TW202204867A - Biological detection system and biological detection device - Google Patents

Biological detection system and biological detection device Download PDF

Info

Publication number
TW202204867A
TW202204867A TW110100572A TW110100572A TW202204867A TW 202204867 A TW202204867 A TW 202204867A TW 110100572 A TW110100572 A TW 110100572A TW 110100572 A TW110100572 A TW 110100572A TW 202204867 A TW202204867 A TW 202204867A
Authority
TW
Taiwan
Prior art keywords
turntable
sub
bending section
biological detection
fluid
Prior art date
Application number
TW110100572A
Other languages
Chinese (zh)
Other versions
TWI777356B (en
Inventor
何思賢
Original Assignee
天亮醫療器材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天亮醫療器材股份有限公司 filed Critical 天亮醫療器材股份有限公司
Priority to CN202110179330.1A priority Critical patent/CN113970634B/en
Priority to US17/308,997 priority patent/US12117461B2/en
Priority to EP23194418.2A priority patent/EP4257244A3/en
Priority to EP21181027.0A priority patent/EP3943191B1/en
Priority to EP22190489.9A priority patent/EP4112178A3/en
Priority to ES21181027T priority patent/ES2973029T3/en
Priority to EP23194419.0A priority patent/EP4257245A3/en
Publication of TW202204867A publication Critical patent/TW202204867A/en
Application granted granted Critical
Publication of TWI777356B publication Critical patent/TWI777356B/en
Priority to US17/978,232 priority patent/US20230050554A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/023Sending and receiving of information, e.g. using bluetooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A biological detection system includes a control module, a bearing rotatable plate, a first driving module, sub-rotatable plates, second driving modules, and test cassettes. The bearing rotatable plate has a main rotating shaft. The first driving module is electrically connected to the control module and connected to the main rotating shaft, so that the bearing rotatable plate rotates along the main rotating shaft. The sub-rotatable plates respectively have independent rotating shafts, and the sub-rotatable plates are rotatably disposed on the bearing rotatable plate along the independent rotating shafts respectively, and rotating directions and rotating speeds of the independent rotating shafts and the main rotating shaft are able to be different. The second driving modules are respectively electrically connected to the control module, so that the sub-rotatable plates independently rotate along the independent rotating shafts. The test cassettes are detachably disposed on the sub-rotatable plates, and the test cassettes respectively include micro-channel structures.

Description

生物檢測系統及生物檢測裝置Biological detection system and biological detection device

本發明是有關於一種檢測系統及檢測裝置,且特別是有關於一種生物檢測系統及生物檢測裝置。The present invention relates to a detection system and a detection device, and more particularly, to a biological detection system and a biological detection device.

在生醫檢測的領域中,如何控制檢測試劑及受測液體(如血液或尿液)的流動相當地重要。傳統上,生醫檢測會利用移液管(pippet)與毛細現象來控制液體的移動。因此,如果要測試多片測試卡匣,需要一片一片地輪流測試,相當耗費檢測時間;或是必須使用多台機台來一對一測試,可節省時間卻必須購買多部機台。In the field of biomedical testing, how to control the flow of testing reagents and tested liquids (such as blood or urine) is very important. Traditionally, biomedical testing utilizes pipettes and capillary phenomena to control the movement of liquids. Therefore, if you want to test multiple test cassettes, you need to take turns to test one by one, which is quite time-consuming; or you must use multiple machines for one-to-one testing, which saves time but has to buy multiple machines.

本發明提供一種生物檢測系統,可同時測試多片測試卡匣,且其可透過較佳的方式來控制液體的移動。The present invention provides a biological detection system, which can test multiple test cassettes at the same time, and which can control the movement of liquid in a better way.

本發明提供一種生物檢測裝置,其可透過較佳的方式來控制液體的移動。The present invention provides a biological detection device, which can control the movement of liquid in a better way.

本發明的一種生物檢測系統,包括控制模組、承載轉盤、第一驅動模組、多個子轉盤、多個第二驅動模組及多個測試卡匣。承載轉盤具有主轉軸。第一驅動模組電性連接於控制模組且連接於主轉軸,可使承載轉盤沿著主轉軸轉動。這些子轉盤分別具有多個不同於主轉軸的獨立轉軸,這些子轉盤分別沿著這些獨立轉軸可個別獨立轉動地設置於承載轉盤上。這些第二驅動模組分別電性連接於控制模組,以使這些子轉盤沿著這些獨立轉軸獨立轉動,例如第二驅動模組可連接於獨立轉軸,並使這些獨立轉軸與主轉軸的轉向與轉速皆可不同。這些測試卡匣可拆卸地配置於這些子轉盤,這些測試卡匣分別包括多個微流道結構,其中多組流體適於分別被放置在這些微流道結構內。承載轉盤受第一驅動模組驅動而沿著主轉軸旋轉,以對設置於承載轉盤上的這些測試卡匣提供離心力。這些子轉盤分別被這些第二驅動模組獨立地驅動,連帶地使這些測試卡匣沿著這些獨立轉軸可獨立轉動。A biological detection system of the present invention includes a control module, a carrying turntable, a first driving module, a plurality of sub-turntables, a plurality of second driving modules and a plurality of test cassettes. The carrier turntable has a main shaft. The first driving module is electrically connected to the control module and to the main rotating shaft, so that the bearing turntable can be rotated along the main rotating shaft. The sub-turntables respectively have a plurality of independent rotating shafts which are different from the main rotating shafts, and the sub-turntables are respectively arranged on the bearing turntable along the independent rotating shafts to be individually rotatable independently. The second driving modules are respectively electrically connected to the control module, so that the sub-turntables can rotate independently along the independent rotating shafts. For example, the second driving module can be connected to the independent rotating shafts and make the rotation of these independent rotating shafts and the main rotating shaft. Can be different from speed. The test cassettes are detachably configured on the sub-turntables, and the test cassettes respectively include a plurality of microfluidic channel structures, wherein a plurality of fluid groups are adapted to be placed in the microfluidic channel structures, respectively. The bearing turntable is driven by the first driving module to rotate along the main shaft, so as to provide centrifugal force to the test cassettes arranged on the bearing turntable. The sub-turntables are independently driven by the second driving modules respectively, so that the test cassettes are independently rotatable along the independent rotation axes.

在本發明的一實施例中,上述的生物檢測系統更包括第三驅動模組及推桿。第三驅動模組電性連接於控制模組且設置於承載轉盤上。推桿設置於這些子轉盤之間且連接於第三驅動模組,以受第三驅動模組的驅動而靠近這些子轉盤的其中一者,其中推桿適於伸入子轉盤上的測試卡匣,以使測試卡匣內的膠囊被破壞,而使得膠囊內的膠囊流體流入微流道結構。In an embodiment of the present invention, the above-mentioned biological detection system further includes a third driving module and a push rod. The third driving module is electrically connected to the control module and disposed on the bearing turntable. The push rod is arranged between the sub-turntables and connected to the third driving module to be driven by the third driving module to approach one of the sub-turntables, wherein the push rod is suitable for extending into the test card on the sub-turntable The capsules in the test cassettes are destroyed, so that the capsule fluid in the capsules flows into the microfluidic channel structure.

在本發明的一實施例中,上述的生物檢測系統更包括配重塊及第四驅動模組。配重塊可轉動地設置於承載轉盤。第四驅動模組電性連接於控制模組且連接於配重塊,以使配重塊相對於承載轉盤轉動。In an embodiment of the present invention, the above-mentioned biological detection system further includes a counterweight and a fourth driving module. The counterweight is rotatably arranged on the bearing turntable. The fourth driving module is electrically connected to the control module and to the counterweight block, so that the counterweight block rotates relative to the bearing turntable.

在本發明的一實施例中,上述的生物檢測系統更包括無線通訊模組或有線通訊模組,無線通訊模組或有線通訊模組電性連接於控制模組,以將外部訊號傳遞至控制模組來控制第一驅動模組及多個第二驅動模組中的至少數者。In an embodiment of the present invention, the above-mentioned biological detection system further includes a wireless communication module or a wired communication module, and the wireless communication module or the wired communication module is electrically connected to the control module to transmit external signals to the control module. The module controls at least a few of the first driving module and the plurality of second driving modules.

在本發明的一實施例中,上述的這些第二驅動模組與這些子轉盤位於承載轉盤的同側或異側。In an embodiment of the present invention, the above-mentioned second driving modules and the sub-turntables are located on the same side or different sides of the carrying turntable.

在本發明的一實施例中,上述的這些測試卡匣包括相異的第一卡匣及第二卡匣,這些微流道結構包括相異的第一微流道結構及第二微流道結構,第一卡匣包括第一微流道結構,第二卡匣包括第二微流道結構,當第一卡匣及第二卡匣分別設置於這些子轉盤的其中兩者時,這些第二驅動模組的其中兩者驅動兩子轉盤的轉向、轉速或轉動角度不同。In an embodiment of the present invention, the above-mentioned test cassettes include different first and second cassettes, and the micro-channel structures include different first and second micro-channel structures structure, the first cassette includes a first micro-channel structure, the second cassette includes a second micro-channel structure, when the first cassette and the second cassette are respectively arranged in two of the sub-turntables, the Two of the two driving modules drive the two sub-turntables with different rotation directions, rotational speeds or rotation angles.

在本發明的一實施例中,上述的第一微流道結構包括第一樣品注入孔、連接於第一樣品注入孔的第一彎折段及連接於第一彎折段的第一定量槽,多組流體的其中一組流體對應於第一卡匣,組流體包括第一流體,第一流體被注入第一樣品注入孔,其中對應於第一卡匣的第二驅動模組轉動子轉盤,以使第一流體受到離心力而通過第一彎折段而流入第一定量槽。In an embodiment of the present invention, the above-mentioned first microfluidic channel structure includes a first sample injection hole, a first bending section connected to the first sample injection hole, and a first bending section connected to the first bending section a quantitative groove, one of the multiple groups of fluids corresponds to the first cassette, the fluid group includes the first fluid, and the first fluid is injected into the first sample injection hole, wherein the second driving die corresponding to the first cassette The set of rotating sub-turntables causes the first fluid to be subjected to centrifugal force to flow into the first metering groove through the first bending section.

在本發明的一實施例中,上述的第一微流道結構還包括連接於第一定量槽的第二彎折段及連接於第二彎折段的第一混合槽,第二驅動模組依序轉動子轉盤,以使位於第一定量槽的第一流體受到離心力而通過第二彎折段後進入第一混合槽。In an embodiment of the present invention, the above-mentioned first micro-channel structure further includes a second bending section connected to the first quantitative groove and a first mixing groove connected to the second bending section. The second driving mold The group rotates the sub-turntables in sequence, so that the first fluid located in the first quantitative tank is subjected to centrifugal force and enters the first mixing tank after passing through the second bending section.

在本發明的一實施例中,上述的第一微流道結構還包括連接於第一混合槽的第三彎折段及連接於第三彎折段的廢液槽,第二驅動模組轉動子轉盤,以使位於第一混合槽的第一流體受到離心力而通過第三彎折段後進入廢液槽。In an embodiment of the present invention, the above-mentioned first micro-channel structure further includes a third bending section connected to the first mixing tank and a waste liquid tank connected to the third bending section, and the second driving module rotates The sub-rotary disc, so that the first fluid in the first mixing tank is subjected to centrifugal force to pass through the third bending section and then enter the waste liquid tank.

在本發明的一實施例中,上述的第一微流道結構包括第二定量槽、連接於第二定量槽的第四彎折段及連接於第四彎折段的第一混合槽,多組流體的其中一組流體對應於第一卡匣,且此組流體包括第二流體,第二驅動模組依序轉動子轉盤,以讓第二流體受到離心力而依序通過第二定量槽、第四彎折段而進入第一混合槽。In an embodiment of the present invention, the above-mentioned first microfluidic channel structure includes a second quantitative groove, a fourth bending section connected to the second quantitative groove, and a first mixing groove connected to the fourth bending section. One group of fluids in the group of fluids corresponds to the first cassette, and this group of fluids includes the second fluid, and the second drive module rotates the sub-turntable in sequence, so that the second fluid is subjected to centrifugal force and sequentially passes through the second quantitative groove, The fourth bending section enters the first mixing tank.

在本發明的一實施例中,上述的第一微流道結構包括存放槽、連接於存放槽的第五彎折段、連接於第五彎折段的第三定量槽、連接於第三定量槽的第六彎折段及連接於第六彎折段的第一混合槽,多組流體的其中一組流體對應於第一卡匣,組流體包括位於存放槽內的第三流體,第二驅動模組依序轉動子轉盤,以讓位於存放槽內的第三流體受到離心力而依序通過第五彎折段、第三定量槽、第六彎折段而進入第一混合槽。In an embodiment of the present invention, the above-mentioned first micro-channel structure includes a storage tank, a fifth bending section connected to the storage tank, a third quantitative groove connected to the fifth bending section, and a third quantitative groove connected to the third quantitative section. The sixth bent section of the tank and the first mixing tank connected to the sixth bent section, one of the multiple groups of fluids corresponds to the first cassette, the group of fluids includes the third fluid located in the storage tank, the second The drive module rotates the sub-turntable in sequence, so that the third fluid in the storage tank is subjected to centrifugal force to pass through the fifth bending section, the third quantitative groove and the sixth bending section in sequence and enter the first mixing tank.

在本發明的一實施例中,上述的第三流體被膠囊包覆,存放槽具有開口及遠離開口的刺針,膠囊位於存放槽內且位於刺針旁。In an embodiment of the present invention, the third fluid is covered by a capsule, the storage tank has an opening and a lancet away from the opening, and the capsule is located in the storage tank and beside the lancet.

在本發明的一實施例中,上述的第一微流道結構包括第一混合槽、連接於第一混合槽的第七彎折段、連接於第七彎折段的第四定量槽、連接第四定量槽的第八彎折段及連接於第八彎折段的第一偵測槽,第二驅動模組依序轉動子轉盤,以讓流體受到離心力而依序通過第七彎折段、第四定量槽、第八彎折段而進入第一偵測槽。In an embodiment of the present invention, the above-mentioned first micro-channel structure includes a first mixing tank, a seventh bending section connected to the first mixing tank, a fourth quantitative groove connected to the seventh bending section, a connection The eighth bending section of the fourth quantitative groove and the first detection groove connected to the eighth bending section, the second driving module rotates the sub-turntable in sequence, so that the fluid is subjected to centrifugal force and passes through the seventh bending section in sequence , the fourth quantitative groove, and the eighth bending section to enter the first detection groove.

在本發明的一實施例中,上述的第二微流道結構包括第二樣品注入孔、連接於第二樣品注入孔的第九彎折段、連接於第九彎折段的第五定量槽、連接於第五定量槽的第十彎折段及連接於第十彎折段的第二混合槽,多組流體的其中一組流體對應於第二卡匣,且組流體包括第四流體,對應於第二卡匣的第二驅動模組依序轉動子轉盤,以讓第四流體受到離心力而依序通過第九彎折段、第五定量槽、第十彎折段而進入第二混合槽。In an embodiment of the present invention, the above-mentioned second microfluidic channel structure includes a second sample injection hole, a ninth bending section connected to the second sample injection hole, and a fifth quantitative groove connected to the ninth bending section , connected to the tenth bending section of the fifth quantitative groove and the second mixing groove connected to the tenth bending section, wherein one group of fluids of the multiple groups of fluids corresponds to the second cassette, and the group of fluids includes the fourth fluid, The second drive module corresponding to the second cassette rotates the sub-turntable in sequence, so that the fourth fluid is subjected to centrifugal force to pass through the ninth bending section, the fifth quantitative groove, and the tenth bending section in sequence to enter the second mixing section groove.

在本發明的一實施例中,上述的第二微流道結構包括第六定量槽、連接於第六定量槽的第十一彎折段及連接於第十一彎折段的第二混合槽,多組流體的其中一組流體對應於第二卡匣,且此組流體包括第五流體,第二驅動模組依序轉動子轉盤,以讓第五流體受到離心力而依序通過第六定量槽、第十一彎折段而進入第二混合槽。In an embodiment of the present invention, the above-mentioned second microfluidic channel structure includes a sixth quantitative groove, an eleventh bending section connected to the sixth quantitative groove, and a second mixing groove connected to the eleventh bending section , one of the multiple groups of fluids corresponds to the second cassette, and this group of fluids includes the fifth fluid, and the second drive module rotates the sub turntable in sequence, so that the fifth fluid is subjected to centrifugal force and sequentially passes through the sixth quantitative The groove and the eleventh bending section enter the second mixing groove.

在本發明的一實施例中,上述的第二微流道結構包括第二混合槽、連接於第二混合槽的第十二彎折段、連接於第十二彎折段的暫存槽、連接於暫存槽的第十三彎折段、連接於第十三彎折段的第七定量槽、連接於第七定量槽的第十四彎折段及連接第十四彎折段的第二偵測槽,第二驅動模組依序轉動子轉盤,以流體受到離心力而依序通過第十二彎折段、暫存槽、第十三彎折段、第七定量槽、第十四彎折段,而進入第二偵測槽。In an embodiment of the present invention, the above-mentioned second micro-channel structure includes a second mixing tank, a twelfth bending section connected to the second mixing tank, a temporary storage tank connected to the twelfth bending section, The thirteenth bending section connected to the temporary storage groove, the seventh quantitative groove connected to the thirteenth bending section, the fourteenth bending section connected to the seventh quantitative groove, and the 14th bending section connected to the fourteenth bending section Two detection slots, the second drive module rotates the sub-turntable in sequence, and the fluid is subjected to centrifugal force to pass through the twelfth bending section, the temporary storage slot, the thirteenth bending section, the seventh quantitative slot, and the fourteenth bending section in sequence. Bend the segment and enter the second detection slot.

在本發明的一實施例中,當承載轉盤沿著主轉軸轉動時,這些子轉盤中的至少一者與承載轉盤的轉向或轉速不同。In an embodiment of the present invention, when the carrier turntable rotates along the main rotation axis, at least one of the sub-turntables has a different rotation or rotational speed than the carrier turntable.

本發明的一種生物檢測裝置,適於檢測至少一測試卡匣,各測試卡匣包括微流道結構及位於微流道結構內的流體,生物檢測裝置包括控制模組、承載轉盤、第一驅動模組、至少一子轉盤及至少一第二驅動模組。承載轉盤具有主轉軸。第一驅動模組電性連接於控制模組且連接於主轉軸,可使承載轉盤沿著主轉軸轉動。至少一子轉盤具有不同於主轉軸的至少一獨立轉軸,各子轉盤沿著對應的獨立轉軸可個別獨立轉動地設置於承載轉盤上。至少一第二驅動模組電性連接於控制模組,以使至少一子轉盤沿著至少一獨立轉軸轉動。A biological detection device of the present invention is suitable for detecting at least one test cartridge, each test cartridge includes a micro-flow channel structure and a fluid located in the micro-channel structure, and the biological detection device includes a control module, a bearing turntable, a first drive a module, at least one sub-turntable and at least one second driving module. The carrier turntable has a main shaft. The first driving module is electrically connected to the control module and to the main rotating shaft, so that the bearing turntable can be rotated along the main rotating shaft. At least one sub-turntable has at least one independent rotating shaft different from the main rotating shaft, and each of the sub-turntables is individually and independently rotatable along the corresponding independent rotating shaft and is arranged on the bearing turntable. At least one second driving module is electrically connected to the control module, so that at least one sub-turntable rotates along at least one independent rotating shaft.

在本發明的一實施例中,上述的生物檢測裝置更包括第三驅動模組及推桿。第三驅動模組,電性連接於控制模組且設置於承載轉盤上。推桿設置於至少一子轉盤旁且連接於第三驅動模組,以受第三驅動模組的驅動而靠近至少一子轉盤的其中一者,其中推桿適於伸入子轉盤上的測試卡匣,以使測試卡匣內的膠囊被破壞,而使得膠囊內的膠囊流體流入微流道結構。In an embodiment of the present invention, the above-mentioned biological detection device further includes a third driving module and a push rod. The third driving module is electrically connected to the control module and disposed on the bearing turntable. The push rod is arranged beside the at least one sub-turntable and is connected to the third driving module, so as to be driven by the third driving module to approach one of the at least one sub-turntable, wherein the push rod is suitable for extending into the test on the sub-turntable cassette, so that the capsule in the test cassette is destroyed, so that the capsule fluid in the capsule flows into the microfluidic channel structure.

在本發明的一實施例中,上述的生物檢測裝置更包括配重塊及第四驅動模組。配重塊可轉動地設置於承載轉盤。第四驅動模組電性連接於控制模組且連接於配重塊,以使配重塊相對於承載轉盤轉動。In an embodiment of the present invention, the above-mentioned biological detection device further includes a counterweight and a fourth driving module. The counterweight is rotatably arranged on the bearing turntable. The fourth driving module is electrically connected to the control module and to the counterweight block, so that the counterweight block rotates relative to the bearing turntable.

在本發明的一實施例中,上述的生物檢測裝置更包括無線通訊模組或有線通訊模組,無線通訊模組或有線通訊模組電性連接於控制模組,以將外部訊號傳遞至控制模組來控制第一驅動模組及多個第二驅動模組中的至少數者。In an embodiment of the present invention, the above-mentioned biological detection device further includes a wireless communication module or a wired communication module, and the wireless communication module or the wired communication module is electrically connected to the control module to transmit external signals to the control module. The module controls at least a few of the first driving module and the plurality of second driving modules.

在本發明的一實施例中,上述的至少一第二驅動模組與至少一子轉盤位於承載轉盤的同側或異側。In an embodiment of the present invention, the above-mentioned at least one second driving module and at least one sub-turntable are located on the same side or different sides of the carrying turntable.

在本發明的一實施例中,上述的至少一子轉盤包括多個子轉盤,環繞主轉軸地設置於承載轉盤上。In an embodiment of the present invention, the above-mentioned at least one sub-turntable includes a plurality of sub-turntables, which are arranged on the bearing turntable around the main rotation axis.

在本發明的一實施例中,上述的至少一子轉盤包括單一個子轉盤,子轉盤與控制模組位於承載轉盤中的相對位置。In an embodiment of the present invention, the above-mentioned at least one sub-turntable includes a single sub-turntable, and the sub-turntable and the control module are located at opposite positions in the carrying turntable.

在本發明的一實施例中,當承載轉盤沿著主轉軸轉動時,這些子轉盤中的至少一者與承載轉盤的轉向或轉速不同。In an embodiment of the present invention, when the carrier turntable rotates along the main rotation axis, at least one of the sub-turntables has a different rotation or rotational speed than the carrier turntable.

基於上述,本發明的生物檢測系統或是生物檢測裝置的承載轉盤受第一驅動模組驅動而沿著主轉軸旋轉,以對設置於承載轉盤上的這些測試卡匣提供離心力。此外,這些子轉盤可被這些第二驅動模組獨立地驅動,連帶地使安裝在這些子轉盤的這些測試卡匣可以沿著這些獨立轉軸對應地獨立轉動,而使這些測試卡匣內的多組流體可接受或抵消承載轉盤提供的離心力而在這些微流道結構內加速或減緩移動。因此,相較於習知使用移液管(pippet)與毛細現象來控制液體的移動,本發明的生物檢測系統或是生物檢測裝置以主動控制的方式來轉動承載轉盤及子轉盤,而可更快速且有效率地以離心力來驅動流體。此外,本發明的生物檢測系統可一次測試多片測試卡匣,大幅減少測試時間。Based on the above, the biological detection system or the bearing turntable of the biological detection device of the present invention is driven by the first driving module to rotate along the main shaft to provide centrifugal force to the test cassettes disposed on the bearing turntable. In addition, the sub-turntables can be independently driven by the second drive modules, so that the test cassettes mounted on the sub-turntables can be independently rotated correspondingly along the independent rotation shafts, so that many test cassettes in the test cassettes can be independently rotated. A set of fluids can accelerate or decelerate movement within these microfluidic channel structures by accepting or counteracting the centrifugal force provided by the load-bearing turntable. Therefore, compared to the conventional use of pipettes and capillarity to control the movement of the liquid, the biological detection system or biological detection device of the present invention rotates the carrying turntable and the sub turntable in an active control manner, and can be more Quickly and efficiently drive fluids with centrifugal force. In addition, the biological detection system of the present invention can test multiple test cassettes at one time, which greatly reduces the test time.

生物檢測系統可以同時檢測多個不同的測試卡匣,大幅節省測試時間。The biological detection system can detect multiple different test cassettes at the same time, which greatly saves the testing time.

圖1是依照本發明的一實施例的一種生物檢測系統的正面立體示意圖。圖2是圖1的生物檢測系統的背面立體示意圖。請參閱圖1與圖2,本實施例的生物檢測系統10包括生物檢測裝置9及多個測試卡匣30。生物檢測裝置9包括控制模組11(圖2)、承載轉盤12、第一驅動模組14(圖2)、多個子轉盤20及多個第二驅動模組22(圖2)。FIG. 1 is a schematic front perspective view of a biological detection system according to an embodiment of the present invention. FIG. 2 is a schematic rear perspective view of the biological detection system of FIG. 1 . Please refer to FIG. 1 and FIG. 2 , the biological detection system 10 of this embodiment includes a biological detection device 9 and a plurality of test cassettes 30 . The biological detection device 9 includes a control module 11 ( FIG. 2 ), a carrying turntable 12 , a first driving module 14 ( FIG. 2 ), a plurality of sub-turntables 20 and a plurality of second driving modules 22 ( FIG. 2 ).

如圖2所示,承載轉盤12具有主轉軸13(圖1),主轉軸13是承載轉盤12的中心軸。第一驅動模組14電性連接於控制模組11且連接於主轉軸13,以接收控制模組11的指令而驅動承載轉盤12沿著主轉軸13轉動。在圖2中,第一驅動模組14僅是示意性地繪示,第一驅動模組14的形式不限於此。第一驅動模組14可以是馬達、受到溫度變化而變形的記憶金屬或是其他形式的致動器。As shown in FIG. 2 , the bearing turntable 12 has a main shaft 13 ( FIG. 1 ), and the main shaft 13 is the central axis of the bearing turntable 12 . The first driving module 14 is electrically connected to the control module 11 and is connected to the main shaft 13 , and receives an instruction from the control module 11 to drive the bearing turntable 12 to rotate along the main shaft 13 . In FIG. 2 , the first driving module 14 is only schematically shown, and the form of the first driving module 14 is not limited thereto. The first driving module 14 may be a motor, a memory metal deformed by temperature changes, or other forms of actuators.

由圖1可見,在本實施例中,這些子轉盤20分別具有多個獨立轉軸21。這些獨立轉軸21為這些子轉盤20的中心軸。因此,這些獨立轉軸21與主轉軸13非共軸。這些子轉盤20分別沿著這些獨立轉軸21可轉動地設置於承載轉盤12上,而可相對於承載轉盤12轉動。任一獨立轉軸21與主轉軸13的轉向或轉速可不同。As can be seen from FIG. 1 , in this embodiment, the sub-turntables 20 respectively have a plurality of independent rotating shafts 21 . The independent rotation shafts 21 are the central axes of the sub-rotary disks 20 . Therefore, these independent rotating shafts 21 are not coaxial with the main rotating shaft 13 . The sub-turntables 20 are respectively rotatably disposed on the bearing turntable 12 along the independent rotation shafts 21 , and are rotatable relative to the bearing turntable 12 . The rotation or rotational speed of any of the independent shafts 21 and the main shaft 13 may be different.

此外,在本實施例中,子轉盤20的數量以六個為例,但子轉盤20的數量不以此為限制。在其他實施例中,子轉盤20的數量也可以是二到十個中的任一,甚至超過十個,或者子轉盤20的數量也可以只有一個。In addition, in this embodiment, the number of the sub-turntables 20 is taken as an example, but the number of the sub-turntables 20 is not limited by this. In other embodiments, the number of sub-turntables 20 may be any one from two to ten, or even more than ten, or the number of sub-turntables 20 may be only one.

如圖2所示,這些第二驅動模組22分別電性連接於控制模組11且連接於這些獨立轉軸21,以接收控制模組11的指令而驅動這些子轉盤20沿著這些獨立轉軸21獨立轉動。要說明的是,在其他實施例中,這些第二驅動模組22也可以推動這些子轉盤20的邊緣或是其他部位,而使這些子轉盤20獨立轉動,而不一定是藉由驅動這些獨立轉軸21來使這些子轉盤20獨立轉動。此外,這些第二驅動模組22可以是馬達、受到溫度變化而變形的記憶金屬或是其他形式的致動器。As shown in FIG. 2 , the second driving modules 22 are respectively electrically connected to the control module 11 and to the independent rotating shafts 21 to receive commands from the control module 11 to drive the sub-turntables 20 along the independent rotating shafts 21 independent rotation. It should be noted that, in other embodiments, the second driving modules 22 can also push the edges or other parts of the sub-turntables 20 to make the sub-turntables 20 rotate independently, not necessarily by driving the independent turntables 20 The rotary shafts 21 are used to rotate these sub-turntables 20 independently. In addition, these second driving modules 22 may be motors, memory metals deformed by temperature changes, or other forms of actuators.

在本實施例中,這些子轉盤20位於承載轉盤12的正面,且這些第二驅動模組22(圖2)位於承載轉盤12的背面,而使得這些第二驅動模組22與這些子轉盤20位於承載轉盤12的相反側,但第二驅動模組22、子轉盤20及承載轉盤12的相對位置不以此為限制。In this embodiment, the sub-turntables 20 are located on the front of the carrying turntable 12 , and the second driving modules 22 ( FIG. 2 ) are located on the back of the carrying turntable 12 , so that the second driving modules 22 and the sub-turntables 20 are It is located on the opposite side of the carrying turntable 12 , but the relative positions of the second driving module 22 , the sub turntable 20 and the carrying turntable 12 are not limited by this.

值得一提的是,在本實施例中,第二驅動模組22的數量相同於子轉盤20的數量,而使得每個子轉盤20能夠被專屬的第二驅動模組22獨立驅動。因此,在本實施例的生物檢測系統10中,承載轉盤12會沿著主轉軸13轉動,且於此同時,這些子轉盤20還可以沿著這些獨立轉軸21獨立轉動。由於每個子轉盤20能夠被專屬的第二驅動模組22獨立驅動,這些子轉盤20的轉速、轉向、轉動角度皆可不同,使得每一個子轉盤20上的測試卡匣30或液體的流動可以依不同需求去承受或抵消承載轉盤12轉動所產生的離心力。It is worth mentioning that, in this embodiment, the number of the second driving modules 22 is the same as the number of the sub-turntables 20 , so that each sub-turntable 20 can be independently driven by a dedicated second driving module 22 . Therefore, in the biological detection system 10 of this embodiment, the carrying turntable 12 rotates along the main rotating shaft 13 , and at the same time, the sub-turntables 20 can also rotate independently along the independent rotating shafts 21 . Since each sub-turntable 20 can be independently driven by the dedicated second driving module 22, the rotation speed, rotation, and rotation angle of these sub-turntables 20 can be different, so that the flow of the test cassette 30 or the liquid on each sub-turntable 20 can be improved. According to different requirements, the centrifugal force generated by the rotation of the bearing turntable 12 is borne or counteracted.

在本實施例中,這些測試卡匣30可拆卸地配置於這些子轉盤20。測試者可自行將所需要的測試卡匣30安裝至子轉盤20,待測試完畢,可再將測試卡匣30拔離於子轉盤20。測試者也可視需求來測試其他形式的測試卡匣30。In this embodiment, the test cassettes 30 are detachably arranged on the sub-turntables 20 . The tester can install the required test cassette 30 on the sub-turntable 20 by himself. After the test is completed, he can pull out the test cassette 30 from the sub-turntable 20 . Testers can also test other forms of test cassettes 30 as needed.

測試卡匣30安裝在子轉盤20上之後,會固定於子轉盤20,而連動於子轉盤20。因此,當生物檢測系統10運作時,承載轉盤12受第一驅動模組14驅動而沿著主轉軸13旋轉。此時,這些測試卡匣30也會跟著沿著主轉軸13旋轉(公轉)。在此階段,這些子轉盤20可分別被這些第二驅動模組22獨立地驅動,連帶地使這些測試卡匣30還可沿著這些獨立轉軸21自轉,以不同的轉速與轉向轉動至不同的角度。After the test cassette 30 is installed on the sub-turntable 20 , it is fixed to the sub-turntable 20 and linked to the sub-turntable 20 . Therefore, when the biological detection system 10 operates, the carrying turntable 12 is driven by the first driving module 14 to rotate along the main rotating shaft 13 . At this time, these test cassettes 30 also rotate (revolve) along the main shaft 13 . At this stage, the sub-turntables 20 can be independently driven by the second driving modules 22, and the test cassettes 30 can also be rotated along the independent shafts 21 at different rotational speeds and directions to different rotational speeds. angle.

值得一提的是,在一實施例中,生物檢測系統10除了有可以位於第一層的承載轉盤12與位於第二層的這些子轉盤20可以各自獨立轉動之外,在這些第二層的子轉盤20上還可以具有多個第三層的轉盤(未繪示),這些第三層的轉盤可被另外的驅動模組驅動而獨立轉動。也就是說,位於第一層的承載轉盤12、位於第二層的這些子轉盤20及位於第三層的這些轉盤分別被不同的驅動模組驅動而各自獨立轉動。當然,生物檢測系統10中的轉盤層數更可以具有四層或以上,不以上述為限制。It is worth mentioning that, in one embodiment, the biological detection system 10 has the supporting turntable 12 on the first layer and the sub-turntables 20 on the second layer that can be rotated independently. The sub-turntable 20 may also have a plurality of turntables on the third layer (not shown), and these turntables on the third layer can be driven by other driving modules to rotate independently. That is to say, the carrier turntable 12 on the first layer, the sub-turntables 20 on the second layer and the turntables on the third layer are driven by different drive modules to rotate independently. Of course, the number of layers of the turntable in the biological detection system 10 may have four or more layers, which is not limited by the above.

另外,在本實施例的生物檢測系統10中,位於第二層的這些子轉盤20直接設置在位於第一層的承載轉盤12上。在其他實施例的生物檢測系統中,這些子轉盤20與承載轉盤12之間也可以設有其他元件。因此,在這樣的實施例中,承載轉盤12可位於第一層,其他元件(可以不轉動,也可以會轉動,不限制是否會轉動)可位於第二層,且這些子轉盤20可位於第三層或甚至其他層。又或者,在其他實施例中,承載轉盤12與這些子轉盤20的位置、層數不以上述為限制,只要這些子轉盤20可獨立轉動且可受到承載轉盤12轉動時所產生的離心力即可。In addition, in the biological detection system 10 of the present embodiment, the sub-turntables 20 located on the second layer are directly disposed on the carrying turntable 12 located on the first layer. In the biological detection systems of other embodiments, other elements may also be provided between the sub-turntables 20 and the carrying turntable 12 . Therefore, in such an embodiment, the carrying carousel 12 can be located on the first layer, other elements (which may not rotate, or can rotate, regardless of whether they can rotate) can be located on the second layer, and these sub-carousels 20 can be located on the second layer. Three layers or even other layers. Alternatively, in other embodiments, the positions and layers of the carrying turntable 12 and these sub turntables 20 are not limited by the above, as long as the sub turntables 20 can rotate independently and can be subjected to the centrifugal force generated when the carrying turntable 12 rotates .

在本實施例中,各測試卡匣30包括微流道結構36,且微流道結構36內會注入或放置流體。當承載轉盤12沿著主轉軸13旋轉(公轉)時,測試卡匣30內的流體會被甩往離心力C的方向。由於這些測試卡匣30可被不同的轉速、轉向轉動至不同的角度。因此,操作者可藉由調整這些微流道結構36相對於離心力C的角度,以使流體加速或減緩移動到微流道結構36內的特定位置。詳細的作動方式將在後面段落描述。In this embodiment, each of the test cassettes 30 includes a micro-channel structure 36, and the micro-channel structure 36 will inject or place a fluid therein. When the bearing turntable 12 rotates (revolves) along the main shaft 13 , the fluid in the test cassette 30 will be thrown in the direction of the centrifugal force C. As shown in FIG. Because these test cassettes 30 can be rotated to different angles by different rotational speeds and steering directions. Therefore, the operator can adjust the angle of the microfluidic channel structures 36 relative to the centrifugal force C to accelerate or decelerate the fluid to move to a specific position in the microfluidic channel structure 36 . The detailed operation method will be described in the following paragraphs.

此外,在本實施例中,生物檢測系統10可選擇地包括無線通訊模組48(圖2),無線通訊模組48電性連接於控制模組11,以接受外部訊號,並將此訊號傳遞至控制模組11,以控制第一驅動模組14及一個或多個第二驅動模組22中(若有些子轉盤30上沒有安裝測試卡匣30時,或欲進行分批測試時,未安裝測試卡匣30或該批不進行測試的這些子轉盤30可不用轉動)。In addition, in this embodiment, the biological detection system 10 can optionally include a wireless communication module 48 ( FIG. 2 ). The wireless communication module 48 is electrically connected to the control module 11 to receive external signals and transmit the signals. To the control module 11 to control the first drive module 14 and one or more of the second drive modules 22 (if the test cassette 30 is not installed on some sub-turntables 30, or when batch testing is to be performed, the The sub-turntables 30 on which the test cassettes 30 are installed or the batch is not tested may not be rotated).

當然,在其他實施例中,生物檢測系統10也可以透過有線的方式來訊號連接於外部電腦,以取得第一驅動模組14及這些第二驅動模組22的控制訊號。生物檢測系統10不以此為限制。Of course, in other embodiments, the biological detection system 10 can also be connected to an external computer through a wired signal to obtain the control signals of the first driving module 14 and the second driving modules 22 . The biological detection system 10 is not so limited.

另外,在本實施例中,生物檢測系統10還可選擇地包括第三驅動模組40(圖1)、第三驅動模組41(圖2)及推桿42。第三驅動模組40、41可以是馬達、受到溫度變化而變形的記憶金屬或是其他形式的致動器。第三驅動模組40、41電性連接於控制模組11且設置於承載轉盤12上。推桿42設置於這些子轉盤20之間且連動於第三驅動模組40、41,以受第三驅動模組40、41的驅動而將推桿42靠近這些子轉盤20的其中一者。In addition, in this embodiment, the biological detection system 10 may optionally include a third driving module 40 ( FIG. 1 ), a third driving module 41 ( FIG. 2 ) and a push rod 42 . The third driving modules 40 and 41 may be motors, memory metals deformed by temperature changes, or other forms of actuators. The third driving modules 40 and 41 are electrically connected to the control module 11 and disposed on the carrying turntable 12 . The push rod 42 is disposed between the sub-turntables 20 and linked with the third driving modules 40 and 41 , so as to be driven by the third driving modules 40 and 41 to move the push rod 42 close to one of the sub-turntables 20 .

在本實施例中,圖2的第三驅動模組41設置在承載轉盤12的背面,用來控制推桿42轉動至欲靠近的子轉盤20。此外,圖1的第三驅動模組40設置在承載轉盤12的正面,用來控制推桿42前進或後退。當然,在其他實施例中,第三驅動模組40、41的種類不以此為限制,第三驅動模組40、41也可以由其他能夠提供轉動與移動的結構來取代,也可以例如是機械手臂等的單一組件。In this embodiment, the third driving module 41 shown in FIG. 2 is disposed on the back of the bearing turntable 12 , and is used to control the push rod 42 to rotate to the sub-turntable 20 to be approached. In addition, the third driving module 40 of FIG. 1 is disposed on the front surface of the bearing turntable 12 for controlling the push rod 42 to move forward or backward. Of course, in other embodiments, the types of the third driving modules 40 and 41 are not limited by this. The third driving modules 40 and 41 can also be replaced by other structures that can provide rotation and movement. A single component for robotic arms, etc.

在某個特定時序下,推桿42適於伸入子轉盤20上的測試卡匣30,以使測試卡匣30內的膠囊160(圖5A)往前推擠而被刺穿,從而膠囊160內的膠囊流體流入微流道結構36。此將於後面段落說明。At a certain timing, the push rod 42 is adapted to extend into the test cartridge 30 on the sub-turntable 20 , so that the capsule 160 ( FIG. 5A ) in the test cartridge 30 is pushed forward and pierced, so that the capsule 160 is pierced. The fluid inside the capsule flows into the microfluidic channel structure 36 . This will be explained in the following paragraphs.

下面將先說明生物檢測系統的運作原理。The operation principle of the biological detection system will be explained first.

圖3A至圖4C是生物檢測系統的運作原理示意圖。請先參閱圖3A與圖3B,在本實施例中,流道結構50例如是被放置在圖1的子轉盤20上的測試卡匣30內,生物檢測系統10的承載轉盤12在轉動時,子轉盤20會受到離心力C,若將承載有流道結構50的子轉盤20相對於承載轉盤12轉動至特定角度,可使流體F於流道結構50內往特定方向或空間移動。3A to 4C are schematic diagrams illustrating the operation principle of the biological detection system. Please refer to FIG. 3A and FIG. 3B first. In this embodiment, the flow channel structure 50 is, for example, placed in the test cassette 30 on the sub-turntable 20 of FIG. 1 . The sub-turntable 20 is subjected to centrifugal force C. If the sub-turntable 20 carrying the flow channel structure 50 is rotated to a specific angle relative to the carrying turntable 12 , the fluid F can move in a certain direction or space in the flow channel structure 50 .

具體地說,當流道結構50相對於離心力C的方向在圖3A所示的位置時,流體F可從流道結構50的注入口51流至定量槽52,多餘的流體F可經過管道53流至溢流槽54。當流道結構50相對於離心力C的方向轉動至圖3B所示的位置時,定量槽52內的流體F就可以從出口管55流出。Specifically, when the direction of the flow channel structure 50 relative to the centrifugal force C is at the position shown in FIG. 3A , the fluid F can flow from the injection port 51 of the flow channel structure 50 to the quantitative groove 52 , and the excess fluid F can pass through the pipeline 53 Flow to overflow tank 54 . When the flow channel structure 50 rotates relative to the direction of the centrifugal force C to the position shown in FIG. 3B , the fluid F in the quantitative groove 52 can flow out from the outlet pipe 55 .

請參閱圖3C與圖3D,在本實施例中,當流道結構50a相對於離心力C的方向在圖3C與圖3D所示的位置來回轉動時,流體F會反覆地從其中一個槽56流動至另一個槽56,而達到混合的效果。Referring to FIGS. 3C and 3D , in this embodiment, when the flow channel structure 50 a rotates back and forth at the position shown in FIGS. 3C and 3D relative to the direction of the centrifugal force C, the fluid F will repeatedly flow from one of the grooves 56 to another groove 56 to achieve the effect of mixing.

請參閱圖4A至圖4C,在本實施例中,當流道結構50b相對於離心力C的方向從圖4A轉動至圖4B還有圖4C所示的位置時,槽56內的流體F可被分次與分量地倒出。Referring to FIGS. 4A to 4C, in this embodiment, when the flow channel structure 50b rotates relative to the direction of the centrifugal force C from FIG. 4A to the position shown in FIG. 4B and FIG. 4C, the fluid F in the groove 56 can be removed Pour out in portions and portions.

因此,藉由控制流道相對於離心力C的方向之間的角度,可控制流體F在流道內移動至特定位置,而達到特定的功能(例如定量、混合等)。Therefore, by controlling the angle between the flow channel and the direction of the centrifugal force C, the fluid F can be controlled to move to a specific position in the flow channel to achieve a specific function (eg, dosing, mixing, etc.).

請回到圖1,在本實施例中,這些測試卡匣30包括不同設計的第一卡匣32及第二卡匣34(可用於不同測試或不同檢體),第一卡匣32包括第一微流道結構100,第二卡匣34包括第二微流道結構200。第一微流道結構100及第二微流道結構200可以是不同設計的微流道結構36。Returning to FIG. 1 , in this embodiment, the test cassettes 30 include a first cassette 32 and a second cassette 34 of different designs (which can be used for different tests or different specimens), and the first cassette 32 includes a first cassette 32 . A microfluidic channel structure 100 , and the second cassette 34 includes a second microfluidic channel structure 200 . The first microfluidic channel structure 100 and the second microfluidic channel structure 200 may be microfluidic channel structures 36 of different designs.

當第一卡匣32及第二卡匣34分別設置於這些子轉盤20的其中兩者時,依據第一微流道結構100及第二微流道結構200的設計,這些第二驅動模組22的其中兩者可驅動兩子轉盤20依照所需各自轉動,而呈現出不同的步驟,而能夠達到不同的功能。When the first cassette 32 and the second cassette 34 are respectively disposed in two of the sub-turntables 20, according to the design of the first micro-channel structure 100 and the second micro-channel structure 200, the second driving modules Two of the two sub-turntables 22 can drive the two sub-turntables 20 to rotate according to their needs, and present different steps to achieve different functions.

下面先說明第一卡匣32的測試過程。圖5A是圖1的生物檢測系統的其中一個測試卡匣的俯視圖。圖5B至圖5R是圖5A的測試卡匣的測試過程示意圖。請先參閱圖5A與圖5B,在本實施例中,第一微流道結構100包括第一樣品注入孔110、連接於第一樣品注入孔110的第一彎折段112、連接於第一彎折段112的第一定量槽114、連接於第一定量槽114的分離槽116及溢流槽117。The testing process of the first cassette 32 will be described below. FIG. 5A is a top view of one of the test cassettes of the biological detection system of FIG. 1 . 5B to 5R are schematic diagrams of the testing process of the test cassette of FIG. 5A . Please refer to FIG. 5A and FIG. 5B first. In this embodiment, the first microfluidic channel structure 100 includes a first sample injection hole 110 , a first bending section 112 connected to the first sample injection hole 110 , and a first bending section 112 connected to the first sample injection hole 110 . The first quantitative groove 114 of the first bending section 112 , the separation groove 116 and the overflow groove 117 connected to the first quantitative groove 114 .

從圖5A至圖5B的過程中,受測檢體(例如是血液,但不限於此)被注入第一樣品注入孔110,在本實施例中,血液包括了血漿(第一流體F11)與血球F12。In the process from FIG. 5A to FIG. 5B , the test object (for example, blood, but not limited thereto) is injected into the first sample injection hole 110 . In this embodiment, the blood includes plasma (the first fluid F11 ) with blood cell F12.

血液在離心力C的作用下,通過第一彎折段112,且被分離為血漿(第一流體F11)與血球F12,密度大的血球F12會在此階段流至分離槽116,血漿(第一流體F11)則在第一定量槽114內,以供後續使用。此外,在本實施例中,過多的血液會流到溢流槽117內。Under the action of centrifugal force C, the blood passes through the first bending section 112 and is separated into plasma (the first fluid F11) and blood cells F12. The blood cells F12 with high density will flow to the separation tank 116 at this stage, and the plasma (the first fluid F11) will flow to the separation tank 116. The fluid F11) is in the first metering tank 114 for subsequent use. Furthermore, in this embodiment, too much blood may flow into the overflow groove 117 .

接著,第一微流道結構100相對於離心力C的方向被轉動至圖5C所示的位置。在本實施例中,第一微流道結構100還包括連接於第一定量槽114的第二彎折段118及連接於第二彎折段118的第一混合槽120、121。第二驅動模組22轉動子轉盤20,以使原位於第一定量槽114的第一流體F11受到離心力C帶動而通過第二彎折段118後進入第一混合槽120、121。在本實施例中,第一混合槽121內可裝有抗體P,第一流體F11可在第一混合槽120、121內與抗體P混合。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5C . In this embodiment, the first micro-channel structure 100 further includes a second bending section 118 connected to the first quantitative groove 114 and first mixing grooves 120 and 121 connected to the second bending section 118 . The second driving module 22 rotates the sub-turntable 20 so that the first fluid F11 originally located in the first quantitative tank 114 is driven by the centrifugal force C to pass through the second bending section 118 and then enter the first mixing tanks 120 and 121 . In this embodiment, the antibody P may be contained in the first mixing tank 121 , and the first fluid F11 may be mixed with the antibody P in the first mixing tanks 120 and 121 .

再來,第一微流道結構100相對於離心力C的方向被轉動至圖5D的位置。在本實施例中,第一微流道結構100還包括連接於第一混合槽120、121的第三彎折段122及連接於第三彎折段122的廢液槽124。第二驅動模組22轉動子轉盤20,以使位於第一混合槽120、121的第一流體F11受到離心力C而通過第三彎折段122後進入廢液槽124。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5D . In this embodiment, the first microfluidic channel structure 100 further includes a third bending section 122 connected to the first mixing tanks 120 and 121 and a waste liquid tank 124 connected to the third bending section 122 . The second driving module 22 rotates the sub-turntable 20 so that the first fluid F11 in the first mixing tanks 120 and 121 is subjected to centrifugal force C to pass through the third bending section 122 and then enter the waste liquid tank 124 .

接著,第一微流道結構100相對於離心力C的方向被轉動至圖5E的位置。在本實施例中,第一微流道結構100包括注入口132、連接於注入口132的第二定量槽134及槽130。第二流體F2被注入於注入口132,且流到第二定量槽134及槽130內。第二流體F2例如是洗液,但第二流體F2的種類不以此為限制。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5E . In this embodiment, the first microfluidic channel structure 100 includes an injection port 132 , a second quantitative groove 134 and a groove 130 connected to the injection port 132 . The second fluid F2 is injected into the injection port 132 and flows into the second quantitative tank 134 and the tank 130 . The second fluid F2 is, for example, a lotion, but the type of the second fluid F2 is not limited thereto.

然後,第一微流道結構100相對於離心力C的方向被轉動至圖5F的位置。在本實施例中,第一微流道結構100還包括連接於第二定量槽134的第四彎折段136。第四彎折段136連接於第一混合槽120、121。第二驅動模組22轉動子轉盤20,以讓第二定量槽134內的第二流體F2受到離心力C通過第四彎折段136而進入第一混合槽120、121。Then, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position of FIG. 5F . In this embodiment, the first microfluidic channel structure 100 further includes a fourth bending section 136 connected to the second quantitative groove 134 . The fourth bending section 136 is connected to the first mixing tanks 120 and 121 . The second driving module 22 rotates the sub-turntable 20 so that the second fluid F2 in the second metering tank 134 is subjected to centrifugal force C to enter the first mixing tanks 120 and 121 through the fourth bending section 136 .

接著,第一微流道結構100相對於離心力C的方向被轉動至圖5G的位置,第二驅動模組22轉動子轉盤20,以使位於第一混合槽120、121的第二流體F2受到離心力C而通過第三彎折段122後進入廢液槽124。Next, the first microfluidic channel structure 100 is rotated to the position shown in FIG. 5G with respect to the direction of the centrifugal force C, and the second driving module 22 rotates the sub-turntable 20 so that the second fluid F2 in the first mixing tanks 120 and 121 is subjected to The centrifugal force C passes through the third bending section 122 and then enters the waste liquid tank 124 .

再來,第一微流道結構100相對於離心力C的方向被轉動至圖5H的位置。在本實施例中,第一微流道結構100包括存放槽140、連接於存放槽140的第五彎折段142、連接於第五彎折段142的第三定量槽144。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5H . In this embodiment, the first microfluidic channel structure 100 includes a storage slot 140 , a fifth bending section 142 connected to the storage slot 140 , and a third quantitative slot 144 connected to the fifth bending section 142 .

位於存放槽140內的第三流體F31被膠囊160包覆,存放槽140具有開口143及遠離開口143的刺針141,膠囊160位於存放槽140內且位於刺針141旁。The third fluid F31 in the storage tank 140 is covered by the capsule 160 . The storage tank 140 has an opening 143 and a lancet 141 away from the opening 143 .

請搭配圖1,推桿42可伸入存放槽140的開口143,而將膠囊160推向刺針141,以破壞膠囊160而使膠囊160內的第三流體F31流出。請回到圖5H,此時,流出於膠囊160的第三流體F31受到離心力C而通過第五彎折段142流至第三定量槽144內。Referring to FIG. 1 , the push rod 42 can extend into the opening 143 of the storage slot 140 to push the capsule 160 toward the needle 141 , so as to destroy the capsule 160 and allow the third fluid F31 in the capsule 160 to flow out. Returning to FIG. 5H , at this time, the third fluid F31 flowing out of the capsule 160 is subjected to centrifugal force C and flows into the third quantitative groove 144 through the fifth bending section 142 .

接著,第一微流道結構100相對於離心力C的方向被轉動至圖5I的位置。在本實施例中,第一微流道結構100包括連接於第三定量槽144的第六彎折段146。第六彎折段146連接於第一混合槽120、121。第三定量槽144內的第三流體F31受到離心力C而通過第六彎折段146而進入第一混合槽120、121。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5I . In this embodiment, the first microfluidic channel structure 100 includes a sixth bending section 146 connected to the third quantitative groove 144 . The sixth bending section 146 is connected to the first mixing tanks 120 and 121 . The third fluid F31 in the third quantitative tank 144 is subjected to centrifugal force C and enters the first mixing tanks 120 and 121 through the sixth bending section 146 .

再來,第一微流道結構100相對於離心力C的方向被轉動至圖5J的位置,第二驅動模組22轉動子轉盤20,以使位於第一混合槽120、121的第三流體F31受到離心力C而通過第三彎折段122後進入廢液槽124。Next, the first micro-channel structure 100 is rotated to the position shown in FIG. 5J with respect to the direction of the centrifugal force C, and the second driving module 22 rotates the sub-turntable 20 so that the third fluid F31 located in the first mixing tanks 120 and 121 After being subjected to centrifugal force C, it passes through the third bending section 122 and then enters the waste liquid tank 124 .

此後,可重複圖5E至圖5G的步驟,利用第二流體F2(洗液)流過第一混合槽120、121的過程來清潔第一混合槽120、121。Thereafter, the steps of FIGS. 5E to 5G may be repeated to clean the first mixing tanks 120 , 121 with the second fluid F2 (washing liquid) flowing through the first mixing tanks 120 , 121 .

接著,第一微流道結構100相對於離心力C的方向依序被轉動至圖5K、圖5L、圖5M的位置,在圖5K時,再度操作推桿42(圖1)來將使位於存放槽140a內的膠囊160a被刺針141破壞,流出於膠囊160a的第三流體F32受到離心力C而通過第五彎折段142a流至第三定量槽144a內。其後,第三定量槽144a內的第三流體F32受到離心力C而通過第六彎折段146a而進入第一混合槽120、121,而與抗體P混合,再通過第三彎折段122後進入廢液槽124。Next, the first microfluidic channel structure 100 is rotated to the positions shown in FIG. 5K , FIG. 5L and FIG. 5M in sequence relative to the direction of the centrifugal force C. In FIG. 5K , the push rod 42 ( FIG. 1 ) is operated again to make the position in the storage The capsule 160a in the groove 140a is destroyed by the needle 141, and the third fluid F32 flowing out of the capsule 160a is subjected to centrifugal force C and flows into the third quantitative groove 144a through the fifth bending section 142a. After that, the third fluid F32 in the third quantitative tank 144a is subjected to centrifugal force C and enters the first mixing tanks 120 and 121 through the sixth bending section 146a, and is mixed with the antibody P, and then passes through the third bending section 122. into waste tank 124 .

再來,可重複圖5E至圖5G的步驟,利用第二流體F2(洗液)流過第一混合槽120、121的過程來清潔第一混合槽120、121。Then, the steps of FIG. 5E to FIG. 5G may be repeated to clean the first mixing tanks 120 and 121 by using the process of the second fluid F2 (washing liquid) flowing through the first mixing tanks 120 and 121 .

接著,第一微流道結構100相對於離心力C的方向依序被轉動至圖5N與圖5O的位置,在圖5N時,第三度操作推桿42(圖1)來將使位於存放槽140b內的膠囊160b被刺針141破壞,位於存放槽140b內的第三流體F33受到離心力C而通過第五彎折段142b流至第三定量槽144b內。其後,第三定量槽144b內的第三流體F33受到離心力C而通過第六彎折段146b而進入第一混合槽120、121,而與抗體P混合。第三流體F31、F32、F33例如是呈色劑,但不以此為限制。Next, the first micro-channel structure 100 is rotated to the positions shown in FIG. 5N and FIG. 5O in sequence relative to the direction of the centrifugal force C. In FIG. 5N , the push rod 42 ( FIG. 1 ) is operated at a third degree to make the position in the storage tank The capsule 160b in the 140b is destroyed by the needle 141, and the third fluid F33 in the storage groove 140b is subjected to the centrifugal force C and flows into the third quantitative groove 144b through the fifth bending section 142b. After that, the third fluid F33 in the third quantitative tank 144b is subjected to centrifugal force C and enters the first mixing tanks 120 and 121 through the sixth bending section 146b, and is mixed with the antibody P. The third fluids F31, F32, F33 are, for example, color formers, but not limited thereto.

接著,第一微流道結構100相對於離心力C的方向被轉動至圖5P的位置,此時,第一混合槽120、121內的第三流體F33可於此進行第一次偵測。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 5P . At this time, the third fluid F33 in the first mixing tanks 120 and 121 can be detected for the first time.

接著,第一微流道結構100相對於離心力C的方向依序被轉動至圖5Q與圖5R的位置,第一微流道結構100包括連接於第一混合槽120、121的第七彎折段150、連接於第七彎折段150的暫存槽152、連接於暫存槽152的彎折段154、連接於彎折段154的第四定量槽156、連接第四定量槽156的第八彎折段157及連接於第八彎折段157的第一偵測槽158、159。Next, the first microfluidic channel structure 100 is rotated to the positions shown in FIG. 5Q and FIG. 5R in sequence relative to the direction of the centrifugal force C. The first microfluidic channel structure 100 includes a seventh bend connected to the first mixing tanks 120 and 121 . segment 150 , the temporary storage slot 152 connected to the seventh bent segment 150 , the bent segment 154 connected to the temporary storage slot 152 , the fourth quantitative slot 156 connected to the bent segment 154 , the first quantitative slot 156 connected to the fourth quantitative slot 156 . Eight bending sections 157 and first detection grooves 158 and 159 connected to the eight bending sections 157 .

第二驅動模組22依序轉動子轉盤20,以讓流體受到離心力C而依序通過第七彎折段150、暫存槽152、彎折段154、第四定量槽156、第八彎折段157而進入第一偵測槽158、159,而可對第一偵測槽158、159內的第三流體F33進行第二次偵測。The second driving module 22 rotates the sub-turntable 20 in sequence, so that the fluid is subjected to the centrifugal force C to pass through the seventh bending section 150 , the temporary storage groove 152 , the bending section 154 , the fourth quantitative groove 156 , and the eighth bending section in sequence. The segment 157 enters the first detection grooves 158 and 159 , and the second detection of the third fluid F33 in the first detection grooves 158 and 159 can be performed.

當然,第一微流道結構100的操作步驟與方式不以上述為限制。Certainly, the operation steps and manners of the first microfluidic channel structure 100 are not limited to the above.

下面介紹第二卡匣34及其測試過程。圖6A是圖1的生物檢測系統的另一個測試卡匣的俯視圖。圖6B至圖6H是圖6A的測試卡匣的測試過程示意圖。請先參閱圖6A與圖6B,在本實施例中,第二微流道結構200包括第二樣品注入孔210、連接於第二樣品注入孔210的第九彎折段212、連接於第九彎折段212的第五定量槽214、連接於第五定量槽214的分離槽216及溢流槽217。The second cassette 34 and its testing process are described below. 6A is a top view of another test cassette of the biological detection system of FIG. 1 . 6B to 6H are schematic diagrams of the testing process of the testing cassette of FIG. 6A . Please refer to FIG. 6A and FIG. 6B first. In this embodiment, the second microfluidic channel structure 200 includes a second sample injection hole 210 , a ninth bending section 212 connected to the second sample injection hole 210 , and a ninth bending section 212 connected to the second sample injection hole 210 . The fifth quantitative groove 214 of the bending section 212 , the separation groove 216 and the overflow groove 217 connected to the fifth quantitative groove 214 .

從圖6A至圖6B的過程中,血液(但不限於此)被注入第二樣品注入孔210,在本實施例中,血液包括了血漿(第四流體F41)與血球F42。In the process from FIG. 6A to FIG. 6B , blood (but not limited thereto) is injected into the second sample injection hole 210 . In this embodiment, the blood includes plasma (fourth fluid F41 ) and blood cells F42 .

血液在離心力C的作用下,通過第九彎折段212,且被分離為血漿(第四流體F41)與血球F42,密度大的血球F42會在此階段流至分離槽216,血漿(第四流體F41)則在第五定量槽214內,以供後續使用。此外,在本實施例中,過多的血液會流到溢流槽217內。Under the action of centrifugal force C, the blood passes through the ninth bending section 212 and is separated into plasma (the fourth fluid F41) and blood cells F42. The fluid F41) is in the fifth dosing tank 214 for subsequent use. Furthermore, in this embodiment, too much blood may flow into the overflow groove 217 .

接著,第一微流道結構100相對於離心力C的方向被轉動至圖6C的位置。在本實施例中,第二微流道結構200還包括連接於第五定量槽214的第十彎折段218及連接於第十彎折段218的第二混合槽220。對應於第二卡匣34的第二驅動模組22轉動子轉盤20,以讓第五定量槽214內的第四流體F41受到離心力C而通過第十彎折段218而進入第二混合槽220。Next, the first microfluidic channel structure 100 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 6C . In this embodiment, the second microfluidic channel structure 200 further includes a tenth bending section 218 connected to the fifth quantitative groove 214 and a second mixing groove 220 connected to the tenth bending section 218 . The second drive module 22 corresponding to the second cassette 34 rotates the sub-turntable 20 so that the fourth fluid F41 in the fifth quantitative tank 214 is subjected to centrifugal force C and enters the second mixing tank 220 through the tenth bending section 218 .

再來,第二微流道結構200相對於離心力C的方向被轉動至圖6D的位置。在本實施例中,第二微流道結構200包括注入口224、連接於注入口224的第六定量槽226及槽222。第五流體F5被注入於注入口224,且流到第六定量槽226及槽222內。第五流體F5例如是稀釋液,但第二流體F2的種類不以此為限制。Next, the second microfluidic channel structure 200 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 6D . In this embodiment, the second microfluidic channel structure 200 includes an injection port 224 , a sixth quantitative groove 226 and a groove 222 connected to the injection port 224 . The fifth fluid F5 is injected into the injection port 224 and flows into the sixth quantitative groove 226 and the groove 222 . The fifth fluid F5 is, for example, a diluent, but the type of the second fluid F2 is not limited thereto.

接著,第二微流道結構200相對於離心力C的方向被轉動至圖6E的位置。在本實施例中,第二微流道結構200包括連接於第六定量槽226的第十一彎折段228,第十一彎折段228連接於第二混合槽220。第二驅動模組22轉動子轉盤20,以讓第六定量槽226內的第五流體F5受到離心力C而通過第十一彎折段228而進入第二混合槽220。此時,第四流體F41與第五流體F5混合成混合流體F45。Next, the second microfluidic channel structure 200 is rotated relative to the direction of the centrifugal force C to the position shown in FIG. 6E . In this embodiment, the second microfluidic channel structure 200 includes an eleventh bending section 228 connected to the sixth quantitative groove 226 , and the eleventh bending section 228 is connected to the second mixing groove 220 . The second driving module 22 rotates the sub-turntable 20 , so that the fifth fluid F5 in the sixth quantitative groove 226 is subjected to centrifugal force C and enters the second mixing groove 220 through the eleventh bending section 228 . At this time, the fourth fluid F41 and the fifth fluid F5 are mixed to form a mixed fluid F45.

再來,第二微流道結構200相對於離心力C的方向依序被轉動至圖6F、圖6G與圖6H的位置。在本實施例中,第二微流道結構200包括連接於第二混合槽220的第十二彎折段230、連接於第十二彎折段230的暫存槽232、連接於暫存槽232的第十三彎折段234、連接於第十三彎折段234的第七定量槽236、連接於第七定量槽236的第十四彎折段238及連接第十四彎折段238的第二偵測槽240、242。Next, the direction of the second micro-channel structure 200 relative to the centrifugal force C is sequentially rotated to the positions shown in FIG. 6F , FIG. 6G and FIG. 6H . In this embodiment, the second microfluidic channel structure 200 includes a twelfth bending section 230 connected to the second mixing tank 220 , a temporary storage tank 232 connected to the twelfth bending section 230 , and a temporary storage tank 232 connected to the temporary storage tank The thirteenth bending section 234 of the 232, the seventh quantitative groove 236 connected to the thirteenth bending section 234, the fourteenth bending section 238 connected to the seventh quantitative groove 236, and the fourteenth bending section 238 connected of the second detection slots 240 and 242.

如圖6F、圖6G與圖6H,第二驅動模組22依序轉動子轉盤20,第四流體F41與第五流體F5的混合流體F45受到離心力C而依序通過第十二彎折段230、暫存槽232、第十三彎折段234、第七定量槽236、第十四彎折段238,而進入第二偵測槽240、242。6F , FIG. 6G and FIG. 6H , the second driving module 22 rotates the sub-turntable 20 in sequence, and the mixed fluid F45 of the fourth fluid F41 and the fifth fluid F5 is subjected to centrifugal force C and passes through the twelfth bending section 230 in sequence , the temporary storage groove 232 , the thirteenth bending section 234 , the seventh quantitative groove 236 , and the fourteenth bending section 238 , and enter the second detection grooves 240 and 242 .

當然,第二微流道結構200的操作步驟與方式不以上述為限制。Certainly, the operation steps and manners of the second microfluidic channel structure 200 are not limited to the above.

值得一提的是,即便第一卡匣32的第一微流道結構100與第二卡匣34的第二微流道結構200不同,且操作步驟、時序、轉動方向與角度也不同。由於本實施例的生物檢測系統10由於可並行地且獨立地控制不同的子轉盤20在不同時序下的角度,第一卡匣32與第二卡匣34可同時被測試,相當節省測試時間,大幅地增加了測試的方便性。換言之,如圖1所示,本實施例的生物檢測系統10可同時放置六個不同測試卡匣30、具有六種不同的微流道結構36、可同時進行操作六種步驟、時序、轉動方向與角度不同的測試。It is worth mentioning that even though the first micro-channel structure 100 of the first cassette 32 and the second micro-channel structure 200 of the second cassette 34 are different, the operation steps, timing, rotation direction and angle are also different. Since the biological detection system 10 of the present embodiment can control the angles of different sub-turntables 20 at different timings in parallel and independently, the first cassette 32 and the second cassette 34 can be tested at the same time, which greatly saves the testing time. Greatly increases the convenience of testing. In other words, as shown in FIG. 1 , the biological detection system 10 of this embodiment can place six different test cassettes 30 at the same time, have six different microfluidic channel structures 36 , and can simultaneously perform six kinds of steps, timings, and rotation directions. A test with a different angle.

此外,在這些測試卡匣30的測試過程中,微流道結構36內的流體流向能被控制,而有效進行定量、混合、清洗等重要的檢測程序。生物檢測系統10可以連續地進行這些測試卡匣30所需的步驟,不需要中間停下來,每個測試卡匣30也不受其他測試卡匣30的測試程序影響。因此,生物檢測系統10可透過單一機台來同時對多個相同的或不同的測試卡匣30測試,而滿足各測試卡匣30的測試需求。In addition, during the testing process of these test cassettes 30, the fluid flow direction in the microfluidic channel structure 36 can be controlled, and important testing procedures such as quantification, mixing, and cleaning can be effectively performed. The bioassay system 10 can continuously perform the steps required by these test cassettes 30 without intermediate stops, and each test cassette 30 is not affected by the testing procedures of the other test cassettes 30 . Therefore, the biological detection system 10 can simultaneously test a plurality of the same or different test cassettes 30 through a single machine, so as to satisfy the testing requirements of each test cassette 30 .

要說明的是,本實施例僅舉出其中兩種測試卡匣30的形式,但測試卡匣30的形式與測試步驟不限於此。It should be noted that this embodiment only exemplifies two forms of the test cassette 30 , but the form and test steps of the test cassette 30 are not limited thereto.

圖7是依照本發明的另一實施例的一種生物檢測系統的俯視示意圖。請參閱圖7,本實施例的生物檢測系統10a與圖1的生物檢測系統10的主要差異在於,在本實施例中,這些子轉盤20位於承載轉盤12的正面,且這些第二驅動模組22也位於承載轉盤12的正面,而使得這些第二驅動模組22與這些子轉盤20位於承載轉盤12的同側。7 is a schematic top view of a biological detection system according to another embodiment of the present invention. Referring to FIG. 7 , the main difference between the biological detection system 10 a of this embodiment and the biological detection system 10 of FIG. 1 is that in this embodiment, the sub-turntables 20 are located on the front of the carrying turntable 12 , and the second driving modules 22 is also located on the front side of the carrying turntable 12 , so that the second driving modules 22 and the sub turntables 20 are located on the same side of the carrying turntable 12 .

圖8是依照本發明的另一實施例的一種生物檢測系統的背面立體示意圖。請參閱圖8,本實施例的生物檢測系統10b與圖2的生物檢測系統10的主要差異在於,在本實施例中,生物檢測系統10更包括配重塊44及第四驅動模組46。配重塊44可轉動地設置於承載轉盤12。第四驅動模組46可以是馬達、受到溫度變化而變形的記憶金屬或是其他形式的致動器。第四驅動模組46電性連接於控制模組11且連接於配重塊44,以使配重塊44相對於承載轉盤12轉動,而調整整體配重。也就是說,配重塊44及第四驅動模組46具有使承載轉盤12與子轉盤20自動平衡的功能,其可以使承載轉盤12與子轉盤20在旋轉過程中重心能夠維持靠近主轉軸13的位置,以達到平衡,而降低產生震動的機率。如此一來,承載轉盤12與子轉盤20旋轉時能更加地穩定。FIG. 8 is a schematic rear perspective view of a biological detection system according to another embodiment of the present invention. Referring to FIG. 8 , the main difference between the biological detection system 10 b of this embodiment and the biological detection system 10 of FIG. 2 is that in this embodiment, the biological detection system 10 further includes a counterweight 44 and a fourth driving module 46 . The counterweight 44 is rotatably disposed on the bearing turntable 12 . The fourth driving module 46 may be a motor, a memory metal deformed by temperature changes, or other forms of actuators. The fourth driving module 46 is electrically connected to the control module 11 and to the counterweight block 44 , so that the counterweight block 44 rotates relative to the bearing turntable 12 to adjust the overall counterweight. That is to say, the counterweight 44 and the fourth driving module 46 have the function of automatically balancing the carrying turntable 12 and the sub turntable 20 , which can keep the center of gravity of the carrying turntable 12 and the sub turntable 20 close to the main shaft 13 during the rotation process. position to achieve balance and reduce the chance of vibration. In this way, the bearing turntable 12 and the sub turntable 20 can be more stable when rotating.

圖9A是依照本發明的另一實施例的一種生物檢測系統的正面立體示意圖。圖9B是將圖9A的生物檢測系統的測試卡匣拿起的示意圖。請參閱圖9A及圖9B,本實施例的生物檢測系統10c與圖1的生物檢測系統10的主要差異在於,在本實施例中,子轉盤20的數量以一個為例。同樣地,承載轉盤12會沿著主轉軸13轉動而提供離心力C,且第二驅動模組22驅動子轉盤20沿著獨立轉軸21(圖9B)轉動,以使測試卡匣30內的流體受到離心力C而在微流道結構36內移動。9A is a schematic front perspective view of a biological detection system according to another embodiment of the present invention. FIG. 9B is a schematic diagram of picking up the test cassette of the biological detection system of FIG. 9A . Referring to FIGS. 9A and 9B , the main difference between the biological detection system 10 c of this embodiment and the biological detection system 10 of FIG. 1 is that in this embodiment, the number of sub-turntables 20 is taken as an example. Similarly, the bearing turntable 12 will rotate along the main shaft 13 to provide centrifugal force C, and the second driving module 22 drives the sub turntable 20 to rotate along the independent shaft 21 ( FIG. 9B ), so that the fluid in the test cassette 30 is subjected to The centrifugal force C moves within the microfluidic channel structure 36 .

在圖9A及圖9B中,充電電池60可至少對控制模組11供電。在一實施例中,充電電池60還可對第二驅動模組22充電。此外,子轉盤20與控制模組11位於承載轉盤12中的相對位置,子轉盤20上放有測試卡匣30,對面則是設置控制模組11,這樣的位置關係可有助於配重,以使轉動過程更為順暢。In FIGS. 9A and 9B , the rechargeable battery 60 can at least supply power to the control module 11 . In one embodiment, the rechargeable battery 60 can also charge the second driving module 22 . In addition, the sub-turntable 20 and the control module 11 are located at opposite positions in the bearing turntable 12, the test cassette 30 is placed on the sub-turntable 20, and the control module 11 is arranged on the opposite side. Such a positional relationship can help counterweight, to make the rotation process smoother.

綜上所述,本發明的生物檢測系統或是生物檢測裝置的承載轉盤受第一驅動模組驅動而沿著主轉軸旋轉,以對設置於承載轉盤上的這些測試卡匣提供離心力。此外,這些子轉盤可被這些第二驅動模組獨立地驅動,連帶地使安裝在這些子轉盤的這些測試卡匣可以沿著這些獨立轉軸對應地獨立轉動,而使這些測試卡匣內的多組流體可接受或抵消承載轉盤提供的離心力而在這些微流道結構內加速或減緩移動。因此,相較於習知使用移液管(pippet)與毛細現象來控制液體的移動,本發明的生物檢測系統或是生物檢測裝置以主動控制的方式來轉動承載轉盤及子轉盤,而可更快速且有效率地以離心力來驅動流體。此外,本發明的生物檢測系統可一次測試多片測試卡匣,大幅減少測試時間。To sum up, the biological detection system or the bearing turntable of the biological detection device of the present invention is driven by the first driving module to rotate along the main shaft to provide centrifugal force to the test cassettes disposed on the bearing turntable. In addition, the sub-turntables can be independently driven by the second drive modules, so that the test cassettes mounted on the sub-turntables can be independently rotated correspondingly along the independent rotation shafts, so that many test cassettes in the test cassettes can be independently rotated. A set of fluids can accelerate or decelerate movement within these microfluidic channel structures by accepting or counteracting the centrifugal force provided by the load-bearing turntable. Therefore, compared to the conventional use of pipettes and capillarity to control the movement of the liquid, the biological detection system or biological detection device of the present invention rotates the carrying turntable and the sub turntable in an active control manner, and can be more Quickly and efficiently drive fluids with centrifugal force. In addition, the biological detection system of the present invention can test multiple test cassettes at one time, which greatly reduces the test time.

C:離心力 F:流體 F11:第一流體 F12、F42:血球 F2:第二流體 F31、F32、F33:第三流體 F41:第四流體 F5:第五流體 F45:混合流體 P:抗體 9:生物檢測裝置 10、10a、10b、10c:生物檢測系統 11:控制模組 12:承載轉盤 13:主轉軸 14:第一驅動模組 20:子轉盤 21:獨立轉軸 22:第二驅動模組 30:測試卡匣 32:第一卡匣 34:第二卡匣 36:微流道結構 40、41:第三驅動模組 42:推桿 44:配重塊 46:第四驅動模組 48:無線通訊模組 50、50a、50b:流道結構 51:注入口 52:定量槽 53:管道 54:溢流槽 55:出口管 56:槽 60:充電電池 100:第一微流道結構 110:第一樣品注入孔 112:第一彎折段 114:第一定量槽 116:分離槽 117:溢流槽 118:第二彎折段 120、121:第一混合槽 122:第三彎折段 124:廢液槽 130:槽 132:注入口 134:第二定量槽 136:第四彎折段 140、140a、140b:存放槽 141:刺針 142、142a、142b:第五彎折段 143:開口 144、144a、144b:第三定量槽 146、146a、146b:第六彎折段 150:第七彎折段 152:暫存槽 154:彎折段 156:第四定量槽 157:第八彎折段 158、159:第一偵測槽 160、160a、160b:膠囊 200:第二微流道結構 210:第二樣品注入孔 212:第九彎折段 214:第五定量槽 216:分離槽 217:溢流槽 218:第十彎折段 220:第二混合槽 222:槽 224:注入口 226:第六定量槽 228:第十一彎折段 230:第十二彎折段 232:暫存槽 234:第十三彎折段 236:第七定量槽 238:第十四彎折段 240、242:第二偵測槽C: centrifugal force F: fluid F11: First Fluid F12, F42: blood cells F2: second fluid F31, F32, F33: the third fluid F41: Fourth fluid F5: Fifth fluid F45: Mixed Fluids P: Antibody 9: Biological detection device 10, 10a, 10b, 10c: Biological Detection System 11: Control module 12: Bearing turntable 13: Main shaft 14: The first drive module 20: Sub-turntable 21: Independent shaft 22: The second drive module 30: Test cassette 32: The first cassette 34: Second cassette 36: Microfluidic Structure 40, 41: The third drive module 42: putter 44: Counterweight 46: Fourth drive module 48: Wireless communication module 50, 50a, 50b: runner structure 51: Injection port 52: quantitative tank 53: Pipes 54: Overflow tank 55: outlet tube 56: Groove 60: rechargeable battery 100: The first microchannel structure 110: The first sample injection hole 112: The first bending segment 114: The first quantitative tank 116: Separation tank 117: Overflow tank 118: Second bending segment 120, 121: The first mixing tank 122: The third bending segment 124: Waste tank 130: Groove 132: Injection port 134: Second quantitative tank 136: Fourth bending segment 140, 140a, 140b: storage slots 141: Needle 142, 142a, 142b: the fifth bending segment 143: Opening 144, 144a, 144b: the third quantitative tank 146, 146a, 146b: the sixth bending segment 150: Seventh bending section 152: Temporary storage slot 154: Bend segment 156: Fourth quantitative tank 157: Eighth Bending Section 158, 159: The first detection slot 160, 160a, 160b: Capsules 200: Second microchannel structure 210: second sample injection hole 212: Ninth bending section 214: Fifth quantitative slot 216: Separation tank 217: Overflow tank 218: Tenth bending section 220: Second mixing tank 222: Groove 224: Injection port 226: Sixth quantitative slot 228: Eleventh Bending Section 230: Twelfth bending section 232: staging slot 234: Thirteenth Bending Section 236: Seventh quantitative slot 238: Fourteenth bending section 240, 242: The second detection slot

圖1是依照本發明的一實施例的一種生物檢測系統的正面立體示意圖。 圖2是圖1的生物檢測系統的背面立體示意圖。 圖3A至圖4C是生物檢測系統的運作原理示意圖。 圖5A是圖1的生物檢測系統的其中一個測試卡匣的俯視圖。 圖5B至圖5R是圖5A的測試卡匣的測試過程示意圖。 圖6A是圖1的生物檢測系統的另一個測試卡匣的俯視圖。 圖6B至圖6H是圖6A的測試卡匣的測試過程示意圖。 圖7是依照本發明的另一實施例的一種生物檢測系統的俯視示意圖。 圖8是依照本發明的另一實施例的一種生物檢測系統的背面立體示意圖。 圖9A是依照本發明的另一實施例的一種生物檢測系統的正面立體示意圖。 圖9B是將圖9A的生物檢測系統的測試卡匣拿起的示意圖。FIG. 1 is a schematic front perspective view of a biological detection system according to an embodiment of the present invention. FIG. 2 is a schematic rear perspective view of the biological detection system of FIG. 1 . 3A to 4C are schematic diagrams illustrating the operation principle of the biological detection system. FIG. 5A is a top view of one of the test cassettes of the biological detection system of FIG. 1 . 5B to 5R are schematic diagrams of the testing process of the test cassette of FIG. 5A . 6A is a top view of another test cassette of the biological detection system of FIG. 1 . 6B to 6H are schematic diagrams of the testing process of the testing cassette of FIG. 6A . 7 is a schematic top view of a biological detection system according to another embodiment of the present invention. FIG. 8 is a schematic rear perspective view of a biological detection system according to another embodiment of the present invention. 9A is a schematic front perspective view of a biological detection system according to another embodiment of the present invention. FIG. 9B is a schematic diagram of picking up the test cassette of the biological detection system of FIG. 9A .

C:離心力C: centrifugal force

9:生物檢測裝置9: Biological detection device

10:生物檢測系統10: Biological Detection System

12:承載轉盤12: Bearing turntable

13:主轉軸13: Main shaft

20:子轉盤20: Sub-turntable

21:獨立轉軸21: Independent shaft

30:測試卡匣30: Test cassette

32:第一卡匣32: The first cassette

34:第二卡匣34: Second cassette

36:微流道結構36: Microfluidic Structure

40:第三驅動模組40: The third drive module

42:推桿42: putter

100:第一微流道結構100: The first microchannel structure

200:第二微流道結構200: Second microchannel structure

Claims (25)

一種生物檢測系統,包括: 控制模組; 承載轉盤,具有主轉軸; 第一驅動模組,電性連接於所述控制模組且連接於所述主轉軸,適於使所述承載轉盤沿著所述主轉軸轉動; 多個子轉盤,分別具有多個不同於所述主轉軸的獨立轉軸,所述多個子轉盤分別沿著所述多個獨立轉軸可個別獨立轉動地設置於所述承載轉盤上; 多個第二驅動模組,分別電性連接於所述控制模組,以使所述多個子轉盤沿著所述多個獨立轉軸獨立轉動;以及 多個測試卡匣,可拆卸地配置於所述多個子轉盤,所述多個測試卡匣分別包括多個微流道結構,其中多組流體適於分別被放置在所述多個微流道結構內,其中 所述承載轉盤受所述第一驅動模組驅動而沿著所述主轉軸旋轉,以對設置於所述承載轉盤上的所述多個測試卡匣提供離心力, 所述多個子轉盤分別被所述多個第二驅動模組獨立地驅動,連帶地使所述多個測試卡匣沿著所述多個獨立轉軸獨立轉動。A biological detection system comprising: control module; Bearing turntable with main shaft; a first driving module, electrically connected to the control module and connected to the main shaft, adapted to rotate the bearing turntable along the main shaft; a plurality of sub-turntables, respectively having a plurality of independent rotating shafts different from the main rotating shaft, and the plurality of sub-turntables are respectively arranged on the bearing turntable along the plurality of independent rotating shafts so as to be individually and independently rotatable; a plurality of second driving modules, respectively electrically connected to the control module, so that the plurality of sub-turntables rotate independently along the plurality of independent rotating shafts; and A plurality of test cassettes, detachably arranged on the plurality of sub-turntables, the plurality of test cassettes respectively comprise a plurality of micro-flow channel structures, wherein a plurality of groups of fluids are suitable for being placed in the plurality of micro-flow channels respectively within the structure, where The bearing turntable is driven by the first driving module to rotate along the main shaft, so as to provide centrifugal force to the plurality of test cassettes arranged on the bearing turntable, The plurality of sub-turntables are independently driven by the plurality of second driving modules respectively, and the plurality of test cassettes are independently rotated along the plurality of independent rotating shafts. 如請求項1所述的生物檢測系統,更包括: 第三驅動模組,電性連接於所述控制模組且設置於所述承載轉盤上;以及 推桿,設置於所述多個子轉盤之間且連接於所述第三驅動模組,以受所述第三驅動模組的驅動而靠近所述多個子轉盤的其中一者,其中所述推桿適於伸入所述子轉盤上的所述測試卡匣,以使所述測試卡匣內的膠囊被破壞,而使得所述膠囊內的膠囊流體流入所述微流道結構。The biological detection system according to claim 1, further comprising: a third driving module, electrically connected to the control module and disposed on the bearing turntable; and a push rod, disposed between the plurality of sub-turntables and connected to the third driving module, so as to be driven by the third driving module to approach one of the plurality of sub-turntables, wherein the push rod The rod is adapted to extend into the test cassette on the sub-turntable, so that the capsules in the test cassette are broken, and the capsule fluid in the capsules flows into the microfluidic structure. 如請求項1所述的生物檢測系統,更包括: 配重塊,可轉動地設置於所述承載轉盤;以及 第四驅動模組,電性連接於所述控制模組且連接於所述配重塊,以使所述配重塊相對於所述承載轉盤轉動。The biological detection system according to claim 1, further comprising: a counterweight block rotatably disposed on the bearing turntable; and The fourth driving module is electrically connected to the control module and to the counterweight block, so that the counterweight block rotates relative to the bearing turntable. 如請求項1所述的生物檢測系統,更包括: 無線通訊模組或有線通訊模組,所述無線通訊模組或所述有線通訊模組電性連接於所述控制模組,以將外部訊號傳遞至所述控制模組來控制所述第一驅動模組及所述多個第二驅動模組中的至少數者。The biological detection system according to claim 1, further comprising: A wireless communication module or a wired communication module, the wireless communication module or the wired communication module is electrically connected to the control module to transmit external signals to the control module to control the first at least one of the driving module and the plurality of second driving modules. 如請求項1所述的生物檢測系統,其中所述多個第二驅動模組與所述多個子轉盤位於所述承載轉盤的同側或異側。The biological detection system according to claim 1, wherein the plurality of second driving modules and the plurality of sub-turntables are located on the same side or different sides of the carrying turntable. 如請求項1所述的生物檢測系統,其中所述多個測試卡匣包括相異的第一卡匣及第二卡匣,所述多個微流道結構包括相異的第一微流道結構及第二微流道結構,所述第一卡匣包括所述第一微流道結構,第二卡匣包括所述第二微流道結構,當所述第一卡匣及所述第二卡匣分別設置於所述多個子轉盤的其中兩者時,所述多個第二驅動模組的其中兩者驅動所述兩子轉盤的轉向、轉速或轉動角度不同。The biological detection system of claim 1, wherein the plurality of test cassettes comprise different first and second cassettes, and the plurality of microfluidic structures comprise different first microfluidics structure and a second micro-channel structure, the first cartridge includes the first micro-channel structure, the second cartridge includes the second micro-channel structure, when the first cartridge and the first When the two cassettes are respectively disposed on two of the plurality of sub-turntables, two of the plurality of second driving modules drive the two sub-turntables in different directions, rotational speeds or rotation angles. 如請求項6所述的生物檢測系統,其中所述第一微流道結構包括第一樣品注入孔、連接於所述第一樣品注入孔的第一彎折段及連接於所述第一彎折段的第一定量槽,所述多組流體的其中一組流體對應於所述第一卡匣,所述多組流體包括第一流體,所述第一流體被注入所述第一樣品注入孔,其中對應於所述第一卡匣的所述第二驅動模組轉動所述子轉盤,以使所述第一流體受到所述離心力而通過所述第一彎折段而流入所述第一定量槽。The biological detection system according to claim 6, wherein the first microfluidic channel structure comprises a first sample injection hole, a first bent section connected to the first sample injection hole, and a first bent section connected to the first sample injection hole. A first metering groove of a bent section, one of the plurality of sets of fluids corresponds to the first cassette, the plurality of sets of fluids includes a first fluid, and the first fluid is injected into the first a sample injection hole, wherein the second driving module corresponding to the first cassette rotates the sub-turntable, so that the first fluid is subjected to the centrifugal force and passes through the first bending section into the first dosing tank. 如請求項7所述的生物檢測系統,其中所述第一微流道結構還包括連接於所述第一定量槽的第二彎折段及連接於所述第二彎折段的第一混合槽,所述第二驅動模組依序轉動所述子轉盤,以使位於所述第一定量槽的所述第一流體受到所述離心力而通過所述第二彎折段後進入所述第一混合槽。The biological detection system according to claim 7, wherein the first microfluidic channel structure further comprises a second bending section connected to the first quantitative groove and a first bending section connected to the second bending section Mixing tank, the second driving module rotates the sub-turntable in sequence, so that the first fluid located in the first quantitative tank is subjected to the centrifugal force to pass through the second bending section and then enter the mixing tank. Describe the first mixing tank. 如請求項8所述的生物檢測系統,其中所述第一微流道結構還包括連接於所述第一混合槽的第三彎折段及連接於所述第三彎折段的廢液槽,所述第二驅動模組轉動所述子轉盤,以使位於所述第一混合槽的所述第一流體受到所述離心力而通過所述第三彎折段後進入所述廢液槽。The biological detection system according to claim 8, wherein the first microfluidic channel structure further comprises a third bent section connected to the first mixing tank and a waste liquid tank connected to the third bent section , the second driving module rotates the sub-turntable, so that the first fluid in the first mixing tank is subjected to the centrifugal force and passes through the third bending section and then enters the waste liquid tank. 如請求項6所述的生物檢測系統,其中所述第一微流道結構包括第二定量槽、連接於所述第二定量槽的第四彎折段及連接於所述第四彎折段的第一混合槽,所述多組流體的其中一組流體對應於所述第一卡匣,且所述組流體包括第二流體,所述第二驅動模組依序轉動所述子轉盤,以讓所述第二流體受到所述離心力而依序通過所述第二定量槽、所述第四彎折段而進入所述第一混合槽。The biological detection system of claim 6, wherein the first microfluidic structure comprises a second quantitative groove, a fourth bent section connected to the second quantitative groove, and a fourth bent section connected to the second quantitative groove The first mixing tank of the plurality of groups of fluids corresponds to the first cassette, and the group of fluids includes a second fluid, and the second drive module rotates the sub-turntable in sequence, So that the second fluid is subjected to the centrifugal force to pass through the second quantitative groove and the fourth bending section in sequence and enter the first mixing groove. 如請求項6所述的生物檢測系統,其中所述第一微流道結構包括存放槽、連接於所述存放槽的第五彎折段、連接於所述第五彎折段的第三定量槽、連接於所述第三定量槽的第六彎折段及連接於所述第六彎折段的第一混合槽,所述多組流體的其中一組流體對應於所述第一卡匣,所述組流體包括位於所述存放槽內的第三流體,所述第二驅動模組依序轉動所述子轉盤,以讓位於所述存放槽內的所述第三流體受到所述離心力而依序通過所述第五彎折段、所述第三定量槽、所述第六彎折段而進入所述第一混合槽。The biological detection system of claim 6, wherein the first microfluidic structure comprises a storage tank, a fifth bent section connected to the storage tank, and a third quantitative section connected to the fifth bent section a groove, a sixth bending section connected to the third quantitative groove, and a first mixing groove connected to the sixth bending section, one of the multiple groups of fluids corresponds to the first cassette , the set of fluids includes a third fluid located in the storage tank, and the second drive module rotates the sub-turntable in sequence, so that the third fluid located in the storage tank is subjected to the The centrifugal force enters the first mixing tank through the fifth bending section, the third quantitative groove, and the sixth bending section in sequence. 如請求項11所述的生物檢測系統,其中所述第三流體被膠囊包覆,所述存放槽具有開口及遠離所述開口的刺針,所述膠囊位於所述存放槽內且位於所述刺針旁。The biological detection system of claim 11, wherein the third fluid is encapsulated by a capsule, the storage tank has an opening and a lancet remote from the opening, the capsule is located in the storage tank and is located on the lancet beside. 如請求項6所述的生物檢測系統,其中所述第一微流道結構包括第一混合槽、連接於所述第一混合槽的第七彎折段、連接於所述第七彎折段的第四定量槽、連接所述第四定量槽的第八彎折段及連接於所述第八彎折段的第一偵測槽,所述第二驅動模組依序轉動所述子轉盤,以讓流體受到所述離心力而依序通過所述第七彎折段、所述第四定量槽、所述第八彎折段而進入所述第一偵測槽。The biological detection system according to claim 6, wherein the first microfluidic structure comprises a first mixing tank, a seventh bending section connected to the first mixing tank, and a seventh bending section connected to the first mixing tank The fourth quantitative groove, the eighth bending section connected to the fourth quantitative groove, and the first detection groove connected to the eighth bending section, the second drive module rotates the sub-turntable in sequence , so that the fluid is subjected to the centrifugal force to pass through the seventh bending section, the fourth quantitative groove, and the eighth bending section in sequence and enter the first detection groove. 如請求項6所述的生物檢測系統,其中所述第二微流道結構包括第二樣品注入孔、連接於所述第二樣品注入孔的第九彎折段、連接於所述第九彎折段的第五定量槽、連接於所述第五定量槽的所述第十彎折段及連接於所述第十彎折段的第二混合槽,所述多組流體的其中一組流體對應於所述第二卡匣,且所述組流體包括第四流體,對應於所述第二卡匣的所述第二驅動模組依序轉動所述子轉盤,以讓所述第四流體受到所述離心力而依序通過所述第九彎折段、所述第五定量槽、所述第十彎折段而進入所述第二混合槽。The biological detection system according to claim 6, wherein the second microfluidic channel structure comprises a second sample injection hole, a ninth bending section connected to the second sample injection hole, and a ninth bending section connected to the second sample injection hole. The fifth quantitative groove of the folded section, the tenth bending section connected to the fifth quantitative groove, and the second mixing groove connected to the tenth bending section, one of the multiple groups of fluids Corresponding to the second cassette, and the set of fluids includes a fourth fluid, the second drive module corresponding to the second cassette rotates the sub-turntable in sequence, so as to allow the fourth fluid Under the centrifugal force, it enters the second mixing tank through the ninth bending section, the fifth quantitative groove, and the tenth bending section in sequence. 如請求項6所述的生物檢測系統,其中所述第二微流道結構包括第六定量槽、連接於所述第六定量槽的第十一彎折段及連接於所述第十一彎折段的第二混合槽,所述多組流體的其中一組流體對應於所述第二卡匣,且所述組流體包括第五流體,所述第二驅動模組依序轉動所述子轉盤,以讓所述第五流體受到所述離心力而依序通過所述第六定量槽、所述第十一彎折段而進入所述第二混合槽。The biological detection system of claim 6, wherein the second microfluidic channel structure comprises a sixth quantitative groove, an eleventh bent section connected to the sixth quantitative groove, and an eleventh bent section connected to the sixth quantitative groove The second mixing tank of the folded section, one of the plurality of groups of fluids corresponds to the second cassette, and the group of fluids includes a fifth fluid, and the second drive module rotates the sub-sections in sequence a turntable, so that the fifth fluid is subjected to the centrifugal force to pass through the sixth quantitative groove and the eleventh bending section in sequence and enter the second mixing groove. 如請求項6所述的生物檢測系統,其中所述第二微流道結構包括第二混合槽、連接於所述第二混合槽的第十二彎折段、連接於所述第十二彎折段的暫存槽、連接於所述暫存槽的第十三彎折段、連接於所述第十三彎折段的第七定量槽、連接於所述第七定量槽的第十四彎折段及連接所述第十四彎折段的第二偵測槽,所述第二驅動模組依序轉動所述子轉盤,以流體受到所述離心力而依序通過所述第十二彎折段、所述暫存槽、所述第十三彎折段、所述第七定量槽、所述第十四彎折段,而進入所述第二偵測槽。The biological detection system according to claim 6, wherein the second microfluidic channel structure comprises a second mixing tank, a twelfth bending section connected to the second mixing tank, and a twelfth bending section connected to the second mixing tank. The temporary storage groove of the folding section, the thirteenth bending section connected to the temporary storage groove, the seventh quantitative groove connected to the thirteenth bending section, and the fourteenth quantitative groove connected to the seventh quantitative groove The bending section and the second detection slot connected to the fourteenth bending section, the second driving module rotates the sub-turntable in sequence, so that the fluid is subjected to the centrifugal force and passes through the twelfth in sequence The bending section, the temporary storage slot, the thirteenth bending section, the seventh quantitative slot, and the fourteenth bending section enter the second detection slot. 如請求項1所述的生物檢測系統,當所述承載轉盤沿著所述主轉軸轉動時,所述多個子轉盤中的至少一者與所述承載轉盤的轉向或轉速不同。The biological detection system of claim 1, when the carrying turntable rotates along the main rotation axis, at least one of the plurality of sub turntables has a different rotation or rotation speed from the carrying turntable. 一種生物檢測裝置,適於檢測至少一測試卡匣,各所述測試卡匣包括微流道結構及位於所述微流道結構內的流體,所述生物檢測裝置包括: 控制模組; 承載轉盤,具有主轉軸; 第一驅動模組,電性連接於所述控制模組且連接於所述主轉軸,適於使所述承載轉盤沿著所述主轉軸轉動; 至少一子轉盤,具有不同於所述主轉軸的至少一獨立轉軸,各所述子轉盤沿著對應的所述獨立轉軸可獨立轉動地設置於所述承載轉盤上;以及 至少一第二驅動模組,電性連接於所述控制模組,以使所述至少一子轉盤沿著所述至少一獨立轉軸轉動。A biological detection device is suitable for detecting at least one test cartridge, each of the test cartridges includes a micro-channel structure and a fluid located in the micro-channel structure, and the biological detection device includes: control module; Bearing turntable with main shaft; a first driving module, electrically connected to the control module and connected to the main shaft, and adapted to rotate the bearing turntable along the main shaft; at least one sub-turntable with at least one independent rotating shaft different from the main rotating shaft, and each of the sub-turntables is independently rotatably arranged on the bearing turntable along the corresponding independent rotating shaft; and At least one second driving module is electrically connected to the control module, so that the at least one sub-turntable rotates along the at least one independent rotating shaft. 如請求項18所述的生物檢測裝置,更包括: 第三驅動模組,電性連接於所述控制模組且設置於所述承載轉盤上;以及 推桿,設置於所述至少一子轉盤旁且連接於所述第三驅動模組,以受所述第三驅動模組的驅動而靠近所述至少一子轉盤的其中一者,其中所述推桿適於伸入所述子轉盤上的所述測試卡匣,以使所述測試卡匣內的膠囊被破壞,而使得所述膠囊內的膠囊流體流入所述微流道結構。The biological detection device as claimed in claim 18, further comprising: a third driving module, electrically connected to the control module and disposed on the bearing turntable; and A push rod, disposed beside the at least one sub-turntable and connected to the third driving module, is driven by the third driving module to approach one of the at least one sub-turntable, wherein the The push rod is adapted to extend into the test cassette on the sub-turntable, so that the capsules in the test cassette are destroyed, and the capsule fluid in the capsules flows into the micro-channel structure. 如請求項18所述的生物檢測裝置,更包括: 配重塊,可轉動地設置於所述承載轉盤;以及 第四驅動模組,電性連接於所述控制模組且連接於所述配重塊,以使所述配重塊相對於所述承載轉盤轉動。The biological detection device as claimed in claim 18, further comprising: a counterweight block rotatably disposed on the bearing turntable; and The fourth driving module is electrically connected to the control module and to the counterweight block, so that the counterweight block rotates relative to the bearing turntable. 如請求項18所述的生物檢測裝置,更包括: 無線通訊模組或有線通訊模組,所述無線通訊模組或所述有線通訊模組電性連接於所述控制模組,以將外部訊號傳遞至所述控制模組來控制所述第一驅動模組及所述多個第二驅動模組中的至少數者。The biological detection device as claimed in claim 18, further comprising: A wireless communication module or a wired communication module, the wireless communication module or the wired communication module is electrically connected to the control module to transmit external signals to the control module to control the first at least one of the driving module and the plurality of second driving modules. 如請求項18所述的生物檢測裝置,其中所述至少一第二驅動模組與所述至少一子轉盤位於所述承載轉盤的同側或異側。The biological detection device according to claim 18, wherein the at least one second driving module and the at least one sub-turntable are located on the same side or the opposite side of the carrying turntable. 如請求項18所述的生物檢測裝置,其中所述至少一子轉盤包括多個子轉盤,環繞所述主轉軸地設置於所述承載轉盤上。The biological detection device according to claim 18, wherein the at least one sub-turntable comprises a plurality of sub-turntables, which are arranged on the carrying turntable around the main rotation axis. 如請求項18所述的生物檢測裝置,其中所述至少一子轉盤包括單一個子轉盤,所述子轉盤與所述控制模組位於所述承載轉盤中的相對位置。The biological detection device according to claim 18, wherein the at least one sub-turntable comprises a single sub-turntable, and the sub-turntable and the control module are located at opposite positions in the carrying turntable. 如請求項18所述的生物檢測裝置,當所述承載轉盤受所述第一驅動模組驅動而沿著所述主轉軸旋轉時,所述至少一子轉盤被對應的所述至少一第二驅動模組獨立地驅動,使所述至少一子轉盤與所述承載轉盤的轉向或轉速不同。According to the biological detection device of claim 18, when the carrying turntable is driven by the first driving module to rotate along the main shaft, the at least one sub turntable is driven by the corresponding at least one second turntable. The driving module is independently driven, so that the rotation direction or rotation speed of the at least one sub-turntable is different from that of the carrying turntable.
TW110100572A 2020-07-22 2021-01-07 Biological detection system and biological detection device TWI777356B (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202110179330.1A CN113970634B (en) 2020-07-22 2021-02-09 Biological detection system and biological detection device
US17/308,997 US12117461B2 (en) 2020-07-22 2021-05-05 Biological detection system and biological detection device
EP23194418.2A EP4257244A3 (en) 2020-07-22 2021-06-23 Biological detection device
EP21181027.0A EP3943191B1 (en) 2020-07-22 2021-06-23 Biological detection system
EP22190489.9A EP4112178A3 (en) 2020-07-22 2021-06-23 Biological detection system and biological detection device
ES21181027T ES2973029T3 (en) 2020-07-22 2021-06-23 Biological detection system
EP23194419.0A EP4257245A3 (en) 2020-07-22 2021-06-23 Biological detection device
US17/978,232 US20230050554A1 (en) 2020-07-22 2022-11-01 Cartridge and biological detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063054806P 2020-07-22 2020-07-22
US63/054,806 2020-07-22

Publications (2)

Publication Number Publication Date
TW202204867A true TW202204867A (en) 2022-02-01
TWI777356B TWI777356B (en) 2022-09-11

Family

ID=79689285

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100572A TWI777356B (en) 2020-07-22 2021-01-07 Biological detection system and biological detection device

Country Status (1)

Country Link
TW (1) TWI777356B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278623B (en) * 2005-02-05 2007-04-11 Nanya Inst Of Technology Biochip-testing system and the method thereof
CN101158697B (en) * 2007-11-29 2012-04-25 中国科学院理化技术研究所 Magnetic sensor biological chip sample boat capable of testing multiple samples simultaneously
TWI580963B (en) * 2016-04-20 2017-05-01 光寶電子(廣州)有限公司 Biological detecting cartridge and flowing method of detected fluid thereof
CN108732339B (en) * 2017-04-19 2021-04-13 光宝电子(广州)有限公司 Flow channel device for multiple reaction biological detection and detection method thereof

Also Published As

Publication number Publication date
TWI777356B (en) 2022-09-11

Similar Documents

Publication Publication Date Title
Clime et al. Active pumping and control of flows in centrifugal microfluidics
Madou et al. LabCD: a centrifuge-based microfluidic platform for diagnostics
EP1284818B1 (en) Bidirectional flow centrifugal microfluidic devices
EP2165764B1 (en) Microfluidic device
EP3511076B1 (en) Microfluidic device and method for controlling a microfluidic device
AU2020202593B2 (en) Swivel mount for centrifugal microfluidic chip
WO2007106013A1 (en) Enhanced magnetic particle steering
CN106140334B (en) Micro-fluidic chip detection reaction unit with reagent store function
WO2006106608A1 (en) Liquid homogenizer and analyzer employing the same
JP2020031606A (en) Nucleic acid detection device and nucleic acid detection method
TWI777356B (en) Biological detection system and biological detection device
US10166541B2 (en) Centrifugal microfluidic platform for automated media exchange
CN113970634B (en) Biological detection system and biological detection device
KR102300539B1 (en) Interface module for measurment of rt-pcr and rotational rt-pcr device
JP2007315832A (en) Biochemical analyzer and examination cartridge used therefor
CN113600250B (en) Chip for micro-channel assisted high-throughput reagent quantitative distribution and analysis
JP2021522496A (en) Improved Point of Care Diagnostic Test Cartridge
US7861576B2 (en) Apparatus for analyzing sample using centrifugal force and inertia
US20150307927A1 (en) Apparatus for centrifuge mountable manifold for processing fluidic assays
US11998912B2 (en) Tubing-free, sample-to-droplet microfluidic system and chip
WO2012127433A1 (en) A microfluidic system for automating pathological test procedures
CN214669127U (en) High-flux micro-droplet biological analysis system
CN118751170A (en) Centrifugal multistage reaction device and operation method thereof
WO2014103865A1 (en) Inspection chip, and inspection system

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent