TWM618947U - Full abnormality positioning analysis platform using artificial intelligence - Google Patents
Full abnormality positioning analysis platform using artificial intelligence Download PDFInfo
- Publication number
- TWM618947U TWM618947U TW110205788U TW110205788U TWM618947U TW M618947 U TWM618947 U TW M618947U TW 110205788 U TW110205788 U TW 110205788U TW 110205788 U TW110205788 U TW 110205788U TW M618947 U TWM618947 U TW M618947U
- Authority
- TW
- Taiwan
- Prior art keywords
- analysis
- data
- anomaly
- graphical
- full
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- General Factory Administration (AREA)
Abstract
本申請提出一種運用人工智慧之全異常定位分析平台,其中,該全異常定位分析平台包括一巨量資料儲存裝置以及一全異常定位分析系統,該巨量資料儲存裝置用以儲存多筆製造原始資料,且該等製造原始資料來自多個製造設備,該全異常定位分析系統用以產生多個相異的圖形化分析結果以及一圖形化介面,並使該圖形化介面選擇性地包括該多個圖形化分析結果的至少一者。藉此提升全異常定位分析的方便性及效率,以快速排除製程異常之情況,並優化產品整體製程。This application proposes a total anomaly location analysis platform using artificial intelligence. The total anomaly location analysis platform includes a huge data storage device and a total anomaly location analysis system, and the huge data storage device is used to store multiple manufacturing primitives. Data, and the manufacturing raw data comes from multiple manufacturing equipment, the full anomaly location analysis system is used to generate multiple different graphical analysis results and a graphical interface, and make the graphical interface selectively include the multiple At least one of the graphical analysis results. In this way, the convenience and efficiency of the analysis of full abnormality positioning are improved, so as to quickly eliminate the abnormality of the manufacturing process and optimize the overall manufacturing process of the product.
Description
本申請係有關於一種資料分析平台,尤指一種運用人工智慧之全異常定位分析平台。This application relates to a data analysis platform, especially a full anomaly location analysis platform using artificial intelligence.
一般來說,半導體元件的生產需經過千道以上的製造以及檢測程序,並藉由精密的製造設備以及製程設計來保持最終產品的良率,因此,為了有效控管半導體元件的製造過程,製程過程中的所有資料以及數據必須被即時蒐集分析。Generally speaking, the production of semiconductor components requires more than a thousand manufacturing and testing procedures, and the yield of the final product is maintained by sophisticated manufacturing equipment and process design. Therefore, in order to effectively control the manufacturing process of semiconductor components, the manufacturing process All information and data in the process must be collected and analyzed in real time.
隨著製程推進,生產線上的多個製造設備會產生幾萬種即時監控資料、近萬個線上抽樣檢測的量測值(metrology),以及幾百種在半導體元件上不同位置測量的電性測試參數,同時,加上各種積體電路的生產模式,導致生產線在一個月內即可產生超過數十億筆的巨量資料。With the advancement of the manufacturing process, multiple manufacturing equipment on the production line will generate tens of thousands of real-time monitoring data, nearly 10,000 on-line sampling and inspection measurements (metrology), and hundreds of electrical tests measured at different positions on semiconductor components At the same time, coupled with various integrated circuit production modes, the production line can generate more than billions of huge amounts of data in one month.
因此,為了分析生產線上所產生的巨量資料,現行常採用商用統計分析方法,以期能快速找出製程異常的原因。但統計關聯分析方法只能呈現出可能的相關聯問題,無法精準定位出製程異常的原因,又因為生產線隨時會產生巨量資料,統計關聯分析方法更無法即時完成對應分析,使用者需額外花費時間於統計關聯分析結果中查找相關聯問題,並自行分析其製程異常的原因,導致現行統計分析方法無法快速排除製程異常的情況。Therefore, in order to analyze the huge amount of data generated on the production line, commercial statistical analysis methods are often used in order to quickly find out the cause of process abnormalities. However, the statistical correlation analysis method can only show possible correlation problems, and cannot accurately locate the cause of the abnormality of the process. Also, because the production line generates huge amounts of data at any time, the statistical correlation analysis method cannot complete the corresponding analysis in real time, and the user needs to spend extra Time to find related problems in the results of statistical correlation analysis, and analyze the causes of abnormal processes on their own. As a result, the current statistical analysis methods cannot quickly eliminate process abnormalities.
基於現有技術存在上述諸多問題,確實有待提出更佳解決方案的必要性。Based on the above-mentioned problems in the prior art, it is indeed necessary to propose a better solution.
有鑑於上述現有技術之不足,本申請的主要目的在於提供一運用人工智慧之全異常定位分析平台,其利用人工智慧分析生產線上的巨量資料,並產生多個圖形化分析結果,且選擇性的提供多個圖形化分析結果的其中一者以供檢視,使用者可藉由圖形化分析結果快速取得對應不同製造設備、製造過程、半導體元件成品的預測結果,藉此提升全異常定位分析的方便性及效率,以快速排除製程異常之情況,並優化產品整體製程。In view of the above-mentioned shortcomings of the prior art, the main purpose of this application is to provide a full anomaly location analysis platform using artificial intelligence, which uses artificial intelligence to analyze huge amounts of data on the production line and generate multiple graphical analysis results with selectivity Provides one of multiple graphical analysis results for viewing. Users can quickly obtain prediction results corresponding to different manufacturing equipment, manufacturing processes, and semiconductor component products through the graphical analysis results, thereby improving the overall abnormal location analysis Convenience and efficiency to quickly eliminate process abnormalities and optimize the overall product process.
為達成上述目的,本申請提出一種運用人工智慧之全異常定位分析平台,其包括一巨量資料儲存裝置以及一全異常定位分析系統,其中,該巨量資料儲存裝置用以儲存多筆製造原始資料,且該等製造原始資料來自多個製造設備,該全異常定位分析系統包括多個資料分析引擎以及一介面產生系統,每一該資料分析引擎用以根據該等製造原始資料的至少一部份產生相異的圖形化分析結果,且該多個資料分析引擎包括一產品製程異常分析引擎、一製程時間異常分析引擎、一製程事件異常分析引擎、一製造設備訊號異常分析引擎以及一製造設備異常分析引擎,用以產生多個相異的圖形化分析結果,該介面產生系統用以產生一圖形化介面,並選擇性的使該圖形化介面包括該多個圖形化分析結果的至少一者。In order to achieve the above objective, this application proposes a total anomaly location analysis platform using artificial intelligence, which includes a huge data storage device and a total anomaly location analysis system, wherein the huge data storage device is used to store multiple manufacturing primitives. Data, and the manufacturing raw data comes from multiple manufacturing equipment, the full anomaly location analysis system includes multiple data analysis engines and an interface generation system, and each data analysis engine is used to base at least one part of the manufacturing raw data Different graphical analysis results are generated, and the multiple data analysis engines include a product process anomaly analysis engine, a process time anomaly analysis engine, a process event anomaly analysis engine, a manufacturing equipment signal anomaly analysis engine, and a manufacturing equipment Anomaly analysis engine for generating a plurality of different graphical analysis results, the interface generation system for generating a graphical interface, and selectively making the graphical interface include at least one of the plurality of graphical analysis results .
由上述結構,該運用人工智慧之全異常定位分析平台可藉由其所蒐集的巨量資料,以圖形化分析結果簡單明瞭的提供所需的分析結果,使用者無需於眾多分析結果中自行分析或查找,即可快速取得所需的製程相關資訊,此外,藉由提供該多個製造設備的運作資訊的圖形化介面,使用者更可快速掌握生產線之整體狀態,藉此提升全異常定位分析的方便性及效率。Based on the above structure, the total anomaly location analysis platform using artificial intelligence can use the huge amount of data collected by it to provide the required analysis results simply and clearly with graphical analysis results, and users do not need to analyze the results by themselves. Or search, you can quickly obtain the required process-related information. In addition, by providing the graphical interface of the operation information of the multiple manufacturing equipment, the user can quickly grasp the overall status of the production line, thereby improving the overall abnormal location analysis Convenience and efficiency.
請參考圖1,圖1為本申請之運用人工智慧之全異常定位分析平台之實施環境示意圖,其包括一全異常定位分析平台100、一產線系統200以及一輸入輸出模組300,該全異常定位分析平台100與該產線系統200以及該輸入輸出模組300通訊連接。該產線系統200用以監控生產線上的多個製造設備,並即時蒐集與該生產線以及該多個製造設備相關的製造原始資料,且該製造原始資料皆具有前後時間序列關係,以即時掌控該生產線上的所有狀態。該全異常定位分析平台100與該產線系統200通訊連接,用以接收製造原始資料,並對製造原始資料進行分析預測,以產生多個圖形化分析結果以及一圖形化介面,其中,該圖形化介面選擇性地包括至少一圖形化分析結果,換言之,該圖形化介面可不同時包括所有圖形化分析結果。舉例來說,該圖形化介面所包括的圖形化分析結果為對應一異常狀態的圖形化分析結果或對應一使用者選擇資訊的圖形化分析結果。該輸入輸出模組300用以接收並顯示該圖形化介面,並用以接收使用者所輸入的使用者選擇資訊。Please refer to FIG. 1. FIG. 1 is a schematic diagram of the implementation environment of the full anomaly location analysis platform using artificial intelligence in this application. It includes a full anomaly
藉此,一使用者可藉由該輸入輸出模組300顯示的該圖形化介面的圖形化分析結果快速確認該生產線上的異常狀態或相關資訊,無須在眾多分析結果中查找所需的資訊,且以資料圖形化的方式快速了解異常狀態的成因,藉此提升巨量資料分析的方便性及效率。In this way, a user can quickly confirm the abnormal state or related information of the production line through the graphical analysis results of the graphical interface displayed by the input and
在一實施例中,該全異常定位分析平台100為一良率品質工程分析決策系統。In one embodiment, the full anomaly
在一實施例中,該產線系統200例如為生產執行平台、設備工程平台、或精密製程的工程平台,且本申請不以此為限制。In an embodiment, the
在一實施例中,該輸入輸出模組300例如為觸控顯示螢幕、或者搭配輸入裝置的顯示器,輸入裝置例如為鍵盤、滑鼠,且本申請不以此為限制。In one embodiment, the input and
在一實施例中,該生產線為一半導體元件產線,且本申請不以此為限制。In one embodiment, the production line is a semiconductor device production line, and this application is not limited thereto.
請參考圖2,該全異常定位分析平台100至少包括一中央控制系統110、一巨量資料儲存裝置130、一全異常定位分析系統150、一資料輸入介面170以及一輸出入介面190,其中,該中央控制系統110與該巨量資料儲存裝置130、該全異常定位分析系統150、該資料輸入介面170以及該輸出入介面190電性連接。Please refer to FIG. 2, the total anomaly
該中央控制系統110用以管理該全異常定位分析系統150,並監控該巨量資料儲存裝置130、該全異常定位分析系統150、該資料輸入介面170以及該輸出入介面190之間的資料交換,並調度該全異常定位分析平台100整體的運算、儲存與網路資源,藉此提升該全異常定位分析平台100的資源使用效率以及運作效能。The
在一實施例中,該中央控制系統110例如為一整合(Composer)模組,且本申請不以此為限制。In one embodiment, the
該資料輸入介面170用以與該產線系統200通訊連接,以接收該多筆製造原始資料。The
在一實施例中,該資料輸入介面170可以是符合序列資料(RS232)通訊介面、通用序列匯流排(USB)規範之連接埠,且本申請不以此為限制。In one embodiment, the
該巨量資料儲存裝置130用以儲存多筆製造原始資料及其對應之時間,該等製造原始資料由該產線系統200提供,並來自於多個製造設備,其中,每一製造設備於該生產線上隨時間以及製程產生對應的製造原始資料。The massive
在一實施例中,該巨量資料儲存裝置130可以多個硬碟儲存裝置來實現,且本申請不以此為限制。In one embodiment, the massive
該全異常定位分析系統150用以於該巨量資料儲存裝置130讀取該多筆製造原始資料中的至少一部份,並對該多筆製造原始資料中的至少一部份進行分析,以產生該多個圖形化分析結果以及該圖形化介面,其中,該圖形化介面可選擇性地包括該多個圖形化分析結果中的至少一者,換言之,該圖形化介面可不同時包括所有的圖形化分析結果。The total anomaly
該輸出入介面190與該輸入輸出模組300通訊連接,用以將該圖形化介面提供至該輸入輸出模組300,並接收使用者所輸入的使用者選擇資訊。The I/
在一實施例中,該輸出入介面190包括符合通用序列匯流排(USB)、高畫質多媒體介面(HDMI)、視訊圖形陣列(VGA)規範之連接埠,且本申請不以此為限制。In one embodiment, the I/
在一實施例中,該全異常定位分析平台100可由刀鋒伺服器(Blade Server)來實現,且本申請不以此為限制。In one embodiment, the full anomaly
在一實施例中,該多筆製造原始資料可包括產品良率(Yield)(例如:最大值、中間值、最小值)、電性參數(WAT)、線上量測參數(Inline Metrology)、缺陷(defects)、生產時間(time)(例如:上機時間、下機時間、等待時間)、處方(Recipe) (例如:處方種類、處方數量、配方參數等)、事件(例如:配方參數變動、地震事件等)、製造設備的種類(Model)、製造設備(Equipment)(例如:製造設備訊號)、反應室(Chamber)(例如:溫度、濕度、無風狀態)、單元(Unit)量測值等,且本申請不以此為限制。In one embodiment, the multiple pieces of manufacturing source data may include product yield (for example, maximum value, intermediate value, minimum value), electrical parameters (WAT), inline metrology, and defects. (defects), production time (time) (for example: on-machine time, off-machine time, waiting time), recipe (for example: prescription type, prescription quantity, formula parameter, etc.), event (for example: formula parameter change, Earthquake events, etc.), types of manufacturing equipment (Model), equipment (such as manufacturing equipment signals), chamber (such as temperature, humidity, and no wind), unit measurement values, etc. , And this application is not limited by this.
進一步的,該全異常定位分析系統150更包括多個資料分析引擎151以及一介面產生系統153,如圖3所示,且該多個資料分析引擎151與該介面產生系統153通訊連接。每一資料分析引擎151用以根據接收的製造原始資料產生對應的圖形化分析結果,即多個資料分析引擎151彼此可用以提供不同的圖形化分析結果。該介面產生系統153用以接收每一資料分析引擎151所產生的圖形化分析結果,且用以產生該圖形化介面,並選擇性地使該圖形化介面僅包括該多個圖形化分析結果的其中一者,例如,僅包括出現異常狀態的圖形化分析結果,或者僅包括對應使用者選擇資訊的圖形化分析結果。Further, the total anomaly
在本實施例中,多個資料分析引擎151至少包括一產品製程異常分析引擎151a、一製程時間異常分析引擎151b、一製程事件異常分析引擎151c、一製造設備訊號異常分析引擎151d以及一製造設備異常分析引擎151e,如圖4所示,且本申請不以此為限制。In this embodiment, the multiple
該產品製程異常分析引擎151a基於處方資料的製造原始資料產生對應於處方資料的圖形化分析結果,因此,使用者可藉由對應於處方資料的圖形化分析結果(處方種類的選擇、處方數量的調整、配方參數的變動等)快速辨別異常的處方資料,以排除製程步驟或製程參數異常之情況。The product process
該製程時間異常分析引擎151b基於生產時間的製造原始資料產生對應於處方資料的圖形化分析結果,因此,使用者可藉由對應於生產時間的圖形化分析結果,以每一步驟的生產時間變化快速辨別異常的製程步驟,以排除製程步驟異常之情況。The process time anomaly analysis engine 151b generates a graphical analysis result corresponding to the prescription data based on the manufacturing raw data of the production time. Therefore, the user can use the graphical analysis result corresponding to the production time to change the production time of each step. Quickly identify abnormal process steps to eliminate abnormal process steps.
該製程事件異常分析引擎151c基於事件資料的製造原始資料產生對應於處方資料的圖形化分析結果,因此,使用者可藉由對應於事件資料(例如一機台保養事件資訊、一更換材料事件資訊、一外部環境事件資訊以及一調整配方事件資訊等)的圖形化分析結果,以根據發生的事件來快速辨別異常的狀態,以排除製程異常之情況。The process event
該製造設備訊號異常分析引擎151d基於製造設備訊號(例如:反應室的開關、馬達的頻率等)的製造原始資料產生對應於製造設備的圖形化分析結果,因此,使用者可藉由對應於製造設備訊號的圖形化分析結果,以根據製造設備的狀態來快速辨別異常的狀態,以排除製程異常之情況。The manufacturing equipment signal
該製造設備異常分析引擎151e基於產品良率、電性參數、線上量測參數、缺陷、生產時間、處方、製造設備的種類、反應室、單元量測值等製造原始資料產生對應於製程步驟的圖形化分析結果,因此,使用者可藉由對應於製程步驟的圖形化分析結果,以根據製造設備的狀態來快速辨別異常的狀態,以排除製程異常之情況。The manufacturing equipment abnormality analysis engine 151e generates manufacturing raw data corresponding to the process steps based on product yield, electrical parameters, online measurement parameters, defects, production time, prescriptions, types of manufacturing equipment, reaction chambers, unit measurement values, etc. Graphical analysis results. Therefore, users can quickly identify abnormal conditions based on the status of the manufacturing equipment by using the graphical analysis results corresponding to the process steps to eliminate process abnormalities.
在一實施例中,該異常狀態可為根據資料分析引擎151的分析預測結果判斷出製程步驟/製造設備/產品元件異常之狀態,且本申請不以此為限制。舉例來說,根據一圖形化分析結果,其分析預測結果顯示該生產時間高於一門檻值,該介面產生系統153判斷為異常狀態且使該圖形化介面包括該圖形化分析結果,藉此即時提示使用者。In one embodiment, the abnormal state may be a state in which process steps/manufacturing equipment/product components are determined to be abnormal based on the analysis and prediction result of the
在一實施例中,該使用者選擇資訊為使用者欲主動檢視的資訊,其包括該全異常定位分析平台100由該產線系統200所取得的製造原始資料所產生的圖形化分析結果。例如:該使用者選擇資訊為對應處方數量之選擇資訊,該介面產生系統153根據該使用者選擇資訊使該圖形化介面包括對應該處方數量之該圖形化分析結果,藉此提供給使用者檢視。In one embodiment, the user-selected information is the information that the user wants to actively view, which includes the graphical analysis result of the full anomaly
在一實施例中,每一資料分析引擎151可由一單板電腦執行對應的分析預測程式來實現,且本申請不以此為限制。In one embodiment, each
在一實施例中,該介面產生系統153可由一單板電腦執行對應的介面產生程式來實現,且本申請不以此為限制。In one embodiment, the
在一實施例中,前述之程式用以儲存於該單板電腦的一電腦可讀記憶體裝置,例如為硬碟裝置,且本申請不以此為限制。In one embodiment, the aforementioned program is used to store a computer-readable memory device of the single-board computer, such as a hard disk device, and this application is not limited thereto.
請參考圖5,圖5為資料分析引擎151之平台架構圖。該資料分析引擎151至少包括一前處理器1511、一人工智慧分析器1513以及一後處理器1515。Please refer to FIG. 5, which is a platform architecture diagram of the
該前處理器1511用以根據該人工智慧分析器1513所欲進行的分析預測向該巨量資料儲存裝置130讀取所需要的製造原始資料。進一步的來說,由於每一資料分析引擎151的人工智慧分析器1512可用以執行相同或不同的分析預測程式,因此該前處理器1511係根據該人工智慧分析器1512所執行的分析預測程式來向該巨量資料儲存裝置130讀取所需要的製造原始資料。舉例來說,該人工智慧分析器1513可用以根據製造設備的種類來分析預測產品良率,因此,於此實施例中,該前處理器1511即用以向該巨量資料儲存裝置130讀取所需的製造原始資料(製造設備的種類資訊)來進行分析預測。The
進一步的,該前處理器1511用以對接收的製造原始資料進行前處理,即對製造原始資料進行篩選、清理(Clean)、統一格式(Format)、缺失值(Missing value)處理、轉換(Transform)等等處理,以移除異常資料,並確保資料品質及高預測精度,以產生用以提供至該人工智慧分析器1512的處理後資料。Further, the
在一實施例中,該前處理器1511可以一結構化查詢語言(Structured Query Language, SQL)、一資料倉儲(Hive)、一R語言或一Python語言來實現,且本申請不以此為限制。In one embodiment, the
該人工智慧分析器1513用以接收處理後資料,並以其分析預測模型進行秒級運算以計算預測出對應的預測值(Conjecture value)、信心指標(Reliance Index)以及製程參數整體相似度指標(Global Similarity Index)等分析結果。The artificial intelligence analyzer 1513 is used to receive processed data, and use its analysis and prediction model to perform second-level operations to calculate and predict the corresponding prediction value (Conjecture value), confidence index (Reliance Index), and overall similarity index of process parameters ( Global Similarity Index) and other analysis results.
進一步的,該信心指標表示預測值準確度之可信度。該信心指標之目的係藉由分析製造設備之製程參數資料,計算出一個介於0與1之間的信心值,以判斷該分析結果是否可被信賴。並運用最大可容忍誤差上限值(EL)相對應該信心指標,求得信心指標門檻值(RIT)。該信心指標值大於信心指標門檻值時,代表該分析結果可被信賴;反之,該信心指標值低於該信心指標門檻值時,則發出警訊。因此,作為設備工程師的使用者可藉此進行製造設備檢查,或作為製程工程師的使用者可進行參數調校,以確認製程是否穩定。Further, the confidence index indicates the credibility of the accuracy of the predicted value. The purpose of the confidence index is to calculate a confidence value between 0 and 1 by analyzing the process parameter data of the manufacturing equipment to determine whether the analysis result can be trusted. And use the maximum tolerable error upper limit (EL) to correspond to the confidence index to obtain the confidence index threshold (RIT). When the confidence indicator value is greater than the confidence indicator threshold, it means that the analysis result can be trusted; on the contrary, when the confidence indicator value is lower than the confidence indicator threshold, a warning is issued. Therefore, users as equipment engineers can use this to inspect manufacturing equipment, or users as process engineers can adjust parameters to confirm whether the process is stable.
該人工智慧分析器1513並用以計算出相似度指標,該相似度指標之主要目的係比較預測段與建模段製程參數資料之相似程度。該相似度指標包含二部份,其一為該製程參數整體相似度指標,其二為製程參數個體相似度指標(ISI)。該製程參數整體相似度指標為預測段之製程參數與建模段所有參數的相似程度。而該製程參數個體相似度指標則為預測段之任一製程參數與建模段之該參數所有樣本經標準化之絕對相似程度,該相似度指標亦作為輔助信心指標之判斷。因此,作為製程工程師的使用者可根據相似度指標的分析預測結果,判斷是否進行參數調校,以確認製程是否穩定。The artificial intelligence analyzer 1513 is also used to calculate a similarity index. The main purpose of the similarity index is to compare the degree of similarity between the process parameter data of the prediction section and the modeling section. The similarity index includes two parts, one is the overall similarity index of the process parameters, and the second is the individual process parameter similarity index (ISI). The overall similarity index of the process parameters is the degree of similarity between the process parameters in the prediction section and all the parameters in the modeling section. The individual similarity index of the process parameter is the standardized absolute similarity between any process parameter in the prediction section and all samples of the parameter in the modeling section. The similarity index is also used as an auxiliary confidence index for judgment. Therefore, a user as a process engineer can determine whether to perform parameter adjustment based on the analysis and prediction result of the similarity index to confirm whether the process is stable.
舉例來說,若預測點之信心指標高於該信心指標門檻值,且預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,需檢查該製程參數個體相似度指標顯示之製程參數是否異常。For example, if the confidence index of the prediction point is higher than the confidence index threshold, and the overall similarity index of the process parameter at the prediction point is higher than the overall similarity index threshold of the process parameter, check the individual similarity index display of the process parameter Whether the process parameters are abnormal.
舉例來說,若預測點之信心指標低於該信心指標門檻值,且預測點之製程參數整體相似度指標低於製程參數整體相似度指標門檻值時,顯示預測值可能不準確,但由於預測點之製程參數整體相似度指標較低,表示新進元件(例如晶圓)與建模參數資料相似度高,此時可能會有該分析預測模型預測值不佳之狀況。For example, if the confidence index of the prediction point is lower than the threshold value of the confidence index, and the overall similarity index of the process parameters of the prediction point is lower than the overall similarity index threshold of the process parameters, the predicted value may be inaccurate, but due to the prediction The overall similarity index of the process parameters of the point is low, indicating that the new component (such as wafer) has a high similarity with the modeling parameter data. At this time, there may be a situation where the prediction value of the analysis and prediction model is not good.
舉例來說,若預測點之信心指標低於該信心指標門檻值,且預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,表示分析預測模型預測值不佳,且由於預測點之製程參數整體相似度指標值高,表示新進元件與建模製程參數資料相似程度低,因此可認定為預測值不準確。For example, if the confidence index of the prediction point is lower than the confidence index threshold, and the overall similarity index of the process parameters of the prediction point is higher than the overall similarity index threshold of the process parameters, it means that the prediction value of the analysis and prediction model is not good, and Since the overall similarity index value of the process parameters at the predicted point is high, it means that the new component and the modeling process parameter data are low in similarity, so it can be considered that the predicted value is inaccurate.
舉例來說,當各預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,表示製程參數可能異常。For example, when the overall similarity index of the process parameters at each prediction point is higher than the threshold value of the overall similarity index of the process parameters, it indicates that the process parameters may be abnormal.
此外,由於所有製造原始資料皆有前後的時間序列關係,該人工智慧分析器1513能準確有效定位出問題,例如,當異常發生的時間點越密集時,即能定位問題所在。In addition, since all the manufacturing raw data have a time series relationship before and after, the artificial intelligence analyzer 1513 can accurately and effectively locate the problem. For example, when the time points of abnormal occurrence are denser, the problem can be located.
在一實施例中,該人工智慧分析器1513可以簡易循環式類神經網路(Simple Recurrent Neural Networks, SRNN)及複迴歸分析(Multiple Regression Analysis, MRA)來實現,且本申請不以此為限制。In one embodiment, the artificial intelligence analyzer 1513 can be implemented by Simple Recurrent Neural Networks (SRNN) and Multiple Regression Analysis (MRA), and this application is not limited thereto .
在一實施例中,該產線系統200及時接收的製造原始資料更用以更新調校或再訓練該分析預測模型,使該人工智慧分析器1513可精準掌握該生產線上之運作狀態,以提高該人工智慧分析器1513之分析預測精準度。In one embodiment, the manufacturing raw data received in time by the
該後處理器1515用以接收該人工智慧分析器1513之分析結果,並據以進行資料圖形化,以產生對應的該圖形化分析結果,舉例來說,產生以圖表、圖形和分布圖實現的圖形化分析結果。例如,以曲線圖展示該生產線上多台製造設備的良率。藉此,使用者可藉由圖形化分析結果快速了解該人工智慧分析器1513之分析結果的狀態或趨勢。The post-processor 1515 is used to receive the analysis result of the artificial intelligence analyzer 1513, and perform data graphic based on it, to generate the corresponding graphic analysis result, for example, to generate charts, graphs, and distribution diagrams. Graphical analysis results. For example, use a graph to show the yield of multiple manufacturing equipment on the production line. In this way, the user can quickly understand the state or trend of the analysis result of the artificial intelligence analyzer 1513 through the graphical analysis result.
在一實施例中,該後處理器1515可以資料統計分析程式來實現,且本申請不以此為限制。In an embodiment, the post-processor 1515 can be implemented by a data statistical analysis program, and this application is not limited thereto.
由本申請的上述實施例及應用方法可歸納出一全異常定位分析平台之運作方法,如圖6所示,其步驟包括:According to the above-mentioned embodiments and application methods of this application, the operation method of a full abnormal location analysis platform can be summarized, as shown in Fig. 6, the steps include:
步驟S100:蒐集多筆製造原始資料。一全異常定位分析平台100用以接收一產線系統200所傳送的多筆製造原始資料,並儲存於該全異常定位分析平台100之巨量資料儲存裝置130。Step S100: Collect multiple pieces of manufacturing original data. A total anomaly
步驟S200:執行資料分析。該全異常定位分析平台100之全異常定位分析系統150根據該多筆製造原始資料的至少一部分產生多個圖形化分析結果。Step S200: perform data analysis. The all anomaly
步驟S300:產生一圖形化介面,該圖形化介面包括至少一圖形化分析結果。該全異常定位分析系統150用以產生該圖形化介面,並選擇性的使該圖形化介面包括該圖形化分析結果的至少一者,且該圖形化介面係用以顯示該多個製造設備的運作資訊。Step S300: Generate a graphical interface, the graphical interface including at least one graphical analysis result. The full abnormal
進一步的,步驟200更包括以下步驟,如圖7所示:Further, step 200 further includes the following steps, as shown in FIG. 7:
步驟S210:取得所需的製造原始資料。全異常定位分析系統150包括多個資料分析引擎151,每一資料分析引擎151的前處理器1511用以根據一人工智慧分析器1513所欲進行的分析預測向該巨量資料儲存裝置130讀取所需要的製造原始資料。Step S210: Obtain the required manufacturing original data. The total anomaly
步驟S230:對多筆製造原始資料執行前處理。該前處理器1511進一步對接收的該多筆製造原始資料進行前處理,並產生對應的處理後資料。Step S230: Perform pre-processing on multiple pieces of manufacturing original data. The pre-processor 1511 further performs pre-processing on the received multiple pieces of manufacturing raw data, and generates corresponding processed data.
步驟S250:對處理後資料執行資料分析。該人工智慧分析器1513對處理後資料執行分析預測,並產生對應之分析結果。Step S250: Perform data analysis on the processed data. The artificial intelligence analyzer 1513 performs analysis and prediction on the processed data and generates corresponding analysis results.
步驟S270:對分析結果執行後處理。該資料分析引擎151的後處理器1515對該分析結果進行後處理,以產生對應的圖形化分析結果。Step S270: Perform post-processing on the analysis result. The post-processor 1515 of the
綜上所述,本申請之運用人工智慧之全異常定位分析平台實施例可藉由其所蒐集的巨量資料,運用人工智慧以圖形化分析結果簡單明瞭的提供所需的分析預測結果,使用者無需於眾多分析結果中自行分析或查找,即可快速取得所需的製程相關資訊,此外,藉由提供該多個製造設備的運作資訊的圖形化介面,使用者更可快速掌握生產線之整體狀態,藉此提升全異常定位分析的方便性及效率。In summary, the full anomaly location analysis platform embodiment using artificial intelligence of this application can use the huge amount of data collected by it to use artificial intelligence to provide the required analysis and prediction results simply and clearly with graphical analysis results. Users do not need to analyze or search among the many analysis results to quickly obtain the required process-related information. In addition, by providing the graphical interface of the operation information of the multiple manufacturing equipment, the user can quickly grasp the overall production line Status, thereby improving the convenience and efficiency of full abnormal location analysis.
100:全異常定位分析平台
110:中央控制系統
130:巨量資料儲存裝置
150:全異常定位分析系統
151:資料分析引擎
151a:產品製程異常分析引擎
151b:製程時間異常分析引擎
151c:製程事件異常分析引擎
151d:製造設備訊號異常分析引擎
151e:製造設備異常分析引擎
1511:前處理器
1513:人工智慧分析器
1515:後處理器
153:介面產生系統
170:資料輸入介面
190:輸出入介面
200:產線系統
300:輸入輸出模組
S100、S200、S210、S230、S250、S270、S300:步驟100: Full anomaly location analysis platform
110: Central Control System
130: Massive data storage device
150: Full anomaly location analysis system
151:
圖1為根據本申請之運用人工智慧之全異常定位分析平台實施例之實施環境示意圖; 圖2為根據本申請之運用人工智慧之全異常定位分析平台實施例之平台架構示意圖; 圖3為根據本申請之運用人工智慧之全異常定位分析系統實施例之平台架構示意圖; 圖4為根據本申請之運用人工智慧之全異常定位分析系統實施例之平台架構另一示意圖; 圖5為根據本申請之資料分析引擎實施例之平台架構圖; 圖6為根據本申請之運作方法實施例之步驟流程示意圖;以及 圖7為根據本申請之運作方法實施例之另一步驟流程示意圖。 FIG. 1 is a schematic diagram of the implementation environment of an embodiment of a fully abnormal location analysis platform using artificial intelligence according to the present application; Figure 2 is a schematic diagram of the platform architecture of an embodiment of a fully abnormal location analysis platform using artificial intelligence according to the present application; FIG. 3 is a schematic diagram of the platform architecture of an embodiment of a fully abnormal location analysis system using artificial intelligence according to the present application; FIG. 4 is another schematic diagram of the platform architecture of the embodiment of the full anomaly location analysis system using artificial intelligence according to the present application; Figure 5 is a platform architecture diagram of an embodiment of the data analysis engine according to the present application; Fig. 6 is a schematic diagram of a step flow diagram of an embodiment of an operating method according to the present application; and FIG. 7 is a schematic flowchart of another step according to an embodiment of the operating method of the present application.
150:全異常定位分析系統 150: Full anomaly location analysis system
151:資料分析引擎 151: Data Analysis Engine
153:介面產生系統 153: Interface Generation System
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110205788U TWM618947U (en) | 2021-05-20 | 2021-05-20 | Full abnormality positioning analysis platform using artificial intelligence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110205788U TWM618947U (en) | 2021-05-20 | 2021-05-20 | Full abnormality positioning analysis platform using artificial intelligence |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM618947U true TWM618947U (en) | 2021-11-01 |
Family
ID=79908274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110205788U TWM618947U (en) | 2021-05-20 | 2021-05-20 | Full abnormality positioning analysis platform using artificial intelligence |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM618947U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809622B (en) * | 2021-12-24 | 2023-07-21 | 臥龍智慧環境有限公司 | System and method for diagnosing system problems |
-
2021
- 2021-05-20 TW TW110205788U patent/TWM618947U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809622B (en) * | 2021-12-24 | 2023-07-21 | 臥龍智慧環境有限公司 | System and method for diagnosing system problems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110442936B (en) | Equipment fault diagnosis method, device and system based on digital twin model | |
TWI443776B (en) | An automated state estimation system for cluster tools and a method of operating the same | |
US20180150038A1 (en) | Prediction model building method, predicting method and associated computer software product | |
US20080231307A1 (en) | Testing method using a scalable parametric measurement macro | |
KR20040094831A (en) | Correlation of end-of-line data mining with process tool data mining | |
Jiang et al. | A Gaussian mixture model clustering ensemble regressor for semiconductor manufacturing final test yield prediction | |
JP4568786B2 (en) | Factor analysis apparatus and factor analysis method | |
TWI649649B (en) | Event processing based system for manufacturing yield improvement | |
CN101118422A (en) | Virtual measurement prediction generated by semi-conductor, method for establishing prediction model and system | |
KR101998972B1 (en) | Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections | |
TWM618947U (en) | Full abnormality positioning analysis platform using artificial intelligence | |
TWM618959U (en) | Artificial intelligence for using multiple data analysis platform | |
TWM618987U (en) | Tendency chart table analyzing platform using artificial intelligence | |
TWM618950U (en) | Product process abnormality analysis platform using artificial intelligence | |
Wang et al. | A hybrid fault diagnosis strategy for chemical process startups | |
CN115375039A (en) | Industrial equipment fault prediction method and device, electronic equipment and storage medium | |
TWI815123B (en) | Massive data analysis platform using artificial intelligence and its operation method | |
CN116955045B (en) | Remote JTAG multiplexing test method and system | |
TWM619003U (en) | Intelligent alarm platform using artificial intelligence | |
TWM618960U (en) | Using an artificial intelligence manufacturing unit exception analysis platform | |
TWM619004U (en) | Abnormality analysis induction platform using artificial intelligence | |
TWM618949U (en) | Process event abnormality analysis platform using artificial intelligence | |
Cheng et al. | Intelligent sampling decision scheme based on the AVM system | |
TWM619002U (en) | Scalable bulk data analysis platform | |
TWM618958U (en) | Development platform capable of realizing big data analysis |