US20040082798A1 - Novel amino dicarboxylic acid derivatives with pharmaceutical properties - Google Patents
Novel amino dicarboxylic acid derivatives with pharmaceutical properties Download PDFInfo
- Publication number
- US20040082798A1 US20040082798A1 US10/469,817 US46981703A US2004082798A1 US 20040082798 A1 US20040082798 A1 US 20040082798A1 US 46981703 A US46981703 A US 46981703A US 2004082798 A1 US2004082798 A1 US 2004082798A1
- Authority
- US
- United States
- Prior art keywords
- carbon atoms
- chain
- straight
- branched
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 amino dicarboxylic acid derivatives Chemical class 0.000 title claims description 179
- 150000001875 compounds Chemical class 0.000 claims abstract description 134
- 239000003814 drug Substances 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 208000024172 Cardiovascular disease Diseases 0.000 claims abstract description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 475
- 125000000217 alkyl group Chemical group 0.000 claims description 182
- 239000001257 hydrogen Substances 0.000 claims description 127
- 229910052739 hydrogen Inorganic materials 0.000 claims description 127
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 91
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 84
- 125000003118 aryl group Chemical group 0.000 claims description 81
- 125000003545 alkoxy group Chemical group 0.000 claims description 78
- 229910052736 halogen Inorganic materials 0.000 claims description 66
- 150000002367 halogens Chemical group 0.000 claims description 66
- 229910052717 sulfur Inorganic materials 0.000 claims description 66
- 125000001188 haloalkyl group Chemical group 0.000 claims description 63
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 54
- 229910052757 nitrogen Inorganic materials 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 53
- 150000003254 radicals Chemical class 0.000 claims description 51
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 49
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 46
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 45
- 125000005842 heteroatom Chemical group 0.000 claims description 43
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 42
- 229910052731 fluorine Inorganic materials 0.000 claims description 40
- 229910052760 oxygen Inorganic materials 0.000 claims description 39
- 125000003342 alkenyl group Chemical group 0.000 claims description 38
- 125000000623 heterocyclic group Chemical group 0.000 claims description 34
- 125000002947 alkylene group Chemical group 0.000 claims description 32
- 229910052801 chlorine Inorganic materials 0.000 claims description 31
- 150000005840 aryl radicals Chemical class 0.000 claims description 25
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 25
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 22
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 21
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 21
- 125000005083 alkoxyalkoxy group Chemical group 0.000 claims description 20
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 20
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 20
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 20
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 20
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 20
- 229910052794 bromium Inorganic materials 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 15
- 229910052740 iodine Inorganic materials 0.000 claims description 14
- 229920006395 saturated elastomer Polymers 0.000 claims description 14
- 125000001424 substituent group Chemical group 0.000 claims description 14
- 229910052721 tungsten Inorganic materials 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 12
- 208000035475 disorder Diseases 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 11
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 11
- 125000004963 sulfonylalkyl group Chemical group 0.000 claims description 11
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 10
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 claims description 10
- 125000000304 alkynyl group Chemical group 0.000 claims description 10
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 10
- 239000011737 fluorine Chemical group 0.000 claims description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 9
- 125000004001 thioalkyl group Chemical group 0.000 claims description 9
- 150000007513 acids Chemical class 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910052770 Uranium Inorganic materials 0.000 claims description 6
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 125000005243 carbonyl alkyl group Chemical group 0.000 claims description 6
- 125000000000 cycloalkoxy group Chemical group 0.000 claims description 6
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 claims description 4
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 4
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 claims description 4
- 241001484259 Lacuna Species 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- OFDNQWIFNXBECV-VFSYNPLYSA-N dolastatin 10 Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C=1SC=CN=1)CC1=CC=CC=C1 OFDNQWIFNXBECV-VFSYNPLYSA-N 0.000 claims description 4
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 claims description 4
- 150000002941 palladium compounds Chemical class 0.000 claims description 4
- 125000004076 pyridyl group Chemical group 0.000 claims description 4
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 4
- 125000000335 thiazolyl group Chemical group 0.000 claims description 4
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 3
- 206010002383 Angina Pectoris Diseases 0.000 claims description 3
- 206010019280 Heart failures Diseases 0.000 claims description 3
- 206010020772 Hypertension Diseases 0.000 claims description 3
- 229910006074 SO2NH2 Inorganic materials 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 230000003176 fibrotic effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 125000000565 sulfonamide group Chemical group 0.000 claims description 3
- 125000001544 thienyl group Chemical group 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 claims description 2
- 125000004207 3-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(OC([H])([H])[H])=C1[H] 0.000 claims description 2
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims description 2
- 206010016654 Fibrosis Diseases 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 claims description 2
- 125000005018 aryl alkenyl group Chemical group 0.000 claims description 2
- 125000004104 aryloxy group Chemical group 0.000 claims description 2
- 125000006367 bivalent amino carbonyl group Chemical group [H]N([*:1])C([*:2])=O 0.000 claims description 2
- 150000001721 carbon Chemical group 0.000 claims description 2
- 230000004761 fibrosis Effects 0.000 claims description 2
- 208000028867 ischemia Diseases 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- XSXHWVKGUXMUQE-UHFFFAOYSA-N osmium dioxide Inorganic materials O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 claims description 2
- 230000009424 thromboembolic effect Effects 0.000 claims description 2
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 58
- 208000037997 venous disease Diseases 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 111
- 239000000243 solution Substances 0.000 description 48
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 46
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 42
- 238000006243 chemical reaction Methods 0.000 description 40
- 239000000203 mixture Substances 0.000 description 38
- 0 C.CC.C[V]C[Y].[2*]*[U]N(CC)[W]C Chemical compound C.CC.C[V]C[Y].[2*]*[U]N(CC)[W]C 0.000 description 37
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 36
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 35
- 238000005160 1H NMR spectroscopy Methods 0.000 description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 102000007637 Soluble Guanylyl Cyclase Human genes 0.000 description 29
- 108010007205 Soluble Guanylyl Cyclase Proteins 0.000 description 29
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 26
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- 238000003786 synthesis reaction Methods 0.000 description 26
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 25
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 150000003278 haem Chemical group 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 19
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 238000010992 reflux Methods 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 239000002585 base Substances 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical class [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 13
- 239000000460 chlorine Substances 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 13
- ZOOGRGPOEVQQDX-KHLHZJAASA-N cyclic guanosine monophosphate Chemical compound C([C@H]1O2)O[P@](O)(=O)O[C@@H]1[C@H](O)[C@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-KHLHZJAASA-N 0.000 description 12
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 12
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 11
- 150000001412 amines Chemical class 0.000 description 11
- 239000012230 colorless oil Substances 0.000 description 11
- 239000012043 crude product Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000004936 stimulating effect Effects 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 description 9
- 230000000638 stimulation Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000002953 preparative HPLC Methods 0.000 description 7
- 125000006239 protecting group Chemical group 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 239000012279 sodium borohydride Substances 0.000 description 6
- 229910000033 sodium borohydride Inorganic materials 0.000 description 6
- PRHWSYDCSPJIKS-UHFFFAOYSA-N C1=CC2=C(C=C1)SC=C2.C1=CC=C2NC=CC2=C1.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=CNN=C1.C1=COC=C1.C1=COC=N1.C1=CON=C1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNC1.C1CCNCC1.C1CNCCN1.C1COCCN1 Chemical compound C1=CC2=C(C=C1)SC=C2.C1=CC=C2NC=CC2=C1.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=CNN=C1.C1=COC=C1.C1=COC=N1.C1=CON=C1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNC1.C1CCNCC1.C1CNCCN1.C1COCCN1 PRHWSYDCSPJIKS-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 5
- OQQVFCKUDYMWGV-UHFFFAOYSA-N [5-[1-(phenylmethyl)-3-indazolyl]-2-furanyl]methanol Chemical compound O1C(CO)=CC=C1C(C1=CC=CC=C11)=NN1CC1=CC=CC=C1 OQQVFCKUDYMWGV-UHFFFAOYSA-N 0.000 description 5
- 150000001728 carbonyl compounds Chemical class 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 238000004440 column chromatography Methods 0.000 description 5
- 238000003818 flash chromatography Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 229910000104 sodium hydride Inorganic materials 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- CRBLICRGRDSRAK-UHFFFAOYSA-N C1=CC2=C(C=C1)OC=N2.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=COC=C1.C1=COC=N1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNCC1.C1CNCCN1.C1COCCN1 Chemical compound C1=CC2=C(C=C1)OC=N2.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=COC=C1.C1=COC=N1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNCC1.C1CNCCN1.C1COCCN1 CRBLICRGRDSRAK-UHFFFAOYSA-N 0.000 description 4
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 4
- 108010078321 Guanylate Cyclase Proteins 0.000 description 4
- 102000014469 Guanylate cyclase Human genes 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- BSCPZUDZXWJATQ-UHFFFAOYSA-N [3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]methanol Chemical compound OCC1=CC=2CCCCC=2C=C1OCC1=CC=C(Br)C=C1 BSCPZUDZXWJATQ-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 244000309464 bull Species 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- LMYGCLJMZNGQNC-UHFFFAOYSA-N methyl 4-[[(5-ethoxy-5-oxopentyl)-[2-[6-methyl-3-[[4-[4-(trifluoromethyl)phenyl]phenyl]methoxy]pyridin-2-yl]ethyl]amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OCC)CCC1=NC(C)=CC=C1OCC(C=C1)=CC=C1C1=CC=C(C(F)(F)F)C=C1 LMYGCLJMZNGQNC-UHFFFAOYSA-N 0.000 description 4
- LQWPYHCVMXMMNE-UHFFFAOYSA-N methyl 4-[[2-[3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethyl-(5-methoxy-5-oxopentyl)amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OC)CCC1=CC=2CCCCC=2C=C1OCC1=CC=C(Br)C=C1 LQWPYHCVMXMMNE-UHFFFAOYSA-N 0.000 description 4
- 125000002560 nitrile group Chemical group 0.000 description 4
- 229920005990 polystyrene resin Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229950003776 protoporphyrin Drugs 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 4
- SFHRXXZCFAYSRK-UHFFFAOYSA-N 2-(bromomethyl)-3-[(4-bromophenyl)methoxy]-6-methylpyridine Chemical compound BrCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 SFHRXXZCFAYSRK-UHFFFAOYSA-N 0.000 description 3
- UONSDUXTIAFYDD-UHFFFAOYSA-N 2-[3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]acetonitrile Chemical compound C1=CC(Br)=CC=C1COC(C(=C1)CC#N)=CC2=C1CCCC2 UONSDUXTIAFYDD-UHFFFAOYSA-N 0.000 description 3
- BENKDPHBHMSIFD-UHFFFAOYSA-N 2-[3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethanamine Chemical compound NCCC1=CC=2CCCCC=2C=C1OCC1=CC=C(Br)C=C1 BENKDPHBHMSIFD-UHFFFAOYSA-N 0.000 description 3
- CZHVRRLGLCGBCY-UHFFFAOYSA-N 2-[3-[(4-bromophenyl)methoxy]-6-methylpyridin-2-yl]acetonitrile Chemical compound N#CCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 CZHVRRLGLCGBCY-UHFFFAOYSA-N 0.000 description 3
- FAGFOUTVIWDNMV-UHFFFAOYSA-N 2-[3-[(4-bromophenyl)methoxy]-6-methylpyridin-2-yl]ethanamine Chemical compound NCCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 FAGFOUTVIWDNMV-UHFFFAOYSA-N 0.000 description 3
- FOIDGFDGJSUMLK-UHFFFAOYSA-N 2-[4-(chloromethyl)-2,5-dimethylthiophen-3-yl]acetonitrile Chemical compound CC=1SC(C)=C(CC#N)C=1CCl FOIDGFDGJSUMLK-UHFFFAOYSA-N 0.000 description 3
- NLNLBKRQFKMSOF-UHFFFAOYSA-N 2-[4-[(4-bromophenoxy)methyl]-2,5-dimethylthiophen-3-yl]acetonitrile Chemical compound S1C(C)=C(CC#N)C(COC=2C=CC(Br)=CC=2)=C1C NLNLBKRQFKMSOF-UHFFFAOYSA-N 0.000 description 3
- CXPKYNLXLOGSCI-UHFFFAOYSA-N 2-[4-[(4-bromophenoxy)methyl]-2,5-dimethylthiophen-3-yl]ethanamine Chemical compound NCCC1=C(C)SC(C)=C1COC1=CC=C(Br)C=C1 CXPKYNLXLOGSCI-UHFFFAOYSA-N 0.000 description 3
- PVZNSLFECJBOBR-UHFFFAOYSA-N 4-[[4-carboxybutyl-[2-[3-[[4-(4-methoxyphenyl)phenyl]methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethyl]amino]methyl]benzoic acid Chemical compound C1=CC(OC)=CC=C1C(C=C1)=CC=C1COC(C(=C1)CCN(CCCCC(O)=O)CC=2C=CC(=CC=2)C(O)=O)=CC2=C1CCCC2 PVZNSLFECJBOBR-UHFFFAOYSA-N 0.000 description 3
- XWHIZVSPBHOTDC-UHFFFAOYSA-N 6-[(4-bromophenyl)methoxy]-7-(chloromethyl)-1,2,3,4-tetrahydronaphthalene Chemical compound ClCC1=CC=2CCCCC=2C=C1OCC1=CC=C(Br)C=C1 XWHIZVSPBHOTDC-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- DMSBTMWOBPXLNT-UHFFFAOYSA-N [3-[(4-bromophenyl)methoxy]-6-methylpyridin-2-yl]methanol Chemical compound OCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 DMSBTMWOBPXLNT-UHFFFAOYSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 235000010233 benzoic acid Nutrition 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- FEBRRXSUDPDMBK-UHFFFAOYSA-N methyl 3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalene-2-carboxylate Chemical compound COC(=O)C1=CC=2CCCCC=2C=C1OCC1=CC=C(Br)C=C1 FEBRRXSUDPDMBK-UHFFFAOYSA-N 0.000 description 3
- IJWWZCAMWZSCQB-UHFFFAOYSA-N methyl 4-[[(5-methoxy-5-oxopentyl)-[2-[3-[[4-(4-methoxyphenyl)phenyl]methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethyl]amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OC)CCC1=CC=2CCCCC=2C=C1OCC(C=C1)=CC=C1C1=CC=C(OC)C=C1 IJWWZCAMWZSCQB-UHFFFAOYSA-N 0.000 description 3
- BONOWYJMAGRYJI-UHFFFAOYSA-N methyl 4-[[(5-methoxy-5-oxopentyl)-[2-[3-[[4-[4-(trifluoromethyl)phenyl]phenyl]methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethyl]amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OC)CCC1=CC=2CCCCC=2C=C1OCC(C=C1)=CC=C1C1=CC=C(C(F)(F)F)C=C1 BONOWYJMAGRYJI-UHFFFAOYSA-N 0.000 description 3
- CRKMAHSFVOYLJL-UHFFFAOYSA-N methyl 4-[[2-[3-[(4-bromophenyl)methoxy]-5,6,7,8-tetrahydronaphthalen-2-yl]ethylamino]methyl]benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1CNCCC(C(=C1)OCC=2C=CC(Br)=CC=2)=CC2=C1CCCC2 CRKMAHSFVOYLJL-UHFFFAOYSA-N 0.000 description 3
- UTZOPMKFAAMQRI-UHFFFAOYSA-N methyl 4-[[2-[3-[(4-bromophenyl)methoxy]-6-methylpyridin-2-yl]ethyl-(5-ethoxy-5-oxopentyl)amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OCC)CCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 UTZOPMKFAAMQRI-UHFFFAOYSA-N 0.000 description 3
- GFLOZIGMCRFGLU-UHFFFAOYSA-N methyl 4-[[2-[3-[(4-bromophenyl)methoxy]-6-methylpyridin-2-yl]ethylamino]methyl]benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1CNCCC1=NC(C)=CC=C1OCC1=CC=C(Br)C=C1 GFLOZIGMCRFGLU-UHFFFAOYSA-N 0.000 description 3
- FEIOASZZURHTHB-UHFFFAOYSA-N methyl 4-formylbenzoate Chemical compound COC(=O)C1=CC=C(C=O)C=C1 FEIOASZZURHTHB-UHFFFAOYSA-N 0.000 description 3
- SEVSMVUOKAMPDO-UHFFFAOYSA-N para-Acetoxybenzaldehyde Natural products CC(=O)OC1=CC=C(C=O)C=C1 SEVSMVUOKAMPDO-UHFFFAOYSA-N 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- IPSRUMUXEPMQCS-UHFFFAOYSA-N (1-methoxycyclohexa-2,4-dien-1-yl)boronic acid Chemical compound COC1(B(O)O)CC=CC=C1 IPSRUMUXEPMQCS-UHFFFAOYSA-N 0.000 description 2
- VOAAEKKFGLPLLU-UHFFFAOYSA-N (4-methoxyphenyl)boronic acid Chemical compound COC1=CC=C(B(O)O)C=C1 VOAAEKKFGLPLLU-UHFFFAOYSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- YLRBJYMANQKEAW-UHFFFAOYSA-N 1-bromo-4-(bromomethyl)benzene Chemical compound BrCC1=CC=C(Br)C=C1 YLRBJYMANQKEAW-UHFFFAOYSA-N 0.000 description 2
- HTFXWAOSQODIBI-UHFFFAOYSA-N 2-benzyl-1,3-dihydropyrrolo[3,4-c]pyridine Chemical compound C1C2=CC=NC=C2CN1CC1=CC=CC=C1 HTFXWAOSQODIBI-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- CVQBAADHCLGLPU-UHFFFAOYSA-N 4-[[4-carboxybutyl-[2-[4-[[4-(2,4-dichlorophenyl)phenoxy]methyl]-2,5-dimethylthiophen-3-yl]ethyl]amino]methyl]benzoic acid Chemical compound C=1C=C(C(O)=O)C=CC=1CN(CCCCC(O)=O)CCC1=C(C)SC(C)=C1COC(C=C1)=CC=C1C1=CC=C(Cl)C=C1Cl CVQBAADHCLGLPU-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- OAHNDSLSKSVLLN-UHFFFAOYSA-N C.CC.C[V]C[Y].C[W]C Chemical compound C.CC.C[V]C[Y].C[W]C OAHNDSLSKSVLLN-UHFFFAOYSA-N 0.000 description 2
- BHYGASUDNMLIKF-ZPYUXNTASA-N C/C=C/[Ar].CCC1=CC=CC=C1 Chemical compound C/C=C/[Ar].CCC1=CC=CC=C1 BHYGASUDNMLIKF-ZPYUXNTASA-N 0.000 description 2
- VFAMWAQOWFZHHV-UHFFFAOYSA-N CC[Y] Chemical compound CC[Y] VFAMWAQOWFZHHV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- NOTFZGFABLVTIG-UHFFFAOYSA-N Cyclohexylethyl acetate Chemical compound CC(=O)OCCC1CCCCC1 NOTFZGFABLVTIG-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 2
- 150000004753 Schiff bases Chemical class 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 239000012973 diazabicyclooctane Substances 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- DXDRHHKMWQZJHT-FPYGCLRLSA-N isoliquiritigenin Chemical compound C1=CC(O)=CC=C1\C=C\C(=O)C1=CC=C(O)C=C1O DXDRHHKMWQZJHT-FPYGCLRLSA-N 0.000 description 2
- JBQATDIMBVLPRB-UHFFFAOYSA-N isoliquiritigenin Natural products OC1=CC(O)=CC=C1C1OC2=CC(O)=CC=C2C(=O)C1 JBQATDIMBVLPRB-UHFFFAOYSA-N 0.000 description 2
- 235000008718 isoliquiritigenin Nutrition 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- YRGJVRHNWPDXMH-UHFFFAOYSA-N methyl 3-hydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxylate Chemical compound C1CCCC2=C1C=C(C(=O)OC)C(O)=C2 YRGJVRHNWPDXMH-UHFFFAOYSA-N 0.000 description 2
- QDLIXOZFOPMCIT-UHFFFAOYSA-N methyl 4-[[2-[4-[(4-bromophenoxy)methyl]-2,5-dimethylthiophen-3-yl]ethyl-(5-ethoxy-5-oxopentyl)amino]methyl]benzoate Chemical compound C=1C=C(C(=O)OC)C=CC=1CN(CCCCC(=O)OCC)CCC1=C(C)SC(C)=C1COC1=CC=C(Br)C=C1 QDLIXOZFOPMCIT-UHFFFAOYSA-N 0.000 description 2
- YGBRFLVGHVQVKP-UHFFFAOYSA-N methyl 4-[[2-[4-[(4-bromophenoxy)methyl]-2,5-dimethylthiophen-3-yl]ethylamino]methyl]benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1CNCCC1=C(C)SC(C)=C1COC1=CC=C(Br)C=C1 YGBRFLVGHVQVKP-UHFFFAOYSA-N 0.000 description 2
- RAVVJKCSZXAIQP-UHFFFAOYSA-N methyl 5-bromopentanoate Chemical compound COC(=O)CCCCBr RAVVJKCSZXAIQP-UHFFFAOYSA-N 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 150000002825 nitriles Chemical group 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical group CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- RMVRSNDYEFQCLF-UHFFFAOYSA-N phenyl mercaptan Natural products SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 238000005932 reductive alkylation reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Substances [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 description 2
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Chemical compound C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 2
- 230000002883 vasorelaxation effect Effects 0.000 description 2
- OEUYDUFJRIQAMP-UHFFFAOYSA-N (1-fluorocyclohexa-2,4-dien-1-yl)boronic acid Chemical compound FC1(CC=CC=C1)B(O)O OEUYDUFJRIQAMP-UHFFFAOYSA-N 0.000 description 1
- QNEGDGPAXKYZHZ-UHFFFAOYSA-N (2,4-dichlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C=C1Cl QNEGDGPAXKYZHZ-UHFFFAOYSA-N 0.000 description 1
- VBHARLNUEDIKQD-UHFFFAOYSA-N (2-methoxynaphthalen-1-yl)methanol Chemical compound C1=CC=CC2=C(CO)C(OC)=CC=C21 VBHARLNUEDIKQD-UHFFFAOYSA-N 0.000 description 1
- XPNGNIFUDRPBFJ-UHFFFAOYSA-N (2-methylphenyl)methanol Chemical compound CC1=CC=CC=C1CO XPNGNIFUDRPBFJ-UHFFFAOYSA-N 0.000 description 1
- NLLGFYPSWCMUIV-UHFFFAOYSA-N (3-methoxyphenyl)boronic acid Chemical compound COC1=CC=CC(B(O)O)=C1 NLLGFYPSWCMUIV-UHFFFAOYSA-N 0.000 description 1
- CAYQIZIAYYNFCS-UHFFFAOYSA-N (4-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Cl)C=C1 CAYQIZIAYYNFCS-UHFFFAOYSA-N 0.000 description 1
- MNJYZNVROSZZQC-UHFFFAOYSA-N (4-tert-butylphenyl)boronic acid Chemical compound CC(C)(C)C1=CC=C(B(O)O)C=C1 MNJYZNVROSZZQC-UHFFFAOYSA-N 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- HLQZCRVEEQKNMS-UHFFFAOYSA-N 1-(chloromethyl)-4-phenylbenzene Chemical group C1=CC(CCl)=CC=C1C1=CC=CC=C1 HLQZCRVEEQKNMS-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- YBONBWJSFMTXLE-UHFFFAOYSA-N 2,3-dichlorobenzoyl chloride Chemical compound ClC(=O)C1=CC=CC(Cl)=C1Cl YBONBWJSFMTXLE-UHFFFAOYSA-N 0.000 description 1
- KXCLEESYGWKEHV-UHFFFAOYSA-N 2-(3-hydroxypyridin-2-yl)acetonitrile Chemical compound OC1=CC=CN=C1CC#N KXCLEESYGWKEHV-UHFFFAOYSA-N 0.000 description 1
- PAGTXDLKXRBHFL-UHFFFAOYSA-N 2-(hydroxymethyl)-6-methylpyridin-3-ol Chemical compound CC1=CC=C(O)C(CO)=N1 PAGTXDLKXRBHFL-UHFFFAOYSA-N 0.000 description 1
- MFYSUUPKMDJYPF-UHFFFAOYSA-N 2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-n-phenylbutanamide Chemical compound C=1C=CC=CC=1NC(=O)C(C(=O)C)N=NC1=CC=C(C)C=C1[N+]([O-])=O MFYSUUPKMDJYPF-UHFFFAOYSA-N 0.000 description 1
- NOIXNOMHHWGUTG-UHFFFAOYSA-N 2-[[4-[4-pyridin-4-yl-1-(2,2,2-trifluoroethyl)pyrazol-3-yl]phenoxy]methyl]quinoline Chemical class C=1C=C(OCC=2N=C3C=CC=CC3=CC=2)C=CC=1C1=NN(CC(F)(F)F)C=C1C1=CC=NC=C1 NOIXNOMHHWGUTG-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- NTCCNERMXRIPTR-UHFFFAOYSA-N 2-hydroxy-1-naphthaldehyde Chemical compound C1=CC=CC2=C(C=O)C(O)=CC=C21 NTCCNERMXRIPTR-UHFFFAOYSA-N 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- UOAVLAVHDBWBGV-UHFFFAOYSA-N 3,4-bis(chloromethyl)-2,5-dimethylthiophene Chemical compound CC=1SC(C)=C(CCl)C=1CCl UOAVLAVHDBWBGV-UHFFFAOYSA-N 0.000 description 1
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 239000003148 4 aminobutyric acid receptor blocking agent Substances 0.000 description 1
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 1
- SIAVMDKGVRXFAX-UHFFFAOYSA-N 4-carboxyphenylboronic acid Chemical compound OB(O)C1=CC=C(C(O)=O)C=C1 SIAVMDKGVRXFAX-UHFFFAOYSA-N 0.000 description 1
- LBUNNMJLXWQQBY-UHFFFAOYSA-N 4-fluorophenylboronic acid Chemical compound OB(O)C1=CC=C(F)C=C1 LBUNNMJLXWQQBY-UHFFFAOYSA-N 0.000 description 1
- GOUHYARYYWKXHS-UHFFFAOYSA-N 4-formylbenzoic acid Chemical class OC(=O)C1=CC=C(C=O)C=C1 GOUHYARYYWKXHS-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- CIMZEZRAUZRTBN-UHFFFAOYSA-N C.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC=O.CC=O.CCC#N.CCCN.CCCl.CCO.CO.N#C[K].O=S(Cl)Cl Chemical compound C.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC.CC=O.CC=O.CCC#N.CCCN.CCCl.CCO.CO.N#C[K].O=S(Cl)Cl CIMZEZRAUZRTBN-UHFFFAOYSA-N 0.000 description 1
- KGCXTTXHOAKLNA-UHFFFAOYSA-N C.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.CC=O.CC=O.CCC#N.CCCN.CCCl.CCO.CC[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].N#C[K].O=S(Cl)Cl Chemical compound C.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.CC=O.CC=O.CCC#N.CCCN.CCCl.CCO.CC[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].C[V]C[Y].N#C[K].O=S(Cl)Cl KGCXTTXHOAKLNA-UHFFFAOYSA-N 0.000 description 1
- BGLJRQHZWXMUOY-UHFFFAOYSA-N C.C.C.C.C.C.CC.CC.CC.CC.CC.CC(=O)Cl.CC=O.CCC#N.CCCN.CCO.CCOC(C)=O.CO.CO.CO.CO.COC(C)=O.N#C[K] Chemical compound C.C.C.C.C.C.CC.CC.CC.CC.CC.CC(=O)Cl.CC=O.CCC#N.CCCN.CCO.CCOC(C)=O.CO.CO.CO.CO.COC(C)=O.N#C[K] BGLJRQHZWXMUOY-UHFFFAOYSA-N 0.000 description 1
- RBKMFCMLZBFJCF-UHFFFAOYSA-N C.C.C.C.C.C.CC.CC.CC.CC.CC.CC=O.CCC#N.CCCN.CCCl.CCO.CO.CO.CO.CO.CO.N#C[K].O=S(Cl)Cl Chemical compound C.C.C.C.C.C.CC.CC.CC.CC.CC.CC=O.CCC#N.CCCN.CCCl.CCO.CO.CO.CO.CO.CO.N#C[K].O=S(Cl)Cl RBKMFCMLZBFJCF-UHFFFAOYSA-N 0.000 description 1
- IRBXDFCLQMGWJG-UHFFFAOYSA-N C.C.C.C.CC.CC.CC.CC.CC.CC.CC=C[N+](=O)[O-].CC=O.CCCN.C[N+](=O)[O-] Chemical compound C.C.C.C.CC.CC.CC.CC.CC.CC.CC=C[N+](=O)[O-].CC=O.CCCN.C[N+](=O)[O-] IRBXDFCLQMGWJG-UHFFFAOYSA-N 0.000 description 1
- WJARFKDOOOUEQY-BUQILDFBSA-N C.C.C.C.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=CC=C(/C=C/C2=CC=CC=C2)C=C1.COCC1=CC=C(CCC2=CC=CC=C2)C=C1.COCC1=CC=C(CCC2=CC=CC=C2)C=C1.ClCC1=CC=C(/C=C/C2=CC=CC=C2)C=C1.[H]OC(=O)CCCCN(CCC)CC1=CC=C(C(=O)O[H])C=C1 Chemical compound C.C.C.C.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=CC=C(/C=C/C2=CC=CC=C2)C=C1.COCC1=CC=C(CCC2=CC=CC=C2)C=C1.COCC1=CC=C(CCC2=CC=CC=C2)C=C1.ClCC1=CC=C(/C=C/C2=CC=CC=C2)C=C1.[H]OC(=O)CCCCN(CCC)CC1=CC=C(C(=O)O[H])C=C1 WJARFKDOOOUEQY-BUQILDFBSA-N 0.000 description 1
- JKINWEUBUIUUAR-UHFFFAOYSA-N C.C.C.CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(C)=O)CC1=CC=C(C(=O)OC)C=C1.COC(=O)C1=CC=C(CBr)C=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.[H]N(CCC)CCCCC(C)=O Chemical compound C.C.C.CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(C)=O)CC1=CC=C(C(=O)OC)C=C1.COC(=O)C1=CC=C(CBr)C=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.[H]N(CCC)CCCCC(C)=O JKINWEUBUIUUAR-UHFFFAOYSA-N 0.000 description 1
- ZJSZZKLNKWQKQU-UHFFFAOYSA-N C.C1=CC2=C(C=C1)OC=N2.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=COC=C1.C1=COC=N1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNCC1.C1CNCCN1.C1COCCN1 Chemical compound C.C1=CC2=C(C=C1)OC=N2.C1=CC=NC=C1.C1=CC=NN=C1.C1=CN=CC=N1.C1=CN=CN=C1.C1=CNC=C1.C1=CNC=N1.C1=COC=C1.C1=COC=N1.C1=CSC=C1.C1=CSC=N1.C1=CSN=N1.C1=NC=NO1.C1=NC=NS1.C1CCNCC1.C1CNCCN1.C1COCCN1 ZJSZZKLNKWQKQU-UHFFFAOYSA-N 0.000 description 1
- SFLZJHRAUWJSFR-UHFFFAOYSA-N C.CC.CC.CC.CC.CCC#N.CCCN.CCC[Y].CCC[Y].CCCl.CCCl.CCCl.CCCl.CC[Y] Chemical compound C.CC.CC.CC.CC.CCC#N.CCCN.CCC[Y].CCC[Y].CCCl.CCCl.CCCl.CCCl.CC[Y] SFLZJHRAUWJSFR-UHFFFAOYSA-N 0.000 description 1
- NITJLMSEFNROAC-UHFFFAOYSA-N C.C[Si](C)(C)Cl.C[Si](C)(C)OC1=CC=CN=C1CC#N.C[Si](C)(C)OC1=CC=CN=C1CCN.N#CCC1=NC=CC=C1O.N#C[K].OC1=CC=CN=C1CCl.OCC1=NC=CC=C1O Chemical compound C.C[Si](C)(C)Cl.C[Si](C)(C)OC1=CC=CN=C1CC#N.C[Si](C)(C)OC1=CC=CN=C1CCN.N#CCC1=NC=CC=C1O.N#C[K].OC1=CC=CN=C1CCl.OCC1=NC=CC=C1O NITJLMSEFNROAC-UHFFFAOYSA-N 0.000 description 1
- RXKVOOACNOIKQO-UHFFFAOYSA-N C.ClCC1=CC=CN=C1[V]C[Y].N#CCC1=CC=CN=C1[V]C[Y].N#C[K].NCCC1=CC=CN=C1[V]C[Y].O=C(O)C1=CC=CN=C1Cl.O=C(O)C1=CC=CN=C1[V]C[Y].O=P(Cl)(Cl)Cl.OCC1=CC=CN=C1[V]C[Y].[AlH3].[H][V]C[Y].[LiH] Chemical compound C.ClCC1=CC=CN=C1[V]C[Y].N#CCC1=CC=CN=C1[V]C[Y].N#C[K].NCCC1=CC=CN=C1[V]C[Y].O=C(O)C1=CC=CN=C1Cl.O=C(O)C1=CC=CN=C1[V]C[Y].O=P(Cl)(Cl)Cl.OCC1=CC=CN=C1[V]C[Y].[AlH3].[H][V]C[Y].[LiH] RXKVOOACNOIKQO-UHFFFAOYSA-N 0.000 description 1
- JYTYKEGYUOJJRO-UHFFFAOYSA-N CC(=O)CBr.CC(=O)CN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.COC(=O)CCCCN(CC(C)=O)CC1=CC=C(C(=O)OC)C=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.[H]N(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1 Chemical compound CC(=O)CBr.CC(=O)CN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.COC(=O)CCCCN(CC(C)=O)CC1=CC=C(C(=O)OC)C=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.COCC1=CC=CC=C1.[H]N(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1 JYTYKEGYUOJJRO-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N CC(C)=O Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- SGQUPAAFPTZLHE-UHFFFAOYSA-N CC.CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=C(Cl)C=CC=C1.COCC1=C(Cl)C=CC=C1 Chemical compound CC.CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=C(Cl)C=CC=C1.COCC1=C(Cl)C=CC=C1 SGQUPAAFPTZLHE-UHFFFAOYSA-N 0.000 description 1
- PYFLTKNJZIIIGF-UHFFFAOYSA-N CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(=O)O)C=C3)C=C2)=C(C)S1 Chemical compound CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(=O)O)C=C3)C=C2)=C(C)S1 PYFLTKNJZIIIGF-UHFFFAOYSA-N 0.000 description 1
- ZUVVITWXXHLINS-UHFFFAOYSA-N CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(C)(C)C)C=C3)C=C2)=C(C)S1 Chemical compound CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(C)(C)C)C=C3)C=C2)=C(C)S1 ZUVVITWXXHLINS-UHFFFAOYSA-N 0.000 description 1
- XFWWFBAYPBVZCS-UHFFFAOYSA-N CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)=C(C)S1 Chemical compound CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)=C(C)S1 XFWWFBAYPBVZCS-UHFFFAOYSA-N 0.000 description 1
- VWTSKWIQAAVOFD-UHFFFAOYSA-N CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(Cl)C=C3)C=C2)=C(C)S1 Chemical compound CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(Cl)C=C3)C=C2)=C(C)S1 VWTSKWIQAAVOFD-UHFFFAOYSA-N 0.000 description 1
- FCAKLYIGGLEJBD-UHFFFAOYSA-N CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(F)C=C3)C=C2)=C(C)S1 Chemical compound CC1=C(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)C(COC2=CC=C(C3=CC=C(F)C=C3)C=C2)=C(C)S1 FCAKLYIGGLEJBD-UHFFFAOYSA-N 0.000 description 1
- LYJNZBNLGMBPJI-UHFFFAOYSA-N CC1=NC(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)=C(OCC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)C=C1 Chemical compound CC1=NC(CCN(CCCCC(=O)O)CC2=CC=C(C(=O)O)C=C2)=C(OCC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)C=C1 LYJNZBNLGMBPJI-UHFFFAOYSA-N 0.000 description 1
- XPVQNVGQWFDZPC-UHFFFAOYSA-N CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=CC=C(Br)C=C1.COCC1=CC=C(C2=CC=C(Cl)C=C2)C=C1.COCC1=CC=C(C2=CC=C(Cl)C=C2)C=C1.ClCC1=CC=C(Br)C=C1.OB(O)C1=CC=C(Cl)C=C1 Chemical compound CCCN(CCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCN(CCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CO.COCC1=CC=C(Br)C=C1.COCC1=CC=C(C2=CC=C(Cl)C=C2)C=C1.COCC1=CC=C(C2=CC=C(Cl)C=C2)C=C1.ClCC1=CC=C(Br)C=C1.OB(O)C1=CC=C(Cl)C=C1 XPVQNVGQWFDZPC-UHFFFAOYSA-N 0.000 description 1
- AIGCZQNPOWXPMM-UHFFFAOYSA-N CCCN(CCCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCNCC1=CC=C(C(=O)OC)C=C1.COC(=O)CCCCCCBr.COCCCCCC1=CC=CC=C1.COCCCCCC1=CC=CC=C1.COCCCCCC1=CC=CC=C1 Chemical compound CCCN(CCCCCC(=O)O)CC1=CC=C(C(=O)O)C=C1.CCCN(CCCCCC(=O)OC)CC1=CC=C(C(=O)OC)C=C1.CCCNCC1=CC=C(C(=O)OC)C=C1.COC(=O)CCCCCCBr.COCCCCCC1=CC=CC=C1.COCCCCCC1=CC=CC=C1.COCCCCCC1=CC=CC=C1 AIGCZQNPOWXPMM-UHFFFAOYSA-N 0.000 description 1
- LQOZKQHLJUSINB-UHFFFAOYSA-N COC(=O)C1=C(O)C2=CC(OC)=CC=C2N1C.O=C(O)C1=C(O)C=CC2=C1NC1=C2C=CC=C1.O=C(O)C1=CC2=C(C=C1O)NC1=C2C=CC=C1.O=C(O)C1=CC=CN=C1O.OCC1=NC=CC=C1O Chemical compound COC(=O)C1=C(O)C2=CC(OC)=CC=C2N1C.O=C(O)C1=C(O)C=CC2=C1NC1=C2C=CC=C1.O=C(O)C1=CC2=C(C=C1O)NC1=C2C=CC=C1.O=C(O)C1=CC=CN=C1O.OCC1=NC=CC=C1O LQOZKQHLJUSINB-UHFFFAOYSA-N 0.000 description 1
- JYCCNSVITVTALB-UHFFFAOYSA-N COC(=O)CCCCN(CCC1=C(C)SC(C)=C1COC1=CC=C(Br)C=C1)CC1=CC=C(C(=O)OC)C=C1 Chemical compound COC(=O)CCCCN(CCC1=C(C)SC(C)=C1COC1=CC=C(Br)C=C1)CC1=CC=C(C(=O)OC)C=C1 JYCCNSVITVTALB-UHFFFAOYSA-N 0.000 description 1
- VVWXMKMOENJRDG-UHFFFAOYSA-N COC(=O)CCCCN(CCC1=C(C)SC(C)=C1COC1=CC=C(C2=CC=C(Cl)C=C2Cl)C=C1)CC1=CC=C(C(=O)OC)C=C1 Chemical compound COC(=O)CCCCN(CCC1=C(C)SC(C)=C1COC1=CC=C(C2=CC=C(Cl)C=C2Cl)C=C1)CC1=CC=C(C(=O)OC)C=C1 VVWXMKMOENJRDG-UHFFFAOYSA-N 0.000 description 1
- UFROICUDKVGJPR-UHFFFAOYSA-N COC1=CC(C2=CC=C(OCC3=C(C)SC(C)=C3CCN(CCCCC(=O)O)CC3=CC=C(C(=O)O)C=C3)C=C2)=CC=C1 Chemical compound COC1=CC(C2=CC=C(OCC3=C(C)SC(C)=C3CCN(CCCCC(=O)O)CC3=CC=C(C(=O)O)C=C3)C=C2)=CC=C1 UFROICUDKVGJPR-UHFFFAOYSA-N 0.000 description 1
- MGDIPJLRCUVUEY-UHFFFAOYSA-N COC1=CC=C(C2=CC=C(OCC3=C(C)SC(C)=C3CCN(CCCCC(=O)O)CC3=CC=C(C(=O)O)C=C3)C=C2)C=C1 Chemical compound COC1=CC=C(C2=CC=C(OCC3=C(C)SC(C)=C3CCN(CCCCC(=O)O)CC3=CC=C(C(=O)O)C=C3)C=C2)C=C1 MGDIPJLRCUVUEY-UHFFFAOYSA-N 0.000 description 1
- XZJUULRASGPEAU-UHFFFAOYSA-N COC1=CC=C(CN(CCCCC(=O)O)CC2=CC=C(OC)C=C2)C=C1 Chemical compound COC1=CC=C(CN(CCCCC(=O)O)CC2=CC=C(OC)C=C2)C=C1 XZJUULRASGPEAU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 206010048554 Endothelial dysfunction Diseases 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010057671 Female sexual dysfunction Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 108020001621 Natriuretic Peptide Proteins 0.000 description 1
- 102000004571 Natriuretic peptide Human genes 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- VFDPQZFQILFRSY-UHFFFAOYSA-N O=C(O)CCCCN(CC1=CC=CC=C1)CC1=CC=CC=C1 Chemical compound O=C(O)CCCCN(CC1=CC=CC=C1)CC1=CC=CC=C1 VFDPQZFQILFRSY-UHFFFAOYSA-N 0.000 description 1
- CEVNZGLIKKMCMF-UHFFFAOYSA-N O=C(O)CCCCN(CCC1=C(OCC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)C=C2CCCCC2=C1)CC1=CC=C(C(=O)O)C=C1 Chemical compound O=C(O)CCCCN(CCC1=C(OCC2=CC=C(C3=CC=C(C(F)(F)F)C=C3)C=C2)C=C2CCCCC2=C1)CC1=CC=C(C(=O)O)C=C1 CEVNZGLIKKMCMF-UHFFFAOYSA-N 0.000 description 1
- SHAVACKPMLKISZ-UHFFFAOYSA-N O=CC1=CC=C2C=CC=CC2=C1O.OC=C1=C(O)C2=C(C=CC=N2)C=C1 Chemical compound O=CC1=CC=C2C=CC=CC2=C1O.OC=C1=C(O)C2=C(C=CC=N2)C=C1 SHAVACKPMLKISZ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- YNHIGQDRGKUECZ-UHFFFAOYSA-L PdCl2(PPh3)2 Substances [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- 201000001880 Sexual dysfunction Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- ALMFIOZYDASRRC-UHFFFAOYSA-N [4-(trifluoromethyl)phenyl]boronic acid Chemical compound OB(O)C1=CC=C(C(F)(F)F)C=C1 ALMFIOZYDASRRC-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- RMRFFCXPLWYOOY-UHFFFAOYSA-N allyl radical Chemical compound [CH2]C=C RMRFFCXPLWYOOY-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006251 butylcarbonyl group Chemical group 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000000131 cyclopropyloxy group Chemical group C1(CC1)O* 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- XEYBHCRIKKKOSS-UHFFFAOYSA-N disodium;azanylidyneoxidanium;iron(2+);pentacyanide Chemical compound [Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].[O+]#N XEYBHCRIKKKOSS-UHFFFAOYSA-N 0.000 description 1
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000008694 endothelial dysfunction Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- OAMZXMDZZWGPMH-UHFFFAOYSA-N ethyl acetate;toluene Chemical compound CCOC(C)=O.CC1=CC=CC=C1 OAMZXMDZZWGPMH-UHFFFAOYSA-N 0.000 description 1
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000006328 iso-butylcarbonyl group Chemical group [H]C([H])([H])C([H])(C(*)=O)C([H])([H])[H] 0.000 description 1
- 125000005929 isobutyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])OC(*)=O 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000007786 learning performance Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- MGMWQSVSOGNGPL-UHFFFAOYSA-N methyl 2-bromopentanoate Chemical compound CCCC(Br)C(=O)OC MGMWQSVSOGNGPL-UHFFFAOYSA-N 0.000 description 1
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- 239000000692 natriuretic peptide Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 229940082615 organic nitrates used in cardiac disease Drugs 0.000 description 1
- 150000002900 organolithium compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical class [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000004963 pathophysiological condition Effects 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 230000010118 platelet activation Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- RPDAUEIUDPHABB-UHFFFAOYSA-N potassium ethoxide Chemical compound [K+].CC[O-] RPDAUEIUDPHABB-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004673 propylcarbonyl group Chemical group 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 238000006578 reductive coupling reaction Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 231100000872 sexual dysfunction Toxicity 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910000161 silver phosphate Inorganic materials 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000022925 sleep disturbance Diseases 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- ODZPKZBBUMBTMG-UHFFFAOYSA-N sodium amide Chemical compound [NH2-].[Na+] ODZPKZBBUMBTMG-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- WRIKHQLVHPKCJU-UHFFFAOYSA-N sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229940083618 sodium nitroprusside Drugs 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- AWLILQARPMWUHA-UHFFFAOYSA-M thiopental sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC([S-])=NC1=O AWLILQARPMWUHA-UHFFFAOYSA-M 0.000 description 1
- 229960000340 thiopental sodium Drugs 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- PIILXFBHQILWPS-UHFFFAOYSA-N tributyltin Chemical class CCCC[Sn](CCCC)CCCC PIILXFBHQILWPS-UHFFFAOYSA-N 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 230000001196 vasorelaxation Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/38—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/20—Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/04—One of the condensed rings being a six-membered aromatic ring
- C07C2602/10—One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline
Definitions
- the present invention relates to novel chemical compounds which stimulate soluble guanylate cyclase also via a novel mechanism of action which takes place without involvement of the heme group of the enzyme, to their preparation and to their use as medicaments, in particular as medicaments for treating cardiovascular disorders.
- cGMP cyclic guanosine monophosphate
- NO nitric oxide
- GTP guanosine triphosphate
- the soluble guanylate cyclases consist of two subunits and very probably contain one heme per heterodimer, which is part of the regulatory center. The latter is of central importance for the mechanism of activation. NO is able to bind to the iron atom of heme and thus markedly increase the activity of the enzyme. Heme-free preparations cannot, by contrast, be stimulated by NO. CO is also able to attach to the central iron atom of heme, but the stimulation by CO is distinctly less than that by NO.
- guanylate cyclase plays a crucial part in various physiological processes, in particular in the relaxation and proliferation of smooth muscle cells, in platelet aggregation and adhesion and in the neuronal signal transmission, and in disorders caused by an impairment of the aforementioned processes.
- the NO/cGMP system may be suppressed, which may lead for example to high blood pressure, platelet activation, increased cell proliferation, endothelial dysfunction, atherosclerosis, angina pectoris, heart failure, thromboses, stroke and myocardial infarction.
- the stimulators of soluble guanylate cyclase known to date stimulate the enzyme either directly via the heme group (carbon monoxide, nitrogen monoxide or diphenyliodonium hexafluorophosphate) by interaction with the central iron of the heme group and a resulting change in conformation which leads to an increase in enzyme activity (Gerzer et al., FEBS Lett. 132(1981), 71), or via a heme-dependent mechanism which is independent of NO but leads to a potentiation of the stimulating action of NO or CO (for example YC-1, Hoenicka et al., J. Mol. Med. (1999) 14; or the pyrazole derivatives described in WO 98/16223, WO 98/16507 and WO 98/23619).
- NO or CO for example YC-1, Hoenicka et al., J. Mol. Med. (1999) 14; or the pyrazole derivatives described in WO 98/16
- the enzyme still has detectable catalytic basal activity, i.e. cGMP is still being formed.
- the residual catalytic basal activity of the heme-free enzyme cannot be stimulated by any of the known stimulators mentioned above.
- protoporphyrin IX Stimulation of heme-free soluble guanylate cyclase by protoporphyrin IX has been described (Ignarro et al., Adv. Pharmacol. 26 (1994), 35). However, protoporphyrin IX can be considered to be a mimic of the NO-heme adduct, as a consequence of which the addition of protoporphyrin IX to soluble guanylate cyclase would be expected to result in the formation of a structure of the enzyme corresponding to heme-containing soluble guanylate cyclase stimulated by NO.
- novel stimulators stimulation of the enzyme is effected via a heme-independent path, and this is also confirmed by the fact that firstly the novel stimulators do not have any synergistic action with NO at the heme-containing enzyme and that secondly the action of these novel stimulators cannot be blocked by the heme-dependent inhibitor of soluble guanylate cyclase, i.e. 1H-1,2,4-oxadiazole-(4,3a)-quinoxalin-1-one (ODQ).
- ODQ soluble guanylate cyclase
- EP-A-0 345 068 describes, inter alia, the aminoalkanecarboxylic acid (1) as an intermediate in the synthesis of GABA antagonists:
- WO 93/00359 describes the aminoalkanecarboxylic acid (2) as an intermediate in peptide synthesis and its use as active compound for treating disorders of the central nervous system:
- Substances having a structure similar to that of the compounds according to the invention are furthermore known from WO 01/19776, WO 01/19355, WO 01/19780 and WO 01/19778.
- the compounds used for stimulating, independently of the heme group present in the enzyme, soluble guanylate cyclase are aminoalkanecarboxylic acids of the formula (I):
- Z represents a phenyl ring which is fused with a saturated, partially unsaturated or aromatic carba- or heterocycle having up to 3 heteroatoms from the group consisting of S, N and/or O or with a partially unsaturated or aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and/or O,
- V is missing or represents O, NR 4 , NR 4 CONR 4 , NR 4 CO, NR 4 SO 2 , COO, CONR 4 or S(O) o ,
- R 4 independently of any other radical R 4 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or arylalkyl having 7 to 18 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, alkyl, alkoxy having up to 6 carbon atoms,
- o 0, 1 or 2
- Q is missing or represents straight-chain or branched alkylene, straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having in each case up to 12 carbon atoms, which radicals may in each case comprise one or more groups selected from the group consisting of O, S(O) p , NR 5 , Co, NR 5 SO 2 or CONR 5 and which may be mono- or polysubstituted by halogen, hydroxyl or alkoxy having up to 4 carbon atoms, where optionally any two atoms of the above chain may be attached to one another forming a three- to eight-membered ring,
- R 5 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms which may be substituted by halogen or alkoxy having up to 4 carbon atoms,
- p 0, 1 or 2
- Y represents hydrogen, NR 8 R 9 , aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, which may also be attached via N, where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 8 carbon atoms, straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, halogen, hydroxyl, CN, SR 6 , NO 2 ,
- R 6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, straight-chain or branched haloalkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 7 independently of any other radical R 7 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 8 , R 9 , R 11 and R 12 independently of one another represent hydrogen, straight-chain or branched alkyl, straight-chain or branched alkenyl having up to 8 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, arylalkyl having 8 to 18 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO 2 R 13 ,
- aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R 8 and R 9 or R 11 and R 12 may be attached to one another forming a five- or six-membered ring which may contain O or N,
- R 13 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R 10 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- the cyclic radicals may in each case be mono- to trisubstituted by aryl having 6 to 10 carbon atoms, a saturated carbocycle having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, which may also be attached via N,
- R 14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 15 , R 16 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or a radical of the formula SO 2 R 18 , where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R 18 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, and
- R 17 independently of one another represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R 3 represents hydrogen, halogen, straight-chain or branched alkyl which may optionally carry one or more substituents from the group consisting of C 1-6 -alkoxy, NR 19 R 20 and cycloalkyl having 3 to 8 carbon atoms, straight-chain or branched haloalkyl, straight-chain or branched alkoxy, or alkoxycarbonyl having in each case up to 4 carbon atoms, CN, NO 2 , NR 9 R 20 , SR 17 , SO 2 R 17 , cycloalkyl having 3 to 8 carbon atoms, haloalkoxy, haloalkoxy having up to 6 carbon atoms, cycloalkoxy having up to 14 carbon atoms, CONH 2 , CONR 17 R 17 , SO 2 NH 2 , SO 2 NR 17 R 17 , alkoxyalkoxy having up to 12 carbon atoms, NHCOOR 17 , NHCOR 17 , NHSO 2 R 17 ,
- R 19 and R 20 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- m represents an integer from 1 to 4,
- W represents straight-chain or branched alkylene having up to 6 carbon atoms or straight-chain or branched alkenediyl having up to 6 carbon atoms which may in each case contain a group selected from the group consisting of O, S(O) q , NR 21 , CO or CONR 21 , or represents CO, NHCO or OCO,
- q 0, 1 or 2
- R 21 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- U represents straight-chain or branched alkyl having up to 4 carbon atoms
- A represents aryl having 6 to 10 carbon atoms or an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R 22 and R 23 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms, carbonylalkyl or sulfonylalkyl,
- R 2 represents tetrazolyl, COOR 24 or CONR 25 R 26 ,
- R 24 [lacuna] hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms
- R 25 and R 26 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula 15 SO 2 R 27 ,
- R 25 and R 26 together form a five- or six-membered ring which may contain N or O,
- R 27 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms,
- aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- X represents straight-chain or branched alkylene having up to 12 carbon atoms or straight-chain or branched alkenediyl having up to 12 carbon atoms, which may in each case contain one to three groups selected from the group 30 consisting of O, S(O) r , NR 28 , CO or CONR 29 , aryl and aryloxy having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, where optionally any two atoms of the abovementioned chains are attached to one another via an alkyl chain forming a three- to eight-membered ring,
- r 0, 1 or 2
- R 28 represents hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 29 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- n 1 or 2;
- R 1 represents tetrazolyl, COOR 30 or CONR 31 R 32 ,
- R 30 [lacuna] hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms
- R 31 and R 32 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO 2 R 33 ,
- R 33 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- Z represents a cyclic radical from the group consisting of
- radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V is missing or represents O, NR 4 , NR 4 CONR 4 , NR 4 CO, NR 4 SO 2 , COO, CONR 4 or S(O) o ,
- R 4 independently of any other radical R 4 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or arylalkyl having 7 to 18 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, alkyl, alkoxy having up to 6 carbon atoms,
- o 0, 1 or 2
- Q is missing or represents straight-chain or branched alkylene, straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having in each case up to 12 carbon atoms, which radicals may in each case comprise one or more groups selected from the group consisting of O, S(O) p , NR 5 , CO, NR 5 SO 2 or CONR 5 and which may be mono- or polysubstituted by halogen, hydroxyl or alkoxy having up to 4 carbon atoms, where optionally any two atoms of the above chain may be attached to one another forming a three- to eight-membered ring,
- R 5 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms which may be substituted by halogen or alkoxy having up to 4 carbon atoms,
- p 0, 1 or 2
- Y represents hydrogen, NR 8 R 9 , aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, which may also be attached via N, where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 8 carbon atoms, straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, halogen, hydroxyl, CN, SR 6 , NO 2 ,
- R 6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, straight-chain or branched haloalkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 7 independently of any other radical R 7 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 8 , R 9 , R 11 and R 2 independently of one another represent hydrogen, straight-chain or branched alkyl, straight-chain or branched alkenyl having up to 8 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, arylalkyl having 8 to 18 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO 2 R 13 , where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, or two substituents selected from R 8 and R 9 or R 11 and R 12 may be attached to one another forming a five- or six-membered ring
- R 13 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R 10 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO 2 , NH 2 , NHCOR 7 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- the cyclic radicals may in each case be mono- to trisubstituted by aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, which may also be attached via N,
- R 14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R 15 , R 16 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO 2 R 18 ,
- R 18 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, and
- R 17 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, CN, NO 2 , alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R 3 represents hydrogen, halogen, straight-chain or branched alkyl, straight-chain or branched haloalkyl or straight-chain or branched alkoxy having in each case up to 4 carbon atoms,
- m represents an integer from 1 to 4,
- W represents straight-chain or branched alkylene or straight-chain or branched alkenediyl having in each case up to 4 carbon atoms
- A represents phenyl or an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R 2 represents COOR 24 .
- R 24 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms
- X represents straight-chain or branched alkylene having up to 8 carbon atoms or straight-chain or branched alkenediyl having up to 8 carbon atoms which may in each case contain one to three groups selected from the group consisting of phenyl, phenyloxy, O, CO and CONR 29 ,
- R 29 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n 1 or 2;
- R 1 represents COOR 30 .
- R 30 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms.
- Z represents a cyclic radical from the group consisting of
- radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V is missing or represents O, S or NR 4 ,
- R 4 represents hydrogen or methyl
- Q is missing or represents straight-chain or branched alkylene having up to 9 carbon atoms or straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having up to 4 carbon atoms which may be monosubstituted by halogen,
- Y represents H, NR 8 R 9 , cyclohexyl, phenyl, naphtyl or a heterocycle selected from the group consisting of
- cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 4 carbon atoms, straight-chain or branched cycloalkyl having 3 to 6 carbon atoms, F, Cl, Br, I, NO 2 , SR 6 , NR 8 R 9 , NR 7 COR 10 or CONR 11 R 12 ,
- R 6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, or straight-chain or branched haloalkyl having up to 4 carbon atoms,
- R 7 represents hydrogen, or straight-chain or branched alkyl having up to 4 carbon atoms
- R 8 , R 9 , R 11 and R 12 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN,
- R 8 and R 9 or R 11 and R 12 may be attached to one another forming a five- or six-membered ring which may be interrupted by O or N,
- R 10 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN;
- cyclic radicals may in each case be mono- to trisubstituted by phenyl or a heterocycle from the group consisting of
- R 14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms, and
- R 17 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN;
- the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms selected from the group consisting of S, N and O,
- R 3 represents hydrogen, methyl or fluorine
- m represents an integer from 1 to 4,
- W represents CH 2 , —CH 2 CH 2 —, CH 2 CH 2 CH 2 , CH ⁇ CHCH 2 ,
- A represents phenyl, pyridyl, thienyl or thiazolyl which may optionally be mono- to trisubstituted by methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, CF 3 , methoxy, ethoxy, F, Cl, Br,
- R 2 represents COOR 24 .
- R 24 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms
- X represents straight-chain or branched alkylene having up to 8 carbon atoms or straight-chain or branched alkenediyl having up to 8 carbon atoms which may in each case contain one to three groups from the group consisting of phenyl, phenyloxy, O, CO and CONR 30 ,
- R 30 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n 1 or 2;
- R 1 represents COOR 35 .
- R 35 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms.
- Z represents a cyclic radical from the group consisting of
- radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V represents O
- Q represents straight-chain or branched alkylene having up to 9 carbon atoms or straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having up to 4 carbon atoms which may be monosubstituted by halogen,
- Y represents H, cyclohexyl, phenyl or a heterocycle from the group consisting of
- cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 4 carbon atoms, straight-chain or branched cycloalkyl having 3 to 6 carbon atoms, F, Cl, Br, I, NO 2 , SR 6 , NR 8 R 9 , NR 7 COR 10 or CONR 11 R 12 ,
- R 6 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or straight-chain or branched haloalkyl having up to 4 carbon atoms,
- R 7 represents hydrogen, or straight-chain or branched alkyl having up to 4 carbon atoms
- R 8 , R 9 , R 11 and R 12 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- the phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN,
- R 8 and R 9 or R 11 and R 12 may be attached to one another forming a five- or six-membered ring which may be interrupted by O or N,
- R 10 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN;
- cyclic radicals may in each case be mono- to trisubstituted by phenyl or a heterocycle from the group consisting of
- [0186] which may be attached directly or via a group selected from the group consisting of O, S, SO, SO 2 , straight-chain or branched alkylene, straight-chain or branched alkenediyl, straight-chain or branched alkyloxy, straight-chain or branched oxyalkyloxy, straight-chain or branched sulfonylalkyl, straight-chain or branched thioalkyl having in each case up to 4 carbon atoms and which may be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl or straight-chain or branched alkenyl having in each case up to 4 carbon atoms, F, Cl, Br, I, CN, SCH 3 , OCF 3 , NO 2 , NR 8 R 9 or NR 14 COR 17 ,
- R 14 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and
- R 17 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, straight-chain or branched alkenyl having up to 6 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 6 carbon atoms, which may optionally furthermore be substituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO 2 , CF 3 , OCF 3 or CN;
- the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms selected from the group consisting of S, N and O,
- R 3 represents hydrogen, methyl or fluorine
- m represents an integer from 1 to 2
- W represents CH 2 , or —CH 2 CH 2 —
- A represents phenyl, which may optionally be mono- to trisubstituted by methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, CF 3 , methoxy, ethoxy, F, Cl, Br,
- R 2 represents COOR 24 .
- R 24 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms
- X represents straight-chain or branched alkylene having up to 6 carbon atoms or straight-chain or branched alkenediyl having up to 6 carbon atoms which may in each case contain one to three groups from the group consisting of phenyloxy, O, CO and CONR 30 ,
- R 30 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n 1 or 2;
- R 1 represents COOR 35 .
- R 35 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms.
- Z represents a cyclic radical from the group consisting of
- radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V represents O
- Y represents phenyl which is substituted by a radical selected from the group consisting of 2-phenylethyl, cyclohexyl, 4-chlorophenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 4-cyanophenyl, 4-chlorophenoxy, 4-methoxyphenoxy, 4-trifluoromethylphenoxy, 4-cyanophenoxy, 4-methylphenyl,
- R 3 represents hydrogen, methyl or fluorine
- m represents an integer from 1 to 2
- W represents —CH 2 CH 2 —
- A represents phenyl
- R 2 represents COOH, where R 2 is located in the 4-position to the radical U,
- X represents (CH 2 ) 4 ,
- R 1 represents COOH
- Z represents a cyclic radical from the group consisting of
- radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- Q represents CH 2 O which is attached via its carbon atom to Z
- Y represents phenyl which is substituted by a radical selected from the group consisting of 2-phenylethyl, cyclohexyl, 4-chlorophenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 4-cyanophenyl, 4-chlorophenoxy, 4-methoxyphenoxy, 4-trifluoromethylphenoxy, 4-cyanophenoxy, 4-methylphenyl, 4-tert-butylphenyl, 4-carboxyphenyl, 4-fluorophenyl, 3-methoxyphenyl, 2,4-dichlorophenyl,
- R 3 represents hydrogen, methyl or fluorine
- m represents an integer from 1 to 2
- W represents —CH 2 CH 2 —
- A represents phenyl
- R 2 represents COOH where R 2 is located in the 4-position to the radical U,
- X represents (CH 2 ) 4 ,
- R 1 represents COOH
- the compounds according to the invention of the general formula (I) may also be in the form of their salts. Mention may generally be made here of salts with organic or inorganic bases or acids.
- Physiologically acceptable salts are preferred for the purposes of the present invention.
- Physiologically acceptable salts of the compounds according to the invention may be salts of the substances according to the invention with mineral acids, carboxylic acids or sulfonic acids. Particularly preferred examples are salts with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid.
- Physiologically acceptable salts may likewise be metal or ammonium salts of the compounds according to the invention having a free carboxyl group.
- Particularly preferred examples are sodium, potassium, magnesium or calcium salts, and ammonium salts derived from ammonia, or organic amines, such as, for example, ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine or ethylenediamine.
- the compounds according to the invention may exist in stereoisomeric forms which are either like image and mirror image (enantiomers), or not like image and mirror image (diastereomers).
- the invention relates both to the enantiomers or diastereomers and to their respective mixtures.
- the racemic forms, like the diastereomers, can be separated into the stereoisomerically uniform components in a known manner, for example by optical resolution or chromatographic separation.
- the double bonds present in the compounds according to the invention can be in the cis or trans configuration (Z or E form).
- Alkyl generally represents a straight-chain or branched hydrocarbon radical having 1 to 20 carbon atoms. Examples which may be mentioned are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, isoheptyl, octyl and isooctyl, nonyl, decyl, dodeyl, eicosyl.
- Alkylene generally represents a straight-chain or branched hydrocarbon bridge having 1 to 20 carbon atoms. Examples which may be mentioned are methylene, ethylene, propylene, ⁇ -methylethylene, ⁇ -methylethylene, ⁇ -ethylethylene, ⁇ -ethylethylene, butylene, ⁇ -methylpropylene, ⁇ -methylpropylene, ⁇ -methylpropylene, ⁇ -ethylpropylene, ⁇ -ethylpropylene, ⁇ -ethylpropylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodeylene and eicosylene.
- Alkenyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds. Examples which may be mentioned are allyl, propenyl, isopropenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, isohexenyl, heptenyl, isoheptenyl, octenyl, isooctenyl.
- Alkynyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, triple bonds. Examples which may be mentioned are ethynyl, 2-butynyl, 2-pentynyl and 2-hexynyl.
- Alkenediyl generally represents a straight-chain or branched hydrocarbon bridge having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds. Examples which may be mentioned are ethene-1,2-diyl, propene-1,3-diyl, propene-1,2-diyl, 1-butene-1,4-diyl, 1-butene-1,3-diyl, 1-butene-1,2-diyl, 2-butene-1,4-diyl, 2-butene-1,3-diyl, 2-butene-2,3-diyl.
- Alkynediyl generally represents a straight-chain or branched hydrocarbon bridge having 2 to 20 carbon atoms and one or more, preferably one or two, triple bonds. Examples which may be mentioned are ethyne-1,2-diyl, propyne-1,3-diyl, 1-butyne-1,4-diyl, 1-butyne-1,3-diyl, 2-butene-1,4-diyl.
- Acyl generally represents straight-chain or branched lower alkyl having 1 to 9 carbon atoms which is attached via a carbonyl group. Examples which may be mentioned are: acetyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, butylcarbonyl and isobutylcarbonyl.
- Alkoxy generally represents a straight-chain or branched hydrocarbon radical having 1 to 14 carbon atoms which is attached via an oxygen atom. Examples which may be mentioned are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy isopentoxy, hexoxy, isohexoxy, heptoxy, isoheptoxy, octoxy or isooctoxy.
- alkoxy and “alkyloxy” are used synonymously.
- Alkoxyalkyl generally represents an alkyl radical having up to 8 carbon atoms which is substituted by an alkoxy radical having up to 8 carbon atoms.
- Alkoxycarbonyl may be represented, for example, by the formula
- alkyl generally represents a straight-chain or branched hydrocarbon radical having 1 to 13 carbon atoms.
- alkoxycarbonyl radicals may be mentioned by way of example: methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl or isobutoxycarbonyl.
- Cycloalkyl generally represents a cyclic hydrocarbon radical having 3 to 8 carbon atoms. Preference is given to cyclopropyl, cyclopentyl and cyclohexyl. Cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl may be mentioned by way of example.
- Cycloalkoxy represents an alkoxy radical whose hydrocarbon radical is a cycloalkyl radical.
- the cycloalkyl radical generally has up to 8 carbon atoms. Examples which may be mentioned are: cyclopropyloxy and cyclohexyloxy.
- the terms “cycloalkoxy” and “cycloalkyloxy” are used synonymously.
- Aryl generally represents an aromatic radical having 6 to 10 carbon atoms.
- Preferred aryl radicals are phenyl and naphthyl.
- Halogen for the purposes of the invention, represents fluorine, chlorine, bromine and iodine.
- Heterocycle for the purposes of the invention, generally represents a saturated, unsaturated or aromatic 3- to 10-membered, for example 5- or 6-membered, heterocycle which may contain up to 3 heteroatoms from the group consisting of S, N and O and which may, if a nitrogen atom is present, also be attached via this nitrogen atom.
- Examples which may be mentioned are: oxadiazolyl, thiadiazolyl, pyrazolyl, pyridyl, pyrimdinyl, pyridazinyl, pyrazinyl, thienyl, furyl, pyrrolyl, pyrrolidinyl, piperazinyl, tetrahydropyranyl, tetrahydrofuranyl, 1,2,3 triazolyl, thiazolyl, oxazolyl, imidazolyl, morpholinyl or piperidyl.
- heteroaryl denotes an aromatic heterocyclic radical.
- the present invention furthermore relates to a process for preparing the compounds of the formula (I), characterized in that
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
- Va represents O or S
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
- R 1 b and R 2 b each independently of one another represent CN or COOAlk, where Alk represents a straight-chain or branched alkyl radical having up to 6 carbon atoms,
- L represents Br, I or the group CF 3 SO 2 —O,
- M represents an aryl or heteroaryl radical, a straight-chain or branched alkyl, alkenyl or alkynyl radical or cycloalkyl radical or represents an arylalkyl, an arylalkenyl or an arylalkynyl radical,
- Z′ represents the groupings —B(OH) 2 , —CH ⁇ CH, —CH ⁇ CH 2 or —Sn(nBu) 3
- Ar represents an aryl or heteroaryl radical
- E represents a leaving group which is substituted in the presence of a base.
- [0300] are hydrogenated with hydrogen in the presence of a catalyst.
- the compounds of the formula (I) can also be prepared on a solid phase, such as a polystyrene resin, particularly preferably a commercially available Wang polystyrene resin.
- a polystyrene resin particularly preferably a commercially available Wang polystyrene resin.
- the resin is initially swollen in a solvent such as dimethylformamide (DMF).
- the appropriate carboxylic acid which serves as starting material is then attached to the resin using standard processes.
- the carboxylic acid can be attached to the resin in the presence of a base, such as pyridine or 4-dimethylaminopyridine (DMAP), and a reagent which activates the carboxyl unit, such as an acid halide, for example dichlorobenzoyl chloride, in a solvent such as dimethylformamide (DMF).
- a base such as pyridine or 4-dimethylaminopyridine (DMAP)
- DMAP 4-dimethylaminopyridine
- reaction mixture is stirred for at least 2 hours, preferably 12 hours, particularly preferably about 24 hours, at room temperature and atmospheric pressure, an excess of carboxylic acid, preferably a two- to three-fold excess, based on the loading of the solid phase, being used.
- the carboxylic acid attached to the resin can be derivatized without it being necessary to remove the carboxylic acid from the resin beforehand.
- an appropriate 4-aminobenzoic acid or 4-formylbenzoic acid derivative can be attached to the resin and then be converted by successive reductive aminations, as described below for the preparation of the compounds of the formula (II), (IV) and (VI), into a compound of the formula (VIII) which can then be converted analogously to process [D] on the solid phase into the target compounds.
- Removal from the resin is carried out in a customary manner in acidic medium after the desired synthesis of the target compound on the solid phase.
- the product which has been cleaved from the resin can, after removal of any solvents present, be purified by known purification processes, such as, for example, chromatographic processes.
- Wang denotes a Wang polystyrene resin.
- Wang denotes a Wang polystyrene resin.
- Preferred solvents for the processes according to the invention are customary organic solvents which do not change under the reaction conditions, or water.
- ethers such as diethyl ether, butyl methyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether, or diethylene glycol dimethyl ether, or hydrocarbons, such as benzene, toluene, xylene or petroleum ether, or amides, such as dimethylformamide or hexamethylphosphoric triamide, or 1,3-dimethylimidazolidin-2-one, 1,3-dimethyltetrahydropyrimidin-2-one, acetonitrile, ethyl acetate or dimethyl sulfoxide. It is, of course, also possible to use mixtures of the solvents mentioned above.
- Bases which are preferred for the processes according to the invention include basic compounds which are customarily used for basic reactions. Preference is given to using alkali metal hydrides, such as, for example, sodium hydride or potassium hydride, or alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide or potassium t-butoxide, or carbonates, such as sodium carbonate, cesium carbonate or potassium carbonate, or amides, such as sodium amide or lithium diisopropylamide, or organolithium compounds, such as phenyllithium, butyllithium or methyllithium, or sodium hexamethyldisilazane.
- alkali metal hydrides such as, for example, sodium hydride or potassium hydride
- alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide or potassium t-butoxide
- the processes A to C according to the invention can preferably be carried out in acetonitrile, in each case by reacting the compounds (II) and (III), (IV) and (V) and (VI) and (VII), respectively, in the presence of a base such as sodium carbonate, Et 3 N, DABCO, K 2 CO 3 , KOH, NaOH or NaH.
- a base such as sodium carbonate, Et 3 N, DABCO, K 2 CO 3 , KOH, NaOH or NaH.
- the reaction can generally be carried out in a temperature range of from ⁇ 20° C. to +90° C., preferably of from 0° C. to +70° C.
- the reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- a compound of the formula (I) is prepared by nucleophilic substitution of a leaving group E in one of the compounds of the formula (III), (V) or (VII) by the amine function of one of the compounds of the formula (II), (IV) or (VI).
- Suitable leaving groups E are, for example: halogen, tosylate, mesylate, or a hydroxyl function which is activated by reagents such as diisopropyl azodicarboxylate/PPh 3 (Mitsonobu reaction).
- the process D according to the invention can preferably be carried out in acetonitrile by reacting the compounds (VIII) and (IX) in the presence of a base such as sodium carbonate, potassium carbonate, Et 3 N, DABCO, K 2 CO 3 , KOH, NaOH or NaH.
- a base such as sodium carbonate, potassium carbonate, Et 3 N, DABCO, K 2 CO 3 , KOH, NaOH or NaH.
- the reaction can generally be carried out in a temperature range of from ⁇ 20° C. to +90° C., preferably of from 0° C. to +90° C.
- the reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- a compound of the formula (I) is prepared by nucleophilic substitution of a leaving group E in the compound of the formula (IX) by the hydroxyl or thiol function of the compound of the formula (VIII).
- Suitable leaving groups E are, for example: halogen, tosylate, mesylate, or a hydroxyl function which is activated by reagents such as diisopropyl azodicarboxylate/PPh 3 (Mitsonobu reaction).
- a compound of the formula (I) in which R 1 and R 2 each represent a free carboxyl function is obtained by converting ester and/or nitrile functions of the compound (X) into the corresponding free carboxyl functions.
- This reaction can be carried out, for example, by adding aqueous solutions of strong acids, such as, for example, HCl or H 2 SO 4 , or strong bases, such as, for example, NaOH, KOH or LiOH.
- the reaction can be carried out in one of the organic solvents mentioned above, in water or in mixtures of organic solvents or in mixtures of organic solvents with water.
- Preference according to the invention is given, for example, to carrying out the reaction in a mixture of water and methanol or dioxane.
- the reaction can be carried out in a temperature range of from ⁇ 20° C. to +90° C., preferably of from 0° C. to +90° C.
- the reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out at atmospheric pressure.
- a compound of the formula (I) is prepared by reacting a compound of the formula (XI) which contains a substitutable group L with a compound of the group (XII) in the presence of a palladium compound and, if appropriate, a reducing agent and further additives in basic medium.
- the reaction is a reductive coupling of the compounds of the formulae (XI) and (XII), as described, for example, in L. S. Hegedus, Organometallics in Synthesis, M. Schlosser, Ed., Wiley & Sons, 1994.
- Suitable substitutable groups L in the compounds of the formula (XI) are, for example, a halogen radical, such as Br or I, or a customary leaving group, such as, for example, a triflate radical.
- the compounds of the formula (XII) contain a reactive group Z which can be selected from the group consisting of —B(OH) 2 , —CH ⁇ CH, —CH ⁇ CH 2 or —Sn(nBu) 3 .
- Suitable for use as palladium compound are palladium(II) compounds, such as, for example, Cl 2 Pd(PPh 3 ) 2 or Pd(OAc) 2 or palladium(0) compounds, such as, for example, Pd(PPh 3 ) 4 or Pd 2 (dba) 3 .
- a reducing agent such as, for example, triphenylphosphine, or other additives, such as, for example, Cu(I)Br, NBu 4 NCl, LiCl or Ag 3 PO 4 , may additionally be added to the reaction mixture (cf. T Jeffery, Tetrahedron lett. 1985, 26, 2667-2670; T. Jeffery, J. Chem. Soc., Chem.
- the reaction is carried out in the presence of a customary base, such as, for example, Na 2 CO 3 , NaOH or triethylamine.
- a customary base such as, for example, Na 2 CO 3 , NaOH or triethylamine.
- Suitable solvents are the organic solvents mentioned above, ethers, such as, for example, dimethoxyethane, being particularly preferred.
- the reaction can be carried out in a temperature range of from ⁇ 20° C. to +90° C., preferably of from 0° C. to +90° C.
- the reaction can be carried out under atmospheric pressure, elevated or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- the first step of process G is analogous to process D, but, instead of the compounds of the formula (IX), compounds of the formula (XIII) are reacted here with the alcohols or thiols of the formula (XIII). This gives the unsaturated compounds of the formula (XIV) which can be converted by customary hydrogenation processes into the compounds of the formula (I).
- Preference according to the invention is given to hydrogenation of the compounds of the formula (XIV) with hydrogen in the presence of a catalyst, such as, for example, Pd/carbon or PtO 2 .
- the process G can be carried out in one of the organic solvents mentioned above. Preference is given here to ethyl acetate.
- the reaction can be carried out in a temperature range of from ⁇ 20° C. to +90° C., preferably of from 0° C. to +90° C.
- the reaction can be carried out under atmospheric pressure, elevated or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- novel compounds of the formula II, IV and VI can be obtained in a generally known manner by the following methods:
- Ua, Wa and Xa have the meanings of U, W and X, respectively, but are one carbon unit shorter, and
- T represents hydrogen or a C 1 -C 4 -alkyl function, which may also be attached to Ua or Xa forming a cycle,
- Va represents O or S
- PGo denotes a customary phenol or thiophenol protective group, such as, for example, CH 3 , CH 2 Ph, CH 2 CH ⁇ CH 2 , CH 2 OCH 3 , CH 2 OCH 2 SiMe 3 , SiMe 3 , PGn denotes an amine protective group, such as, for example, tBuOCO
- T represents hydrogen or a C 1 -C 4 -alkyl function, which may also be attached to Ua forming a cycle, and Ua has the meaning of U, but is one CH 2 group shorter.
- the other radicals are as defined above.
- (IIb) is obtained, for example, when initially (XVa) is reacted with (XVIII) to give a Schiff base which is then reduced with customary reducing agents, such as, for example, NaBH 4 , H 2 /Pd/C, etc., or reacted directly under the conditions of a reductive alkylation in the presence of a reducing agent, such as, for example, H 2 /Pd/C, NaCNBH 3 or NaH(OAc) 3 .
- a reducing agent such as, for example, H 2 /Pd/C, NaCNBH 3 or NaH(OAc) 3 .
- An O or S protective group in (IIb) or (XXI) can be removed with a suitable reagent (cf., T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991).
- a suitable reagent cf., T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991.
- -Va-PGo denotes, for example, —O—CH 3
- the methyl group can be removed with formation of the phenol using boron tribromide in methylene chloride at from ⁇ 70° C. to 20° C., using trimethylsilyl iodide in chloroform at 25-50° C. or using sodium ethylthiolate in DMF at 150° C.
- N protective group such as in (XXII) can be introduced and removed again by customary methods (cf. T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991).
- PGn denotes, for example, tBuOCO
- the protective group can be introduced by reacting the amine with tert-butyl pyrrocarbonate in polar or unpolar solvents at from 0° C. to 25° C.
- the removal of the protective group to give (IIa) can be carried out with a large number of acids, such as, for example, HCl, H 2 SO 4 or CF 3 COOH, at from 0° C. to 25° C. (cf. the literature cited above).
- 4-chloromethylbiphenyl compounds which carry a further substituent in the 4′-position can be prepared by coupling 4-(B(OH) 2 -Ph-CHO with the corresponding 4-substituted bromophenyl compounds in the presence of palladium catalysts, such as, for example, Pd(PPh 3 ) 4 or PdCl 2 (PPh 3 ) 2 , and sodium carbonate, giving the corresponding biphenyl compounds, and subsequent reduction to the alcohol with NaBH 4 and conversion into the corresponding chloride using, for example, SOCl 2 .
- palladium catalysts such as, for example, Pd(PPh 3 ) 4 or PdCl 2 (PPh 3 ) 2
- the compounds can also be prepared by generally known processes, for example by reacting an alcohol with a chlorinating agent, such as, for example, thionyl chloride or sulfuryl chloride (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1274 and the literature cited therein).
- a chlorinating agent such as, for example, thionyl chloride or sulfuryl chloride
- Amines of the formula (XV) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, Tetrahedron 1997, 53, 2075; J. Med. Chem. 1984, 27, 1321; WO 97/29079; J. Org. Chem. 1982, 47, 5396).
- These compounds can be obtained, for example, from the corresponding halide compounds and in particular chloride compounds in which, instead of the radicals W—NH 2 of the compounds of the formula (XV), there is a group W′-Hal, where W′ is a radical W which is shorter by one C atom, by substitution of the halide radical by a cyano group, giving the corresponding nitrile compounds, and reduction of the nitrile group, or by reacting corresponding aldehyde compounds, in which, instead of the radicals W—NH 2 of the compounds of the formula (XV), there is a group W′—CHO, where W′ is a radical W which is shorter by one C atom, using nitromethane and subsequent reduction.
- This process can be carried out, for example, starting with 2-hydroxynaphth-1-aldehyde, 1-hydroxymethyl-2-methoxynaphthalene or one of the hydroxyaldehydes below, which are commercially available or known from the literature:
- Amines of the formula (XVI) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Am. Chem. Soc. 1982, 104, 6801; Chem. Lett. 1984, 1733; J. Med. Chem. 1998, 41, 5219; DE-2059922).
- Amines of the formula (XVII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Org. Chem. 1968, 33, 1581; Bull. Chem. Soc. Jpn. 1973, 46, 968; J. Am. Chem. Soc. 1958, 80, 1510; J. Org. Chem. 1961, 26, 2507; Synth. Commun. 1989, 19, 1787).
- Amines of the formulae (XV), (XVI) and (XVII) can also be prepared by generally known processes, for example by reducing a corresponding nitrile, by reacting a corresponding halide with phtalimide and subsequent reaction with hydrazine or by rearranging acyl azides in the presence of water (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1276 and the literature cited therein).
- Carbonyl compounds of the formula (XVIII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Med. Chem. 1989, 32, 1277; Chem. Ber. 1938, 71, 335; Bull. Soc. Chim. Fr. 1996, 123, 679).
- Carbonyl compounds of the formula (XIX) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature, (cf., for example, WO 96/11902; DE-2209128; Synthesis 1995, 1135; Bull. Chem. Soc. Jpn. 1985, 58, 2192).
- Carbonyl compounds of the formula (XX) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, Synthesis 1983, 942; J. Am. Chem. Soc. 1992, 114, 8158).
- Carbonyl compounds of the formulae (XVIII), (XIX) and (XX) can also be prepared according to generally known processes, for example by oxidizing alcohols, by reducing acid chlorides or by reducing nitrites (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1270 and the literature cited therein).
- the compounds according to the invention in particular the compounds of the general formula (I), bring about vasorelaxation and an inhibition of platelet aggregation and lead to a reduction in blood pressure and an increase in the coronary blood flow. These effects are mediated by direct stimulation of soluble guanylate cyclase and an intracellular increase in cGMP.
- cardiovascular disorders such as, for example, for the treatment of high blood pressure and heart failure, stable and unstable angina pectoris, peripheral and cardiac vascular disorders, of arrhythmias, for the treatment of thromboembolic disorders and ischemias such as myocardial infarction, stroke, transitory and ischemic attacks, disturbances of peripheral blood flow, prevention of restenosis such as after thrombolysis therapies, percutaneous transluminal angioplasties (PTAs), percutaneous transluminal coronary angioplasties (PTCAs), bypass and for the treatment of arteriosclerosis, fibrotic disorders, such as fibrosis of the liver or pulmonary fibrosis, asthmatic disorders and diseases of the urogenital system such as, for example, prostate hypertrophy, erectile dysfunction, female sexual dysfunction and incontinence and also for the treatment of glaucoma.
- PTAs percutaneous transluminal angioplasties
- PTCAs percutaneous transluminal coronary angioplasties
- the compounds described in the present invention are also active compounds suitable for controlling central nervous system diseases characterized by disturbances of the NO/cGMP system. They are suitable in particular for removing cognitive deficits, for improving learning and memory performances and for treating Alzheimer's disease. They are also suitable for treating disorders of the central nervous system such as states of anxiety, tension and depression, CNS-related sexual dysfunctions and sleep disturbances, and for controlling pathological disturbances of the intake of food, stimulants and addictive substances.
- the active compounds are furthermore also suitable for regulating cerebral blood flow and thus represent effective agents for controlling migraine.
- the compounds according to the invention have an anti-inflammatory effect and can therefore be employed as anti-inflammatory agents.
- Rabbits are anesthetized or killed by intravenous injection of thiopental sodium (about 50 mg/kg) and exsanguinated.
- the arteria saphena is removed and divided into rings 3 mm wide.
- the individual rings are in each case mounted on a pair of hooks of triangular shape, open at the ends and made of special wire (Remanium®) having a diameter of 0.3 mm.
- Remanium® special wire
- Stasch Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon oxide. J. Mol. Med. 77 (1999): 14-23.
- the heme-free guanylate cyclase was obtained by adding Tween 20 to the sample buffer (final concentration 0.5%).
- the present invention includes pharmaceutical preparations which, in addition to non-toxic, inert, pharmaceutically acceptable carriers, comprises the compounds according to the invention, in particular the compounds of the general formula (I), and processes for preparing these preparations.
- the active compound if appropriate in one or more of the carriers listed above, can also be present in microencapsulated form.
- the therapeutically effective compounds in particular the compounds of the general formula (I), should be present in the pharmaceutical preparations detailed above in a concentration of about 0.1 to 99.5, preferably of about 0.5 to 95, % by weight of the complete mixture.
- compositions detailed above may, apart from the compounds according to the invention, in particular the compounds of the general formula (I), also contain other active pharmaceutical ingredients.
- a single dose contains the active compound(s) according to the invention preferably in amounts of about 1 to about 80, in particular 3 to 30, mg/kg of body weight.
- T1 E1 toluene - ethyl acetate (1:1)
- T1 EtOH1 toluene - methanol (1:1)
- C1 E1 cyclohexane - ethyl acetate (1:1)
- C1 E2 cyclohexane - ethyl acetate (1:2)
- R f (cyclohexane/ethyl acetate 2:1): 0.45.
- R f (cyclohexane/ethyl acetate, 1:1): 0.57.
- R f (cyclohexane/ethyl acetate 5:1): 0.20.
- R f (cyclohexane/ethyl acetate 3:1): 0.51.
- the mixture is stirred at room temperature for 30 minutes and then neutralized with 5% strength sodium dihydrogen phosphate solution, diluted with water and extracted with ether. The organic phase is dried over sodium sulfate.
- the crude product obtained after filtration and concentration using a rotary evaporator is purified by silica gel flash chromatography using the mobile phase cyclohexane/ethyl acetate 2:1. This gives 5.62 g (27% yield).
- R f (cyclohexane/ethyl acetate 1:1): 0.35.
- R f (dichloromethane/methanol 10:1): 0.05.
- Oven temperature 70° C.
- HPLC unit HP 1100
- UV detector DAD 208-400 nm
- Oven temperature 40° C.
- R f (cyclohexane/ethyl acetate 2:1): 0.44.
- the reaction mixture is then stirred under reflux for 12 h.
- the mixture is then cooled and filtered through 1 g of Extrelute, the filter cake is washed with dichloromethane and the filtrate is concentrated using a rotary evaporator.
- the resulting product is purified by preparative HPLC. This gives 73 mg (0.11 mmol, 53% yield) of a colorless oil.
- R f (cyclohexane/ethyl acetate 2:1): 0.51.
- 1 H-NMR 300 MHz, DMSO-d 6 , ⁇ /ppm: 8.01 (2H, d), 7.71 (1H, d), 7.64 (2H, d), 7.49 (1H, dd), 7.41 (1H, s), 7.36 (2H, d), 7.00 (2H, d), 4.89 (2H, s), 4.47 (2H, s), 4.00 (2H, q), 3.84 (3H, s), 3.21-2.71 (6H, m), 2.37 (3H, s), 2.28 (3H, s), 2.14 (2H, t), 1.691.51 (2H, m), 1.48-1.31 (2H, m), 1.13 (3H, t).
- the aqueous phase is adjusted to pH 5 using 2-molar hydrochloric acid and extracted with ethyl acetate.
- the ethyl acetate extract is evaporated to dryness.
- the residue is boiled with ether and, after cooling, filtered. This gives 85 mg (63% yield) of a light-beige solid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Gastroenterology & Hepatology (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Pyridine Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- The present invention relates to novel chemical compounds which stimulate soluble guanylate cyclase also via a novel mechanism of action which takes place without involvement of the heme group of the enzyme, to their preparation and to their use as medicaments, in particular as medicaments for treating cardiovascular disorders.
- One of the most important cellular transmission systems in mammalian cells is cyclic guanosine monophosphate (cGMP). Together with nitric oxide (NO), which is released from the endothelium and transmits hormonal and mechanical signals, it forms the NO/cGMP system. Guanylate cyclases catalyze the biosynthesis of cGMP from guanosine triphosphate (GTP). The representatives of this family disclosed to date can be divided both according to structural features and according to the type of ligands into two groups: the particulate guanylate cyclases which can be stimulated by natriuretic peptides, and the soluble guanylate cyclases which can be stimulated by NO. The soluble guanylate cyclases consist of two subunits and very probably contain one heme per heterodimer, which is part of the regulatory center. The latter is of central importance for the mechanism of activation. NO is able to bind to the iron atom of heme and thus markedly increase the activity of the enzyme. Heme-free preparations cannot, by contrast, be stimulated by NO. CO is also able to attach to the central iron atom of heme, but the stimulation by CO is distinctly less than that by NO.
- Through the production of cGMP and the regulation, resulting therefrom, of phosphodiesterases, ion channels and protein kinases, guanylate cyclase plays a crucial part in various physiological processes, in particular in the relaxation and proliferation of smooth muscle cells, in platelet aggregation and adhesion and in the neuronal signal transmission, and in disorders caused by an impairment of the aforementioned processes. Under pathophysiological conditions, the NO/cGMP system may be suppressed, which may lead for example to high blood pressure, platelet activation, increased cell proliferation, endothelial dysfunction, atherosclerosis, angina pectoris, heart failure, thromboses, stroke and myocardial infarction.
- A possible way of treating such disorders which is independent of NO and aims at influencing the cGMP signal pathway in organisms is a promising approach because of the high efficiency and few side effects which are to be expected.
- Compounds, such as organic nitrates, whose effect is based on NO have to date been exclusively used for the therapeutic stimulation of soluble guanylate cyclase. NO is produced by bioconversion and activates soluble guanylate cyclase by attaching to the central iron atom of heme. Besides the side effects, the development of tolerance is one of the crucial disadvantages of this mode of treatment.
- Some substances which directly stimulate soluble guanylate cyclase, i.e. without previous release of NO, have been described in recent years, such as, for example, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1, Wu et al., Blood 84 (1994), 4226; Müilsch et al., Br. J. Pharmacol. 120 (1997), 681), fatty acids (Goldberg et al, J. Biol. Chem. 252 (1977), 1279), diphenyliodonium hexafluorophosphate (Pettibone et al., Eur. J. Pharmcol. 116 (1985), 307), isoliquiritigenin (Yu et al., Brit. J. Pharmacol. 114 (1995), 1587) and various substituted pyrazole derivatives (WO 98/16223, WO 98/16507 and WO 98/23619).
- The stimulators of soluble guanylate cyclase known to date stimulate the enzyme either directly via the heme group (carbon monoxide, nitrogen monoxide or diphenyliodonium hexafluorophosphate) by interaction with the central iron of the heme group and a resulting change in conformation which leads to an increase in enzyme activity (Gerzer et al., FEBS Lett. 132(1981), 71), or via a heme-dependent mechanism which is independent of NO but leads to a potentiation of the stimulating action of NO or CO (for example YC-1, Hoenicka et al., J. Mol. Med. (1999) 14; or the pyrazole derivatives described in WO 98/16223, WO 98/16507 and WO 98/23619).
- The stimulating action of isoliquiritigenin and of fatty acids, such as, for example, arachidonic acid, prostaglandin endoperoxides and fatty acid hydroperoxides on soluble guanylate cyclase claimed in the literature could not be confirmed (cf., for example, Hoenicka et al., J. Mol. Med. 77 (1999), 14).
- If the heme group is removed from soluble guanylate cyclase, the enzyme still has detectable catalytic basal activity, i.e. cGMP is still being formed. The residual catalytic basal activity of the heme-free enzyme cannot be stimulated by any of the known stimulators mentioned above.
- Stimulation of heme-free soluble guanylate cyclase by protoporphyrin IX has been described (Ignarro et al., Adv. Pharmacol. 26 (1994), 35). However, protoporphyrin IX can be considered to be a mimic of the NO-heme adduct, as a consequence of which the addition of protoporphyrin IX to soluble guanylate cyclase would be expected to result in the formation of a structure of the enzyme corresponding to heme-containing soluble guanylate cyclase stimulated by NO. This is also confirmed by the fact that the stimulating action of protoporphyrin IX is increased by the above-described NO-independent but heme-dependent stimulator YC-1 (Müilsch et al., Naunyn Schmiedebergs Arch. Pharmacol. 355, R47).
- Thus, hitherto compounds capable of stimulating soluble guanylate cyclase independently of the heme group present in the enzyme have not been described.
- It was an object of the present invention to provide medicaments for treating cardiovascular disorders or other disorders accessible to therapy by influencing the cGMP signal pathway in organisms.
- The above object is achieved by using compounds for preparing medicaments capable of stimulating soluble guanylate cyclase even independently of NO and the heme group present in the enzyme.
- Surprisingly, it has been found that there are compounds capable of stimulating soluble guanylate cyclase even independently of the heme group present in the enzyme. The biological activity of these stimulators is based on an entirely novel mechanism for stimulating soluble guanylate cyclase. In contrast to the above-described compounds, known from the prior art as stimulators of soluble guanylate cyclase, the compounds according to the invention are capable of stimulating both the heme-containing and the heme-free form of soluble guanylate cyclase. Thus, in the case of these novel stimulators, stimulation of the enzyme is effected via a heme-independent path, and this is also confirmed by the fact that firstly the novel stimulators do not have any synergistic action with NO at the heme-containing enzyme and that secondly the action of these novel stimulators cannot be blocked by the heme-dependent inhibitor of soluble guanylate cyclase, i.e. 1H-1,2,4-oxadiazole-(4,3a)-quinoxalin-1-one (ODQ).
- This is a novel therapeutic approach for treating cardiovascular disorders and other disorders accessible to therapy by influencing the cGMP signal pathway in organisms.
-
-
- However, neither of these two publications describes that such aminoalkanecarboxylic acids may have a stimulating effect, independent of the heme group present in the enzyme, on soluble guanylate cyclase.
- Substances having a structure similar to that of the compounds according to the invention are furthermore known from WO 01/19776, WO 01/19355, WO 01/19780 and WO 01/19778.
-
- where
- Z represents a phenyl ring which is fused with a saturated, partially unsaturated or aromatic carba- or heterocycle having up to 3 heteroatoms from the group consisting of S, N and/or O or with a partially unsaturated or aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and/or O,
- V is missing or represents O, NR4, NR4CONR4, NR4CO, NR4SO2, COO, CONR4 or S(O)o,
- where
- R4 independently of any other radical R4 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or arylalkyl having 7 to 18 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, alkyl, alkoxy having up to 6 carbon atoms,
- o represents 0, 1 or 2,
- Q is missing or represents straight-chain or branched alkylene, straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having in each case up to 12 carbon atoms, which radicals may in each case comprise one or more groups selected from the group consisting of O, S(O)p, NR5, Co, NR5SO2 or CONR5 and which may be mono- or polysubstituted by halogen, hydroxyl or alkoxy having up to 4 carbon atoms, where optionally any two atoms of the above chain may be attached to one another forming a three- to eight-membered ring,
- where
- R5 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms which may be substituted by halogen or alkoxy having up to 4 carbon atoms,
- p represents 0, 1 or 2,
- Y represents hydrogen, NR8R9, aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, which may also be attached via N, where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 8 carbon atoms, straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, halogen, hydroxyl, CN, SR6, NO2, NR8R9, NR8COR10, NR7CONR7R10 or CONR11R12,
- where
- R6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, straight-chain or branched haloalkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R7 independently of any other radical R7 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R8, R9, R11 and R12 independently of one another represent hydrogen, straight-chain or branched alkyl, straight-chain or branched alkenyl having up to 8 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, arylalkyl having 8 to 18 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO2R13,
- where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- or two substitutents selected from R8 and R9 or R11 and R12 may be attached to one another forming a five- or six-membered ring which may contain O or N,
- where
- R13 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R10 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- and/or the cyclic radicals may in each case be mono- to trisubstituted by aryl having 6 to 10 carbon atoms, a saturated carbocycle having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, which may also be attached via N,
- which may be attached directly or via a group selected from the group consisting of O, S, SO, SO2, NR7, SO2NR7, CONR7, straight-chain or branched alkylene, straight-chain or branched alkenediyl, straight-chain or branched alkyloxy, straight-chain or branched oxyalkyloxy, straight-chain or branched sulfonylalkyl, straight-chain or branched thioalkyl having in each case up to 8 carbon atoms and which may be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy, carbonylalkyl or straight-chain or branched alkenyl having in each case up to 6 carbon atoms, halogen, SR6, CN, NO2, NR8R9, CONR15R16 or NR14COR7,
- where
- R14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R15, R16 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or a radical of the formula SO2R18, where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- where
- R18 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, and
- R17 independently of one another represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- and/or the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R3 represents hydrogen, halogen, straight-chain or branched alkyl which may optionally carry one or more substituents from the group consisting of C1-6-alkoxy, NR19R20 and cycloalkyl having 3 to 8 carbon atoms, straight-chain or branched haloalkyl, straight-chain or branched alkoxy, or alkoxycarbonyl having in each case up to 4 carbon atoms, CN, NO2, NR9R20, SR17, SO2R17, cycloalkyl having 3 to 8 carbon atoms, haloalkoxy, haloalkoxy having up to 6 carbon atoms, cycloalkoxy having up to 14 carbon atoms, CONH2, CONR17R17, SO2NH2, SO2NR17R17, alkoxyalkoxy having up to 12 carbon atoms, NHCOOR17, NHCOR17, NHSO2R17, NHCONH2, OCONR17R17, OSO2R17, C2-12-alkenyl or C2-12-alkynyl,
- where
- R19 and R20 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- m represents an integer from 1 to 4,
- W represents straight-chain or branched alkylene having up to 6 carbon atoms or straight-chain or branched alkenediyl having up to 6 carbon atoms which may in each case contain a group selected from the group consisting of O, S(O)q, NR21, CO or CONR21, or represents CO, NHCO or OCO,
- where
- q represents 0, 1 or 2,
- R21 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- U represents straight-chain or branched alkyl having up to 4 carbon atoms,
- A represents aryl having 6 to 10 carbon atoms or an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- which may optionally be mono- to trisubstituted by halogen, straight-chain or branched alkyl, straight-chain or branched haloalkyl, straight-chain or branched alkoxy, haloalkoxy or alkoxycarbonyl having up to 4 carbon atoms, CN, NO2 or NR22R23,
- where
- R22 and R23 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms, carbonylalkyl or sulfonylalkyl,
- R2 represents tetrazolyl, COOR24 or CONR25R26,
- where
- R24 [lacuna] hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms
- R25 and R26 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula 15 SO2R27,
- or R25 and R26 together form a five- or six-membered ring which may contain N or O,
- where
- R27 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms,
- where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- X represents straight-chain or branched alkylene having up to 12 carbon atoms or straight-chain or branched alkenediyl having up to 12 carbon atoms, which may in each case contain one to three groups selected from the group 30 consisting of O, S(O)r, NR28, CO or CONR29, aryl and aryloxy having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, where optionally any two atoms of the abovementioned chains are attached to one another via an alkyl chain forming a three- to eight-membered ring,
- where
- r represents 0, 1 or 2,
- R28 represents hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R29 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- n represents 1 or 2;
- R1 represents tetrazolyl, COOR30 or CONR31R32,
- where
- R30 [lacuna] hydrogen, alkyl having 1 to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms
- R31 and R32 in each case independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO2R33,
- where
- R33 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- and their stereoisomers and salts.
- Here, preference is given to compounds of the formula (I)
- where
-
- where the radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V is missing or represents O, NR4, NR4CONR4, NR4CO, NR4SO2, COO, CONR4 or S(O)o,
- where
- R4 independently of any other radical R4 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, aryl having 6 to 10 carbon atoms or arylalkyl having 7 to 18 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, alkyl, alkoxy having up to 6 carbon atoms,
- o represents 0, 1 or 2,
- Q is missing or represents straight-chain or branched alkylene, straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having in each case up to 12 carbon atoms, which radicals may in each case comprise one or more groups selected from the group consisting of O, S(O)p, NR5, CO, NR5SO2 or CONR5 and which may be mono- or polysubstituted by halogen, hydroxyl or alkoxy having up to 4 carbon atoms, where optionally any two atoms of the above chain may be attached to one another forming a three- to eight-membered ring,
- where
- R5 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms which may be substituted by halogen or alkoxy having up to 4 carbon atoms,
- p represents 0, 1 or 2,
- Y represents hydrogen, NR8R9, aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, which may also be attached via N, where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 8 carbon atoms, straight-chain or branched cycloalkyl having 3 to 8 carbon atoms, halogen, hydroxyl, CN, SR6, NO2, NR8R9, NR7COR10, NR7CONR7R10 or CONR11R12,
- where
- R6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, straight-chain or branched haloalkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R7 independently of any other radical R7 optionally present represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R8, R9, R11 and R2 independently of one another represent hydrogen, straight-chain or branched alkyl, straight-chain or branched alkenyl having up to 8 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, arylalkyl having 8 to 18 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO2R13, where the aryl radical for its part may be mono- or polysubstituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, or two substituents selected from R8 and R9 or R11 and R12 may be attached to one another forming a five- or six-membered ring which may contain O or N,
- where
- R13 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms,
- R10 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, hydroxyl, CN, NO2, NH2, NHCOR7, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- and/or the cyclic radicals may in each case be mono- to trisubstituted by aryl having 6 to 10 carbon atoms, an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O, which may also be attached via N,
- which may be attached directly or via a group selected from the group consisting of O, S, SO, SO2, NR7, SO2NR7, CONR7, straight-chain or branched alkylene, straight-chain or branched alkenediyl, straight-chain or branched alkyloxy, straight-chain or branched oxyalkyloxy, straight-chain or branched sulfonylalkyl, straight-chain or branched thioalkyl having in each case up to 8 carbon atoms and which may be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy, carbonylalkyl or straight-chain or branched alkenyl having in each case up to 6 carbon atoms, halogen, SR6, CN, NO2, NR8R9, CONR15R16 or NR14COR17,
- where
- R14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms,
- R15, R16 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms or a radical of the formula SO2R18,
- where
- R18 represents straight-chain or branched alkyl having up to 4 carbon atoms or aryl having 6 to 10 carbon atoms, where the aryl radical for its part may be mono- or polysubstituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms, and
- R17 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by halogen, CN, NO2, alkyl, alkoxy, haloalkyl or haloalkoxy having up to 6 carbon atoms;
- and/or the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- R3 represents hydrogen, halogen, straight-chain or branched alkyl, straight-chain or branched haloalkyl or straight-chain or branched alkoxy having in each case up to 4 carbon atoms,
- m represents an integer from 1 to 4,
- W represents straight-chain or branched alkylene or straight-chain or branched alkenediyl having in each case up to 4 carbon atoms,
- U represents —CH2—,
- A represents phenyl or an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O,
- which may optionally be mono- to trisubstituted by halogen, straight-chain or branched alkyl, straight-chain or branched haloalkyl or straight-chain or branched alkoxy having up to 4 carbon atoms,
- R2 represents COOR24,
- where
- R24 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms,
- X represents straight-chain or branched alkylene having up to 8 carbon atoms or straight-chain or branched alkenediyl having up to 8 carbon atoms which may in each case contain one to three groups selected from the group consisting of phenyl, phenyloxy, O, CO and CONR29,
- where
- R29 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n represents 1 or 2;
- R1 represents COOR30,
- where
- R30 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms.
- Particular preference is given to compounds of the formula (I)
- where
-
- where the radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V is missing or represents O, S or NR4,
- where
- R4 represents hydrogen or methyl,
- Q is missing or represents straight-chain or branched alkylene having up to 9 carbon atoms or straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having up to 4 carbon atoms which may be monosubstituted by halogen,
-
- which may also be attached via N,
- where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 4 carbon atoms, straight-chain or branched cycloalkyl having 3 to 6 carbon atoms, F, Cl, Br, I, NO2, SR6, NR8R9, NR7COR10 or CONR11R12,
- where
- R6 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms, or straight-chain or branched haloalkyl having up to 4 carbon atoms,
- R7 represents hydrogen, or straight-chain or branched alkyl having up to 4 carbon atoms,
- R8, R9, R11 and R12 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- where the phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN,
- or two substituents selected from R8 and R9 or R11 and R12 may be attached to one another forming a five- or six-membered ring which may be interrupted by O or N,
- R10 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- where the phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN;
-
- which may be attached directly or via a group selected from the group consisting of O, S, SO, SO2, NR4, SO2NR7, CONR7, straight-chain or branched alkylene, straight-chain or branched alkenediyl, straight-chain or branched alkyloxy, straight-chain or branched oxyalkyloxy, straight-chain or branched sulfonylalkyl, straight-chain or branched thioalkyl having in each case up to 4 carbon atoms and which may be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl or straight-chain or branched alkenyl having in each case up to 4 carbon atoms, F, Cl, Br, I, CN, SCH3, OCF3, NO2, NR8R9 or NR14COR17,
- where
- R14 represents hydrogen, straight-chain or branched alkyl having up to 8 carbon atoms or cycloalkyl having 3 to 8 carbon atoms, and
- R17 represents hydrogen, straight-chain or branched alkyl having up to 12 carbon atoms, straight-chain or branched alkenyl having up to 12 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 8 carbon atoms, which may optionally furthermore be substituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN;
- and/or the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms selected from the group consisting of S, N and O,
- R3 represents hydrogen, methyl or fluorine,
- m represents an integer from 1 to 4,
- W represents CH2, —CH2CH2—, CH2CH2CH2, CH═CHCH2,
- U represents —CH2—,
- A represents phenyl, pyridyl, thienyl or thiazolyl which may optionally be mono- to trisubstituted by methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, CF3, methoxy, ethoxy, F, Cl, Br,
- R2 represents COOR24,
- where
- R24 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
- X represents straight-chain or branched alkylene having up to 8 carbon atoms or straight-chain or branched alkenediyl having up to 8 carbon atoms which may in each case contain one to three groups from the group consisting of phenyl, phenyloxy, O, CO and CONR30,
- where
- R30 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n represents 1 or 2;
- R1 represents COOR35,
- where
- R35 represents hydrogen or straight-chain or branched alkyl having up to 6 carbon atoms.
- Here, very particular preference is given to compounds of the formula (I)
- where
-
- where the radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V represents O,
- Q represents straight-chain or branched alkylene having up to 9 carbon atoms or straight-chain or branched alkenediyl or straight-chain or branched alkynediyl having up to 4 carbon atoms which may be monosubstituted by halogen,
-
- where the cyclic radicals may in each case be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkenyl, straight-chain or branched alkynyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl, straight-chain or branched haloalkoxy having in each case up to 4 carbon atoms, straight-chain or branched cycloalkyl having 3 to 6 carbon atoms, F, Cl, Br, I, NO2, SR6, NR8R9, NR7COR10 or CONR11R12,
- where
- R6 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or straight-chain or branched haloalkyl having up to 4 carbon atoms,
- R7 represents hydrogen, or straight-chain or branched alkyl having up to 4 carbon atoms,
- R8, R9, R11 and R12 independently of one another represent hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- where the phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN,
- or two substituents selected from R8 and R9 or R11 and R12 may be attached to one another forming a five- or six-membered ring which may be interrupted by O or N,
- R10 represents hydrogen, straight-chain or branched alkyl having up to 4 carbon atoms, or phenyl,
- where the phenyl radical may be mono- to trisubstituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN;
-
- which may be attached directly or via a group selected from the group consisting of O, S, SO, SO2, straight-chain or branched alkylene, straight-chain or branched alkenediyl, straight-chain or branched alkyloxy, straight-chain or branched oxyalkyloxy, straight-chain or branched sulfonylalkyl, straight-chain or branched thioalkyl having in each case up to 4 carbon atoms and which may be mono- to trisubstituted by straight-chain or branched alkyl, straight-chain or branched alkoxy, straight-chain or branched alkoxyalkoxy, straight-chain or branched haloalkyl or straight-chain or branched alkenyl having in each case up to 4 carbon atoms, F, Cl, Br, I, CN, SCH3, OCF3, NO2, NR8R9 or NR14COR17,
- where
- R14 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms, and
- R17 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms, straight-chain or branched alkenyl having up to 6 carbon atoms, aryl having 6 to 10 carbon atoms, an aromatic heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms from the group consisting of S, N and O or cycloalkyl having 3 to 6 carbon atoms, which may optionally furthermore be substituted by F, Cl Br, hydroxyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, methoxy, ethoxy, amino, acetylamino, NO2, CF3, OCF3 or CN;
- and/or the cyclic radicals may be fused with an aromatic or saturated carbocycle having 1 to 10 carbon atoms or an aromatic or saturated heterocycle having 1 to 9 carbon atoms and up to 3 heteroatoms selected from the group consisting of S, N and O,
- R3 represents hydrogen, methyl or fluorine,
- m represents an integer from 1 to 2,
- W represents CH2, or —CH2CH2—,
- U represents —CH2—,
- A represents phenyl, which may optionally be mono- to trisubstituted by methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, CF3, methoxy, ethoxy, F, Cl, Br,
- R2 represents COOR24,
- where
- R24 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms,
- X represents straight-chain or branched alkylene having up to 6 carbon atoms or straight-chain or branched alkenediyl having up to 6 carbon atoms which may in each case contain one to three groups from the group consisting of phenyloxy, O, CO and CONR30,
- where
- R30 represents hydrogen, straight-chain or branched alkyl having up to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms,
- n represents 1 or 2;
- R1 represents COOR35,
- where
- R35 represents hydrogen or straight-chain or branched alkyl having up to 4 carbon atoms.
- Particular preference according to the invention is given to compounds of the formula (I) in which R1 and R2 are each COOH.
- Very particular preference according to the present invention is given to compounds in which
-
- where the radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V represents O,
- Q represents CH2,
- Y represents phenyl which is substituted by a radical selected from the group consisting of 2-phenylethyl, cyclohexyl, 4-chlorophenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 4-cyanophenyl, 4-chlorophenoxy, 4-methoxyphenoxy, 4-trifluoromethylphenoxy, 4-cyanophenoxy, 4-methylphenyl,
- R3 represents hydrogen, methyl or fluorine,
- m represents an integer from 1 to 2,
- W represents —CH2CH2—,
- U represents —CH2—,
- A represents phenyl,
- R2 represents COOH, where R2 is located in the 4-position to the radical U,
- X represents (CH2)4,
- R1 represents COOH.
- Very particular preference according to the present invention is also given to compounds in which
-
- where the radicals V and W may be attached to any carbon ring atom or any nitrogen ring atom optionally present, selected;
- V is missing,
- Q represents CH2O which is attached via its carbon atom to Z,
- Y represents phenyl which is substituted by a radical selected from the group consisting of 2-phenylethyl, cyclohexyl, 4-chlorophenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl, 4-cyanophenyl, 4-chlorophenoxy, 4-methoxyphenoxy, 4-trifluoromethylphenoxy, 4-cyanophenoxy, 4-methylphenyl, 4-tert-butylphenyl, 4-carboxyphenyl, 4-fluorophenyl, 3-methoxyphenyl, 2,4-dichlorophenyl,
- R3 represents hydrogen, methyl or fluorine,
- m represents an integer from 1 to 2,
- W represents —CH2CH2—,
- U represents —CH2—,
- A represents phenyl,
- R2 represents COOH where R2 is located in the 4-position to the radical U,
- X represents (CH2)4,
- R1 represents COOH.
- The compounds according to the invention of the general formula (I) may also be in the form of their salts. Mention may generally be made here of salts with organic or inorganic bases or acids.
- Physiologically acceptable salts are preferred for the purposes of the present invention. Physiologically acceptable salts of the compounds according to the invention may be salts of the substances according to the invention with mineral acids, carboxylic acids or sulfonic acids. Particularly preferred examples are salts with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid or benzoic acid.
- Physiologically acceptable salts may likewise be metal or ammonium salts of the compounds according to the invention having a free carboxyl group. Particularly preferred examples are sodium, potassium, magnesium or calcium salts, and ammonium salts derived from ammonia, or organic amines, such as, for example, ethylamine, di- or triethylamine, di- or triethanolamine, dicyclohexylamine, dimethylaminoethanol, arginine, lysine or ethylenediamine.
- The compounds according to the invention may exist in stereoisomeric forms which are either like image and mirror image (enantiomers), or not like image and mirror image (diastereomers). The invention relates both to the enantiomers or diastereomers and to their respective mixtures. The racemic forms, like the diastereomers, can be separated into the stereoisomerically uniform components in a known manner, for example by optical resolution or chromatographic separation. The double bonds present in the compounds according to the invention can be in the cis or trans configuration (Z or E form).
- For the purposes of the present invention, the substituents are, unless defined otherwise, generally as defined below:
- Alkyl generally represents a straight-chain or branched hydrocarbon radical having 1 to 20 carbon atoms. Examples which may be mentioned are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, isoheptyl, octyl and isooctyl, nonyl, decyl, dodeyl, eicosyl.
- Alkylene generally represents a straight-chain or branched hydrocarbon bridge having 1 to 20 carbon atoms. Examples which may be mentioned are methylene, ethylene, propylene, α-methylethylene, β-methylethylene, α-ethylethylene, β-ethylethylene, butylene, α-methylpropylene, β-methylpropylene, γ-methylpropylene, α-ethylpropylene, β-ethylpropylene, γ-ethylpropylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodeylene and eicosylene.
- Alkenyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds. Examples which may be mentioned are allyl, propenyl, isopropenyl, butenyl, isobutenyl, pentenyl, isopentenyl, hexenyl, isohexenyl, heptenyl, isoheptenyl, octenyl, isooctenyl.
- Alkynyl generally represents a straight-chain or branched hydrocarbon radical having 2 to 20 carbon atoms and one or more, preferably one or two, triple bonds. Examples which may be mentioned are ethynyl, 2-butynyl, 2-pentynyl and 2-hexynyl.
- Alkenediyl generally represents a straight-chain or branched hydrocarbon bridge having 2 to 20 carbon atoms and one or more, preferably one or two, double bonds. Examples which may be mentioned are ethene-1,2-diyl, propene-1,3-diyl, propene-1,2-diyl, 1-butene-1,4-diyl, 1-butene-1,3-diyl, 1-butene-1,2-diyl, 2-butene-1,4-diyl, 2-butene-1,3-diyl, 2-butene-2,3-diyl.
- Alkynediyl generally represents a straight-chain or branched hydrocarbon bridge having 2 to 20 carbon atoms and one or more, preferably one or two, triple bonds. Examples which may be mentioned are ethyne-1,2-diyl, propyne-1,3-diyl, 1-butyne-1,4-diyl, 1-butyne-1,3-diyl, 2-butene-1,4-diyl.
- Acyl generally represents straight-chain or branched lower alkyl having 1 to 9 carbon atoms which is attached via a carbonyl group. Examples which may be mentioned are: acetyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, butylcarbonyl and isobutylcarbonyl.
- Alkoxy generally represents a straight-chain or branched hydrocarbon radical having 1 to 14 carbon atoms which is attached via an oxygen atom. Examples which may be mentioned are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy isopentoxy, hexoxy, isohexoxy, heptoxy, isoheptoxy, octoxy or isooctoxy. The terms “alkoxy” and “alkyloxy” are used synonymously.
- Alkoxyalkyl generally represents an alkyl radical having up to 8 carbon atoms which is substituted by an alkoxy radical having up to 8 carbon atoms.
-
- Here, alkyl generally represents a straight-chain or branched hydrocarbon radical having 1 to 13 carbon atoms. The following alkoxycarbonyl radicals may be mentioned by way of example: methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl or isobutoxycarbonyl.
- Cycloalkyl generally represents a cyclic hydrocarbon radical having 3 to 8 carbon atoms. Preference is given to cyclopropyl, cyclopentyl and cyclohexyl. Cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl may be mentioned by way of example.
- Cycloalkoxy, for the purposes of the invention, represents an alkoxy radical whose hydrocarbon radical is a cycloalkyl radical. The cycloalkyl radical generally has up to 8 carbon atoms. Examples which may be mentioned are: cyclopropyloxy and cyclohexyloxy. The terms “cycloalkoxy” and “cycloalkyloxy” are used synonymously.
- Aryl generally represents an aromatic radical having 6 to 10 carbon atoms. Preferred aryl radicals are phenyl and naphthyl.
- Halogen, for the purposes of the invention, represents fluorine, chlorine, bromine and iodine.
- Heterocycle, for the purposes of the invention, generally represents a saturated, unsaturated or aromatic 3- to 10-membered, for example 5- or 6-membered, heterocycle which may contain up to 3 heteroatoms from the group consisting of S, N and O and which may, if a nitrogen atom is present, also be attached via this nitrogen atom. Examples which may be mentioned are: oxadiazolyl, thiadiazolyl, pyrazolyl, pyridyl, pyrimdinyl, pyridazinyl, pyrazinyl, thienyl, furyl, pyrrolyl, pyrrolidinyl, piperazinyl, tetrahydropyranyl, tetrahydrofuranyl, 1,2,3 triazolyl, thiazolyl, oxazolyl, imidazolyl, morpholinyl or piperidyl. Preference is given to thiazolyl, furyl, oxazolyl, pyrazolyl, triazolyl, pyridyl, pyrimidinyl, pyridazinyl and tetrahydropyranyl. The term “heteroaryl” (or “hetaryl”) denotes an aromatic heterocyclic radical.
- In the structures of heterocycles shown in the present application, in each case only one bond to the adjacent group is indicated, for example in the case of the heterocycle structures possible for Y the bond to the unit Q. However, independently thereof, these heterocycle structures may carry further substituents as indicated.
- The present invention furthermore relates to a process for preparing the compounds of the formula (I), characterized in that
-
- are reacted with compounds of the formula (III)
- E-X—R1 (III)
- where
- Z, R1, R2, R3, V, Q, Y, W, X, U, A and m are as defined above,
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
-
-
- where
- Z, R1, R2, R3, V, Q, Y, W, X, U, A and m are as defined above,
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
-
- are reacted with compounds of the formula (VII)
- E-U-A-R2 (VII)
- where
- Z, R1, R2, R3, V, Q, Y, W, X, U, A and m are as defined above,
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
-
- where
- Va represents O or S and
- Z, R1, R2, R3, Y, Q, W, U, A, X and m are as defined above,
-
- where
- Q, Y are as defined above,
- E represents either a leaving group which is substituted in the presence of a base or an optionally activated hydroxyl function; or
-
- where
- Z, R3, V, Q, Y, W, X, U, A and m are as defined above,
- R1 b and R2 b each independently of one another represent CN or COOAlk, where Alk represents a straight-chain or branched alkyl radical having up to 6 carbon atoms,
- are converted with aqueous solutions of strong acids or strong bases into the corresponding free carboxylic acids. or
-
- where
- Z, R1, R2, R3, V, Q, X, W, U, A and m are as defined above,
- L represents Br, I or the group CF3SO2—O,
- are reacted with compounds of the formula (XII)
- M-Z′ (XII)
- where
- M represents an aryl or heteroaryl radical, a straight-chain or branched alkyl, alkenyl or alkynyl radical or cycloalkyl radical or represents an arylalkyl, an arylalkenyl or an arylalkynyl radical,
- Z′ represents the groupings —B(OH)2, —CH≡CH, —CH═CH2 or —Sn(nBu)3
- in the presence of a palladium compound, if appropriate additionally in the presence of a reducing agent and further additives and in the presence of a base; or
-
- where
- Ar represents an aryl or heteroaryl radical,
- E represents a leaving group which is substituted in the presence of a base.
-
- are hydrogenated with hydrogen in the presence of a catalyst.
- The processes according to the invention for preparing compounds of the formula (I) are illustrated below using exemplary, non-limiting embodiments:
-
-
-
-
-
-
- Alternatively, the compounds of the formula (I) can also be prepared on a solid phase, such as a polystyrene resin, particularly preferably a commercially available Wang polystyrene resin. Here, the resin is initially swollen in a solvent such as dimethylformamide (DMF). The appropriate carboxylic acid which serves as starting material is then attached to the resin using standard processes. For example, the carboxylic acid can be attached to the resin in the presence of a base, such as pyridine or 4-dimethylaminopyridine (DMAP), and a reagent which activates the carboxyl unit, such as an acid halide, for example dichlorobenzoyl chloride, in a solvent such as dimethylformamide (DMF). However, it is also possible to use other reagents customarily used for this purpose. The reaction mixture is stirred for at least 2 hours, preferably 12 hours, particularly preferably about 24 hours, at room temperature and atmospheric pressure, an excess of carboxylic acid, preferably a two- to three-fold excess, based on the loading of the solid phase, being used.
- After removal of any unreacted reagents, the carboxylic acid attached to the resin can be derivatized without it being necessary to remove the carboxylic acid from the resin beforehand. Thus, for example, an appropriate 4-aminobenzoic acid or 4-formylbenzoic acid derivative can be attached to the resin and then be converted by successive reductive aminations, as described below for the preparation of the compounds of the formula (II), (IV) and (VI), into a compound of the formula (VIII) which can then be converted analogously to process [D] on the solid phase into the target compounds.
- Removal from the resin is carried out in a customary manner in acidic medium after the desired synthesis of the target compound on the solid phase. The product which has been cleaved from the resin can, after removal of any solvents present, be purified by known purification processes, such as, for example, chromatographic processes.
- The schemes below illustrate possible solid-phase syntheses of compounds of the formula (I); however, other synthesis routes familiar to the person skilled in the art or known from the literature are also possible:
-
- Here, Wang denotes a Wang polystyrene resin.
-
- Here, Wang denotes a Wang polystyrene resin.
- Preferred solvents for the processes according to the invention are customary organic solvents which do not change under the reaction conditions, or water. For the process according to the invention, preference is given to using ethers, such as diethyl ether, butyl methyl ether, dioxane, tetrahydrofuran, glycol dimethyl ether, or diethylene glycol dimethyl ether, or hydrocarbons, such as benzene, toluene, xylene or petroleum ether, or amides, such as dimethylformamide or hexamethylphosphoric triamide, or 1,3-dimethylimidazolidin-2-one, 1,3-dimethyltetrahydropyrimidin-2-one, acetonitrile, ethyl acetate or dimethyl sulfoxide. It is, of course, also possible to use mixtures of the solvents mentioned above.
- Bases which are preferred for the processes according to the invention include basic compounds which are customarily used for basic reactions. Preference is given to using alkali metal hydrides, such as, for example, sodium hydride or potassium hydride, or alkali metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide or potassium t-butoxide, or carbonates, such as sodium carbonate, cesium carbonate or potassium carbonate, or amides, such as sodium amide or lithium diisopropylamide, or organolithium compounds, such as phenyllithium, butyllithium or methyllithium, or sodium hexamethyldisilazane.
- The processes A to C according to the invention can preferably be carried out in acetonitrile, in each case by reacting the compounds (II) and (III), (IV) and (V) and (VI) and (VII), respectively, in the presence of a base such as sodium carbonate, Et3N, DABCO, K2CO3, KOH, NaOH or NaH. The reaction can generally be carried out in a temperature range of from −20° C. to +90° C., preferably of from 0° C. to +70° C. The reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- In the processes A to C according to the invention, a compound of the formula (I) is prepared by nucleophilic substitution of a leaving group E in one of the compounds of the formula (III), (V) or (VII) by the amine function of one of the compounds of the formula (II), (IV) or (VI). Suitable leaving groups E are, for example: halogen, tosylate, mesylate, or a hydroxyl function which is activated by reagents such as diisopropyl azodicarboxylate/PPh3 (Mitsonobu reaction).
- The process D according to the invention can preferably be carried out in acetonitrile by reacting the compounds (VIII) and (IX) in the presence of a base such as sodium carbonate, potassium carbonate, Et3N, DABCO, K2CO3, KOH, NaOH or NaH. The reaction can generally be carried out in a temperature range of from −20° C. to +90° C., preferably of from 0° C. to +90° C. The reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- In the process D according to the invention, a compound of the formula (I) is prepared by nucleophilic substitution of a leaving group E in the compound of the formula (IX) by the hydroxyl or thiol function of the compound of the formula (VIII). Suitable leaving groups E are, for example: halogen, tosylate, mesylate, or a hydroxyl function which is activated by reagents such as diisopropyl azodicarboxylate/PPh3 (Mitsonobu reaction).
- In the process E according to the invention, a compound of the formula (I) in which R1 and R2 each represent a free carboxyl function is obtained by converting ester and/or nitrile functions of the compound (X) into the corresponding free carboxyl functions. This reaction can be carried out, for example, by adding aqueous solutions of strong acids, such as, for example, HCl or H2SO4, or strong bases, such as, for example, NaOH, KOH or LiOH. The reaction can be carried out in one of the organic solvents mentioned above, in water or in mixtures of organic solvents or in mixtures of organic solvents with water. Preference according to the invention is given, for example, to carrying out the reaction in a mixture of water and methanol or dioxane. In general, the reaction can be carried out in a temperature range of from −20° C. to +90° C., preferably of from 0° C. to +90° C. The reaction can be carried out under atmospheric pressure, elevated pressure or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out at atmospheric pressure.
- In the process F according to the invention, a compound of the formula (I) is prepared by reacting a compound of the formula (XI) which contains a substitutable group L with a compound of the group (XII) in the presence of a palladium compound and, if appropriate, a reducing agent and further additives in basic medium. Formally, the reaction is a reductive coupling of the compounds of the formulae (XI) and (XII), as described, for example, in L. S. Hegedus, Organometallics in Synthesis, M. Schlosser, Ed., Wiley & Sons, 1994.
- Suitable substitutable groups L in the compounds of the formula (XI) are, for example, a halogen radical, such as Br or I, or a customary leaving group, such as, for example, a triflate radical.
- The compounds of the formula (XII) contain a reactive group Z which can be selected from the group consisting of —B(OH)2, —CH≡CH, —CH═CH2 or —Sn(nBu)3.
- Suitable for use as palladium compound are palladium(II) compounds, such as, for example, Cl2Pd(PPh3)2 or Pd(OAc)2 or palladium(0) compounds, such as, for example, Pd(PPh3)4 or Pd2(dba)3. If required, a reducing agent, such as, for example, triphenylphosphine, or other additives, such as, for example, Cu(I)Br, NBu4NCl, LiCl or Ag3PO4, may additionally be added to the reaction mixture (cf. T Jeffery, Tetrahedron lett. 1985, 26, 2667-2670; T. Jeffery, J. Chem. Soc., Chem. Commun. 1984, 1287-1289; S. Bräse, A. deMejiere in “Metal-catalyzed cross-coupling reactions”, Ed. F. Diederich, P. J. Stang, Wiley-VCH, Weinheim 1998, 99-166).
- The reaction is carried out in the presence of a customary base, such as, for example, Na2CO3, NaOH or triethylamine. Suitable solvents are the organic solvents mentioned above, ethers, such as, for example, dimethoxyethane, being particularly preferred. In general, the reaction can be carried out in a temperature range of from −20° C. to +90° C., preferably of from 0° C. to +90° C. The reaction can be carried out under atmospheric pressure, elevated or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- In the process G according to the invention, compounds of the formula (I) are obtained by reacting compounds of the formula (XIII), which contain a leaving group E, with compounds of the formula (VIII) according to process D according to the invention, followed by hydrogenation of the resulting compounds of the formula (XIV).
- Thus, the first step of process G is analogous to process D, but, instead of the compounds of the formula (IX), compounds of the formula (XIII) are reacted here with the alcohols or thiols of the formula (XIII). This gives the unsaturated compounds of the formula (XIV) which can be converted by customary hydrogenation processes into the compounds of the formula (I).
- Preference according to the invention is given to hydrogenation of the compounds of the formula (XIV) with hydrogen in the presence of a catalyst, such as, for example, Pd/carbon or PtO2.
- The process G can be carried out in one of the organic solvents mentioned above. Preference is given here to ethyl acetate. In general, the reaction can be carried out in a temperature range of from −20° C. to +90° C., preferably of from 0° C. to +90° C. The reaction can be carried out under atmospheric pressure, elevated or reduced pressure (for example in a range of from 0.5 to 5 bar). In general, the reaction is carried out under atmospheric pressure.
- The novel compounds of the formula II, IV and VI can be obtained in a generally known manner by the following methods:
-
- where the radicals R1, R2, R3, m, V, Q, U, W, X, Y and A are as defined above;
-
- where
- Ua, Wa and Xa have the meanings of U, W and X, respectively, but are one carbon unit shorter, and
- T represents hydrogen or a C1-C4-alkyl function, which may also be attached to Ua or Xa forming a cycle,
- and the other radicals are as defined above,
- are reacted initially giving a Schiff base which is then reduced with customary reducing agents, such as, for example, NaBH4, H2/Pd/C, etc., or reacted directly under the conditions of a reductive alkylation in the presence of a reducing agent, such as, for example, H2/Pd/C, NaCNBH3, NaH(OAc)3 (cf. Patai, Ed., The Chemistry of the Carbon-Nitrogen Double Bond, pp. 276-293 and the literature cited therein);
- b) by reacting amines of the formulae (XV), (XVI) and (XVII) with compounds of the formulae (III), (V), (VII) (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 411 and the literature cited therein).
-
- where Va represents O or S,
-
- In the scheme above, PGo denotes a customary phenol or thiophenol protective group, such as, for example, CH3, CH2Ph, CH2CH═CH2, CH2OCH3, CH2OCH2SiMe3, SiMe3, PGn denotes an amine protective group, such as, for example, tBuOCO, T represents hydrogen or a C1-C4-alkyl function, which may also be attached to Ua forming a cycle, and Ua has the meaning of U, but is one CH2 group shorter. The other radicals are as defined above.
- (IIb) is obtained, for example, when initially (XVa) is reacted with (XVIII) to give a Schiff base which is then reduced with customary reducing agents, such as, for example, NaBH4, H2/Pd/C, etc., or reacted directly under the conditions of a reductive alkylation in the presence of a reducing agent, such as, for example, H2/Pd/C, NaCNBH3 or NaH(OAc)3. By reaction with a compound of the formula (III) in the presence of a base, the compound (IIb) can be converted into a compound of the formula (XXI) (cf. process A).
- An O or S protective group in (IIb) or (XXI) can be removed with a suitable reagent (cf., T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991). If, in formula (IIb) or (XXI), -Va-PGo denotes, for example, —O—CH3, the methyl group can be removed with formation of the phenol using boron tribromide in methylene chloride at from −70° C. to 20° C., using trimethylsilyl iodide in chloroform at 25-50° C. or using sodium ethylthiolate in DMF at 150° C.
- From the resulting compound of the formula (IIc), it is possible to obtain a compound of the formula (XXIII) by protecting the amino function (cf. T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991) and subsequently reacting the resulting amino-protected compound of the formula (XXII) with a compound of the formula (IX) (cf. process D).
- An N protective group such as in (XXII) can be introduced and removed again by customary methods (cf. T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, second edition, New York, 1991). If, in formula (XXII), PGn denotes, for example, tBuOCO, the protective group can be introduced by reacting the amine with tert-butyl pyrrocarbonate in polar or unpolar solvents at from 0° C. to 25° C. The removal of the protective group to give (IIa) can be carried out with a large number of acids, such as, for example, HCl, H2SO4 or CF3COOH, at from 0° C. to 25° C. (cf. the literature cited above).
- Substances of the formulae (III) are commercially available, known from the literature or can be synthesized according to processes known from the literature (cf., for example, J. Chem. Soc. 1958, 3065).
- Substances of the formulae (V) are known from the literature or can be synthesized analogously to processes known from the literature (cf., for example, J. Med. Chem. 1989, 32, 1757; Indian J. Chem. Sect. B 1985, 24, 1015; Recl. Trav. Chim. Pays-Bas 1973, 92, 1281; Tetrahedron Lett. 1986, 37, 4327).
- Substances of the formula (VII) are commercially available, known from the literature, or can be prepared analogously to processes known from the literature (cf. for example, J. Org. Chem. 1959, 24, 1952; Collect Czech. Chem. Commun 1974, 39, 3527, Helv. Chim. Acta 1975, 58, 682; Liebigs Ann. Chem. 1981, 623).
- Substances of the formula (IX) are commercially available, known from the literature, or can be prepared analogously to processes known from the literature (cf., for example, J. prakt. Chem. 1960, 341; Farmaco Ed. Sci. 1956, 378; Eur. J. Med. Chem. Chim. Ther. 1984, 19, 205; Bull, Soc. Chim. Fr. 1951, 97. Liebigs Ann. Chem. 1954, 586, 52; EP-A-0 334 137). In particular, 4-chloromethylbiphenyl compounds which carry a further substituent in the 4′-position can be prepared by coupling 4-(B(OH)2-Ph-CHO with the corresponding 4-substituted bromophenyl compounds in the presence of palladium catalysts, such as, for example, Pd(PPh3)4 or PdCl2(PPh3)2, and sodium carbonate, giving the corresponding biphenyl compounds, and subsequent reduction to the alcohol with NaBH4 and conversion into the corresponding chloride using, for example, SOCl2.
- If, in the formulae (III), (V), (VII) and (IX), E represents halogen, the compounds can also be prepared by generally known processes, for example by reacting an alcohol with a chlorinating agent, such as, for example, thionyl chloride or sulfuryl chloride (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1274 and the literature cited therein).
- Amines of the formula (XV) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, Tetrahedron 1997, 53, 2075; J. Med. Chem. 1984, 27, 1321; WO 97/29079; J. Org. Chem. 1982, 47, 5396). These compounds can be obtained, for example, from the corresponding halide compounds and in particular chloride compounds in which, instead of the radicals W—NH2 of the compounds of the formula (XV), there is a group W′-Hal, where W′ is a radical W which is shorter by one C atom, by substitution of the halide radical by a cyano group, giving the corresponding nitrile compounds, and reduction of the nitrile group, or by reacting corresponding aldehyde compounds, in which, instead of the radicals W—NH2 of the compounds of the formula (XV), there is a group W′—CHO, where W′ is a radical W which is shorter by one C atom, using nitromethane and subsequent reduction. Some exemplary synthesis routes for the amines of the formula (XV) are shown below, where the given reagents are generally only one of a number of possibilities. Thus, for example, reductions of aldehyde groups to alcohol groups, substitutions of alcohol groups by halogen groups, substitutions of halogen functions by nitrile groups or reductions of nitrile groups to corresponding amino groups can be carried out using all reagents which are customarily employed for such reactions (cf., for example, the appropriate chapters in March, Advanced Organic Chemistry, Wiley, 3th ed., 1985).
- In the synthesis routes shown in an exemplary manner below, the given radicals have the same meaning as defined above.
-
-
-
-
- For synthesis routes a) to d), it is also possible to use, instead of the hydroxyaldehydes, the corresponding hydroxycarboxylic acids or hydroxycarboxylic acid esters. In these synthesis routes, it is also possible to convert the primary hydroxyl group into the nitrile group via the corresponding bromide, mesylate, tosylate or acetate instead of via the corresponding halide.
-
-
-
-
-
- 2-Cyanomethyl-3-hydroxypyridine can also be obtained by the method of Desideri et al, J. Heterocycl. Chem. 1988, 333-335.
-
- Amines of the formula (XVI) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Am. Chem. Soc. 1982, 104, 6801; Chem. Lett. 1984, 1733; J. Med. Chem. 1998, 41, 5219; DE-2059922).
- Amines of the formula (XVII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Org. Chem. 1968, 33, 1581; Bull. Chem. Soc. Jpn. 1973, 46, 968; J. Am. Chem. Soc. 1958, 80, 1510; J. Org. Chem. 1961, 26, 2507; Synth. Commun. 1989, 19, 1787).
- Amines of the formulae (XV), (XVI) and (XVII) can also be prepared by generally known processes, for example by reducing a corresponding nitrile, by reacting a corresponding halide with phtalimide and subsequent reaction with hydrazine or by rearranging acyl azides in the presence of water (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1276 and the literature cited therein).
- Carbonyl compounds of the formula (XVIII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Med. Chem. 1989, 32, 1277; Chem. Ber. 1938, 71, 335; Bull. Soc. Chim. Fr. 1996, 123, 679).
- Carbonyl compounds of the formula (XIX) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature, (cf., for example, WO 96/11902; DE-2209128; Synthesis 1995, 1135; Bull. Chem. Soc. Jpn. 1985, 58, 2192).
- Carbonyl compounds of the formula (XX) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, Synthesis 1983, 942; J. Am. Chem. Soc. 1992, 114, 8158).
- Carbonyl compounds of the formulae (XVIII), (XIX) and (XX) can also be prepared according to generally known processes, for example by oxidizing alcohols, by reducing acid chlorides or by reducing nitrites (cf., for example, J. March, Advanced Organic Chemistry, fourth edition, Wiley, 1992, page 1270 and the literature cited therein).
- Compounds of the formula (XII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, for aromatic boronic acids: J. Chem. Soc. C 1966, 566. J. Org. Chem., 38, 1973, 4016; or for tributyltin compounds: Tetrahedron Lett. 31, 1990, 1347).
- Compounds of the formula (XIII) are commercially available, known from the literature, or can be synthesized analogously to processes known from the literature (cf., for example, J. Chem. Soc. Chem. Commun., 17, 1994, 1919).
- The compounds according to the invention, in particular the compounds of the general formula (I), show a valuable range of pharmacological effects which could not have been predicted.
- The compounds according to the invention, in particular the compounds of the general formula (I), bring about vasorelaxation and an inhibition of platelet aggregation and lead to a reduction in blood pressure and an increase in the coronary blood flow. These effects are mediated by direct stimulation of soluble guanylate cyclase and an intracellular increase in cGMP.
- They can therefore be employed in medicaments for the treatment of cardiovascular disorders such as, for example, for the treatment of high blood pressure and heart failure, stable and unstable angina pectoris, peripheral and cardiac vascular disorders, of arrhythmias, for the treatment of thromboembolic disorders and ischemias such as myocardial infarction, stroke, transitory and ischemic attacks, disturbances of peripheral blood flow, prevention of restenosis such as after thrombolysis therapies, percutaneous transluminal angioplasties (PTAs), percutaneous transluminal coronary angioplasties (PTCAs), bypass and for the treatment of arteriosclerosis, fibrotic disorders, such as fibrosis of the liver or pulmonary fibrosis, asthmatic disorders and diseases of the urogenital system such as, for example, prostate hypertrophy, erectile dysfunction, female sexual dysfunction and incontinence and also for the treatment of glaucoma.
- The compounds described in the present invention, in particular the compounds of the general formula (I), are also active compounds suitable for controlling central nervous system diseases characterized by disturbances of the NO/cGMP system. They are suitable in particular for removing cognitive deficits, for improving learning and memory performances and for treating Alzheimer's disease. They are also suitable for treating disorders of the central nervous system such as states of anxiety, tension and depression, CNS-related sexual dysfunctions and sleep disturbances, and for controlling pathological disturbances of the intake of food, stimulants and addictive substances.
- The active compounds are furthermore also suitable for regulating cerebral blood flow and thus represent effective agents for controlling migraine.
- They are also suitable for the prophylaxis and control of the sequelae of cerebral infarction (apoplexia cerebri) such as stroke, cerebral ischemias and craniocerebral trauma. The compounds according to the invention, in particular the compounds of the general formula (I), can likewise be employed for controlling states of pain.
- In addition, the compounds according to the invention have an anti-inflammatory effect and can therefore be employed as anti-inflammatory agents.
- Vasorelaxant Effect In Vitro
- Rabbits are anesthetized or killed by intravenous injection of thiopental sodium (about 50 mg/kg) and exsanguinated. The arteria saphena is removed and divided into rings 3 mm wide. The individual rings are in each case mounted on a pair of hooks of triangular shape, open at the ends and made of special wire (Remanium®) having a diameter of 0.3 mm. Under tension, each ring is introduced into a 5 ml organ bath containing carbogen-gassed Krebs-Henseleit solution at 37° C. with the following composition (mM): NaCl: 119; KCl: 4.8; CaCl2×2H2O: 1; MgSO4×7H2O: 1.4; KH2PO4: 1.2; NaHCO3: 25; glucose: 10; bovine serum albumin: 0.001%. The force of contraction is detected with Statham UC2 cells, amplified and digitized via A/D converters (DAS-1802 HC, Keithley Instruments, Munich) and recorded in parallel on chart recorders. Contractions are generated by adding phenylephrine.
- After several (generally 4) control cycles, the substance to be investigated is added in each further run in increasing dosage in each case, and the height of the contraction reached under the influence of the test substance is compared with the height of the contraction reached in the last preceding run. The concentration necessary to reduce the height of the control value by 50% (IC50) is calculated from this. The standard application volume is 5 μl. The DMSO content in the bath solution corresponds to 0.1%.
- The results are shown in Table 1:
TABLE 1 Vasorelaxant effect in vitro Example IC50 [nM] 3 2 4 22 5 7 9 61 10 51 13 94 16 125 - Stimulation of Recombinant Soluble Guanylate Cyclase (sGC) In Vitro
- The investigations of the stimulation of recombinant soluble guanylate cyclase (sGC) and the compounds according to the invention with and without sodium nitroprusside and with and without the heme-dependent sGC inhibitor 1H-1,2,4-oxadiazole-(4,3a)-quinoxalin-1-one (ODQ) were carried out according to the method described in detail in the following literature reference: M. Hoenika, E. M. Becker, H. Apeler, T. Sirichoke, H. Schroeder, R. Gerzer and J-P. Stasch: Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon oxide. J. Mol. Med. 77 (1999): 14-23.
- The heme-free guanylate cyclase was obtained by adding Tween 20 to the sample buffer (final concentration 0.5%).
- Activation of sGC by a test substance is stated as n-fold stimulation of basal activity.
- The present invention includes pharmaceutical preparations which, in addition to non-toxic, inert, pharmaceutically acceptable carriers, comprises the compounds according to the invention, in particular the compounds of the general formula (I), and processes for preparing these preparations.
- The active compound, if appropriate in one or more of the carriers listed above, can also be present in microencapsulated form.
- The therapeutically effective compounds, in particular the compounds of the general formula (I), should be present in the pharmaceutical preparations detailed above in a concentration of about 0.1 to 99.5, preferably of about 0.5 to 95, % by weight of the complete mixture.
- The pharmaceutical preparations detailed above may, apart from the compounds according to the invention, in particular the compounds of the general formula (I), also contain other active pharmaceutical ingredients.
- It has generally proved to be advantageous both in human and in veterinary medicine to administer the active compound(s) according to the invention in total amounts of about 0.5 to about 500, preferably 5 to 100, mg/kg of body weight every 24 hours, where appropriate in the form of a plurality of single doses, to achieve the desired results. A single dose contains the active compound(s) according to the invention preferably in amounts of about 1 to about 80, in particular 3 to 30, mg/kg of body weight.
- Below, the present invention is illustrated in more detail using non-limiting preferred examples. Unless indicated otherwise, all quantities are stated in percent by weight.
- Abbreviations
RT: room temperature EA: ethyl acetate BABA: n-butyl acetate/n-butanol/glacial acetic acid/phosphate buffer pH 6 (50:9:25.15; org. phase) - Mobile Phases for Thin-Layer Chromatography:
T1 E1: toluene - ethyl acetate (1:1) T1 EtOH1: toluene - methanol (1:1) C1 E1: cyclohexane - ethyl acetate (1:1) C1 E2: cyclohexane - ethyl acetate (1:2) - Starting Materials
-
- A solution of 2.98 g (14.24 mmol) of 3,4-bis(chloromethyl)-2,5-dimethylthiophene (Gärtner et al., J. Amer. Chem. Soc., 73, 1951, 5872) in 30 ml of dry acetonitrile is, with 1.9 ml (14.24 mmol) of trimethylsilyl cyanide and 12.96 ml (14.42 mmol) of a 1-N-tetra-n-butylammonium fluoride solution in THF, slowly added dropwise and stirred at room temperature overnight. The mixture is then evaporated to dryness using a rotary evaporator and the resulting crude product is purified by column chromatography (cyclohexane/ethyl acetate 10:1). This gives 0.82 g (4.1 mmol, 28% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 2:1): 0.39.
-
- MS (DCI, NH3): 234 (M+N2H7 +), 217 (M+NH4 +).
-
- 830 mg (6.04 mmol) of anhydrous potassium carbonate are added to a solution of 800 mg (4.33 mmol) of [4-(chloromethyl)-2,5-dimethyl-3-thienyl]acetonitrile from Ex. I and 840 mg (4.83 mmol) of 4-bromophenol in 20 ml of acetonitrile, and the mixture is, under argon, heated at reflux for 12 h. After cooling and removal of the solvent, the resulting crude product is purified by preparative HPLC, giving 1.149 g (3.42 mmol, 85% yield) of a colorless solid.
- Rf(cyclohexane/ethyl acetate 2:1): 0.45.
-
- MS (DCI, NH3: 353.1 (M+NH4 +).
-
- 557 mg (4.18 mmol) of aluminum trichloride are dissolved in 10 ml of THF and, under argon, cooled to 0° C., and 2.81 ml of a lithium aluminum hydride solution (1M in THF) are added slowly. A solution of 937 mg (2.79 mmol) of {4[(4-bromophenoxy)methyl]-2,5-dimeethyl-3-thienyl}acetonitrile from Ex. II in 10 ml of THF is then slowly added dropwise to the reaction solution. After 2 h of stirring at room temperature, the reaction solution is cooled to 0° C. and quenched with ice-water, made alkaline using aqueous sodium hydroxide solution, extracted with ethyl acetate and dried over magnesium sulfate. After removal of the solvent, the resulting crude product is purified by preparative HPLC, giving 693 mg (2.04 mmol, 73% yield) of a colorless oil.
- Rf(dichloromethane/methanol 10:1): 0.26.
-
- MS (DCI, NH3): 680.9 [2M+H+], 340.1 (M+H+).
-
- A solution of 640 mg (1.88 mmol) of 2-{4-[(4-bromophenoxy)methyl]-2,5-dimethyl-3-thienyl}ethylamine from Example III and 308 g (1.88 mmol) of methyl 4-formylbenzoate in 5 ml of ethanol is heated at reflux for 2 hours. The solvent is then removed under reduced pressure and the resulting residue is dissolved in 5 ml of methanol. A total of 142 mg (3.76 mmol) of solid NaBH4 are added a little at a time. After two hours of stirring at room temperature, the mixture is poured into water and extracted with ethyl acetate. The organic extract is washed with saturated sodium chloride solution and dried over Na2SO4. After filtration, the solvent is removed under reduced pressure and the resulting crude product is purified by preparative HPLC. This gives 897 mg (1.84 mmol, 97% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate, 1:1): 0.57.
-
- MS (DCI, NH3): 488.1 (M+H+).
-
- 16.1 g (116.4 mmol) of potassium carbonate are added to a solution of 20 g (96.97 mmol) of methyl 3-hydroxy-5,6,7,8-tetrahydro-2-naphthalenecarboxylate (CAS 52888-73-0) and 25.45 g (101.8 mmol) of 4-bromobenzyl bromide in 600 ml of anhydrous acetonitrile, and the mixture is heated at reflux. After 20 hours, most of the solvent is removed using a rotary evaporator and the residue is partitioned between diethyl ether and phosphate buffer (pH 5.5). The organic phase is separated off and dried over anhydrous sodium sulfate. Filtration and concentration using a rotary evaporator give a crude product which is purified by crystallization from ether. This gives 20.2 g (56% yield) of a colorless solid.
- Rf(cyclohexane/ethyl acetate 5:1): 0.49.
-
- MS (ESI): 375 and 377 (M+H+), 397 and 399 (M+Na+).
-
- Under argon and at −78° C., a solution of 20.0 g (53.3 mmol) of methyl 3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthalenecarboxylate in 250 ml of anhydrous diethyl ester is admixed with 40 ml (40 mmol) of a one-molar solution of LiAlH4 in ether. Overnight, the mixture is allowed to warm to room temperature. The mixture is then carefully adjusted to pH 1-2 using 2-molar hydrochloric acid and extracted with ether. The organic phase is separated off and dried over anhydrous sodium sulfate. Filtration and concentration using a rotary evaporator gives 16.4 g (89% yield) of a colorless solid.
- Rf(cyclohexane/ethyl acetate 5:1): 0.20.
-
- MS (DCI, NH3): 364 and 366 (M+NH4 +).
-
- 35 ml (473 mmol) of freshly distilled thionyl chloride are added to a solution of 16.4 g (47.23 mmol) of {3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}-methanol in 35 ml of dichloromethane. A drop of DMF is added, and the mixture is then heated at reflux for one hour. The solvent and excess thionyl chloride are then distilled off. The residue is recrystallized from ether which contains a little cyclohexane. This gives 17.2 g (99% yield) of a yellow solid.
- Rf(cyclohexane/ethyl acetate 1:1): 0.78.
-
- MS (DCI, NH3): 382 (M+NH4 +).
-
- 2.78 g (56.77 mmol) of sodium cyanide are added to a solution of 17.3 g (47.31 mmol) of 6-[(4-bromobenzyl)oxy]-7-(chloromethyl)-1,2,3,4-tetrahydronaphthalene in 850 ml of dimethylformamide, and the mixture is stirred at room temperature overnight. Water is then added, and the mixture is extracted with ether. The organic phase is dried over anhydrous sodium sulfate. Filtration and concentration using a rotary evaporator give 13.89 g (82% yield) of product.
- Rf(cyclohexane/ethyl acetate 3:1): 0.51.
-
- MS (DCI, NH3): 373 and 375 (M+NH4 +).
-
- 38 ml of a 2-molar solution of borane/dimethyl sulfide complex in tetrahydrofuran (THF) are added to a solution of 13.5 g (37.89 mmol) of {3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}acetonitrile in 300 ml of anhydrous THF. The mixture is heated at reflux for 5 hours. After cooling, the mixture is acidified with dilute hydrochloric acid and once more heated briefly (5 minutes). The mixture is then made alkaline using aqueous sodium hydroxide solution and extracted with ether. The organic extract is dried over anhydrous sodium sulfate. Filtration and concentration using a rotary evaporator give 14.2 g of a yellow wax-like solid which is only about 92% pure but, in spite of this, is used without purification for the next step.
- Rf(cyclohexane/ethyl acetate 3:1) 0.81.
-
- MS (DCI, NH3): 360 and 362 (M+H+).
-
- A solution of 14.84 g (41.18 mmol) of 2-{3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}ethylamine and 6.08 g (37.06 mmol) of methyl 4-formylbenzoate in 300 ml of toluene is heated at reflux in a water separator for 30 minutes. The toluene is then removed using a rotary evaporator and the residue is taken up in methanol. 2.34 g (61.77 mmol) of solid sodium borohydride are added with ice-cooling to the methanolic solution. The mixture is stirred at room temperature for 30 minutes and then neutralized with 5% strength sodium dihydrogen phosphate solution, diluted with water and extracted with ether. The organic phase is dried over sodium sulfate. The crude product obtained after filtration and concentration using a rotary evaporator is purified by silica gel flash chromatography using the mobile phase cyclohexane/ethyl acetate 2:1. This gives 5.62 g (27% yield).
- Rf(cyclohexane/ethyl acetate 1:1): 0.26.
-
- MS (ESI): 508 and 510 (M+H+).
-
- 2.3 g (4.52 mmol) of methyl 4-{[(2-{3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}ethyl)amino]methyl}benzoate, 1.06 g (5.43 mmol) of methyl bromovalerate and 0.75 g (5.43 mmol) of potassium carbonate in 150 ml of butyronitrile are heated at reflux. After 48 hours, the reaction has ended. The mixture is evaporated to dryness. The residue is then taken up in ethyl acetate and washed with water. The organic phase is dried over sodium sulfate. After filtration and concentration using a rotary evaporator, the crude product is purified by silica gel flash chromatography using the mobile phase cyclohexane/ethyl acetate 6:1. This gives 622 mg (60% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 1:1): 0.53
-
- MS (ESI): 622 and 624 (M+H+).
-
- 9.58 g (69.31 mmol) of anhydrous potassium carbonate are added to a solution of 3.86 g (37.73 mmol) of 2-(hydroxymethyl)-6-methyl-3-pyridinol and 8.32 g (33.27 mmol) of 4-bromobenzyl bromide in 50 ml of acetonitrile, and the mixture is, under argon, heated at reflux for 12 h. After cooling and removal of the solvent, the resulting crude product is purified by column chromatography (cyclohexane/ethyl acetate 2/1), giving 7.205 g (23.38 mmol, 82% yield) of a colorless solid.
-
- MS (DCI, NH3): 308/310 (M+H+).
-
- A solution of 7.205 g (23.38 mmol) of {3-[(4-bromobenzyl)oxy]-6-methyl-2-pyridinyl}methanol in 160 ml of THF is added to a solution of 9.2 g (35.07 mmol) of triphenylphosphine and 11.63 g (35.07 mmol) of carbon tetrabromide in 320 ml of THF. After 5 hours of stirring at room temperature, a further 3.066 g of triphenylphosphine and 3.877 g of carbon tetrabromide (in each case 0.5 equivalents) are added in solid form. After 12 hours, the mixture is evaporated to dryness, taken up in ether and filtered through kieselguhr, the organic phase is concentrated by evaporation and the resulting product is isolated by flash chromatography (silica gel, dichloromethane). This gives 2.028 g (5.46 mmol, 23% yield) of a colorless solid.
- Rf(cyclohexane/ethyl acetate 1:1): 0.35.
-
- MS (DCI, NH3): 370/372 (M+H+).
-
- 2.99 ml (22.45 mmol) of trimethylsilyl cyanide and 22.45 ml (22.45 mmol) of a 1-N-tetra-n-butylammonium fluoride solution in THF are slowly added dropwise to a solution of 5.55 g (14.97 mmol) of 3-[(4-bromobenzyl)oxy]-2-(bromomethyl)-6-methylpyridine in 350 ml of dry acetonitrile, and the mixture is stirred at room temperature overnight. The mixture is then evaporated to dryness using a rotary evaporator and the resulting crude product is purified by column chromatography (cyclohexane/ethyl acetate 1.5:1). This gives 4.29 g (13.53 mmol, 90% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 2:1): 0.21.
-
- MS (DCI, NH3): 632.7/634.8 (2M+H+), 317 (M+H+).
-
- At 0° C., 525 μl (30.76 mmol) of a borane-dimethyl sulfide complex solution are slowly added dropwise to a solution of 3.25 g (10.25 mmol) of {3-[(4-bromobenzyl)-oxy]-6-methyl-2-pyridinyl}acetonitrile in 50 ml of THF. After thawing and two hours of stirring at room temperature, the reaction solution is cooled to 0° C. and quenched with a 1-N—HCl solution. The mixture is then evaporated to dryness using a rotary evaporator, taken up in ethyl acetate and made alkaline using aqueous sodium hydroxide solution. The organic phase is dried over magnesium sulfate, and, after removal of the solvent, the resulting crude product is purified by column chromatography (dichloromethane/methanol/acetic acid 100:10:1.5), giving 325 mg (1.01 mmol, 10% yield) of a colorless oil.
- Rf(dichloromethane/methanol 10:1): 0.05.
- LC-MS: Rt=1.524 min, MS (ESI): 321 (M+H+).
- LC-MS Method:
- Column: Symmetry C 18; 21 mm×150 mm; 5 μm
- Ionization: ESI positive/negative
- Oven temperature: 70° C.
- Solvent A: acetonitrile
- Solvent B: 0.3 g of HCl (30%)/1 l of water
- Gradient: A/B 2/98 to 95/5 over a period of 2.5 min
- Flow rate: 0.9 ml/min to 1.2 ml/min over a period of 2 min
- MS (DCI, NH3): 321.1/323.1 (M+H+).
-
- A solution of 675 mg (2.10 mmol) of 2-{3-[(4-bromobenzyl)oxy]-6-methyl-2-pyridinyl}ethylamine and 345 mg (2.10 mmol) of methyl 4-formylbenzoate in 5 ml of ethanol is heated at reflux for two hours. The solvent is then removed under reduced pressure and the resulting residue is dissolved in 5 ml of methanol. A total of 159 mg (4.21 mmol) of solid NaBH4 are added a little at a time. After two hours of stirring at room temperature, the mixture is poured into water and extracted with ethyl acetate. The organic extract is washed with saturated sodium chloride solution and dried over Na2SO4. After filtration, the solvent is removed under reduced pressure and the resulting crude product is purified by preparative HPLC. This gives 351 mg (0.75 mmol, 35% yield) of a colorless oil.
-
- MS (ESI): 469 (M+H+).
-
- 134 mg (1.27 mmol) of anhydrous sodium carbonate are added to a solution of 298 mg (0.63 mmol) of methyl 4-{[(2-{3-[(4-bromobenzyl)oxy]-6-methyl-2-pyridinyl}ethyl)amino]methyl}benzoate and 150 μl (0.95 mmol) of methyl 5-bromovalerate in 3 ml of acetonitrile, and the mixture is heated at reflux for 12 hours. The mixture is then concentrated by evaporation, taken up in ethyl acetate and washed with water. After drying over Na2SO4, filtration and concentration, the product is purified by preparative HPLC. This gives 293 mg (0.49 mmol, 77% yield) of a colorless oil.
-
- LC-MS: Rt=3.45 min; MS (ESIpos): 597/599 (M+).
- LC-MS Method:
- HPLC unit: HP 1100
- UV detector DAD: 208-400 nm
- Column: Symmetry C18; 50 mm×2.1 mm; 3.5 μm
- Ionization: ESI positive/negative
- Oven temperature: 40° C.
- Solvent A: CH3CN+0.1% formic acid
- Solvent B: H2O+0.1% formic acid
- Gradient:
Time A % B % Flow rate 0.00 10.0 90.0 0.50 4.00 90.0 10.0 0.50 6.00 90.0 10.0 0.50 6.10 10.0 90.0 1.00 7.50 10.0 90.0 0.50 -
- 365 mg (3.45 mmol) of anhydrous sodium carbonate are added to a solution of 842 mg (1.72 mmol) of methyl 4-{[2-{4-[(4-bromophenoxy)methyl]-2,5-dimethyl-3-thienyl}ethyl)amino]methyl}benzoate from Ex. IV and 409 μl (2.59 mmol) of methyl 5-bromovalerate in 10 ml of acetonitrile, and the mixture is heated at reflux for 12 hours. The mixture is then concentrated by evaporation, taken up in ethyl acetate and washed with water. After drying over Na2SO4, filtration and concentration, the product is purified by preparative HPLC. This gives 1.058 g (1.71 mmol, 93% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 2:1): 0.44.
-
- MS (ESI): 616 (M+H+).
-
- 120 mg (0.19 mmol) of methyl 4-{[(2-{4-[(4-bromophenoxy)methyl]-2,5-dimethyl-3-thienyl}ethyl)(5-ethoxy-5-oxopentyl)amino]methyl}benzoate from Ex. 1 are dissolved in 2 ml of 1,2-dimethoxyethane, and 44 mg (0.23 mmol) of 2,4-dichlorophenylboronic acid, 7 mg (0.01 mmol) of bis(triphenylphoshine)-palladium(II) chloride and 215 μl of a 2-molar solution of Na2CO3 in water are added under argon. The reaction mixture is then stirred under reflux for 12 h. The mixture is then cooled and filtered through 1 g of Extrelute, the filter cake is washed with dichloromethane and the filtrate is concentrated using a rotary evaporator. The resulting product is purified by preparative HPLC. This gives 73 mg (0.11 mmol, 53% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 2:1): 0.51. 1H-NMR (300 MHz, DMSO-d6, δ/ppm): 8.01 (2H, d), 7.71 (1H, d), 7.64 (2H, d), 7.49 (1H, dd), 7.41 (1H, s), 7.36 (2H, d), 7.00 (2H, d), 4.89 (2H, s), 4.47 (2H, s), 4.00 (2H, q), 3.84 (3H, s), 3.21-2.71 (6H, m), 2.37 (3H, s), 2.28 (3H, s), 2.14 (2H, t), 1.691.51 (2H, m), 1.48-1.31 (2H, m), 1.13 (3H, t).
- MS (ESI): 681.9 (M+H+).
-
- 500 μl of a 45% strength solution of NaOH in water are added to a solution of 68 mg (0.1 mmol) of methyl 4-{[[2-(4-{(2′,4′-dichloro-1,1′-biphenyl-4-yl)oxy]methyl}-2,5-dimethyl-3-thienyl)ethyl](5-ethoxy-5-oxopentyl)amino]methyl}benzoate from Ex. 2 in 4.0 ml of dioxane and 2 ml of water, and the mixture is stirred at 90° C. for 2 hours. After cooling, the dioxane is removed under reduced pressure and the aqueous phase is adjusted to pH 4 to 5 using 1-molar hydrochloric acid. This results in the precipitation of the product, which is filtered off, washed with water and dried. This gives 47 mg (0.07 mmol, 72% yield) of a white solid.
- Rf(ethyl acetate/methanol, 7:3): 0.22.
-
- MS (ESI): 639.9 (M+H+).
- The following compounds were prepared in an analogous manner:
Ex. Formula Analytical data 4 (from 1 and 4-trifluoro- methylphenyl- boronic acid and then analogously to Ex. 2 and 3) 1H-NMR: δ[ppm] (DMSO- d6): 12.31(1H, broad), 9.99 (1H, broad), 8.08-7.91 (2H, m), 7.89-7.72(6H, m), 7.67 (2H, d), 7.08(2H, d), 4.89 (2H, s), 3.45(2H, s), 3.22-2.88(4H, m), 2.60-2.00 (10H, m, including 2.39 (3H, s), 2.27(3H, s), 2.08 (2H, t)), # 1.76-1.49(2H, m), 1.48-1.29(2H, m). (200 MHz) 5 (from 1 and 4-methoxy- phenylboronic acid and then analogously to Ex. 2 and 3) 1H-NMR: δ[ppm] (DMSO- d6): 12.4(2H, broad), 7.53 (6H, dd), 6.98(6H, d), 4.81 (2H, s), 3.79(3H, s), 3.60 (2H, s), 2.71-2.02(16H, m, partially obscured by DMSO, including 2.37(3H, s), 2.21(3H, s), 2.09(2H, t)), 1.48-1.28(4H, m). (200 MHz) 6 (from 1 and 4- chlorophenyl- boronic acid and then analogously to Ex. 2 and 3) 1H-NMR: δ[ppm] (DMSO- d6): 12.2(2H, broad), 7.82 (2H, d), 7.61(4H, t), 7.49 (2H, d), 7.35(2H, d), 7.03 (2H, d), 4.71(2H, s), 3.60 (2H, s), 2.71-2.37(6H, m, partially obscured by DMSO), 2.35(3H, s), 2.19 (3H, s), 2.08(2H, t)), 1.46-1.31(4H, m). (200 MHz) 7 (from 1 and 4-fluoro- phenylboronic acid and then analogously to Ex. 2 and 3) 1H-NMR: δ[ppm] (DMSO- d6): 12.5(1H, broad), 10.05 (1H, broad), 8.08-7.77(2H, m), 7.71-7.51(6H, m), 7.38 (2H, t), 7.02(2H, d), 4.86 (2H, s), 4.48(2H, s), 3.20-2.69(4H, m), 2.60-2.02 (10H, m, partially obscured by DMSO, including 2.36 (3H, s), # 2.27(3H, s), 2.09 (2H, t)), 1.48-1.29(4H, m). (200 MHz) 8 (from 1 and 4-carboxy- phenylboronic acid and then analogously to Ex. 2 and 3) MS: 616.1 (M + H+) 9 (from land 4- t-butylphenyl- boronic acid and then analogously to Ex. 2 and 3) MS: 628.1 (M + H+) 10 (from 1 and 3-methoxy- phenylboronic acid and then analogously to Ex. 2 and 3) 1H-NMR: δ[ppm] (DMSO- d6): 12.2(1H, broad), 10.05 (1H, broad), 8.09-7.78(2H, m), 7.59(2H, d), 7.41-7.29 (2H, m), 7.22-7.09(2H, m), 7.01(2H, d), 6.91(2H, d), 4.87(2H, s), 4.46(2H, s), 3.82(3H, s), 3.21-2.89(4H, m), 2.59-2.02(10H, m, partially obscured # by DMSO, mcludmg 2.38(3H, s), 2.28(3H, s), 2.09(2H, t)), 1.48-1.28(4H, m). (200 MHz) -
- 56.5 mg (0.35 mmol) of 4-methoxyphenylboronic acid and 0.48 ml of a 2-molar solution of sodium carbonate in water are added to a solution of 200 mg (0.32 mmol) of methyl 4-{[(2-{3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}ethyl)(5-methoxy-5-oxopentyl)amino]methyl}benzoate and 11.1 mg (3 mol %) of tetrakis-(triphenylphosphine)palladium-(0) in 10 ml of dimethoxyethane (DME). Under argon, the mixture is heated at reflux for three hours. pH5 phosphate buffer and ether are then added. The phases are separated. The aqueous phase is extracted with ether. The combined ether phases are dried over sodium sulfate, filtered and concentrated using a rotary evaporator. The product is isolated by silica gel flash chromatography using the mobile phase cyclohexane/ethyl acetate 8:1. This gives 160 mg (77% yield) of a pale yellow oil.
- Rf(cyclohexane/ethyl acetate 5:1): 0.10.
-
- MS (ESI): 650 (M+H+).
-
- In a manner analogous to that described for Synthesis Example 11, 200 mg (0.32 mmol) of methyl 4-{[(2-{3-[(4-bromobenzyl)oxy]-5,6,7,8-tetrahydro-2-naphthyl}ethyl)(5-methoxy-5-oxopentyl)amino]methyl}benzoate, 11.1 mg (3 mol %) of tetrakis(triphenylphosphine)palladium-(0), 70.6 mg (0.35 mmol) of 4-(trifluoromethyl)phenylboronic acid and and 0.48 ml of a 2-molar solution of sodium carbonate in 10 ml of DME give, after silica gel flash chromatography (cyclohexane/ethyl acetate 10:1), 170 mg (67% yield) of a light-yellow oil.
- Rf(cyclohexane/ethyl acetate 5:1): 0.16.
-
- MS (ESI): 688 (M+H+).
-
- 8 ml of a 2-molar aqueous sodium hydroxide solution are added to a solution of 140 mg (0.22 mmol) of methyl 4-{[(2-{3-[(4′-methoxy-1,1′-biphenyl-4-yl)-methoxy]-5,6,7,8-tetrahydro-2-naphthyl} ethyl)(5-methoxy-5-oxopentyl)amino]-methyl}benzoate in 4 ml of tetrahydrofuran and 4 ml of methanol, and the mixture is heated at reflux. After the reaction has ended, the mixture is diluted with a little water and extracted with ether. The aqueous phase is adjusted to pH 5 using 2-molar hydrochloric acid and extracted with ethyl acetate. The ethyl acetate extract is evaporated to dryness. The residue is boiled with ether and, after cooling, filtered. This gives 85 mg (63% yield) of a light-beige solid.
- Melting point: >240° C.
- Rf(ethyl acetate): <0.05.
-
- MS (ESI): 622 (M+H+).
-
- Analogously to the procedure described in Synthesis Example 13, 140 mg of methyl 4-({(5-methoxy-5-oxopentyl)[2-(3-{[4′-(trifluoromethyl)-1,1′-biphenyl-4-yl]-methoxy}-5,6,7,8-tetrahydro-2-naphthyl)ethyl]amino}methyl)benzoate give 79 mg (56% yield) of a white solid.
-
- MS (ESI): 660 (M+H+).
-
- 134 mg (0.22 mmol) of methyl 4-{[(2-{3-[(4-bromobenzyl)oxy]-6-methyl-2-pyridinyl}ethyl)(5-ethoxy-5-oxopentyl)amino]methyl}benzoate are dissolved in 2 ml of 1,2-dimethoxyethane, and 51 mg (0.27 mmol) of 4-trifluoromethylphenylboronic acid, 8 mg (0.01 mmol) of bis(triphenylphoshine)palladium(II) chloride and 250 μl of a 2-molar solution of Na2CO3 in water are added under argon. The reaction mixture is then stirred under reflux for 12 h. The mixture is then cooled and filtered through 3 g of Extrelute, the filter cake is washed with dichloromethane and the filtrate is concentrated using a rotary evaporator. The resulting product is purified by column chromatography (dichloromethane/methanol, 100:5). This gives 135 mg (0.20 mmol, 91% yield) of a colorless oil.
- Rf(cyclohexane/ethyl acetate 2:1): 0.28.
-
- MS (ESI): 663 (M+H+).
-
- 51 μl of a 45% strength solution of NaOH in water are added to a solution of 125 mg (0.19 mmol) of methyl 4-({(5-ethoxy-5-oxopentyl)[2-(6-methyl-3-{[4′-(trifluoromethyl)-1,1′-biphenyl-4-yl]methoxy}-2-pyridinyl)ethyl]amino}methyl)-benzoate in 1.0 ml of dioxane and 1 ml of water, and the mixture is stirred at 60° C. for 4 hours. After cooling, the dioxane is removed under reduced pressure and the aqueous phase is adjusted to pH 4-5 using 1-molar hydrochloric acid. This causes the precipitation of the product, which is filtered off, washed with water and dried. This gives 83 mg (0.13 mmol, 89% yield) of a white solid.
-
- MS (ESI): 621 (M+H+).
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/581,261 US7705043B2 (en) | 2001-03-07 | 2006-10-10 | Substituted aminodicarboxylic acid derivatives having pharmaceutical properties |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10110750A DE10110750A1 (en) | 2001-03-07 | 2001-03-07 | Novel aminodicarboxylic acid derivatives with pharmaceutical properties |
DE10110750.1 | 2001-03-07 | ||
PCT/EP2002/001891 WO2002070510A2 (en) | 2001-03-07 | 2002-02-22 | Amino dicarboxylic acid derivatives with pharmaceutical properties |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/581,261 Continuation US7705043B2 (en) | 2001-03-07 | 2006-10-10 | Substituted aminodicarboxylic acid derivatives having pharmaceutical properties |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040082798A1 true US20040082798A1 (en) | 2004-04-29 |
Family
ID=7676478
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,817 Abandoned US20040082798A1 (en) | 2001-03-07 | 2002-02-22 | Novel amino dicarboxylic acid derivatives with pharmaceutical properties |
US11/581,261 Expired - Fee Related US7705043B2 (en) | 2001-03-07 | 2006-10-10 | Substituted aminodicarboxylic acid derivatives having pharmaceutical properties |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/581,261 Expired - Fee Related US7705043B2 (en) | 2001-03-07 | 2006-10-10 | Substituted aminodicarboxylic acid derivatives having pharmaceutical properties |
Country Status (7)
Country | Link |
---|---|
US (2) | US20040082798A1 (en) |
EP (1) | EP1368335A2 (en) |
JP (1) | JP4535679B2 (en) |
AU (1) | AU2002234645A1 (en) |
CA (1) | CA2439756C (en) |
DE (1) | DE10110750A1 (en) |
WO (1) | WO2002070510A2 (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050009870A1 (en) * | 2003-07-11 | 2005-01-13 | Sher Philip M. | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20050282820A1 (en) * | 2004-06-17 | 2005-12-22 | Wyeth | Processes for preparing gonadotropin releasing hormone receptor antagonists |
US20050288366A1 (en) * | 2001-03-01 | 2005-12-29 | Bayer Aktiengesellschaft | Novel aminodicarboxylic acid derivatives |
US20060111355A1 (en) * | 2004-11-23 | 2006-05-25 | Wyeth | Gonadotropin releasing hormone receptor antagonists |
US20060189616A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | 7-Substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189618A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | 4-Substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189617A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | Imidazo[4,5-b]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189619A1 (en) * | 2005-02-24 | 2006-08-24 | Wyeth | 3-({4-[2-(4-Tert-butylphenyl)-1h-benzimidazol-4-yl]piperazin-1-yl}methyl)pyrido[2,3-b]]pyrazi ne compounds |
US20060264631A1 (en) * | 2005-05-18 | 2006-11-23 | Wyeth | Benzooxazole and benzothiazole antagonists of gonadotropin releasing hormone receptor |
US20060270848A1 (en) * | 2005-05-26 | 2006-11-30 | Wyeth | Piperazinylimidazopyridine and piperazinyltriazolopyridine antagonists of gonadotropin releasing hormone receptor |
US20060281768A1 (en) * | 2005-06-10 | 2006-12-14 | Gaul Michael D | Thienopyrimidine and thienopyridine kinase modulators |
US20070135477A1 (en) * | 2003-07-03 | 2007-06-14 | Astex Therapeuctics, Limited | Benzimidazole derivatives and their use as protein kinases inhibitors |
US20070225318A1 (en) * | 2004-09-20 | 2007-09-27 | Biolipox Ab | Pyrazole Compounds Useful In The Treatment Of Inflammation |
US20080071095A1 (en) * | 2004-06-24 | 2008-03-20 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette Transporters |
US20080081821A1 (en) * | 2006-08-21 | 2008-04-03 | Genentech, Inc. | AZA-benzothiophenyl compounds and methods of use |
US20080085886A1 (en) * | 2006-08-21 | 2008-04-10 | Genentech, Inc. | Aza-benzofuranyl compounds and methods of use |
US20080132495A1 (en) * | 2004-12-30 | 2008-06-05 | Astex Therapeutics Limited | Pyrazole Compounds that Modulate the Activity of Cdk, Gsk and Aurora Kinases |
US20090088463A1 (en) * | 2005-11-01 | 2009-04-02 | Benjamin Pelcman | Pyrazoles Useful in the Treatment of Inflammation |
US20090105272A1 (en) * | 2005-12-24 | 2009-04-23 | Grootenhuis Peter D J | Prodrugs of modulators of ABC transporters |
US20090143455A1 (en) * | 2005-10-20 | 2009-06-04 | Benjamin Pelcman | Pyrazoles Useful in the Treatment of Inflammation |
US20090143440A1 (en) * | 2005-10-31 | 2009-06-04 | Biolipox Ab | Pyrazoles Useful in the Treatment of Inflammation |
US20090186918A1 (en) * | 2005-10-31 | 2009-07-23 | Benjamin Pelcman | Triazole Compounds as Lipoxygenase Inhibitors |
US20090215843A1 (en) * | 2005-10-21 | 2009-08-27 | Stephan Bartel | Tetrazole Derivatives and Their Use for the Treatment of Cardiovascular Diseases |
US20090227640A1 (en) * | 2005-10-21 | 2009-09-10 | Bayer Healthcare Ag | Heterocyclic compounds with carboxyl isostere groups and their use for the treatment of cardiovascular diseases |
US20090286882A1 (en) * | 2005-10-21 | 2009-11-19 | Bayer Healthcare Ag | Cyclopropylacetic Acid Derivatives and Use Thereof |
US20090291993A1 (en) * | 2005-10-21 | 2009-11-26 | Stephan Bartel | Difluorophenol Derivatives and Their Use |
US20100029772A1 (en) * | 2005-10-21 | 2010-02-04 | Stephan Bartel | Dicarboxylic Acid Derivatives and their Use |
US7696210B2 (en) | 2004-06-17 | 2010-04-13 | Wyeth | Gonadotropin releasing hormone receptor antagonists |
US20100168240A1 (en) * | 2007-03-29 | 2010-07-01 | Bayer Schering Pharma Aktiengesellschaft | Substituted dibenzoic acid derivatives and use thereof |
US20100184739A1 (en) * | 2004-06-24 | 2010-07-22 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette Transporters |
US20100197680A1 (en) * | 2007-03-29 | 2010-08-05 | Michael Hahn | Lactam-substituted dicarboxylic acids and use thereof |
US20100234432A1 (en) * | 2007-09-07 | 2010-09-16 | Bayer Animal Health Gmbh | Substituted 6-phenylnicotinic acids and their use |
US20100261698A1 (en) * | 2008-06-27 | 2010-10-14 | Christopher Adams | Organic compounds |
US20110064811A1 (en) * | 2005-12-28 | 2011-03-17 | Patricia Hurter | Solid forms of N-[2,4-BIS(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US20110159474A1 (en) * | 2007-06-06 | 2011-06-30 | Bayer Schering Pharma Aktiengesellschaft | Solutions for perfusing and preserving organs and tissues |
US20110159111A1 (en) * | 2006-06-29 | 2011-06-30 | Astex Therapeutics Limited | Pharmaceutical combinations |
US8399442B2 (en) | 2005-12-30 | 2013-03-19 | Astex Therapeutics Limited | Pharmaceutical compounds |
US8435970B2 (en) | 2006-06-29 | 2013-05-07 | Astex Therapeutics Limited | Pharmaceutical combinations of 1-cyclopropyl-3-[3-(5-morpholin-4-ylmethyl-1H-benzoimidazol-2-yl)-1H-pyrazol-4-yl]-urea |
US8673903B2 (en) | 2010-05-14 | 2014-03-18 | Bayer Intellectual Property Gmbh | Substituted 8-alkoxy-2-aminotetralin derivatives, and use thereof |
US8796324B2 (en) | 2009-03-18 | 2014-08-05 | Bayer Intellectual Property Gmbh | Substituted 2-acetamido-5-aryl-1,2,4-triazolones and use thereof |
US8802700B2 (en) | 2010-12-10 | 2014-08-12 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette transporters |
US8859601B2 (en) | 2008-12-06 | 2014-10-14 | Bayer Intellectual Property Gmbh | Substituted benzyl and phenylsulfonyl triazolones, and use thereof |
US8981104B2 (en) | 2012-07-20 | 2015-03-17 | Bayer Pharma Aktiengesellschaft | 5-aminotetrahydroquinoline-2-carboxylic acids and their use |
US9034855B2 (en) | 2010-09-16 | 2015-05-19 | Bayer Intellectual Property Gmbh | Substituted phenylacetate and phenylpropane amides and use thereof |
US9180120B2 (en) | 2010-09-02 | 2015-11-10 | Bayer Intellectual Property Gmbh | Substituted N-phenethyltriazoloneacetamides and use thereof |
US9187466B2 (en) | 2010-02-27 | 2015-11-17 | Bayer Intellectual Property Gmbh | Bisaryl-bonded aryltriazolones and use thereof |
CN105658621A (en) * | 2013-10-15 | 2016-06-08 | 东亚荣养株式会社 | 4-aminomethylbenzoic acid derivative |
US9387203B2 (en) | 2012-07-20 | 2016-07-12 | Bayer Pharma Aktiengesellschaft | Substituted aminoindane- and aminotetralinecarboxylic acids and the use thereof |
US9701639B2 (en) | 2014-10-07 | 2017-07-11 | Vertex Pharmaceuticals Incorporated | Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator |
US9751839B2 (en) | 2009-03-20 | 2017-09-05 | Vertex Pharmaceuticals Incorporated | Process for making modulators of cystic fibrosis transmembrane conductance regulator |
US9771352B2 (en) | 2014-11-03 | 2017-09-26 | Bayer Pharma Aktiengesellschaft | Hydroxyalkyl-substituted phenyltriazole derivatives and uses thereof |
US9988367B2 (en) | 2016-05-03 | 2018-06-05 | Bayer Pharma Aktiengesellschaft | Amide-substituted pyridinyltriazole derivatives and uses thereof |
US10272046B2 (en) | 2012-02-27 | 2019-04-30 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US10336749B2 (en) | 2015-08-21 | 2019-07-02 | Bayer Pharma Aktiengesellschaft | Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and the purification thereof for use as an active pharmaceutical ingredient |
US10414765B2 (en) | 2015-12-10 | 2019-09-17 | Bayer Pharma Aktiengesellschaft | Substituted perhydropyrrolo[3,4-c]pyrrole derivatives and the use of same |
US10646481B2 (en) | 2008-08-13 | 2020-05-12 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US10722501B2 (en) | 2016-05-09 | 2020-07-28 | Bayer Aktiengesellschaft | Substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine-3(2H)-ones and 2,5,6,7-tetrahydro-3H-pyrrolo[2,1-C][1,2,4]triazol-3-ones, and use thereof |
US10759794B2 (en) | 2015-12-10 | 2020-09-01 | Bayer Pharma Aktiengesellschaft | 2-phenyl-3-(piperazinomethyl)imidazo[1,2-A]pyridine derivatives as blockers of task-1 and task-2 channels, for the treatment of sleep-related breathing disorders |
US10927098B2 (en) | 2016-10-20 | 2021-02-23 | Bayer Pharma Aktiengesellschaft | Hydroxyalkyl-substituted triazole derivatives and uses thereof |
US11098063B2 (en) | 2017-06-14 | 2021-08-24 | Bayer Aktiengesellschaft | Diazabicyclic substituted imidazopyrimidines and their use for the treatment of breathing disorders |
US11149023B2 (en) | 2017-10-24 | 2021-10-19 | Bayer Pharma Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US11166932B2 (en) | 2015-07-23 | 2021-11-09 | Bayer Pharma Aktiengesellschaft | Stimulators and/or activators of soluble guanylate cyclase (sGC) in combination with an inhibitor of neutral endopeptidase (NEP inhibitor) and/or an angiotensin AII antagonist and the use thereof |
US11173151B2 (en) | 2017-10-24 | 2021-11-16 | Bayer Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US11230540B2 (en) | 2017-10-24 | 2022-01-25 | Bayer Pharma Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US11298367B2 (en) | 2017-10-24 | 2022-04-12 | Bayer Aktiengesellschaft | Prodrugs of substituted triazole derivatives and uses thereof |
US11331314B2 (en) | 2017-10-24 | 2022-05-17 | Bayer Pharma Aktiengesellschaft | Amine substituted triazole derivatives and uses thereof |
US12138256B2 (en) | 2021-12-29 | 2024-11-12 | Bayer Aktiengesellschaft | Treatment of cardiopulmonary disorders |
Families Citing this family (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10110747A1 (en) * | 2001-03-07 | 2002-09-12 | Bayer Ag | Substituted 2,6-diamino-3,5-dicyano-4-aryl-pyridines and their use |
DE10216145A1 (en) * | 2002-04-12 | 2003-10-23 | Bayer Ag | Use of stimulators of soluble guanylate cyclase to produce a medicament for treating glaucoma |
NZ543448A (en) | 2003-06-06 | 2009-02-28 | Fibrogen Inc | Nitrogen-containing heteroaryl compounds and their use in increasing endogeneous erythropoietin |
NZ544756A (en) | 2003-07-22 | 2009-09-25 | Astex Therapeutics Ltd | 3,4-Disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3) modulators |
AU2005275181A1 (en) | 2004-07-14 | 2006-02-23 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
US7868037B2 (en) | 2004-07-14 | 2011-01-11 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
US7772271B2 (en) | 2004-07-14 | 2010-08-10 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
US7781478B2 (en) | 2004-07-14 | 2010-08-24 | Ptc Therapeutics, Inc. | Methods for treating hepatitis C |
WO2006019832A1 (en) | 2004-07-22 | 2006-02-23 | Ptc Therapeutics, Inc. | Thienopyridines for treating hepatitis c |
DE102004042607A1 (en) * | 2004-09-03 | 2006-03-09 | Bayer Healthcare Ag | Substituted phenylaminothiazoles and their use |
AU2005311985A1 (en) | 2004-12-01 | 2006-06-08 | Kalypsys, Inc. | Inducible nitric oxide synthase dimerization inhibitors |
AU2006207321B2 (en) | 2005-01-21 | 2012-09-06 | Astex Therapeutics Limited | Pharmaceutical compounds |
KR101346886B1 (en) | 2005-01-21 | 2014-01-02 | 아스텍스 테라퓨틱스 리미티드 | Pharmaceutical compounds |
KR101446499B1 (en) | 2006-01-27 | 2014-10-06 | 피브로겐, 인크. | Cyanoisoquinoline compounds that stabilize hypoxia inducible factor(hif) |
US7696223B2 (en) | 2006-04-04 | 2010-04-13 | Fibrogen, Inc. | Pyrrolo- and Thiazolo-pyridine compounds, and methods of use thereof |
DE102006024024A1 (en) | 2006-05-23 | 2007-11-29 | Bayer Healthcare Aktiengesellschaft | Substituted arylimidazolones and triazolones and their use |
DE102006042143A1 (en) * | 2006-09-08 | 2008-03-27 | Bayer Healthcare Aktiengesellschaft | Novel substituted bipyridine derivatives and their use |
DE102006044696A1 (en) | 2006-09-22 | 2008-03-27 | Bayer Healthcare Ag | 3-cyano-5-thiazaheteroaryl-dihydropyridines and their use |
DE102006056739A1 (en) * | 2006-12-01 | 2008-06-05 | Bayer Healthcare Ag | Substituted 4-amino-3,5-dicyano-2-thiopyridines and their use |
DE102006056740A1 (en) * | 2006-12-01 | 2008-06-05 | Bayer Healthcare Ag | Cyclic substituted 3,5-dicyano-2-thiopyridines and their use |
DE102007009494A1 (en) | 2007-02-27 | 2008-08-28 | Bayer Healthcare Ag | New 1,6-naphthyridine or 8-azaquinazoline derivatives useful for treating aldosteronism, hypertension, cardiac insufficiency, myocardial infarct sequelae, liver cirrhosis, renal insufficiency and stroke |
DE102007019691A1 (en) | 2007-04-26 | 2008-10-30 | Bayer Healthcare Ag | Use of acyclically substituted furopyrimidine derivatives for the treatment of pulmonary arterial hypertension |
DE102007019690A1 (en) | 2007-04-26 | 2008-10-30 | Bayer Healthcare Ag | Use of cyclic substituted furopyrimidine derivatives for the treatment of pulmonary arterial hypertension |
DE102007027799A1 (en) | 2007-06-16 | 2008-12-18 | Bayer Healthcare Ag | Substituted furopyrimidines and their use |
DE102007027800A1 (en) | 2007-06-16 | 2008-12-18 | Bayer Healthcare Ag | Substituted bicyclic heteroaryl compounds and their use |
WO2009000878A1 (en) | 2007-06-28 | 2008-12-31 | Novartis Ag | Kallikrein 7 modulators |
DE102007035367A1 (en) | 2007-07-27 | 2009-01-29 | Bayer Healthcare Ag | Substituted aryloxazoles and their use |
DE102007036076A1 (en) | 2007-08-01 | 2009-02-05 | Bayer Healthcare Aktiengesellschaft | Dipeptoid Produgs and their use |
DE102007051762A1 (en) | 2007-10-30 | 2009-05-07 | Bayer Healthcare Ag | Substituted pyrrolotriazines and their use |
DE102007054786A1 (en) | 2007-11-16 | 2009-05-20 | Bayer Healthcare Ag | Trisubstituted Furopyrimidines and their Use |
DE102007061764A1 (en) | 2007-12-20 | 2009-06-25 | Bayer Healthcare Ag | Anellated cyanopyridines and their use |
DE102007061766A1 (en) | 2007-12-20 | 2009-06-25 | Bayer Healthcare Ag | New 4-(4-cyano-2-thioaryl)-dihydro-pyrimidinone compounds are human neutrophil elastase inhibitor, useful for the treatment or prevention of e.g. pulmonary arterial hypertonia, acute lung injury and diseases of the cardiovascular system |
DE102007061763A1 (en) * | 2007-12-20 | 2009-06-25 | Bayer Healthcare Ag | Substituted azabicyclic compounds and their use |
DE102007061756A1 (en) | 2007-12-20 | 2009-06-25 | Bayer Healthcare Ag | Substituted 4-aminopyrimidine-5-carboxylic acids and their use |
DE102008022521A1 (en) | 2008-05-07 | 2009-11-12 | Bayer Schering Pharma Aktiengesellschaft | 1,4-Diaryl-pyrimidopyridazine-2,5-diones and their use |
DE102007061757A1 (en) | 2007-12-20 | 2009-06-25 | Bayer Healthcare Ag | Substituted 2-phenylpyrimidine-5-carboxylic acids and their use |
DE102008052013A1 (en) | 2008-10-17 | 2010-04-22 | Bayer Schering Pharma Aktiengesellschaft | New 4-(4-cyano-2-thioaryl)dihydropyrimidinone compounds are neutrophil elastase inhibitors useful to treat or prevent e.g. pulmonary arterial hypertension, chronic obstructive pulmonary disease, acute lung injury, or cystic fibrosis |
DE102008007400A1 (en) | 2008-02-04 | 2009-08-06 | Bayer Healthcare Ag | Substituted furans and their use |
DE102008013587A1 (en) * | 2008-03-11 | 2009-09-17 | Bayer Schering Pharma Aktiengesellschaft | Heteroaryl-substituted dicyanopyridines and their use |
WO2009123316A1 (en) | 2008-04-04 | 2009-10-08 | 武田薬品工業株式会社 | Heterocyclic derivative and use thereof |
ES2428818T3 (en) * | 2008-05-29 | 2013-11-11 | Bayer Intellectual Property Gmbh | Dicianopyridines substituted with 2-alkoxy and their use |
DE102008030206A1 (en) | 2008-06-25 | 2009-12-31 | Bayer Schering Pharma Aktiengesellschaft | 3-cyanoalky- and 3-hydroxyalkyl-indoles and their use |
DE102008030207A1 (en) | 2008-06-25 | 2009-12-31 | Bayer Schering Pharma Aktiengesellschaft | Substituted 7-sulfanylmethyl, 7-sulfinylmethyl and 7-sulfonylmethyl-indoles and their use |
DE102008039083A1 (en) | 2008-08-21 | 2010-02-25 | Bayer Schering Pharma Aktiengesellschaft | Substituted 5-aminopyrazoles and their use |
DE102008039082A1 (en) | 2008-08-21 | 2010-02-25 | Bayer Schering Pharma Aktiengesellschaft | Azabicyclic-substituted 5-aminopyrazoles and their use |
DE102008054205A1 (en) | 2008-10-31 | 2010-05-06 | Bayer Schering Pharma Aktiengesellschaft | Use of helium-oxygen gas mixtures for the treatment of pulmonary arterial hypertension |
AU2009314155B2 (en) | 2008-11-14 | 2015-10-08 | Fibrogen, Inc. | Thiochromene derivatives as HIF hydroxylase inhibitors |
DE102008062566A1 (en) | 2008-12-16 | 2010-06-17 | Bayer Schering Pharma Aktiengesellschaft | Amino acid ester prodrugs and their use |
DE102008062567A1 (en) | 2008-12-16 | 2010-06-17 | Bayer Schering Pharma Aktiengesellschaft | Dipeptoid prodrugs and their use |
DE102009004197A1 (en) | 2009-01-09 | 2010-07-15 | Bayer Schering Pharma Aktiengesellschaft | Heterocyclic fused diaryldihydropyrimidine derivatives and their use |
DE102009006602A1 (en) | 2009-01-29 | 2010-08-05 | Bayer Schering Pharma Aktiengesellschaft | Alkylamino-substituted dicyanopyridines and their amino acid ester prodrugs |
DE102009013642A1 (en) | 2009-03-18 | 2010-09-23 | Bayer Schering Pharma Aktiengesellschaft | Substituted phenylalanine derivatives and their use |
DE102009016553A1 (en) | 2009-04-06 | 2010-10-07 | Bayer Schering Pharma Aktiengesellschaft | Sulfonamide- and sulfoximine-substituted diaryldihydropyrimidinones and their use |
DE102009028929A1 (en) | 2009-08-27 | 2011-07-07 | Bayer Schering Pharma Aktiengesellschaft, 13353 | Heterocyclic-substituted 2-acetamido-5-aryl-1,2,4-triazolones and their use |
RS54261B1 (en) | 2010-05-26 | 2016-02-29 | Adverio Pharma Gmbh | The use of sgc stimulators, sgc activators, alone and combinations with pde5 inhibitors for the treatment of systemic sclerosis (ssc) |
DE102010030187A1 (en) | 2010-06-16 | 2011-12-22 | Bayer Schering Pharma Aktiengesellschaft | New 4-cyano-2-sulfonylphenyl-pyrazolyl-substituted pyridinones and pyrazinones compounds are human neutrophil elastase inhibitors, useful to treat and prevent e.g. pulmonary arterial hypertension and chronic obstructive pulmonary disease |
CA2803688A1 (en) | 2010-06-25 | 2011-12-29 | Bayer Intellectual Property Gmbh | Use of stimulators and activators of soluble guanylate cyclase for treating sickle-cell anemia and conserving blood substitutes |
DE102010030688A1 (en) | 2010-06-30 | 2012-01-05 | Bayer Schering Pharma Aktiengesellschaft | Substituted dicyanopyridines and their use |
LT2593452T (en) | 2010-07-14 | 2017-04-10 | Novartis Ag | Ip receptor agonist heterocyclic compounds |
US20120058983A1 (en) | 2010-09-02 | 2012-03-08 | Bayer Pharma Aktiengesellschaft | Adenosine A1 agonists for the treatment of glaucoma and ocular hypertension |
EP2726502A1 (en) | 2011-07-01 | 2014-05-07 | Bayer Intellectual Property GmbH | Relaxin fusion polypeptides and uses thereof |
KR20140039257A (en) | 2011-07-08 | 2014-04-01 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | Fusion proteins releasing relaxin and uses thereof |
UY34305A (en) | 2011-09-01 | 2013-04-30 | Novartis Ag | DERIVATIVES OF BICYCLIC HETEROCICLES FOR THE TREATMENT OF PULMONARY ARTERIAL HYPERTENSION |
JP6073923B2 (en) | 2012-01-13 | 2017-02-01 | ノバルティス アーゲー | Condensed pyrrole as an IP receptor agonist for the treatment of pulmonary arterial hypertension (PAH) and related disorders |
US20140357641A1 (en) | 2012-01-13 | 2014-12-04 | Novartis Ag | IP receptor agonist heterocyclic compounds |
US20140378463A1 (en) | 2012-01-13 | 2014-12-25 | Novartis Ag | IP receptor agonist heterocyclic compounds |
US20150005311A1 (en) | 2012-01-13 | 2015-01-01 | Novartis Ag | IP receptor agonist heterocyclic compounds |
ES2561353T3 (en) | 2012-01-13 | 2016-02-25 | Novartis Ag | Sales of an IP receiver agonist |
EP2802585A1 (en) | 2012-01-13 | 2014-11-19 | Novartis AG | Fused piperidines as ip receptor agonists for the treatment of pah and related disorders |
CN104470899B (en) | 2012-03-09 | 2017-12-26 | 菲布罗根有限公司 | The 4 isoquinolinol compounds as HIF hydroxylase inhibitors |
WO2013144191A1 (en) | 2012-03-29 | 2013-10-03 | Bayer Intellectual Property Gmbh | Substituted 2-amino-3-cyanopyridines as inhibitors of sodium-calcium exchange and use thereof for cardiovascular diseases |
UA112897C2 (en) | 2012-05-09 | 2016-11-10 | Байєр Фарма Акцієнгезелльшафт | BICYCLIC SUBSTITUTED URATILES AND THEIR APPLICATIONS FOR THE TREATMENT AND / OR PREVENTION OF DISEASES |
MX350922B (en) | 2012-07-16 | 2017-09-25 | Fibrogen Inc | Process for making isoquinoline compounds. |
US8883823B2 (en) | 2012-07-16 | 2014-11-11 | Fibrogen, Inc. | Crystalline forms of a prolyl hydroxylase inhibitor |
AU2013290438C1 (en) | 2012-07-16 | 2019-01-03 | Fibrogen, Inc. | Crystalline forms of the prolyl hydroxylase inhibitor [(4-hydroxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid |
MX360048B (en) | 2013-01-24 | 2018-10-19 | Fibrogen Inc | Crystalline forms of {[1-cyano-5-(4-chlorophenoxy)-4-hydroxy-isoq uinoline-3-carbonyl]-amino}-acetic acid. |
US9604981B2 (en) | 2013-02-13 | 2017-03-28 | Novartis Ag | IP receptor agonist heterocyclic compounds |
US9073921B2 (en) | 2013-03-01 | 2015-07-07 | Novartis Ag | Salt forms of bicyclic heterocyclic derivatives |
EP3024455A1 (en) | 2013-07-25 | 2016-06-01 | Bayer Pharma Aktiengesellschaft | Sgc stimulators or sgc activators and pde5 inhibitors in combination with additional treatment for the therapy of cystic fibrosis |
EP3046912A1 (en) | 2013-09-16 | 2016-07-27 | Bayer Pharma Aktiengesellschaft | Disubstituted trifluormethyl pyrimidinones and use thereof as ccr2 antagonists |
BR112016007238A2 (en) | 2013-10-07 | 2017-08-01 | Bayer Pharma AG | cyclic thienouracylcarboxamides and their use |
CN105980381A (en) | 2013-11-08 | 2016-09-28 | 拜耳医药股份有限公司 | Substituted uracils and use thereof |
EP3066096A1 (en) | 2013-11-08 | 2016-09-14 | Bayer Pharma Aktiengesellschaft | Substituted uracils as chymase inhibitors |
US20160318866A1 (en) | 2013-12-19 | 2016-11-03 | Bayer Pharma Aktiengesellschaft | Substituted bipiperidinyl derivatives |
EP3083593A1 (en) | 2013-12-19 | 2016-10-26 | Bayer Pharma Aktiengesellschaft | Substituted piperidinyl-tetrahydroquinolines |
JOP20200052A1 (en) | 2013-12-19 | 2017-06-16 | Bayer Pharma AG | Substituted piperidinyl-tetrahydroquinolines and their use as alpha-2c adrenoreceptor antagonists |
WO2015091420A1 (en) | 2013-12-19 | 2015-06-25 | Bayer Pharma Aktiengesellschaft | Substituted bipiperidinyl derivatives as adrenoreceptor alpha 2c antagonists |
CN106661008A (en) | 2014-04-03 | 2017-05-10 | 拜耳制药股份公司 | 2,5-disubstituted cyclopentane carboxylic acids for the treatment of respiratoy tract diseases |
CN106458938A (en) | 2014-04-03 | 2017-02-22 | 拜耳制药股份公司 | Chiral 2,5-disubstituted cyclopentanecarboxylic acid derivatives and use thereof |
US20170022171A1 (en) | 2014-04-03 | 2017-01-26 | Bayer Pharma Aktiengesellschaft | 2,5-disubstituted cyclopentanecarboxylic acids and their use |
CN106458979B (en) | 2014-04-24 | 2020-03-27 | 诺华股份有限公司 | Aminopyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
CA2945069A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors |
CA2945257A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
TW201625601A (en) | 2014-07-02 | 2016-07-16 | 諾華公司 | Thiophen-2-yl-pyridin-2-yl-1H-pyrazole-4-carboxylic acid derivatives and the use thereof as soluble guanylate cyclase activators |
TW201625584A (en) | 2014-07-02 | 2016-07-16 | 諾華公司 | Indane and indoline derivatives and the use thereof as soluble guanylate cyclase activators |
TW201625586A (en) | 2014-07-02 | 2016-07-16 | 諾華公司 | Cyclohexen-1-yl-pyridin-2-yl-1H-pyrazole-4-carboxylic acid derivatives and the use thereof as soluble guanylate cyclase activators |
MX369467B (en) | 2014-08-01 | 2019-11-08 | Bayer Pharma AG | Method for the preparation of (4s)-4-(4-cyano-2-methoxyphenyl)-5- ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carbox-amide and the purification thereof for use as an active pharmaceutical ingredient. |
EP3191452A1 (en) | 2014-09-09 | 2017-07-19 | Bayer Pharma Aktiengesellschaft | Substituted n,2-diarylquinoline-4-carboxamides and the use thereof as anti-inflammatory agents |
EP3197891B1 (en) | 2014-09-24 | 2018-11-21 | Bayer Pharma Aktiengesellschaft | Factor xia-inhibiting pyridobenzazepine and pyridobenzazocine derivatives |
WO2016113205A1 (en) | 2015-01-13 | 2016-07-21 | Bayer Pharma Aktiengesellschaft | Substituted pentafluoroethyl pyrimidinones and use thereof |
UY36586A (en) | 2015-03-26 | 2016-10-31 | Bayer Pharma AG | HETEROCICLILMETILTIENOURACILOS AND USE OF THE SAME |
EA201792346A1 (en) | 2015-05-06 | 2018-05-31 | Байер Фарма Акциенгезельшафт | APPLICATION of sGC STIMULATORS, sGC ACTIVATORS, SEPARATELY AND IN COMBINATION WITH PDE5 INHIBITORS, FOR THE TREATMENT OF PALCULAR ULCER (DU), ASSOCIATED TO SYSTEMIC SCLEROSE (SSc) |
KR20180074793A (en) | 2015-11-13 | 2018-07-03 | 바이엘 파마 악티엔게젤샤프트 | 4- (4-cyano-2-thioaryl) dihydropyrimidinone for chronic wound treatment |
WO2017153235A1 (en) | 2016-03-09 | 2017-09-14 | Bayer Pharma Aktiengesellschaft | Substituted n-cyclo-3-aryl-1-naphthamides and use thereof |
WO2017153231A1 (en) | 2016-03-09 | 2017-09-14 | Bayer Pharma Aktiengesellschaft | Substituted n-cyclo-2-aryl-isoquinolinone-4-carboxamides and use thereof |
WO2017153234A1 (en) | 2016-03-09 | 2017-09-14 | Bayer Pharma Aktiengesellschaft | Substituted n-cyclo-2-aryl-quinoline-4-carboxamides and use thereof |
TW201806943A (en) | 2016-05-03 | 2018-03-01 | 拜耳製藥股份有限公司 | Amide-substituted phenyltriazole derivatives and uses thereof |
JP6911052B2 (en) | 2016-05-03 | 2021-07-28 | バイエル ファーマ アクチエンゲゼルシャフト | Oxoalkyl-substituted phenyltriazole derivatives and their use |
EP3452472A1 (en) | 2016-05-03 | 2019-03-13 | Bayer Aktiengesellschaft | Hydroxyalkyl-substituted heteroaryltriazole derivatives and uses thereof |
WO2017191117A1 (en) | 2016-05-03 | 2017-11-09 | Bayer Pharma Aktiengesellschaft | V1a receptor antagonists for use in the treatment of renal diseases |
US10525041B2 (en) | 2016-05-03 | 2020-01-07 | Bayer Pharma Aktiengesellschaft | Fluoroalkyl-substituted aryltriazole derivatives and uses thereof |
US20190119251A1 (en) | 2016-05-03 | 2019-04-25 | Bayer Pharma Aktiengesellschaft | Amide-substituted aryltriazole derivatives and uses thereof |
US10519154B2 (en) | 2016-07-11 | 2019-12-31 | Bayer Pharma Aktiengesellschaft | 7-substituted 1-pyridyl-naphthyridine-3-carboxylic acid amides and use thereof |
JOP20190005A1 (en) | 2016-07-20 | 2019-01-20 | Bayer Ag | Substituted diazahetero-bicyclic compounds and their use |
WO2018041771A1 (en) | 2016-09-02 | 2018-03-08 | Bayer Pharma Aktiengesellschaft | (1-methylcyclopropyl)methyl-substituted thienouraciles and use thereof |
JOP20190045A1 (en) | 2016-09-14 | 2019-03-14 | Bayer Ag | 7-substituted 1-aryl-naphthyridine-3-carboxylic acid amides and use thereof |
EP3296298A1 (en) | 2016-09-14 | 2018-03-21 | Bayer Pharma Aktiengesellschaft | 7-substituted 1-aryl-naphthyridin-3-carboxamides and their use |
CA3037642A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Aktiengesellschaft | N 3 -cyclically substituted thienouraciles and use thereof |
EP3525778A1 (en) | 2016-10-11 | 2019-08-21 | Bayer Pharma Aktiengesellschaft | Combination containing sgc activators and mineralocorticoid receptor antagonists |
JOP20190080A1 (en) | 2016-10-14 | 2019-04-11 | Bayer Pharma AG | Substituted 6-(1h-pyrazol-1-yl)pyrimidin-4-amine derivatives and uses thereof |
JOP20190141A1 (en) | 2016-12-21 | 2019-06-12 | Bayer Pharma AG | Pharmaceutical dosage forms containing task-1 and task-3 channel inhibitors, and the use of same in breathing disorder therapy |
JOP20190148A1 (en) | 2016-12-21 | 2019-06-18 | Bayer Pharma AG | Pharmaceutical dosage forms containing task-1 and task-3 channel inhibitors, and the use of same in breathing disorder therapy |
EP3338764A1 (en) | 2016-12-21 | 2018-06-27 | Bayer Pharma Aktiengesellschaft | Pharmaceutical dosage forms containing inhibitors for task-1 and task-3 channels and their use in therapy of respiratory disorders |
EP3338803A1 (en) | 2016-12-21 | 2018-06-27 | Bayer Pharma Aktiengesellschaft | Pharmaceutical dosage forms containing inhibitors for task-1 and task-3 channels and their use in therapy of respiratory disorders |
PE20191716A1 (en) | 2017-02-08 | 2019-12-05 | Bristol Myers Squibb Co | MODIFIED RELAXIN POLYPEPTIDES INCLUDING A PHARMACOKINETIC ENHANCER AND THEIR USES |
TWI770157B (en) | 2017-04-10 | 2022-07-11 | 德商拜耳廠股份有限公司 | Substituted n-arylethyl-2-aminoquinoline-4-carboxamides and use thereof |
BR112019021136A2 (en) | 2017-04-10 | 2020-07-21 | Bayer Aktiengesellschaft | substituted n-arylethyl-2-arylquinoline-4-carboxamides and use thereof |
WO2018227427A1 (en) | 2017-06-14 | 2018-12-20 | Bayer Aktiengesellschaft | Substituted bridged diazepane derivatives and use thereof |
EP3684767B1 (en) | 2017-09-22 | 2024-04-24 | Jubilant Epipad LLC | Heterocyclic compounds as pad inhibitors |
FI3697785T3 (en) | 2017-10-18 | 2023-04-03 | Jubilant Epipad LLC | Imidazo-pyridine compounds as pad inhibitors |
WO2019081302A1 (en) | 2017-10-24 | 2019-05-02 | Bayer Pharma Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
WO2019081291A1 (en) | 2017-10-24 | 2019-05-02 | Bayer Aktiengesellschaft | Prodrugs of substituted triazole derivatives and uses thereof |
WO2019081456A1 (en) | 2017-10-24 | 2019-05-02 | Bayer Aktiengesellschaft | Use of activators and stimulators of sgc comprising a beta2 subunit |
KR20200085836A (en) | 2017-11-06 | 2020-07-15 | 주빌런트 프로델 엘엘씨 | Pyrimidine derivatives as PD1/PD-L1 activation inhibitors |
EP3707141B1 (en) | 2017-11-07 | 2021-12-22 | Bayer Aktiengesellschaft | Substituted 2,4-dihydro-3h-1,2,4-triazol-3-ones and use of same |
HUE067265T2 (en) | 2017-11-24 | 2024-10-28 | Jubilant Episcribe Llc | Heterocyclic compounds as prmt5 inhibitors |
EP3498298A1 (en) | 2017-12-15 | 2019-06-19 | Bayer AG | The use of sgc stimulators and sgc activators alone or in combination with pde5 inhibitors for the treatment of bone disorders including osteogenesis imperfecta (oi) |
CA3093527A1 (en) | 2018-03-13 | 2019-09-19 | Jubilant Prodel LLC | Bicyclic compounds as inhibitors of pd1/pd-l1 interaction/activation |
EP3553079A1 (en) | 2018-04-12 | 2019-10-16 | Bayer Aktiengesellschaft | C-type natriuretic peptide engrafted antibodies |
EP3553082A1 (en) | 2018-04-12 | 2019-10-16 | Bayer Aktiengesellschaft | Brain natriuretic peptide engrafted antibodies |
EP3553081A1 (en) | 2018-04-12 | 2019-10-16 | Bayer Aktiengesellschaft | Atrial natriuretic peptide engrafted antibodies |
EP3787610A1 (en) | 2018-04-30 | 2021-03-10 | Bayer Aktiengesellschaft | The use of sgc activators and sgc stimulators for the treatment of cognitive impairment |
EP3793553A1 (en) | 2018-05-15 | 2021-03-24 | Bayer Aktiengesellschaft | 1,3-thiazol-2-yl substituted benzamides for the treatment of diseases associated with nerve fiber sensitization |
JP2021523910A (en) | 2018-05-17 | 2021-09-09 | バイエル・アクチエンゲゼルシヤフト | Substituted dihydropyrazolopyrazine carboxamide derivative |
WO2019223629A1 (en) | 2018-05-22 | 2019-11-28 | 广东东阳光药业有限公司 | Phenyl-substituted dihydronaphthyridine compound and use thereof |
EP3574905A1 (en) | 2018-05-30 | 2019-12-04 | Adverio Pharma GmbH | Method of identifying a subgroup of patients suffering from dcssc which benefits from a treatment with sgc stimulators and sgc activators in a higher degree than a control group |
PE20211285A1 (en) | 2018-11-27 | 2021-07-19 | Bayer Ag | PROCESS FOR THE PRODUCTION OF PHARMACEUTICAL FORMS CONTAINING INHIBITORS OF THE TASK-1 AND TASK-3 CHANNELS AND THEIR USE FOR THE THERAPY OF RESPIRATORY DISORDERS |
EP3911675A1 (en) | 2019-01-17 | 2021-11-24 | Bayer Aktiengesellschaft | Methods to determine whether a subject is suitable of being treated with an agonist of soluble guanylyl cyclase (sgc) |
WO2020164008A1 (en) | 2019-02-13 | 2020-08-20 | Bayer Aktiengesellschaft | Process for the preparation of porous microparticles |
WO2020165031A1 (en) | 2019-02-15 | 2020-08-20 | Bayer Aktiengesellschaft | Substituted isoquinoline-piperidinylmethanone derivatives |
CA3158150A1 (en) | 2019-10-18 | 2021-04-22 | The Regents Of The University Of California | 3-phenylsulphonyl-quinoline derivatives as agents for treating pathogenic blood vessels disorders |
WO2021078135A1 (en) | 2019-10-25 | 2021-04-29 | 广东东阳光药业有限公司 | Pyrrole amide compound and use thereof |
MX2022005414A (en) | 2019-11-06 | 2022-05-26 | Bayer Ag | Inhibitors of adrenoreceptor adrac2. |
WO2021094209A1 (en) | 2019-11-12 | 2021-05-20 | Bayer Aktiengesellschaft | Substituted pyrrolo triazine carboxamide derivatives as prostaglandin ep3 receptor antagonists |
WO2021094208A1 (en) | 2019-11-12 | 2021-05-20 | Bayer Aktiengesellschaft | Substituted imidazo pyrimidine ep3 antagonists |
WO2021094210A1 (en) | 2019-11-12 | 2021-05-20 | Bayer Aktiengesellschaft | Substituted pyrazine carboxamide derivatives as prostaglandin ep3 receptor antagonists |
CA3170507A1 (en) | 2020-02-21 | 2021-08-26 | Universiteit Maastricht | Use of a soluble guanylate cyclase (sgc) stimulator or of a combination of a sgc stimulator and an sgc activator for conditions wherein the heme group of sgc is oxidized or wherein sgc is deficient in heme |
CA3170508A1 (en) | 2020-02-26 | 2021-09-02 | Universiteit Maastricht | Therapeutic combination for the treatment of brain ischemia and said therapeutic combination for use in the treatment of brain ischemia |
WO2022112213A1 (en) | 2020-11-30 | 2022-06-02 | Bayer Aktiengesellschaft | Crystalline forms of 3-[[3-(4-chlorophenyl)-5-oxo-4-((2s)-3,3,3-trifluoro- 2-hydroxypropyl)-4,5-dihydro-1h-1,2,4-triazol-1-yl]methyl]-1-[3- (trifluoromethyl)pyridin-2-yl]-1h-1,2,4-triazole-5-carboxamide |
EP4011873A1 (en) | 2020-12-10 | 2022-06-15 | Bayer Aktiengesellschaft | Substituted pyrazolo piperidine carboxylic acids |
CN116829545A (en) | 2020-12-10 | 2023-09-29 | 拜耳公司 | Substituted pyrazolylpiperidine carboxylic acids |
EP4011874A1 (en) | 2020-12-10 | 2022-06-15 | Bayer Aktiengesellschaft | Substituted pyrazolo piperidine carboxylic acids |
EP4259140A1 (en) | 2020-12-10 | 2023-10-18 | Bayer Aktiengesellschaft | The use of sgc activators for the treatment of ophthalmologic diseases |
GEP20247649B (en) | 2020-12-10 | 2024-07-25 | Bayer Ag | Substituted pyrazolo piperidine carboxylic acids |
CN113563250B (en) * | 2021-07-28 | 2023-07-07 | 南华大学 | Tryptamine benzoate derivative and preparation and application thereof |
TW202412753A (en) | 2022-06-09 | 2024-04-01 | 德商拜耳廠股份有限公司 | Soluble guanylate cyclase activators for use in the treatment of heart failure with preserved ejection fraction in women |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5464853A (en) * | 1993-05-20 | 1995-11-07 | Immunopharmaceutics, Inc. | N-(5-isoxazolyl)biphenylsulfonamides, N-(3-isoxazolyl)biphenylsulfonamides and derivatives thereof that modulate the activity of endothelin |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981573A (en) * | 1996-02-07 | 1999-11-09 | Banyu Pharmaceutical Co., Ltd. | N,N-disubstituted amic acid derivatives |
BR0008701A (en) * | 1999-03-01 | 2001-12-26 | Pfizer Prod Inc | oxamic acids and derivatives as thyroid doreceptor ligands |
FR2794742B1 (en) * | 1999-06-11 | 2005-06-03 | Sanofi Synthelabo | NOVEL BENZENE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME |
-
2001
- 2001-03-07 DE DE10110750A patent/DE10110750A1/en not_active Withdrawn
-
2002
- 2002-02-22 US US10/469,817 patent/US20040082798A1/en not_active Abandoned
- 2002-02-22 AU AU2002234645A patent/AU2002234645A1/en not_active Abandoned
- 2002-02-22 JP JP2002569830A patent/JP4535679B2/en not_active Expired - Fee Related
- 2002-02-22 WO PCT/EP2002/001891 patent/WO2002070510A2/en active Application Filing
- 2002-02-22 EP EP02701292A patent/EP1368335A2/en not_active Withdrawn
- 2002-02-22 CA CA2439756A patent/CA2439756C/en not_active Expired - Fee Related
-
2006
- 2006-10-10 US US11/581,261 patent/US7705043B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5464853A (en) * | 1993-05-20 | 1995-11-07 | Immunopharmaceutics, Inc. | N-(5-isoxazolyl)biphenylsulfonamides, N-(3-isoxazolyl)biphenylsulfonamides and derivatives thereof that modulate the activity of endothelin |
Cited By (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050288366A1 (en) * | 2001-03-01 | 2005-12-29 | Bayer Aktiengesellschaft | Novel aminodicarboxylic acid derivatives |
US7329777B2 (en) * | 2001-03-01 | 2008-02-12 | Bayer Aktiengesellschaft | Methods for treating heart failure, thromboembolic disorders, and pulmonary fibrosis |
US20110224203A1 (en) * | 2003-07-03 | 2011-09-15 | Astex Therapeutics Limited | Benzimidazole derivatives and their use as protein kinase inhibitors |
US7977477B2 (en) | 2003-07-03 | 2011-07-12 | Astex Therapeutics, Limited | Benzimidazole derivatives and their use as protein kinase inhibitors |
US20070135477A1 (en) * | 2003-07-03 | 2007-06-14 | Astex Therapeuctics, Limited | Benzimidazole derivatives and their use as protein kinases inhibitors |
US7884113B2 (en) | 2003-07-11 | 2011-02-08 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20050014786A1 (en) * | 2003-07-11 | 2005-01-20 | Chongqing Sun | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US8119808B2 (en) | 2003-07-11 | 2012-02-21 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20050009870A1 (en) * | 2003-07-11 | 2005-01-13 | Sher Philip M. | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20110104315A1 (en) * | 2003-07-11 | 2011-05-05 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20080194625A1 (en) * | 2003-07-11 | 2008-08-14 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US7276608B2 (en) | 2003-07-11 | 2007-10-02 | Bristol-Myers Squibb Company | Tetrahydroquinoline derivatives as cannabinoid receptor modulators |
US20050282820A1 (en) * | 2004-06-17 | 2005-12-22 | Wyeth | Processes for preparing gonadotropin releasing hormone receptor antagonists |
US7714130B2 (en) | 2004-06-17 | 2010-05-11 | Wyeth | Processes for preparing gonadotropin releasing hormone receptor antagonists |
US7696210B2 (en) | 2004-06-17 | 2010-04-13 | Wyeth | Gonadotropin releasing hormone receptor antagonists |
US8354427B2 (en) | 2004-06-24 | 2013-01-15 | Vertex Pharmaceutical Incorporated | Modulators of ATP-binding cassette transporters |
US20100184739A1 (en) * | 2004-06-24 | 2010-07-22 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette Transporters |
US10662192B2 (en) | 2004-06-24 | 2020-05-26 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US9090619B2 (en) | 2004-06-24 | 2015-07-28 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US8629162B2 (en) | 2004-06-24 | 2014-01-14 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US8741925B2 (en) | 2004-06-24 | 2014-06-03 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US7495103B2 (en) | 2004-06-24 | 2009-02-24 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US8829204B2 (en) | 2004-06-24 | 2014-09-09 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US20080071095A1 (en) * | 2004-06-24 | 2008-03-20 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette Transporters |
US8101767B2 (en) | 2004-06-24 | 2012-01-24 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US8614327B2 (en) | 2004-06-24 | 2013-12-24 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-binding cassette transporters |
US8324242B2 (en) | 2004-06-24 | 2012-12-04 | Vertex Pharmaceutical Incorporated | Modulators of ATP-binding cassette transporters |
US20090227797A1 (en) * | 2004-06-24 | 2009-09-10 | Vertex Pharmaceuticals Incorporated | Modulators of atp-binding cassette transporters |
US20070225318A1 (en) * | 2004-09-20 | 2007-09-27 | Biolipox Ab | Pyrazole Compounds Useful In The Treatment Of Inflammation |
US20060111355A1 (en) * | 2004-11-23 | 2006-05-25 | Wyeth | Gonadotropin releasing hormone receptor antagonists |
US8778936B2 (en) | 2004-12-30 | 2014-07-15 | Astex Therapeutics Limited | Pyrazole compounds that modulate the activity of CDK, GSK and aurora kinases |
US8110573B2 (en) | 2004-12-30 | 2012-02-07 | Astex Therapeutics Limited | Pyrazole compounds that modulate the activity of CDK, GSK and aurora kinases |
US20080132495A1 (en) * | 2004-12-30 | 2008-06-05 | Astex Therapeutics Limited | Pyrazole Compounds that Modulate the Activity of Cdk, Gsk and Aurora Kinases |
US20060189616A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | 7-Substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189618A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | 4-Substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US7538113B2 (en) | 2005-02-18 | 2009-05-26 | Wyeth | 4-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US7534796B2 (en) | 2005-02-18 | 2009-05-19 | Wyeth | Imidazo[4,5-b]pyridine antagonists of gonadotropin releasing hormone receptor |
US7582634B2 (en) | 2005-02-18 | 2009-09-01 | Wyeth | 7-substituted imidazo[4,5-c]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189617A1 (en) * | 2005-02-18 | 2006-08-24 | Wyeth | Imidazo[4,5-b]pyridine antagonists of gonadotropin releasing hormone receptor |
US20060189619A1 (en) * | 2005-02-24 | 2006-08-24 | Wyeth | 3-({4-[2-(4-Tert-butylphenyl)-1h-benzimidazol-4-yl]piperazin-1-yl}methyl)pyrido[2,3-b]]pyrazi ne compounds |
US20060264631A1 (en) * | 2005-05-18 | 2006-11-23 | Wyeth | Benzooxazole and benzothiazole antagonists of gonadotropin releasing hormone receptor |
US7531542B2 (en) | 2005-05-18 | 2009-05-12 | Wyeth | Benzooxazole and benzothiazole antagonists of gonadotropin releasing hormone receptor |
US20060270848A1 (en) * | 2005-05-26 | 2006-11-30 | Wyeth | Piperazinylimidazopyridine and piperazinyltriazolopyridine antagonists of gonadotropin releasing hormone receptor |
US7582636B2 (en) | 2005-05-26 | 2009-09-01 | Wyeth | Piperazinylimidazopyridine and piperazinyltriazolopyridine antagonists of Gonadotropin Releasing Hormone receptor |
US20060281768A1 (en) * | 2005-06-10 | 2006-12-14 | Gaul Michael D | Thienopyrimidine and thienopyridine kinase modulators |
US20090143455A1 (en) * | 2005-10-20 | 2009-06-04 | Benjamin Pelcman | Pyrazoles Useful in the Treatment of Inflammation |
US8173704B2 (en) | 2005-10-21 | 2012-05-08 | Bayer Pharma Aktiengesellschaft | Difluorophenol derivatives and their use |
US20090286882A1 (en) * | 2005-10-21 | 2009-11-19 | Bayer Healthcare Ag | Cyclopropylacetic Acid Derivatives and Use Thereof |
US8609727B2 (en) | 2005-10-21 | 2013-12-17 | Bayer Intellectual Property Gmbh | Dicarboxylic acid derivatives and their use |
US20090227640A1 (en) * | 2005-10-21 | 2009-09-10 | Bayer Healthcare Ag | Heterocyclic compounds with carboxyl isostere groups and their use for the treatment of cardiovascular diseases |
US20090215843A1 (en) * | 2005-10-21 | 2009-08-27 | Stephan Bartel | Tetrazole Derivatives and Their Use for the Treatment of Cardiovascular Diseases |
US8183271B2 (en) | 2005-10-21 | 2012-05-22 | Bayer Intellectual Property Gmbh | Tetrazole derivatives and their use for the treatment of cardiovascular diseases |
US20090291993A1 (en) * | 2005-10-21 | 2009-11-26 | Stephan Bartel | Difluorophenol Derivatives and Their Use |
US8168821B2 (en) | 2005-10-21 | 2012-05-01 | Bayer Pharma Aktiengesellschaft | Cyclopropylacetic acid derivatives and use thereof |
US7998988B2 (en) | 2005-10-21 | 2011-08-16 | Bayer Schering Pharma Aktiengellschaft | Biphenyl compounds useful in the treatment or prevention of cardiovascular disorders |
US20100029772A1 (en) * | 2005-10-21 | 2010-02-04 | Stephan Bartel | Dicarboxylic Acid Derivatives and their Use |
US20090143440A1 (en) * | 2005-10-31 | 2009-06-04 | Biolipox Ab | Pyrazoles Useful in the Treatment of Inflammation |
US20090186918A1 (en) * | 2005-10-31 | 2009-07-23 | Benjamin Pelcman | Triazole Compounds as Lipoxygenase Inhibitors |
US20090088463A1 (en) * | 2005-11-01 | 2009-04-02 | Benjamin Pelcman | Pyrazoles Useful in the Treatment of Inflammation |
US20090105272A1 (en) * | 2005-12-24 | 2009-04-23 | Grootenhuis Peter D J | Prodrugs of modulators of ABC transporters |
US9670163B2 (en) | 2005-12-28 | 2017-06-06 | Vertex Pharmaceuticals Incorporated | Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US9139530B2 (en) | 2005-12-28 | 2015-09-22 | Vertex Pharmaceuticals Incorporated | Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US20110064811A1 (en) * | 2005-12-28 | 2011-03-17 | Patricia Hurter | Solid forms of N-[2,4-BIS(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US8754224B2 (en) | 2005-12-28 | 2014-06-17 | Vertex Pharmaceuticals Incorporated | Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US9931334B2 (en) | 2005-12-28 | 2018-04-03 | Vertex Pharmaceuticals Incorporated | Solid forms of N[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US10537565B2 (en) | 2005-12-28 | 2020-01-21 | Vertex Pharmaceuticals Incorporated | Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US8410274B2 (en) | 2005-12-28 | 2013-04-02 | Vertex Pharmaceuticals | Solid forms of N-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US11291662B2 (en) | 2005-12-28 | 2022-04-05 | Vertex Pharmaceuticals Incorporated | Solid forms of n-[2,4-bis(1,1-dimethylethyl)-5-hydroxyphenyl]-1,4-dihydro-4-oxoquinoline-3-carboxamide |
US8399442B2 (en) | 2005-12-30 | 2013-03-19 | Astex Therapeutics Limited | Pharmaceutical compounds |
US20110159111A1 (en) * | 2006-06-29 | 2011-06-30 | Astex Therapeutics Limited | Pharmaceutical combinations |
US8435970B2 (en) | 2006-06-29 | 2013-05-07 | Astex Therapeutics Limited | Pharmaceutical combinations of 1-cyclopropyl-3-[3-(5-morpholin-4-ylmethyl-1H-benzoimidazol-2-yl)-1H-pyrazol-4-yl]-urea |
US20080085886A1 (en) * | 2006-08-21 | 2008-04-10 | Genentech, Inc. | Aza-benzofuranyl compounds and methods of use |
US20080081821A1 (en) * | 2006-08-21 | 2008-04-03 | Genentech, Inc. | AZA-benzothiophenyl compounds and methods of use |
US7893085B2 (en) | 2006-08-21 | 2011-02-22 | Genentech, Inc | Aza-benzothiophenyl compounds and methods of use |
US20100168240A1 (en) * | 2007-03-29 | 2010-07-01 | Bayer Schering Pharma Aktiengesellschaft | Substituted dibenzoic acid derivatives and use thereof |
US20100197680A1 (en) * | 2007-03-29 | 2010-08-05 | Michael Hahn | Lactam-substituted dicarboxylic acids and use thereof |
US8217063B2 (en) | 2007-03-29 | 2012-07-10 | Bayer Intellectual Property Gmbh | Lactam-substituted dicarboxylic acids and use thereof |
US7985876B2 (en) | 2007-03-29 | 2011-07-26 | Bayer Schering Pharma Aktiengesellschaft | Substituted dibenzoic acid derivatives and use thereof |
US20110159474A1 (en) * | 2007-06-06 | 2011-06-30 | Bayer Schering Pharma Aktiengesellschaft | Solutions for perfusing and preserving organs and tissues |
US20100234432A1 (en) * | 2007-09-07 | 2010-09-16 | Bayer Animal Health Gmbh | Substituted 6-phenylnicotinic acids and their use |
US8143411B2 (en) | 2007-09-07 | 2012-03-27 | Bayer Animal Health Gmbh | Substituted 6-phenylnicotinic acids and their use |
US20110082129A1 (en) * | 2008-06-27 | 2011-04-07 | Christopher Adams | Organic compounds |
US9242963B2 (en) | 2008-06-27 | 2016-01-26 | Novartis Ag | Organic compounds |
US8791141B2 (en) | 2008-06-27 | 2014-07-29 | Novartis Ag | Organic compounds |
US20100261698A1 (en) * | 2008-06-27 | 2010-10-14 | Christopher Adams | Organic compounds |
US8030334B2 (en) | 2008-06-27 | 2011-10-04 | Novartis Ag | Organic compounds |
US10646481B2 (en) | 2008-08-13 | 2020-05-12 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US11564916B2 (en) | 2008-08-13 | 2023-01-31 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US8859601B2 (en) | 2008-12-06 | 2014-10-14 | Bayer Intellectual Property Gmbh | Substituted benzyl and phenylsulfonyl triazolones, and use thereof |
US8796324B2 (en) | 2009-03-18 | 2014-08-05 | Bayer Intellectual Property Gmbh | Substituted 2-acetamido-5-aryl-1,2,4-triazolones and use thereof |
US9751839B2 (en) | 2009-03-20 | 2017-09-05 | Vertex Pharmaceuticals Incorporated | Process for making modulators of cystic fibrosis transmembrane conductance regulator |
US9187466B2 (en) | 2010-02-27 | 2015-11-17 | Bayer Intellectual Property Gmbh | Bisaryl-bonded aryltriazolones and use thereof |
US9687476B2 (en) | 2010-02-27 | 2017-06-27 | Bayer Intellectual Property Gmbh | Bisaryl-bonded aryltriazolones and use thereof |
US8673903B2 (en) | 2010-05-14 | 2014-03-18 | Bayer Intellectual Property Gmbh | Substituted 8-alkoxy-2-aminotetralin derivatives, and use thereof |
US9180120B2 (en) | 2010-09-02 | 2015-11-10 | Bayer Intellectual Property Gmbh | Substituted N-phenethyltriazoloneacetamides and use thereof |
US9034855B2 (en) | 2010-09-16 | 2015-05-19 | Bayer Intellectual Property Gmbh | Substituted phenylacetate and phenylpropane amides and use thereof |
US8802700B2 (en) | 2010-12-10 | 2014-08-12 | Vertex Pharmaceuticals Incorporated | Modulators of ATP-Binding Cassette transporters |
US11752106B2 (en) | 2012-02-27 | 2023-09-12 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US10272046B2 (en) | 2012-02-27 | 2019-04-30 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US11147770B2 (en) | 2012-02-27 | 2021-10-19 | Vertex Pharmaceuticals Incorporated | Pharmaceutical composition and administrations thereof |
US10053428B2 (en) | 2012-07-20 | 2018-08-21 | Bayer Pharma Aktiengesellschaft | 5-aminotetrahydroquinoline-2-carboxylic acids and their use |
US9688636B2 (en) | 2012-07-20 | 2017-06-27 | Bayer Pharma Aktiengesellschaft | 5-aminotetrahydroquinoline-2-carboxylic acids and their use |
US9387203B2 (en) | 2012-07-20 | 2016-07-12 | Bayer Pharma Aktiengesellschaft | Substituted aminoindane- and aminotetralinecarboxylic acids and the use thereof |
US8981104B2 (en) | 2012-07-20 | 2015-03-17 | Bayer Pharma Aktiengesellschaft | 5-aminotetrahydroquinoline-2-carboxylic acids and their use |
US9714213B2 (en) | 2013-10-15 | 2017-07-25 | Toa Eiyo Ltd. | 4-aminomethylbenzoic acid derivative |
RU2673245C2 (en) * | 2013-10-15 | 2018-11-23 | Тоа Эйо Лтд. | 4-aminomethylbenzoic acid derivatives |
CN105658621A (en) * | 2013-10-15 | 2016-06-08 | 东亚荣养株式会社 | 4-aminomethylbenzoic acid derivative |
US9701639B2 (en) | 2014-10-07 | 2017-07-11 | Vertex Pharmaceuticals Incorporated | Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator |
US9771352B2 (en) | 2014-11-03 | 2017-09-26 | Bayer Pharma Aktiengesellschaft | Hydroxyalkyl-substituted phenyltriazole derivatives and uses thereof |
US11166932B2 (en) | 2015-07-23 | 2021-11-09 | Bayer Pharma Aktiengesellschaft | Stimulators and/or activators of soluble guanylate cyclase (sGC) in combination with an inhibitor of neutral endopeptidase (NEP inhibitor) and/or an angiotensin AII antagonist and the use thereof |
US10336749B2 (en) | 2015-08-21 | 2019-07-02 | Bayer Pharma Aktiengesellschaft | Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and the purification thereof for use as an active pharmaceutical ingredient |
USRE49826E1 (en) | 2015-08-21 | 2024-02-06 | Bayer Pharma Aktiengesellschaft | Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carboxamide and the purification thereof for use as an active pharmaceutical ingredient |
US10759794B2 (en) | 2015-12-10 | 2020-09-01 | Bayer Pharma Aktiengesellschaft | 2-phenyl-3-(piperazinomethyl)imidazo[1,2-A]pyridine derivatives as blockers of task-1 and task-2 channels, for the treatment of sleep-related breathing disorders |
US10414765B2 (en) | 2015-12-10 | 2019-09-17 | Bayer Pharma Aktiengesellschaft | Substituted perhydropyrrolo[3,4-c]pyrrole derivatives and the use of same |
US11091463B2 (en) | 2016-05-03 | 2021-08-17 | Bayer Pharma Aktiengesellschaft | Amide-substituted pyridinyltriazole derivatives and uses thereof |
US10472348B2 (en) | 2016-05-03 | 2019-11-12 | Bayer Pharma Aktiengesellschaft | Amide-substituted pyridinyltriazole derivatives and uses thereof |
US9988367B2 (en) | 2016-05-03 | 2018-06-05 | Bayer Pharma Aktiengesellschaft | Amide-substituted pyridinyltriazole derivatives and uses thereof |
US10722501B2 (en) | 2016-05-09 | 2020-07-28 | Bayer Aktiengesellschaft | Substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine-3(2H)-ones and 2,5,6,7-tetrahydro-3H-pyrrolo[2,1-C][1,2,4]triazol-3-ones, and use thereof |
US10927098B2 (en) | 2016-10-20 | 2021-02-23 | Bayer Pharma Aktiengesellschaft | Hydroxyalkyl-substituted triazole derivatives and uses thereof |
US11098063B2 (en) | 2017-06-14 | 2021-08-24 | Bayer Aktiengesellschaft | Diazabicyclic substituted imidazopyrimidines and their use for the treatment of breathing disorders |
US11173151B2 (en) | 2017-10-24 | 2021-11-16 | Bayer Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US11331314B2 (en) | 2017-10-24 | 2022-05-17 | Bayer Pharma Aktiengesellschaft | Amine substituted triazole derivatives and uses thereof |
US11298367B2 (en) | 2017-10-24 | 2022-04-12 | Bayer Aktiengesellschaft | Prodrugs of substituted triazole derivatives and uses thereof |
US11230540B2 (en) | 2017-10-24 | 2022-01-25 | Bayer Pharma Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US11149023B2 (en) | 2017-10-24 | 2021-10-19 | Bayer Pharma Aktiengesellschaft | Substituted triazole derivatives and uses thereof |
US12138256B2 (en) | 2021-12-29 | 2024-11-12 | Bayer Aktiengesellschaft | Treatment of cardiopulmonary disorders |
Also Published As
Publication number | Publication date |
---|---|
US7705043B2 (en) | 2010-04-27 |
WO2002070510A3 (en) | 2003-01-30 |
JP2004529111A (en) | 2004-09-24 |
CA2439756C (en) | 2011-01-11 |
US20070179139A1 (en) | 2007-08-02 |
DE10110750A1 (en) | 2002-09-12 |
JP4535679B2 (en) | 2010-09-01 |
CA2439756A1 (en) | 2002-09-12 |
AU2002234645A1 (en) | 2002-09-19 |
EP1368335A2 (en) | 2003-12-10 |
WO2002070510A2 (en) | 2002-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7705043B2 (en) | Substituted aminodicarboxylic acid derivatives having pharmaceutical properties | |
US20040176446A1 (en) | Substituted amino dicarboxylic acid derivatives | |
RU2280025C9 (en) | New derivatives of aminodicarboxylic acids possessing pharmaceutical properties | |
ZA200201138B (en) | Novel dicarboxylic acid derivatives with pharmaceutical properties. | |
US7329777B2 (en) | Methods for treating heart failure, thromboembolic disorders, and pulmonary fibrosis | |
US6939989B2 (en) | Side-chain halogenated amino dicarboxylic acid derivatives as medicaments for treating cardiovascular diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAYER AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALONSO-ALIJA, CRISTINA;HARTER, MICHAEL;HAHN, MICHAEL;AND OTHERS;REEL/FRAME:014204/0831;SIGNING DATES FROM 20030728 TO 20030812 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT, GERMANY Free format text: MERGER;ASSIGNOR:BAYER HEALTHCARE AG;REEL/FRAME:023769/0122 Effective date: 20081204 Owner name: BAYER SCHERING PHARMA AKTIENGESELLSCHAFT,GERMANY Free format text: MERGER;ASSIGNOR:BAYER HEALTHCARE AG;REEL/FRAME:023769/0122 Effective date: 20081204 |