产业株式会社 | Display control device, display control method, program, and portable apparatus |
US20050283414A1 (en) | 2004-06-17 | 2005-12-22 | Fernandes Curtis T | Remote system management |
JP4479372B2 (en) | 2004-06-25 | 2010-06-09 | ソニー株式会社 | Environmental map creation method, environmental map creation device, and mobile robot device |
US7292257B2 (en) | 2004-06-28 | 2007-11-06 | Microsoft Corporation | Interactive viewpoint video system and process |
US20060007943A1 (en) * | 2004-07-07 | 2006-01-12 | Fellman Ronald D | Method and system for providing site independent real-time multimedia transport over packet-switched networks |
US7539187B2 (en) * | 2004-07-07 | 2009-05-26 | Qvidium Technologies, Inc. | System and method for low-latency content-sensitive forward error correction |
US8503340B1 (en) | 2004-07-11 | 2013-08-06 | Yongyong Xu | WiFi phone system |
US8077963B2 (en) * | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US7551647B2 (en) * | 2004-07-19 | 2009-06-23 | Qvidium Technologies, Inc. | System and method for clock synchronization over packet-switched networks |
US7979157B2 (en) * | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US7319469B2 (en) | 2004-07-26 | 2008-01-15 | Sony Corporation | Copy protection arrangement |
CN100394897C (en) | 2004-08-03 | 2008-06-18 | 张毓笠 | Compound vibrated ultrasonic bone surgery apparatus |
JP4912577B2 (en) | 2004-09-01 | 2012-04-11 | 本田技研工業株式会社 | Biped walking robot charging system |
US20060052676A1 (en) | 2004-09-07 | 2006-03-09 | Yulun Wang | Tele-presence system that allows for remote monitoring/observation and review of a patient and their medical records |
US7502498B2 (en) | 2004-09-10 | 2009-03-10 | Available For Licensing | Patient monitoring apparatus |
FI116749B (en) | 2004-09-14 | 2006-02-15 | Nokia Corp | A device comprising camera elements |
US20060064212A1 (en) * | 2004-09-22 | 2006-03-23 | Cycle Time Corporation | Reactive automated guided vehicle vision guidance system |
US20060066609A1 (en) | 2004-09-28 | 2006-03-30 | Iodice Arthur P | Methods and systems for viewing geometry of an object model generated by a CAD tool |
US7720570B2 (en) | 2004-10-01 | 2010-05-18 | Redzone Robotics, Inc. | Network architecture for remote robot with interchangeable tools |
US8060376B2 (en) | 2004-10-01 | 2011-11-15 | Nomoreclipboard, Llc | System and method for collection of community health and administrative data |
JP2006109094A (en) | 2004-10-05 | 2006-04-20 | Nec Software Kyushu Ltd | Remote controller, remote control system, and remote control method |
WO2006042211A2 (en) | 2004-10-07 | 2006-04-20 | University Of Florida Research Foundation, Inc. | Radiographic medical imaging system using robot mounted source and sensor for dynamic image capture and tomography |
US20060087746A1 (en) | 2004-10-22 | 2006-04-27 | Kenneth Lipow | Remote augmented motor-sensory interface for surgery |
KR100645379B1 (en) | 2004-10-29 | 2006-11-15 | 삼성광주전자 주식회사 | A robot controlling system and a robot control method |
KR100703692B1 (en) | 2004-11-03 | 2007-04-05 | 삼성전자주식회사 | System, apparatus and method for improving readability of a map representing objects in space |
US20060098573A1 (en) | 2004-11-08 | 2006-05-11 | Beer John C | System and method for the virtual aggregation of network links |
US20060173712A1 (en) | 2004-11-12 | 2006-08-03 | Dirk Joubert | Portable medical information system |
US8738891B1 (en) | 2004-11-15 | 2014-05-27 | Nvidia Corporation | Methods and systems for command acceleration in a video processor via translation of scalar instructions into vector instructions |
US7522528B2 (en) | 2004-11-18 | 2009-04-21 | Qvidium Technologies, Inc. | Low-latency automatic repeat request packet recovery mechanism for media streams |
US20060122482A1 (en) | 2004-11-22 | 2006-06-08 | Foresight Imaging Inc. | Medical image acquisition system for receiving and transmitting medical images instantaneously and method of using the same |
US20060125356A1 (en) | 2004-12-03 | 2006-06-15 | Mckesson Automation Inc. | Mobile point of care system and associated method and computer program product |
US7400578B2 (en) | 2004-12-16 | 2008-07-15 | International Business Machines Corporation | Method and system for throttling network transmissions using per-receiver bandwidth control at the application layer of the transmitting server |
KR100499770B1 (en) | 2004-12-30 | 2005-07-07 | 주식회사 아이오. 테크 | Network based robot control system |
KR100497310B1 (en) | 2005-01-10 | 2005-06-23 | 주식회사 아이오. 테크 | Selection and playback method of multimedia content having motion information in network based robot system |
US7395508B2 (en) | 2005-01-14 | 2008-07-01 | International Business Machines Corporation | Method and apparatus for providing an interactive presentation environment |
US7222000B2 (en) | 2005-01-18 | 2007-05-22 | Intouch Technologies, Inc. | Mobile videoconferencing platform with automatic shut-off features |
JP2006203821A (en) | 2005-01-24 | 2006-08-03 | Sony Corp | Automatic transmission system |
US20060173708A1 (en) | 2005-01-28 | 2006-08-03 | Circle Of Care, Inc. | System and method for providing health care |
US20060176832A1 (en) | 2005-02-04 | 2006-08-10 | Sean Miceli | Adaptive bit-rate adjustment of multimedia communications channels using transport control protocol |
KR100636270B1 (en) * | 2005-02-04 | 2006-10-19 | 삼성전자주식회사 | Home network system and control method thereof |
US7944469B2 (en) | 2005-02-14 | 2011-05-17 | Vigilos, Llc | System and method for using self-learning rules to enable adaptive security monitoring |
US20060189393A1 (en) | 2005-02-22 | 2006-08-24 | Albert Edery | Real action network gaming system |
US20060224781A1 (en) | 2005-03-10 | 2006-10-05 | Jen-Ming Tsao | Method and apparatus for controlling a user interface of a consumer electronic device |
US7644898B2 (en) | 2005-03-28 | 2010-01-12 | Compview Medical, Llc | Medical boom with articulated arms and a base with preconfigured removable modular racks used for storing electronic and utility equipment |
JP4690453B2 (en) | 2005-04-15 | 2011-06-01 | ニュー ジャージー インスティチュート オブ テクノロジー | Dynamic bandwidth allocation and service differentiation for broadband passive optical networks |
US7680038B1 (en) | 2005-04-25 | 2010-03-16 | Electronic Arts, Inc. | Dynamic bandwidth detection and response for online games |
US7436143B2 (en) * | 2005-04-25 | 2008-10-14 | M-Bots, Inc. | Miniature surveillance robot |
US7864209B2 (en) | 2005-04-28 | 2011-01-04 | Apple Inc. | Audio processing in a multi-participant conference |
WO2006119186A2 (en) | 2005-05-02 | 2006-11-09 | University Of Virginia Patent Foundation | Systems, devices, and methods for interpreting movement |
EP2336923A3 (en) | 2005-05-04 | 2012-08-15 | Board of Regents, The University of Texas System | System for delivering medical services from a remote location |
US7240879B1 (en) * | 2005-05-06 | 2007-07-10 | United States of America as represented by the Administration of the National Aeronautics and Space Administration | Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics |
US20060259193A1 (en) | 2005-05-12 | 2006-11-16 | Yulun Wang | Telerobotic system with a dual application screen presentation |
KR100594165B1 (en) * | 2005-05-24 | 2006-06-28 | 삼성전자주식회사 | Robot controlling system based on network and method for controlling velocity of robot in the robot controlling system |
US20060293788A1 (en) | 2005-06-26 | 2006-12-28 | Pavel Pogodin | Robotic floor care appliance with improved remote management |
JP2007007040A (en) | 2005-06-29 | 2007-01-18 | Hitachi Medical Corp | Surgery support system |
GB2428110A (en) | 2005-07-06 | 2007-01-17 | Armstrong Healthcare Ltd | A robot and method of registering a robot. |
US7379664B2 (en) | 2005-07-26 | 2008-05-27 | Tinkers & Chance | Remote view and controller for a camera |
WO2007016741A1 (en) | 2005-08-11 | 2007-02-15 | Beon Light Corporation Pty Ltd | A sensor with selectable sensing orientation used for controlling an electrical device |
KR100749579B1 (en) * | 2005-09-05 | 2007-08-16 | 삼성광주전자 주식회사 | Moving Robot having a plurality of changeable work module and Control Method for the same |
US7643051B2 (en) * | 2005-09-09 | 2010-01-05 | Roy Benjamin Sandberg | Mobile video teleconferencing system and control method |
US8049678B2 (en) | 2005-09-09 | 2011-11-01 | Lg Electronics, Inc. | Image capturing and displaying method and system |
JP2007081646A (en) | 2005-09-13 | 2007-03-29 | Toshiba Corp | Transmitting/receiving device |
CN1743144A (en) | 2005-09-29 | 2006-03-08 | 天津理工大学 | Internet-based robot long-distance control method |
ATE524784T1 (en) | 2005-09-30 | 2011-09-15 | Irobot Corp | COMPANION ROBOTS FOR PERSONAL INTERACTION |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US8098603B2 (en) | 2005-09-30 | 2012-01-17 | Intel Corporation | Bandwidth adaptation in a wireless network |
US20070122783A1 (en) | 2005-10-07 | 2007-05-31 | Habashi Nader M | On-line healthcare consultation services system and method of using same |
GB0520576D0 (en) | 2005-10-10 | 2005-11-16 | Applied Generics Ltd | Using traffic monitoring information to provide better driver route planning |
US20070093279A1 (en) | 2005-10-12 | 2007-04-26 | Craig Janik | Wireless headset system for the automobile |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US7675842B2 (en) | 2005-10-28 | 2010-03-09 | Viasat, Inc. | Adaptive coding and modulation using linked list data structures |
US7751780B2 (en) | 2005-11-23 | 2010-07-06 | Qualcomm Incorporated | Method and apparatus for collecting information from a wireless device |
US20070120965A1 (en) | 2005-11-25 | 2007-05-31 | Sandberg Roy B | Mobile video teleconferencing authentication and management system and method |
EP2544065B1 (en) | 2005-12-02 | 2017-02-08 | iRobot Corporation | Robot system |
US7843832B2 (en) | 2005-12-08 | 2010-11-30 | Electronics And Telecommunications Research Institute | Dynamic bandwidth allocation apparatus and method |
US20070135967A1 (en) | 2005-12-08 | 2007-06-14 | Jung Seung W | Apparatus and method of controlling network-based robot |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US7480870B2 (en) | 2005-12-23 | 2009-01-20 | Apple Inc. | Indication of progress towards satisfaction of a user input condition |
US8577538B2 (en) | 2006-07-14 | 2013-11-05 | Irobot Corporation | Method and system for controlling a remote vehicle |
JP2007232208A (en) | 2006-01-31 | 2007-09-13 | Mitsuboshi Belting Ltd | Toothed belt and tooth cloth used therefor |
US7719229B2 (en) | 2006-02-14 | 2010-05-18 | Honda Motor Co., Ltd. | Charging system for legged mobile robot |
US7769492B2 (en) | 2006-02-22 | 2010-08-03 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
JP4728860B2 (en) | 2006-03-29 | 2011-07-20 | 株式会社東芝 | Information retrieval device |
US7861366B2 (en) | 2006-04-04 | 2011-01-04 | Samsung Electronics Co., Ltd. | Robot cleaner system having robot cleaner and docking station |
US20100171826A1 (en) | 2006-04-12 | 2010-07-08 | Store Eyes, Inc. | Method for measuring retail display and compliance |
US9028329B2 (en) * | 2006-04-13 | 2015-05-12 | Igt | Integrating remotely-hosted and locally rendered content on a gaming device |
TWI297936B (en) * | 2006-04-14 | 2008-06-11 | Rfid package structure | |
US7539533B2 (en) | 2006-05-16 | 2009-05-26 | Bao Tran | Mesh network monitoring appliance |
AU2007254158A1 (en) | 2006-05-19 | 2007-11-29 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
JP2007316966A (en) | 2006-05-26 | 2007-12-06 | Fujitsu Ltd | Mobile robot, control method thereof and program |
US20070291128A1 (en) | 2006-06-15 | 2007-12-20 | Yulun Wang | Mobile teleconferencing system that projects an image provided by a mobile robot |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US7920962B2 (en) | 2006-06-19 | 2011-04-05 | Kiva Systems, Inc. | System and method for coordinating movement of mobile drive units |
US8649899B2 (en) | 2006-06-19 | 2014-02-11 | Amazon Technologies, Inc. | System and method for maneuvering a mobile drive unit |
US8073564B2 (en) | 2006-07-05 | 2011-12-06 | Battelle Energy Alliance, Llc | Multi-robot control interface |
US7587260B2 (en) | 2006-07-05 | 2009-09-08 | Battelle Energy Alliance, Llc | Autonomous navigation system and method |
US8843244B2 (en) | 2006-10-06 | 2014-09-23 | Irobot Corporation | Autonomous behaviors for a remove vehicle |
US20080033641A1 (en) | 2006-07-25 | 2008-02-07 | Medalia Michael J | Method of generating a three-dimensional interactive tour of a geographic location |
US7599290B2 (en) | 2006-08-11 | 2009-10-06 | Latitude Broadband, Inc. | Methods and systems for providing quality of service in packet-based core transport networks |
US8564544B2 (en) | 2006-09-06 | 2013-10-22 | Apple Inc. | Touch screen device, method, and graphical user interface for customizing display of content category icons |
US7693757B2 (en) | 2006-09-21 | 2010-04-06 | International Business Machines Corporation | System and method for performing inventory using a mobile inventory robot |
US8180486B2 (en) | 2006-10-02 | 2012-05-15 | Honda Motor Co., Ltd. | Mobile robot and controller for same |
US7761185B2 (en) | 2006-10-03 | 2010-07-20 | Intouch Technologies, Inc. | Remote presence display through remotely controlled robot |
US20070170886A1 (en) | 2006-10-03 | 2007-07-26 | Plishner Paul J | Vehicle equipped for providing solar electric power for off-vehicle use and systems in support thereof |
US7654348B2 (en) | 2006-10-06 | 2010-02-02 | Irobot Corporation | Maneuvering robotic vehicles having a positionable sensor head |
US20080126132A1 (en) | 2006-11-28 | 2008-05-29 | General Electric Company | Smart bed system |
US8095238B2 (en) | 2006-11-29 | 2012-01-10 | Irobot Corporation | Robot development platform |
US7630314B2 (en) | 2006-12-05 | 2009-12-08 | Latitue Broadband, Inc. | Methods and systems for dynamic bandwidth management for quality of service in IP Core and access networks |
TWI330305B (en) | 2006-12-28 | 2010-09-11 | Ind Tech Res Inst | Method for routing a robotic apparatus to a service station and robotic apparatus service system using thereof |
US7557758B2 (en) | 2007-03-26 | 2009-07-07 | Broadcom Corporation | Very high frequency dielectric substrate wave guide |
US20080232763A1 (en) | 2007-03-15 | 2008-09-25 | Colin Brady | System and method for adjustment of video playback resolution |
US8265793B2 (en) * | 2007-03-20 | 2012-09-11 | Irobot Corporation | Mobile robot for telecommunication |
WO2008156910A2 (en) | 2007-04-20 | 2008-12-24 | Innovation First, Inc. | Managing communications between robots and controllers |
US8305914B2 (en) | 2007-04-30 | 2012-11-06 | Hewlett-Packard Development Company, L.P. | Method for signal adjustment through latency control |
EP2574265B1 (en) | 2007-05-09 | 2015-10-14 | iRobot Corporation | Compact autonomous coverage robot |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US8175677B2 (en) | 2007-06-07 | 2012-05-08 | MRI Interventions, Inc. | MRI-guided medical interventional systems and methods |
US8645527B1 (en) | 2007-07-25 | 2014-02-04 | Xangati, Inc. | Network monitoring using bounded memory data structures |
KR20090012542A (en) | 2007-07-30 | 2009-02-04 | 주식회사 마이크로로봇 | System for home monitoring using robot |
US8400491B1 (en) | 2007-08-01 | 2013-03-19 | Sprint Communications Company L.P. | Use-based adaptive video client for a bandwidth-constrained network |
US8639797B1 (en) | 2007-08-03 | 2014-01-28 | Xangati, Inc. | Network monitoring of behavior probability density |
US7631833B1 (en) | 2007-08-03 | 2009-12-15 | The United States Of America As Represented By The Secretary Of The Navy | Smart counter asymmetric threat micromunition with autonomous target selection and homing |
US20090044334A1 (en) | 2007-08-13 | 2009-02-19 | Valence Broadband, Inc. | Automatically adjusting patient platform support height in response to patient related events |
US8116910B2 (en) * | 2007-08-23 | 2012-02-14 | Intouch Technologies, Inc. | Telepresence robot with a printer |
KR101330734B1 (en) | 2007-08-24 | 2013-11-20 | 삼성전자주식회사 | Robot cleaner system having robot cleaner and docking station |
US20090070135A1 (en) * | 2007-09-10 | 2009-03-12 | General Electric Company | System and method for improving claims processing in the healthcare industry |
US8243119B2 (en) | 2007-09-30 | 2012-08-14 | Optical Fusion Inc. | Recording and videomail for video conferencing call systems |
US20090248200A1 (en) | 2007-10-22 | 2009-10-01 | North End Technologies | Method & apparatus for remotely operating a robotic device linked to a communications network |
US8045458B2 (en) | 2007-11-08 | 2011-10-25 | Mcafee, Inc. | Prioritizing network traffic |
US7987069B2 (en) | 2007-11-12 | 2011-07-26 | Bee Cave, Llc | Monitoring patient support exiting and initiating response |
JP2009125133A (en) | 2007-11-20 | 2009-06-11 | Asano Dental Inc | Dental treatment support system and x-ray sensor for the same |
US7856501B2 (en) | 2007-12-04 | 2010-12-21 | Sony Computer Entertainment Inc. | Network traffic prioritization |
US20090164657A1 (en) | 2007-12-20 | 2009-06-25 | Microsoft Corporation | Application aware rate control |
US20100280956A1 (en) * | 2007-12-26 | 2010-11-04 | Johnson Controls Technology Company | Systems and methods for conducting commerce in a vehicle |
US20090171170A1 (en) | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Medical Monitoring With Portable Electronic Device System And Method |
US20090102919A1 (en) | 2007-12-31 | 2009-04-23 | Zamierowski David S | Audio-video system and method for telecommunications |
US20090177641A1 (en) | 2008-01-03 | 2009-07-09 | General Electric Company | Patient monitoring network and method of using the patient monitoring network |
KR100971609B1 (en) | 2008-03-05 | 2010-07-20 | 주식회사 팬택 | Method and system for improving performance of connection to receiver |
US8374171B2 (en) | 2008-03-06 | 2013-02-12 | Pantech Co., Ltd. | Method for reducing the risk of call connection failure and system to perform the method |
US8244469B2 (en) | 2008-03-16 | 2012-08-14 | Irobot Corporation | Collaborative engagement for target identification and tracking |
US10875182B2 (en) * | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US20100088232A1 (en) | 2008-03-21 | 2010-04-08 | Brian Gale | Verification monitor for critical test result delivery systems |
US20100030578A1 (en) | 2008-03-21 | 2010-02-04 | Siddique M A Sami | System and method for collaborative shopping, business and entertainment |
US8295992B2 (en) * | 2008-03-27 | 2012-10-23 | Hetronic International, Inc. | Remote control system having a touchscreen for controlling a railway vehicle |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8170241B2 (en) * | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US9193065B2 (en) * | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
CN101640295A (en) | 2008-07-31 | 2010-02-03 | 鸿富锦精密工业(深圳)有限公司 | Charging device |
US8036915B2 (en) | 2008-07-31 | 2011-10-11 | Cosortium of Rheumatology Researchers of North America, Inc. | System and method for collecting and managing patient data |
US8476555B2 (en) | 2008-08-29 | 2013-07-02 | Illinois Tool Works Inc. | Portable welding wire feed system and method |
JP5040865B2 (en) | 2008-09-08 | 2012-10-03 | 日本電気株式会社 | Robot control system, remote management device, remote management method and program |
US8144182B2 (en) | 2008-09-16 | 2012-03-27 | Biscotti Inc. | Real time video communications system |
US8340819B2 (en) * | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8180712B2 (en) | 2008-09-30 | 2012-05-15 | The Nielsen Company (Us), Llc | Methods and apparatus for determining whether a media presentation device is in an on state or an off state |
US8000235B2 (en) | 2008-10-05 | 2011-08-16 | Contextream Ltd. | Bandwidth allocation method and apparatus |
US20100145479A1 (en) | 2008-10-09 | 2010-06-10 | G2 Software Systems, Inc. | Wireless Portable Sensor Monitoring System |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
KR101685219B1 (en) | 2008-11-21 | 2016-12-09 | 스트리커 코포레이션 | Wireless operating room communication system including video output device and video display |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US7995493B2 (en) | 2008-12-23 | 2011-08-09 | Airvana, Corp. | Estimating bandwidth in communication networks |
US8462681B2 (en) | 2009-01-15 | 2013-06-11 | The Trustees Of Stevens Institute Of Technology | Method and apparatus for adaptive transmission of sensor data with latency controls |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423284B2 (en) | 2009-04-15 | 2013-04-16 | Abalta Technologies, Inc. | Monitoring, recording and testing of navigation systems |
US8897920B2 (en) * | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8340654B2 (en) | 2009-05-26 | 2012-12-25 | Lextech Labs Llc | Apparatus and method for video display and control for portable device |
JP5430246B2 (en) | 2009-06-23 | 2014-02-26 | 任天堂株式会社 | GAME DEVICE AND GAME PROGRAM |
US8626499B2 (en) | 2009-07-21 | 2014-01-07 | Vivu, Inc. | Multimedia signal latency management by skipping |
US8384755B2 (en) * | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
CN106406801A (en) | 2009-08-26 | 2017-02-15 | 英塔茨科技公司 | Portable telepresence apparatus |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US9384299B2 (en) | 2009-09-22 | 2016-07-05 | Thwapr, Inc. | Receiving content for mobile media sharing |
US8244402B2 (en) | 2009-09-22 | 2012-08-14 | GM Global Technology Operations LLC | Visual perception system and method for a humanoid robot |
US9626826B2 (en) | 2010-06-10 | 2017-04-18 | Nguyen Gaming Llc | Location-based real-time casino data |
US20110153198A1 (en) | 2009-12-21 | 2011-06-23 | Navisus LLC | Method for the display of navigation instructions using an augmented-reality concept |
US8212533B2 (en) | 2009-12-23 | 2012-07-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Robot battery charging apparatuses and methods |
US20110187875A1 (en) | 2010-02-04 | 2011-08-04 | Intouch Technologies, Inc. | Robot face used in a sterile environment |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US9823342B2 (en) | 2010-02-09 | 2017-11-21 | Aeroscout, Ltd. | System and method for mobile monitoring of non-associated tags |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US8837900B2 (en) | 2010-05-11 | 2014-09-16 | Cisco Technology, Inc. | Unintended video recording detection in a video recording device |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US8429674B2 (en) * | 2010-07-20 | 2013-04-23 | Apple Inc. | Maintaining data states upon forced exit |
US8522167B2 (en) | 2010-08-09 | 2013-08-27 | Microsoft Corporation | Relationship visualization and graphical interaction model in it client management |
US8832293B2 (en) | 2010-09-03 | 2014-09-09 | Hulu, LLC | Bandwidth allocation with modified seek function |
US8781629B2 (en) * | 2010-09-22 | 2014-07-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Human-robot interface apparatuses and methods of controlling robots |
CN202191698U (en) * | 2010-10-15 | 2012-04-18 | 原始行星娱乐有限公司 | Toy device |
EP2661208B1 (en) | 2011-01-07 | 2014-10-08 | iRobot Corporation | Evacuation station system |
US12093036B2 (en) * | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US9323250B2 (en) * | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US8532860B2 (en) | 2011-02-25 | 2013-09-10 | Intellibot Robotics Llc | Methods and systems for automatically yielding to high-priority traffic |
US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US9344606B2 (en) | 2012-01-24 | 2016-05-17 | Radical Switchcam Llc | System and method for compiling and playing a multi-channel video |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US20140015914A1 (en) * | 2012-07-12 | 2014-01-16 | Claire Delaunay | Remote robotic presence |
US10152467B2 (en) | 2012-08-13 | 2018-12-11 | Google Llc | Managing a sharing of media content among client computers |
WO2015017691A1 (en) * | 2013-08-02 | 2015-02-05 | Irobot Corporation | Time-dependent navigation of telepresence robots |
EP2976687B1 (en) * | 2014-05-30 | 2017-09-06 | SZ DJI Technology Co., Ltd. | Systems and methods for uav docking |
CN105430255A (en) * | 2014-09-16 | 2016-03-23 | 精工爱普生株式会社 | Image processing apparatus and robot system |
US10471611B2 (en) * | 2016-01-15 | 2019-11-12 | Irobot Corporation | Autonomous monitoring robot systems |
US10482669B2 (en) * | 2016-09-23 | 2019-11-19 | Apple Inc. | Augmented virtual display |
CN114706483A (en) * | 2016-09-23 | 2022-07-05 | 苹果公司 | Immersive virtual display |
CN108214486A (en) * | 2016-12-22 | 2018-06-29 | 精工爱普生株式会社 | control device, robot and robot system |
JP2019008585A (en) * | 2017-06-26 | 2019-01-17 | 富士ゼロックス株式会社 | Robot control system |
US10389820B2 (en) * | 2017-10-26 | 2019-08-20 | Autoauto, Llc | System and method for programming an embedded system |
US12044056B2 (en) * | 2019-04-05 | 2024-07-23 | The Toro Company | Barrier passage system for autonomous working machine |
-
2004
- 2004-02-20 US US10/783,760 patent/US20040162637A1/en not_active Abandoned
-
2007
- 2007-11-05 US US11/983,058 patent/US8515577B2/en not_active Expired - Lifetime
-
2013
- 2013-07-17 US US13/944,526 patent/US8682486B2/en not_active Expired - Lifetime
-
2014
- 2014-02-07 US US14/175,988 patent/US9849593B2/en not_active Expired - Lifetime
-
2017
- 2017-11-20 US US15/818,420 patent/US10315312B2/en not_active Expired - Lifetime
-
2019
- 2019-04-25 US US16/395,053 patent/US10889000B2/en not_active Expired - Lifetime
-
2021
- 2021-01-11 US US17/146,129 patent/US20210241902A1/en not_active Abandoned
Patent Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709265A (en) * | 1985-10-15 | 1987-11-24 | Advanced Resource Development Corporation | Remote control mobile surveillance system |
US4803625A (en) * | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US5442728A (en) * | 1988-05-12 | 1995-08-15 | Healthtech Services Corp. | Interactive patient assistance device for storing and dispensing a testing device |
US5836872A (en) * | 1989-04-13 | 1998-11-17 | Vanguard Imaging, Ltd. | Digital optical visualization, enhancement, quantification, and classification of surface and subsurface features of body surfaces |
US4977971A (en) * | 1989-05-17 | 1990-12-18 | University Of Florida | Hybrid robotic vehicle |
US5084828A (en) * | 1989-09-29 | 1992-01-28 | Healthtech Services Corp. | Interactive medication delivery system |
US5130794A (en) * | 1990-03-29 | 1992-07-14 | Ritchey Kurtis J | Panoramic display system |
US5572229A (en) * | 1991-04-22 | 1996-11-05 | Evans & Sutherland Computer Corp. | Head-mounted projection display system featuring beam splitter and method of making same |
US5341242A (en) * | 1991-09-05 | 1994-08-23 | Elbit Ltd. | Helmet mounted display |
US5441047A (en) * | 1992-03-25 | 1995-08-15 | David; Daniel | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
US5462051A (en) * | 1994-08-31 | 1995-10-31 | Colin Corporation | Medical communication system |
US5553609A (en) * | 1995-02-09 | 1996-09-10 | Visiting Nurse Service, Inc. | Intelligent remote visual monitoring system for home health care service |
US5786846A (en) * | 1995-03-09 | 1998-07-28 | Nec Corporation | User interface of a video communication terminal unit and a method for notifying a terminal user's deviation from an appropriate shoot range |
US6133944A (en) * | 1995-12-18 | 2000-10-17 | Telcordia Technologies, Inc. | Head mounted displays linked to networked electronic panning cameras |
US5701904A (en) * | 1996-01-11 | 1997-12-30 | Krug International | Telemedicine instrumentation pack |
US5867653A (en) * | 1996-04-18 | 1999-02-02 | International Business Machines Corporation | Method and apparatus for multi-cast based video conferencing |
US5917958A (en) * | 1996-10-31 | 1999-06-29 | Sensormatic Electronics Corporation | Distributed video data base with remote searching for image data features |
US6211903B1 (en) * | 1997-01-14 | 2001-04-03 | Cambridge Technology Development, Inc. | Video telephone headset |
US5927423A (en) * | 1997-03-05 | 1999-07-27 | Massachusetts Institute Of Technology | Reconfigurable footprint mechanism for omnidirectional vehicles |
US6325756B1 (en) * | 1997-03-27 | 2001-12-04 | Medtronic, Inc. | Concepts to implement medconnect |
US6321137B1 (en) * | 1997-09-04 | 2001-11-20 | Dynalog, Inc. | Method for calibration of a robot inspection system |
US20010010053A1 (en) * | 1997-11-13 | 2001-07-26 | Ofer Ben-Shachar | Service framework for a distributed object network system |
US6532404B2 (en) * | 1997-11-27 | 2003-03-11 | Colens Andre | Mobile robots and their control system |
US6289263B1 (en) * | 1997-12-16 | 2001-09-11 | Board Of Trustees Operating Michigan State University | Spherical mobile robot |
US6233504B1 (en) * | 1998-04-16 | 2001-05-15 | California Institute Of Technology | Tool actuation and force feedback on robot-assisted microsurgery system |
US6219587B1 (en) * | 1998-05-27 | 2001-04-17 | Nextrx Corporation | Automated pharmaceutical management and dispensing system |
US6232735B1 (en) * | 1998-11-24 | 2001-05-15 | Thames Co., Ltd. | Robot remote control system and robot image remote control processing system |
US6170929B1 (en) * | 1998-12-02 | 2001-01-09 | Ronald H. Wilson | Automated medication-dispensing cart |
US6535182B2 (en) * | 1998-12-07 | 2003-03-18 | Koninklijke Philips Electronics N.V. | Head-mounted projection display system |
US6292713B1 (en) * | 1999-05-20 | 2001-09-18 | Compaq Computer Corporation | Robotic telepresence system |
US6540039B1 (en) * | 1999-08-19 | 2003-04-01 | Massachusetts Institute Of Technology | Omnidirectional vehicle with offset wheel pairs |
US6330493B1 (en) * | 1999-09-16 | 2001-12-11 | Fanuc Ltd. | Control system for synchronously cooperative operation of plurality of robots |
US6256556B1 (en) * | 1999-11-16 | 2001-07-03 | Mitsubishi Denki Kabushiki Kaisha | Remote operation system for a robot |
US6466844B1 (en) * | 2000-03-06 | 2002-10-15 | Matsushita Electric Industrial Co., Ltd. | Robot, robot system, and robot control method |
US6369847B1 (en) * | 2000-03-17 | 2002-04-09 | Emtel, Inc. | Emergency facility video-conferencing system |
US6430475B2 (en) * | 2000-04-10 | 2002-08-06 | National Aerospace Laboratory Of Japan | Pressure-distribution sensor for controlling multi-jointed nursing robot |
US6535793B2 (en) * | 2000-05-01 | 2003-03-18 | Irobot Corporation | Method and system for remote control of mobile robot |
US6543899B2 (en) * | 2000-12-05 | 2003-04-08 | Eastman Kodak Company | Auto-stereoscopic viewing system using mounted projection |
US20020177925A1 (en) * | 2001-05-25 | 2002-11-28 | Ken Onishi | Method and system for providing service by robot |
US6691000B2 (en) * | 2001-10-26 | 2004-02-10 | Communications Research Laboratory, Independent Administrative Institution | Robot-arm telemanipulating system presenting auditory information |
US20050065659A1 (en) * | 2002-02-19 | 2005-03-24 | Michiharu Tanaka | Robot control device |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE45870E1 (en) * | 2002-07-25 | 2016-01-26 | Intouch Technologies, Inc. | Apparatus and method for patient rounding with a remote controlled robot |
US20050027400A1 (en) * | 2002-07-25 | 2005-02-03 | Yulun Wang | Medical tele-robotic system |
US10315312B2 (en) | 2002-07-25 | 2019-06-11 | Intouch Technologies, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US20060082642A1 (en) * | 2002-07-25 | 2006-04-20 | Yulun Wang | Tele-robotic videoconferencing in a corporate environment |
US9849593B2 (en) | 2002-07-25 | 2017-12-26 | Intouch Technologies, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US20050021187A1 (en) * | 2002-07-25 | 2005-01-27 | Yulun Wang | Medical tele-robotic system |
US7142947B2 (en) * | 2002-07-25 | 2006-11-28 | Intouch Technologies, Inc. | Medical tele-robotic method |
US7142945B2 (en) * | 2002-07-25 | 2006-11-28 | Intouch Technologies, Inc. | Medical tele-robotic system |
US20090105882A1 (en) * | 2002-07-25 | 2009-04-23 | Intouch Technologies, Inc. | Medical Tele-Robotic System |
US7164970B2 (en) * | 2002-07-25 | 2007-01-16 | Intouch Technologies, Inc. | Medical tele-robotic system |
US7164969B2 (en) * | 2002-07-25 | 2007-01-16 | Intouch Technologies, Inc. | Apparatus and method for patient rounding with a remote controlled robot |
US20210241902A1 (en) * | 2002-07-25 | 2021-08-05 | Teladoc Health, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US8209051B2 (en) | 2002-07-25 | 2012-06-26 | Intouch Technologies, Inc. | Medical tele-robotic system |
US7289883B2 (en) * | 2002-07-25 | 2007-10-30 | Intouch Technologies, Inc. | Apparatus and method for patient rounding with a remote controlled robot |
US9296107B2 (en) | 2003-12-09 | 2016-03-29 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US10882190B2 (en) | 2003-12-09 | 2021-01-05 | Teladoc Health, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9375843B2 (en) | 2003-12-09 | 2016-06-28 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9956690B2 (en) | 2003-12-09 | 2018-05-01 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9610685B2 (en) | 2004-02-26 | 2017-04-04 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
US20050215171A1 (en) * | 2004-03-25 | 2005-09-29 | Shinichi Oonaka | Child-care robot and a method of controlling the robot |
US8376803B2 (en) * | 2004-03-25 | 2013-02-19 | Nec Corporation | Child-care robot and a method of controlling the robot |
WO2005098729A3 (en) * | 2004-03-27 | 2006-12-21 | Harvey Koselka | Autonomous personal service robot |
US20070198129A1 (en) * | 2004-03-27 | 2007-08-23 | Harvey Koselka | Autonomous personal service robot |
US8359122B2 (en) * | 2004-03-27 | 2013-01-22 | Vision Robotics Corporation | Autonomous personal service robot |
US9766624B2 (en) | 2004-07-13 | 2017-09-19 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US8401275B2 (en) | 2004-07-13 | 2013-03-19 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US8983174B2 (en) | 2004-07-13 | 2015-03-17 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US10241507B2 (en) | 2004-07-13 | 2019-03-26 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US20060161303A1 (en) * | 2005-01-18 | 2006-07-20 | Yulun Wang | Mobile videoconferencing platform with automatic shut-off features |
US7222000B2 (en) | 2005-01-18 | 2007-05-22 | Intouch Technologies, Inc. | Mobile videoconferencing platform with automatic shut-off features |
US20060259193A1 (en) * | 2005-05-12 | 2006-11-16 | Yulun Wang | Telerobotic system with a dual application screen presentation |
US7957837B2 (en) | 2005-09-30 | 2011-06-07 | Irobot Corporation | Companion robot for personal interaction |
US9446510B2 (en) | 2005-09-30 | 2016-09-20 | Irobot Corporation | Companion robot for personal interaction |
US10259119B2 (en) | 2005-09-30 | 2019-04-16 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US10661433B2 (en) | 2005-09-30 | 2020-05-26 | Irobot Corporation | Companion robot for personal interaction |
US20110172822A1 (en) * | 2005-09-30 | 2011-07-14 | Andrew Ziegler | Companion Robot for Personal Interaction |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
EP2281668A1 (en) * | 2005-09-30 | 2011-02-09 | iRobot Corporation | Companion robot for personal interaction |
US9878445B2 (en) | 2005-09-30 | 2018-01-30 | Irobot Corporation | Displaying images from a robot |
US8583282B2 (en) | 2005-09-30 | 2013-11-12 | Irobot Corporation | Companion robot for personal interaction |
US20070199108A1 (en) * | 2005-09-30 | 2007-08-23 | Colin Angle | Companion robot for personal interaction |
US9796078B2 (en) | 2005-09-30 | 2017-10-24 | Irobot Corporation | Companion robot for personal interaction |
US8935006B2 (en) | 2005-09-30 | 2015-01-13 | Irobot Corporation | Companion robot for personal interaction |
US20090177323A1 (en) * | 2005-09-30 | 2009-07-09 | Andrew Ziegler | Companion robot for personal interaction |
US9452525B2 (en) | 2005-09-30 | 2016-09-27 | Irobot Corporation | Companion robot for personal interaction |
US8195333B2 (en) | 2005-09-30 | 2012-06-05 | Irobot Corporation | Companion robot for personal interaction |
US7769492B2 (en) | 2006-02-22 | 2010-08-03 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
US20070198130A1 (en) * | 2006-02-22 | 2007-08-23 | Yulun Wang | Graphical interface for a remote presence system |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US20070291109A1 (en) * | 2006-06-15 | 2007-12-20 | Yulun Wang | Remote controlled mobile robot with auxillary input ports |
US20080082211A1 (en) * | 2006-10-03 | 2008-04-03 | Yulun Wang | Remote presence display through remotely controlled robot |
US7761185B2 (en) | 2006-10-03 | 2010-07-20 | Intouch Technologies, Inc. | Remote presence display through remotely controlled robot |
US8892260B2 (en) | 2007-03-20 | 2014-11-18 | Irobot Corporation | Mobile robot for telecommunication |
US9296109B2 (en) | 2007-03-20 | 2016-03-29 | Irobot Corporation | Mobile robot for telecommunication |
US10682763B2 (en) | 2007-05-09 | 2020-06-16 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US9160783B2 (en) * | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US20090055023A1 (en) * | 2007-08-23 | 2009-02-26 | Derek Walters | Telepresence robot with a printer |
US8116910B2 (en) | 2007-08-23 | 2012-02-14 | Intouch Technologies, Inc. | Telepresence robot with a printer |
US11787060B2 (en) | 2008-03-20 | 2023-10-17 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US11472021B2 (en) | 2008-04-14 | 2022-10-18 | Teladoc Health, Inc. | Robotic based health care system |
US10471588B2 (en) | 2008-04-14 | 2019-11-12 | Intouch Technologies, Inc. | Robotic based health care system |
US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US20100019715A1 (en) * | 2008-04-17 | 2010-01-28 | David Bjorn Roe | Mobile tele-presence system with a microphone system |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US10493631B2 (en) | 2008-07-10 | 2019-12-03 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US10878960B2 (en) | 2008-07-11 | 2020-12-29 | Teladoc Health, Inc. | Tele-presence robot system with multi-cast features |
US9842192B2 (en) * | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
US20100010673A1 (en) * | 2008-07-11 | 2010-01-14 | Yulun Wang | Tele-presence robot system with multi-cast features |
US9429934B2 (en) | 2008-09-18 | 2016-08-30 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US10875183B2 (en) | 2008-11-25 | 2020-12-29 | Teladoc Health, Inc. | Server connectivity control for tele-presence robot |
US10059000B2 (en) | 2008-11-25 | 2018-08-28 | Intouch Technologies, Inc. | Server connectivity control for a tele-presence robot |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US10969766B2 (en) | 2009-04-17 | 2021-04-06 | Teladoc Health, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US9602765B2 (en) | 2009-08-26 | 2017-03-21 | Intouch Technologies, Inc. | Portable remote presence robot |
US10404939B2 (en) | 2009-08-26 | 2019-09-03 | Intouch Technologies, Inc. | Portable remote presence robot |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US10911715B2 (en) | 2009-08-26 | 2021-02-02 | Teladoc Health, Inc. | Portable remote presence robot |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US9089972B2 (en) | 2010-03-04 | 2015-07-28 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US11798683B2 (en) | 2010-03-04 | 2023-10-24 | Teladoc Health, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US10887545B2 (en) | 2010-03-04 | 2021-01-05 | Teladoc Health, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US9498886B2 (en) | 2010-05-20 | 2016-11-22 | Irobot Corporation | Mobile human interface robot |
US9902069B2 (en) | 2010-05-20 | 2018-02-27 | Irobot Corporation | Mobile robot system |
US9014848B2 (en) | 2010-05-20 | 2015-04-21 | Irobot Corporation | Mobile robot system |
US8935005B2 (en) | 2010-05-20 | 2015-01-13 | Irobot Corporation | Operating a mobile robot |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US11389962B2 (en) | 2010-05-24 | 2022-07-19 | Teladoc Health, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US10218748B2 (en) | 2010-12-03 | 2019-02-26 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US8930019B2 (en) | 2010-12-30 | 2015-01-06 | Irobot Corporation | Mobile human interface robot |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US9785149B2 (en) | 2011-01-28 | 2017-10-10 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US8718837B2 (en) | 2011-01-28 | 2014-05-06 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US10399223B2 (en) | 2011-01-28 | 2019-09-03 | Intouch Technologies, Inc. | Interfacing with a mobile telepresence robot |
US11289192B2 (en) | 2011-01-28 | 2022-03-29 | Intouch Technologies, Inc. | Interfacing with a mobile telepresence robot |
US11468983B2 (en) | 2011-01-28 | 2022-10-11 | Teladoc Health, Inc. | Time-dependent navigation of telepresence robots |
US10591921B2 (en) | 2011-01-28 | 2020-03-17 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US8965579B2 (en) | 2011-01-28 | 2015-02-24 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US9469030B2 (en) | 2011-01-28 | 2016-10-18 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US20150100461A1 (en) * | 2011-04-12 | 2015-04-09 | Dan Baryakar | Robotic System Controlled by Multi Participants |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US9974612B2 (en) | 2011-05-19 | 2018-05-22 | Intouch Technologies, Inc. | Enhanced diagnostics for a telepresence robot |
US9715337B2 (en) | 2011-11-08 | 2017-07-25 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US10331323B2 (en) | 2011-11-08 | 2019-06-25 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US10762170B2 (en) | 2012-04-11 | 2020-09-01 | Intouch Technologies, Inc. | Systems and methods for visualizing patient and telepresence device statistics in a healthcare network |
US11205510B2 (en) | 2012-04-11 | 2021-12-21 | Teladoc Health, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US9588518B2 (en) * | 2012-05-18 | 2017-03-07 | Hitachi, Ltd. | Autonomous mobile apparatus, control device, and autonomous mobile method |
US20150160654A1 (en) * | 2012-05-18 | 2015-06-11 | Hitachi, Ltd. | Autonomous Mobile Apparatus, Control Device, and Autonomous Mobile Method |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10061896B2 (en) | 2012-05-22 | 2018-08-28 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US11628571B2 (en) | 2012-05-22 | 2023-04-18 | Teladoc Health, Inc. | Social behavior rules for a medical telepresence robot |
US10892052B2 (en) | 2012-05-22 | 2021-01-12 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US11515049B2 (en) | 2012-05-22 | 2022-11-29 | Teladoc Health, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US11453126B2 (en) | 2012-05-22 | 2022-09-27 | Teladoc Health, Inc. | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
US10780582B2 (en) | 2012-05-22 | 2020-09-22 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US10658083B2 (en) | 2012-05-22 | 2020-05-19 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10603792B2 (en) | 2012-05-22 | 2020-03-31 | Intouch Technologies, Inc. | Clinical workflows utilizing autonomous and semiautonomous telemedicine devices |
US9174342B2 (en) | 2012-05-22 | 2015-11-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US10328576B2 (en) | 2012-05-22 | 2019-06-25 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US9776327B2 (en) | 2012-05-22 | 2017-10-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US20140114475A1 (en) * | 2012-10-18 | 2014-04-24 | Electronics And Telecommunications Research Institute | Apparatus and method for sharing device resources between robot software components |
US10334205B2 (en) | 2012-11-26 | 2019-06-25 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US10924708B2 (en) | 2012-11-26 | 2021-02-16 | Teladoc Health, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US11910128B2 (en) | 2012-11-26 | 2024-02-20 | Teladoc Health, Inc. | Enhanced video interaction for a user interface of a telepresence network |
WO2016083870A1 (en) * | 2014-11-26 | 2016-06-02 | Husqvarna Ab | Remote interaction with a robotic vehicle |
US10849267B2 (en) * | 2014-11-26 | 2020-12-01 | Husqvarna Ab | Remote interaction with a robotic vehicle |
US20170320215A1 (en) * | 2014-11-26 | 2017-11-09 | Husqvarna Ab | Remote interaction with a robotic vehicle |
US10261508B2 (en) | 2016-06-14 | 2019-04-16 | Fuji Xerox Co., Ltd. | Robot control system and recording medium |
EP3258336A1 (en) * | 2016-06-14 | 2017-12-20 | Fuji Xerox Co., Ltd. | Robot control system and a program |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US11742094B2 (en) | 2017-07-25 | 2023-08-29 | Teladoc Health, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US11992962B2 (en) | 2017-11-28 | 2024-05-28 | Fanuc Corporation | Robot and robot system |
US11565421B2 (en) | 2017-11-28 | 2023-01-31 | Fanuc Corporation | Robot and robot system |
US11389064B2 (en) | 2018-04-27 | 2022-07-19 | Teladoc Health, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
US12138808B2 (en) | 2020-12-28 | 2024-11-12 | Teladoc Health, Inc. | Server connectivity control for tele-presence robots |
Also Published As
Publication number | Publication date |
---|---|
US20130304257A1 (en) | 2013-11-14 |
US20190248018A1 (en) | 2019-08-15 |
US20140156069A1 (en) | 2014-06-05 |
US8682486B2 (en) | 2014-03-25 |
US20180071917A1 (en) | 2018-03-15 |
US10889000B2 (en) | 2021-01-12 |
US8515577B2 (en) | 2013-08-20 |
US10315312B2 (en) | 2019-06-11 |
US20210241902A1 (en) | 2021-08-05 |
US9849593B2 (en) | 2017-12-26 |
US20080065268A1 (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210241902A1 (en) | Medical tele-robotic system with a master remote station with an arbitrator | |
US7171286B2 (en) | Healthcare tele-robotic system with a robot that also functions as a remote station | |
US10882190B2 (en) | Protocol for a remotely controlled videoconferencing robot | |
US7158860B2 (en) | Healthcare tele-robotic system which allows parallel remote station observation | |
US7292912B2 (en) | Door knocker control system for a remote controlled teleconferencing robot | |
US7158861B2 (en) | Tele-robotic system used to provide remote consultation services | |
US7262573B2 (en) | Medical tele-robotic system with a head worn device | |
US7158859B2 (en) | 5 degrees of freedom mobile robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTOUCH-HEALTH, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, YULUN;JORDAN, CHARLES S.;LABY, KEITH PHILLIP;AND OTHERS;REEL/FRAME:015014/0666;SIGNING DATES FROM 20040209 TO 20040213 |
|
AS | Assignment |
Owner name: INTOUCH TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTOUCH HEALTH, INC.;REEL/FRAME:016686/0356 Effective date: 20050531 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: INTOUCH TECHNOLOGIES, INC., CALIFORNIA Free format text: MERGER;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB ONE, INC.;REEL/FRAME:053705/0728 Effective date: 20200111 Owner name: JONATA SUB TWO, INC., CALIFORNIA Free format text: MERGER;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB TWO, INC.;REEL/FRAME:053705/0839 Effective date: 20200111 Owner name: TELADOC HEALTH, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTOUCH TECHNOLOGIES, INC.;REEL/FRAME:053743/0661 Effective date: 20200902 Owner name: INTOUCH TECHNOLOGIES, INC., CALIFORNIA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB TWO, INC.;REEL/FRAME:054690/0327 Effective date: 20200701 Owner name: JONATA SUB TWO, INC., CALIFORNIA Free format text: MERGER;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB TWO, INC.;REEL/FRAME:053705/0839 Effective date: 20200701 |
|
AS | Assignment |
Owner name: INTOUCH TECHNOLOGIES, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXEUTION DATE OF THE MERGER FROM 01/11/2020 TO 07/01/2020, PREVIOUSLY RECORDED ON REEL 053705 FRAME 0728. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB ONE, INC.;REEL/FRAME:054986/0508 Effective date: 20200701 Owner name: JONATA SUB TWO, INC., CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE OF THE MERGER FROM 01/11/2020 TO 07/01/2020 PREVIOUSLY RECORDED AT REEL: 053705 FRAME: 0839. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:INTOUCH TECHNOLOGIES, INC.;JONATA SUB TWO, INC.;REEL/FRAME:054999/0001 Effective date: 20200701 |