TW201923675A - Information recommendation method, device and apparatus - Google Patents
Information recommendation method, device and apparatus Download PDFInfo
- Publication number
- TW201923675A TW201923675A TW107129774A TW107129774A TW201923675A TW 201923675 A TW201923675 A TW 201923675A TW 107129774 A TW107129774 A TW 107129774A TW 107129774 A TW107129774 A TW 107129774A TW 201923675 A TW201923675 A TW 201923675A
- Authority
- TW
- Taiwan
- Prior art keywords
- information
- target
- user
- target user
- prediction model
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0255—Targeted advertisements based on user history
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Databases & Information Systems (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本說明書實施例涉及機器學習技術領域,尤其涉及一種資訊推薦方法及裝置、設備。The embodiments of the present specification relate to the field of machine learning technology, and in particular, to an information recommendation method, device, and device.
目前,網站或應用程式(Application, App)向使用者提供用來展示資訊列表的頁面,使用者通常需要從資訊列表中篩選出自身所需的資訊。在相關技術中,為方便篩選,頁面內通常包含一些供使用者設定的參數(如:商品價格、商品類別等),使用者可以藉由手動設定各個參數的值來完成資訊篩選過程。可見,由於目前的資訊篩選方式比較依賴使用者自身的篩選操作,顯然效率不高也不夠智慧。At present, websites or applications (Application, App) provide users with pages for displaying information lists, and users usually need to filter out the information they need from the information list. In related technologies, for the convenience of filtering, the page usually contains some parameters for the user to set (such as product price, product category, etc.), and the user can complete the information filtering process by manually setting the values of each parameter. It can be seen that, because the current information filtering method is more dependent on the user's own filtering operation, it is obviously not efficient and not smart enough.
有鑑於此,本說明書實施例提供一種資訊推薦方法及裝置、設備。 為實現上述目的,本說明書實施例提供的技術方案如下: 在一個方面,提供的一種資訊推薦方法包括: 採集目標使用者的使用者資料,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料; 基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件; 從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 在另一個方面,提供的一種資訊推薦方法包括: 向伺服器發送獲取與目標業務對應的推薦資訊的請求,所述請求攜帶目標使用者標識; 接收所述伺服器返回的資訊篩選條件並顯示,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的; 接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 在另一個方面,提供的一種資訊推薦裝置包括: 採集單元,採集目標使用者的使用者資料,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料; 條件獲得單元,基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件; 資訊推薦單元,從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 在另一個方面,提供的一種資訊推薦裝置包括: 請求發送單元,向伺服器發送獲取與目標業務對應的推薦資訊的請求,所述請求攜帶目標使用者標識; 條件顯示單元,接收所述伺服器返回的資訊篩選條件並顯示,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的; 推薦資訊顯示單元,接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 在又一個方面,提供的一種電子設備包括: 處理器; 用於儲存處理器可執行指令的記憶體; 所述處理器被配置為: 採集目標使用者的使用者資料,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料; 基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件; 從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 在又一個方面,提供的一種電子設備包括: 處理器; 用於儲存處理器可執行指令的記憶體; 所述處理器被配置為: 向伺服器發送獲取與目標業務對應的推薦資訊的請求,所述請求攜帶目標使用者標識; 接收所述伺服器返回的資訊篩選條件並顯示,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的; 接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 藉由以上技術方案可見,藉由預先藉由機器學習訓練獲得一個與所述目標業務對應的條件預測模型,在採集到目標使用者的使用者資料後,基於所述使用者資料以及所述條件預測模型預測出該目標使用者對應的資訊篩選條件,最終自動篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者,可見,上述過程由於不需要使用者進行操作,提升了資訊篩選效率。In view of this, the embodiments of the present specification provide a method, an apparatus and a device for recommending information. In order to achieve the above purpose, the technical solutions provided in the embodiments of the present specification are as follows: In one aspect, an information recommendation method provided includes: collecting user data of a target user, the user data including the target user accessing a target service Behavioral data generated on the information providing page of ;; 确定 determining input values of conditional prediction models corresponding to the target business based on the user data and inputting the conditional prediction models to output information filtering conditions; from the target business The recommended information matching the information filtering condition is filtered out from the corresponding information set and provided to the target user. In another aspect, an information recommendation method provided includes: sending a request to a server for recommendation information corresponding to a target business, the request carrying a target user identification; receiving and displaying information filtering conditions returned by the server, The information screening condition is predicted and obtained based on the user data corresponding to the target user identification and a condition prediction model corresponding to the target business; receiving from the server corresponding to the target business Recommended information filtered from the information collection that meets the information filtering conditions is displayed. In another aspect, an information recommendation device provided includes: (i) a collection unit that collects user data of a target user, the user data including behavior data generated by the target user accessing an information providing page of the target business; (ii) conditional acquisition A unit that determines an input value of a conditional prediction model corresponding to the target business based on the user data and inputs the conditional prediction model into the conditional prediction model, and outputs information filtering conditions; an information recommendation unit, from the information corresponding to the target business The recommended information that meets the information filtering conditions is filtered out from the collection and provided to the target user. In another aspect, an information recommendation device provided includes: a request sending unit that sends a request to a server for recommendation information corresponding to a target service, the request carrying a target user identification; a condition display unit that receives the server The returned information filtering conditions are predicted and obtained based on the user data corresponding to the target user identification and a condition prediction model corresponding to the target business; a recommended information display unit that receives The recommendation information returned by the server and filtered from the information set corresponding to the target business and meeting the information filtering condition is displayed. In yet another aspect, an electronic device provided includes: a processor; a memory for storing processor-executable instructions; a processor configured to: a collection of user data of a target user, the user data including The target user accesses behavior data generated from the information providing page of the target business; 确定 determines an input value of a conditional prediction model corresponding to the target business based on the user data and inputs the conditional prediction model into the conditional prediction model, and outputs information filtering Conditions; 筛选 selecting recommended information that meets the information filtering conditions from the information set corresponding to the target business and providing it to the target user. In yet another aspect, an electronic device provided includes: a processor; a memory for storing processor-executable instructions; a processor configured to: a request to a server to obtain recommendation information corresponding to a target service, The request carries a target user identification; receiving and displaying information filtering conditions returned by the server, the information filtering conditions are based on user data corresponding to the target user identification and conditions corresponding to the target business The prediction model is used to predict the obtained information. (1) Receive and display the recommended information that meets the information filtering conditions and that is filtered out from the information set corresponding to the target service and returned by the server. As can be seen from the above technical solutions, a condition prediction model corresponding to the target business is obtained in advance through machine learning training. After collecting user data of the target user, based on the user data and the conditions The prediction model predicts the information filtering conditions corresponding to the target user, and finally automatically recommends the recommended information that meets the information filtering conditions and provides them to the target user. It can be seen that the above process does not require user operation, which improves Information screening efficiency.
圖1示出了一示例性實施例提供的一種應用在伺服器端的資訊推薦方法的流程圖。如圖1所示,在一實施例中,該方法包括步驟101~步驟105,其中: 在步驟101中,採集目標使用者的使用者資料,其中,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料。 通常,對於一款應用程式App或一個網站而言,其可以包含一個或多個業務。例如,某款App涉及的業務包括:服裝業務、理財產品業務、保險業務等。所述目標業務可以是平臺所提供業務中的一個。對於不同的業務,平臺會分別提供與每一種業務對應的資訊提供頁面給使用者,這些資訊提供頁面可用以展示各類產品資訊。相應地,所述行為資料可以包括但不限於:使用者在頁面內查看了那些商品資訊,或查看某一商品資訊的頻率,或在某一商品資訊頁面的停留時間長度,或使用者查看平臺所推薦資訊的持續時間長度等。當然,上述行為資料可以是一設定時間段(如最近3天)內產生的資料。除了行為資料之外,使用者資料還可包括但不限於:使用者的個人基本資訊(如:年齡、性別、工作等)。 其中,使用者資料可以是預先採集到並存放在資料庫中,在需要時從該資料庫中提取出所需的使用者資料。當然,也可以被記錄在使用者使用的終端設備,需要時從該終端設備上獲得。 在步驟102中,基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件。 其中,所述條件預測模型是預先藉由機器學習(Machine Learning, ML)演算法訓練獲得的。在一實施例中,對於指定的目標業務而言,最初用來訓練該模型(該模型需要在後續不斷被優化)的方法包括如下步驟a~e,其中: 步驟a:確定所述目標業務對應的初始資訊篩選條件,其中所述目標業務下的與所述初始資訊篩選條件匹配的使用者群體最大。 例如,目標業務為理財產品業務,則最初平臺會獲取該理財產品業務的使用者群中每一使用者的需求目標,該需求目標即是每一使用者對應的資訊篩選條件,該資訊篩選條件可以由一個或多個條件組成,例如:條件1:低風險,條件2:額度在10萬以下。其中,為了獲得最初用來訓練模型的資料,需要預先根據該目標業務下的大部分使用者的需求目標(少量使用者的需求目標不予考慮),確定出初始資訊篩選條件。其中,在獲得每一使用者對應的資訊篩選條件之後,可以按照相同資訊篩選條件對使用者進行聚類,從而獲得在每一種資訊篩選條件對應的聚類後使用者群體的人數,並從中挑出人數最多的使用者群體,最終將被選出的使用者群體對應的資訊篩選條件作為上述初始資訊篩選條件。 步驟b:從與所述目標業務對應的資訊集合中篩選出符合所述初始資訊篩選條件的初始推薦資訊並提供給所述目標業務的使用者群。 例如,目標業務為理財產品業務,則資訊集合為理財產品資訊的集合(如:100種理財產品的相關資訊),假設初始資訊篩選條件為“低風險+額度在10萬以下”,則從中可以自動篩選出符合“低風險+額度在10萬以下”的所有產品資訊(即初始推薦資訊),並可以列表的形式展示給使用者。上述步驟a和步驟b的目的旨在向目標業務的新使用者展示少量的篩選結果,從而減少大部分使用者在篩選資訊過程中的操作。 步驟c:根據每一使用者對所述初始推薦資訊的選擇,確定每一使用者對應的個性化篩選條件。 通常,平臺根據初始資訊篩選條件篩選出的初始推薦資訊並不符合所有使用者的需求,某些使用者需要基於所述初始推薦資訊進行進一步的選擇,如:初始推薦資訊包含了10種商品資訊,該使用者從中挑選出自身需要的5種。在使用者選擇之後,便可以確定與該使用者的真實需求目標符合的個性化篩選條件。例如:初始資訊篩選條件為“低風險+額度在10萬以下”,當某使用者進一步選擇之後,可以確定該使用者對應的個性化篩選條件為:低風險+額度在10萬以下+投資期限在6個月之內。 步驟d:採集每一使用者的使用者資料。 如上所述,使用者資料包括但不限於:使用者存取目標業務的資訊提供頁面產生的行為資料以及使用者的個人基本資訊等。 步驟e:基於每一使用者的使用者資料和每一使用者對應的個性化篩選條件,採用機器學習演算法訓練該目標業務的條件預測模型。 本申請實施例中,可以將每一使用者作為訓練樣本,使用者資料和個性化篩選條件作為樣本資料。藉由對使用者資料和個性化篩選條件進行數學化表達(通常為向量),將使用者資料對應的數學化表達作為條件預測模型的輸入,將個性化篩選條件對應的數學化表達作為條件預測模型所期望的輸出,最終訓練獲得該條件預測模型。當然,最初訓練出的條件預測模型的準確性可能不太精準,這可在後續使用過程中不斷優化。關於機器學習演算法屬本領域的常見技術,在此不予以贅述。 在有了上述條件預測模型之後,則可以根據步驟101中採集到的使用者資料確定條件預測模型的輸入值(即向量化表示),並輸入到該模型中,最終,可根據模型輸出來確定預測到的資訊篩選條件(與目標使用者的需求目標符合)。 在步驟103中,從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 可見,藉由預先藉由機器學習訓練獲得一個與所述目標業務對應的條件預測模型,在採集到目標使用者的使用者資料後,基於所述使用者資料以及所述條件預測模型預測出該目標使用者對應的資訊篩選條件,最終自動篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者,可見,上述過程由於不需要使用者進行操作,提升了資訊篩選效率,並且更加智慧化。 在步驟104中,根據所述目標使用者對所述推薦資訊的選擇操作,更新所述目標使用者對應的資訊篩選條件。 在本申請實施例中,由於訓練出的條件預測模型的精度需要不斷優化,故有該模型預測出的資訊篩選條件可能與目標使用者的真實需求目標不符合。為此,有些使用者可以對所展示的推薦資訊進行選擇性操作,如在所推薦資訊的基礎上進一步選擇真真感興趣的資訊,在所推薦資訊的基礎上增加其他感興趣的資訊到同一頁面內,或者完全捨棄平臺推薦的資訊而重新輸入篩選條件並獲得對應的資訊,等等。以上操作都是與該目標使用者的真實需求目標相符合的,故可以根據使用者所做的操作對該使用者偏好的資訊篩選條件進行更新。 在步驟105中,基於所述目標使用者的使用者資料和該目標使用者更新後的所述資訊篩選條件,採用機器學習演算法優化所述條件預測模型。 如上所述,所述使用者資料可以是該目標使用者在一定的採集週期內所產生的,藉由將採集到的使用者資料和更新後的所述資訊篩選條件處理為數學化表達,可以進一步用來訓練所述條件預測模型,從而使得該模型的準確性不斷被優化。 在該步驟105之後,後續的資訊篩選條件的預測過程均可以基於最新被優化後所得的模型來進行,藉由資料的不斷沉澱,可以使得模型精度不斷提高。當然,在可實現的實施例中,上述步驟104和步驟105可以省去。 本申請一實施例中,所述方法還可以包括: 將所述條件預測模型輸出的資訊篩選條件展示給所述目標使用者。 若所述目標使用者對所展示的資訊篩選條件進行確認,從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 圖2示出了一示例性實施例提供的使用者介面示意圖,結合圖2所示,使用者在進入資訊推薦頁面之後,後端(伺服器端)可以根據該使用者的使用者資料以及條件預測模型,預測獲得該使用者對應的資訊篩選條件並反饋給使用者使用的客戶端設備。客戶端設備在接收到資訊篩選條件後會展示給使用者看,這樣做的好處在於使得使用者清楚知道平臺的資訊篩選過程是基於什麼樣的條件來進行的,使用者看到資訊篩選條件後可以直觀地明白是否與自身符合,從而可以提升使用者的信任度。此後,該介面還可以提供一個確認按鍵給使用者點擊,當使用者點擊後,表明其對預測出的資訊篩選條件無異議,則隨後將基於這些條件篩選出的推薦資訊展示給使用者。其中,該使用者介面還向使用者提供對推薦資訊進一步調整的功能,如提供很多個維度(如:額度、週期等),使用者可以基於維度進行選擇,從而篩選出跟自身需求更符合的資訊進行查看。當然,使用者介面的形式並不局限此。 圖3示出了一示例性實施例提供的一種應用在使用者端(即客戶端設備)的資訊推薦方法的流程圖。如圖3所示,在一實施例中,該方法包括步驟201~步驟203,其中: 在步驟201中,向伺服器發送獲取與目標業務對應的推薦資訊的請求,其中,所述請求攜帶目標使用者標識(如:使用者在App註冊的ID)。 例如,目標業務為某款App下的金融理財業務,當使用者點擊進入某個用來展示推薦資訊的頁面之後,安裝該App的終端設備便向伺服器端發送請求。 在步驟202中,接收所述伺服器返回的資訊篩選條件並顯示,其中,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的。 在步驟203中,接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 該方法可以參照上述圖1所示的方法的內容,在此不予以贅述。 與上述方法對應,本文還提供了一種資訊推薦裝置,該裝置可以藉由軟體碼來實現。 如圖4所示,在一實施例中,一種資訊推薦裝置300,應用在伺服器,該裝置300包括: 採集單元301,被配置為:採集目標使用者的使用者資料,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料; 條件獲得單元303,被配置為:基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件; 資訊推薦單元305,被配置為:從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 在一實施例中,該裝置300還包括: 條件更新單元,根據所述目標使用者對所述推薦資訊的選擇操作,更新所述目標使用者對應的資訊篩選條件; 模型優化單元,基於所述目標使用者的使用者資料和該目標使用者更新後的所述資訊篩選條件,採用機器學習演算法優化所述條件預測模型。 在一實施例中,該裝置300還包括: 條件展示單元,將所述條件預測模型輸出的資訊篩選條件展示給所述目標使用者。 在一實施例中,所述資訊推薦單元305可被配置為: 若所述目標使用者對所展示的資訊篩選條件進行確認,從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 如圖5所示,在一實施例中,一種資訊推薦裝置400,應用在使用者端,該裝置400包括: 請求發送單元401,被配置為:向伺服器發送獲取與目標業務對應的推薦資訊的請求,其中,所述請求攜帶目標使用者標識。 條件顯示單元403,被配置為:接收所述伺服器返回的資訊篩選條件並顯示,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的。 推薦資訊顯示單元405,被配置為:接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 如圖6所示,本說明書一個或多個實施例提供了一種電子設備(如:伺服器或客戶端設備),該電子設備可以包括處理器、內部匯流排、網路介面、記憶體(包括記憶體以及非易失性記憶體),當然還可能包括其他業務所需要的硬體。處理器可為中央處理單元(CPU)、處理單元、處理電路、處理器、專用集成電路(ASIC)、微處理器或可執行指令的其他處理邏輯中的一個或多個實例。處理器從非易失性記憶體中讀取對應的程式到記憶體中然後運行。當然,除了軟體實現方式之外,本說明書一個或多個實施例並不排除其他實現方式,比如邏輯裝置抑或軟硬體結合的方式等等,也就是說以下處理流程的執行主體並不限定於各個邏輯單元,也可以是硬體或邏輯裝置。 在一實施例中,對於伺服器而言,所述處理器可以被配置為: 採集目標使用者的使用者資料,所述使用者資料包括該目標使用者存取目標業務的資訊提供頁面產生的行為資料; 基於所述使用者資料確定與所述目標業務對應的條件預測模型的輸入值並輸入到所述條件預測模型中,輸出資訊篩選條件; 從與所述目標業務對應的資訊集合中篩選出符合所述資訊篩選條件的推薦資訊並提供給所述目標使用者。 在一實施例中,對於客戶端設備(如手機或電腦等)而言,所述處理器可以被配置為: 向伺服器發送獲取與目標業務對應的推薦資訊的請求,所述請求攜帶目標使用者標識; 接收所述伺服器返回的資訊篩選條件並顯示,所述資訊篩選條件是基於與所述目標使用者標識對應的使用者資料及與所述目標業務對應的條件預測模型來預測獲得的; 接收所述伺服器返回的從與所述目標業務對應的資訊集合中篩選出的符合所述資訊篩選條件的推薦資訊並顯示。 本說明書中的各個實施例均採用遞進的方式描述,各個實施例之間相同/相似的部分互相參見即可,每個實施例重點說明的都是與其他實施例的不同之處。尤其,對於設備實施例、裝置實施例而言,由於其基本相似於方法實施例,所以描述的比較簡單,相關之處參見方法實施例的部分說明即可。 上述實施例闡明的系統、裝置、模組或單元,具體可以由電腦晶片或實體實現,或者由具有某種功能的產品來實現。一種典型的實現設備為電腦,電腦的具體形式可以是個人電腦、筆記型電腦、行動電話、相機電話、智慧電話、個人數位助理、媒體播放器、導航設備、電子郵件收發設備、遊戲控制台、平板電腦、可穿戴設備或者這些設備中的任意幾種設備的組合。 為了描述的方便,描述以上裝置時以功能分為各種單元分別描述。當然,在實施本說明書一個或多個實施例時可以把各單元的功能在同一個或多個軟體和/或硬體中實現。 本領域內的技術人員應明白,本發明的實施例可提供為方法、系統、或電腦程式產品。因此,本發明可採用完全硬體實施例、完全軟體實施例、或結合軟體和硬體方面的實施例的形式。而且,本發明可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。 本發明是參照根據本發明實施例的方法、設備(系統)、和電腦程式產品的流程圖和/或方塊圖來描述的。應理解可由電腦程式指令實現流程圖和/或方塊圖中的每一流程和/或方塊、以及流程圖和/或方塊圖中的流程和/或方塊的結合。可提供這些電腦程式指令到通用電腦、專用電腦、嵌入式處理機或其他可程式化資料處理設備的處理器以產生一個機器,使得藉由電腦或其他可程式化資料處理設備的處理器執行的指令產生用於實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能的裝置。 這些電腦程式指令也可儲存在能引導電腦或其他可程式化資料處理設備以特定方式工作的電腦可讀記憶體中,使得儲存在該電腦可讀記憶體中的指令產生包括指令裝置的製造品,該指令裝置實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能。 這些電腦程式指令也可裝載到電腦或其他可程式化資料處理設備上,使得在電腦或其他可程式化設備上執行一系列操作步驟以產生電腦實現的處理,從而在電腦或其他可程式化設備上執行的指令提供用於實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能的步驟。 在一個典型的配置中,計算設備包括一個或多個處理器(CPU)、輸入/輸出介面、網路介面和記憶體。 記憶體可能包括電腦可讀媒體中的非永久性記憶體,隨機存取記憶體(RAM)和/或非易失性記憶體等形式,如唯讀記憶體(ROM)或快閃記憶體(flashRAM)。記憶體是電腦可讀媒體的示例。 電腦可讀媒體包括永久性和非永久性、可移動和非可移動媒體可以由任何方法或技術來實現資訊儲存。資訊可以是電腦可讀指令、資料結構、程式的模組或其他資料。電腦的儲存媒體的例子包括,但不限於相變記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電可抹除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術、唯讀光碟(CD-ROM)、數位化多功能光碟(DVD)或其他光學儲存、磁盒式磁帶,磁帶磁磁碟儲存或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫存電腦可讀媒體(transitorymedia),如調變的資料信號和載波。 還需要說明的是,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、商品或者設備不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、商品或者設備所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,並不排除在包括所述要素的過程、方法、商品或者設備中還存在另外的相同要素。 本領域技術人員應明白,本說明書一個或多個實施例的實施例可提供為方法、系統或電腦程式產品。因此,本說明書一個或多個實施例可採用完全硬體實施例、完全軟體實施例或結合軟體和硬體方面的實施例的形式。而且,本說明書一個或多個實施例可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。 本說明書一個或多個實施例可以在由電腦執行的電腦可執行指令的一般上下文中描述,例如程式模組。一般地,程式模組包括執行特定任務或實現特定抽象資料類型的例程、程式、物件、組件、資料結構等等。也可以在分散式計算環境中實踐本說明書一個或多個實施例,在這些分散式計算環境中,由藉由通訊網路而被連接的遠端處理設備來執行任務。在分散式計算環境中,程式模組可以位於包括儲存設備在內的本地和遠端電腦儲存媒體中。 以上所述僅為本說明書一個或多個實施例的實施例而已,並不用於限制本說明書一個或多個實施例。對於本領域技術人員來說,本說明書一個或多個實施例可以有各種更改和變化。凡在本說明書一個或多個實施例的精神和原理之內所作的任何修改、等同替換、改進等,均應包含在本說明書一個或多個實施例的申請專利範圍之內。FIG. 1 shows a flowchart of an information recommendation method applied on a server side according to an exemplary embodiment. As shown in FIG. 1, in an embodiment, the method includes steps 101 to 105, where: In step 101, user data of a target user is collected, where the user data includes the target user's storage. Get behavioral data from the feed page of the target business. In general, for an application App or a website, it can contain one or more businesses. For example, the business involved in an App includes: clothing business, wealth management product business, insurance business, etc. The target service may be one of the services provided by the platform. For different businesses, the platform will provide users with feed pages corresponding to each business. These feed pages can be used to display various product information. Correspondingly, the behavior data may include, but is not limited to: the user viewed those product information on the page, or the frequency of viewing a certain product information, the length of time spent on a certain product information page, or the user viewing the platform Duration of recommended information, etc. Of course, the above behavior data may be data generated within a set period of time (such as the last 3 days). In addition to behavioral data, user data can also include, but is not limited to: basic personal information of the user (such as: age, gender, work, etc.). Among them, the user data may be collected in advance and stored in a database, and the required user data is extracted from the database when needed. Of course, it can also be recorded on the terminal device used by the user, and obtained from the terminal device when needed. In step 102, an input value of a conditional prediction model corresponding to the target business is determined based on the user data and inputted into the conditional prediction model, and an information filtering condition is output. Among them, the conditional prediction model is obtained by training with a Machine Learning (ML) algorithm in advance. In an embodiment, for a specified target service, a method initially used to train the model (the model needs to be continuously optimized in the subsequent steps) includes the following steps a to e, where: step a: determining that the target service corresponds to The initial information screening condition of the user, wherein the user group matching the initial information screening condition under the target business is the largest. For example, if the target business is a wealth management product business, the initial platform will obtain the demand target of each user in the user group of the wealth management product business. The demand target is the information screening condition corresponding to each user. The information screening condition It can be composed of one or more conditions, for example: Condition 1: Low risk, Condition 2: The amount is below 100,000. Among them, in order to obtain the data used to initially train the model, the initial information filtering conditions need to be determined in advance according to the demand goals of most users under the target business (the demand goals of a small number of users are not considered). Among them, after obtaining the information filtering conditions corresponding to each user, users can be clustered according to the same information filtering conditions, so as to obtain the number of user groups after clustering corresponding to each information filtering condition, and select among them. The user group with the largest number of users finally uses the information filtering condition corresponding to the selected user group as the initial information filtering condition. Step b: Select initial recommendation information that meets the initial information filtering condition from the information set corresponding to the target service and provide it to the user group of the target service. For example, if the target business is a wealth management product business, the information collection is a collection of wealth management product information (for example, information about 100 types of wealth management products). Assuming that the initial information screening condition is "low risk + quota below 100,000", you can Automatically filter out all product information (that is, the initial recommendation information) that meets the "low risk + quota below 100,000" and display it to users in the form of a list. The purpose of the above steps a and b is to show a small number of screening results to new users of the target business, thereby reducing the operations of most users in the process of filtering information. Step c: According to each user's selection of the initial recommendation information, determine a personalized filtering condition corresponding to each user. Generally, the initial recommendation information selected by the platform according to the initial information screening conditions does not meet the needs of all users. Some users need to make further selections based on the initial recommendation information. For example, the initial recommendation information includes 10 kinds of product information. , The user picks out five of his needs. After the user chooses, the personalized filtering conditions that meet the user's real needs goals can be determined. For example: the initial information screening condition is "low risk + quota below 100,000". After a user further selects, it can be determined that the user's corresponding personal screening condition is: low risk + quota below 100,000 + investment period Within 6 months. Step d: Collect user data of each user. As mentioned above, user data includes, but is not limited to, behavioral data generated by users accessing the target business's feed page and basic personal information of the user. Step e: Based on the user data of each user and the personalized filtering conditions corresponding to each user, a machine learning algorithm is used to train a condition prediction model of the target business.实施 In the embodiment of the present application, each user may be used as a training sample, and user data and personalized filtering conditions may be used as sample data. By mathematically expressing user data and personalized filter conditions (usually vectors), the mathematical expression corresponding to the user data is used as the input of the conditional prediction model, and the mathematical expression corresponding to the personalized filter conditions is used as the conditional prediction. The expected output of the model is finally trained to obtain the conditional prediction model. Of course, the accuracy of the initially trained conditional prediction model may be less accurate, which can be continuously optimized in the subsequent use process. Machine learning algorithms are common techniques in this field, and will not be repeated here. After having the above conditional prediction model, the input value (ie, vectorized representation) of the conditional prediction model can be determined according to the user data collected in step 101 and input into the model. Finally, it can be determined according to the model output Forecasted information filters (in line with the needs of the target user). In step 103, recommendation information that meets the information filtering condition is filtered from the information set corresponding to the target service and provided to the target user. It can be seen that a conditional prediction model corresponding to the target business is obtained in advance through machine learning training. After collecting user data of the target user, the conditional prediction model is predicted based on the user data and the conditional prediction model. The information filtering conditions corresponding to the target user, and finally automatically recommend the recommended information that meets the information filtering conditions and provide it to the target user. It can be seen that the above process improves the efficiency of information filtering because no user action is required, and Be smarter. In step 104, the information filtering conditions corresponding to the target user are updated according to the selection operation of the recommended information by the target user. In the embodiment of the present application, since the accuracy of the trained conditional prediction model needs to be continuously optimized, the information screening conditions predicted by the model may not meet the real needs of the target user. For this reason, some users can perform selective operations on the recommended information displayed, such as further selecting the information that is really interesting based on the recommended information, and adding other interesting information to the same based on the recommended information. In the page, or completely discard the information recommended by the platform, re-enter the filter conditions and obtain the corresponding information, and so on. The above operations are consistent with the actual needs of the target user, so the user's preferred information filtering conditions can be updated according to the operations performed by the user. In step 105, based on the user data of the target user and the information filtering conditions updated by the target user, a machine learning algorithm is used to optimize the condition prediction model. As described above, the user data may be generated by the target user within a certain collection period. By processing the collected user data and the updated information filtering conditions into mathematical expressions, the user data may be It is further used to train the conditional prediction model, so that the accuracy of the model is continuously optimized.该 After this step 105, the subsequent prediction process of the information screening conditions can be performed based on the latest optimized model. Through continuous precipitation of the data, the accuracy of the model can be continuously improved. Of course, in an implementable embodiment, the above steps 104 and 105 may be omitted.一 In an embodiment of the present application, the method may further include: 展示 displaying the information filtering conditions output by the condition prediction model to the target user. If the target user confirms the displayed information filtering conditions, the recommended information that meets the information filtering conditions is selected from the information set corresponding to the target business and provided to the target user. FIG. 2 shows a schematic diagram of a user interface provided by an exemplary embodiment. In conjunction with FIG. 2, after a user enters an information recommendation page, the back end (server side) can be based on the user data and conditions of the user. The prediction model predicts the information filtering conditions corresponding to the user and feeds back to the client device used by the user. After receiving the information filtering conditions, the client device will be displayed to the user. The advantage of this is that the user clearly knows what kind of conditions the platform's information filtering process is based on. After the user sees the information filtering conditions, Can intuitively understand whether it is consistent with itself, which can increase user trust. Thereafter, the interface can also provide a confirmation button for the user to click. When the user clicks, it indicates that he has no objection to the predicted information filtering conditions, and then the recommended information filtered based on these conditions is displayed to the user. Among them, the user interface also provides users with the function of further adjusting the recommendation information, such as providing many dimensions (such as: quota, cycle, etc.), the user can choose based on the dimensions, so as to filter the more consistent with their needs Information to view. Of course, the form of the user interface is not limited to this. FIG. 3 shows a flowchart of an information recommendation method applied to a user terminal (ie, a client device) provided by an exemplary embodiment. As shown in FIG. 3, in an embodiment, the method includes steps 201 to 203, where: In step 201, a request for obtaining recommendation information corresponding to a target service is sent to a server, wherein the request carries a target User ID (such as the ID of the user registered in the App). For example, the target business is a financial management business under an app. When a user clicks into a page used to display recommendation information, the terminal device that installs the app sends a request to the server. In step 202, information screening conditions returned by the server are received and displayed, wherein the information screening conditions are based on user data corresponding to the target user identification and condition prediction models corresponding to the target business. To predict the gain. In step 203, receiving and displaying recommended information that meets the information filtering condition and is filtered out from the information set corresponding to the target service and returned by the server. For this method, reference may be made to the content of the method shown in FIG. 1 above, and details are not described herein.对应 Corresponding to the above method, this article also provides an information recommendation device, which can be implemented by software code. As shown in FIG. 4, in an embodiment, an information recommendation device 300 is applied to a server. The device 300 includes: a collection unit 301 configured to collect user data of a target user, the user data Including the behavior data generated by the target user accessing the information service page of the target business; (i) the condition obtaining unit 303 is configured to determine the input value of the condition prediction model corresponding to the target business based on the user data and input the In the condition prediction model, an information screening condition is output; an information recommendation unit 305 is configured to: select recommended information that meets the information screening condition from the information set corresponding to the target business and provide it to the target for use By. In an embodiment, the device 300 further includes: a condition update unit that updates an information filtering condition corresponding to the target user according to the target user's selection operation of the recommended information; a model optimization unit based on the The user data of the target user and the information filtering conditions updated by the target user are optimized by using a machine learning algorithm. In one embodiment, the device 300 further includes: A condition display unit, which displays the information filtering conditions output by the condition prediction model to the target user. In an embodiment, the information recommendation unit 305 may be configured as follows: If the target user confirms the displayed information filtering conditions, select the information matching the information from the information set corresponding to the target business. Filter recommendation information and provide it to the target user. As shown in FIG. 5, in one embodiment, an information recommendation device 400 is applied at a user end. The device 400 includes: a request sending unit 401 configured to: send to a server to obtain recommendation information corresponding to a target service A request, wherein the request carries a target user identification. The condition display unit 403 is configured to receive and display the information filtering conditions returned by the server, the information filtering conditions are based on user data corresponding to the target user identification and conditions corresponding to the target service. Predictive models to get predictions. Recommended information display unit 405 is configured to: receive and display the recommended information returned by the server, which is filtered from the information set corresponding to the target service and meets the information filtering condition. As shown in FIG. 6, one or more embodiments of this specification provide an electronic device (such as a server or a client device). The electronic device may include a processor, an internal bus, a network interface, and a memory (including Memory and non-volatile memory), of course, it may also include hardware required for other businesses. A processor may be one or more instances of a central processing unit (CPU), processing unit, processing circuit, processor, application specific integrated circuit (ASIC), microprocessor, or other processing logic of executable instructions. The processor reads the corresponding program from the non-volatile memory into the memory and then runs. Of course, in addition to the software implementation, one or more embodiments of this specification do not exclude other implementations, such as a logical device or a combination of software and hardware, etc., which means that the execution body of the following processing flow is not limited to Each logic unit may also be a hardware or logic device. In an embodiment, for the server, the processor may be configured to: collect user data of a target user, where the user data includes information generated by the target user accessing an information providing page of the target service Behavioral data; 确定 determining an input value of a conditional prediction model corresponding to the target business based on the user data and inputting the conditional prediction model to output information filtering conditions; 筛选 filtering from a set of information corresponding to the target business Recommend information that meets the information filtering conditions is provided to the target user. In an embodiment, for a client device (such as a mobile phone or a computer), the processor may be configured to: 发送 send a request to a server to obtain recommendation information corresponding to a target service, where the request carries the target use (1) receiving and displaying the information filtering conditions returned by the server, the information filtering conditions are predicted and obtained based on the user data corresponding to the target user identification and a condition prediction model corresponding to the target business; Receiving and displaying the recommended information returned by the server, which is filtered from the information set corresponding to the target business and meets the information filtering condition.各个 Each embodiment in this specification is described in a progressive manner, and the same / similar parts between the various embodiments can be referred to each other. Each embodiment focuses on the differences from other embodiments. In particular, as for the device embodiment and the device embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts may refer to the description of the method embodiment.的 The system, device, module, or unit described in the above embodiments may be implemented by a computer chip or entity, or a product with a certain function. A typical implementation device is a computer, and the specific form of the computer can be a personal computer, a notebook computer, a mobile phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email sending and receiving device, a game console, A tablet, a wearable, or a combination of any of these devices. For the convenience of description, when describing the above device, the functions are divided into various units and described separately. Of course, when implementing one or more embodiments of the present specification, the functions of each unit may be implemented in the same software or hardware.的 Those skilled in the art should understand that the embodiments of the present invention may be provided as a method, a system, or a computer program product. Therefore, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to magnetic disk memory, CD-ROM, optical memory, etc.) containing computer-usable code therein. . The present invention is described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present invention. It should be understood that each flow and / or block in the flowchart and / or block diagram, and a combination of the flow and / or block in the flowchart and / or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to generate a machine that can be executed by the processor of the computer or other programmable data processing device. The instructions generate means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagram. These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory generate a manufactured article including a command device , The instruction device realizes the functions specified in a flowchart or a plurality of processes and / or a block or a block of the block diagram. These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operating steps can be performed on the computer or other programmable equipment to generate computer-implemented processing, so that the computer or other programmable equipment can The instructions executed on the steps provide steps for realizing the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.计算 In a typical configuration, a computing device includes one or more processors (CPUs), input / output interfaces, network interfaces, and memory. Memory may include non-permanent memory, random access memory (RAM), and / or non-volatile memory in computer-readable media, such as read-only memory (ROM) or flash memory ( flashRAM). Memory is an example of a computer-readable medium. Computer-readable media include permanent and non-permanent, removable and non-removable media. Information can be stored by any method or technology. Information can be computer-readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), and other types of random access memory (RAM) , Read-only memory (ROM), electrically erasable and programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only discs (CD-ROM), digital versatile discs (DVDs) ) Or other optical storage, magnetic tape cartridges, magnetic disk storage or other magnetic storage devices, or any other non-transmission media, may be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include temporary computer-readable media (transitorymedia), such as modulated data signals and carrier waves. It should also be noted that the terms "including," "including," or any other variation thereof are intended to encompass non-exclusive inclusion, so that a process, method, product, or device that includes a series of elements includes not only those elements but also Other elements not explicitly listed, or those that are inherent to such a process, method, product, or device. Without more restrictions, the elements defined by the sentence "including a ..." do not exclude the existence of other identical elements in the process, method, product or equipment including the elements.技术 Those skilled in the art should understand that the embodiments of one or more embodiments of the present specification may be provided as a method, a system, or a computer program product. Therefore, one or more embodiments of the present specification may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, one or more embodiments of the present specification may be implemented on one or more computer-usable storage media (including but not limited to magnetic disk memory, CD-ROM, optical memory, etc.) containing computer-usable code therein. In the form of a computer program product.一个 One or more embodiments of this specification can be described in the general context of computer-executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. One or more embodiments of the present specification may also be practiced in a decentralized computing environment in which tasks are performed by a remote processing device connected through a communication network. In a decentralized computing environment, program modules can be located in local and remote computer storage media, including storage devices. The above description is only an embodiment of one or more embodiments of the present specification, and is not intended to limit one or more embodiments of the present specification. For those skilled in the art, various modifications and changes can be made to one or more embodiments of the present specification. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of one or more embodiments of this specification shall be included in the scope of patent application of one or more embodiments of this specification.
101~105‧‧‧步驟101 ~ 105‧‧‧ steps
201~203‧‧‧步驟201 ~ 203‧‧‧step
300‧‧‧資訊推薦裝置300‧‧‧ Information Recommendation Device
301‧‧‧採集單元301‧‧‧collection unit
303‧‧‧條件獲得單元303‧‧‧Condition acquisition unit
305‧‧‧資訊推薦單元305‧‧‧ Information Recommendation Unit
400‧‧‧資訊推薦裝置400‧‧‧ information recommendation device
401‧‧‧請求發送單元401‧‧‧ request sending unit
403‧‧‧條件顯示單元403‧‧‧Condition display unit
405‧‧‧推薦資訊顯示單元405‧‧‧Recommended information display unit
圖1示出了一示例性實施例提供的一種應用在伺服器端的資訊推薦方法的流程圖; 圖2示出了一示例性實施例提供的使用者介面示意圖; 圖3示出了一示例性實施例提供的一種應用在使用者端的資訊推薦方法的流程圖; 圖4示出了一示例性實施例提供的一種應用在伺服器的資訊推薦裝置的模組圖; 圖5示出了一示例性實施例提供的一種應用在使用者端設備的資訊推薦裝置的模組圖; 圖6示出了一示例性實施例提供的一種電子設備的結構。FIG. 1 shows a flowchart of an information recommendation method applied on a server side according to an exemplary embodiment; FIG. 2 shows a schematic diagram of a user interface provided by an exemplary embodiment; FIG. 3 shows an exemplary A flowchart of an information recommendation method applied to a user terminal provided by the embodiment; FIG. 4 shows a module diagram of an information recommendation device applied to a server provided by an exemplary embodiment; FIG. 5 shows an example A module diagram of an information recommendation device applied to a user-end device according to an exemplary embodiment; FIG. 6 illustrates a structure of an electronic device according to an exemplary embodiment.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711021629.4 | 2017-10-27 | ||
CN201711021629.4A CN107885796B (en) | 2017-10-27 | 2017-10-27 | Information recommendation method, device and equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201923675A true TW201923675A (en) | 2019-06-16 |
Family
ID=61782671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107129774A TW201923675A (en) | 2017-10-27 | 2018-08-27 | Information recommendation method, device and apparatus |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN107885796B (en) |
TW (1) | TW201923675A (en) |
WO (1) | WO2019080662A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107885796B (en) * | 2017-10-27 | 2020-04-17 | 阿里巴巴集团控股有限公司 | Information recommendation method, device and equipment |
CN110659920B (en) * | 2018-06-28 | 2023-04-18 | 阿里巴巴集团控股有限公司 | Method and device for recommending service object |
CN110766493B (en) * | 2018-07-26 | 2023-04-28 | 阿里巴巴集团控股有限公司 | Service object providing method, server, electronic device, and storage medium |
CN110955823B (en) * | 2018-09-26 | 2023-04-25 | 阿里巴巴集团控股有限公司 | Information recommendation method and device |
CN111368181A (en) * | 2018-12-25 | 2020-07-03 | 阿里巴巴集团控股有限公司 | Information recommendation method, information display method and device |
CN111415181A (en) * | 2019-01-07 | 2020-07-14 | 北京字节跳动网络技术有限公司 | Display information exception checking method and device, electronic equipment and readable medium |
CN111460269B (en) * | 2019-01-18 | 2023-09-01 | 北京字节跳动网络技术有限公司 | Information pushing method and device |
CN110163713B (en) * | 2019-01-28 | 2024-08-27 | 腾讯科技(深圳)有限公司 | Service data processing method and device and related equipment |
CN110213325B (en) * | 2019-04-02 | 2021-09-24 | 腾讯科技(深圳)有限公司 | Data processing method and data pushing method |
WO2020252751A1 (en) * | 2019-06-20 | 2020-12-24 | 深圳市欢太科技有限公司 | Resource pushing method, device, server, and storage medium |
CN112580840A (en) * | 2019-09-27 | 2021-03-30 | 北京国双科技有限公司 | Data analysis method and device |
CN112929751B (en) * | 2019-12-06 | 2022-11-18 | 北京达佳互联信息技术有限公司 | System, method and terminal for determining action execution |
CN111144990B (en) * | 2019-12-27 | 2022-08-05 | 蚂蚁胜信(上海)信息技术有限公司 | Recommendation method and system |
CN111429171B (en) * | 2020-03-04 | 2022-09-23 | 支付宝(杭州)信息技术有限公司 | Information display method, server, device and system |
CN112116411B (en) * | 2020-08-10 | 2024-10-15 | 第四范式(北京)技术有限公司 | Training method, device and system for commodity recommendation ordering model |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7676400B1 (en) * | 2005-06-03 | 2010-03-09 | Versata Development Group, Inc. | Scoring recommendations and explanations with a probabilistic user model |
US7836004B2 (en) * | 2006-12-11 | 2010-11-16 | International Business Machines Corporation | Using data mining algorithms including association rules and tree classifications to discover data rules |
CN103118111B (en) * | 2013-01-31 | 2017-02-08 | 北京百分点信息科技有限公司 | Information push method based on data from a plurality of data interaction centers |
CN103473291B (en) * | 2013-09-02 | 2017-01-18 | 中国科学院软件研究所 | Personalized service recommendation system and method based on latent semantic probability models |
CN106708821A (en) * | 2015-07-21 | 2017-05-24 | 广州市本真网络科技有限公司 | User personalized shopping behavior-based commodity recommendation method |
CN106485562B (en) * | 2015-09-01 | 2020-12-04 | 苏宁云计算有限公司 | Commodity information recommendation method and system based on user historical behaviors |
CN106251174A (en) * | 2016-07-26 | 2016-12-21 | 北京小米移动软件有限公司 | Information recommendation method and device |
CN107885796B (en) * | 2017-10-27 | 2020-04-17 | 阿里巴巴集团控股有限公司 | Information recommendation method, device and equipment |
-
2017
- 2017-10-27 CN CN201711021629.4A patent/CN107885796B/en active Active
-
2018
- 2018-08-27 TW TW107129774A patent/TW201923675A/en unknown
- 2018-09-12 WO PCT/CN2018/105205 patent/WO2019080662A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN107885796A (en) | 2018-04-06 |
WO2019080662A1 (en) | 2019-05-02 |
CN107885796B (en) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201923675A (en) | Information recommendation method, device and apparatus | |
CN109299994B (en) | Recommendation method, device, equipment and readable storage medium | |
WO2015188699A1 (en) | Item recommendation method and device | |
CN108108821A (en) | Model training method and device | |
CN110008397B (en) | Recommendation model training method and device | |
CN110413867B (en) | Method and system for content recommendation | |
CN107704485A (en) | A kind of position recommends method and computing device | |
CN111061956A (en) | Method and apparatus for generating information | |
CN110413888B (en) | Book recommendation method and device | |
CN110727868A (en) | Object recommendation method, device and computer-readable storage medium | |
CN105069036A (en) | Information recommendation method and apparatus | |
US8793236B2 (en) | Method and apparatus using historical influence for success attribution in network site activity | |
CN116541610B (en) | Training method and device for recommendation model | |
JP7350590B2 (en) | Using iterative artificial intelligence to specify the direction of a path through a communication decision tree | |
US20170365014A1 (en) | Systems, methods and non-transitory computer readable storage media for tracking and evaluating predictions regarding relationships | |
CN111177562B (en) | Recommendation ordering processing method and device for target object and server | |
CN111680213A (en) | Information recommendation method, data processing method and device | |
CN112069409B (en) | Method and device based on to-be-done recommendation information, computer system and storage medium | |
CN111401395B (en) | Data processing method, terminal equipment and storage medium | |
CN104123307A (en) | Data loading method and system | |
CN113836388A (en) | Information recommendation method and device, server and storage medium | |
CN111553749A (en) | Activity push strategy configuration method and device | |
CN111177564A (en) | Product recommendation method and device | |
WO2018223993A1 (en) | Application search method, device and server | |
CN110119784A (en) | A kind of order recommended method and device |