US20030199991A1 - Satiation devices and methods - Google Patents
Satiation devices and methods Download PDFInfo
- Publication number
- US20030199991A1 US20030199991A1 US10/457,144 US45714403A US2003199991A1 US 20030199991 A1 US20030199991 A1 US 20030199991A1 US 45714403 A US45714403 A US 45714403A US 2003199991 A1 US2003199991 A1 US 2003199991A1
- Authority
- US
- United States
- Prior art keywords
- stomach
- prosthesis
- tube
- antral
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 108
- 235000019553 satiation Nutrition 0.000 title claims description 32
- 210000002784 stomach Anatomy 0.000 claims abstract description 107
- 230000004580 weight loss Effects 0.000 claims abstract description 12
- 102000012004 Ghrelin Human genes 0.000 claims abstract description 9
- 101800001586 Ghrelin Proteins 0.000 claims abstract description 9
- GNKDKYIHGQKHHM-RJKLHVOGSA-N ghrelin Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)CN)COC(=O)CCCCCCC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C1=CC=CC=C1 GNKDKYIHGQKHHM-RJKLHVOGSA-N 0.000 claims abstract description 9
- 230000001939 inductive effect Effects 0.000 claims abstract 8
- 235000013305 food Nutrition 0.000 claims description 33
- 239000000126 substance Substances 0.000 claims description 25
- 210000001198 duodenum Anatomy 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 210000001187 pylorus Anatomy 0.000 claims description 22
- 239000012781 shape memory material Substances 0.000 claims description 19
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 18
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 claims description 18
- 229920000431 shape-memory polymer Polymers 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 11
- 210000003238 esophagus Anatomy 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 7
- 239000003708 ampul Substances 0.000 claims description 6
- 235000003642 hunger Nutrition 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 210000000941 bile Anatomy 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 5
- 230000035807 sensation Effects 0.000 claims description 5
- 235000019615 sensations Nutrition 0.000 claims description 5
- 238000009958 sewing Methods 0.000 claims description 2
- 210000000936 intestine Anatomy 0.000 claims 6
- 230000000968 intestinal effect Effects 0.000 claims 5
- 235000019627 satiety Nutrition 0.000 abstract description 5
- 230000036186 satiety Effects 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 description 13
- 238000002513 implantation Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 210000000813 small intestine Anatomy 0.000 description 7
- 230000002496 gastric effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000001630 jejunum Anatomy 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229920004934 Dacron® Polymers 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 230000002183 duodenal effect Effects 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 210000003736 gastrointestinal content Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 230000008855 peristalsis Effects 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 0 CC1C*=*C1 Chemical compound CC1C*=*C1 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 230000003888 Roux-en-Y anastomosis Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000005070 sphincter Anatomy 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/0076—Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/0069—Implantable devices or invasive measures in the wall of the stomach
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F5/00—Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
- A61F5/0003—Apparatus for the treatment of obesity; Anti-eating devices
- A61F5/0013—Implantable devices or invasive measures
- A61F5/0076—Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves
- A61F5/0079—Pyloric or esophageal obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2002/044—Oesophagi or esophagi or gullets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2002/045—Stomach, intestines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8483—Barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0039—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
Definitions
- the present invention relates generally to the field of devices and methods for achieving weight loss in humans, and specifically to the use of devices implantable within the human stomach for controlling feelings of hunger.
- a satiation device utilizing principles of the present invention includes a tube having a collapsed position proportioned to permit introduction of the tube into a portion of the stomach. Once positioned within the body, the tube self-expands into contact with the interior of the stomach. During use, food ingested into the stomach passes through the tube.
- the tube may be formed of a material that prevents food within the tube from contacting the surrounding walls of the stomach.
- the tube may be positionable within the antrum of the stomach.
- the device may include a fundal basket which may or may not be attached to a proximal end of an antral tube, and/or a bowel tube which may or may not be attached to a distal end of an antral tube.
- a small pouch is attached to a cage structure such as a fundal basket and positioned at the proximal end of the stomach.
- this pouch may be provided without a cage structure and is independently secured against the proximal stomach wall by endoscopy guided sutures or other means.
- FIG. 1 is a schematic illustration of a human stomach and a portion of the small intestine.
- FIG. 2 is a plan view of a satiation device utilizing principles of the present invention.
- FIG. 3 is a plan view of a satiation device similar to that of FIG. 2, but including a drug delivery reservoir.
- FIG. 4A is a schematic illustration of a stomach, pylorus, and bowel, showing introduction of the device of FIG. 2 or 3 into the antrum.
- FIG. 4B is a schematic illustration similar to FIG. 4A, showing the device in position.
- FIG. 4C is a schematic illustration similar to FIG. 4B, showing withdrawal of the device into a sheath for subsequent removal from the body.
- FIG. 5 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube and a bowel tube.
- FIG. 6 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube that does not cross the pyloric sphincter.
- FIG. 7 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed into the external surface.
- FIG. 8 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed at the proximal and distal ends.
- FIGS. 9A and 9B are plan views of antral tubes similar to the antral tube of FIG. 6, with variations of retaining ridges formed on their external surfaces.
- FIGS. 10 A- 10 C are perspective views of satiation devices having antral tubes and fundal baskets.
- FIGS. 10 D- 10 F are partial side elevation views of satiation devices having antral tubes and bowel tubes. Each figure illustrates a portion of the antral tube and a portion of the bowel tube.
- FIG. 11 is a plan view of a satiation device having an antral tube, fundal basket, and bowel tube.
- FIG. 12A is a plan view schematically illustrating insertion of a device such as the devices of FIGS. 10 A- 10 C into the body.
- FIG. 12B is a plan view schematically illustrating removal of the device such as the devices of FIGS. 10 A- 10 C from the body.
- FIG. 13 schematically illustrates an alternative embodiment of a satiation device positioned within a human stomach.
- FIG. 14 is a side elevation view of a satiation device utilizing a coil configuration.
- FIG. 15 schematically illustrates the satiation device of FIG. 15 positioned within a human stomach.
- FIGS. 16A and 16B are end views of a tube for a satiation device, such as a fundal basket, antral tube, or bowel tube, illustrating tab members that may be utilized to facilitate tube removal.
- a satiation device such as a fundal basket, antral tube, or bowel tube
- FIG. 17A schematically illustrates in vivo positioning of an alternative satiation device utilizing a standalone stomach pouch.
- FIG. 17B is a schematic illustration similar to FIG. 17A, but further illustrating a cage in combination with the stomach pouch.
- FIG. 17C is a schematic illustration similar to FIG. 17B, but further illustrating an alignment extension in combination with the stomach pouch and cage.
- FIG. 18 is a perspective view of a stomach pouch of a type that may be utilized as shown in FIGS. 17 A- 17 C.
- FIG. 19A is a perspective view of an alternative stomach pouch of a type that may be utilized as shown in FIGS. 17 A- 17 C.
- FIG. 19B is a cross-sectional side view of the stomach pouch of FIG. 19A.
- FIG. 20 illustrates in vivo positioning of an alternative satiation device utilizing a duodenal absorption barrier prosthesis.
- Stomach S includes a fundus F at its proximal end and an antrum A at its distal end.
- Antrum A feeds into the pylorus P which attaches to the duodenum D, the proximal region of the small intestine.
- Within the pylorus P is a sphincter that prevents backflow of food from the duodenum D into the stomach.
- the middle region of the small-intestine, positioned distally of the duodenum D, is the jejunum J.
- satiation devices include an antral tube positionable within the antrum A, and may optionally include a fundal tube connected to the proximal end of the antral tube for placement in the fundus F, and/or a bowel tube connected to the distal end of the antral tube for placement in the duodenum D.
- the device may be modular in that that the various components may be provided separate from one another.
- the separate implanted components may be attached to one another within the body during implantation, or certain ones of them may remain unattached to one another even after implantation.
- the physician may assemble the components to one another just prior to implantation.
- Modular components are desirable in that they permit the physician to select sizes for each component that are appropriate for the patient.
- the device may be a unitary device in the sense that the components (e.g. the antral tube, bowel tube and/or fundal basket) are not separately provided but instead form a single-unit implant.
- FIG. 2 shows a first embodiment of a satiation device 100 utilizing principles of the present invention.
- Satiation device 100 includes an elongate tubular body 10 having a proximal section 12 and a distal section 14 .
- Proximal section 12 includes a reduced diameter neck 16 .
- Distal section 14 preferably has an hourglass profile including a pair of broadened sections 18 and a waisted section 20 between the broadened sections.
- Tubular body 10 is proportioned to be at least partially positioned within the antrum of the stomach such that food moving into the antrum passes through the hollow interior of the tubular body.
- the tubular body 10 (which will also be referred to as the antral tube) may be made of shape memory materials such as nitinol or other shape memory alloys, or shape memory polymers, and is preferably made of a soft mesh or other framework formed of nitinol or stainless steel wires in combination with a polymeric barrier that prevents ingested food passing through the antral tube 10 from contacting the walls of the antrum.
- the polymeric barrier may be a skin formed on the exterior or interior of the mesh, or the mesh may be encapsulated in polymeric material or the polymer may be disposed in the interstices of the mesh.
- the device 100 may optionally include one or more pharmaceutical delivery reservoirs 22 , which are filled with substances known to inhibit release of Ghrelin or other hormones associated with feelings of satiety.
- substances may be chemical or pharmaceutical substances, therapeutic molecules or cells, or genetic material.
- Each such reservoir 22 may comprise a fluid pocket formed between a first layer of fluid impermeable polymeric material and a second layer of semi-permeable membrane that allows the substances to pass from the reservoirs into the surrounding tissue.
- the polymeric material used to form the tube may be impregnated with substances useful for maintaining low Ghrelin levels.
- the reservoir or material containing the inhibitive substances may be in a portion of the device that lies within the antrum and/or in a portion that lies within the duodenum, particularly the segment of the duodenum that is proximal of the ampulla of vader, as it is believed that receptors for such substances are present in these areas.
- the antral tube 10 is passed into the patient blindly, under radiologic guidance, or under endoscopic guidance. Prior to implantation, the antral tube 10 is preferably packaged in a tubular sheath 26 (see FIG. 4A) by compressing the antral tube 10 about its longitudinal axis and inserting it into tubular sheath 26 .
- the sheath 26 with the antral tube 10 packaged inside, is passed into the stomach via the patient's mouth and positioned within the antrum as shown in FIG. 4A.
- the antral tube 10 is then pushed out the distal end of the sheath 26 using a pushing device 28 inserted into the proximal end of the sheath.
- the mesh forming the antral tube is preferably constructed so as to be self-expanding, such that the tube 10 springs radially open into an expanded condition upon its ejection from the sheath 26 .
- the antral tube exerts pressure against the interior surfaces against which it is in contact, so as to create the feeling of satiety and to inhibit Ghrelin release.
- the radial pressure of the device against the walls also secures the device against the walls of the antrum and prevents it from moving through the pylorus, even in the presence of peristalsis.
- the antral section is covered, such as by a polymeric material, shielding the stomach contents from the antrum. This may suppress chemical mediators of the sensation of hunger, such as grhelin production.
- the hour-glass shape of the distal portion 14 is configured such that when the device is implanted, the waist section 20 becomes seated at the pyloric sphincter as shown in FIG. 4B.
- removal of the device is carried out by inserting sheath 26 into the stomach, and by extending a grasping instrument such as snare 30 through the sheath.
- Snare 30 is closed around the neck 16 of the tube 10 and withdrawn, causing the tube 10 to collapse and be drawn into the sheath 26 .
- the sheath is withdrawn from the patient.
- FIGS. 16A and 16B show end views of the proximal portion of an alternative antral tube 11 which is provided to include one or more radially extending tabs 13 .
- Tabs 13 are preferably rounded and smooth to minimize interference with flow through the tube 11 .
- tabs 13 are drawn inwardly using endoscopic instruments, causing the tube to collapse inwardly.
- an alternate embodiment of satiation device 110 includes an antral tube 10 a similar to that of the previous embodiments, but additionally includes a small diameter bowel tube 32 at its distal end.
- the bowel tube 32 is preferably formed of a combination of mesh and polymer as described in connection with antral tube 10 of FIG. 2. It simulates a Roux en Y, or gastric bypass, procedure by keeping food away from the proximal portion of the small bowel (i.e. away from the duodenum or the jejunum and duodenum, the portions of the small intestine at which most carbohydrates and proteins are absorbed by the body). This in turn prevents absorption of food by the proximal portion of the small bowel, and thus reduces the total amount of food absorbed by the body.
- the bowel tube 32 is smaller in diameter than the antral tube 10 a , and is of a diameter that will allow it to press gently against the walls of the small bowel. It must also be sufficiently flexible to pass posteriorly and distally into the second portion of the duodenum without damaging the mucosa. This may be facilitated by the use of a guidewire that is first introduced with an endoscope.
- the bowel tube 32 may be a soft wire mesh (formed, for example, of shape memory alloys, nitinol, stainless steel alloys, stainless steel or polymers including shape memory polymers) covered with a polymer to prevent food and digestive juices from contacting the mucosa of the duodenum.
- Tube 32 may be provided to have a valve 34 at its distal end, which functions to prevent reflux of intestinal contents.
- the bowel tube includes an opening 33 to ensure that the ampulla of vader is not obstructed.
- a conventional guide wire may also be used to facilitate positioning of the bowel tube 32 . If a guide wire is used, it is first placed into the duodenum using endoscopy or radiology to guide the wire placement. The bowel tube 32 and antral tube 10 a are then placed over the wire and guided over the wire into the duodenum or jejunum to the desired location. Next, the guide wire is removed. The small bowel tube position is maintained by bearing against the proximal end of the antral tube using a pushing instrument (such as the pusher 28 shown in FIG. 4A), while the covering sheath is withdrawn. As they are released from the sheath, the small bowel tube and the antral tube deploy and expand into contact with the antrum walls.
- a pushing instrument such as the pusher 28 shown in FIG. 4A
- the antral tube 10 a and bowel tube 32 may be provided separately.
- Components of a modular system may be attached to one another pre-operatively or after each component has been positioned within the body.
- An alternative form of a satiation device 120 may be configured, as shown in FIG. 6, to have an antral tube 10 b that is positioned only within the antrum and that does not cross the pyloric sphincter.
- the satiation device 120 is preferably self-expanding and may be formed of a soft nitinol, shape memory polymer, or stainless steel mesh, preferably in combination with a polymer. Outward radial pressure between the antral tube and the stomach walls prevent the tube from moving distally through the pylorus, even in the presence of peristalsis. Additional mechanisms may be provided to prevent movement of the tube towards the fundus and/or pylorus.
- soft and directional “fish scale” type structures 36 may be formed on the mesh or polymer on the exterior surface of the antral tube 10 b as shown in FIG. 7.
- the figure shows the scales oriented to prevent movement of the device towards the pylorus, but it should be appreciated that movement towards the fundus may be prevented by orienting the scales in the opposite direction.
- a plurality of hooks 38 may be formed on the proximal and/or distal ends of the antral tube 10 b , as shown in FIG. 8. These hooks gently attach to the mucosa of the antrum and prevent movement in the proximal and/or distal direction. Such hooks should be sufficiently small as to not penetrate the submucosa or muscularis.
- FIGS. 9A and 9B illustrate the use of ridges formed on the exterior of the antral tube for preventing migration of the tube.
- the ridges may be formed in a variety of configurations, such as the helical ridges 40 shown on the FIG. 9A embodiment or the rings 42 . shown in the FIG. 9B embodiment. These same mechanisms for preventing movement may be applied to the bowel tube as well, as described with respect to FIGS. 10 D- 10 F.
- a basket structure may extend from the proximal end of the antral tube for positioning in the fundus.
- a fundal basket 44 a , 44 b , 44 c may be formed of a mesh provided with large openings sized to permit food to readily flow through the fundal basket into the antral tube.
- the mesh of the fundal basket is preferably not covered with a polymeric skin or coating.
- the fundal basket is mechanically connected to the antral tube, such as by spring members 46 a (FIG. 10A), elongate struts 46 b (FIG. 10B), mesh 46 c (FIG. 10C) or equivalent structural components.
- an embodiment utilizing an antral tube and fundal basket may be provided in a modular form—in which the antral and fundal components are separate from one another and then attached to one another pre-operatively or following implantation in the body.
- the antral tube and fundal basket may comprise a unitary device.
- Similar attachment mechanisms may be used to attach a bowel tube to an antral tube in embodiments having these components, regardless of whether a fundal basket is used.
- the bowel section 132 b and antral section 110 b may be connected with one or more longitudinal struts, as shown in FIGS. 10E and 10F.
- An alternative embodiment may be provided without an attachment strut, in which case bowel tube 132 a may be placed separately from antral tube 110 a , and it may include a neck section 133 (or tabs such as tabs 13 of FIGS. 16 A/ 16 B) at its proximal edge to allow recovery with an endoscopically controlled snare. See FIG. 10D.
- a device of this type may be provided as a modular or unitary device.
- embodiments having an antral tube 10 b and a fundal basket 44 may further include a bowel tube 32 attached to the antral tube.
- the bowel tube 32 functions to keep food away from the proximal small bowel.
- the bowel tube 32 may have properties similar to those described with respect to the embodiment of FIG. 5.
- FIGS. 10 A- 10 F and 11 are preferably inserted into the stomach in a collapsed condition, such as within a sheath 26 as shown in FIG. 12A.
- the distal tip of the antral tube is placed at the pylorus (or across the pylorus as with the FIG. 2 embodiment) and the sheath is withdrawn. As they are released, the antral and fundal units self-expand and may shorten slightly.
- the tube can be placed under radiological guidance or endoscopic guidance or over a guide wire as described above with respect to FIG. 5.
- the antral tube, fundal basket and bowel tube may form parts of a unitary device, or they may be separately provided as modular components.
- each of the three components may be separately provided and then attached to one another prior to implantation or after the components have been positioned within the body.
- some but not all of the components e.g. the fundal basket and antral tube, or the antral tube and bowel tube
- removing the device is accomplished by extending a sheath 26 into the stomach, extending a grasping instrument through the sheath, grasping the proximal end of the device and pulling the tube into the sheath causing it to collapse. If a wire snare loop is to be used as the grasping instrument, the snare is placed around a neck (such as neck 16 shown in FIG. 2 or a similar neck 17 at the proximal end of the fundal basket as shown in FIG. 12B) to grasp the device.
- a neck such as neck 16 shown in FIG. 2 or a similar neck 17 at the proximal end of the fundal basket as shown in FIG. 12B
- the proximal end of the tube may include tabs 13 that are pulled radially inwardly using an endoscopic instrument to facilitate collapse of the device.
- device 130 includes an antral tube 10 c positionable within the antrum to minimize direct contact between food entering the antrum and the walls of the antrum.
- the antral tube 10 c may be formed of a combination of soft polymeric material as well as reinforcing members formed of nitinol, stainless steel, and/or polymer.
- device 130 is formed of a polymeric sleeve 48 with nitinol struts 50 embedded in the sleeve material.
- Stainless steel or polymeric reinforcing bands 52 extend longitudinally along the interior walls of the tubular member.
- Inflatable reservoirs 54 formed of a soft elastic polymer are positioned on the exterior of the tubular sleeve 48 .
- a fill tube 56 is fluidly coupled to the reservoirs.
- reservoirs 54 are filled with saline to expand the sleeve 48 into contact with the antrum walls, so as to hold the device in place within the antrum.
- Fill tube 56 may detach from the reservoir following inflation using the saline.
- a one-way valve (not shown) may be located within the reservoir at the point of attachment of the fill tube.
- Device may be formed of a wire member coiled to create a stent-like device.
- the coil may be contoured to match the contours of interior lumen wall, such as by forming the coil of a shape memory material such as nitinol or polymers, and shape setting the material to the desired shape.
- Device 200 has a proximal portion 202 positionable in the antrum, and a distal portion 204 that may be positioned in the duodenum bulb or further within the small intestine.
- the pitch of the coil is selected to give the device 200 a desired strength and flexibility.
- a straight portion 206 connects the proximal and distal portions 202 , 204 .
- Straight portion 206 is positionable within the pyloric sphincter. Under normal conditions, the pyloric sphincter remains closed until the stomach is ready to evacuate its contents into the duodenum.
- Straight portion 206 is beneficial in that it provides structure connecting proximal and distal portions 202 , 204 while allowing the pyloric sphincter to correctly perform its normal function.
- device 200 may be formed of ribbons of material, or it may be formed from a metallic sheet, or its pattern may be cut from tubing.
- Device 300 includes a tubular pouch 302 that is positioned in the proximal region of the stomach.
- Pouch 302 includes a proximal end that is preferably positioned to be slightly proximal of the gastro_o-esophageal junction as shown.
- the walls of the pouch preferably taper inwardly from the proximal end towards the distal end.
- a proximal opening 304 of, for example, approximately 25 to 50 mm in diameter is located at the proximal end, and a distal opening 308 having a diameter of approximately 6-12 mm is formed at the distal end.
- the proximal opening 304 is preferably placed into alignment with the esophagus, and the distal opening 308 opens into the interior of the stomach.
- the pouch Because of its small volume (which may be on the order of approximately 30 cc-50 cc in volume), the pouch functions to limit the amount of food that can be consumed at one time. Food ingested by the patient remains in the pouch until digestive enzymes have broken it down sufficiently for it to pass through the distal opening 308 .
- the pouch is preferably self-expanding and may take a variety of forms.
- it may be formed of struts 310 or a mesh formed of nitinol, stainless steel, polymer (including shape memory polymer).
- a ring 312 is attached to the struts/mesh at the proximal end of the device, and also may be formed of nitinol, stainless steel, polymer (including shape memory polymer).
- the exterior or interior of the pouch covered with a material 313 will prevent passage of food through the sides of the pouch.
- a material is a polyester material such as the polyester sold by the DuPont Company under the trademark Dacron.
- FIGS. 19A and 19B show another example of a pouch 302 a .
- Pouch 302 a is formed of a shape memory coil that has been heat set to a funnel shape.
- Dacron polyester or other material 313 a may optionally cover the interior or exterior walls of the coil, although the coil may itself be sufficiently small as to prevent migration of food to the surrounding stomach walls.
- the material 313 a may be pinched between proximal-most coil 312 a and its adjacent coil as shown in FIG. 19B, so as to hold it in place.
- the pouches 302 , 302 a may be provided with a proximal-to-distal dimension that is fairly long (e.g. on the order of approximately 2.5-5.0 cm) and that thus gives the pouch a funnel shape as shown in FIGS. 18 and 19A.
- a variety of alternative shapes may be used for the pouch.
- the pouch may have a much shorter proximal-to-distal dimension and thus take the shape of a shallow saucer with a small hole on its bottom surface.
- the stomach pouch may be used alone or in combination with other components. If used without additional components, the proximal end of the pouch (e.g. ring 312 of pouch 302 or ring 312 a of pouch 302 a ) may serve as a sewing ring that is attached by sutures to the interior stomach walls. The suture may pass through the material 313 , 313 a (see FIG. 19B) to strengthen the connection between the stomach wall and the device. Alternatively, the pouch may be used as a standalone device without sutures—in which case it may be held in place by the radial expansion forces of the struts, mesh or coils.
- the proximal end of the pouch e.g. ring 312 of pouch 302 or ring 312 a of pouch 302 a
- the suture may pass through the material 313 , 313 a (see FIG. 19B) to strengthen the connection between the stomach wall and the device.
- the pouch may be used as a standalone device without sutures—in which case it may be held
- the stomach pouch may alternatively be one portion of a larger satiation device.
- the proximal portion of the pouch (such as ring 312 of the pouch of FIG. 18 or the upper coil 312 a of the pouch of FIG. 19A) may be connected to the proximal end of a larger cage structure 314 .
- Cage 314 extends from the esophagus to the proximal portion of the antrum, and may be similar to the fundal baskets described above. It may be a large stent-like structure preferably formed of self-expanding material, such as stainless steel or a shape memory material such as nitinol or polymer. Cage 314 functions primarily to distend the stomach to create a feeling of satiety. As shown, the pouch 300 is suspended into the interior of cage 314 .
- the pouch (as used with or without cage 314 ) may also be attached at its proximal end to an alignment extension 316 .
- alignment extension 316 is a tubular stent portion that extends into the esophagus. In one embodiment, extension 316 may be approximately 5 cm in length. It functions primarily to keep the proximal opening of the pouch aligned with the esophagus—so that food passing through the esophagus passes easily into the pouch.
- an enclosed bypass tail (not shown) may-extend from distal opening 308 of the pouch through the pylorus into the small bowel to simulate a stomach bypass procedure.
- the structure of the tail may be similar to the bowel tube described with respect to FIG. 5.
- stomach pouch and associated components may be implanted and removed using procedures of the type described with respect to previous embodiments.
- the components may be implanted simultaneously as a single device. Alternatively, they may be segmented for separate implantation and for subsequent suture attachment to one another once they are within the body.
- FIG. 20 Another embodiment of a satiation device is illustrated in FIG. 20.
- This satiation device includes a duodenal absorption barrier—an elongate tube 400 that is positionable within the small intestine at a location slightly distal of the ampulla of vader.
- the barrier may be positioned a distance of approximately 1 cm or more from the ampulla of vader. Positioning of the tube so that it does not contact the ampulla (an opening through which bile passes into the duodenum) is desirable in that it minimizes the chance of irritation and choleocystitus.
- the tube 400 is preferably a flexible tube preferably approximately 20 cm or more in length. It may be constructed as described with the satiation devices described above. For example, it may be formed of a self-expandable material such as nitinol, stainless steel, or a shape memory polymer (e.g. oligo-(caprolactone)-dimethacrylate or n-butyl acrylate), and covered with a polymer covering that is resistant to gastric juices (e.g. silicone) and that prevents passage of food byproducts through the walls of the tube.
- a self-expandable material such as nitinol, stainless steel, or a shape memory polymer (e.g. oligo-(caprolactone)-dimethacrylate or n-butyl acrylate)
- a polymer covering that is resistant to gastric juices (e.g. silicone) and that prevents passage of food byproducts through the walls of the tube.
- the tube 400 prevents caloric intake in the small intestine by preventing absorption of food through the walls of the duodenum, and thus functions as an aid to weight loss.
- Tube 400 may be delivered and extracted using the techniques described above, and it may be held in place in any of the ways described herein, including sutures, barbs, scales, hooks, or under the outward pressure of the expanded device against the surrounding walls of the duodenum. Tube 400 may be used alone or in combination with components of the type described above.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Nursing (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A device for inducing weight loss in a patient includes a tubular prosthesis self-expandable from a collapsed position in which the prosthesis has a first diameter to an expanded position in which the prosthesis has a second, larger, diameter. In a method for inducing weight loss, the prosthesis is placed in the collapsed position and inserted into a stomach of a patient. The prosthesis is allowed to self-expand from the collapsed position to the expanded position and into contact with the walls of the stomach, where it induces feelings of satiety and/or inhibits modulation of satiety-controlling factors such as Ghrelin.
Description
- The present invention relates generally to the field of devices and methods for achieving weight loss in humans, and specifically to the use of devices implantable within the human stomach for controlling feelings of hunger.
- Various medical approaches are used for controlling obesity. These approaches include diet, medication, and surgical procedures. One of the more successful surgical procedures is the vertical banded gastroplexy or the proximal gastric pouch with a Roux-en-Y anastomosis. However, known complications are present with each of these procedures and more successful options are desired.
- Other alternatives include implantation of gastric balloons that prevent overeating by occupying volume within the stomach. Unfortunately, gastric balloons can migrate down the GI tract, causing obstruction and thus necessitating removal.
- It is therefore desirable to provide a successful and minimally-invasive alternative to existing approaches for controlling obesity.
- A satiation device utilizing principles of the present invention includes a tube having a collapsed position proportioned to permit introduction of the tube into a portion of the stomach. Once positioned within the body, the tube self-expands into contact with the interior of the stomach. During use, food ingested into the stomach passes through the tube. In an alternate embodiment, the tube may be formed of a material that prevents food within the tube from contacting the surrounding walls of the stomach. In one embodiment, the tube may be positionable within the antrum of the stomach. In other alternative embodiments, the device may include a fundal basket which may or may not be attached to a proximal end of an antral tube, and/or a bowel tube which may or may not be attached to a distal end of an antral tube.
- In other alternative embodiments, a small pouch is attached to a cage structure such as a fundal basket and positioned at the proximal end of the stomach. In other alternative embodiments, this pouch may be provided without a cage structure and is independently secured against the proximal stomach wall by endoscopy guided sutures or other means.
- FIG. 1 is a schematic illustration of a human stomach and a portion of the small intestine.
- FIG. 2 is a plan view of a satiation device utilizing principles of the present invention.
- FIG. 3 is a plan view of a satiation device similar to that of FIG. 2, but including a drug delivery reservoir.
- FIG. 4A is a schematic illustration of a stomach, pylorus, and bowel, showing introduction of the device of FIG. 2 or3 into the antrum.
- FIG. 4B is a schematic illustration similar to FIG. 4A, showing the device in position.
- FIG. 4C is a schematic illustration similar to FIG. 4B, showing withdrawal of the device into a sheath for subsequent removal from the body.
- FIG. 5 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube and a bowel tube.
- FIG. 6 is a schematic illustration similar to the illustration of FIG. 4B, showing the position of an alternative device having an antral tube that does not cross the pyloric sphincter.
- FIG. 7 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed into the external surface.
- FIG. 8 is a plan view of an antral tube similar to the antral tube of FIG. 6, with retaining structures formed at the proximal and distal ends.
- FIGS. 9A and 9B are plan views of antral tubes similar to the antral tube of FIG. 6, with variations of retaining ridges formed on their external surfaces.
- FIGS.10A-10C are perspective views of satiation devices having antral tubes and fundal baskets.
- FIGS.10D-10F are partial side elevation views of satiation devices having antral tubes and bowel tubes. Each figure illustrates a portion of the antral tube and a portion of the bowel tube.
- FIG. 11 is a plan view of a satiation device having an antral tube, fundal basket, and bowel tube.
- FIG. 12A is a plan view schematically illustrating insertion of a device such as the devices of FIGS.10A-10C into the body.
- FIG. 12B is a plan view schematically illustrating removal of the device such as the devices of FIGS.10A-10C from the body.
- FIG. 13 schematically illustrates an alternative embodiment of a satiation device positioned within a human stomach.
- FIG. 14 is a side elevation view of a satiation device utilizing a coil configuration.
- FIG. 15 schematically illustrates the satiation device of FIG. 15 positioned within a human stomach.
- FIGS. 16A and 16B are end views of a tube for a satiation device, such as a fundal basket, antral tube, or bowel tube, illustrating tab members that may be utilized to facilitate tube removal.
- FIG. 17A schematically illustrates in vivo positioning of an alternative satiation device utilizing a standalone stomach pouch.
- FIG. 17B is a schematic illustration similar to FIG. 17A, but further illustrating a cage in combination with the stomach pouch.
- FIG. 17C is a schematic illustration similar to FIG. 17B, but further illustrating an alignment extension in combination with the stomach pouch and cage.
- FIG. 18 is a perspective view of a stomach pouch of a type that may be utilized as shown in FIGS.17A-17C.
- FIG. 19A is a perspective view of an alternative stomach pouch of a type that may be utilized as shown in FIGS.17A-17C.
- FIG. 19B is a cross-sectional side view of the stomach pouch of FIG. 19A.
- FIG. 20 illustrates in vivo positioning of an alternative satiation device utilizing a duodenal absorption barrier prosthesis.
- An anatomical view of a human stomach S and associated features is shown in FIG. 1. Stomach S includes a fundus F at its proximal end and an antrum A at its distal end. Antrum A feeds into the pylorus P which attaches to the duodenum D, the proximal region of the small intestine. Within the pylorus P is a sphincter that prevents backflow of food from the duodenum D into the stomach. The middle region of the small-intestine, positioned distally of the duodenum D, is the jejunum J.
- Various embodiments of satiation devices are described herein. Many of these devices include an antral tube positionable within the antrum A, and may optionally include a fundal tube connected to the proximal end of the antral tube for placement in the fundus F, and/or a bowel tube connected to the distal end of the antral tube for placement in the duodenum D.
- The device may be modular in that that the various components may be provided separate from one another. In such a modular system, the separate implanted components may be attached to one another within the body during implantation, or certain ones of them may remain unattached to one another even after implantation. Alternatively, the physician may assemble the components to one another just prior to implantation. Modular components are desirable in that they permit the physician to select sizes for each component that are appropriate for the patient. As another alternative, the device may be a unitary device in the sense that the components (e.g. the antral tube, bowel tube and/or fundal basket) are not separately provided but instead form a single-unit implant.
- FIG. 2 shows a first embodiment of a
satiation device 100 utilizing principles of the present invention.Satiation device 100 includes an elongatetubular body 10 having aproximal section 12 and adistal section 14.Proximal section 12 includes a reduceddiameter neck 16.Distal section 14 preferably has an hourglass profile including a pair of broadenedsections 18 and awaisted section 20 between the broadened sections. -
Tubular body 10 is proportioned to be at least partially positioned within the antrum of the stomach such that food moving into the antrum passes through the hollow interior of the tubular body. The tubular body 10 (which will also be referred to as the antral tube) may be made of shape memory materials such as nitinol or other shape memory alloys, or shape memory polymers, and is preferably made of a soft mesh or other framework formed of nitinol or stainless steel wires in combination with a polymeric barrier that prevents ingested food passing through theantral tube 10 from contacting the walls of the antrum. Thus, the polymeric barrier may be a skin formed on the exterior or interior of the mesh, or the mesh may be encapsulated in polymeric material or the polymer may be disposed in the interstices of the mesh. By preventing food from contacting the antrum walls as it passes from mid-stomach to the pylorus, the device prevents modulation of Ghrelin or other satiety controlling factors. - As shown in FIG. 3, the
device 100 may optionally include one or morepharmaceutical delivery reservoirs 22, which are filled with substances known to inhibit release of Ghrelin or other hormones associated with feelings of satiety. Such substances may be chemical or pharmaceutical substances, therapeutic molecules or cells, or genetic material. Eachsuch reservoir 22 may comprise a fluid pocket formed between a first layer of fluid impermeable polymeric material and a second layer of semi-permeable membrane that allows the substances to pass from the reservoirs into the surrounding tissue. Alternatively, the polymeric material used to form the tube may be impregnated with substances useful for maintaining low Ghrelin levels. - The reservoir or material containing the inhibitive substances may be in a portion of the device that lies within the antrum and/or in a portion that lies within the duodenum, particularly the segment of the duodenum that is proximal of the ampulla of vader, as it is believed that receptors for such substances are present in these areas.
- During implantation, the
antral tube 10 is passed into the patient blindly, under radiologic guidance, or under endoscopic guidance. Prior to implantation, theantral tube 10 is preferably packaged in a tubular sheath 26 (see FIG. 4A) by compressing theantral tube 10 about its longitudinal axis and inserting it intotubular sheath 26. - The
sheath 26, with theantral tube 10 packaged inside, is passed into the stomach via the patient's mouth and positioned within the antrum as shown in FIG. 4A. Theantral tube 10 is then pushed out the distal end of thesheath 26 using a pushingdevice 28 inserted into the proximal end of the sheath. The mesh forming the antral tube is preferably constructed so as to be self-expanding, such that thetube 10 springs radially open into an expanded condition upon its ejection from thesheath 26. When in its expanded condition, the antral tube exerts pressure against the interior surfaces against which it is in contact, so as to create the feeling of satiety and to inhibit Ghrelin release. The radial pressure of the device against the walls also secures the device against the walls of the antrum and prevents it from moving through the pylorus, even in the presence of peristalsis. In an alternative embodiment, the antral section is covered, such as by a polymeric material, shielding the stomach contents from the antrum. This may suppress chemical mediators of the sensation of hunger, such as grhelin production. - The hour-glass shape of the
distal portion 14 is configured such that when the device is implanted, thewaist section 20 becomes seated at the pyloric sphincter as shown in FIG. 4B. The helps to prevent migration of the device within the stomach, yet because of the self-expanding nature will avoid obstruction of the pylorus. It may be additionally desirable to provide the antral tube to include a valve (not shown) within thewaist section 20, so as to prevent reflux of bile from the duodenum into the antrum. - Referring to FIG. 4C, removal of the device is carried out by inserting
sheath 26 into the stomach, and by extending a grasping instrument such assnare 30 through the sheath.Snare 30 is closed around theneck 16 of thetube 10 and withdrawn, causing thetube 10 to collapse and be drawn into thesheath 26. Once thetube 10 is stored within the sheath, the sheath is withdrawn from the patient. - It will be appreciated that various other mechanisms may be used to facilitate collapse of the tube for removal. For example, FIGS. 16A and 16B show end views of the proximal portion of an
alternative antral tube 11 which is provided to include one or more radially extendingtabs 13.Tabs 13 are preferably rounded and smooth to minimize interference with flow through thetube 11. When the satiation device is to be removed,tabs 13 are drawn inwardly using endoscopic instruments, causing the tube to collapse inwardly. - Referring to FIG. 5, an alternate embodiment of
satiation device 110 includes anantral tube 10 a similar to that of the previous embodiments, but additionally includes a smalldiameter bowel tube 32 at its distal end. Thebowel tube 32 is preferably formed of a combination of mesh and polymer as described in connection withantral tube 10 of FIG. 2. It simulates a Roux en Y, or gastric bypass, procedure by keeping food away from the proximal portion of the small bowel (i.e. away from the duodenum or the jejunum and duodenum, the portions of the small intestine at which most carbohydrates and proteins are absorbed by the body). This in turn prevents absorption of food by the proximal portion of the small bowel, and thus reduces the total amount of food absorbed by the body. - The
bowel tube 32 is smaller in diameter than theantral tube 10 a, and is of a diameter that will allow it to press gently against the walls of the small bowel. It must also be sufficiently flexible to pass posteriorly and distally into the second portion of the duodenum without damaging the mucosa. This may be facilitated by the use of a guidewire that is first introduced with an endoscope. - The
bowel tube 32 may be a soft wire mesh (formed, for example, of shape memory alloys, nitinol, stainless steel alloys, stainless steel or polymers including shape memory polymers) covered with a polymer to prevent food and digestive juices from contacting the mucosa of the duodenum.Tube 32 may be provided to have avalve 34 at its distal end, which functions to prevent reflux of intestinal contents. The bowel tube includes anopening 33 to ensure that the ampulla of vader is not obstructed. - Delivery of the
device 110 into, and its removal from, the stomach may be performed under radiological or endoscopic guidance as described with respect to the prior embodiments. A conventional guide wire may also be used to facilitate positioning of thebowel tube 32. If a guide wire is used, it is first placed into the duodenum using endoscopy or radiology to guide the wire placement. Thebowel tube 32 andantral tube 10 a are then placed over the wire and guided over the wire into the duodenum or jejunum to the desired location. Next, the guide wire is removed. The small bowel tube position is maintained by bearing against the proximal end of the antral tube using a pushing instrument (such as thepusher 28 shown in FIG. 4A), while the covering sheath is withdrawn. As they are released from the sheath, the small bowel tube and the antral tube deploy and expand into contact with the antrum walls. - In a modular version of the
device 110, theantral tube 10 a andbowel tube 32 may be provided separately. Components of a modular system may be attached to one another pre-operatively or after each component has been positioned within the body. - An alternative form of a
satiation device 120 may be configured, as shown in FIG. 6, to have anantral tube 10 b that is positioned only within the antrum and that does not cross the pyloric sphincter. As with the prior embodiments, thesatiation device 120 is preferably self-expanding and may be formed of a soft nitinol, shape memory polymer, or stainless steel mesh, preferably in combination with a polymer. Outward radial pressure between the antral tube and the stomach walls prevent the tube from moving distally through the pylorus, even in the presence of peristalsis. Additional mechanisms may be provided to prevent movement of the tube towards the fundus and/or pylorus. For example, soft and directional “fish scale”type structures 36 may be formed on the mesh or polymer on the exterior surface of theantral tube 10 b as shown in FIG. 7. The figure shows the scales oriented to prevent movement of the device towards the pylorus, but it should be appreciated that movement towards the fundus may be prevented by orienting the scales in the opposite direction. - A plurality of
hooks 38 may be formed on the proximal and/or distal ends of theantral tube 10 b, as shown in FIG. 8. These hooks gently attach to the mucosa of the antrum and prevent movement in the proximal and/or distal direction. Such hooks should be sufficiently small as to not penetrate the submucosa or muscularis. - FIGS. 9A and 9B illustrate the use of ridges formed on the exterior of the antral tube for preventing migration of the tube. The ridges may be formed in a variety of configurations, such as the
helical ridges 40 shown on the FIG. 9A embodiment or therings 42. shown in the FIG. 9B embodiment. These same mechanisms for preventing movement may be applied to the bowel tube as well, as described with respect to FIGS. 10D-10F. - A basket structure may extend from the proximal end of the antral tube for positioning in the fundus. Referring to FIGS.10A-10C, a
fundal basket spring members 46 a (FIG. 10A),elongate struts 46 b (FIG. 10B),mesh 46 c (FIG. 10C) or equivalent structural components. The proximal end of the fundal basket rests against the walls of the fundus of the stomach and thereby functions to prevent migration of the device within the stomach. An embodiment utilizing an antral tube and fundal basket may be provided in a modular form—in which the antral and fundal components are separate from one another and then attached to one another pre-operatively or following implantation in the body. Alternatively, the antral tube and fundal basket may comprise a unitary device. - Similar attachment mechanisms may be used to attach a bowel tube to an antral tube in embodiments having these components, regardless of whether a fundal basket is used. For example, the
bowel section 132 b andantral section 110 b may be connected with one or more longitudinal struts, as shown in FIGS. 10E and 10F. An alternative embodiment may be provided without an attachment strut, in whichcase bowel tube 132 a may be placed separately fromantral tube 110 a, and it may include a neck section 133 (or tabs such astabs 13 of FIGS. 16A/16B) at its proximal edge to allow recovery with an endoscopically controlled snare. See FIG. 10D. As discussed previously, a device of this type may be provided as a modular or unitary device. - Referring to FIG. 11, embodiments having an
antral tube 10 b and afundal basket 44 may further include abowel tube 32 attached to the antral tube. As discussed previously with respect to FIG. 5, thebowel tube 32 functions to keep food away from the proximal small bowel. Thebowel tube 32 may have properties similar to those described with respect to the embodiment of FIG. 5. - As with the previous embodiment, the embodiments of FIGS.10A-10F and 11 are preferably inserted into the stomach in a collapsed condition, such as within a
sheath 26 as shown in FIG. 12A. In the case of the FIG. 10A-10C embodiments which include antral and fundal tubes only, the distal tip of the antral tube is placed at the pylorus (or across the pylorus as with the FIG. 2 embodiment) and the sheath is withdrawn. As they are released, the antral and fundal units self-expand and may shorten slightly. - If a small bowel tube is to be included, as in FIGS.10D-10F, the tube can be placed under radiological guidance or endoscopic guidance or over a guide wire as described above with respect to FIG. 5. As discussed, the antral tube, fundal basket and bowel tube may form parts of a unitary device, or they may be separately provided as modular components. In a modular device, each of the three components may be separately provided and then attached to one another prior to implantation or after the components have been positioned within the body. In another form of modular device, some but not all of the components (e.g. the fundal basket and antral tube, or the antral tube and bowel tube) may comprise a unitary device, and an additional modular component may be provided for subsequent attachment to the unitary device either before or after implantation.
- Referring to FIG. 12B, removing the device, whether it includes only an antral tube, fundal and antral tubes, or fundal, antral and small bowel tube, is accomplished by extending a
sheath 26 into the stomach, extending a grasping instrument through the sheath, grasping the proximal end of the device and pulling the tube into the sheath causing it to collapse. If a wire snare loop is to be used as the grasping instrument, the snare is placed around a neck (such asneck 16 shown in FIG. 2 or asimilar neck 17 at the proximal end of the fundal basket as shown in FIG. 12B) to grasp the device. Engagement with the snare loop would assist in collapsing the tube as the snare is tightened around the neck and withdrawn into thesheath 26. Alternatively, as described with respect to FIGS. 16A and 16B, the proximal end of the tube may includetabs 13 that are pulled radially inwardly using an endoscopic instrument to facilitate collapse of the device. - Another
alternative satiation device 130 is shown in FIG. 13. As with the prior devices,device 130 includes anantral tube 10c positionable within the antrum to minimize direct contact between food entering the antrum and the walls of the antrum. Theantral tube 10 c may be formed of a combination of soft polymeric material as well as reinforcing members formed of nitinol, stainless steel, and/or polymer. In the embodiment shown in FIG. 13,device 130 is formed of a polymeric sleeve 48 with nitinol struts 50 embedded in the sleeve material. Stainless steel or polymeric reinforcingbands 52 extend longitudinally along the interior walls of the tubular member.Inflatable reservoirs 54 formed of a soft elastic polymer are positioned on the exterior of the tubular sleeve 48. Afill tube 56 is fluidly coupled to the reservoirs. After the device is positioned within the antrum,reservoirs 54 are filled with saline to expand the sleeve 48 into contact with the antrum walls, so as to hold the device in place within the antrum. Filltube 56 may detach from the reservoir following inflation using the saline. To prevent saline leakage, a one-way valve (not shown) may be located within the reservoir at the point of attachment of the fill tube. - Another alternative embodiment of a
satiation device 200 is shown in FIGS. 14 and 15. Device may be formed of a wire member coiled to create a stent-like device. The coil may be contoured to match the contours of interior lumen wall, such as by forming the coil of a shape memory material such as nitinol or polymers, and shape setting the material to the desired shape.Device 200 has aproximal portion 202 positionable in the antrum, and adistal portion 204 that may be positioned in the duodenum bulb or further within the small intestine. The pitch of the coil is selected to give the device 200 a desired strength and flexibility. - A
straight portion 206 connects the proximal anddistal portions Straight portion 206 is positionable within the pyloric sphincter. Under normal conditions, the pyloric sphincter remains closed until the stomach is ready to evacuate its contents into the duodenum.Straight portion 206 is beneficial in that it provides structure connecting proximal anddistal portions - Although a preferred material for the
device 200 is wire, it should be noted that a variety of alternative materials may be used for this purpose. For example,device 200 may be formed of ribbons of material, or it may be formed from a metallic sheet, or its pattern may be cut from tubing. - Yet another embodiment of a
satiation device 300 is illustrated in FIG. 17A.Device 300 includes atubular pouch 302 that is positioned in the proximal region of the stomach.Pouch 302 includes a proximal end that is preferably positioned to be slightly proximal of the gastro_o-esophageal junction as shown. The walls of the pouch preferably taper inwardly from the proximal end towards the distal end. Aproximal opening 304 of, for example, approximately 25 to 50 mm in diameter is located at the proximal end, and adistal opening 308 having a diameter of approximately 6-12 mm is formed at the distal end. Theproximal opening 304 is preferably placed into alignment with the esophagus, and thedistal opening 308 opens into the interior of the stomach. - Because of its small volume (which may be on the order of approximately 30 cc-50 cc in volume), the pouch functions to limit the amount of food that can be consumed at one time. Food ingested by the patient remains in the pouch until digestive enzymes have broken it down sufficiently for it to pass through the
distal opening 308. - The pouch is preferably self-expanding and may take a variety of forms. For example, referring to FIG. 18 it may be formed of
struts 310 or a mesh formed of nitinol, stainless steel, polymer (including shape memory polymer). Aring 312 is attached to the struts/mesh at the proximal end of the device, and also may be formed of nitinol, stainless steel, polymer (including shape memory polymer). The exterior or interior of the pouch covered with amaterial 313 will prevent passage of food through the sides of the pouch. One example of such a material is a polyester material such as the polyester sold by the DuPont Company under the trademark Dacron. - FIGS. 19A and 19B show another example of a
pouch 302 a.Pouch 302 a is formed of a shape memory coil that has been heat set to a funnel shape. Dacron polyester orother material 313 a (FIG. 19B) may optionally cover the interior or exterior walls of the coil, although the coil may itself be sufficiently small as to prevent migration of food to the surrounding stomach walls. The material 313 a may be pinched between proximal-most coil 312 a and its adjacent coil as shown in FIG. 19B, so as to hold it in place. - The
pouches - The stomach pouch may be used alone or in combination with other components. If used without additional components, the proximal end of the pouch (
e.g. ring 312 ofpouch 302 or ring 312 a ofpouch 302 a) may serve as a sewing ring that is attached by sutures to the interior stomach walls. The suture may pass through thematerial - The stomach pouch may alternatively be one portion of a larger satiation device. For example, referring to FIG. 17B, the proximal portion of the pouch (such as
ring 312 of the pouch of FIG. 18 or the upper coil 312 a of the pouch of FIG. 19A) may be connected to the proximal end of alarger cage structure 314.Cage 314 extends from the esophagus to the proximal portion of the antrum, and may be similar to the fundal baskets described above. It may be a large stent-like structure preferably formed of self-expanding material, such as stainless steel or a shape memory material such as nitinol or polymer.Cage 314 functions primarily to distend the stomach to create a feeling of satiety. As shown, thepouch 300 is suspended into the interior ofcage 314. - Additionally, the pouch (as used with or without cage314) may also be attached at its proximal end to an
alignment extension 316. Referring to FIG. 17C,alignment extension 316 is a tubular stent portion that extends into the esophagus. In one embodiment,extension 316 may be approximately 5 cm in length. It functions primarily to keep the proximal opening of the pouch aligned with the esophagus—so that food passing through the esophagus passes easily into the pouch. - Finally, an enclosed bypass tail (not shown) may-extend from
distal opening 308 of the pouch through the pylorus into the small bowel to simulate a stomach bypass procedure. The structure of the tail may be similar to the bowel tube described with respect to FIG. 5. - The stomach pouch and associated components may be implanted and removed using procedures of the type described with respect to previous embodiments. In embodiments in which the stomach pouch includes the cage, alignment extension, and/or bypass tail, the components may be implanted simultaneously as a single device. Alternatively, they may be segmented for separate implantation and for subsequent suture attachment to one another once they are within the body.
- Another embodiment of a satiation device is illustrated in FIG. 20. This satiation device includes a duodenal absorption barrier—an
elongate tube 400 that is positionable within the small intestine at a location slightly distal of the ampulla of vader. For example, the barrier may be positioned a distance of approximately 1 cm or more from the ampulla of vader. Positioning of the tube so that it does not contact the ampulla (an opening through which bile passes into the duodenum) is desirable in that it minimizes the chance of irritation and choleocystitus. - The
tube 400 is preferably a flexible tube preferably approximately 20 cm or more in length. It may be constructed as described with the satiation devices described above. For example, it may be formed of a self-expandable material such as nitinol, stainless steel, or a shape memory polymer (e.g. oligo-(caprolactone)-dimethacrylate or n-butyl acrylate), and covered with a polymer covering that is resistant to gastric juices (e.g. silicone) and that prevents passage of food byproducts through the walls of the tube. - The
tube 400 prevents caloric intake in the small intestine by preventing absorption of food through the walls of the duodenum, and thus functions as an aid to weight loss. -
Tube 400 may be delivered and extracted using the techniques described above, and it may be held in place in any of the ways described herein, including sutures, barbs, scales, hooks, or under the outward pressure of the expanded device against the surrounding walls of the duodenum.Tube 400 may be used alone or in combination with components of the type described above. - Various embodiments of satiation device have been described herein. These embodiments are giving by way of example and are not intended to limit the scope of the present invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments.
Claims (110)
1. A method of inducing weight loss in a patient, comprising the steps of:
providing a tubular prosthesis expandable from a collapsed position in which the prosthesis has a first diameter to an expanded position in which the prosthesis has a second, larger, diameter;
with the prosthesis in the collapsed position, inserting the prosthesis into a stomach of a patient; and
allowing the prosthesis to self-expand from the collapsed position to the expanded position and into contact with the walls of the stomach.
2. The method of claim 1 wherein the inserting step includes inserting the prosthesis into the antrum of a stomach and wherein the allowing step causes the prosthesis to self-expand into contact with the walls of the antrum.
3. The method of claim 2 wherein the prosthesis includes a waist section, and wherein the method includes causing the waist section to seat at the pyloric sphincter of the stomach.
4. The method of claim 1 wherein the contact between the prosthesis and the walls of the stomach secures the prosthesis in place in the stomach.
5. The method of claim 1 wherein the contact between the prosthesis and the walls of the stomach causes feelings of satiation in the patient.
6. The method of claim 5 wherein the contact between the prosthesis and the walls of the stomach suppresses production in the patient of a chemical mediator of the sensation of hunger.
7. The method of claim 6 wherein the chemical mediator includes Ghrelin.
8. The method of claim 1 wherein the prosthesis includes a self-expanding framework in combination with a fluid impermeable barrier, the fluid impermeable barrier preventing movement of food material through the walls of the prosthesis and into the stomach.
9. The method of claim 1 wherein the prosthesis includes a fluid-permeable reservoir containing a satiety-controlling substance, and wherein the method includes allowing the satiety-controlling substance to pass from the fluid-permeable reservoir into the stomach.
10. The method of claim 1 wherein the prosthesis includes a membrane impregnated with a satiety-controlling substance, and wherein the method includes allowing the satiety-controlling substance to pass from the membrane into the stomach.
11. The method of claim 1 wherein the prosthesis is formed of a shape memory material.
12. The method of claim 11 wherein the shape memory material is nitinol.
13. The method of claim 12 wherein the shape memory material is a shape memory polymer.
14. The method of claim 1 wherein the prosthesis is formed of a mesh.
15. The method of claim 2 wherein the prosthesis includes a valve at the waist section and wherein the method includes preventing reflux of bile from the duodenum into the antrum using the valve.
16. The method of claim 1 wherein the prosthesis includes a proximal end and wherein the method includes the step of inserting a snare into the stomach, placing the snare around the proximal end, and withdrawing the snare to collapse the prosthesis.
17. The method of claim 16 further including the step of further withdrawing the snare to remove the prosthesis from the stomach.
18. The method of claim 1 wherein the inserting step includes the steps of placing the prosthesis in an elongate sheath and inserting the elongate sheath into the stomach, and wherein the allowing step includes withdrawing the elongate sheath from the prosthesis.
19. A method of effecting weight loss in a patient, comprising the steps of:
providing a prosthesis including an antral tube expandable from a collapsed position in which the antral tube has a first diameter to an expanded position in which the antral tube has a second, larger, diameter;
further providing a bowel tube attachable to a distal portion of the antral tube, the bowel tube having a diameter smaller than the second diameter of the antral tube;
with the antral tube in the collapsed position, inserting the antral tube into an antrum of a patient;
allowing the antral tube to self-expand from the collapsed position to the expanded position and into contact with the walls of the atrum;
attaching the bowel tube to the antral tube; and
positioning the bowel tube within the intestine of the patient.
20. The method of claim 19 wherein the attaching step is performed prior to the inserting step.
21. The method of claim 19 wherein the attaching step is performed after the inserting step.
22. The method of claim 19 , including the step of causing food ingested by the patient to pass through the antral tube and the bowel tube.
23. The method of claim 23 wherein the step of causing food to pass through the bowel tube includes preventing contact between the food and the portion of the intestine surrounding the bowel tube.
24. The method of claim 19 wherein the antral tube includes a waist section, and wherein the method includes causing the waist section to seat at the pyloric sphincter of the stomach.
25. The method of claim 19 wherein the contact between the antral tube and the walls of the stomach secures the antral tube in place in the stomach.
26. The method of claim 19 wherein the contact between the antral tube and the walls of the stomach causes feelings of satiation in the patient.
27. The method of claim 26 wherein the contact between the prosthesis and the walls of the stomach suppresses production in the patient of a chemical mediator of the sensation of hunger.
28. The method of claim 27 wherein the chemical mediator includes Ghrelin.
29. The method of claim 1 wherein the antral tube is formed of a shape memory material.
30. The method of claim 29 wherein the shape memory material is nitinol.
31. The method of claim 29 wherein the shape memory material is a shape memory polymer.
32. The method of claim 19 wherein the antral tube is formed of a mesh.
33. The method of claim 24 wherein the antral tube includes a valve at the waist section and wherein the method includes preventing reflux of bile from the duodenum into the antrum using the valve.
34. The method of claim 19 wherein the antral tube includes a proximal end and wherein the method includes the step of inserting a snare into the stomach, placing the snare around the proximal end, and withdrawing the snare to collapse the antral tube.
35. The method of claim 34 further including the step of further withdrawing the snare to remove the collapsed antral tube from the stomach.
36. The method of claim 19 wherein the inserting step includes the steps of placing the antral tube in an elongate sheath and inserting the elongate sheath into the stomach, and wherein the allowing step includes withdrawing the elongate sheath from the antral tube, causing the antral tube to spring to the expanded position.
37. A method of effecting weight loss in a patient, comprising the steps of:
providing a prosthesis including an antral tube expandable from a collapsed position in which the antral tube has a first diameter to an expanded position in which the antral tube has a second, larger, diameter;
further providing a fundal basket attachable to a proximal portion of the antral tube;
with the antral tube in the collapsed position, inserting the antral tube into an antrum of a patient;
allowing the antral tube to self-expand from the collapsed position to the expanded position and into contact with the walls of the atrum;
attaching the fundal basket to the antral tube; and
positioning the fundal basket within the fundus of the stomach.
38. The method of claim 37 wherein the attaching step is performed prior to the inserting step, wherein the fundal basket includes a collapsed position and an expanded condition, and wherein the step of positioning the fundal basket in the fundus includes introducing the fundal basket and antral tube into the stomach in their collapsed positions, and allowing the fundal basket and antral tube to self expand into their expanded positions.
39. The method of claim 37 wherein the attaching step is performed after the inserting step.
40. The method of claim 37 , including the step of causing food ingested by the patient to pass through the fundal basket and the antral tube.
41. The method of claim 37 wherein the contact between the prosthesis and the walls of the stomach secures the prosthesis in place in the stomach.
42. The method of claim 37 wherein contact between the antral tube and the walls of the stomach causes feelings of satiation in the patient.
43. The method of claim 42 wherein the contact between the prosthesis and the walls of the stomach suppresses production in the patient of a chemical mediator of the sensation of hunger.
44. The method of claim 43 wherein the chemical mediator includes Ghrelin.
45. The method of claim 37 wherein the antral tube is formed of a shape memory material.
46. The method of claim 45 wherein the shape memory material is nitinol.
47. The method of claim 45 wherein the shape memory material is a shape memory polymer.
48. The method of claim 37 wherein the antral tube is formed of a mesh.
49. The method of claim 37 wherein the fundal basket includes a proximal end and wherein the method includes the step of inserting a snare into the stomach, placing the snare around the proximal end, and withdrawing the snare to collapse the fundal basket and antral tube.
50. The method of claim 49 further including the step of further withdrawing the snare to remove the collapsed fundal basket and antral tube from the stomach.
51. The method of claim 37 wherein the inserting step includes the steps of placing the fundal basket in an elongate sheath and inserting the elongate sheath into the stomach, and wherein the allowing step includes withdrawing the elongate sheath from the fundal tube.
52. The method of claim 38 wherein the inserting step includes the steps of placing the fundal basket and antral tube in an elongate sheath and inserting the elongate sheath into the stomach, and wherein the allowing step includes withdrawing the elongate sheath from the fundal basket and antral tube.
53. The method of claim 37 further including the steps of:
attaching a bowel tube to a distal portion of the antral tube; and
positioning the bowel tube within the intestine of the patient.
54. The method of claim 53 wherein step of attaching the bowel tube is performed prior to the step of inserting the antral tube into the antrum of a patient.
55. The method of claim 53 wherein step of attaching the bowel tube is performed after the step of inserting the antral tube into the antrum of a patient.
56. The method of claim 53 , further including the step of causing food ingested by the patient to pass through the fundal basket, antral tube, and bowel tube.
57. An apparatus for inducing weight loss in a patient, comprising:
a prosthesis proportioned for placement in the stomach, the prosthesis defining a lumen for passage of food therethrough, the prosthesis self-expandable from a collapsed position to an expanded position, the prosthesis further including
an antral portion sized for positioning within an antrum of a stomach such that exterior walls of the antral portion contact adjacent walls of the stomach,
an intestinal portion sized for positioning within the duodenum such that exterior walls of the intestinal portion contact adjacent walls of the duodenum, and
an intermediate portion extending between the antral portion and the intestinal portion for placement within the pyloric sphincter of the stomach.
58. The apparatus of claim 57 wherein the prosthesis is formed of a self-expandable mesh.
59. The apparatus of claim 58 wherein the mesh is formed of stainless steel.
60. The apparatus of claim 58 wherein the mesh is formed of shape memory material.
61. The apparatus of claim 60 wherein the mesh is formed of nitinol.
62. The apparatus of claim 57 wherein the prosthesis is formed of shape memory polymer.
63. The apparatus of claim 58 wherein the prothesis includes a fluid impermeable barrier on the antral portion.
63. The apparatus of claim 57 wherein the antral portion and the intestinal portions are formed of wire coil, and wherein the intermediate portion includes an elongate element extending between the antral portion and the intestinal portions.
64. The apparatus of claim 63 wherein the elongate element is a wire.
65. The apparatus of claim 63 wherein the elongate element is a ribbon.
66. The apparatus of claim 63 wherein the elongate element is a suture.
67. A method for inducing weight loss in a patient, comprising the steps of:
providing a pouch having a proximal opening and a distal opening;
positioning the pouch within the stomach of a patient;
placing the proximal opening of the pouch at the distal end of the esophagus and approximately aligning said proximal opening with said distal end;
securing the pouch within the stomach; and
causing food ingested by the patient to flow from the esophagus into the pouch.
68. The method of claim 67 wherein the proximal opening has a diameter that is larger than the diameter of the distal opening.
69. The method of claim 68 wherein the pouch has an approximate funnel shape.
70. The method of claim 67 further including the steps of:
attaching the pouch to a cage; and
positioning the cage within the stomach.
71. The method of claim 70 wherein the step of attaching the pouch to the cage is performed after to the step of positioning the cage within the stomach.
72. The method of claim 70 wherein the step of attaching the pouch to the cage is performed prior to the step of positioning the cage within the stomach.
73. The method of claim 70 wherein the step of positioning the cage within the stomach includes placing a portion of the cage at the fundus of the stomach.
74. The method of claim 67 including the step of positioning an alignment tube in the distal portion of the patient's esophagus, the alignment tube directing food from the esophagus into the proximal opening of the pouch.
75. An apparatus for inducing weight loss in a patient, the apparatus comprising:
a tubular pouch having a proximal opening and a distal opening, the pouch proportioned such that when the proximal opening is positioned at the distal end of a patient's esophagus, the distal opening opens into the proximal region of the stomach such that food from the esophagus passes directly into the proximal opening, passes through the pouch and then into the proximal region of the stomach.
76. The apparatus of claim 75 wherein the proximal opening has a diameter that is larger than the diameter of the distal opening.
77. The apparatus of claim 75 wherein the pouch has an approximate funnel shape.
78. The apparatus of claim 75 wherein the pouch is self-expandable from a collapsed position to an expanded position.
79. The apparatus of claim 78 wherein the pouch is formed of a shape memory material.
80. The apparatus of claim 79 wherein the shape memory material is nitinol.
81. The apparatus of claim 79 wherein the shape memory material is a shape memory polymer.
82. The apparatus of claim 75 wherein the pouch is formed of a coil.
83. The apparatus of claim 75 wherein the pouch is formed of a mesh.
84. The apparatus of claim 75 wherein the pouch includes a sewing ring at the proximal opening.
85. The apparatus of claim 75 further including a cage positionable within the proximal region of the stomach, the pouch attachable to the proximal portion of the cage such that the distal opening extends into the interior of the cage.
86. The apparatus of claim 75 further including an alignment tube positionable within the distal region of the esophagus, the alignment tube including a distal end attachable to the proximal end of the pouch.
87. The apparatus of claim 86 further including a cage positionable within the proximal region of the stomach, the pouch attachable to the proximal portion of the cage such that the distal opening extends into the interior of the cage.
88. A method of inducing weight loss in a patient, comprising the steps of:
providing an elongate tube;
securing the tube within the intestine of a patient, distally of the ampulla of vader; and
causing food passing into the intestine of the patient to pass through the tube, the tube creating a barrier to absorption of the food by the intestine.
89. The method of claim 88 wherein the tube is formed of a shape memory frame covered with a polymeric barrier.
90. The method of claim 89 wherein the shape memory frame is formed of nitinol.
91. The method of claim 90 wherein the shape memory frame is formed of shape memory polymer.
92. A method of inducing weight loss in a patient, comprising the steps of:
providing a tubular prosthesis having a wall surrounding a lumen, the wall formed of a framework that is self-expandable from a collapsed position in which the prosthesis has a first diameter to an expanded position in which the prosthesis has a second, larger, diameter;
with the prosthesis in the collapsed position, inserting the prosthesis into a stomach of a patient; and
allowing the prosthesis to self-expand from the collapsed position to the expanded position and into contact with the walls of the stomach.
93. The method of claim 92 wherein the inserting step includes inserting the prosthesis into the antrum of a stomach and wherein the allowing step causes the prosthesis to self-expand into contact with the walls of the antrum.
94. The method of claim 93 wherein the prosthesis includes a waist section, and wherein the method includes causing the waist section to seat at the pyloric sphincter of the stomach.
95. The method of claim 92 wherein the contact between the prosthesis and the walls of the stomach secures the prosthesis in place in the stomach.
96. The method of claim 92 wherein the contact between the prosthesis and the walls of the stomach causes feelings of satiation in the patient.
97. The method of claim 96 wherein the contact between the prosthesis and the walls of the stomach suppresses production in the patient of a chemical mediator of the sensation of hunger.
98. The method of claim 97 wherein the chemical mediator includes Ghrelin.
99. The method of claim 93 wherein the wall includes a self-expanding framework in combination with a fluid impermeable barrier, the fluid impermeable barrier preventing movement of food material from the lumen through the wall and into the stomach.
100. The method of claim 92 wherein the prosthesis includes a fluid-permeable reservoir containing a satiety-controlling substance, and wherein the method includes allowing the satiety-controlling substance to pass from the fluid-permeable reservoir into the stomach.
101. The method of claim 92 wherein the prosthesis includes a membrane impregnated with a satiety-controlling substance, and wherein the method includes allowing the satiety-controlling substance to pass from the membrane into the stomach.
102. The method of claim 92 wherein the wall is formed of a shape memory material.
103. The method of claim 102 wherein the shape memory material is nitinol.
104. The method of claim 103 wherein the shape memory material is a shape memory polymer.
105. The method of claim 92 wherein the wall is formed of a mesh.
106. The method of claim 93 wherein the prosthesis includes a valve at the waist section and wherein the method includes preventing reflux of bile from the duodenum into the antrum using the valve.
107. The method of claim 92 wherein the prosthesis includes a proximal end and wherein the method includes the step of inserting a snare into the stomach, placing the snare around the proximal end, and withdrawing the snare to collapse the prosthesis.
108. The method of claim 107 further including the step of further withdrawing the snare to remove the prosthesis from the stomach.
109. The method of claim 92 wherein the inserting step includes the steps of placing the prosthesis in an elongate sheath and inserting the elongate sheath into the stomach, and wherein the allowing step includes withdrawing the elongate sheath from the prosthesis.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/457,144 US20030199991A1 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US12/538,741 US20090299487A1 (en) | 2001-08-27 | 2009-08-10 | Satiation devices and methods |
US13/247,400 US8177853B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/247,377 US8337567B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/535,254 US20120271217A1 (en) | 2001-08-27 | 2012-06-27 | Satiation devices and methods |
US13/734,905 US9254214B2 (en) | 2001-08-27 | 2013-01-04 | Satiation devices and methods |
US13/936,132 US20130296764A1 (en) | 2001-08-27 | 2013-07-05 | Satiation devices and methods |
US14/161,392 US9107727B2 (en) | 2001-08-27 | 2014-01-22 | Satiation devices and methods |
US14/803,814 US9788984B2 (en) | 2001-08-27 | 2015-07-20 | Satiation devices and methods |
US14/987,362 US10080677B2 (en) | 2001-08-27 | 2016-01-04 | Satiation devices and methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/940,110 US6675809B2 (en) | 2001-08-27 | 2001-08-27 | Satiation devices and methods |
US10/457,144 US20030199991A1 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,110 Division US6675809B2 (en) | 2001-08-27 | 2001-08-27 | Satiation devices and methods |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/537,741 Continuation US8639871B2 (en) | 2009-04-08 | 2009-08-07 | Partitioning a flash memory data storage device |
US12/538,741 Continuation US20090299487A1 (en) | 2001-08-27 | 2009-08-10 | Satiation devices and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030199991A1 true US20030199991A1 (en) | 2003-10-23 |
Family
ID=25474247
Family Applications (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,110 Expired - Lifetime US6675809B2 (en) | 2001-08-27 | 2001-08-27 | Satiation devices and methods |
US10/457,144 Abandoned US20030199991A1 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US10/457,137 Abandoned US20030199990A1 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US10/457,108 Expired - Fee Related US7111627B2 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US10/794,346 Expired - Lifetime US7121283B2 (en) | 2001-08-27 | 2004-03-04 | Satiation devices and methods |
US10/892,973 Expired - Fee Related US7354454B2 (en) | 2001-08-27 | 2004-07-16 | Satiation devices and methods |
US12/099,290 Expired - Fee Related US7833280B2 (en) | 2001-08-27 | 2008-04-08 | Satiation devices and methods |
US12/538,741 Abandoned US20090299487A1 (en) | 2001-08-27 | 2009-08-10 | Satiation devices and methods |
US13/247,377 Expired - Lifetime US8337567B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/247,400 Expired - Fee Related US8177853B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/535,254 Abandoned US20120271217A1 (en) | 2001-08-27 | 2012-06-27 | Satiation devices and methods |
US13/734,905 Expired - Fee Related US9254214B2 (en) | 2001-08-27 | 2013-01-04 | Satiation devices and methods |
US13/936,132 Abandoned US20130296764A1 (en) | 2001-08-27 | 2013-07-05 | Satiation devices and methods |
US14/161,392 Expired - Fee Related US9107727B2 (en) | 2001-08-27 | 2014-01-22 | Satiation devices and methods |
US14/803,814 Expired - Fee Related US9788984B2 (en) | 2001-08-27 | 2015-07-20 | Satiation devices and methods |
US14/987,362 Expired - Fee Related US10080677B2 (en) | 2001-08-27 | 2016-01-04 | Satiation devices and methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/940,110 Expired - Lifetime US6675809B2 (en) | 2001-08-27 | 2001-08-27 | Satiation devices and methods |
Family Applications After (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/457,137 Abandoned US20030199990A1 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US10/457,108 Expired - Fee Related US7111627B2 (en) | 2001-08-27 | 2003-06-09 | Satiation devices and methods |
US10/794,346 Expired - Lifetime US7121283B2 (en) | 2001-08-27 | 2004-03-04 | Satiation devices and methods |
US10/892,973 Expired - Fee Related US7354454B2 (en) | 2001-08-27 | 2004-07-16 | Satiation devices and methods |
US12/099,290 Expired - Fee Related US7833280B2 (en) | 2001-08-27 | 2008-04-08 | Satiation devices and methods |
US12/538,741 Abandoned US20090299487A1 (en) | 2001-08-27 | 2009-08-10 | Satiation devices and methods |
US13/247,377 Expired - Lifetime US8337567B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/247,400 Expired - Fee Related US8177853B2 (en) | 2001-08-27 | 2011-09-28 | Satiation devices and methods |
US13/535,254 Abandoned US20120271217A1 (en) | 2001-08-27 | 2012-06-27 | Satiation devices and methods |
US13/734,905 Expired - Fee Related US9254214B2 (en) | 2001-08-27 | 2013-01-04 | Satiation devices and methods |
US13/936,132 Abandoned US20130296764A1 (en) | 2001-08-27 | 2013-07-05 | Satiation devices and methods |
US14/161,392 Expired - Fee Related US9107727B2 (en) | 2001-08-27 | 2014-01-22 | Satiation devices and methods |
US14/803,814 Expired - Fee Related US9788984B2 (en) | 2001-08-27 | 2015-07-20 | Satiation devices and methods |
US14/987,362 Expired - Fee Related US10080677B2 (en) | 2001-08-27 | 2016-01-04 | Satiation devices and methods |
Country Status (5)
Country | Link |
---|---|
US (16) | US6675809B2 (en) |
EP (3) | EP1420730B1 (en) |
JP (2) | JP4790212B2 (en) |
CN (1) | CN1307951C (en) |
WO (1) | WO2003017882A2 (en) |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030078611A1 (en) * | 2001-05-17 | 2003-04-24 | Kiyoshi Hashiba | Intragastric device for treating obesity |
US20040117031A1 (en) * | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US20040148034A1 (en) * | 2002-11-01 | 2004-07-29 | Jonathan Kagan | Apparatus and methods for treatment of morbid obesity |
WO2005082296A1 (en) * | 2004-02-25 | 2005-09-09 | Mayo Foundation For Medical Education And Research | Gastric bypass and methods |
US20050247320A1 (en) * | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US20050273060A1 (en) * | 2004-06-03 | 2005-12-08 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US20060020277A1 (en) * | 2004-07-20 | 2006-01-26 | Gostout Christopher J | Gastric reshaping devices and methods |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US7211114B2 (en) | 2002-08-26 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Endoscopic gastric bypass |
US7223277B2 (en) | 2003-03-17 | 2007-05-29 | Delegge Rebecca | Method of inducing satiety |
US20070123994A1 (en) * | 2005-11-29 | 2007-05-31 | Ethicon Endo-Surgery, Inc. | Internally Placed Gastric Restriction Device |
US20070282452A1 (en) * | 2006-05-30 | 2007-12-06 | Boston Scientific Scimed, Inc. | Anti-obesity dual stent |
US20070282454A1 (en) * | 2006-05-30 | 2007-12-06 | Boston Scientific Scimed Inc. | Anti-obesity diverter structure |
US20080065122A1 (en) * | 2003-10-10 | 2008-03-13 | Stack Richard S | Restrictive and/or obstructive implant system for inducing weight loss |
US20080112143A1 (en) * | 2006-10-31 | 2008-05-15 | Pathfinder Energy Services, Inc. | Integrated circuit packages including damming and charge protection cover for harsh environments |
US20080228126A1 (en) * | 2006-03-23 | 2008-09-18 | The Trustees Of Columbia University In The City Of New York | Method of inhibiting disruption of the healing process in a physically modified stomach |
US20090259239A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve devices and methods |
US20090259240A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve |
US7666180B2 (en) | 2005-05-20 | 2010-02-23 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
US20100049224A1 (en) * | 2007-03-29 | 2010-02-25 | Jaime Vargas | Intragastric Implant Devices |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7682330B2 (en) | 2003-12-09 | 2010-03-23 | Gi Dynamics, Inc. | Intestinal sleeve |
US7691053B2 (en) | 2005-05-20 | 2010-04-06 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7766861B2 (en) | 2002-12-02 | 2010-08-03 | Gi Dynamics, Inc. | Anti-obesity devices |
US7766973B2 (en) | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US7815591B2 (en) | 2004-09-17 | 2010-10-19 | Gi Dynamics, Inc. | Atraumatic gastrointestinal anchor |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7833280B2 (en) | 2001-08-27 | 2010-11-16 | Barosense, Inc. | Satiation devices and methods |
US7837643B2 (en) | 2004-07-09 | 2010-11-23 | Gi Dynamics, Inc. | Methods and devices for placing a gastrointestinal sleeve |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US7846138B2 (en) | 2002-11-01 | 2010-12-07 | Valentx, Inc. | Cuff and sleeve system for gastrointestinal bypass |
US20110015665A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US7883524B2 (en) | 2007-12-21 | 2011-02-08 | Wilson-Cook Medical Inc. | Method of delivering an intragastric device for treating obesity |
US7892292B2 (en) | 2001-08-27 | 2011-02-22 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US7909222B2 (en) | 2008-03-18 | 2011-03-22 | Barosense, Inc. | Endoscopic stapling devices and methods |
US20110087146A1 (en) * | 2009-10-09 | 2011-04-14 | Boston Scientific Scimed, Inc. | Stomach bypass for the treatment of obesity |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US7967818B2 (en) | 2005-06-10 | 2011-06-28 | Cook Medical Technologies Llc | Cautery catheter |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US7981162B2 (en) | 2001-08-27 | 2011-07-19 | Barosense, Inc. | Satiation devices and methods |
US8007507B2 (en) | 2007-05-10 | 2011-08-30 | Cook Medical Technologies Llc | Intragastric bag apparatus and method of delivery for treating obesity |
US8016851B2 (en) | 2007-12-27 | 2011-09-13 | Cook Medical Technologies Llc | Delivery system and method of delivery for treating obesity |
US8029455B2 (en) | 2003-01-16 | 2011-10-04 | Barosense, Inc. | Satiation pouches and methods of use |
US20110270410A1 (en) * | 2001-08-27 | 2011-11-03 | Barosense, Inc. | Satiation devices and methods |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US20110307070A1 (en) * | 2010-04-30 | 2011-12-15 | Boston Scientific Scimed, Inc. | Stent for repair of anastomasis surgery leaks |
US8109895B2 (en) | 2006-09-02 | 2012-02-07 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
US8118774B2 (en) | 2006-09-25 | 2012-02-21 | Valentx, Inc. | Toposcopic access and delivery devices |
US8137301B2 (en) | 2002-12-02 | 2012-03-20 | Gi Dynamics, Inc. | Bariatric sleeve |
US8211186B2 (en) | 2009-04-03 | 2012-07-03 | Metamodix, Inc. | Modular gastrointestinal prostheses |
US8216268B2 (en) | 2005-12-22 | 2012-07-10 | Cook Medical Technologies Llc | Intragastric bag for treating obesity |
US20120184893A1 (en) * | 2009-04-03 | 2012-07-19 | Metamodix, Inc. | Anchors and methods for intestinal bypass sleeves |
US8241202B2 (en) | 2004-04-26 | 2012-08-14 | Barosense, Inc. | Restrictive and/or obstructive implant for inducing weight loss |
US8282598B2 (en) | 2009-07-10 | 2012-10-09 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US8337566B2 (en) | 2002-04-08 | 2012-12-25 | Barosense, Inc. | Method and apparatus for modifying the exit orifice of a satiation pouch |
US8435203B2 (en) | 2007-06-20 | 2013-05-07 | Covidien Lp | Gastric restrictor assembly and method of use |
US8469977B2 (en) | 2005-10-03 | 2013-06-25 | Barosense, Inc. | Endoscopic plication device and method |
US8702641B2 (en) | 2009-04-03 | 2014-04-22 | Metamodix, Inc. | Gastrointestinal prostheses having partial bypass configurations |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
US20140236064A1 (en) * | 2013-02-21 | 2014-08-21 | Kenneth F. Binmoeller | Devices and methods for forming an anastomosis |
US8945167B2 (en) | 2007-12-31 | 2015-02-03 | Boston Scientific Scimed, Inc. | Gastric space occupier systems and methods of use |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US8961539B2 (en) | 2009-05-04 | 2015-02-24 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US9173734B2 (en) | 2009-09-29 | 2015-11-03 | IBIS Medical, Inc. | Intragastric implant devices |
US9173760B2 (en) | 2009-04-03 | 2015-11-03 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US9314361B2 (en) | 2006-09-15 | 2016-04-19 | Boston Scientific Scimed, Inc. | System and method for anchoring stomach implant |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9456825B2 (en) | 2007-07-18 | 2016-10-04 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US9545249B2 (en) | 2007-07-18 | 2017-01-17 | Boston Scientific Scimed, Inc. | Overtube introducer for use in endoscopic bariatric surgery |
CN106388985A (en) * | 2012-01-23 | 2017-02-15 | 阿波罗内窥镜外科手术有限责任公司 | Endolumenal esophageal restriction device |
US9622897B1 (en) | 2016-03-03 | 2017-04-18 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9888926B2 (en) | 2009-05-29 | 2018-02-13 | Boston Scientific Scimed, Inc. | Apparatus and method for deploying stent across adjacent tissue layers |
US10076330B2 (en) | 2008-05-12 | 2018-09-18 | Xlumena, Inc. | Tissue anchor for securing tissue layers |
US10123896B2 (en) | 2014-03-06 | 2018-11-13 | Mayo Foundation For Medical Education And Research | Apparatus and methods of inducing weight loss using blood flow control |
US10159699B2 (en) | 2013-01-15 | 2018-12-25 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US10390833B2 (en) | 2008-05-12 | 2019-08-27 | Boston Scientific Scimed, Inc. | Tissue anchor for securing tissue layers |
US10413436B2 (en) | 2010-06-13 | 2019-09-17 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US10507127B2 (en) | 2012-06-07 | 2019-12-17 | Epitomee Medical Ltd. | Expandable device |
US10751209B2 (en) | 2016-05-19 | 2020-08-25 | Metamodix, Inc. | Pyloric anchor retrieval tools and methods |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10945735B2 (en) | 2004-04-12 | 2021-03-16 | Boston Scientific Scimed, Inc. | Luminal structure anchoring devices and methods |
US11129793B2 (en) | 2013-12-05 | 2021-09-28 | Epitomee Medical Ltd | Retentive devices and systems for in-situ release of pharmaceutical active agents |
US11135078B2 (en) | 2010-06-13 | 2021-10-05 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US11950778B2 (en) | 2010-05-21 | 2024-04-09 | Boston Scientific Scimed, Inc. | Tissue-acquisition and fastening devices and methods |
Families Citing this family (385)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7491232B2 (en) | 1998-09-18 | 2009-02-17 | Aptus Endosystems, Inc. | Catheter-based fastener implantation apparatus and methods with implantation force resolution |
US6464628B1 (en) * | 1999-08-12 | 2002-10-15 | Obtech Medical Ag | Mechanical anal incontinence |
EP1108400A1 (en) * | 1999-12-13 | 2001-06-20 | Biomedix S.A. | Removable fixation apparatus for a prosthesis in a body vessel |
ATE295136T1 (en) * | 2000-02-10 | 2005-05-15 | Potencia Medical Ag | MECHANICAL DEVICE FOR TREATING IMPOTENCY |
US7442165B2 (en) * | 2000-02-14 | 2008-10-28 | Obtech Medical Ag | Penile prosthesis |
JP2004514462A (en) * | 2000-03-03 | 2004-05-20 | シー・アール・バード・インク | Tissue adhesion device for endoscope with multiple suction ports |
KR20030040208A (en) * | 2000-05-08 | 2003-05-22 | 큐티엘 바이오시스템즈 엘엘씨 | Improvements to the fluorescent polymer-QTL approach to biosensing |
ES2435094T3 (en) * | 2000-05-19 | 2013-12-18 | C.R. Bard, Inc. | Device and method of tissue capture and suturing |
US6540789B1 (en) * | 2000-06-15 | 2003-04-01 | Scimed Life Systems, Inc. | Method for treating morbid obesity |
US8158143B2 (en) | 2000-07-14 | 2012-04-17 | Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- Und Kuestenforschung Gmbh | Systems for releasing active ingredients, based on biodegradable or biocompatible polymers with a shape memory effect |
AU2001284774A1 (en) * | 2000-08-11 | 2002-02-25 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US7737109B2 (en) * | 2000-08-11 | 2010-06-15 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US7033373B2 (en) | 2000-11-03 | 2006-04-25 | Satiety, Inc. | Method and device for use in minimally invasive placement of space-occupying intragastric devices |
DE10158785B8 (en) * | 2001-05-27 | 2012-01-05 | Marc O. Schurr | Medical implant |
US7083629B2 (en) * | 2001-05-30 | 2006-08-01 | Satiety, Inc. | Overtube apparatus for insertion into a body |
US6558400B2 (en) * | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US6755869B2 (en) * | 2001-11-09 | 2004-06-29 | Boston Scientific Corporation | Intragastric prosthesis for the treatment of morbid obesity |
US6740121B2 (en) * | 2001-11-09 | 2004-05-25 | Boston Scientific Corporation | Intragastric stent for duodenum bypass |
US8231639B2 (en) | 2001-11-28 | 2012-07-31 | Aptus Endosystems, Inc. | Systems and methods for attaching a prosthesis within a body lumen or hollow organ |
US9320503B2 (en) | 2001-11-28 | 2016-04-26 | Medtronic Vascular, Inc. | Devices, system, and methods for guiding an operative tool into an interior body region |
JP4405262B2 (en) | 2001-11-28 | 2010-01-27 | アプタス エンドシステムズ, インコーポレイテッド | Intravascular aneurysm repair system |
US20090112302A1 (en) * | 2001-11-28 | 2009-04-30 | Josh Stafford | Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation |
US20050177180A1 (en) * | 2001-11-28 | 2005-08-11 | Aptus Endosystems, Inc. | Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ |
US20070073389A1 (en) | 2001-11-28 | 2007-03-29 | Aptus Endosystems, Inc. | Endovascular aneurysm devices, systems, and methods |
US20110087320A1 (en) * | 2001-11-28 | 2011-04-14 | Aptus Endosystems, Inc. | Devices, Systems, and Methods for Prosthesis Delivery and Implantation, Including a Prosthesis Assembly |
US7566813B2 (en) | 2002-03-21 | 2009-07-28 | Monsanto Technology, L.L.C. | Nucleic acid constructs and methods for producing altered seed oil compositions |
US7239912B2 (en) * | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
US7316716B2 (en) * | 2002-05-09 | 2008-01-08 | Gastrix Medical, Llc | Gastric bypass prosthesis |
US7218925B2 (en) * | 2002-06-06 | 2007-05-15 | General Motors Corporation | Method of initiating a telematics service |
US6773440B2 (en) * | 2002-07-02 | 2004-08-10 | Satiety, Inc. | Method and device for use in tissue approximation and fixation |
US6746460B2 (en) * | 2002-08-07 | 2004-06-08 | Satiety, Inc. | Intra-gastric fastening devices |
US7214233B2 (en) | 2002-08-30 | 2007-05-08 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US7033384B2 (en) * | 2002-08-30 | 2006-04-25 | Satiety, Inc. | Stented anchoring of gastric space-occupying devices |
US7666195B2 (en) * | 2002-09-09 | 2010-02-23 | Brian Kelleher | Device and method for endoluminal therapy |
US10383755B2 (en) | 2002-09-09 | 2019-08-20 | Brian Kelleher | Device and method for endoluminal therapy |
US7229428B2 (en) * | 2002-10-23 | 2007-06-12 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US7220237B2 (en) | 2002-10-23 | 2007-05-22 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US20060015125A1 (en) * | 2004-05-07 | 2006-01-19 | Paul Swain | Devices and methods for gastric surgery |
US20090149871A9 (en) * | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US6656194B1 (en) * | 2002-11-05 | 2003-12-02 | Satiety, Inc. | Magnetic anchoring devices |
US20040133147A1 (en) * | 2002-11-06 | 2004-07-08 | Woo Sang Hoon | Intestinal bypass device to treat obesity |
US8282678B2 (en) * | 2002-11-13 | 2012-10-09 | Allium Medical Solutions Ltd. | Endoluminal lining |
US20070032879A1 (en) * | 2002-12-02 | 2007-02-08 | Levine Andy H | Anti-buckling sleeve |
WO2004056343A1 (en) | 2002-12-19 | 2004-07-08 | Polymorfix, Inc. | Ingestible formulations for transient, noninvasive reduction of gastric volume |
US7141071B2 (en) * | 2002-12-23 | 2006-11-28 | Python Medical, Inc. | Implantable digestive tract organ |
US7037343B2 (en) * | 2002-12-23 | 2006-05-02 | Python, Inc. | Stomach prosthesis |
US20060142794A1 (en) * | 2003-02-19 | 2006-06-29 | Mnemoscience Gmbh | Self-expanding device for the gastrointestinal or urogenital area |
ATE454864T1 (en) * | 2003-03-28 | 2010-01-15 | Gi Dynamics Inc | TUBE FOR DELAYED INTRODUCTION OF ENZYMES INTO THE INTESTINAL |
US20040220682A1 (en) * | 2003-03-28 | 2004-11-04 | Gi Dynamics, Inc. | Anti-obesity devices |
US7175638B2 (en) | 2003-04-16 | 2007-02-13 | Satiety, Inc. | Method and devices for modifying the function of a body organ |
MXPA05012303A (en) * | 2003-05-16 | 2006-02-22 | Bard Inc C R | Single intubation, multi-stitch endoscopic suturing system. |
US20040260384A1 (en) * | 2003-06-17 | 2004-12-23 | Medtronic Ave | Superelastic coiled stent |
US6994095B2 (en) * | 2003-07-28 | 2006-02-07 | Medventure Associates Iv | Pyloric valve corking device and method |
US20090259236A2 (en) * | 2003-07-28 | 2009-10-15 | Baronova, Inc. | Gastric retaining devices and methods |
AU2012200476B2 (en) * | 2003-07-28 | 2013-09-05 | Baronova, Inc. | Pyloric valve obstructing devices and methods |
US8821521B2 (en) * | 2003-07-28 | 2014-09-02 | Baronova, Inc. | Gastro-intestinal device and method for treating addiction |
US9498366B2 (en) * | 2003-07-28 | 2016-11-22 | Baronova, Inc. | Devices and methods for pyloric anchoring |
US9700450B2 (en) | 2003-07-28 | 2017-07-11 | Baronova, Inc. | Devices and methods for gastrointestinal stimulation |
US8048169B2 (en) * | 2003-07-28 | 2011-11-01 | Baronova, Inc. | Pyloric valve obstructing devices and methods |
AU2004266574B2 (en) * | 2003-08-13 | 2010-11-04 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Compressive device for percutaneous treatment of obesity |
US7314489B2 (en) * | 2003-08-20 | 2008-01-01 | Ethicon Endo-Surgery, Inc. | Method and apparatus to facilitate nutritional malabsorption |
US7914543B2 (en) * | 2003-10-14 | 2011-03-29 | Satiety, Inc. | Single fold device for tissue fixation |
US7097650B2 (en) | 2003-10-14 | 2006-08-29 | Satiety, Inc. | System for tissue approximation and fixation |
US20050085787A1 (en) * | 2003-10-17 | 2005-04-21 | Laufer Michael D. | Minimally invasive gastrointestinal bypass |
US7054690B2 (en) | 2003-10-22 | 2006-05-30 | Intrapace, Inc. | Gastrointestinal stimulation device |
US7252665B2 (en) * | 2003-10-31 | 2007-08-07 | Medtronic, Inc | Ablation of stomach lining to reduce stomach acid secretion |
US7282050B2 (en) * | 2003-10-31 | 2007-10-16 | Medtronic, Inc. | Ablation of exterior of stomach to treat obesity |
US20060212042A1 (en) * | 2005-03-17 | 2006-09-21 | Lamport Ronald B | Removal and repositioning device |
US7041124B2 (en) * | 2003-12-23 | 2006-05-09 | Kimberly-Clark Worldwide, Inc. | System and method for providing therapy to a portion of a body |
EP1706061B1 (en) * | 2004-01-02 | 2010-03-31 | Yehiel Ziv | Gastrointestinal device |
US20050177176A1 (en) * | 2004-02-05 | 2005-08-11 | Craig Gerbi | Single-fold system for tissue approximation and fixation |
EP1713402B1 (en) * | 2004-02-13 | 2018-07-04 | Ethicon Endo-Surgery, Inc. | Device for reducing stomach volume |
US8585771B2 (en) * | 2004-02-26 | 2013-11-19 | Endosphere, Inc. | Methods and devices to curb appetite and/or to reduce food intake |
US8147561B2 (en) | 2004-02-26 | 2012-04-03 | Endosphere, Inc. | Methods and devices to curb appetite and/or reduce food intake |
US7931693B2 (en) * | 2004-02-26 | 2011-04-26 | Endosphere, Inc. | Method and apparatus for reducing obesity |
EP1725194B1 (en) * | 2004-02-27 | 2018-01-17 | Ethicon Endo-Surgery, Inc. | Methods and devices for reducing stomach volume |
US8449560B2 (en) | 2004-03-09 | 2013-05-28 | Satiety, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US9028511B2 (en) | 2004-03-09 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
DE102004011764A1 (en) * | 2004-03-09 | 2005-09-29 | Novineon Healthcare Technology Partners Gmbh | Medical implant |
US8628547B2 (en) | 2004-03-09 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8252009B2 (en) * | 2004-03-09 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
CA2561193A1 (en) | 2004-03-26 | 2005-10-20 | Satiety, Inc. | Systems and methods for treating obesity |
EP1749208A2 (en) * | 2004-05-14 | 2007-02-07 | Novo Nordisk A/S | Functional ghs-r antagonists |
US20050277975A1 (en) * | 2004-06-09 | 2005-12-15 | Usgi Medical Corp. | Methods and apparatus for creating a working space within a body lumen or cavity |
WO2006014496A2 (en) * | 2004-07-06 | 2006-02-09 | Amrish Walke | Obesity treatment devices |
US20060036267A1 (en) * | 2004-08-11 | 2006-02-16 | Usgi Medical Inc. | Methods and apparatus for performing malabsorptive bypass procedures within a patient's gastro-intestinal lumen |
US8172857B2 (en) | 2004-08-27 | 2012-05-08 | Davol, Inc. | Endoscopic tissue apposition device and method of use |
US20060155375A1 (en) * | 2004-09-27 | 2006-07-13 | Jonathan Kagan | Devices and methods for attachment of a gastrointestinal sleeve |
JP4856082B2 (en) | 2004-10-15 | 2012-01-18 | ビーエフケイダブリュ・エルエルシー | Obesity device |
KR101696006B1 (en) * | 2004-10-15 | 2017-01-13 | 비에프케이더블유, 엘엘씨 | Bariatric device and method for recipient with altered anatomy |
US7347868B2 (en) * | 2004-10-26 | 2008-03-25 | Baronova, Inc. | Medical device delivery catheter |
EP1807127B1 (en) * | 2004-11-05 | 2013-03-13 | Eatlittle Inc. | Controlled degradation of expandable polymers in gastric volume reduction treatment |
US20060106288A1 (en) | 2004-11-17 | 2006-05-18 | Roth Alex T | Remote tissue retraction device |
AU2005319399B2 (en) * | 2004-12-21 | 2011-05-12 | Davol Inc. | Anastomotic outlet revision |
EP1846080A4 (en) * | 2005-01-19 | 2010-05-19 | Sentinel Group Llc | Medical agent delivery system and method |
US7699863B2 (en) | 2005-03-01 | 2010-04-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US20060271171A1 (en) * | 2005-04-01 | 2006-11-30 | Mcquinn Tim C | Artificial heart valve |
DE102005016103B4 (en) * | 2005-04-08 | 2014-10-09 | Merit Medical Systems, Inc. | Duodenumstent |
DE102005019649A1 (en) * | 2005-04-26 | 2006-11-02 | Alveolus Inc. | Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube |
US7736392B2 (en) | 2005-04-28 | 2010-06-15 | Medtronic, Inc. | Bulking of upper esophageal sphincter for treatment of obesity |
US7674271B2 (en) * | 2005-05-04 | 2010-03-09 | InTailor Surgical, Inc. | Endoluminal gastric ring and method |
EP1893142B1 (en) * | 2005-05-09 | 2013-04-24 | Cook Medical Technologies LLC | Intragastric device for treating obesity |
WO2006122285A2 (en) * | 2005-05-11 | 2006-11-16 | Board Of Regents, The University Of Texas System | Methods and devices for treating obesity |
US20060264982A1 (en) * | 2005-05-20 | 2006-11-23 | Viola Frank J | Gastric restrictor assembly and method of use |
US8216266B2 (en) * | 2005-06-16 | 2012-07-10 | Hively Robert L | Gastric bariatric apparatus with selective inflation and safety features |
US20070032703A1 (en) * | 2005-07-11 | 2007-02-08 | Sankaran Meera L | Radially expansive surgical instruments for tissue retraction and methods for using the same |
US20070049801A1 (en) * | 2005-08-24 | 2007-03-01 | Lamport Ronald B | Endoscope accessory |
AU2011239317B2 (en) * | 2005-08-29 | 2014-04-10 | Baronova, Inc. | Gastric retaining devices and methods |
US20080190989A1 (en) * | 2005-10-03 | 2008-08-14 | Crews Samuel T | Endoscopic plication device and method |
US8038720B2 (en) * | 2005-10-18 | 2011-10-18 | Wallace Jeffrey M | Methods and devices for intragastrointestinal prostheses |
CN101466316B (en) | 2005-10-20 | 2012-06-27 | 阿普特斯内系统公司 | Devices systems and methods for prosthesis delivery and implantation including the use of a fastener tool |
EP1948280A4 (en) * | 2005-10-24 | 2011-07-06 | Andrew Young | Biliary/pancreatic shunt device and method for treatment of metabolic and other diseases |
US7914578B2 (en) * | 2005-10-24 | 2011-03-29 | Gil Vardi | Method and apparatus for expanding tissue |
US7785366B2 (en) * | 2005-10-26 | 2010-08-31 | Maurer Christopher W | Mitral spacer |
JP2009515605A (en) * | 2005-11-10 | 2009-04-16 | センティネル グループ、リミテッド ライアビリティ カンパニー | Apparatus and method for intragastric and transgastric visualization treatment |
WO2007059490A2 (en) * | 2005-11-14 | 2007-05-24 | Sentinel Group, Llc | Gastro-intestinal therapeutic device and method |
CN100362971C (en) * | 2005-11-16 | 2008-01-23 | 程英升 | Cardia stent |
US8211181B2 (en) * | 2005-12-14 | 2012-07-03 | New York University | Surface guided knee replacement |
US8292964B2 (en) * | 2005-12-14 | 2012-10-23 | New York University | Surface guided knee replacement |
CA2634614C (en) * | 2005-12-22 | 2011-07-26 | Wilson-Cook Medical Inc. | Coiled intragastric member for treating obesity |
AU2006327539A1 (en) | 2005-12-23 | 2007-06-28 | Vysera Biomedical Limited | A medical device suitable for treating reflux from a stomach to an oesophagus |
US8726909B2 (en) * | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
AU2007212404B2 (en) * | 2006-02-03 | 2012-05-17 | Baronova, Inc. | Gastro-intestinal device and method for treating addiction |
US7625392B2 (en) | 2006-02-03 | 2009-12-01 | James Coleman | Wound closure devices and methods |
WO2007103773A2 (en) * | 2006-03-02 | 2007-09-13 | Laufer Michael D | Gastrointestinal implant and methods for use |
US8376981B2 (en) | 2006-03-02 | 2013-02-19 | Michael D. Laufer | Gastrointestinal implant and methods for use |
US8070768B2 (en) * | 2006-04-19 | 2011-12-06 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8187297B2 (en) * | 2006-04-19 | 2012-05-29 | Vibsynt, Inc. | Devices and methods for treatment of obesity |
US8585733B2 (en) * | 2006-04-19 | 2013-11-19 | Vibrynt, Inc | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US20090272388A1 (en) * | 2006-04-19 | 2009-11-05 | Shuji Uemura | Minimally-invasive methods for implanting obesity treatment devices |
US8556925B2 (en) * | 2007-10-11 | 2013-10-15 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US20090281376A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
US20090281563A1 (en) * | 2006-04-19 | 2009-11-12 | Newell Matthew B | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US20090281500A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
US8342183B2 (en) * | 2006-04-19 | 2013-01-01 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8398668B2 (en) * | 2006-04-19 | 2013-03-19 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US20090275972A1 (en) * | 2006-04-19 | 2009-11-05 | Shuji Uemura | Minimally-invasive methods for implanting obesity treatment devices |
US20090281386A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
US7976554B2 (en) * | 2006-04-19 | 2011-07-12 | Vibrynt, Inc. | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
WO2007127209A2 (en) * | 2006-04-25 | 2007-11-08 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
DE102006021797A1 (en) * | 2006-05-09 | 2007-11-15 | Carl Zeiss Smt Ag | Optical imaging device with thermal damping |
US9060835B2 (en) * | 2006-05-26 | 2015-06-23 | Endosphere, Inc. | Conformationally-stabilized intraluminal device for medical applications |
BRPI0712468A2 (en) * | 2006-05-26 | 2012-07-31 | Endosphere Inc | small intestine insert, and method for generating satiety in an individual |
US8002731B2 (en) * | 2006-05-30 | 2011-08-23 | Boston Scientific Scimed, Inc. | Anti-obesity stent |
US20070282418A1 (en) * | 2006-05-30 | 2007-12-06 | Boston Scientific Scimed, Inc. | Anti-obesity flow controller |
AU2007264683A1 (en) * | 2006-06-29 | 2008-01-03 | Slimedics, Ltd. | Gastrointestinal prostheses |
WO2008013803A2 (en) * | 2006-07-24 | 2008-01-31 | Massachusetts Institute Of Technology | Endovascular devices with axial perturbations |
WO2008013862A2 (en) | 2006-07-26 | 2008-01-31 | Bernard Medical, Llc | Endolumenal gastric ring with suspended impeding member |
WO2008028037A2 (en) * | 2006-08-30 | 2008-03-06 | Andrew Young | Distender device and method for treatment of obesity and metabolic and other diseases |
US10350099B2 (en) | 2006-09-01 | 2019-07-16 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the GI tract |
US20080161935A1 (en) * | 2006-09-01 | 2008-07-03 | Albrecht Thomas E | Method for inducting weight loss using a coil for insertion into a hollow body organ |
US20080215075A1 (en) * | 2006-09-01 | 2008-09-04 | Albrecht Thomas E | Implantable coil for insertion into a hollow body organ |
WO2013023675A1 (en) * | 2011-08-12 | 2013-02-21 | Ethicon Endo-Surgery, Inc. | Devices for anchoring an endoluminal sleeve in the gi tract |
US20080058840A1 (en) * | 2006-09-01 | 2008-03-06 | Albrecht Thomas E | Implantable coil for insertion into a hollow body organ |
US20080097510A1 (en) * | 2006-09-01 | 2008-04-24 | Albrecht Thomas E | Method for inducing weight loss with a patient |
US20090125040A1 (en) * | 2006-09-13 | 2009-05-14 | Hambly Pablo R | Tissue acquisition devices and methods |
CA2667327A1 (en) * | 2006-10-26 | 2008-05-08 | Hourglass Technologies, Inc. | Methods and devices for treating obesity and gerd by intussuscepting a portion of stomach tissue |
US8105392B2 (en) * | 2006-11-08 | 2012-01-31 | Boston Scientific Scimed, Inc. | Pyloric obesity valve |
WO2008070189A2 (en) | 2006-12-06 | 2008-06-12 | The Cleveland Clinic Foundation | Method and system for treating acute heart failure by neuromodulation |
WO2008085290A2 (en) * | 2006-12-28 | 2008-07-17 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8216271B2 (en) * | 2007-01-23 | 2012-07-10 | Cvdevices, Llc | Devices, systems, and methods for endoscopic gastric magnetic restriction |
WO2008097586A2 (en) * | 2007-02-06 | 2008-08-14 | The Ohio State University Research Foundation | Endolumenal restriction method and apparatus |
AU2008212104A1 (en) * | 2007-02-07 | 2008-08-14 | Duocure, Inc. | Duodenal stimulation devices and methods for the treatment of conditions relating to eating disorders |
US8529431B2 (en) | 2007-02-14 | 2013-09-10 | Bfkw, Llc | Bariatric device and method |
WO2008100984A2 (en) | 2007-02-14 | 2008-08-21 | Sentinel Group, Llc | Mucosal capture fixation of medical device |
WO2008104968A1 (en) * | 2007-02-26 | 2008-09-04 | Duocure, Inc. | Spray administration of compositions including active agents such as peptides to the gastrointestinal tract |
US10238518B2 (en) * | 2007-02-27 | 2019-03-26 | Agt Inc. | Implantable weight control device |
US20080208239A1 (en) * | 2007-02-27 | 2008-08-28 | Gary Annunziata | Method for treating obesity using an implantable weight loss device |
US8443808B2 (en) | 2007-03-19 | 2013-05-21 | Hologic, Inc. | Methods and apparatus for occlusion of body lumens |
US20080255678A1 (en) * | 2007-04-13 | 2008-10-16 | Cully Edward H | Medical apparatus and method of making the same |
US9717584B2 (en) * | 2007-04-13 | 2017-08-01 | W. L. Gore & Associates, Inc. | Medical apparatus and method of making the same |
US9642693B2 (en) * | 2007-04-13 | 2017-05-09 | W. L. Gore & Associates, Inc. | Medical apparatus and method of making the same |
CA2691269C (en) * | 2007-05-12 | 2016-04-12 | Barosense, Inc. | Devices and methods for stomach partitioning |
EP2164558A4 (en) * | 2007-06-08 | 2010-08-04 | Valentx Inc | Methods and devices for intragastric support of functional or prosthetic gastrointestinal devices |
US20090012544A1 (en) * | 2007-06-08 | 2009-01-08 | Valen Tx, Inc. | Gastrointestinal bypass sleeve as an adjunct to bariatric surgery |
WO2008154594A2 (en) * | 2007-06-11 | 2008-12-18 | Valentx, Inc. | Endoscopic delivery devices and methods |
WO2009005625A1 (en) * | 2007-07-03 | 2009-01-08 | Synecor, Llc | Satiation devices and methods for controlling obesity |
US20110137227A1 (en) * | 2007-07-16 | 2011-06-09 | Mckinley James T | Methods and devices for delivering or delaying lipids within a duodenum |
US20100082046A1 (en) * | 2007-07-18 | 2010-04-01 | Harris Jason L | Device For Deploying A Fastener For Use in a Gastric Volume Reduction Procedure |
WO2009029228A2 (en) * | 2007-08-27 | 2009-03-05 | Torax Medical, Inc. | Magnetic gastric band or the like, and related methods |
CA2698729C (en) | 2007-09-07 | 2014-04-22 | Baronova, Inc. | Device for intermittently obstructing a gastric opening and method of use |
US9155608B2 (en) * | 2007-09-12 | 2015-10-13 | David Blaeser | Devices and methods for treatment of obesity |
US8696543B2 (en) * | 2007-10-11 | 2014-04-15 | Kirk Promotion Ltd. | Method for controlling flow of intestinal contents in a patient's intestines |
US8795153B2 (en) | 2007-10-11 | 2014-08-05 | Peter Forsell | Method for treating female sexual dysfunction |
EP3108852B1 (en) * | 2007-10-11 | 2021-05-05 | Implantica Patent Ltd. | System for treating a patient having an intestinal disorder |
US8992409B2 (en) * | 2007-10-11 | 2015-03-31 | Peter Forsell | Method for controlling flow in a bodily organ |
EA033368B1 (en) * | 2007-10-11 | 2019-10-31 | Implantica Patent Ltd | Apparatus for controlling flow in a bodily organ |
US9301761B2 (en) | 2007-10-22 | 2016-04-05 | James E. Coleman | Anastomosis devices and methods |
US20090149879A1 (en) * | 2007-12-10 | 2009-06-11 | Dillon Travis E | Dynamic volume displacement weight loss device |
AU2009208951A1 (en) * | 2008-02-01 | 2009-08-06 | Medical And Surgical Review, P.C. | Methods and devices for anchoring a gastroenterologic sleeve |
US8292965B2 (en) * | 2008-02-11 | 2012-10-23 | New York University | Knee joint with a ramp |
CA2719475A1 (en) | 2008-06-20 | 2009-12-23 | Gabriel Sobrino - Serrano | An esophageal valve |
AU2009271389B2 (en) * | 2008-06-24 | 2013-01-31 | Peter Stanley Walker | Recess-ramp knee joint prosthesis |
US8092479B2 (en) * | 2008-06-27 | 2012-01-10 | Ethicon Endo-Surgery, Inc. | Implantable device for the treatment of obesity |
US8236022B2 (en) * | 2008-06-27 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Implantable device for the treatment of obesity |
US9820746B2 (en) * | 2008-07-28 | 2017-11-21 | Incube Laboratories LLC | System and method for scaffolding anastomoses |
ITTO20080654A1 (en) * | 2008-09-04 | 2010-03-05 | Zeppi Augusto | STENT, FOR EXAMPLE FOR THE TREATMENT OF JUGULAR VEINS, AND ITS POSITIONING KIT |
EP2349025B1 (en) | 2008-10-10 | 2015-09-16 | Kirk Promotion LTD. | A system, an apparatus, and a method for treating a sexual dysfunctional female patient |
US8600510B2 (en) | 2008-10-10 | 2013-12-03 | Milux Holding Sa | Apparatus, system and operation method for the treatment of female sexual dysfunction |
JP5728384B2 (en) * | 2008-10-10 | 2015-06-03 | ミルックス・ホールディング・エスエイ | Artificial stomach |
CA2740867C (en) | 2008-10-16 | 2018-06-12 | Aptus Endosystems, Inc. | Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation |
US8197498B2 (en) * | 2008-11-06 | 2012-06-12 | Trinitas Ventures Ltd. | Gastric bypass devices and procedures |
FR2938986B1 (en) * | 2008-11-25 | 2010-12-17 | Bull Sas | SUPPLY DEVICE FOR DIRECT CURRENT SUPPORT OF AN ELECTRICAL SYSTEM. |
US8758385B2 (en) | 2008-12-27 | 2014-06-24 | John Hancock | High specific gravity intragastric device |
NL1036388C2 (en) * | 2009-01-07 | 2010-07-08 | Applied Medical Developments B V | DEVICE SUITABLE FOR IMPLANTATION AT A DESIRED POSITION IN A LUMEN OF A HEAT-BLOODED LIFE AND A HOLDER SUITABLE FOR SUCH INVENTION. |
WO2010093603A1 (en) | 2009-02-11 | 2010-08-19 | Boston Scientific Scimed, Inc. | Insulated ablation catheter devices and methods of use |
US20100268297A1 (en) * | 2009-02-24 | 2010-10-21 | Hans Neisz | Duodenal Stimulation To Induce Satiety |
JP5254843B2 (en) * | 2009-03-03 | 2013-08-07 | クリエートメディック株式会社 | Pyloric closure |
US8100932B2 (en) * | 2009-03-31 | 2012-01-24 | Onciomed, Inc. | Method and apparatus for treating obesity and controlling weight gain using self-expanding intragastric devices |
US8321030B2 (en) | 2009-04-20 | 2012-11-27 | Advanced Neuromodulation Systems, Inc. | Esophageal activity modulated obesity therapy |
US20100276469A1 (en) * | 2009-05-01 | 2010-11-04 | Barosense, Inc. | Plication tagging device and method |
US8340772B2 (en) | 2009-05-08 | 2012-12-25 | Advanced Neuromodulation Systems, Inc. | Brown adipose tissue utilization through neuromodulation |
US20100305590A1 (en) * | 2009-05-29 | 2010-12-02 | Gi Dynamics, Inc. | Transpyloric Anchoring |
US8475401B2 (en) * | 2009-07-01 | 2013-07-02 | E2 Llc | Systems and methods for treating obesity and type 2 diabetes |
JP5186042B2 (en) * | 2009-07-10 | 2013-04-17 | テウーン メディカル カンパニー リミティッド | Stent |
KR101065368B1 (en) * | 2009-07-17 | 2011-09-19 | 신경민 | Stent for an obesity patient treatment |
EP2485643B1 (en) * | 2009-10-09 | 2020-02-26 | Flip Technologies Limited | A device for facilitating monitoring the cross-section of a gastric sleeve during formation thereof |
EP2490746B1 (en) | 2009-10-21 | 2019-03-27 | Apollo Endosurgery, Inc. | Bariatric device for weight loss |
EP2506810B1 (en) | 2009-11-30 | 2020-07-08 | Endospan Ltd | Multi-component stent-graft system for implantation in a blood vessel with multiple branches |
ES2647826T3 (en) | 2009-12-18 | 2017-12-26 | Coloplast A/S | A urological device |
US20120310138A1 (en) * | 2009-12-18 | 2012-12-06 | Vysera Biomedical Limited | Gastrointestinal implant device and delivery system therefor |
US20120158026A1 (en) * | 2009-12-18 | 2012-06-21 | Vysera Biomedical Limited | Gastrointestinal implant device |
WO2011116025A1 (en) * | 2010-03-15 | 2011-09-22 | Innovelle, Llc | Bariatric device and method for weight loss |
EP2552350A1 (en) | 2010-03-26 | 2013-02-06 | Ibis Medical Inc. | Intragastric implant devices |
CN101843536B (en) * | 2010-04-09 | 2012-01-11 | 张发明 | Duodenal sleeve and conveyor thereof |
EP2563289B1 (en) * | 2010-04-30 | 2017-08-09 | Boston Scientific Scimed, Inc. | Duodenal metabolic stent |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
KR101160646B1 (en) * | 2010-05-14 | 2012-06-29 | 신경민 | Abstinence-only stent on the prevention of food emissions |
US20110277778A1 (en) * | 2010-05-14 | 2011-11-17 | Tyco Healthcare Group Lp | System and Method for Diverticulitis Treatment |
US20110295178A1 (en) * | 2010-05-26 | 2011-12-01 | Albrecht Thomas E | Intestinal Brake Inducing Intraluminal Therapeutic Substance Eluting Devices and Methods |
CN107028692B (en) * | 2010-06-13 | 2020-05-19 | 赛纳兹医疗公司 | Intragastric device for treating obesity |
WO2012007048A1 (en) * | 2010-07-16 | 2012-01-19 | Ethicon Endo-Surgery, Inc. | An apparatus and method for diverting biliopancreatic juices discharged into a patient's intestinal tract |
ES2537987T3 (en) * | 2010-07-22 | 2015-06-16 | Endobetix Ltd | Device for biliopancreatic diversion |
US9463107B2 (en) | 2010-10-18 | 2016-10-11 | Apollo Endosurgery, Inc. | Variable size intragastric implant devices |
US9233016B2 (en) | 2010-10-18 | 2016-01-12 | Apollo Endosurgery, Inc. | Elevating stomach stimulation device |
US8870966B2 (en) * | 2010-10-18 | 2014-10-28 | Apollo Endosurgery, Inc. | Intragastric balloon for treating obesity |
ES2566498T3 (en) | 2010-10-18 | 2016-04-13 | Apollo Endosurgery, Inc. | Intragastric implants with duodenal anchors |
EP2629715B1 (en) | 2010-10-18 | 2016-01-06 | Apollo Endosurgery, Inc. | Reactive intragastric implant devices |
US20120095497A1 (en) * | 2010-10-19 | 2012-04-19 | Allergan, Inc. | Non-inflatable gastric implants and systems |
US8920447B2 (en) | 2010-10-19 | 2014-12-30 | Apollo Endosurgery, Inc. | Articulated gastric implant clip |
US9095405B2 (en) | 2010-10-19 | 2015-08-04 | Apollo Endosurgery, Inc. | Space-filling intragastric implants with fluid flow |
US9398969B2 (en) | 2010-10-19 | 2016-07-26 | Apollo Endosurgery, Inc. | Upper stomach gastric implants |
US9198790B2 (en) | 2010-10-19 | 2015-12-01 | Apollo Endosurgery, Inc. | Upper stomach gastric implants |
US9498365B2 (en) | 2010-10-19 | 2016-11-22 | Apollo Endosurgery, Inc. | Intragastric implants with multiple fluid chambers |
WO2012054522A2 (en) * | 2010-10-19 | 2012-04-26 | Allergan, Inc. | Anchored non-piercing duodenal sleeve and delivery systems |
US8864840B2 (en) | 2010-10-19 | 2014-10-21 | Apollo Endosurgery, Inc. | Intragastric implants with collapsible frames |
US8992410B2 (en) | 2010-11-03 | 2015-03-31 | Vysera Biomedical Limited | Urological device |
US8685918B1 (en) | 2011-01-05 | 2014-04-01 | Marco Gasparotti | Weight loss regimen comprising enteral and oral feeding segments effective for the treatment of obesity |
KR20230145213A (en) | 2011-01-19 | 2023-10-17 | 프랙틸 헬쓰, 인코포레이티드 | Devices and methods for the treatment of tissue |
ES2881668T3 (en) * | 2011-01-28 | 2021-11-30 | Metamodix Inc | Anchors and Methods for Intestinal Bypass Sleeves |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
MX347374B (en) | 2011-05-20 | 2017-04-25 | Bfkw Llc | Intraluminal device and method with enhanced anti-migration. |
EP3192555A3 (en) * | 2011-08-10 | 2017-12-27 | National University of Singapore | Anchoring and delivery system for a gastro-duodenal implant |
WO2013023676A1 (en) | 2011-08-12 | 2013-02-21 | Ethicon Endo-Surgery, Inc. | Devices for anchoring an endoluminal sleeve in the gi tract |
WO2013023679A1 (en) | 2011-08-12 | 2013-02-21 | Ethicon Endo-Surgery, Inc. | Laparoscopic system for anchoring an endoluminal sleeve in the gi tract |
EP2561840B1 (en) * | 2011-08-23 | 2014-05-07 | Ethicon Endo-Surgery, Inc. | Device for anchoring an endoluminal sleeve in the GI tract |
WO2013026473A1 (en) | 2011-08-23 | 2013-02-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the gi tract |
EP2561839B1 (en) | 2011-08-23 | 2014-03-26 | Ethicon Endo-Surgery, Inc. | Device for anchoring an endoluminal sleeve in the GI tract |
WO2013026474A1 (en) | 2011-08-23 | 2013-02-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the gi tract |
US8636810B2 (en) * | 2011-09-28 | 2014-01-28 | Ethicon, Inc. | Negative pressure intestinal anastomosis protection devices |
US9597204B2 (en) * | 2011-12-04 | 2017-03-21 | Endospan Ltd. | Branched stent-graft system |
WO2013087096A1 (en) * | 2011-12-13 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | Endoluminal sleeve device and methods for deploying an endoluminal sleeve in the gi tract |
CA3100305A1 (en) * | 2011-12-19 | 2013-06-27 | Coloplast A/S | A luminal prosthesis and a gastrointestinal implant device |
US9247930B2 (en) | 2011-12-21 | 2016-02-02 | James E. Coleman | Devices and methods for occluding or promoting fluid flow |
US8382775B1 (en) | 2012-01-08 | 2013-02-26 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US9314362B2 (en) | 2012-01-08 | 2016-04-19 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
WO2013112754A1 (en) * | 2012-01-27 | 2013-08-01 | Medtronic, Inc. | Gastric stretch devices, systems and methods for treatment of obesity |
CN102551938B (en) * | 2012-02-22 | 2014-06-18 | 常州德天医疗器械有限公司 | Instrument for delaying gastric emptying and regulating pancreatic metabolism |
US8979885B2 (en) * | 2012-02-24 | 2015-03-17 | Elwha Llc | Devices, systems, and methods to control stomach volume |
AU2013226062B2 (en) | 2012-02-27 | 2017-10-19 | Fractyl Health, Inc. | Heat ablation systems, devices and methods for the treatment of tissue |
US9545326B2 (en) | 2012-03-06 | 2017-01-17 | Bfkw, Llc | Intraluminal device delivery technique |
CN102579104A (en) * | 2012-04-01 | 2012-07-18 | 湖南依微迪医疗器械有限公司 | Exclusion surgery device for duodenum and upper jejunum |
CA2869904C (en) | 2012-04-19 | 2020-04-21 | Fractyl Laboratories, Inc. | Systems for expanding tissue prior to energy ablation |
CN202665589U (en) * | 2012-05-05 | 2013-01-16 | 万平 | Duodenum inner coating membrane made of degradable biological compatible material |
GB2513513B (en) * | 2012-05-05 | 2019-04-17 | Wan Ping | Duodenum endothelium membrane made from degradable biocompatible materials and application thereof |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9042596B2 (en) | 2012-06-14 | 2015-05-26 | Medibotics Llc | Willpower watch (TM)—a wearable food consumption monitor |
US9442100B2 (en) | 2013-12-18 | 2016-09-13 | Medibotics Llc | Caloric intake measuring system using spectroscopic and 3D imaging analysis |
WO2013185830A1 (en) | 2012-06-14 | 2013-12-19 | Ethicon Endo-Surgery, Inc. | Devices and methods for anchoring an endoluminal sleeve in the gi tract |
US9536449B2 (en) | 2013-05-23 | 2017-01-03 | Medibotics Llc | Smart watch and food utensil for monitoring food consumption |
US9456916B2 (en) | 2013-03-12 | 2016-10-04 | Medibotics Llc | Device for selectively reducing absorption of unhealthy food |
US9254099B2 (en) | 2013-05-23 | 2016-02-09 | Medibotics Llc | Smart watch and food-imaging member for monitoring food consumption |
IN2015DN01104A (en) | 2012-07-13 | 2015-06-26 | Gi Dynamics Inc | |
EP3714826A1 (en) | 2012-07-30 | 2020-09-30 | Fractyl Laboratories, Inc. | Electrical energy ablation systems and devices for the treatment of tissue |
WO2014026055A1 (en) | 2012-08-09 | 2014-02-13 | Fractyl Laboratories Inc. | Ablation systems, devices and methods for the treatment of tissue |
US10226270B2 (en) | 2012-08-10 | 2019-03-12 | W. L. Gore & Associates, Inc. | Microanchors for anchoring devices to body tissues |
WO2014055997A1 (en) | 2012-10-05 | 2014-04-10 | Fractyl Laboratories Inc. | Methods, systems and devices for performing multiple treatments on a patient |
CA2891118C (en) | 2012-11-12 | 2017-07-04 | Hollister Incorporated | Intermittent catheter assembly and kit |
LT3441092T (en) | 2012-11-14 | 2020-04-10 | Hollister Incorporated | Disposable catheter with selectively degradable inner core |
US9993360B2 (en) | 2013-01-08 | 2018-06-12 | Endospan Ltd. | Minimization of stent-graft migration during implantation |
EP2961349A1 (en) | 2013-02-28 | 2016-01-06 | Boston Scientific Scimed, Inc. | Stent with balloon for repair of anastomosis surgery leaks |
CN105208969B (en) | 2013-03-11 | 2017-10-20 | 恩多斯潘有限公司 | Multicompartment stent graft system for dissection of aorta |
US9011365B2 (en) | 2013-03-12 | 2015-04-21 | Medibotics Llc | Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food |
US9067070B2 (en) | 2013-03-12 | 2015-06-30 | Medibotics Llc | Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type |
CA2905787C (en) | 2013-03-15 | 2019-06-18 | Baronova, Inc. | Locking gastric obstruction device and method of use |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
US9529385B2 (en) | 2013-05-23 | 2016-12-27 | Medibotics Llc | Smart watch and human-to-computer interface for monitoring food consumption |
WO2014197632A2 (en) | 2013-06-04 | 2014-12-11 | Fractyl Laboratories, Inc. | Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract |
US9452072B2 (en) * | 2013-06-25 | 2016-09-27 | J. Mark Provenza | Apparatus and methods for anchoring in the stomach and the duodenum |
CN103315835B (en) * | 2013-07-18 | 2015-05-13 | 万平 | Medical equipment and application thereof |
US9265640B2 (en) | 2013-08-28 | 2016-02-23 | Ethicon Endo-Surgery, Inc. | Conforming anchor for duodenal barrier |
US9456917B2 (en) | 2013-08-28 | 2016-10-04 | Ethicon Endo-Surgery, Inc. | Endoscopic transoral duodenal sleeve applier |
US11986235B2 (en) | 2013-09-12 | 2024-05-21 | Fractyl Health, Inc. | Systems, methods and devices for treatment of target tissue |
CZ308131B6 (en) * | 2013-09-16 | 2020-01-15 | Volenec RD Int., s.r.o. | Bariatric implant |
HUE054872T2 (en) | 2013-11-08 | 2021-10-28 | Hollister Inc | Oleophilic lubricated catheters |
FR3013212B1 (en) * | 2013-11-18 | 2016-12-09 | Assist Publique - Hopitaux De Paris | IMPLANTABLE PROTHETIC DEVICE FOR WEIGHT LOSS OF AN OBESE OR OVERWEIGHT PATIENT COMPRISING AN INFLATABLE GASTRIC BALLOON AND A DUODENAL PROSTHESIS |
US10603197B2 (en) | 2013-11-19 | 2020-03-31 | Endospan Ltd. | Stent system with radial-expansion locking |
AU2014352874B2 (en) | 2013-11-22 | 2019-03-14 | Fractyl Health, Inc. | Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract |
CA2933485C (en) | 2013-12-12 | 2023-09-26 | Hollister Incorporated | Flushable disintegration catheter |
ES2802950T3 (en) | 2013-12-12 | 2021-01-22 | Hollister Inc | Disposable toilet catheters |
AU2014362360B2 (en) | 2013-12-12 | 2020-01-02 | Hollister Incorporated | Flushable catheters |
EP3620198B1 (en) | 2013-12-12 | 2021-03-10 | Hollister Incorporated | Flushable catheters |
CN103705326A (en) * | 2013-12-27 | 2014-04-09 | 成都中医药大学附属医院 | Support, endoscope package and support releasing method |
US10959774B2 (en) | 2014-03-24 | 2021-03-30 | Fractyl Laboratories, Inc. | Injectate delivery devices, systems and methods |
WO2015146612A1 (en) * | 2014-03-28 | 2015-10-01 | 社会医療法人蘇西厚生会 まつなみリサーチパーク | Medical instrument |
US10172735B2 (en) * | 2014-04-05 | 2019-01-08 | Rex Medical, L.P | Duodenum sleeve for treating obesity |
US9730822B2 (en) | 2014-04-30 | 2017-08-15 | Lean Medical Technologies, LLC | Gastrointestinal device |
SG11201608878SA (en) | 2014-05-22 | 2016-11-29 | Cardionomic Inc | Catheter and catheter system for electrical neuromodulation |
EP3928743A1 (en) | 2014-06-26 | 2021-12-29 | Boston Scientific Scimed Inc. | Medical devices and methods to prevent bile reflux after bariatric procedures |
US9844641B2 (en) | 2014-07-16 | 2017-12-19 | Fractyl Laboratories, Inc. | Systems, devices and methods for performing medical procedures in the intestine |
US11185367B2 (en) | 2014-07-16 | 2021-11-30 | Fractyl Health, Inc. | Methods and systems for treating diabetes and related diseases and disorders |
EP3169260B1 (en) * | 2014-07-16 | 2019-09-25 | Fractyl Laboratories, Inc. | System for treating diabetes and related diseases and disorders |
US9381020B2 (en) * | 2014-08-24 | 2016-07-05 | Easy Notes Ltd. | Pyloric obstruction device |
WO2016040037A1 (en) | 2014-09-08 | 2016-03-17 | CARDIONOMIC, Inc. | Catheter and electrode systems for electrical neuromodulation |
WO2016040038A1 (en) | 2014-09-08 | 2016-03-17 | CARDIONOMIC, Inc. | Methods for electrical neuromodulation of the heart |
US9579228B2 (en) * | 2014-09-12 | 2017-02-28 | Robin Baradarian | Intestinal barrier sleeve with expandable anchor section |
WO2016044660A1 (en) * | 2014-09-18 | 2016-03-24 | Boston Scientific Scimed, Inc. | Device allowing pyloric sphincter to normally function for bariatric stents |
CN106999647B (en) * | 2014-09-23 | 2020-12-29 | 赛纳兹医疗公司 | Intragastric device for treating obesity |
US10524684B2 (en) | 2014-10-13 | 2020-01-07 | Boston Scientific Scimed Inc | Tissue diagnosis and treatment using mini-electrodes |
WO2016087504A1 (en) * | 2014-12-03 | 2016-06-09 | Peter Osypka Stiftung | Medical closure device |
EP3068339B1 (en) | 2014-12-18 | 2017-11-01 | Endospan Ltd. | Endovascular stent-graft with fatigue-resistant lateral tube |
US11013629B2 (en) | 2014-12-29 | 2021-05-25 | Bfkw, Llc | Fixation of intraluminal device |
US11020213B2 (en) | 2014-12-29 | 2021-06-01 | Bfkw, Llc | Fixation of intraluminal device |
CA2972582A1 (en) | 2014-12-29 | 2016-07-07 | Bfkw, Llc | Fixation of intraluminal device |
EP3242717B1 (en) | 2015-01-05 | 2019-06-12 | Cardionomic, Inc. | Cardiac modulation facilitation systems |
CN104546248A (en) * | 2015-01-16 | 2015-04-29 | 复旦大学附属中山医院 | Stomach and intestine absorption resisting isolating membrane |
KR101696810B1 (en) * | 2015-02-04 | 2017-02-01 | 주식회사 엠아이텍 | Stent for connecting adjacent tissues and manufacturing method thereof |
BR102015011376B1 (en) | 2015-05-18 | 2023-04-04 | Murilo Pundek Rocha | IMPLANTABLE ARTIFICIAL BRONCHI |
CN106580514A (en) * | 2015-06-03 | 2017-04-26 | 常州新区佳森医用支架器械有限公司 | Implantation device of duodenum stent |
WO2016205383A1 (en) | 2015-06-17 | 2016-12-22 | Hollister Incorporated | Selectively water disintegrable materials and catheters made of such materials |
CA2997727C (en) * | 2015-09-23 | 2020-08-04 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US20180353278A1 (en) * | 2015-11-05 | 2018-12-13 | Swedish Health Services | Prosthetic phrenoesophageal membrane |
CN105266935B (en) * | 2015-11-23 | 2017-10-13 | 孙思予 | A kind of antireflux film omasum courage anastomosis bracket |
DK3389557T3 (en) | 2015-12-15 | 2022-08-01 | Neovasc Tiara Inc | Transseptalt leveringssystem |
WO2017124014A1 (en) | 2016-01-13 | 2017-07-20 | Agt Inc. | Implantable weight control device to promote early and prolonged satiety in a bariatric patient |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
CA3015372A1 (en) | 2016-03-09 | 2017-09-14 | CARDIONOMIC, Inc. | Cardiac contractility neurostimulation systems and methods |
CN105769404A (en) * | 2016-04-30 | 2016-07-20 | 王东 | Volume-reducing stomach stent |
US10568754B2 (en) | 2016-05-13 | 2020-02-25 | Boston Scientific Scimed, Inc. | Protective apparatus for use in gastrointestinal tract |
KR101810056B1 (en) | 2016-05-13 | 2017-12-18 | 주식회사 엠아이텍 | Asymmetric stent for esophagus |
WO2018034658A1 (en) | 2016-08-17 | 2018-02-22 | Avent, Inc. | Enteral feeding satiation device |
IT201600097363A1 (en) * | 2016-09-28 | 2018-03-28 | Keyron Ltd | EXPANDABLE INTRAGASTRIC DEVICE |
US10588769B2 (en) | 2016-10-12 | 2020-03-17 | Ethicon, Inc. | Caloric bypass device |
CN109996581B (en) | 2016-11-21 | 2021-10-15 | 内奥瓦斯克迪亚拉公司 | Methods and systems for rapid retrieval of transcatheter heart valve delivery systems |
US11464660B2 (en) | 2016-12-23 | 2022-10-11 | Ganz Brake, Llc | Obesity treatment devices, systems, and methods |
US10596021B2 (en) | 2016-12-23 | 2020-03-24 | Ganz Brake, Llc | Obesity treatment devices, systems, and methods |
US10548753B2 (en) * | 2017-01-13 | 2020-02-04 | Ethicon, Inc. | Passive caloric bypass device |
US11083613B2 (en) | 2017-01-23 | 2021-08-10 | Baronova, Inc. | Gastric obstruction device deployment assembly and methods of delivering and deploying a gastric obstruction device |
US10736764B2 (en) | 2017-01-30 | 2020-08-11 | Apollo Endosurgery Us, Inc. | Duodenal sleeve and anchor and methods of implantation |
MX2019009497A (en) * | 2017-02-09 | 2020-01-30 | Spatz FGIA Ltd | Check valve with docking station for gastrointestinal balloon. |
FR3063007A1 (en) * | 2017-02-17 | 2018-08-24 | Jean Michel Verd | IMPLANTABLE DEVICE FOR TREATING METABOLIC DISORDERS |
CN107019577A (en) * | 2017-04-25 | 2017-08-08 | 河南大学 | A kind of oesophagus extension method and extender and its application |
CN106923944B (en) * | 2017-04-28 | 2018-10-02 | 杭州糖吉医疗科技有限公司 | Membrane tube release is isolated in enteron aisle |
WO2019009918A1 (en) * | 2017-07-07 | 2019-01-10 | W. L. Gore & Associates, Inc. | Stomach lining funnel with anastomosis |
CA3073834A1 (en) | 2017-08-25 | 2019-02-28 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP3664703A4 (en) | 2017-09-13 | 2021-05-12 | Cardionomic, Inc. | Neurostimulation systems and methods for affecting cardiac contractility |
CA3091282A1 (en) | 2018-03-29 | 2019-10-03 | Boston Scientific Scimed, Inc. | Systems and methods for performing endoscopic procedures |
AU2019320750A1 (en) | 2018-08-13 | 2021-04-08 | CARDIONOMIC, Inc. | Systems and methods for affecting cardiac contractility and/or relaxation |
EP3856091A1 (en) | 2018-09-24 | 2021-08-04 | Boston Scientific Scimed, Inc. | Repositionable and removable stents |
CN113271890B (en) | 2018-11-08 | 2024-08-30 | 内奥瓦斯克迪亚拉公司 | Ventricular deployment of transcatheter mitral valve prosthesis |
AU2020233892A1 (en) | 2019-03-08 | 2021-11-04 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
US12127958B2 (en) | 2019-03-25 | 2024-10-29 | Bfkw, Llc | Intraluminal device and method with anti-migration |
AU2020256195B2 (en) | 2019-04-01 | 2022-10-13 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
CN113924065A (en) | 2019-04-10 | 2022-01-11 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve with natural blood flow |
JP2022531658A (en) | 2019-05-06 | 2022-07-08 | カーディオノミック,インク. | Systems and methods for noise reduction of physiological signals during electrical neural regulation |
CN114025813B (en) | 2019-05-20 | 2024-05-14 | 内奥瓦斯克迪亚拉公司 | Introducer with hemostatic mechanism |
EP3986332A4 (en) | 2019-06-20 | 2023-07-19 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
CN114585332A (en) * | 2019-11-05 | 2022-06-03 | 波士顿科学国际有限公司 | Barrier device, system and method |
USD902407S1 (en) | 2019-11-19 | 2020-11-17 | Pulmair Medical, Inc. | Implantable artificial bronchus |
CN111228003B (en) * | 2020-01-13 | 2022-12-09 | 李功俊 | Nickel-titanium alloy stent for treating megacolon disease |
USD954953S1 (en) | 2020-11-03 | 2022-06-14 | Pulmair Medical, Inc. | Implantable artificial bronchus |
WO2022232263A1 (en) * | 2021-04-28 | 2022-11-03 | Boston Scientific Scimed, Inc. | Devices, systems, and methods for duodenal exclusion and stomach capacity reduction |
EP4308012A1 (en) * | 2021-05-10 | 2024-01-24 | Boston Scientific Scimed Inc. | Anastomosis device, systems, and methods |
USD1014758S1 (en) | 2023-04-19 | 2024-02-13 | Pulmair Medical, Inc. | Implantable artificial bronchus |
Citations (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134405A (en) * | 1977-01-10 | 1979-01-16 | Smit Julie A | Catheter and intestine tube and method of using the same |
US4246893A (en) * | 1978-07-05 | 1981-01-27 | Daniel Berson | Inflatable gastric device for treating obesity |
US4315509A (en) * | 1977-01-10 | 1982-02-16 | Smit Julie A | Insertion and removal catheters and intestinal tubes for restricting absorption |
US4403604A (en) * | 1982-05-13 | 1983-09-13 | Wilkinson Lawrence H | Gastric pouch |
US4416267A (en) * | 1981-12-10 | 1983-11-22 | Garren Lloyd R | Method and apparatus for treating obesity |
US4441215A (en) * | 1980-11-17 | 1984-04-10 | Kaster Robert L | Vascular graft |
US4607618A (en) * | 1983-02-23 | 1986-08-26 | Angelchik Jean P | Method for treatment of morbid obesity |
US4641653A (en) * | 1978-06-02 | 1987-02-10 | Rockey Arthur G | Medical sleeve |
US4648383A (en) * | 1985-01-11 | 1987-03-10 | Angelchik Jean P | Peroral apparatus for morbid obesity treatment |
US4694827A (en) * | 1986-01-14 | 1987-09-22 | Weiner Brian C | Inflatable gastric device for treating obesity and method of using the same |
US4723547A (en) * | 1985-05-07 | 1988-02-09 | C. R. Bard, Inc. | Anti-obesity balloon placement system |
US4846836A (en) * | 1988-10-03 | 1989-07-11 | Reich Jonathan D | Artificial lower gastrointestinal valve |
US4899747A (en) * | 1981-12-10 | 1990-02-13 | Garren Lloyd R | Method and appartus for treating obesity |
US5163952A (en) * | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5211658A (en) * | 1991-11-05 | 1993-05-18 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
US5234454A (en) * | 1991-08-05 | 1993-08-10 | Akron City Hospital | Percutaneous intragastric balloon catheter and method for controlling body weight therewith |
US5246456A (en) * | 1992-06-08 | 1993-09-21 | Wilkinson Lawrence H | Fenestrated gastric pouch |
US5259399A (en) * | 1992-03-02 | 1993-11-09 | Alan Brown | Device and method of causing weight loss using removable variable volume intragastric bladder |
US5290217A (en) * | 1991-10-10 | 1994-03-01 | Earl K. Sipes | Method and apparatus for hernia repair |
US5306300A (en) * | 1992-09-22 | 1994-04-26 | Berry H Lee | Tubular digestive screen |
US5314473A (en) * | 1989-07-20 | 1994-05-24 | Godin Norman J | Prosthesis for preventing gastric reflux into the esophagus |
US5327914A (en) * | 1992-09-02 | 1994-07-12 | Shlain Leonard M | Method and devices for use in surgical gastroplastic procedure |
US5345949A (en) * | 1992-09-02 | 1994-09-13 | Shlain Leonard M | Methods for use in surgical gastroplastic procedure |
US5405377A (en) * | 1992-02-21 | 1995-04-11 | Endotech Ltd. | Intraluminal stent |
US5514176A (en) * | 1995-01-20 | 1996-05-07 | Vance Products Inc. | Pull apart coil stent |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5653743A (en) * | 1994-09-09 | 1997-08-05 | Martin; Eric C. | Hypogastric artery bifurcation graft and method of implantation |
US5662713A (en) * | 1991-10-09 | 1997-09-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
US5674241A (en) * | 1995-02-22 | 1997-10-07 | Menlo Care, Inc. | Covered expanding mesh stent |
US5709657A (en) * | 1989-06-28 | 1998-01-20 | Zimmon Science Corporation | Methods for placement of balloon tamponade devices |
US5720776A (en) * | 1991-10-25 | 1998-02-24 | Cook Incorporated | Barb and expandable transluminal graft prosthesis for repair of aneurysm |
US5749918A (en) * | 1995-07-20 | 1998-05-12 | Endotex Interventional Systems, Inc. | Intraluminal graft and method for inserting the same |
US5771903A (en) * | 1995-09-22 | 1998-06-30 | Kirk Promotions Limited | Surgical method for reducing the food intake of a patient |
US5820584A (en) * | 1997-08-28 | 1998-10-13 | Crabb; Jerry A. | Duodenal insert and method of use |
US5861036A (en) * | 1995-03-28 | 1999-01-19 | Biomedix S.A. Switzerland | Medical prosthesis for preventing gastric reflux in the esophagus |
US5868141A (en) * | 1997-05-14 | 1999-02-09 | Ellias; Yakub A. | Endoscopic stomach insert for treating obesity and method for use |
US5887594A (en) * | 1997-09-22 | 1999-03-30 | Beth Israel Deaconess Medical Center Inc. | Methods and devices for gastroesophageal reflux reduction |
US5922019A (en) * | 1995-11-27 | 1999-07-13 | Schneider (Europe) A.G. | Conical stent |
US5993483A (en) * | 1997-07-17 | 1999-11-30 | Schneider (Usa) Inc | Stent and method of manufacturing same |
US6102922A (en) * | 1995-09-22 | 2000-08-15 | Kirk Promotions Limited | Surgical method and device for reducing the food intake of patient |
US6113609A (en) * | 1998-05-26 | 2000-09-05 | Scimed Life Systems, Inc. | Implantable tissue fastener and system for treating gastroesophageal reflux disease |
US6159238A (en) * | 1998-03-04 | 2000-12-12 | Scimed Life Systems, Inc | Stent having variable properties and method of its use |
US6254642B1 (en) * | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US6258120B1 (en) * | 1997-12-23 | 2001-07-10 | Embol-X, Inc. | Implantable cerebral protection device and methods of use |
US6264700B1 (en) * | 1998-08-27 | 2001-07-24 | Endonetics, Inc. | Prosthetic gastroesophageal valve |
US20010011543A1 (en) * | 1999-08-12 | 2001-08-09 | Peter Forsell | Controlled food flow in a patient |
US6302917B1 (en) * | 1998-08-31 | 2001-10-16 | Wilson-Cook Medical Incorporated | Anti-reflux esophageal prosthesis |
US20020022851A1 (en) * | 2000-08-17 | 2002-02-21 | Johns Hopkins University | Gastric reduction endoscopy |
US20020055757A1 (en) * | 2000-11-03 | 2002-05-09 | Torre Roger De La | Method and device for use in minimally invasive placement of intragastric devices |
US20020099439A1 (en) * | 2000-09-29 | 2002-07-25 | Schwartz Robert S. | Venous valvuloplasty device and method |
US6503264B1 (en) * | 2000-03-03 | 2003-01-07 | Bioenterics Corporation | Endoscopic device for removing an intragastric balloon |
US6540789B1 (en) * | 2000-06-15 | 2003-04-01 | Scimed Life Systems, Inc. | Method for treating morbid obesity |
US6547801B1 (en) * | 1998-09-14 | 2003-04-15 | Sofradim Production | Gastric constriction device |
US6558400B2 (en) * | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US6572627B2 (en) * | 2001-01-08 | 2003-06-03 | Shlomo Gabbay | System to inhibit and/or control expansion of anatomical features |
US6575896B2 (en) * | 1998-12-11 | 2003-06-10 | Scimed Life Systems, Inc. | Method for treating tissue and apparatus for use therewith |
US6596023B1 (en) * | 1996-05-24 | 2003-07-22 | Meadox Medicals, Inc. | Shaped woven tubular soft-tissue prostheses and method of manufacturing the same |
US20030199990A1 (en) * | 2001-08-27 | 2003-10-23 | Stack Richard S. | Satiation devices and methods |
US6663639B1 (en) * | 1999-06-22 | 2003-12-16 | Ndo Surgical, Inc. | Methods and devices for tissue reconfiguration |
US20040092892A1 (en) * | 2002-11-01 | 2004-05-13 | Jonathan Kagan | Apparatus and methods for treatment of morbid obesity |
US6740121B2 (en) * | 2001-11-09 | 2004-05-25 | Boston Scientific Corporation | Intragastric stent for duodenum bypass |
US20040107004A1 (en) * | 2002-12-02 | 2004-06-03 | Seedling Enterprises, Llc | Bariatric sleeve |
US20040117031A1 (en) * | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US20040138761A1 (en) * | 2001-08-27 | 2004-07-15 | Stack Richard S. | Satiation devices and methods |
US6764518B2 (en) * | 1999-12-13 | 2004-07-20 | Biomedix S.A. | Prosthesis for controlling the direction of flow in a duct of a living organism |
US20040143342A1 (en) * | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
US20080208356A1 (en) * | 2001-08-27 | 2008-08-28 | Stack Richard S | Satiation devices and methods |
Family Cites Families (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US702791A (en) * | 1900-09-18 | 1902-06-17 | Winder Elwell Goldsborough | Electric-arc-lamp reflector-shade. |
US1408865A (en) | 1921-07-13 | 1922-03-07 | Selden S Cowell | Collapsible funnel |
US3663965A (en) * | 1970-06-08 | 1972-05-23 | Henry L Lee Jr | Bacteria-resistant percutaneous conduit device |
US4207890A (en) * | 1977-01-04 | 1980-06-17 | Mcneilab, Inc. | Drug-dispensing device and method |
US4331277A (en) * | 1980-05-23 | 1982-05-25 | United States Surgical Corporation | Self-contained gas powered surgical stapler |
US4467804A (en) * | 1980-10-20 | 1984-08-28 | American Cyanamid Company | Anastomotic device |
US4417360A (en) | 1981-07-31 | 1983-11-29 | Manoutchehr Moasser | Nontraumatic prosthetic valve with magnetic closure |
US4485805A (en) | 1982-08-24 | 1984-12-04 | Gunther Pacific Limited Of Hong Kong | Weight loss device and method |
US6221102B1 (en) * | 1983-12-09 | 2001-04-24 | Endovascular Technologies, Inc. | Intraluminal grafting system |
US5693083A (en) * | 1983-12-09 | 1997-12-02 | Endovascular Technologies, Inc. | Thoracic graft and delivery catheter |
GB8422863D0 (en) * | 1984-09-11 | 1984-10-17 | Univ London | Sewing machine |
US4763653A (en) * | 1985-02-19 | 1988-08-16 | Rockey Arthur G | Medical sleeve |
FR2600524B1 (en) | 1986-01-13 | 1991-10-18 | Galtier Claude | ARTIFICIAL ESOPHAGUS. |
GB8603099D0 (en) * | 1986-02-07 | 1986-03-12 | Blass K G | Gastrointestinal module |
SE453258B (en) | 1986-04-21 | 1988-01-25 | Medinvent Sa | ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING |
US4848367A (en) * | 1987-02-11 | 1989-07-18 | Odis L. Avant | Method of effecting dorsal vein ligation |
DD285871A7 (en) * | 1987-03-16 | 1991-01-10 | Blagovescenskij Gosudarstvennyj Medicinskij Institut,Su | SCHA PE 416142 |
US5542949A (en) * | 1987-05-14 | 1996-08-06 | Yoon; Inbae | Multifunctional clip applier instrument |
US5084061A (en) * | 1987-09-25 | 1992-01-28 | Gau Fred C | Intragastric balloon with improved valve locating means |
US4997084A (en) | 1988-05-13 | 1991-03-05 | Opielab, Inc. | Packaging system for disposable endoscope sheaths |
US4925446A (en) * | 1988-07-06 | 1990-05-15 | Transpharm Group Inc. | Removable inflatable intragastrointestinal device for delivering beneficial agents |
US4946440A (en) * | 1988-10-05 | 1990-08-07 | Hall John E | Evertible membrane catheter and method of use |
US4969896A (en) | 1989-02-01 | 1990-11-13 | Interpore International | Vascular graft prosthesis and method of making the same |
US5431673A (en) * | 1989-02-17 | 1995-07-11 | American Biomed, Inc. | Distal atherectomy catheter |
CH680263A5 (en) | 1989-07-20 | 1992-07-31 | Norman Godin | |
US5006106A (en) * | 1990-10-09 | 1991-04-09 | Angelchik Jean P | Apparatus and method for laparoscopic implantation of anti-reflux prosthesis |
US5088979A (en) * | 1990-10-11 | 1992-02-18 | Wilson-Cook Medical Inc. | Method for esophageal invagination and devices useful therein |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5478003A (en) * | 1991-10-18 | 1995-12-26 | United States Surgical Corporation | Surgical apparatus |
US5355897A (en) | 1992-04-16 | 1994-10-18 | Ethicon, Inc. | Method of performing a pyloroplasty/pylorectomy using a stapler having a shield |
US5401241A (en) * | 1992-05-07 | 1995-03-28 | Inamed Development Co. | Duodenal intubation catheter |
US5263629A (en) | 1992-06-29 | 1993-11-23 | Ethicon, Inc. | Method and apparatus for achieving hemostasis along a staple line |
US5601224A (en) | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
DE4236210C1 (en) | 1992-10-27 | 1994-04-14 | Olympus Optical Europ | Tubular implant for use in percutaneous feeding |
US5403326A (en) * | 1993-02-01 | 1995-04-04 | The Regents Of The University Of California | Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux |
US5480423A (en) | 1993-05-20 | 1996-01-02 | Boston Scientific Corporation | Prosthesis delivery |
US5609624A (en) | 1993-10-08 | 1997-03-11 | Impra, Inc. | Reinforced vascular graft and method of making same |
US5486187A (en) * | 1994-01-04 | 1996-01-23 | Schenck; Robert R. | Anastomosis device and method |
US5597107A (en) * | 1994-02-03 | 1997-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
CA2145723A1 (en) | 1994-03-30 | 1995-10-01 | Steven W. Hamblin | Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
US5489058A (en) * | 1994-05-02 | 1996-02-06 | Minnesota Mining And Manufacturing Company | Surgical stapler with mechanisms for reducing the firing force |
US5470007A (en) * | 1994-05-02 | 1995-11-28 | Minnesota Mining And Manufacturing Company | Laparoscopic stapler with overload sensor and interlock |
US5571116A (en) | 1994-10-02 | 1996-11-05 | United States Surgical Corporation | Non-invasive treatment of gastroesophageal reflux disease |
JP3611578B2 (en) * | 1994-11-09 | 2005-01-19 | エンドテックス インターベンショナル システムズ,インコーポレイテッド | Delivery catheter and graft for the treatment of aneurysms |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5628786A (en) | 1995-05-12 | 1997-05-13 | Impra, Inc. | Radially expandable vascular graft with resistance to longitudinal compression and method of making same |
US5706998A (en) | 1995-07-17 | 1998-01-13 | United States Surgical Corporation | Surgical stapler with alignment pin locking mechanism |
US5839639A (en) | 1995-08-17 | 1998-11-24 | Lasersurge, Inc. | Collapsible anvil assembly and applicator instrument |
US5824037A (en) * | 1995-10-03 | 1998-10-20 | Medtronic, Inc. | Modular intraluminal prostheses construction and methods |
US5628788A (en) * | 1995-11-07 | 1997-05-13 | Corvita Corporation | Self-expanding endoluminal stent-graft |
US5785684A (en) | 1996-02-06 | 1998-07-28 | Zimmon Science Corporation | Apparatus and method for the deployment of an esophagastric balloon tamponade device |
US5824040A (en) * | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
ATE290832T1 (en) * | 1996-01-05 | 2005-04-15 | Medtronic Inc | EXPANDABLE ENDOLUMINAL PROSTHESES |
US5762255A (en) | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US6119913A (en) | 1996-06-14 | 2000-09-19 | Boston Scientific Corporation | Endoscopic stapler |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
US6016848A (en) | 1996-07-16 | 2000-01-25 | W. L. Gore & Associates, Inc. | Fluoropolymer tubes and methods of making same |
US5957920A (en) | 1997-08-28 | 1999-09-28 | Isothermix, Inc. | Medical instruments and techniques for treatment of urinary incontinence |
US5856445A (en) | 1996-10-18 | 1999-01-05 | Washington University | Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator |
NL1004827C2 (en) | 1996-12-18 | 1998-06-19 | Surgical Innovations Vof | Device for regulating blood circulation. |
US6152956A (en) * | 1997-01-28 | 2000-11-28 | Pierce; George E. | Prosthesis for endovascular repair of abdominal aortic aneurysms |
US5846260A (en) | 1997-05-08 | 1998-12-08 | Embol-X, Inc. | Cannula with a modular filter for filtering embolic material |
US5976158A (en) | 1997-06-02 | 1999-11-02 | Boston Scientific Corporation | Method of using a textured ligating band |
US5848964A (en) | 1997-06-06 | 1998-12-15 | Samuels; Shaun Lawrence Wilkie | Temporary inflatable filter device and method of use |
US6245088B1 (en) | 1997-07-07 | 2001-06-12 | Samuel R. Lowery | Retrievable umbrella sieve and method of use |
DE19731834A1 (en) | 1997-07-24 | 1999-06-17 | Ernst Peter Prof Dr M Strecker | Implantation device |
FR2768324B1 (en) | 1997-09-12 | 1999-12-10 | Jacques Seguin | SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER |
US6120534A (en) | 1997-10-29 | 2000-09-19 | Ruiz; Carlos E. | Endoluminal prosthesis having adjustable constriction |
US6086600A (en) | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
US5993473A (en) | 1997-11-19 | 1999-11-30 | Chan; Yung C. | Expandable body device for the gastric cavity and method |
US5910144A (en) | 1998-01-09 | 1999-06-08 | Endovascular Technologies, Inc. | Prosthesis gripping system and method |
AU1923999A (en) | 1998-01-30 | 1999-08-16 | Vascular Science Inc. | Medical graft connector or plug structures, and methods of making and installingsame |
FR2775182B1 (en) * | 1998-02-25 | 2000-07-28 | Legona Anstalt | DEVICE FORMING INTRACORPOREAL ENDOLUMINAL ANDOPROTHESIS, IN PARTICULAR AORTIC ABDOMINAL |
US5947983A (en) | 1998-03-16 | 1999-09-07 | Boston Scientific Corporation | Tissue cutting and stitching device and method |
US6206930B1 (en) | 1998-08-10 | 2001-03-27 | Charlotte-Mecklenburg Hospital Authority | Absorbable tissue expander |
US6460543B1 (en) | 1998-08-13 | 2002-10-08 | Obtech Medical Ag | Non-injection port food intake restriction device |
WO2000012027A1 (en) | 1998-08-27 | 2000-03-09 | Endonetics, Inc. | Lower esophageal bulking device |
US6336937B1 (en) * | 1998-12-09 | 2002-01-08 | Gore Enterprise Holdings, Inc. | Multi-stage expandable stent-graft |
WO2000038590A1 (en) * | 1998-12-23 | 2000-07-06 | Stephen George Edward Barker | Endoluminal stent |
US6425916B1 (en) | 1999-02-10 | 2002-07-30 | Michi E. Garrison | Methods and devices for implanting cardiac valves |
US6159146A (en) | 1999-03-12 | 2000-12-12 | El Gazayerli; Mohamed Mounir | Method and apparatus for minimally-invasive fundoplication |
US6098629A (en) | 1999-04-07 | 2000-08-08 | Endonetics, Inc. | Submucosal esophageal bulking device |
WO2000069376A1 (en) | 1999-05-18 | 2000-11-23 | Silhouette Medical Inc. | Surgical weight control device |
US6506196B1 (en) | 1999-06-22 | 2003-01-14 | Ndo Surgical, Inc. | Device and method for correction of a painful body defect |
US6494888B1 (en) | 1999-06-22 | 2002-12-17 | Ndo Surgical, Inc. | Tissue reconfiguration |
WO2003099137A2 (en) | 1999-06-22 | 2003-12-04 | Ndo Surgical, Inc. | Method and devices for tissue reconfiguration |
US6835200B2 (en) | 1999-06-22 | 2004-12-28 | Ndo Surgical. Inc. | Method and devices for tissue reconfiguration |
US6821285B2 (en) | 1999-06-22 | 2004-11-23 | Ndo Surgical, Inc. | Tissue reconfiguration |
US7744613B2 (en) | 1999-06-25 | 2010-06-29 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7160312B2 (en) | 1999-06-25 | 2007-01-09 | Usgi Medical, Inc. | Implantable artificial partition and methods of use |
US6245087B1 (en) | 1999-08-03 | 2001-06-12 | Embol-X, Inc. | Variable expansion frame system for deploying medical devices and methods of use |
US6453907B1 (en) * | 1999-08-12 | 2002-09-24 | Obtech Medical Ag | Food intake restriction with energy transfer device |
US6358197B1 (en) | 1999-08-13 | 2002-03-19 | Enteric Medical Technologies, Inc. | Apparatus for forming implants in gastrointestinal tract and kit for use therewith |
US7662161B2 (en) | 1999-09-13 | 2010-02-16 | Rex Medical, L.P | Vascular hole closure device |
FR2799118B1 (en) | 1999-10-01 | 2002-07-12 | Medical Innovation Dev | ADJUSTABLE GASTRIC IMPLANT |
IT1315260B1 (en) | 1999-12-07 | 2003-02-03 | Valerio Cigaina | REMOVABLE GASTRIC BANDAGE |
FR2802407B1 (en) * | 1999-12-21 | 2002-12-13 | Rc Medical | DESERRABLE GASTROPLASTY RING |
US6547776B1 (en) | 2000-01-03 | 2003-04-15 | Curon Medical, Inc. | Systems and methods for treating tissue in the crura |
CA2395800C (en) | 2000-02-10 | 2010-01-05 | Peter Forsell | Controlled heartburn and reflux disease treatment apparatus |
US6470892B1 (en) * | 2000-02-10 | 2002-10-29 | Obtech Medical Ag | Mechanical heartburn and reflux treatment |
BR0108144A (en) * | 2000-02-11 | 2003-01-21 | Obtech Medical Ag | Controlled Wireless Power Supply Restraint Device |
AU3827001A (en) | 2000-02-15 | 2001-08-27 | Eva Corp | Delivery catheter assembly and method of securing a surgical component to a vessel during a surgical procedure |
MXPA00001922A (en) | 2000-02-24 | 2002-03-08 | De Hayos Garza Andres | Percutaneous intra-gastric balloon catheter for obesity treatment. |
JP2004514462A (en) | 2000-03-03 | 2004-05-20 | シー・アール・バード・インク | Tissue adhesion device for endoscope with multiple suction ports |
FR2805986B1 (en) | 2000-03-13 | 2002-10-11 | Districlass Madical | INTRA-GASTRIC DEVICE WITH VARIABLE VOLUME |
AU2001259429A1 (en) | 2000-05-02 | 2001-11-12 | Wilson-Cook Medical Inc. | Introducer device for catheters o.t.l. with eversible sleeve |
US6592596B1 (en) | 2000-05-10 | 2003-07-15 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
JP4368498B2 (en) * | 2000-05-16 | 2009-11-18 | Necエレクトロニクス株式会社 | Semiconductor device, semiconductor wafer and manufacturing method thereof |
EP1284661B1 (en) | 2000-05-19 | 2013-08-14 | C.R. Bard, Inc. | Tissue capturing and suturing device |
TW510788B (en) | 2000-08-24 | 2002-11-21 | Surgical Connections Inc | Surgical stabilizer devices and methods |
US20020082621A1 (en) | 2000-09-22 | 2002-06-27 | Schurr Marc O. | Methods and devices for folding and securing tissue |
US7334717B2 (en) | 2001-10-05 | 2008-02-26 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
US7229453B2 (en) | 2001-01-23 | 2007-06-12 | Ams Research Corporation | Pelvic floor implant system and method of assembly |
JP4202138B2 (en) | 2001-01-31 | 2008-12-24 | レックス メディカル インコーポレイテッド | Apparatus and method for stapling and ablating gastroesophageal tissue |
FR2820312B1 (en) | 2001-02-02 | 2003-05-02 | Oreal | PULVERULENT COMPOSITION FOR THE DECOLORATION OF HUMAN KERATINIC FIBERS |
JP2002232957A (en) * | 2001-02-06 | 2002-08-16 | Nec Corp | Mobile phone speech method and device |
US7011094B2 (en) | 2001-03-02 | 2006-03-14 | Emphasys Medical, Inc. | Bronchial flow control devices and methods of use |
ES2240479T3 (en) | 2001-03-09 | 2005-10-16 | Jose Rafael Garza Alvarez | INTRAGASTRIC BALL SET. |
US20050143760A1 (en) | 2001-05-01 | 2005-06-30 | Imran Mir A. | Endoscopic gastric constriction device |
US6535764B2 (en) | 2001-05-01 | 2003-03-18 | Intrapace, Inc. | Gastric treatment and diagnosis device and method |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
WO2002091961A1 (en) | 2001-05-17 | 2002-11-21 | Wilson-Cook Medical, Inc. | Intragastric device for treating obesity |
US6916332B2 (en) | 2001-05-23 | 2005-07-12 | Scimed Life Systems, Inc. | Endoluminal fundoplication device and related method for installing tissue fastener |
US7083629B2 (en) | 2001-05-30 | 2006-08-01 | Satiety, Inc. | Overtube apparatus for insertion into a body |
US6627206B2 (en) | 2001-07-25 | 2003-09-30 | Greg A. Lloyd | Method and apparatus for treating obesity and for delivering time-released medicaments |
US6632227B2 (en) | 2001-08-24 | 2003-10-14 | Scimed Life Systems, Inc. | Endoscopic resection devices |
US7097665B2 (en) | 2003-01-16 | 2006-08-29 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US6790237B2 (en) | 2001-10-09 | 2004-09-14 | Scimed Life Systems, Inc. | Medical stent with a valve and related methods of manufacturing |
US6755869B2 (en) | 2001-11-09 | 2004-06-29 | Boston Scientific Corporation | Intragastric prosthesis for the treatment of morbid obesity |
JP2005512667A (en) | 2001-12-20 | 2005-05-12 | レックス メディカル リミテッド パートナーシップ | Device for treating gastroesophageal reflux disease |
EP1465555B1 (en) | 2001-12-21 | 2015-05-06 | QuickRing Medical Technologies Ltd. | Implantation system for annuloplasty rings |
EP1348402A1 (en) * | 2002-03-29 | 2003-10-01 | Advanced Laser Applications Holding S.A. | Intraluminal endoprosthesis, radially expandable, perforated for drug delivery |
US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
US7335210B2 (en) | 2002-04-03 | 2008-02-26 | Julie Ann Smit | Endoscope and tools for applying sealants and adhesives and intestinal lining for reducing food absorption |
WO2003086247A1 (en) * | 2002-04-08 | 2003-10-23 | Barosense, Inc. | Satiation devices and methods |
US7146984B2 (en) | 2002-04-08 | 2006-12-12 | Synecor, Llc | Method and apparatus for modifying the exit orifice of a satiation pouch |
US8241308B2 (en) | 2002-04-24 | 2012-08-14 | Boston Scientific Scimed, Inc. | Tissue fastening devices and processes that promote tissue adhesion |
US6960233B1 (en) | 2002-12-10 | 2005-11-01 | Torax Medical, Inc. | Methods and apparatus for improving the function of biological passages |
CA2483124A1 (en) | 2002-05-07 | 2003-11-20 | Ams Research Corporation | Urethral prosthesis with tensioning member |
CA2780085C (en) | 2002-05-09 | 2014-03-11 | Reshape Medical, Inc. | Balloon system and methods for treating obesity |
US7316716B2 (en) | 2002-05-09 | 2008-01-08 | Gastrix Medical, Llc | Gastric bypass prosthesis |
US6790214B2 (en) | 2002-05-17 | 2004-09-14 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US6773440B2 (en) | 2002-07-02 | 2004-08-10 | Satiety, Inc. | Method and device for use in tissue approximation and fixation |
US20040098043A1 (en) | 2002-07-09 | 2004-05-20 | Trout Hugh H. | Delivery apparatus for use during a surgical procedure and method of using the same |
US6746460B2 (en) | 2002-08-07 | 2004-06-08 | Satiety, Inc. | Intra-gastric fastening devices |
US7211114B2 (en) | 2002-08-26 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Endoscopic gastric bypass |
CA2497042A1 (en) | 2002-08-29 | 2004-03-11 | Md3 Technologies Llc | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US20040044364A1 (en) | 2002-08-29 | 2004-03-04 | Devries Robert | Tissue fasteners and related deployment systems and methods |
US7214233B2 (en) | 2002-08-30 | 2007-05-08 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US6981978B2 (en) | 2002-08-30 | 2006-01-03 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US7033384B2 (en) | 2002-08-30 | 2006-04-25 | Satiety, Inc. | Stented anchoring of gastric space-occupying devices |
ES2632965T3 (en) | 2002-10-04 | 2017-09-18 | Covidien Lp | Pneumatically Motorized Surgical Stapling Device |
US7229428B2 (en) | 2002-10-23 | 2007-06-12 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US7220237B2 (en) | 2002-10-23 | 2007-05-22 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US7037344B2 (en) | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
AU2003287436A1 (en) | 2002-11-01 | 2004-06-07 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US20090149871A9 (en) | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US7122058B2 (en) * | 2002-12-02 | 2006-10-17 | Gi Dynamics, Inc. | Anti-obesity devices |
US7608114B2 (en) | 2002-12-02 | 2009-10-27 | Gi Dynamics, Inc. | Bariatric sleeve |
US7695446B2 (en) * | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
KR100954560B1 (en) | 2003-01-10 | 2010-04-23 | 삼성전자주식회사 | Method for recovering received data error in mobile communication system serving multimedia broadcast/multicast service |
US20040249367A1 (en) | 2003-01-15 | 2004-12-09 | Usgi Medical Corp. | Endoluminal tool deployment system |
US7291160B2 (en) | 2003-03-17 | 2007-11-06 | Delegge Rebecca | Intragastric catheter |
US6981980B2 (en) | 2003-03-19 | 2006-01-03 | Phagia Technology | Self-inflating intragastric volume-occupying device |
US20060058829A1 (en) | 2003-03-19 | 2006-03-16 | Sampson Douglas C | Intragastric volume-occupying device |
US20040220682A1 (en) | 2003-03-28 | 2004-11-04 | Gi Dynamics, Inc. | Anti-obesity devices |
US7175638B2 (en) | 2003-04-16 | 2007-02-13 | Satiety, Inc. | Method and devices for modifying the function of a body organ |
WO2004096100A1 (en) | 2003-04-24 | 2004-11-11 | Cook Incorporated | Artificial valve prosthesis with improved flow dynamics |
US7731757B2 (en) | 2003-06-01 | 2010-06-08 | Reflux Corporation | Obesity treatment |
BR0318356A (en) | 2003-06-16 | 2006-08-01 | Ethicon Endo Surgery Inc | surgical system with clipping instrument and a retractor |
BR0302240B8 (en) | 2003-06-24 | 2013-02-19 | semi-stationary balloon in the gastric antrum with anchor rod for weight loss induction in humans. | |
KR20030068070A (en) | 2003-06-26 | 2003-08-19 | 이정환 | The method of endoscopic ballooning for the treatment of obesity |
US20090259236A2 (en) | 2003-07-28 | 2009-10-15 | Baronova, Inc. | Gastric retaining devices and methods |
US20050075654A1 (en) | 2003-10-06 | 2005-04-07 | Brian Kelleher | Methods and devices for soft tissue securement |
US20050247320A1 (en) | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US8206456B2 (en) | 2003-10-10 | 2012-06-26 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US20050080444A1 (en) | 2003-10-14 | 2005-04-14 | Kraemer Stefan J.M. | Transesophageal gastric reduction device, system and method |
US7097650B2 (en) | 2003-10-14 | 2006-08-29 | Satiety, Inc. | System for tissue approximation and fixation |
US7914543B2 (en) | 2003-10-14 | 2011-03-29 | Satiety, Inc. | Single fold device for tissue fixation |
US20050085787A1 (en) | 2003-10-17 | 2005-04-21 | Laufer Michael D. | Minimally invasive gastrointestinal bypass |
US7347863B2 (en) | 2004-05-07 | 2008-03-25 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US7147140B2 (en) | 2003-12-30 | 2006-12-12 | Ethicon Endo - Surgery, Inc. | Cartridge retainer for a curved cutter stapler |
EP1713402B1 (en) | 2004-02-13 | 2018-07-04 | Ethicon Endo-Surgery, Inc. | Device for reducing stomach volume |
US8147561B2 (en) | 2004-02-26 | 2012-04-03 | Endosphere, Inc. | Methods and devices to curb appetite and/or reduce food intake |
US8252009B2 (en) | 2004-03-09 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US20060195139A1 (en) | 2004-03-23 | 2006-08-31 | Michael Gertner | Extragastric devices and methods for gastroplasty |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
GB2413769B (en) | 2004-04-06 | 2007-02-21 | Medevert Ltd | Ureteric stents |
EP1740132B1 (en) | 2004-04-26 | 2014-12-31 | Synecor, LLC | Restrictive and/or obstructive implant for inducing weight loss |
WO2005107641A2 (en) | 2004-05-03 | 2005-11-17 | Fulfillium, Inc. | Method and system for gastric volume control |
US7520884B2 (en) | 2004-05-07 | 2009-04-21 | Usgi Medical Inc. | Methods for performing gastroplasty |
EP1750595A4 (en) * | 2004-05-07 | 2008-10-22 | Valentx Inc | Devices and methods for attaching an endolumenal gastrointestinal implant |
US7918869B2 (en) | 2004-05-07 | 2011-04-05 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal gastroplasty |
US7112186B2 (en) | 2004-05-26 | 2006-09-26 | Shah Tilak M | Gastro-occlusive device |
US8475476B2 (en) | 2004-06-01 | 2013-07-02 | Cook Medical Technologies Llc | System and method for accessing a body cavity |
US7803195B2 (en) | 2004-06-03 | 2010-09-28 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US7837643B2 (en) | 2004-07-09 | 2010-11-23 | Gi Dynamics, Inc. | Methods and devices for placing a gastrointestinal sleeve |
JP4856082B2 (en) | 2004-10-15 | 2012-01-18 | ビーエフケイダブリュ・エルエルシー | Obesity device |
US20060155259A1 (en) | 2005-01-13 | 2006-07-13 | Maclay Alistair | Stomach balloon that can be inserted and removed via mouth |
US7674271B2 (en) | 2005-05-04 | 2010-03-09 | InTailor Surgical, Inc. | Endoluminal gastric ring and method |
ATE518497T1 (en) | 2005-05-23 | 2011-08-15 | Synecor Llc | RESTRICTIVE AND/OR OBSTRUCTIVE IMPLANT SYSTEM TO ADD WEIGHT LOSS |
WO2006132992A2 (en) | 2005-06-03 | 2006-12-14 | Tyco Healthcare Group Lp | Battery powered surgical instrument |
US7833236B2 (en) | 2005-06-13 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus with collapsible vacuum chamber |
US7896894B2 (en) | 2005-08-05 | 2011-03-01 | Ethicon Endo-Surgery, Inc. | Apparatus for single pass gastric restriction |
US7771440B2 (en) | 2005-08-18 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Method and apparatus for endoscopically performing gastric reduction surgery in a single pass |
US7896890B2 (en) | 2005-09-02 | 2011-03-01 | Ethicon Endo-Surgery, Inc. | Method and apparatus for endoscopically performing gastric reduction surgery in a single step |
US9055942B2 (en) | 2005-10-03 | 2015-06-16 | Boston Scienctific Scimed, Inc. | Endoscopic plication devices and methods |
US20080190989A1 (en) | 2005-10-03 | 2008-08-14 | Crews Samuel T | Endoscopic plication device and method |
EP1933721B1 (en) | 2005-10-03 | 2010-05-26 | Barosense, Inc. | Endoscopic plication devices |
US20070100369A1 (en) | 2005-10-31 | 2007-05-03 | Cragg Andrew H | Intragastric space filler |
CA2634614C (en) | 2005-12-22 | 2011-07-26 | Wilson-Cook Medical Inc. | Coiled intragastric member for treating obesity |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
US20070191871A1 (en) | 2006-02-10 | 2007-08-16 | Endogastric Solutions, Inc. | Transesophageal gastric reduction method and device for reducing the size of a previously formed gastric reduction pouch |
US20070191870A1 (en) | 2006-02-10 | 2007-08-16 | Endogastric Solutions, Inc. | Transesophageal gastric reduction method and device for practicing same |
WO2007127209A2 (en) * | 2006-04-25 | 2007-11-08 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
WO2008013862A2 (en) | 2006-07-26 | 2008-01-31 | Bernard Medical, Llc | Endolumenal gastric ring with suspended impeding member |
ES2527923T3 (en) | 2006-09-02 | 2015-02-02 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
US20090125040A1 (en) | 2006-09-13 | 2009-05-14 | Hambly Pablo R | Tissue acquisition devices and methods |
WO2008033474A2 (en) | 2006-09-15 | 2008-03-20 | Synecor, Llc | System for anchoring stomach implant |
US8209037B2 (en) | 2006-10-04 | 2012-06-26 | Ethicon Endo-Surgery, Inc. | Methods and devices for medical treatment |
CA2691269C (en) | 2007-05-12 | 2016-04-12 | Barosense, Inc. | Devices and methods for stomach partitioning |
JP2009001723A (en) | 2007-06-22 | 2009-01-08 | Basf Coatings Japan Ltd | Primer composition |
AU2008276523B2 (en) | 2007-07-18 | 2014-08-21 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US20090030284A1 (en) | 2007-07-18 | 2009-01-29 | David Cole | Overtube introducer for use in endoscopic bariatric surgery |
US20090171383A1 (en) | 2007-12-31 | 2009-07-02 | David Cole | Gastric space occupier systems and methods of use |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
-
2001
- 2001-08-27 US US09/940,110 patent/US6675809B2/en not_active Expired - Lifetime
-
2002
- 2002-08-26 JP JP2003522406A patent/JP4790212B2/en not_active Expired - Fee Related
- 2002-08-26 WO PCT/US2002/027177 patent/WO2003017882A2/en active Application Filing
- 2002-08-26 CN CNB028212177A patent/CN1307951C/en not_active Expired - Fee Related
- 2002-08-26 EP EP02757395.5A patent/EP1420730B1/en not_active Expired - Lifetime
- 2002-08-26 EP EP16157669.9A patent/EP3085334A1/en not_active Withdrawn
- 2002-08-26 EP EP11171475.4A patent/EP2397113B8/en not_active Expired - Lifetime
-
2003
- 2003-06-09 US US10/457,144 patent/US20030199991A1/en not_active Abandoned
- 2003-06-09 US US10/457,137 patent/US20030199990A1/en not_active Abandoned
- 2003-06-09 US US10/457,108 patent/US7111627B2/en not_active Expired - Fee Related
-
2004
- 2004-03-04 US US10/794,346 patent/US7121283B2/en not_active Expired - Lifetime
- 2004-07-16 US US10/892,973 patent/US7354454B2/en not_active Expired - Fee Related
-
2008
- 2008-04-08 US US12/099,290 patent/US7833280B2/en not_active Expired - Fee Related
-
2009
- 2009-08-10 US US12/538,741 patent/US20090299487A1/en not_active Abandoned
-
2011
- 2011-05-16 JP JP2011109938A patent/JP5407048B2/en not_active Expired - Fee Related
- 2011-09-28 US US13/247,377 patent/US8337567B2/en not_active Expired - Lifetime
- 2011-09-28 US US13/247,400 patent/US8177853B2/en not_active Expired - Fee Related
-
2012
- 2012-06-27 US US13/535,254 patent/US20120271217A1/en not_active Abandoned
-
2013
- 2013-01-04 US US13/734,905 patent/US9254214B2/en not_active Expired - Fee Related
- 2013-07-05 US US13/936,132 patent/US20130296764A1/en not_active Abandoned
-
2014
- 2014-01-22 US US14/161,392 patent/US9107727B2/en not_active Expired - Fee Related
-
2015
- 2015-07-20 US US14/803,814 patent/US9788984B2/en not_active Expired - Fee Related
-
2016
- 2016-01-04 US US14/987,362 patent/US10080677B2/en not_active Expired - Fee Related
Patent Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315509A (en) * | 1977-01-10 | 1982-02-16 | Smit Julie A | Insertion and removal catheters and intestinal tubes for restricting absorption |
US4134405A (en) * | 1977-01-10 | 1979-01-16 | Smit Julie A | Catheter and intestine tube and method of using the same |
US4641653A (en) * | 1978-06-02 | 1987-02-10 | Rockey Arthur G | Medical sleeve |
US4246893A (en) * | 1978-07-05 | 1981-01-27 | Daniel Berson | Inflatable gastric device for treating obesity |
US4441215A (en) * | 1980-11-17 | 1984-04-10 | Kaster Robert L | Vascular graft |
US4899747A (en) * | 1981-12-10 | 1990-02-13 | Garren Lloyd R | Method and appartus for treating obesity |
US4416267A (en) * | 1981-12-10 | 1983-11-22 | Garren Lloyd R | Method and apparatus for treating obesity |
US4403604A (en) * | 1982-05-13 | 1983-09-13 | Wilkinson Lawrence H | Gastric pouch |
US4607618A (en) * | 1983-02-23 | 1986-08-26 | Angelchik Jean P | Method for treatment of morbid obesity |
US4648383A (en) * | 1985-01-11 | 1987-03-10 | Angelchik Jean P | Peroral apparatus for morbid obesity treatment |
US4723547A (en) * | 1985-05-07 | 1988-02-09 | C. R. Bard, Inc. | Anti-obesity balloon placement system |
US4694827A (en) * | 1986-01-14 | 1987-09-22 | Weiner Brian C | Inflatable gastric device for treating obesity and method of using the same |
US4846836A (en) * | 1988-10-03 | 1989-07-11 | Reich Jonathan D | Artificial lower gastrointestinal valve |
US5709657A (en) * | 1989-06-28 | 1998-01-20 | Zimmon Science Corporation | Methods for placement of balloon tamponade devices |
US5314473A (en) * | 1989-07-20 | 1994-05-24 | Godin Norman J | Prosthesis for preventing gastric reflux into the esophagus |
US5163952A (en) * | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5234454A (en) * | 1991-08-05 | 1993-08-10 | Akron City Hospital | Percutaneous intragastric balloon catheter and method for controlling body weight therewith |
US5662713A (en) * | 1991-10-09 | 1997-09-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
US6146416A (en) * | 1991-10-09 | 2000-11-14 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion |
US5290217A (en) * | 1991-10-10 | 1994-03-01 | Earl K. Sipes | Method and apparatus for hernia repair |
US5720776A (en) * | 1991-10-25 | 1998-02-24 | Cook Incorporated | Barb and expandable transluminal graft prosthesis for repair of aneurysm |
US5211658A (en) * | 1991-11-05 | 1993-05-18 | New England Deaconess Hospital Corporation | Method and device for performing endovascular repair of aneurysms |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5405377A (en) * | 1992-02-21 | 1995-04-11 | Endotech Ltd. | Intraluminal stent |
US5259399A (en) * | 1992-03-02 | 1993-11-09 | Alan Brown | Device and method of causing weight loss using removable variable volume intragastric bladder |
US5246456A (en) * | 1992-06-08 | 1993-09-21 | Wilkinson Lawrence H | Fenestrated gastric pouch |
US5345949A (en) * | 1992-09-02 | 1994-09-13 | Shlain Leonard M | Methods for use in surgical gastroplastic procedure |
US5327914A (en) * | 1992-09-02 | 1994-07-12 | Shlain Leonard M | Method and devices for use in surgical gastroplastic procedure |
US5306300A (en) * | 1992-09-22 | 1994-04-26 | Berry H Lee | Tubular digestive screen |
US5653743A (en) * | 1994-09-09 | 1997-08-05 | Martin; Eric C. | Hypogastric artery bifurcation graft and method of implantation |
US5514176A (en) * | 1995-01-20 | 1996-05-07 | Vance Products Inc. | Pull apart coil stent |
US5674241A (en) * | 1995-02-22 | 1997-10-07 | Menlo Care, Inc. | Covered expanding mesh stent |
US5861036A (en) * | 1995-03-28 | 1999-01-19 | Biomedix S.A. Switzerland | Medical prosthesis for preventing gastric reflux in the esophagus |
US5749918A (en) * | 1995-07-20 | 1998-05-12 | Endotex Interventional Systems, Inc. | Intraluminal graft and method for inserting the same |
US5771903A (en) * | 1995-09-22 | 1998-06-30 | Kirk Promotions Limited | Surgical method for reducing the food intake of a patient |
US6102922A (en) * | 1995-09-22 | 2000-08-15 | Kirk Promotions Limited | Surgical method and device for reducing the food intake of patient |
US5922019A (en) * | 1995-11-27 | 1999-07-13 | Schneider (Europe) A.G. | Conical stent |
US6596023B1 (en) * | 1996-05-24 | 2003-07-22 | Meadox Medicals, Inc. | Shaped woven tubular soft-tissue prostheses and method of manufacturing the same |
US5868141A (en) * | 1997-05-14 | 1999-02-09 | Ellias; Yakub A. | Endoscopic stomach insert for treating obesity and method for use |
US5993483A (en) * | 1997-07-17 | 1999-11-30 | Schneider (Usa) Inc | Stent and method of manufacturing same |
US5820584A (en) * | 1997-08-28 | 1998-10-13 | Crabb; Jerry A. | Duodenal insert and method of use |
US5887594A (en) * | 1997-09-22 | 1999-03-30 | Beth Israel Deaconess Medical Center Inc. | Methods and devices for gastroesophageal reflux reduction |
US20010020189A1 (en) * | 1997-12-09 | 2001-09-06 | Taylor Thomas V. | Sutureless gastroesophageal anti-reflux valve prosthesis and tool for peroral implantation thereof |
US6254642B1 (en) * | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US20010020190A1 (en) * | 1997-12-09 | 2001-09-06 | Taylor Thomas V. | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof |
US6258120B1 (en) * | 1997-12-23 | 2001-07-10 | Embol-X, Inc. | Implantable cerebral protection device and methods of use |
US6159238A (en) * | 1998-03-04 | 2000-12-12 | Scimed Life Systems, Inc | Stent having variable properties and method of its use |
US6113609A (en) * | 1998-05-26 | 2000-09-05 | Scimed Life Systems, Inc. | Implantable tissue fastener and system for treating gastroesophageal reflux disease |
US6264700B1 (en) * | 1998-08-27 | 2001-07-24 | Endonetics, Inc. | Prosthetic gastroesophageal valve |
US6302917B1 (en) * | 1998-08-31 | 2001-10-16 | Wilson-Cook Medical Incorporated | Anti-reflux esophageal prosthesis |
US6547801B1 (en) * | 1998-09-14 | 2003-04-15 | Sofradim Production | Gastric constriction device |
US6575896B2 (en) * | 1998-12-11 | 2003-06-10 | Scimed Life Systems, Inc. | Method for treating tissue and apparatus for use therewith |
US6663639B1 (en) * | 1999-06-22 | 2003-12-16 | Ndo Surgical, Inc. | Methods and devices for tissue reconfiguration |
US20010011543A1 (en) * | 1999-08-12 | 2001-08-09 | Peter Forsell | Controlled food flow in a patient |
US6764518B2 (en) * | 1999-12-13 | 2004-07-20 | Biomedix S.A. | Prosthesis for controlling the direction of flow in a duct of a living organism |
US6503264B1 (en) * | 2000-03-03 | 2003-01-07 | Bioenterics Corporation | Endoscopic device for removing an intragastric balloon |
US6540789B1 (en) * | 2000-06-15 | 2003-04-01 | Scimed Life Systems, Inc. | Method for treating morbid obesity |
US20020022851A1 (en) * | 2000-08-17 | 2002-02-21 | Johns Hopkins University | Gastric reduction endoscopy |
US20020099439A1 (en) * | 2000-09-29 | 2002-07-25 | Schwartz Robert S. | Venous valvuloplasty device and method |
US20020055757A1 (en) * | 2000-11-03 | 2002-05-09 | Torre Roger De La | Method and device for use in minimally invasive placement of intragastric devices |
US6572627B2 (en) * | 2001-01-08 | 2003-06-03 | Shlomo Gabbay | System to inhibit and/or control expansion of anatomical features |
US6558400B2 (en) * | 2001-05-30 | 2003-05-06 | Satiety, Inc. | Obesity treatment tools and methods |
US6845776B2 (en) * | 2001-08-27 | 2005-01-25 | Richard S. Stack | Satiation devices and methods |
US20030199990A1 (en) * | 2001-08-27 | 2003-10-23 | Stack Richard S. | Satiation devices and methods |
US20040117031A1 (en) * | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US20040138761A1 (en) * | 2001-08-27 | 2004-07-15 | Stack Richard S. | Satiation devices and methods |
US6675809B2 (en) * | 2001-08-27 | 2004-01-13 | Richard S. Stack | Satiation devices and methods |
US20080269797A1 (en) * | 2001-08-27 | 2008-10-30 | Stack Richard S | Satiation devices and methods |
US20080208356A1 (en) * | 2001-08-27 | 2008-08-28 | Stack Richard S | Satiation devices and methods |
US7111627B2 (en) * | 2001-08-27 | 2006-09-26 | Synecor, Llc | Satiation devices and methods |
US7121283B2 (en) * | 2001-08-27 | 2006-10-17 | Synecor, Llc | Satiation devices and methods |
US7152607B2 (en) * | 2001-08-27 | 2006-12-26 | Synecor, L.L.C. | Satiation devices and methods |
US7354454B2 (en) * | 2001-08-27 | 2008-04-08 | Synecor, Llc | Satiation devices and methods |
US6740121B2 (en) * | 2001-11-09 | 2004-05-25 | Boston Scientific Corporation | Intragastric stent for duodenum bypass |
US20040092892A1 (en) * | 2002-11-01 | 2004-05-13 | Jonathan Kagan | Apparatus and methods for treatment of morbid obesity |
US20040107004A1 (en) * | 2002-12-02 | 2004-06-03 | Seedling Enterprises, Llc | Bariatric sleeve |
US20040143342A1 (en) * | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
Cited By (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7066945B2 (en) | 2001-05-17 | 2006-06-27 | Wilson-Cook Medical Inc. | Intragastric device for treating obesity |
US20030078611A1 (en) * | 2001-05-17 | 2003-04-24 | Kiyoshi Hashiba | Intragastric device for treating obesity |
US9254214B2 (en) | 2001-08-27 | 2016-02-09 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US8992457B2 (en) * | 2001-08-27 | 2015-03-31 | Boston Scientific Scimed, Inc. | Gastrointestinal implants |
US8784354B2 (en) | 2001-08-27 | 2014-07-22 | Boston Scientific Scimed, Inc. | Positioning tools and methods for implanting medical devices |
US8568488B2 (en) | 2001-08-27 | 2013-10-29 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US10080677B2 (en) | 2001-08-27 | 2018-09-25 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US9872786B2 (en) | 2001-08-27 | 2018-01-23 | Boston Scientific Scimed, Inc. | Gastro-esophageal implants |
US9844453B2 (en) | 2001-08-27 | 2017-12-19 | Boston Scientific Scimed, Inc. | Positioning tools and methods for implanting medical devices |
US7833280B2 (en) | 2001-08-27 | 2010-11-16 | Barosense, Inc. | Satiation devices and methods |
US9358144B2 (en) * | 2001-08-27 | 2016-06-07 | Boston Scientific Scimed, Inc. | Gastrointestinal implants |
US8845753B2 (en) | 2001-08-27 | 2014-09-30 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US7892292B2 (en) | 2001-08-27 | 2011-02-22 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US20150202039A1 (en) * | 2001-08-27 | 2015-07-23 | Boston Scientific Scimed, Inc. | Gastrointestinal implants |
US9788984B2 (en) | 2001-08-27 | 2017-10-17 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US9107727B2 (en) | 2001-08-27 | 2015-08-18 | Boston Scientific Scimed, Inc. | Satiation devices and methods |
US9138340B2 (en) | 2001-08-27 | 2015-09-22 | Boston Scientific Scimed, Inc. | Gastro-esophageal implants |
US9180036B2 (en) | 2001-08-27 | 2015-11-10 | Boston Scientific Scimed, Inc. | Methods for implanting medical devices |
US7981162B2 (en) | 2001-08-27 | 2011-07-19 | Barosense, Inc. | Satiation devices and methods |
US20040117031A1 (en) * | 2001-08-27 | 2004-06-17 | Stack Richard S. | Satiation devices and methods |
US20110270410A1 (en) * | 2001-08-27 | 2011-11-03 | Barosense, Inc. | Satiation devices and methods |
US8337566B2 (en) | 2002-04-08 | 2012-12-25 | Barosense, Inc. | Method and apparatus for modifying the exit orifice of a satiation pouch |
US7837645B2 (en) | 2002-08-26 | 2010-11-23 | The Trustees Of Columbia University In The City Of New York | Endoscopic gastric bypass |
US7211114B2 (en) | 2002-08-26 | 2007-05-01 | The Trustees Of Columbia University In The City Of New York | Endoscopic gastric bypass |
US8070743B2 (en) | 2002-11-01 | 2011-12-06 | Valentx, Inc. | Devices and methods for attaching an endolumenal gastrointestinal implant |
US8012135B2 (en) | 2002-11-01 | 2011-09-06 | Valentx, Inc. | Attachment cuff for gastrointestinal implant |
US8012140B1 (en) | 2002-11-01 | 2011-09-06 | Valentx, Inc. | Methods of transmural attachment in the gastrointestinal system |
US9561127B2 (en) | 2002-11-01 | 2017-02-07 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US10350101B2 (en) | 2002-11-01 | 2019-07-16 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US8182459B2 (en) | 2002-11-01 | 2012-05-22 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US9839546B2 (en) | 2002-11-01 | 2017-12-12 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7892214B2 (en) | 2002-11-01 | 2011-02-22 | Valentx, Inc. | Attachment system for transmural attachment at the gastroesophageal junction |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US7037344B2 (en) | 2002-11-01 | 2006-05-02 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US8968270B2 (en) | 2002-11-01 | 2015-03-03 | Valentx, Inc. | Methods of replacing a gastrointestinal bypass sleeve for therapy adjustment |
US7846138B2 (en) | 2002-11-01 | 2010-12-07 | Valentx, Inc. | Cuff and sleeve system for gastrointestinal bypass |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US20040148034A1 (en) * | 2002-11-01 | 2004-07-29 | Jonathan Kagan | Apparatus and methods for treatment of morbid obesity |
US7935073B2 (en) | 2002-12-02 | 2011-05-03 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7766861B2 (en) | 2002-12-02 | 2010-08-03 | Gi Dynamics, Inc. | Anti-obesity devices |
US9901474B2 (en) | 2002-12-02 | 2018-02-27 | Gi Dynamics, Inc. | Anti-obesity devices |
US9278020B2 (en) | 2002-12-02 | 2016-03-08 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US9155609B2 (en) | 2002-12-02 | 2015-10-13 | Gi Dynamics, Inc. | Bariatric sleeve |
US8870806B2 (en) | 2002-12-02 | 2014-10-28 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US8882698B2 (en) | 2002-12-02 | 2014-11-11 | Gi Dynamics, Inc. | Anti-obesity devices |
US8486153B2 (en) | 2002-12-02 | 2013-07-16 | Gi Dynamics, Inc. | Anti-obesity devices |
US7695446B2 (en) | 2002-12-02 | 2010-04-13 | Gi Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
US7025791B2 (en) | 2002-12-02 | 2006-04-11 | Gi Dynamics, Inc. | Bariatric sleeve |
US8137301B2 (en) | 2002-12-02 | 2012-03-20 | Gi Dynamics, Inc. | Bariatric sleeve |
US9750596B2 (en) | 2002-12-02 | 2017-09-05 | Gi Dynamics, Inc. | Bariatric sleeve |
US8162871B2 (en) | 2002-12-02 | 2012-04-24 | Gi Dynamics, Inc. | Bariatric sleeve |
US7678068B2 (en) | 2002-12-02 | 2010-03-16 | Gi Dynamics, Inc. | Atraumatic delivery devices |
US7758535B2 (en) | 2002-12-02 | 2010-07-20 | Gi Dynamics, Inc. | Bariatric sleeve delivery devices |
US8029455B2 (en) | 2003-01-16 | 2011-10-04 | Barosense, Inc. | Satiation pouches and methods of use |
US7223277B2 (en) | 2003-03-17 | 2007-05-29 | Delegge Rebecca | Method of inducing satiety |
US8206456B2 (en) | 2003-10-10 | 2012-06-26 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US20130012863A1 (en) * | 2003-10-10 | 2013-01-10 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US20080065122A1 (en) * | 2003-10-10 | 2008-03-13 | Stack Richard S | Restrictive and/or obstructive implant system for inducing weight loss |
US20050247320A1 (en) * | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US9180035B2 (en) | 2003-10-10 | 2015-11-10 | Boston Scientific Scimed, Inc. | Devices and methods for retaining a gastro-esophageal implant |
US9445791B2 (en) * | 2003-10-10 | 2016-09-20 | Boston Scientific Scimed, Inc. | Systems and methods related to gastro-esophageal implants |
US9248038B2 (en) | 2003-10-10 | 2016-02-02 | Boston Scientific Scimed, Inc. | Methods for retaining a gastro-esophageal implant |
US10285836B2 (en) | 2003-10-10 | 2019-05-14 | Boston Scientific Scimed, Inc. | Systems and methods related to gastro-esophageal implants |
US8784500B2 (en) | 2003-10-10 | 2014-07-22 | Boston Scientific Scimed, Inc. | Devices and methods for retaining a gastro-esophageal implant |
US8303669B2 (en) | 2003-12-09 | 2012-11-06 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US9095416B2 (en) | 2003-12-09 | 2015-08-04 | Gi Dynamics, Inc. | Removal and repositioning devices |
US7981163B2 (en) | 2003-12-09 | 2011-07-19 | Gi Dynamics, Inc. | Intestinal sleeve |
US9084669B2 (en) | 2003-12-09 | 2015-07-21 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US8771219B2 (en) | 2003-12-09 | 2014-07-08 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US8628583B2 (en) | 2003-12-09 | 2014-01-14 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US9237944B2 (en) | 2003-12-09 | 2016-01-19 | Gi Dynamics, Inc. | Intestinal sleeve |
US7682330B2 (en) | 2003-12-09 | 2010-03-23 | Gi Dynamics, Inc. | Intestinal sleeve |
US7815589B2 (en) | 2003-12-09 | 2010-10-19 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US8057420B2 (en) | 2003-12-09 | 2011-11-15 | Gi Dynamics, Inc. | Gastrointestinal implant with drawstring |
US9744061B2 (en) | 2003-12-09 | 2017-08-29 | Gi Dynamics, Inc. | Intestinal sleeve |
US8834405B2 (en) | 2003-12-09 | 2014-09-16 | Gi Dynamics, Inc. | Intestinal sleeve |
US9585783B2 (en) | 2003-12-09 | 2017-03-07 | Gi Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
US20070265709A1 (en) * | 2004-02-25 | 2007-11-15 | Mayo Foundatio For Medical Education And Research | Gastric Bypass Devices and Methods |
WO2005082296A1 (en) * | 2004-02-25 | 2005-09-09 | Mayo Foundation For Medical Education And Research | Gastric bypass and methods |
US11134949B2 (en) | 2004-04-12 | 2021-10-05 | Boston Scientific Scimed, Inc. | Luminal structure anchoring devices and methods |
US10945735B2 (en) | 2004-04-12 | 2021-03-16 | Boston Scientific Scimed, Inc. | Luminal structure anchoring devices and methods |
US11857160B2 (en) | 2004-04-12 | 2024-01-02 | Boston Scientific Scimed, Inc. | Luminal structure anchoring devices and methods |
US8241202B2 (en) | 2004-04-26 | 2012-08-14 | Barosense, Inc. | Restrictive and/or obstructive implant for inducing weight loss |
US10098773B2 (en) | 2004-04-26 | 2018-10-16 | Boston Scientific Scimed, Inc. | Restrictive and/or obstructive implant for inducing weight loss |
US20050273060A1 (en) * | 2004-06-03 | 2005-12-08 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US8911393B2 (en) | 2004-06-03 | 2014-12-16 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US20110009980A1 (en) * | 2004-06-03 | 2011-01-13 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US8372158B2 (en) | 2004-06-03 | 2013-02-12 | Enteromedics, Inc. | Obesity treatment and device |
US7803195B2 (en) | 2004-06-03 | 2010-09-28 | Mayo Foundation For Medical Education And Research | Obesity treatment and device |
US7837643B2 (en) | 2004-07-09 | 2010-11-23 | Gi Dynamics, Inc. | Methods and devices for placing a gastrointestinal sleeve |
US20060020277A1 (en) * | 2004-07-20 | 2006-01-26 | Gostout Christopher J | Gastric reshaping devices and methods |
US7815591B2 (en) | 2004-09-17 | 2010-10-19 | Gi Dynamics, Inc. | Atraumatic gastrointestinal anchor |
US8096966B2 (en) * | 2005-01-19 | 2012-01-17 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US7771382B2 (en) | 2005-01-19 | 2010-08-10 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US8920358B2 (en) | 2005-01-19 | 2014-12-30 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US7766973B2 (en) | 2005-01-19 | 2010-08-03 | Gi Dynamics, Inc. | Eversion resistant sleeves |
US20110040318A1 (en) * | 2005-03-01 | 2011-02-17 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US8845673B2 (en) | 2005-03-01 | 2014-09-30 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants and methods for use thereof |
US20110022072A1 (en) * | 2005-03-01 | 2011-01-27 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US8858496B2 (en) | 2005-03-01 | 2014-10-14 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US8864784B2 (en) | 2005-03-01 | 2014-10-21 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US20110015666A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US8267888B2 (en) | 2005-03-01 | 2012-09-18 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US20110015665A1 (en) * | 2005-03-01 | 2011-01-20 | Tulip Medical Ltd. | Bioerodible self-deployable intragastric implants |
US8114010B2 (en) | 2005-05-20 | 2012-02-14 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
US7666180B2 (en) | 2005-05-20 | 2010-02-23 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
US7691053B2 (en) | 2005-05-20 | 2010-04-06 | Tyco Healthcare Group Lp | Gastric restrictor assembly and method of use |
US8425451B2 (en) | 2005-06-08 | 2013-04-23 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US7976488B2 (en) | 2005-06-08 | 2011-07-12 | Gi Dynamics, Inc. | Gastrointestinal anchor compliance |
US7967818B2 (en) | 2005-06-10 | 2011-06-28 | Cook Medical Technologies Llc | Cautery catheter |
US8469977B2 (en) | 2005-10-03 | 2013-06-25 | Barosense, Inc. | Endoscopic plication device and method |
US9055942B2 (en) | 2005-10-03 | 2015-06-16 | Boston Scienctific Scimed, Inc. | Endoscopic plication devices and methods |
US10299796B2 (en) | 2005-10-03 | 2019-05-28 | Boston Scientific Scimed, Inc. | Endoscopic plication devices and methods |
US20070123994A1 (en) * | 2005-11-29 | 2007-05-31 | Ethicon Endo-Surgery, Inc. | Internally Placed Gastric Restriction Device |
US8216268B2 (en) | 2005-12-22 | 2012-07-10 | Cook Medical Technologies Llc | Intragastric bag for treating obesity |
US20080228126A1 (en) * | 2006-03-23 | 2008-09-18 | The Trustees Of Columbia University In The City Of New York | Method of inhibiting disruption of the healing process in a physically modified stomach |
US9597173B2 (en) | 2006-05-30 | 2017-03-21 | Boston Scientific Scimed, Inc. | Anti-obesity dual stent |
US20070282452A1 (en) * | 2006-05-30 | 2007-12-06 | Boston Scientific Scimed, Inc. | Anti-obesity dual stent |
US8308813B2 (en) | 2006-05-30 | 2012-11-13 | Boston Scientific Scimed, Inc. | Anti-obesity diverter structure |
US20070282454A1 (en) * | 2006-05-30 | 2007-12-06 | Boston Scientific Scimed Inc. | Anti-obesity diverter structure |
US7867283B2 (en) * | 2006-05-30 | 2011-01-11 | Boston Scientific Scimed, Inc. | Anti-obesity diverter structure |
US7922684B2 (en) * | 2006-05-30 | 2011-04-12 | Boston Scientific Scimed, Inc. | Anti-obesity dual stent |
US20110172585A1 (en) * | 2006-05-30 | 2011-07-14 | Boston Scientific Scimed, Inc. | Anti-obesity dual stent |
US20110137226A1 (en) * | 2006-05-30 | 2011-06-09 | Boston Scientific Scimed, Inc. | Anti-obesity diverter structure |
US7819836B2 (en) | 2006-06-23 | 2010-10-26 | Gi Dynamics, Inc. | Resistive anti-obesity devices |
US9687334B2 (en) | 2006-09-02 | 2017-06-27 | Boston Scientific Scimed, Inc. | Intestinal sleeves and associated deployment systems and methods |
US8109895B2 (en) | 2006-09-02 | 2012-02-07 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
US9314361B2 (en) | 2006-09-15 | 2016-04-19 | Boston Scientific Scimed, Inc. | System and method for anchoring stomach implant |
US8118774B2 (en) | 2006-09-25 | 2012-02-21 | Valentx, Inc. | Toposcopic access and delivery devices |
US8808270B2 (en) | 2006-09-25 | 2014-08-19 | Valentx, Inc. | Methods for toposcopic sleeve delivery |
US20080112143A1 (en) * | 2006-10-31 | 2008-05-15 | Pathfinder Energy Services, Inc. | Integrated circuit packages including damming and charge protection cover for harsh environments |
US8801647B2 (en) | 2007-02-22 | 2014-08-12 | Gi Dynamics, Inc. | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
US8821429B2 (en) * | 2007-03-29 | 2014-09-02 | IBIS Medical, Inc. | Intragastric implant devices |
US20100049224A1 (en) * | 2007-03-29 | 2010-02-25 | Jaime Vargas | Intragastric Implant Devices |
US8007507B2 (en) | 2007-05-10 | 2011-08-30 | Cook Medical Technologies Llc | Intragastric bag apparatus and method of delivery for treating obesity |
US8435203B2 (en) | 2007-06-20 | 2013-05-07 | Covidien Lp | Gastric restrictor assembly and method of use |
US8790290B2 (en) | 2007-06-20 | 2014-07-29 | Covidien Lp | Gastric restrictor assembly and method of use |
US9456825B2 (en) | 2007-07-18 | 2016-10-04 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US9545249B2 (en) | 2007-07-18 | 2017-01-17 | Boston Scientific Scimed, Inc. | Overtube introducer for use in endoscopic bariatric surgery |
US10537456B2 (en) | 2007-07-18 | 2020-01-21 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US7883524B2 (en) | 2007-12-21 | 2011-02-08 | Wilson-Cook Medical Inc. | Method of delivering an intragastric device for treating obesity |
US8016851B2 (en) | 2007-12-27 | 2011-09-13 | Cook Medical Technologies Llc | Delivery system and method of delivery for treating obesity |
US8945167B2 (en) | 2007-12-31 | 2015-02-03 | Boston Scientific Scimed, Inc. | Gastric space occupier systems and methods of use |
US7913892B2 (en) | 2008-03-18 | 2011-03-29 | Barosense, Inc. | Endoscopic stapling devices and methods |
US7909222B2 (en) | 2008-03-18 | 2011-03-22 | Barosense, Inc. | Endoscopic stapling devices and methods |
US7909223B2 (en) | 2008-03-18 | 2011-03-22 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8864008B2 (en) | 2008-03-18 | 2014-10-21 | Boston Scientific Scimed, Inc. | Endoscopic stapling devices and methods |
US7909219B2 (en) | 2008-03-18 | 2011-03-22 | Barosense, Inc. | Endoscopic stapling devices and methods |
US7922062B2 (en) | 2008-03-18 | 2011-04-12 | Barosense, Inc. | Endoscopic stapling devices and methods |
US9636114B2 (en) | 2008-03-18 | 2017-05-02 | Boston Scientific Scimed, Inc. | Endoscopic stapling devices |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8517972B2 (en) | 2008-04-09 | 2013-08-27 | E2 Llc | Pyloric valve |
US8142385B2 (en) | 2008-04-09 | 2012-03-27 | E2 Llc | Pyloric valve devices and methods |
US8579849B2 (en) | 2008-04-09 | 2013-11-12 | E2 Llc | Pyloric valve devices and methods |
US8100850B2 (en) | 2008-04-09 | 2012-01-24 | E2 Llc | Pyloric valve devices and methods |
US20090259240A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve |
US20090259239A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve devices and methods |
US8226593B2 (en) | 2008-04-09 | 2012-07-24 | E2 Llc | Pyloric valve |
US20090259237A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve devices and methods |
US20090259238A1 (en) * | 2008-04-09 | 2009-10-15 | Stryker Development Llc | Pyloric valve devices and methods |
US8182442B2 (en) | 2008-04-09 | 2012-05-22 | Electrocore Llc | Pyloric valve devices and methods |
US10076330B2 (en) | 2008-05-12 | 2018-09-18 | Xlumena, Inc. | Tissue anchor for securing tissue layers |
US10390833B2 (en) | 2008-05-12 | 2019-08-27 | Boston Scientific Scimed, Inc. | Tissue anchor for securing tissue layers |
US10368862B2 (en) | 2008-11-10 | 2019-08-06 | Boston Scientific Scimed, Inc. | Multi-fire stapling methods |
US9451956B2 (en) | 2008-11-10 | 2016-09-27 | Boston Scientific Scimed, Inc. | Multi-fire stapling systems |
US8747421B2 (en) | 2008-11-10 | 2014-06-10 | Boston Scientific Scimed, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US11202627B2 (en) | 2008-11-10 | 2021-12-21 | Boston Scientific Scimed, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US10322021B2 (en) | 2009-04-03 | 2019-06-18 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US9278019B2 (en) * | 2009-04-03 | 2016-03-08 | Metamodix, Inc | Anchors and methods for intestinal bypass sleeves |
US9044300B2 (en) | 2009-04-03 | 2015-06-02 | Metamodix, Inc. | Gastrointestinal prostheses |
US8702641B2 (en) | 2009-04-03 | 2014-04-22 | Metamodix, Inc. | Gastrointestinal prostheses having partial bypass configurations |
US20120253260A1 (en) * | 2009-04-03 | 2012-10-04 | Metamodix, Inc. | Gastrointestinal prostheses |
US20120184893A1 (en) * | 2009-04-03 | 2012-07-19 | Metamodix, Inc. | Anchors and methods for intestinal bypass sleeves |
US8211186B2 (en) | 2009-04-03 | 2012-07-03 | Metamodix, Inc. | Modular gastrointestinal prostheses |
US9962278B2 (en) | 2009-04-03 | 2018-05-08 | Metamodix, Inc. | Modular gastrointestinal prostheses |
US9173760B2 (en) | 2009-04-03 | 2015-11-03 | Metamodix, Inc. | Delivery devices and methods for gastrointestinal implants |
US10321910B2 (en) | 2009-04-21 | 2019-06-18 | Boston Scientific Scimed, Inc. | Apparatus and method for deploying stent across adjacent tissue layers |
US8961539B2 (en) | 2009-05-04 | 2015-02-24 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US9888926B2 (en) | 2009-05-29 | 2018-02-13 | Boston Scientific Scimed, Inc. | Apparatus and method for deploying stent across adjacent tissue layers |
US8282598B2 (en) | 2009-07-10 | 2012-10-09 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US8702642B2 (en) | 2009-07-10 | 2014-04-22 | Metamodix, Inc. | External anchoring configurations for modular gastrointestinal prostheses |
US9173734B2 (en) | 2009-09-29 | 2015-11-03 | IBIS Medical, Inc. | Intragastric implant devices |
US10052220B2 (en) * | 2009-10-09 | 2018-08-21 | Boston Scientific Scimed, Inc. | Stomach bypass for the treatment of obesity |
US20110087146A1 (en) * | 2009-10-09 | 2011-04-14 | Boston Scientific Scimed, Inc. | Stomach bypass for the treatment of obesity |
US11712328B2 (en) | 2010-04-30 | 2023-08-01 | Boston Scientific Scimed, Inc. | Stent for repair of anastomasis surgery leaks |
US10398540B2 (en) * | 2010-04-30 | 2019-09-03 | Boston Scientific Scimed, Inc. | Stent for repair of anastomasis surgery leaks |
US20110307070A1 (en) * | 2010-04-30 | 2011-12-15 | Boston Scientific Scimed, Inc. | Stent for repair of anastomasis surgery leaks |
US11950778B2 (en) | 2010-05-21 | 2024-04-09 | Boston Scientific Scimed, Inc. | Tissue-acquisition and fastening devices and methods |
US11135078B2 (en) | 2010-06-13 | 2021-10-05 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US9526648B2 (en) | 2010-06-13 | 2016-12-27 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10413436B2 (en) | 2010-06-13 | 2019-09-17 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US11596538B2 (en) | 2010-06-13 | 2023-03-07 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US11607329B2 (en) | 2010-06-13 | 2023-03-21 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US11351050B2 (en) | 2010-06-13 | 2022-06-07 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US10512557B2 (en) | 2010-06-13 | 2019-12-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
US10420665B2 (en) | 2010-06-13 | 2019-09-24 | W. L. Gore & Associates, Inc. | Intragastric device for treating obesity |
CN106388985A (en) * | 2012-01-23 | 2017-02-15 | 阿波罗内窥镜外科手术有限责任公司 | Endolumenal esophageal restriction device |
US10052106B2 (en) | 2012-05-17 | 2018-08-21 | Xlumena, Inc. | Devices and methods for forming an anastomosis |
US9050168B2 (en) | 2012-05-31 | 2015-06-09 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9566181B2 (en) | 2012-05-31 | 2017-02-14 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9681975B2 (en) | 2012-05-31 | 2017-06-20 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9173759B2 (en) | 2012-05-31 | 2015-11-03 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9039649B2 (en) | 2012-05-31 | 2015-05-26 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US10507127B2 (en) | 2012-06-07 | 2019-12-17 | Epitomee Medical Ltd. | Expandable device |
US11712356B2 (en) | 2012-06-07 | 2023-08-01 | Epitomee Medical Ltd | Expanded device |
US10159699B2 (en) | 2013-01-15 | 2018-12-25 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US11793839B2 (en) | 2013-01-15 | 2023-10-24 | Metamodix, Inc. | System and method for affecting intestinal microbial flora |
US20140236064A1 (en) * | 2013-02-21 | 2014-08-21 | Kenneth F. Binmoeller | Devices and methods for forming an anastomosis |
US10952732B2 (en) * | 2013-02-21 | 2021-03-23 | Boston Scientific Scimed Inc. | Devices and methods for forming an anastomosis |
CN109044438A (en) * | 2013-02-21 | 2018-12-21 | 波士顿科学国际有限公司 | The device and method for being used to form previous anastomotic |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US11129793B2 (en) | 2013-12-05 | 2021-09-28 | Epitomee Medical Ltd | Retentive devices and systems for in-situ release of pharmaceutical active agents |
US10123896B2 (en) | 2014-03-06 | 2018-11-13 | Mayo Foundation For Medical Education And Research | Apparatus and methods of inducing weight loss using blood flow control |
US20170252195A1 (en) | 2016-03-03 | 2017-09-07 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US10729573B2 (en) | 2016-03-03 | 2020-08-04 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US9622897B1 (en) | 2016-03-03 | 2017-04-18 | Metamodix, Inc. | Pyloric anchors and methods for intestinal bypass sleeves |
US10779980B2 (en) | 2016-04-27 | 2020-09-22 | Synerz Medical, Inc. | Intragastric device for treating obesity |
US11666470B2 (en) | 2016-05-19 | 2023-06-06 | Metamodix, Inc | Pyloric anchor retrieval tools and methods |
US10751209B2 (en) | 2016-05-19 | 2020-08-25 | Metamodix, Inc. | Pyloric anchor retrieval tools and methods |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10080677B2 (en) | Satiation devices and methods | |
US8568488B2 (en) | Satiation devices and methods | |
ES2575354T3 (en) | Satiety devices and procedures | |
US20040117031A1 (en) | Satiation devices and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAROSENSE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNECOR LLC;REEL/FRAME:022878/0603 Effective date: 20090626 Owner name: BAROSENSE, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SYNECOR LLC;REEL/FRAME:022878/0603 Effective date: 20090626 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |