US20010000620A1 - Thin film transistor and method of fabricating the same - Google Patents
Thin film transistor and method of fabricating the same Download PDFInfo
- Publication number
- US20010000620A1 US20010000620A1 US09/730,875 US73087500A US2001000620A1 US 20010000620 A1 US20010000620 A1 US 20010000620A1 US 73087500 A US73087500 A US 73087500A US 2001000620 A1 US2001000620 A1 US 2001000620A1
- Authority
- US
- United States
- Prior art keywords
- film
- gate electrode
- insulator
- gate
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000010408 film Substances 0.000 claims description 217
- 239000012212 insulator Substances 0.000 claims description 131
- 239000000758 substrate Substances 0.000 claims description 68
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 48
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 38
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 abstract description 24
- 239000011159 matrix material Substances 0.000 abstract description 15
- 239000003990 capacitor Substances 0.000 description 56
- 230000000153 supplemental effect Effects 0.000 description 51
- 239000004973 liquid crystal related substance Substances 0.000 description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 31
- 239000010410 layer Substances 0.000 description 17
- 229910052814 silicon oxide Inorganic materials 0.000 description 16
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 14
- 229910052804 chromium Inorganic materials 0.000 description 14
- 239000011651 chromium Substances 0.000 description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 12
- 210000002858 crystal cell Anatomy 0.000 description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 12
- 238000003860 storage Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000003377 silicon compounds Chemical class 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H01L29/786—
-
- H01L27/12—
-
- H01L29/42384—
-
- H01L29/66765—
-
- H01L29/78636—
-
- H01L29/78678—
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
- G02F1/13454—Drivers integrated on the active matrix substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
Definitions
- the present invention relates to a thin film transistor suitable for use in an active matrix type display apparatus and a method of fabricating the same.
- LCD liquid crystal displays
- TFTs thin film transistors
- LCDs dot matrix type LCDs each having a plurality of pixels arranged in a matrix form: a simple matrix type and an active matrix type.
- the active matrix type LCD includes pixels, pixel drive elements (active elements) and signal storage elements (storage capacitors or added capacitors) and drives a liquid crystal in a quasi-static manner which permits each pixel to store data.
- Each pixel drive element serves as a switch which is switched on or off in response to a scan signal.
- a data signal (display signal) is transmitted via that pixel drive element to an associated display electrode, so that the liquid crystal is driven by the data signal.
- the pixel drive element is disabled, the data signal is stored in the form of a charge in the associated signal storage element.
- the liquid crystal is kept driven by the discharging of the charge until the pixel drive element is switched on again. Even though the drive time assigned to a single pixel decreases as the number of scan lines increases, the liquid crystal is sufficiently driven. This prevents the contrast from decreasing.
- TFTs are generally used as pixel drive elements.
- a TFT has an active layer comprised of a thin semiconductor film formed on an insulator substrate.
- the semiconductor film preferably includes an amorphous silicon film or a polycrystalline silicon film.
- a TFT having an active layer comprised of an amorphous silicon film is called an amorphous silicon TFT, while a TFT having an active layer comprised of a polycrystalline silicon film is called a polycrystalline silicon TFT.
- the polycrystalline silicon TFT has a greater field effect mobility and higher drive performance than the amorphous silicon TFT. Because of these advantages, the polycrystalline silicon TFT can be used as a logic circuit element as well as a pixel drive element.
- the use of polycrystalline silicon TFTs therefore, allows the integration of the display screen and a peripheral drive circuit, located at the periphery of the display screen, and on the same substrate. That is, the display screen and peripheral drive circuit may be formed in the same step.
- FIG. 1 is a schematic block diagram of a typical active matrix type LCD.
- the LCD includes a display panel 101 , a gate driver 103 , and a drain (data) driver 104 .
- the display panel 101 has a plurality of scan lines (gate lines) G 1 , . . . , Gn, Gn+1, . . . , and Gm, a plurality of data lines (drain lines) D 1 , . . . , Dn, Dn+1, . . .
- the gate driver 103 which is connected to the gate lines G 1 -Gm, applies a gate signal (scan signal) to the gate lines G 1 -Gm.
- the drain driver 104 which is connected to the drain lines D 1 -Dm, applies a data signal (video signal) to the drain lines D 1 -Dm.
- Both of the gate driver 103 and the drain driver 104 form a peripheral drive circuit 105 .
- Either one of the drivers 103 and 104 or both are preferably formed on the same substrate on which the display panel 101 is formed.
- the LCD is generally called a driver-integrated (driver-incorporated) LCD.
- the gate driver 103 or the drain driver 104 may be provided on both sides of the display panel 101 .
- FIG. 2 shows an equivalent circuit of one of the pixels 102 .
- the pixel 102 includes a liquid crystal cell LC having a display electrode (pixel electrode) and a common electrode.
- the liquid crystal cell LC is connected to both a TFT 106 and a supplemental capacitor SC.
- the supplemental capacitor SC has a storage electrode and an opposing electrode.
- the TFT 106 has a gate connected to the gate line Gn, a drain connected to the drain line Dn, and a source connected to the display electrode of the liquid crystal cell LC and the storage electrode of the supplemental capacitor SC.
- the liquid crystal cell LC and the supplemental capacitor SC form a signal storage element.
- a voltage V com is applied to the common electrode of the liquid crystal cell LC.
- a predetermined voltage signal V R is applied to the opposing electrode of the supplemental capacitor SC.
- the common electrode of the liquid crystal cell LC is common to all of the pixels 102 .
- the liquid crystal cell LC has a capacitor formed between the display electrode and the
- the writing characteristic and holding characteristic of the pixel 102 are important in improving the quality of displayed image.
- the writing characteristic shows how much the liquid crystal cell LC and the supplemental capacitor SC can write desired video signals per unit time based on the specifications of the display panel 101 .
- the holding characteristic shows how long the written video signals can be held.
- the supplemental capacitor SC is provided to increase the capacitance of the pixel to improve the holding characteristic.
- the TFT 106 When a positive voltage is applied to the gate of the TFT 106 via the gate line Gn, the TFT 106 is turned on and a data signal is applied to the drain line Dn. As a result, the capacitor of the liquid crystal cell LC and the supplemental capacitor SC are charged. If a negative voltage is applied to the gate of the TFT 106 , the TFT 106 is turned off. At this time, the capacitor of the liquid crystal cell LC and the supplemental capacitor SC hold the voltage applied to the drain line Dn. In other words, the pixel 102 holds a data signal as the data signal is applied to the associated one of the drain lines D 1 -Dm by controlling the voltage on the associated one of the gate lines G 1 -Gm. An image is displayed on the display panel 101 in accordance with the held data signal.
- FIG. 3 is a cross-sectional view of a part of the conventional LCD display panel 101 which has polycrystalline silicon TFTs 106 of a bottom gate structure. It is preferable that the display panel 101 is of a transparent type. The method of manufacturing the display panel 101 will be discussed below.
- Step 1 (see FIG. 4A): A chromium film 61 is formed on an insulator substrate 71 by sputtering.
- Step 2 (see FIG. 4B): A resist pattern 62 for forming a gate electrode 76 and a supplemental capacitor electrode 77 is formed on the chromium film 61 .
- Step 3 With the resist pattern 62 used as an etching mask, the chromium film 61 is locally etched off by wet etching to form the gate electrode 76 and the supplemental capacitor electrode 77 . At this time, the etching solution permeates the interfaces between both end portions of the resist pattern 62 and the chromium film 61 , thereby forming undercuts 61 a at parts of the chromium film 61 in the vicinity of both ends of the resist pattern 62 .
- the gate electrode 76 has a flat center portion (flat portion) 76 a and a tapered end portion (tapered portion) 76 b. The angle between the outer wall of the tapered portion 76 b and the insulator substrate 71 is about 45°.
- Step 4 A silicon nitride film 78 , a silicon oxide film 79 and an amorphous silicon film 63 are formed in order on the gate and supplemental capacitor electrodes 76 and 77 and the insulator substrate 71 by plasma CVD (Chemical Vapor Deposition).
- the silicon nitride film 78 and the silicon oxide film 79 form a gate insulator film 80 in the region of the TFT 106 , and form a dielectric film 84 in the region of the supplemental capacitor SC.
- the device is annealed at 400° C. to remove hydrogen from the amorphous silicon film 63 (dehydrogenation treatment).
- excimer laser light is irradiated on the surface of the amorphous silicon film 63 to heat the film 63 , thereby forming a polycrystalline silicon film 81 .
- Such laser annealing using an excimer laser beam is called ELA (Excimer Laser Anneal).
- ELA Excimer Laser Anneal
- a drain region 82 which includes low-concentration and high-concentration regions 82 a and 82 b
- a source region 83 which includes low-concentration and high-concentration regions 83 a and 83 b, are formed in the polycrystalline silicon film 81 .
- the tapered portion 76 b of the gate electrode 76 is suitable for the withstanding voltage of the gate insulator film 80 . That is, the tapered portion 76 b prevents electrolytic concentration at the end portions of the gate electrode 76 . The tapered portion 76 b also improves the coverage of the gate insulator film 80 with respect to the both end portions of the gate electrode 76 to thereby allow the gate insulator film 80 to have a uniform thickness.
- the gate electrode 76 is formed by the chromium film 61 which has a high thermal conductivity, heat escapes from the gate electrode 76 in the ELA process.
- the annealing temperature of a first portion of the amorphous silicon film 63 above the gate electrode 76 is lower than that of a second portion of the amorphous silicon film 63 above the insulator substrate 71 . Since the degree of heat transfer of the tapered portion 76 b is lower than that of the flat portion 76 a, the annealing temperature of a third portion of the amorphous silicon film 63 above the flat portion 76 a is lower than that of a fourth portion of the amorphous silicon film 63 above the tapered portion 76 b. Therefore, the first portion of the amorphous silicon film 63 requires greater crystallization laser energy than the second portion. Further, the third portion of the amorphous silicon film 63 needs greater crystallization laser energy than the fourth portion.
- High laser irradiation energy increases the grain size (crystal grain size) of the polycrystalline silicon film 81 . Accordingly, a first portion of the polycrystalline silicon film 81 above the gate electrode 76 has a smaller grain size than a second portion of the polycrystalline silicon film 81 above the insulator substrate 71 . Further, a third portion of the polycrystalline silicon film 81 above the flat portion 76 a has a smaller grain size than a fourth portion of the polycrystalline silicon film 81 above the tapered portion 76 b.
- a channel region 93 is defined in the third portion of the polycrystalline silicon film 81
- the low-concentration regions 82 a and 83 a of the drain region 82 and source region 83 are defined in the fourth portion of the polycrystalline silicon film 81
- the high-concentration regions 82 b and 83 b of those regions 82 and 83 are defined in the second portion of the polycrystalline silicon film 81 .
- the grain sizes thus become smaller in the order of the high-concentration regions 82 b and 83 b, the low-concentration regions 82 a and 83 a, and the channel region 93 .
- the different grain sizes make it difficult to obtain a plurality of TFTs 106 with a uniform device characteristic, which degrades the quality of a displayed image.
- the angle between the outer wall of the tapered portion 76 b and the insulator substrate 71 may vary. This is because, when the insulator substrate 71 of a relatively large size is used, different undercuts 61 a appear at the associated portions of the insulator substrate 71 . The different undercuts 61 a are produced due to the difference between the temperatures of the etching solution at the center portion and end portions of the insulator substrate 71 .
- the present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls and located on the insulator substrate; a pair of side wall spacers formed adjacent to both of the side walls of the gate electrode, on the insulator substrate; a gate insulator film located above the insulator substrate, the gate electrode and the pair of side wall spacers; and a polycrystalline silicon film located on the gate insulator film.
- the present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls and located on the insulator substrate; a flattening insulator film provided adjacent to each of the side walls of the gate electrode, on the insulator substrate, the flattening insulator film being substantially equal in thickness to the gate electrode; a gate insulator film provided above the gate electrode and the flattening insulator film; and a polycrystalline silicon film located on the gate insulator film.
- the present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls formed on the insulator substrate; a pair of side wall spacers formed adjacent to the gate electrode side walls, wherein the side wall spacers prevent the gate electrode side walls from tapering such that the gate electrode has a substantially constant thermal conductivity over its area; a gate insulator film formed above the insulator substrate, the gate electrode and the side wall spacers; and a polycrystalline silicon film formed on the gate insulator film.
- the present invention provides a thin film transistor including: an insulator substrate; a gate electrode located on the insulator substrate; a gate insulator film provided above the insulator substrate and the gate electrode; and a polycrystalline silicon film located on the gate insulator film, the polycrystalline silicon film being formed by irradiating a laser beam on a surface of an amorphous silicon film to heat the amorphous silicon film.
- the gate electrode has a center portion with a flat surface and a pair of tapered end portions with inclined surfaces. An angle between each of the inclined surfaces of the pair of tapered end portions and a surface of the insulator substrate is set within a range of 5° to 40°.
- the present invention provides a method of fabricating a thin film transistor including the steps of: forming a gate electrode having a pair of opposing side walls on an insulator substrate; forming a pair of side wall spacers, each one of the spacers being located adjacent to a respective one of the side walls of the gate electrode; forming a gate insulator film above the insulator substrate, the gate electrode and the pair of side wall spacers; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- the present invention provides a method of fabricating a thin film transistor including the steps of: forming a flattening insulator film on an insulator substrate; locally removing the flattening insulator film to partially expose a surface of the insulator substrate; forming a gate electrode on the partially exposed surface of the insulator substrate, the gate electrode being substantially equal in thickness to the flattening insulator film; forming a gate insulator film above the gate electrode and the flattening insulator film; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- the present invention provides a method of fabricating a thin film transistor including the steps of: forming a gate electrode having a pair of opposing side walls on an insulator substrate; forming a flattening insulator film on the insulator substrate, the flattening insulator film being adjacent to both of the side walls of the gate electrode and being substantially equal in thickness to the gate electrode; forming a gate insulator film above the gate electrode and the flattening insulator film; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- FIG. 1 is a schematic block diagram of a conventional active matrix type LCD
- FIG. 2 is an equivalent circuit diagram of a pixel in an LCD display panel
- FIG. 3 is a partly schematic cross-sectional view of a conventional display panel
- FIGS. 4A-4D are schematic cross sections explaining the fabrication steps of the prior art LCD display panel
- FIG. 5 is a partly schematic cross-sectional view of an LCD display panel according to a first embodiment of the present invention.
- FIGS. 6A through 6E are partly schematic cross-sectional views showing steps of manufacturing the LCD display panel of the first embodiment
- FIG. 7 is a partly schematic cross-sectional view of an LCD display panel according to a second embodiment of the present invention.
- FIGS. 8A through 8E are partly schematic cross-sectional views showing steps of manufacturing the LCD display panel of the second embodiment.
- FIG. 9 is a partly schematic cross-sectional view of an LCD display panel according to a third embodiment of the present invention.
- FIG. 5 is a partly schematic cross-sectional view of an LCD display panel 201 according to one embodiment of the present invention, which has polycrystalline silicon TFTs 206 of a bottom gate structure.
- the display panel 201 is incorporated into the active matrix type LCD in FIG. 1.
- a gate electrode 11 of a TFT 206 and a supplemental capacitor electrode 12 of a supplemental capacitor SC have generally rectangular cross sections.
- the SOG film comprises a solution of silicon dioxide as a main component in which a silicon compound is dissolved in an organic solvent.
- the gate electrode 11 and the supplemental capacitor electrode 12 do not have tapered portions. That is, the side wall spacers 13 insure that the gate electrode 11 and the supplemental capacitor electrode have a rectangular cross-section without tapered ends.
- the rectangular cross section of the gate electrode 11 prevents a variation in taper angle and a variation in grain size of a part of the polycrystalline silicon film 81 above the tapered portion 76 b in the prior art. This permits a plurality of TFTs 206 having substantially uniform device characteristics to be formed on an insulator substrate 71 and thus improves the quality of displayed images.
- the adjoining side wall spacers 13 of the gate electrode 11 improve the coverage of a gate insulator film 80 at both end portions of the gate electrode 11 , and secure a sufficient withstand voltage between the gate electrode 11 and the polycrystalline silicon film 81 .
- the SOG film includes an inorganic SOG film which does not contain an organic component in a silicon compound as represented by the general formula (1), and an organic SOG film which contains an organic component in a silicon compound as represented by the general formula (2).
- An inorganic SOG film contains large amounts of water and hydroxyl groups, and thus has a high hygroscopicity.
- the inorganic SOG film is more fragile than a silicon oxide film formed by CVD, and is likely to have cracks in a heat treatment if its thickness is set equal to or greater than 0.5 ⁇ m.
- An organic SOG film has a molecular structure with a bond closed with an alkyl group or aryl group. This molecular structure provides a film which is approximately 0.5 ⁇ m to 1.0 ⁇ m in thickness while suppressing the occurrence of cracks in a heat treatment.
- the gate electrode 11 and the supplemental capacitor electrode 12 are relatively thick, therefore, it is preferable to form the side wall spacers 13 using an organic SOG film.
- the display panel 201 has a pair of insulator substrates 71 and 72 facing each other, a liquid crystal (LC) layer 73 located between both insulator substrates, and a flattening insulator film 91 located between the LC layer 73 and the insulator substrate 71 .
- Both insulator substrates 71 and 72 are preferably transparent.
- a display electrode 74 of an liquid crystal cell LC is provided on the first surface of the LC layer 73 which faces the flattening insulator film 91 .
- a common electrode 75 of the liquid crystal cell LC is provided on the second surface of the LC layer 73 which faces the insulator substrate 72 .
- the TFT 206 and a supplemental capacitor SC are arranged in parallel between the flattening insulator film 91 and the insulator substrate 71 .
- the TFT 206 includes the gate electrode 11 , a gate insulator film 80 , the drain region 82 , the source region 83 , and a channel region 93 located between the drain region 82 and the source region 83 .
- the TFT 206 is preferably formed into an LDD (Lightly Doped Drain) structure.
- the LDD structure increases the OFF resistance of the TFT 206 and improves the holding characteristic thereof.
- the gate electrode 11 located on the insulator substrate 71 , forms a gate line Gn.
- the gate insulator film 80 includes a silicon nitride film 78 , provided on the gate electrode 11 and the insulator substrate 71 , and a silicon oxide film 79 provided on the silicon nitride film 78 .
- the drain region 82 , the source region 83 and the channel region 93 are defined in the polycrystalline silicon film 81 on the gate insulator film 80 .
- the channel region 93 is defined in a first portion of the polycrystalline silicon film 81 on the gate electrode 11 .
- the drain region 82 includes a low-concentration region 82 a defined in a second portion of the polycrystalline silicon film 81 on a part of the gate electrode 11 and above the side wall spacers 13 , and a high-concentration region 82 b defined in a third portion of the polycrystalline silicon film 81 above the insulator substrate 71 .
- the source region 83 includes a low-concentration region 83 a defined in a fourth portion of the polycrystalline silicon film 81 on a part of the gate electrode 11 and above the side wall spacers 13 , and a high-concentration region 83 b defined in a fifth portion of the polycrystalline silicon film 81 above the insulator substrate 71 .
- the supplemental capacitor SC includes the supplemental capacitor electrode (opposing electrode) 12 , a dielectric film 84 and a storage electrode 85 .
- the supplemental capacitor SC is formed in the same step as the TFT 206 .
- the supplemental capacitor electrode 12 located on the insulator substrate 71 , is formed in the same step as the gate electrode 11 .
- the dielectric film 84 located on the supplemental capacitor electrode 12 , is formed integral with the gate insulator film 80 .
- the storage electrode 85 is defined in the polycrystalline silicon film 81 located on the dielectric film 84 , and is connected to the source region 83 of the TFT 206 .
- Stopper layers 94 are respectively provided on a channel region 93 and the storage electrode 85 .
- the stopper layers 94 are preferably formed of a silicon oxide film.
- an interlayer insulator film 88 which includes a first silicon oxide film 86 and a second silicon nitride film 87 .
- the high-concentration region 82 b of the drain region 82 is connected to a drain electrode 90 via a contact hole 89 which is formed in the interlayer insulator film 88 .
- the drain electrode 90 includes a molybdenum layer 90 a located on the high-concentration region 82 b and an aluminum alloy layer 90 b located on the molybdenum layer 90 a, and forms a drain line Dn.
- the high-concentration region 83 b of the source region 83 is connected to the display electrode 74 via a contact hole 92 formed in the flattening insulator film 91 and the interlayer insulator film 88 .
- the display electrode 74 is preferably formed of ITO (Indium Tin Oxide).
- a color filter 95 and a black matrix 96 are located in parallel between the common electrode 75 and the insulator substrate 72 .
- the color filter 95 preferably includes three color filters corresponding to the three primary colors of red, green and blue (RGB).
- the black matrix 96 is located between the color filters 95 and serves as a light-shielding film. It is preferable that the color filter 95 is provided above the display electrode 74 and the black matrix 96 is provided above the TFT 206 .
- Step 1 (see FIG. 6A): A chromium film 61 is formed on the insulator substrate 71 by sputtering.
- Step 2 (see FIG. 6B): A resist pattern 14 for forming the gate electrode 11 and the supplemental capacitor electrode 12 is formed on the chromium film 61 .
- Step 3 With the resist pattern 14 used as a mask, the chromium film 61 is locally etched off by anisotropic etching, yielding the gate electrode 11 and the supplemental capacitor electrode 12 .
- Step 4 (see FIG. 6D):
- the side wall spacers 13 are formed on both side walls of the gate electrode 11 and the supplemental capacitor electrode 12 .
- a solution of a silicon compound dissolved in an organic solvent is dropped on the insulator substrate 71 while spinning the insulator substrate 71 , thereby forming an SOG film.
- the SOG film may be formed of polyimide resin, acrylic resin or epoxy resin.
- the amount of drops of the solution and the spinning speed of the insulator substrate 71 preferably form the side wall spacers 13 only on both side walls of the gate electrode 11 and the supplemental capacitor electrode 12 .
- the amount of drops of the solution and the spinning speed of the insulator substrate 71 are provided such that the side wall spacers 13 at the side walls of the gate electrode 11 and the supplemental capacitor electrode 12 have uniform widths W.
- the width W preferably is equal to or greater than 0.2 ⁇ m when the side wall spacers 13 have a thickness of about 1000 ⁇ .
- the side wall spacers 13 are hardened by evaporating the organic solvent in the SOG film by annealing and accelerating the polymerization reaction of the silicon compound.
- a silicon oxide film is formed on the gate electrode 11 , the supplemental capacitor electrode 12 and the insulator substrate 71 by CVD. Then side wall spacers comprised of a silicon oxide film are formed by full etch-back. In this case, a silicon nitride film may be used in place of a silicon oxide film.
- a film which contains a metal film of various metals including a high-melting point metal, a silicon oxide film or a silicon nitride film may be formed on the gate electrode 11 , the supplemental capacitor electrode 12 and the insulator substrate 71 by PVD (Physical Vapor Deposition), after which the side wall spacers 13 may be formed by full etch-back.
- PVD Physical Vapor Deposition
- Step 5 (see FIG. 6E): The silicon nitride film 78 , the silicon oxide film 79 and an amorphous silicon film 63 are deposited in order on the gate electrode 11 , the supplemental capacitor electrode 12 , the side wall spacers 13 and the insulator substrate 71 by plasma CVD. As a result, the gate insulator film 80 comprised of the silicon nitride film 78 and the silicon oxide film 79 is formed.
- the device is annealed at 400° C. to remove hydrogen from the amorphous silicon film 63 (dehydrogenation treatment). Then, using ELA, excimer laser light is irradiated on the surface of the amorphous silicon film 63 to heat the film 63 , thereby forming the polycrystalline silicon film 81 . At this time, pulses of the excimer laser beam having an irradiation area of about 150 ⁇ 0.3 mm are preferably irradiated. Further, the scanning of the laser beam is carried out so that the laser beam is irradiated on the entire surface of the amorphous silicon film 63 on the insulator substrate 71 . Thereafter, the drain region 82 and the source region 83 are formed in the polycrystalline silicon film 81 .
- FIG. 7 is a partly schematic cross-sectional view of an LCD display panel 301 which has polycrystalline silicon TFTs 206 of a bottom gate structure according to a second embodiment of the present invention.
- a gate electrode 21 of the TFT 206 and a supplemental capacitor electrode 22 of a supplemental capacitor SC have rectangular cross sections.
- a flattening insulator film 23 is formed on the insulator substrate 71 between the gate electrode 21 and the supplemental capacitor electrode 22 .
- the flattening insulator film 23 adjoins both side walls of the gate electrode 21 and has substantially the same thickness as the gate electrode 21 and the supplemental capacitor electrode 22 .
- one flattening layer including the gate electrode 21 , the supplemental capacitor electrode 22 and the flattening insulator film 23 is formed on the insulator substrate 71 .
- the polycrystalline silicon film 81 (amorphous silicon film 63 ) located above the gate electrode 21 , the supplemental capacitor electrode 22 and the flattening insulator film 23 has a uniform thickness and a flat surface.
- the flat amorphous silicon film 63 facilitates uniform irradiation of an excimer laser beam on the entire surface of the amorphous silicon film 63 . That is, uniform ELA energy is applied to the amorphous silicon film 63 .
- the gate insulator film 80 located on the gate electrode 21 , the supplemental capacitor electrode 22 and the flattening insulator film 23 has a uniform thickness and a flat surface too. A sufficient withstand voltage is thus secured between the gate electrode 21 and the polycrystalline silicon film 81 . Since the flattening insulator film 23 has a sufficiently lower thermal conductivity than the gate electrode 21 and the supplemental capacitor electrode 22 , it is not necessary to consider the thermal conductivity of the flattening insulator film 23 .
- Step 1 (see FIG. 8A):
- the flattening insulator film 23 is formed on the insulator substrate 71 by CVD.
- the flattening insulator film 23 preferably includes a silicon oxide film or a silicon nitride film.
- the flattening insulator film 23 may be formed by PVD.
- Step 2 (see FIG. 8B): A resist pattern 24 for forming the gate electrode 21 and the supplemental capacitor electrode 22 is formed on the flattening insulator film 23 .
- Step 3 With the resist pattern 24 used as a mask, the flattening insulator film 23 is partially etched off by anisotropic etching. This forms recesses 23 a in the flattening insulator film 23 to expose the surface of the insulator substrate 71 .
- the chromium film 61 is formed on the flattening insulator film 23 and the exposed surfaces of the insulator substrate 71 by sputtering. At this time, the chromium film 61 is so formed as to completely fill the recesses 23 a.
- Step 4 Parts of the chromium film 61 lying on the flattening insulator film 23 are removed by full etch-back. This flattens the surface of a layer which includes the flattening insulator film 23 and the chromium film 61 .
- the gate electrode 21 and the supplemental capacitor electrode 22 are formed of the chromium film 61 filled in the recesses 23 a.
- Step 5 (see FIG. 8E):
- the silicon nitride film 78 , the silicon oxide film 79 and the amorphous silicon film 63 are deposited in order on the gate electrode 21 , the supplemental capacitor electrode 22 and the flattening insulator film 23 by plasma CVD.
- the silicon nitride film 78 and the silicon oxide film 79 form the gate insulator film 80 .
- the device is annealed at approximately 400° C. to remove hydrogen from the amorphous silicon film 63 .
- excimer laser light is irradiated on the surface of the amorphous silicon film 63 to heat the film 63 .
- the laser light crystallizes the amorphous silicon film 63 to form the polycrystalline silicon film 81 .
- the drain region 82 and the source region 83 are formed in the polycrystalline silicon film 81 .
- the gate electrode 21 and the supplemental capacitor electrode 22 may alternatively formed first, and then the flattening insulator film 23 may be formed on the gate electrode 21 and the supplemental capacitor electrode 22 by CVD or PVD. Then, the flattening insulator film 23 on the gate electrode 21 and the supplemental capacitor electrode 22 is locally etched off by full etch-back, thus yielding a flat layer.
- the gate electrode 21 and the supplemental capacitor electrode 22 may be formed first, and then a coating of film (an SOG film, polyimide resin film, acrylic resin film or epoxy resin film) may be formed between the gate electrode 21 and the supplemental capacitor electrode 22 by spin coating, thereby forming a flat layer.
- a coating of film an SOG film, polyimide resin film, acrylic resin film or epoxy resin film
- FIG. 9 presents a partly schematic cross-sectional view of an LCD display panel 401 which has polycrystalline silicon TFTs 206 of a bottom gate structure according to a third embodiment of the present invention.
- the angle between the outer wall of a tapered portion 76 b of a gate electrode 76 and the surface of the insulator substrate 71 is set within a range of 5° to 40°, which has been experimentally determined. Even if the angle varies as long as it lies within this range, the polycrystalline silicon film 81 with a uniform grain size is acquired.
- the preferable angle range is 5° to 40°, and 10° to 30° is more preferable.
- An angle greater than 40° reduces the coverage of the gate insulator film 80 to lower the gate withstand voltage.
- An angle smaller than 5° means an increased surface of the tapered portion 76 b, which causes a variation in the membranous of the polycrystalline silicon film 81 . This degrades the uniformity of the device characteristic.
- the gate electrodes 11 , 21 , 76 and the supplemental capacitor electrodes 12 , 22 and 77 may be formed of a single film such as of molybdenum, tungsten, tantalum, hafnium, zirconium, niobium, titanium, vanadium, rhenium, iridium, osmium or rhodium, a film of a high-melting point metal alloy, or multiple layers of high-melting point metal films.
- the present invention may be adapted to a TFT of an SD (Single Drain) structure or a double gate structure.
- the present invention may also be adapted to a close-contact type image sensor or three-dimensional IC by replacing the insulator substrate 71 with a ceramic substrate or an insulator layer like a silicon oxide film.
- the TFT of the present invention may be used for a pixel drive element in an active matrix type display apparatus which uses electroluminescence elements as pixels. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thin Film Transistor (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Recrystallisation Techniques (AREA)
Abstract
A thin film transistor (TFT) which may be used as a pixel drive element in an active matrix LCD display includes a pair of side wall spacers adjacent to the opposing side walls of its gate electrode. The side wall spacers provide the gate electrode with a substantially rectangular cross section, such that the gate electrode has a substantially constant thermal conductivity over its area. The TFT has a uniform device characteristic.
Description
- This application is a continuation of application Ser. No. 09/024,855, filed on Feb. 13, 1998.
- The present invention relates to a thin film transistor suitable for use in an active matrix type display apparatus and a method of fabricating the same.
- Liquid crystal displays (LCD) of an active matrix type which use thin film transistors (TFTs) provide a high-quality display apparatus. There are two kinds of dot matrix type LCDs each having a plurality of pixels arranged in a matrix form: a simple matrix type and an active matrix type.
- The active matrix type LCD includes pixels, pixel drive elements (active elements) and signal storage elements (storage capacitors or added capacitors) and drives a liquid crystal in a quasi-static manner which permits each pixel to store data. Each pixel drive element serves as a switch which is switched on or off in response to a scan signal. When the pixel drive element is switched on, a data signal (display signal) is transmitted via that pixel drive element to an associated display electrode, so that the liquid crystal is driven by the data signal. When the pixel drive element is disabled, the data signal is stored in the form of a charge in the associated signal storage element. The liquid crystal is kept driven by the discharging of the charge until the pixel drive element is switched on again. Even though the drive time assigned to a single pixel decreases as the number of scan lines increases, the liquid crystal is sufficiently driven. This prevents the contrast from decreasing.
- TFTs are generally used as pixel drive elements. A TFT has an active layer comprised of a thin semiconductor film formed on an insulator substrate. The semiconductor film preferably includes an amorphous silicon film or a polycrystalline silicon film. A TFT having an active layer comprised of an amorphous silicon film is called an amorphous silicon TFT, while a TFT having an active layer comprised of a polycrystalline silicon film is called a polycrystalline silicon TFT. The polycrystalline silicon TFT has a greater field effect mobility and higher drive performance than the amorphous silicon TFT. Because of these advantages, the polycrystalline silicon TFT can be used as a logic circuit element as well as a pixel drive element. The use of polycrystalline silicon TFTs, therefore, allows the integration of the display screen and a peripheral drive circuit, located at the periphery of the display screen, and on the same substrate. That is, the display screen and peripheral drive circuit may be formed in the same step.
- FIG. 1 is a schematic block diagram of a typical active matrix type LCD. The LCD includes a
display panel 101, agate driver 103, and a drain (data)driver 104. Thedisplay panel 101 has a plurality of scan lines (gate lines) G1, . . . , Gn, Gn+1, . . . , and Gm, a plurality of data lines (drain lines) D1, . . . , Dn, Dn+1, . . . , and Dm running perpendicular to the gate lines G1-Gm, and a plurality ofpixels 102 provided at the intersections of the gate lines G1-Gm and the drain lines D1-Dm. Thegate driver 103, which is connected to the gate lines G1-Gm, applies a gate signal (scan signal) to the gate lines G1-Gm. Thedrain driver 104, which is connected to the drain lines D1-Dm, applies a data signal (video signal) to the drain lines D1-Dm. Both of thegate driver 103 and thedrain driver 104 form a peripheral drive circuit 105. Either one of thedrivers display panel 101 is formed. The LCD is generally called a driver-integrated (driver-incorporated) LCD. Thegate driver 103 or thedrain driver 104 may be provided on both sides of thedisplay panel 101. - FIG. 2 shows an equivalent circuit of one of the
pixels 102. Thepixel 102 includes a liquid crystal cell LC having a display electrode (pixel electrode) and a common electrode. The liquid crystal cell LC is connected to both aTFT 106 and a supplemental capacitor SC. The supplemental capacitor SC has a storage electrode and an opposing electrode. The TFT 106 has a gate connected to the gate line Gn, a drain connected to the drain line Dn, and a source connected to the display electrode of the liquid crystal cell LC and the storage electrode of the supplemental capacitor SC. The liquid crystal cell LC and the supplemental capacitor SC form a signal storage element. A voltage Vcom is applied to the common electrode of the liquid crystal cell LC. A predetermined voltage signal VR is applied to the opposing electrode of the supplemental capacitor SC. The common electrode of the liquid crystal cell LC is common to all of thepixels 102. The liquid crystal cell LC has a capacitor formed between the display electrode and the common electrode. - The writing characteristic and holding characteristic of the
pixel 102 are important in improving the quality of displayed image. The writing characteristic shows how much the liquid crystal cell LC and the supplemental capacitor SC can write desired video signals per unit time based on the specifications of thedisplay panel 101. The holding characteristic shows how long the written video signals can be held. The supplemental capacitor SC is provided to increase the capacitance of the pixel to improve the holding characteristic. - When a positive voltage is applied to the gate of the
TFT 106 via the gate line Gn, theTFT 106 is turned on and a data signal is applied to the drain line Dn. As a result, the capacitor of the liquid crystal cell LC and the supplemental capacitor SC are charged. If a negative voltage is applied to the gate of theTFT 106, theTFT 106 is turned off. At this time, the capacitor of the liquid crystal cell LC and the supplemental capacitor SC hold the voltage applied to the drain line Dn. In other words, thepixel 102 holds a data signal as the data signal is applied to the associated one of the drain lines D1-Dm by controlling the voltage on the associated one of the gate lines G1-Gm. An image is displayed on thedisplay panel 101 in accordance with the held data signal. - FIG. 3 is a cross-sectional view of a part of the conventional
LCD display panel 101 which haspolycrystalline silicon TFTs 106 of a bottom gate structure. It is preferable that thedisplay panel 101 is of a transparent type. The method of manufacturing thedisplay panel 101 will be discussed below. - Step 1 (see FIG. 4A): A
chromium film 61 is formed on aninsulator substrate 71 by sputtering. - Step 2 (see FIG. 4B): A
resist pattern 62 for forming agate electrode 76 and asupplemental capacitor electrode 77 is formed on thechromium film 61. - Step 3 (see FIG. 4C): With the
resist pattern 62 used as an etching mask, thechromium film 61 is locally etched off by wet etching to form thegate electrode 76 and thesupplemental capacitor electrode 77. At this time, the etching solution permeates the interfaces between both end portions of theresist pattern 62 and thechromium film 61, thereby formingundercuts 61 a at parts of thechromium film 61 in the vicinity of both ends of theresist pattern 62. In cross section, therefore, thegate electrode 76 has a flat center portion (flat portion) 76 a and a tapered end portion (tapered portion) 76 b. The angle between the outer wall of thetapered portion 76 b and theinsulator substrate 71 is about 45°. - Step 4 (see FIG. 4D): A
silicon nitride film 78, asilicon oxide film 79 and anamorphous silicon film 63 are formed in order on the gate andsupplemental capacitor electrodes insulator substrate 71 by plasma CVD (Chemical Vapor Deposition). Thesilicon nitride film 78 and thesilicon oxide film 79 form agate insulator film 80 in the region of theTFT 106, and form adielectric film 84 in the region of the supplemental capacitor SC. Next, the device is annealed at 400° C. to remove hydrogen from the amorphous silicon film 63 (dehydrogenation treatment). Then, excimer laser light is irradiated on the surface of theamorphous silicon film 63 to heat thefilm 63, thereby forming apolycrystalline silicon film 81. Such laser annealing using an excimer laser beam is called ELA (Excimer Laser Anneal). Then, adrain region 82, which includes low-concentration and high-concentration regions source region 83, which includes low-concentration and high-concentration regions polycrystalline silicon film 81. - The tapered
portion 76 b of thegate electrode 76 is suitable for the withstanding voltage of thegate insulator film 80. That is, the taperedportion 76 b prevents electrolytic concentration at the end portions of thegate electrode 76. The taperedportion 76 b also improves the coverage of thegate insulator film 80 with respect to the both end portions of thegate electrode 76 to thereby allow thegate insulator film 80 to have a uniform thickness. - Because the
gate electrode 76 is formed by thechromium film 61 which has a high thermal conductivity, heat escapes from thegate electrode 76 in the ELA process. The annealing temperature of a first portion of theamorphous silicon film 63 above thegate electrode 76 is lower than that of a second portion of theamorphous silicon film 63 above theinsulator substrate 71. Since the degree of heat transfer of the taperedportion 76 b is lower than that of theflat portion 76 a, the annealing temperature of a third portion of theamorphous silicon film 63 above theflat portion 76 a is lower than that of a fourth portion of theamorphous silicon film 63 above the taperedportion 76 b. Therefore, the first portion of theamorphous silicon film 63 requires greater crystallization laser energy than the second portion. Further, the third portion of theamorphous silicon film 63 needs greater crystallization laser energy than the fourth portion. - High laser irradiation energy increases the grain size (crystal grain size) of the
polycrystalline silicon film 81. Accordingly, a first portion of thepolycrystalline silicon film 81 above thegate electrode 76 has a smaller grain size than a second portion of thepolycrystalline silicon film 81 above theinsulator substrate 71. Further, a third portion of thepolycrystalline silicon film 81 above theflat portion 76 a has a smaller grain size than a fourth portion of thepolycrystalline silicon film 81 above the taperedportion 76 b. - As shown in FIG. 3, a
channel region 93 is defined in the third portion of thepolycrystalline silicon film 81, the low-concentration regions drain region 82 andsource region 83 are defined in the fourth portion of thepolycrystalline silicon film 81, and the high-concentration regions regions polycrystalline silicon film 81. The grain sizes thus become smaller in the order of the high-concentration regions concentration regions channel region 93. The different grain sizes make it difficult to obtain a plurality ofTFTs 106 with a uniform device characteristic, which degrades the quality of a displayed image. - In the formation of the tapered
portion 76 b using wet etching in step 3 (FIG. 4C), the angle between the outer wall of the taperedportion 76 b and theinsulator substrate 71 may vary. This is because, when theinsulator substrate 71 of a relatively large size is used,different undercuts 61 a appear at the associated portions of theinsulator substrate 71. The different undercuts 61 a are produced due to the difference between the temperatures of the etching solution at the center portion and end portions of theinsulator substrate 71. - Such a variation in taper angle results in different thermal conductivities of the tapered
portion 76 b. Therefore, the annealing temperature, or the grain size, of a part of theamorphous silicon film 63 above the taperedportion 76 b varies. This makes it difficult to acquire a plurality ofTFTs 106 with a uniform device characteristic. Possible causes for the variation in grain size are (1) the attenuation of the ELA energy density caused by the inclined outer wall of the taperedportion 76 b and (2) a local change in the state of the interface between theamorphous silicon film 63 and thegate insulator film 80. - It is an object of the present invention to provide thin film transistors which have a uniform device characteristic.
- Briefly stated, the present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls and located on the insulator substrate; a pair of side wall spacers formed adjacent to both of the side walls of the gate electrode, on the insulator substrate; a gate insulator film located above the insulator substrate, the gate electrode and the pair of side wall spacers; and a polycrystalline silicon film located on the gate insulator film.
- The present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls and located on the insulator substrate; a flattening insulator film provided adjacent to each of the side walls of the gate electrode, on the insulator substrate, the flattening insulator film being substantially equal in thickness to the gate electrode; a gate insulator film provided above the gate electrode and the flattening insulator film; and a polycrystalline silicon film located on the gate insulator film.
- The present invention provides a thin film transistor including: an insulator substrate; a gate electrode having a pair of opposing side walls formed on the insulator substrate; a pair of side wall spacers formed adjacent to the gate electrode side walls, wherein the side wall spacers prevent the gate electrode side walls from tapering such that the gate electrode has a substantially constant thermal conductivity over its area; a gate insulator film formed above the insulator substrate, the gate electrode and the side wall spacers; and a polycrystalline silicon film formed on the gate insulator film.
- The present invention provides a thin film transistor including: an insulator substrate; a gate electrode located on the insulator substrate; a gate insulator film provided above the insulator substrate and the gate electrode; and a polycrystalline silicon film located on the gate insulator film, the polycrystalline silicon film being formed by irradiating a laser beam on a surface of an amorphous silicon film to heat the amorphous silicon film. The gate electrode has a center portion with a flat surface and a pair of tapered end portions with inclined surfaces. An angle between each of the inclined surfaces of the pair of tapered end portions and a surface of the insulator substrate is set within a range of 5° to 40°.
- The present invention provides a method of fabricating a thin film transistor including the steps of: forming a gate electrode having a pair of opposing side walls on an insulator substrate; forming a pair of side wall spacers, each one of the spacers being located adjacent to a respective one of the side walls of the gate electrode; forming a gate insulator film above the insulator substrate, the gate electrode and the pair of side wall spacers; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- The present invention provides a method of fabricating a thin film transistor including the steps of: forming a flattening insulator film on an insulator substrate; locally removing the flattening insulator film to partially expose a surface of the insulator substrate; forming a gate electrode on the partially exposed surface of the insulator substrate, the gate electrode being substantially equal in thickness to the flattening insulator film; forming a gate insulator film above the gate electrode and the flattening insulator film; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- The present invention provides a method of fabricating a thin film transistor including the steps of: forming a gate electrode having a pair of opposing side walls on an insulator substrate; forming a flattening insulator film on the insulator substrate, the flattening insulator film being adjacent to both of the side walls of the gate electrode and being substantially equal in thickness to the gate electrode; forming a gate insulator film above the gate electrode and the flattening insulator film; forming an amorphous silicon film on the gate insulator film; and heating the amorphous silicon film to form a polycrystalline silicon film.
- Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
- The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
- FIG. 1 is a schematic block diagram of a conventional active matrix type LCD;
- FIG. 2 is an equivalent circuit diagram of a pixel in an LCD display panel;
- FIG. 3 is a partly schematic cross-sectional view of a conventional display panel;
- FIGS. 4A-4D are schematic cross sections explaining the fabrication steps of the prior art LCD display panel;
- FIG. 5 is a partly schematic cross-sectional view of an LCD display panel according to a first embodiment of the present invention;
- FIGS. 6A through 6E are partly schematic cross-sectional views showing steps of manufacturing the LCD display panel of the first embodiment;
- FIG. 7 is a partly schematic cross-sectional view of an LCD display panel according to a second embodiment of the present invention;
- FIGS. 8A through 8E are partly schematic cross-sectional views showing steps of manufacturing the LCD display panel of the second embodiment; and
- FIG. 9 is a partly schematic cross-sectional view of an LCD display panel according to a third embodiment of the present invention.
- In the drawings, like numerals are used to refer to corresponding elements.
- A display apparatus which has thin film transistors (TFTs) according to a first embodiment of the present invention will now be described with reference to the accompanying drawings. FIG. 5 is a partly schematic cross-sectional view of an
LCD display panel 201 according to one embodiment of the present invention, which has polycrystallinesilicon TFTs 206 of a bottom gate structure. Thedisplay panel 201 is incorporated into the active matrix type LCD in FIG. 1. - According to the first embodiment, a
gate electrode 11 of aTFT 206 and asupplemental capacitor electrode 12 of a supplemental capacitor SC have generally rectangular cross sections. Provided on both side walls of thegate electrode 11 and thesupplemental capacitor electrode 12 are side wall spacers 13 of an SOG (Spin On Glass) film. Preferably, the SOG film comprises a solution of silicon dioxide as a main component in which a silicon compound is dissolved in an organic solvent. Unlike in the prior art, thegate electrode 11 and thesupplemental capacitor electrode 12 do not have tapered portions. That is, theside wall spacers 13 insure that thegate electrode 11 and the supplemental capacitor electrode have a rectangular cross-section without tapered ends. - The rectangular cross section of the
gate electrode 11 prevents a variation in taper angle and a variation in grain size of a part of thepolycrystalline silicon film 81 above the taperedportion 76 b in the prior art. This permits a plurality ofTFTs 206 having substantially uniform device characteristics to be formed on aninsulator substrate 71 and thus improves the quality of displayed images. - The adjoining side wall spacers13 of the
gate electrode 11 improve the coverage of agate insulator film 80 at both end portions of thegate electrode 11, and secure a sufficient withstand voltage between thegate electrode 11 and thepolycrystalline silicon film 81. - The SOG film includes an inorganic SOG film which does not contain an organic component in a silicon compound as represented by the general formula (1), and an organic SOG film which contains an organic component in a silicon compound as represented by the general formula (2).
- [SiO2]n (1)
- [RXSiOY]n (2)
- (n, X, Y: integers, R: alkyl group or aryl group)
- An inorganic SOG film contains large amounts of water and hydroxyl groups, and thus has a high hygroscopicity. The inorganic SOG film is more fragile than a silicon oxide film formed by CVD, and is likely to have cracks in a heat treatment if its thickness is set equal to or greater than 0.5 μm.
- An organic SOG film has a molecular structure with a bond closed with an alkyl group or aryl group. This molecular structure provides a film which is approximately 0.5 μm to 1.0 μm in thickness while suppressing the occurrence of cracks in a heat treatment. When the
gate electrode 11 and thesupplemental capacitor electrode 12 are relatively thick, therefore, it is preferable to form theside wall spacers 13 using an organic SOG film. - Referring to FIG. 5, the
display panel 201 has a pair ofinsulator substrates layer 73 located between both insulator substrates, and aflattening insulator film 91 located between theLC layer 73 and theinsulator substrate 71. Bothinsulator substrates display electrode 74 of an liquid crystal cell LC is provided on the first surface of theLC layer 73 which faces the flatteninginsulator film 91. Acommon electrode 75 of the liquid crystal cell LC is provided on the second surface of theLC layer 73 which faces theinsulator substrate 72. - The
TFT 206 and a supplemental capacitor SC are arranged in parallel between the flatteninginsulator film 91 and theinsulator substrate 71. TheTFT 206 includes thegate electrode 11, agate insulator film 80, thedrain region 82, thesource region 83, and achannel region 93 located between thedrain region 82 and thesource region 83. TheTFT 206 is preferably formed into an LDD (Lightly Doped Drain) structure. The LDD structure increases the OFF resistance of theTFT 206 and improves the holding characteristic thereof. Thegate electrode 11, located on theinsulator substrate 71, forms a gate line Gn. Thegate insulator film 80 includes asilicon nitride film 78, provided on thegate electrode 11 and theinsulator substrate 71, and asilicon oxide film 79 provided on thesilicon nitride film 78. Thedrain region 82, thesource region 83 and thechannel region 93 are defined in thepolycrystalline silicon film 81 on thegate insulator film 80. Specifically, thechannel region 93 is defined in a first portion of thepolycrystalline silicon film 81 on thegate electrode 11. Thedrain region 82 includes a low-concentration region 82 a defined in a second portion of thepolycrystalline silicon film 81 on a part of thegate electrode 11 and above theside wall spacers 13, and a high-concentration region 82 b defined in a third portion of thepolycrystalline silicon film 81 above theinsulator substrate 71. Thesource region 83 includes a low-concentration region 83 a defined in a fourth portion of thepolycrystalline silicon film 81 on a part of thegate electrode 11 and above theside wall spacers 13, and a high-concentration region 83 b defined in a fifth portion of thepolycrystalline silicon film 81 above theinsulator substrate 71. - The supplemental capacitor SC includes the supplemental capacitor electrode (opposing electrode)12, a
dielectric film 84 and astorage electrode 85. The supplemental capacitor SC is formed in the same step as theTFT 206. Thesupplemental capacitor electrode 12, located on theinsulator substrate 71, is formed in the same step as thegate electrode 11. Thedielectric film 84, located on thesupplemental capacitor electrode 12, is formed integral with thegate insulator film 80. Thestorage electrode 85 is defined in thepolycrystalline silicon film 81 located on thedielectric film 84, and is connected to thesource region 83 of theTFT 206. - Stopper layers94 are respectively provided on a
channel region 93 and thestorage electrode 85. The stopper layers 94 are preferably formed of a silicon oxide film. Provided on theTFT 206 and the supplemental capacitor SC is aninterlayer insulator film 88 which includes a firstsilicon oxide film 86 and a secondsilicon nitride film 87. - The high-
concentration region 82 b of thedrain region 82 is connected to adrain electrode 90 via acontact hole 89 which is formed in theinterlayer insulator film 88. Thedrain electrode 90 includes amolybdenum layer 90 a located on the high-concentration region 82 b and analuminum alloy layer 90 b located on themolybdenum layer 90 a, and forms a drain line Dn. The high-concentration region 83 b of thesource region 83 is connected to thedisplay electrode 74 via acontact hole 92 formed in theflattening insulator film 91 and theinterlayer insulator film 88. Thedisplay electrode 74 is preferably formed of ITO (Indium Tin Oxide). - A
color filter 95 and ablack matrix 96 are located in parallel between thecommon electrode 75 and theinsulator substrate 72. Thecolor filter 95 preferably includes three color filters corresponding to the three primary colors of red, green and blue (RGB). Theblack matrix 96 is located between thecolor filters 95 and serves as a light-shielding film. It is preferable that thecolor filter 95 is provided above thedisplay electrode 74 and theblack matrix 96 is provided above theTFT 206. - The steps of manufacturing the
LCD display panel 201 according to the first embodiment will now be discussed with reference to FIGS. 6A through 6E. - Step 1 (see FIG. 6A): A
chromium film 61 is formed on theinsulator substrate 71 by sputtering. - Step 2 (see FIG. 6B): A resist
pattern 14 for forming thegate electrode 11 and thesupplemental capacitor electrode 12 is formed on thechromium film 61. - Step 3 (see FIG. 6C): With the resist
pattern 14 used as a mask, thechromium film 61 is locally etched off by anisotropic etching, yielding thegate electrode 11 and thesupplemental capacitor electrode 12. - Step 4 (see FIG. 6D): The
side wall spacers 13 are formed on both side walls of thegate electrode 11 and thesupplemental capacitor electrode 12. Specifically, a solution of a silicon compound dissolved in an organic solvent is dropped on theinsulator substrate 71 while spinning theinsulator substrate 71, thereby forming an SOG film. The SOG film may be formed of polyimide resin, acrylic resin or epoxy resin. The amount of drops of the solution and the spinning speed of theinsulator substrate 71 preferably form theside wall spacers 13 only on both side walls of thegate electrode 11 and thesupplemental capacitor electrode 12. The amount of drops of the solution and the spinning speed of theinsulator substrate 71 are provided such that theside wall spacers 13 at the side walls of thegate electrode 11 and thesupplemental capacitor electrode 12 have uniform widths W. The width W preferably is equal to or greater than 0.2 μm when theside wall spacers 13 have a thickness of about 1000 Å. Theside wall spacers 13 are hardened by evaporating the organic solvent in the SOG film by annealing and accelerating the polymerization reaction of the silicon compound. - Alternately, in step4, a silicon oxide film is formed on the
gate electrode 11, thesupplemental capacitor electrode 12 and theinsulator substrate 71 by CVD. Then side wall spacers comprised of a silicon oxide film are formed by full etch-back. In this case, a silicon nitride film may be used in place of a silicon oxide film. - Further, a film which contains a metal film of various metals including a high-melting point metal, a silicon oxide film or a silicon nitride film, may be formed on the
gate electrode 11, thesupplemental capacitor electrode 12 and theinsulator substrate 71 by PVD (Physical Vapor Deposition), after which theside wall spacers 13 may be formed by full etch-back. - Step 5 (see FIG. 6E): The
silicon nitride film 78, thesilicon oxide film 79 and anamorphous silicon film 63 are deposited in order on thegate electrode 11, thesupplemental capacitor electrode 12, theside wall spacers 13 and theinsulator substrate 71 by plasma CVD. As a result, thegate insulator film 80 comprised of thesilicon nitride film 78 and thesilicon oxide film 79 is formed. - Next, the device is annealed at 400° C. to remove hydrogen from the amorphous silicon film63 (dehydrogenation treatment). Then, using ELA, excimer laser light is irradiated on the surface of the
amorphous silicon film 63 to heat thefilm 63, thereby forming thepolycrystalline silicon film 81. At this time, pulses of the excimer laser beam having an irradiation area of about 150×0.3 mm are preferably irradiated. Further, the scanning of the laser beam is carried out so that the laser beam is irradiated on the entire surface of theamorphous silicon film 63 on theinsulator substrate 71. Thereafter, thedrain region 82 and thesource region 83 are formed in thepolycrystalline silicon film 81. - FIG. 7 is a partly schematic cross-sectional view of an
LCD display panel 301 which has polycrystallinesilicon TFTs 206 of a bottom gate structure according to a second embodiment of the present invention. - According to the second embodiment, a
gate electrode 21 of theTFT 206 and asupplemental capacitor electrode 22 of a supplemental capacitor SC have rectangular cross sections. A flatteninginsulator film 23 is formed on theinsulator substrate 71 between thegate electrode 21 and thesupplemental capacitor electrode 22. The flatteninginsulator film 23 adjoins both side walls of thegate electrode 21 and has substantially the same thickness as thegate electrode 21 and thesupplemental capacitor electrode 22. In other words, one flattening layer including thegate electrode 21, thesupplemental capacitor electrode 22 and the flatteninginsulator film 23 is formed on theinsulator substrate 71. The polycrystalline silicon film 81 (amorphous silicon film 63) located above thegate electrode 21, thesupplemental capacitor electrode 22 and the flatteninginsulator film 23 has a uniform thickness and a flat surface. The flatamorphous silicon film 63 facilitates uniform irradiation of an excimer laser beam on the entire surface of theamorphous silicon film 63. That is, uniform ELA energy is applied to theamorphous silicon film 63. - The
gate insulator film 80 located on thegate electrode 21, thesupplemental capacitor electrode 22 and the flatteninginsulator film 23 has a uniform thickness and a flat surface too. A sufficient withstand voltage is thus secured between thegate electrode 21 and thepolycrystalline silicon film 81. Since the flatteninginsulator film 23 has a sufficiently lower thermal conductivity than thegate electrode 21 and thesupplemental capacitor electrode 22, it is not necessary to consider the thermal conductivity of the flatteninginsulator film 23. - The steps of manufacturing the LCD display panel according to the second embodiment will now be discussed with reference to FIGS. 8A through 8E.
- Step 1 (see FIG. 8A): The flattening
insulator film 23 is formed on theinsulator substrate 71 by CVD. The flatteninginsulator film 23 preferably includes a silicon oxide film or a silicon nitride film. The flatteninginsulator film 23 may be formed by PVD. - Step 2 (see FIG. 8B): A resist
pattern 24 for forming thegate electrode 21 and thesupplemental capacitor electrode 22 is formed on theflattening insulator film 23. - Step 3 (see FIG. 8C): With the resist
pattern 24 used as a mask, the flatteninginsulator film 23 is partially etched off by anisotropic etching. This forms recesses 23 a in theflattening insulator film 23 to expose the surface of theinsulator substrate 71. Next, thechromium film 61 is formed on theflattening insulator film 23 and the exposed surfaces of theinsulator substrate 71 by sputtering. At this time, thechromium film 61 is so formed as to completely fill therecesses 23 a. - Step 4 (see FIG. 8D): Parts of the
chromium film 61 lying on theflattening insulator film 23 are removed by full etch-back. This flattens the surface of a layer which includes the flatteninginsulator film 23 and thechromium film 61. Thegate electrode 21 and thesupplemental capacitor electrode 22 are formed of thechromium film 61 filled in therecesses 23 a. - Step 5 (see FIG. 8E): The
silicon nitride film 78, thesilicon oxide film 79 and theamorphous silicon film 63 are deposited in order on thegate electrode 21, thesupplemental capacitor electrode 22 and the flatteninginsulator film 23 by plasma CVD. Thesilicon nitride film 78 and thesilicon oxide film 79 form thegate insulator film 80. - Next, the device is annealed at approximately 400° C. to remove hydrogen from the
amorphous silicon film 63. - Then, using ELA, excimer laser light is irradiated on the surface of the
amorphous silicon film 63 to heat thefilm 63. The laser light crystallizes theamorphous silicon film 63 to form thepolycrystalline silicon film 81. Thereafter, thedrain region 82 and thesource region 83 are formed in thepolycrystalline silicon film 81. - In the second embodiment, the
gate electrode 21 and thesupplemental capacitor electrode 22 may alternatively formed first, and then the flatteninginsulator film 23 may be formed on thegate electrode 21 and thesupplemental capacitor electrode 22 by CVD or PVD. Then, the flatteninginsulator film 23 on thegate electrode 21 and thesupplemental capacitor electrode 22 is locally etched off by full etch-back, thus yielding a flat layer. - In the second embodiment, the
gate electrode 21 and thesupplemental capacitor electrode 22 may be formed first, and then a coating of film (an SOG film, polyimide resin film, acrylic resin film or epoxy resin film) may be formed between thegate electrode 21 and thesupplemental capacitor electrode 22 by spin coating, thereby forming a flat layer. - FIG. 9 presents a partly schematic cross-sectional view of an
LCD display panel 401 which has polycrystallinesilicon TFTs 206 of a bottom gate structure according to a third embodiment of the present invention. - According to the third embodiment, the angle between the outer wall of a tapered
portion 76 b of agate electrode 76 and the surface of theinsulator substrate 71 is set within a range of 5° to 40°, which has been experimentally determined. Even if the angle varies as long as it lies within this range, thepolycrystalline silicon film 81 with a uniform grain size is acquired. The preferable angle range is 5° to 40°, and 10° to 30° is more preferable. An angle greater than 40° reduces the coverage of thegate insulator film 80 to lower the gate withstand voltage. An angle smaller than 5° means an increased surface of the taperedportion 76 b, which causes a variation in the membranous of thepolycrystalline silicon film 81. This degrades the uniformity of the device characteristic. - It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. For example, the
gate electrodes supplemental capacitor electrodes insulator substrate 71 with a ceramic substrate or an insulator layer like a silicon oxide film. The TFT of the present invention may be used for a pixel drive element in an active matrix type display apparatus which uses electroluminescence elements as pixels. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims (1)
1. A thin film transistor comprising:
an insulator substrate;
a gate electrode located on the insulator substrate;
a gate insulator film provided above the insulator substrate and the gate electrode; and
a polycrystalline silicon film located on the gate insulator film, the polycrystalline silicon film being formed by irradiating a laser beam on a surface of an amorphous silicon film to heat the amorphous silicon film,
the gate electrode having a center portion with a flat surface and a pair of tapered end portions with inclined surfaces, an angle between each of the inclined surfaces of the pair of tapered end portions and a surface of the insulator substrate being set within a range of 5° to 40° so that a uniform grain size of the polycrystalline silicon film is acquired by securing a gate withstand voltage of the thin film transistor and preventing the inclined surfaces of the pair of tapered end portions from increasing, wherein the laser beam is scanned on the surface of the amorphous silicon film such that laser energy increases in order of the substrate, one of the pair of tapered end portions, and the center portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/730,875 US20010000620A1 (en) | 1997-02-17 | 2000-12-05 | Thin film transistor and method of fabricating the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-031917 | 1997-02-17 | ||
JP9031917A JPH10229197A (en) | 1997-02-17 | 1997-02-17 | Thin-film transistor and manufacture thereof |
US09/024,855 US6215154B1 (en) | 1997-02-17 | 1998-02-13 | Thin film transistor and method of fabricating the same |
US09/730,875 US20010000620A1 (en) | 1997-02-17 | 2000-12-05 | Thin film transistor and method of fabricating the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,855 Continuation US6215154B1 (en) | 1997-02-17 | 1998-02-13 | Thin film transistor and method of fabricating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010000620A1 true US20010000620A1 (en) | 2001-05-03 |
Family
ID=12344338
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,855 Expired - Lifetime US6215154B1 (en) | 1997-02-17 | 1998-02-13 | Thin film transistor and method of fabricating the same |
US09/114,813 Expired - Lifetime US6133074A (en) | 1997-02-17 | 1998-07-13 | Thin film transistor and method of fabricating the same |
US09/730,875 Abandoned US20010000620A1 (en) | 1997-02-17 | 2000-12-05 | Thin film transistor and method of fabricating the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,855 Expired - Lifetime US6215154B1 (en) | 1997-02-17 | 1998-02-13 | Thin film transistor and method of fabricating the same |
US09/114,813 Expired - Lifetime US6133074A (en) | 1997-02-17 | 1998-07-13 | Thin film transistor and method of fabricating the same |
Country Status (3)
Country | Link |
---|---|
US (3) | US6215154B1 (en) |
JP (1) | JPH10229197A (en) |
KR (1) | KR100631458B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070262319A1 (en) * | 2003-06-20 | 2007-11-15 | Hitachi Displays, Ltd. | LCD with first and second circuit regions each with separately optimized transistor properties |
US20080286891A1 (en) * | 1999-07-22 | 2008-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method |
US20120273925A1 (en) * | 2010-02-03 | 2012-11-01 | International Business Machines Corporation | Patterned doping of semiconductor substrates using photosensitive monolayers |
US20160202193A1 (en) * | 2015-01-14 | 2016-07-14 | Kla-Tencor Corporation | Measurement System Optimization For X-Ray Based Metrology |
US20160336419A1 (en) * | 2015-05-14 | 2016-11-17 | Lg Display Co., Ltd. | Thin film transistor and backplane substrate of a display device including the same |
US20170357115A1 (en) * | 2016-06-13 | 2017-12-14 | Samsung Display Co., Ltd | Display device |
US20210263355A1 (en) * | 2020-02-21 | 2021-08-26 | Samsung Display Co., Ltd. | Display device and method of fabricating the same |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11111994A (en) * | 1997-10-03 | 1999-04-23 | Sanyo Electric Co Ltd | Thin-film transistor and method for manufacturing the thin-film transistor |
JP2001051292A (en) * | 1998-06-12 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | Semiconductor device and semiconductor display device |
US6867752B1 (en) * | 1998-08-31 | 2005-03-15 | Semiconductor Energy Laboratory Co., Ltd. | Portable information processing system |
US6617644B1 (en) | 1998-11-09 | 2003-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US6909114B1 (en) | 1998-11-17 | 2005-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having LDD regions |
US6365917B1 (en) * | 1998-11-25 | 2002-04-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2000208771A (en) * | 1999-01-11 | 2000-07-28 | Hitachi Ltd | Semiconductor device, liquid cystal display device, and their manufacturing |
JP3683463B2 (en) * | 1999-03-11 | 2005-08-17 | シャープ株式会社 | Active matrix substrate, manufacturing method thereof, and image sensor using the substrate |
TW480554B (en) * | 1999-07-22 | 2002-03-21 | Semiconductor Energy Lab | Semiconductor device and manufacturing method thereof |
US6541294B1 (en) * | 1999-07-22 | 2003-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6653657B2 (en) * | 1999-12-10 | 2003-11-25 | Semoconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
US6448594B1 (en) * | 2000-03-30 | 2002-09-10 | Advanced Micro Devices, Inc. | Method and system for processing a semiconductor device |
US7078321B2 (en) | 2000-06-19 | 2006-07-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
KR100383920B1 (en) * | 2000-09-01 | 2003-05-14 | 엘지.필립스 엘시디 주식회사 | thin film transistor type optical sensor |
SG103846A1 (en) | 2001-02-28 | 2004-05-26 | Semiconductor Energy Lab | A method of manufacturing a semiconductor device |
JP2002299632A (en) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | Semiconductor device and active matrix type display device |
TW594336B (en) * | 2002-01-30 | 2004-06-21 | Sanyo Electric Co | Semiconductor display device, method for making the same, and active matrix type display device |
TWI244571B (en) * | 2002-01-30 | 2005-12-01 | Sanyo Electric Co | Semiconductor display device |
US7317208B2 (en) * | 2002-03-07 | 2008-01-08 | Samsung Electronics Co., Ltd. | Semiconductor device with contact structure and manufacturing method thereof |
US7038239B2 (en) | 2002-04-09 | 2006-05-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor element and display device using the same |
JP3989761B2 (en) | 2002-04-09 | 2007-10-10 | 株式会社半導体エネルギー研究所 | Semiconductor display device |
US7411215B2 (en) | 2002-04-15 | 2008-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of fabricating the same |
JP3989763B2 (en) | 2002-04-15 | 2007-10-10 | 株式会社半導体エネルギー研究所 | Semiconductor display device |
US7242021B2 (en) * | 2002-04-23 | 2007-07-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display element using semiconductor device |
TWI272556B (en) | 2002-05-13 | 2007-02-01 | Semiconductor Energy Lab | Display device |
TWI263339B (en) * | 2002-05-15 | 2006-10-01 | Semiconductor Energy Lab | Light emitting device and method for manufacturing the same |
US7256421B2 (en) | 2002-05-17 | 2007-08-14 | Semiconductor Energy Laboratory, Co., Ltd. | Display device having a structure for preventing the deterioration of a light emitting device |
CN1595477A (en) * | 2003-09-08 | 2005-03-16 | 三洋电机株式会社 | Display apparatus |
JP4321486B2 (en) * | 2004-07-12 | 2009-08-26 | セイコーエプソン株式会社 | Semiconductor device and manufacturing method of semiconductor device |
KR100647775B1 (en) * | 2004-12-01 | 2006-11-23 | 엘지.필립스 엘시디 주식회사 | Thin Film Transistor Substrate And Method of Fabricating The Same |
JP4964442B2 (en) | 2005-08-10 | 2012-06-27 | 三菱電機株式会社 | Thin film transistor and manufacturing method thereof |
EP2008264B1 (en) * | 2006-04-19 | 2016-11-16 | Ignis Innovation Inc. | Stable driving scheme for active matrix displays |
TWI336945B (en) * | 2006-06-15 | 2011-02-01 | Au Optronics Corp | Dual-gate transistor and pixel structure using the same |
US8048749B2 (en) * | 2007-07-26 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
CN102484471B (en) | 2009-10-30 | 2015-04-01 | 株式会社半导体能源研究所 | Driver circuit, display device including the driver circuit, and electronic device including the display device |
JP5505032B2 (en) * | 2010-03-30 | 2014-05-28 | 大日本印刷株式会社 | Active matrix drive substrate, manufacturing method thereof, and display device |
TWI431574B (en) * | 2010-08-06 | 2014-03-21 | E Ink Holdings Inc | Electronic paper device and method thereof |
JP2011077532A (en) * | 2010-11-10 | 2011-04-14 | Semiconductor Energy Lab Co Ltd | Method for preparing wiring |
JP5933897B2 (en) | 2011-03-18 | 2016-06-15 | 株式会社半導体エネルギー研究所 | Semiconductor device |
KR20120109856A (en) * | 2011-03-28 | 2012-10-09 | 삼성디스플레이 주식회사 | Display device and method of manufacturing the same |
JP2012019237A (en) * | 2011-10-06 | 2012-01-26 | Semiconductor Energy Lab Co Ltd | Manufacturing method of semiconductor device |
WO2016092960A1 (en) | 2014-12-08 | 2016-06-16 | 富士電機株式会社 | Silicon carbide semiconductor device and process for producing same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4654121A (en) | 1986-02-27 | 1987-03-31 | Ncr Corporation | Fabrication process for aligned and stacked CMOS devices |
JPH0816756B2 (en) * | 1988-08-10 | 1996-02-21 | シャープ株式会社 | Transmissive active matrix liquid crystal display device |
JP3093314B2 (en) * | 1991-04-26 | 2000-10-03 | 株式会社東芝 | Thin film transistor and method of manufacturing the same |
US5576556A (en) * | 1993-08-20 | 1996-11-19 | Semiconductor Energy Laboratory Co., Ltd. | Thin film semiconductor device with gate metal oxide and sidewall spacer |
US5493130A (en) * | 1993-06-10 | 1996-02-20 | Micron Technology, Inc. | Integrated circuitry having an electrically conductive sidewall link positioned over and electrically interconnecting respective outer sidewalls of two conductive layers |
KR100305877B1 (en) | 1993-08-19 | 2001-12-15 | 김영환 | Method for fabricating tft |
JPH07106323A (en) * | 1993-10-06 | 1995-04-21 | Nec Corp | Semiconductor device and its manufacture |
JPH07335904A (en) * | 1994-06-14 | 1995-12-22 | Semiconductor Energy Lab Co Ltd | Thin film semiconductor integrated circuit |
JPH0823102A (en) * | 1994-07-08 | 1996-01-23 | Matsushita Electric Ind Co Ltd | Electronic component and manufacture thereof |
TW321731B (en) * | 1994-07-27 | 1997-12-01 | Hitachi Ltd | |
US5510278A (en) | 1994-09-06 | 1996-04-23 | Motorola Inc. | Method for forming a thin film transistor |
KR0151195B1 (en) * | 1994-09-13 | 1998-10-01 | 문정환 | Thin film transistor |
JPH08330599A (en) * | 1994-11-29 | 1996-12-13 | Sanyo Electric Co Ltd | Thin film transistor, its manufacture and display |
US5532180A (en) * | 1995-06-02 | 1996-07-02 | Ois Optical Imaging Systems, Inc. | Method of fabricating a TFT with reduced channel length |
-
1997
- 1997-02-17 JP JP9031917A patent/JPH10229197A/en active Pending
-
1998
- 1998-02-05 KR KR1019980003269A patent/KR100631458B1/en not_active IP Right Cessation
- 1998-02-13 US US09/024,855 patent/US6215154B1/en not_active Expired - Lifetime
- 1998-07-13 US US09/114,813 patent/US6133074A/en not_active Expired - Lifetime
-
2000
- 2000-12-05 US US09/730,875 patent/US20010000620A1/en not_active Abandoned
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080286891A1 (en) * | 1999-07-22 | 2008-11-20 | Semiconductor Energy Laboratory Co., Ltd. | Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method |
US9045831B2 (en) | 1999-07-22 | 2015-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method |
US7456913B2 (en) * | 2003-06-20 | 2008-11-25 | Hitachi, Ltd. | LCD with first and second circuit regions each with separately optimized transistor properties |
US20070262319A1 (en) * | 2003-06-20 | 2007-11-15 | Hitachi Displays, Ltd. | LCD with first and second circuit regions each with separately optimized transistor properties |
US20120273925A1 (en) * | 2010-02-03 | 2012-11-01 | International Business Machines Corporation | Patterned doping of semiconductor substrates using photosensitive monolayers |
US8513642B2 (en) * | 2010-02-03 | 2013-08-20 | International Business Machines Corporation | Patterned doping of semiconductor substrates using photosensitive monolayers |
US8946068B2 (en) | 2010-02-03 | 2015-02-03 | International Business Machines Corporation | Patterned doping of semiconductor substrates using photosensitive monolayers |
US10324050B2 (en) * | 2015-01-14 | 2019-06-18 | Kla-Tencor Corporation | Measurement system optimization for X-ray based metrology |
US20160202193A1 (en) * | 2015-01-14 | 2016-07-14 | Kla-Tencor Corporation | Measurement System Optimization For X-Ray Based Metrology |
US20160336419A1 (en) * | 2015-05-14 | 2016-11-17 | Lg Display Co., Ltd. | Thin film transistor and backplane substrate of a display device including the same |
CN106158977A (en) * | 2015-05-14 | 2016-11-23 | 乐金显示有限公司 | Thin film transistor (TFT) and the back plane substrate including this thin film transistor (TFT) of display device |
US10636888B2 (en) * | 2015-05-14 | 2020-04-28 | Lg Display Co., Ltd. | Thin film transistor and backplane substrate of a display device including the same |
US20170357115A1 (en) * | 2016-06-13 | 2017-12-14 | Samsung Display Co., Ltd | Display device |
CN107490910A (en) * | 2016-06-13 | 2017-12-19 | 三星显示有限公司 | Display device |
US9989827B2 (en) * | 2016-06-13 | 2018-06-05 | Samsung Display Co., Ltd. | Display device |
US20210263355A1 (en) * | 2020-02-21 | 2021-08-26 | Samsung Display Co., Ltd. | Display device and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US6133074A (en) | 2000-10-17 |
US6215154B1 (en) | 2001-04-10 |
KR100631458B1 (en) | 2007-03-02 |
KR19980071105A (en) | 1998-10-26 |
JPH10229197A (en) | 1998-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215154B1 (en) | Thin film transistor and method of fabricating the same | |
KR100376956B1 (en) | Display device and its manufacturing method | |
US6569717B1 (en) | Semiconductor device production method, electro-optical device production method, semiconductor device, and electro-optical device | |
US6118506A (en) | Electro-optical device and method of fabricating same | |
US7033872B2 (en) | Thin film transistor and method of fabricating the same | |
US6861670B1 (en) | Semiconductor device having multi-layer wiring | |
US6091466A (en) | Liquid crystal display with dummy drain electrode and method of manufacturing same | |
US7666695B2 (en) | Array substrates of liquid crystal display and fabrication method thereof | |
US6831318B2 (en) | Thin film transistor array | |
US7989807B2 (en) | Thin-film transistor substrate, method of manufacturing same and display apparatus having same | |
US20110254007A1 (en) | Thin-film transistor substrate, method of manufacturing the same and display apparatus having the same | |
KR20050001252A (en) | In plane switching mode liquid crystal display device and method of fabricating the same | |
US20080135909A1 (en) | Display device and method of producing the same | |
JP3774352B2 (en) | Liquid crystal display | |
JP3219685B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US6091470A (en) | Active matrix substrate with concave portion in region at edge of pixel electrode and method for fabricating the same using ashing treatment | |
JPH10153793A (en) | Liquid crystal display device | |
KR100546707B1 (en) | Tin Film Transistor and method for forming the same | |
JPH1187726A (en) | Manufacture of liquid crystal display panel | |
JPH10133233A (en) | Active matrix type display circuit and its manufacture | |
KR100726129B1 (en) | Polysilicon-thin film transistor device and method of fabricating the same | |
JP3833327B2 (en) | Thin film transistor manufacturing method, display device, contact image sensor, three-dimensional IC | |
JPH07248508A (en) | Liquid crystal display device | |
JPH0980412A (en) | Manufacture of liquid crystal display device | |
JP3780653B2 (en) | Manufacturing method of liquid crystal display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |