KR20150082864A - Method and appartus for process model discovery using process mining - Google Patents

Method and appartus for process model discovery using process mining Download PDF

Info

Publication number
KR20150082864A
KR20150082864A KR1020140002339A KR20140002339A KR20150082864A KR 20150082864 A KR20150082864 A KR 20150082864A KR 1020140002339 A KR1020140002339 A KR 1020140002339A KR 20140002339 A KR20140002339 A KR 20140002339A KR 20150082864 A KR20150082864 A KR 20150082864A
Authority
KR
South Korea
Prior art keywords
process model
event log
option item
unit
item
Prior art date
Application number
KR1020140002339A
Other languages
Korean (ko)
Other versions
KR101660892B1 (en
Inventor
송민석
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to KR1020140002339A priority Critical patent/KR101660892B1/en
Publication of KR20150082864A publication Critical patent/KR20150082864A/en
Application granted granted Critical
Publication of KR101660892B1 publication Critical patent/KR101660892B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a method for extracting a process model and an apparatus thereof. The method for extracting the process model according to the present invention collects event logs on a specific task and generates a process model for the specific task based on the collected event logs. And, the method reconfigures connection paths between unit processes in the extracted process model based on option items and thresholds selected according to a user command to generate a final process model. The present invention may extract the process model for drawing an analysis result which is more reliable and suitable for a situation according to selective application of the option items.

Description

프로세스 마이닝을 이용한 프로세스 모델 도출 방법 및 장치{Method and appartus for process model discovery using process mining}TECHNICAL FIELD [0001] The present invention relates to a method and an apparatus for deriving a process model using process mining,

본 발명은 프로세스 모델 도출 방법 및 장치에 관한 것으로, 더욱 상세하게는 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등을 선택적으로 고려하여 프로세서 모델을 도출할 수 있는 프로세스 모델 도출 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for deriving a process model, and more particularly, to a process model derivation method capable of deriving a processor model by selectively considering the distance of two tasks, the structure of a work flow, And apparatus.

프로세스 마이닝(process mining)은 정보시스템에서 제공되는 이벤트 로그로부터 유용한 지식을 추출하는 연구로, 프로세스 도출(discover), 모니터링(monitoring), 개선(improvement)을 위한 새로운 기법을 제공하며, 다양한 분야의 프로세스에 적용이 가능하다. 프로세스 마이닝을 이용하여 비즈니스 프로세스에서 일어나는 업무처리기록을 바탕으로 유용한 정보를 발견할 수 있으며, 프로세스 마이닝을 통해 발견된 정보를 기업의 비즈니스 프로세스 혁신 등에 활용할 수 있다. 인터넷 및 컴퓨팅 기술의 발전과 데이터의 증가에 따라 프로세스 마이닝이 적용되는 분야와 시장의 규모는 점차 확대될 것으로 예상된다.Process mining is a process of extracting useful knowledge from event logs provided by information systems. It provides new techniques for discovering, monitoring, and improving processes. . Using process mining, you can find useful information based on business process records in business processes. You can use the information found through process mining to innovate your business processes. With the development of Internet and computing technology and the increase of data, it is expected that the size of the market and the field where process mining is applied will be expanded.

이와 관련하여, 한국 등록특허 제0500329호에는 워크플로우 시스템의 운영 과정에서 축적된 워크플로우 로그 데이터에 프로세스 마이닝 기법을 적용하여, 프로세스 또는 업무의 과거 수행 결과를 평가, 분석 및 진단하기 위한 워크플로우 마이닝 시스템 및 방법을 개시하고 있다.In this regard, Korean Patent Registration No. 0500329 discloses workflow mining for evaluating, analyzing and diagnosing past performance results of a process or task by applying a process mining technique to workflow log data accumulated during the operation of a workflow system System and method.

여기에는, 데이터베이스의 로그 데이터를 기초로 프로세스와 업무의 과거 수행 결과를 평가, 분석 및 진단하여 비즈니스 프로세스의 리엔지니어링(Business Process Reengineering)을 위한 객관적인 자료로 활용할 수 있도록 하는 워크플로우 마이닝 시스템이 개시되어 있다. Here, a workflow mining system is disclosed in which the past performance results of processes and tasks are evaluated, analyzed and diagnosed based on the log data of the database to be utilized as objective data for re-engineering business processes (business process reengineering) .

그런데, 일반적으로 프로세스 마이닝을 이용하여 프로세스 모델을 도출하는 방법은 단위 프로세스들 사이의 상호 관계를 고려하지 않고 있으므로, 상황에 따라 분석 결과의 신뢰도가 크게 달라지거나 신뢰도가 일정하지 못하다. In general, the method of deriving a process model using process mining does not consider the interrelationship among the unit processes. Therefore, the reliability of the analysis result greatly varies depending on the situation or the reliability is not constant.

따라서, 프로세스 마이닝을 이용하여 프로세스 모델을 찾아내는 과정에 있어서, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등을 선택적으로 적용하여 프로세스 모델을 도출함으로써, 보다 신뢰도가 높고 상황에 적합한 분석 결과를 도출할 수 있는 방안을 고려해 볼 필요가 있다. Therefore, in the process of finding a process model using process mining, by deriving a process model by selectively applying the distance of two tasks, the structure of a work flow, and the number of overlapping working relationships, It is necessary to consider how to derive the analysis results.

따라서, 본 발명의 목적은, 이벤트 로그들을 이용하여 프로세스 모델을 도출함에 있어, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등을 선택적으로 반영함으로써 상황에 적합하며 신뢰도를 높일 수 있는 프로세스 모델 도출 방법 및 장치를 제공함에 있다. Accordingly, it is an object of the present invention to provide a method and apparatus for generating a process model using event logs by selectively reflecting the distance of two tasks, the structure of a work flow, and the number of overlapping work relationships, And to provide a method and apparatus for deriving a process model.

상기 목적을 달성하기 위한 본 발명에 따른 프로세스 모델 도출 방법은, 특정 업무에 대한 이벤트 로그를 수집하는 단계, 상기 수집한 이벤트 로그에 기초하여, 상기 특정 업무에 대한 프로세스 모델을 생성하는 단계, 및 사용자 명령에 따라 선택되는 옵션 항목과 임계값에 기초하여, 상기 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method for deriving a process model, comprising: collecting an event log for a specific task; generating a process model for the specific task based on the collected event log; And reconstructing a connection path between the unit processes in the process model based on the option item and the threshold selected according to the command to generate a final process model.

상기 옵션 항목으로, 두 작업의 거리, 작업 흐름의 구조, 및 중복되는 작업 관계의 횟수 중 적어도 하나를 사용할 수 있다.As the option item, at least one of the distance of the two jobs, the structure of the workflow, and the number of the overlapped working relationships can be used.

또한, 상기 목적을 달성하기 위한 본 발명에 따른 프로세스 모델 도출 장치는, 특정 업무에 대한 이벤트 로그를 수집하는 이벤트 로그 수집부, 상기 수집한 이벤트 로그에 기초하여 프로세스 모델을 생성하는 프로세스 모델링부, 및 사용자 명령에 따라 선택되는 옵션 항목과 임계값에 기초하여, 상기 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성하는 프로세스 필터링부를 포함한다.According to another aspect of the present invention, there is provided a process model derivation apparatus including an event log collection unit for collecting an event log for a specific task, a process modeling unit for generating a process model based on the collected event log, And a process filtering unit for generating a final process model by reconstructing a connection path between the unit processes in the process model based on the option item and the threshold value selected in accordance with the user command.

그리고, 상기 목적을 달성하기 위하여 본 발명에서는, 상기 프로세스 도출 방법을 프로세서에서 실행시키기 위한 프로그램을 기록한 프로세서가 읽을 수 있는 기록매체를 제공할 수 있다. According to another aspect of the present invention, there is provided a processor-readable recording medium having recorded thereon a program for causing a processor to execute the process derivation method.

본 발명에 따르면, 이벤트 로그들을 이용하여 프로세스 모델을 도출하는 과정에서, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등을 선택적으로 고려함으로써, 보다 신뢰도가 높으면서 상황에 적합한 분석 결과를 나타낼 수 있는 프로세스 모델을 도출할 수 있다. 이와 같은 과정에 따라 프로세스 모델을 도출함으로써, 보다 사실적이며 정확한 분석 결과를 제시할 수 있으므로, 비즈니스 업무 개선이나 직원 업무 평가 등에 효과적으로 사용할 수 있다.According to the present invention, in the process of deriving a process model using event logs, by selectively considering the distance of two tasks, the structure of a work flow, the number of overlapping working relationships, and the like, Can be derived. By deriving a process model based on this process, it is possible to present more realistic and accurate analysis results, so that it can be effectively used for improving business operations or evaluating employee work.

도 1은 본 발명의 일실시예에 따른 프로세스 마이닝을 이용한 프로세스 모델 도출 장치의 블럭 구성도,
도 2는 본 발명의 일실시예에 따른 프로세스 모델 도출 방법에 대한 설명에 제공되는 흐름도,
도 3은 프로세스 모델의 일 예를 나타낸 도면, 그리고
도 4 내지 도 6은 임계값의 조정에 따라 단순화되는 프로세스 모델을 설명하기 위해 참조되는 도면이다.
1 is a block diagram of a process model derivation apparatus using process mining according to an embodiment of the present invention;
FIG. 2 is a flowchart showing a method for deriving a process model according to an embodiment of the present invention;
3 is a diagram illustrating an example of a process model, and
Figures 4-6 are diagrams that are referenced to describe a process model that is simplified in accordance with the adjustment of the threshold.

이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in detail with reference to the drawings.

일반적으로 프로세스 마이닝은 업무를 지원하는 다양한 정보시스템에 기록된 이벤트 로그를 분석하여 프로세스 모델을 자동으로 도출하는 것을 지원한다. In general, process mining supports the automatic derivation of process models by analyzing event logs recorded in various information systems that support business.

프로세스 마이닝은 이벤트 로그와 프로세스 모델간에 발견(discovery), 순응도(conformance), 확장(enhancement)과 같은 세 가지 유형의 마이닝을 제공할 수 있다. 여기서, 발견은 이벤트 로그에서 프로세스 모델의 자동 발견을 지원하고, 순응도는 이벤트 로그와 프로세스 모델간 일치 정도를 분석한다. 그리고, 확장은 발견된 프로세스 모델을 시간 정보 등을 통해서 확장시키는 것이다. Process mining can provide three types of mining: event discovery, conformance, and enhancement between the event log and the process model. Here, discovery supports automatic discovery of process models in the event log, and compliance monitors the degree of correspondence between event logs and process models. The extension is to extend the found process model through time information.

프로세스 마이닝은 이와 같은 세 가지 유형의 마이닝과 독립적으로 다음과 같은 다양한 관점의 분석을 지원할 수 있다. Process mining, independent of these three types of mining, can support the analysis of various aspects, including:

첫째, 통제흐름(control-flow) 관점으로, Petri-net이나 BPMN 등의 표기법으로 표시되는 업무 활동들의 순서 발견과 분석 기법을 제공할 수 있다.First, from a control-flow viewpoint, we can provide order discovery and analysis techniques for business activities represented by notation such as Petri-net or BPMN.

둘째, 조직(organizational) 관점으로, 업무 전달에 기반을 둔 업무 수행 주체들(직원, 팀, 부서 등) 사이의 사회 관계망(social network) 분석 기법을 제공할 수 있다.Second, from an organizational viewpoint, it can provide a social network analysis technique between business executives based on job transfer (employees, teams, departments, etc.).

세째, 시간(time) 관점으로, 수행된 업무 사례들의 평균 수행 시간, 특정 활동들 사이의 평균 수행 시간 등에 관한 분석 기법을 제공할 수 있다.Third, from the time perspective, we can provide analytic techniques for the average execution time of performed work cases, the average execution time between specific activities, and so on.

네째, 성과(performance) 관점으로, 병목지점(bottleneck) 분석 기법을 제공하여, 성과에 영향을 주는 사례들에 대한 심층 분석 기법을 제공할 수 있다.Fourth, from the perspective of performance, bottleneck analysis techniques can be provided to provide in-depth analysis of cases that affect performance.

다섯째, 데이터(data) 관점으로, 개별 수행 사례들의 데이터와 연관된 분석 기법을 제공할 수 있다. 예컨대, 불만처리 프로세스를 지연시키는 고객들의 유행을 찾을 수 있다.Fifth, from a data perspective, it is possible to provide analysis techniques associated with data of individual performance cases. For example, we can find a way for customers to delay the complaint handling process.

일반적으로 프로세스 마이닝의 결과물은 완성된 형태의 비즈니스 프로세스 모델이며, 프로세스 마이닝 결과물은 비즈니스 프로세스 설계를 위한 근거 자료가 될 수 있다. In general, the result of process mining is a complete form of the business process model, and the result of the process mining can be the basis for business process design.

도 1은 본 발명의 일실시예에 따른 프로세스 마이닝을 이용한 프로세스 모델 도출 장치의 블럭 구성도이다. 1 is a block diagram of a process model derivation apparatus using process mining according to an embodiment of the present invention.

도 1을 참조하면, 본 프로세스 도출 장치(100)는 이벤트 로그 수집부(110), 프로세스 모델부(120), 프로세서 필터링부(130), 및 프로세스 분석부(140)를 포함할 수 있다. 이와 같은 구성요소들은 실제 응용에서 구현될 때 필요에 따라 2 이상의 구성요소가 하나의 구성요소로 합쳐지거나, 혹은 하나의 구성요소가 2 이상의 구성요소로 세분되어 구성될 수 있다.Referring to FIG. 1, the process derivation apparatus 100 may include an event log collecting unit 110, a process modeling unit 120, a processor filtering unit 130, and a process analyzing unit 140. When such components are implemented in practical applications, two or more components may be combined into one component, or one component may be divided into two or more components as necessary.

이벤트 로그 수집부(110)는 정보시스템 등에 기록된 특정 업무에 대한 이벤트 로그를 수집한다. The event log collecting unit 110 collects event logs for a specific task recorded in an information system or the like.

프로세스 모델링부(120)는 이벤트 로그 수집부(110)에서 수집한 이벤트 로그를 전달받아, 전처리 과정 및 분석 과정 등을 거쳐, 특정 업무에 대한 프로세스 모델을 도출한다. The process modeling unit 120 receives an event log collected by the event log collecting unit 110, and derives a process model for a specific task through a preprocessing process and an analysis process.

프로세스 필터링부(130)는 사용자 명령에 따라 선택되는 옵션 항목과 임계값 등을 이용하여, 프로세스 모델링부(120)에서 도출한 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성한다.The process filtering unit 130 reconstructs a connection path between unit processes in the process model derived from the process modeling unit 120 using an option item and a threshold value selected according to a user command to generate a final process model do.

이때, 사용자 명령에 따라 선택되는 옵션 항목에는 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등이 있으며, 하나 이상의 옵션 항목이 선택될 수 있다. At this time, the option item selected according to the user command includes the distance of two jobs, the structure of the job flow, the number of overlapping job relationships, and more than one option item can be selected.

프로세스 분석부(140)는 최종 프로세서 모델을 검토 및 분석하여, 최종 프로세스 모델에 기반한 분석 결과를 출력한다. 프로세스 분석부(140)는 사용자 명령 등에 따라, 분석 결과를 다양한 형태의 차트나 그래프 등으로 출력할 수 있다.The process analysis unit 140 reviews and analyzes the final processor model, and outputs the analysis result based on the final process model. The process analyzing unit 140 may output the analysis results in various forms of charts and graphs according to a user command or the like.

이와 같은 구성에 의해, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등과 같은 옵션 항목을 선택적으로 반영한 프로세스 모델을 생성할 수 있다. With this configuration, it is possible to generate a process model that selectively reflects option items such as the distance between two jobs, the structure of a work flow, the number of redundant job relationships, and the like.

도 2는 본 발명의 일실시예에 따른 프로세스 모델 도출 방법에 대한 설명에 제공되는 흐름도이다.FIG. 2 is a flowchart provided in a description of a process model derivation method according to an embodiment of the present invention.

도 2를 참조하면, 이벤트 로그 수집부(110)는 정보시스템 등에 기록되어 있는 특정 업무에 대한 이벤트 로그를 수집한다(S200). Referring to FIG. 2, the event log collecting unit 110 collects event logs for specific tasks recorded in an information system or the like (S200).

비즈니스 프로세스상의 업무는 기업 내부의 정보시스템인 ERP(Enterprise Resource Planning), CRM(Customer Relationship Management), SCM(Supply Chain Management), Workflow 등에서 수행될 수 있으므로, 이들 정보시스템에는 모든 트랜잭션(transaction)을 이벤트 로그 형식으로 기록한다. 이벤트 로그 수집부(110)는 이와 같은 정보시스템에 기록되어 있는 이벤트 로그를 수집할 수 있다. Since business processes can be performed in enterprise information systems ERP (Enterprise Resource Planning), CRM (Customer Relationship Management), SCM (Supply Chain Management), Workflow, etc., Record in log format. The event log collecting unit 110 may collect event logs recorded in the information system.

이벤트 로그에는 프로세스 인스턴트(instance), 업무(activity), 업무의 수행자(performer), 업무의 타입, 업무 수행시간 등이 기록된다.The event log records the process instance, activity, performer of the task, type of task, and time of the task.

프로세스 모델링부(120)는 이벤트 로그 수집부(110)가 수집한 이벤트 로그를 전달받아, 프로세스 모델의 분석을 위한 전처리 과정을 수행하고, 분석 과정을 통해 이벤트 로그가 수집된 특정 업무에 대한 프로세스 모델을 생성한다(S205).The process modeling unit 120 receives the event log collected by the event log collecting unit 110, performs a preprocessing process for analyzing the process model, and analyzes the process model (S205).

프로세스 필터링부(130)는 사용자 명령에 따라 선택되는 옵션 항목과 임계값을 이용하여, 프로세스 모델링부(120)에서 생성한 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성한다(S210). The process filtering unit 130 reconstructs a connection path between unit processes in the process model generated by the process modeling unit 120 using the option item and the threshold value selected according to the user command to generate a final process model (S210).

프로세스 필터링부(130)는 선택된 옵션 항목에 따라 계산된 단위 프로세스들 사이의 수치가 임계값보다 작은 연결 경로를 삭제하여 최종 프로세스 모델을 생성할 수 있다. The process filtering unit 130 may generate a final process model by deleting a connection path whose numerical value between unit processes calculated according to the selected option item is smaller than the threshold value.

사용자 명령에 따라 선택되는 옵션 항목에는, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등이 있다. 이에 따라, 두 작업의 거리를 고려할 것인지 여부, 작업 흐름의 구조를 고려할 것인지 여부, 및 중복되어 나타나는 작업 관계의 횟수를 고려할 것인지 여부에 따라, 모두 8가지 경우의 수가 발생할 수 있다. The option items selected according to the user command include the distance of the two jobs, the structure of the work flow, and the number of redundant job relationships. Thus, a total of eight cases can occur, depending on whether the distance between two jobs is taken into consideration, whether the structure of the workflow is to be considered, and whether the number of duplicated job relationships is taken into account.

이와 같은 옵션 항목의 선택이나 임계값의 선택이나 설정 등을 위해 별도의 메뉴를 제공할 수 있다. 사용자 명령에 따라 선택되는 옵션 항목 등에 대한 상세한 설명은 후술하기로 한다. A separate menu may be provided for selection of such option items, selection and setting of threshold values, and the like. Details of the option items selected in accordance with the user command will be described later.

프로세스 분석부(140)는 최종 프로세서 모델을 검토 및 분석하여, 최종 프로세스 모델에 기반한 분석 결과를 출력한다(S220). The process analysis unit 140 reviews and analyzes the final processor model, and outputs an analysis result based on the final process model (S220).

만일, 사용자가 다른 옵션 항목이나 임계값을 선택하면, 다시 S215 단계 및 S220 단계의 과정을 수행하여, 새로 최종 프로세서 모델을 생성하고 이에 따른 분석 결과를 출력한다(S225). 최종 프로세스 모델에 대한 분석 결과는 다양한 형태의 표나 그래프 등으로 출력할 수 있다.If the user selects another option item or a threshold value, the process of steps S215 and S220 is performed again to generate a new final processor model, and the analysis result is outputted (S225). The results of the analysis on the final process model can be output as various types of tables or graphs.

이와 같은 과정에 의해, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등과 같은 사용자가 선택한 옵션 항목을 반영한 프로세스 모델을 도출할 수 있다. 또한, 도출한 프로세스 모델의 분석 결과를 시뮬레이션하여, 전체적인 업무 수행을 확인함으로써, 병목 업무나 병목 부서와 같은 프로세스 단절 현상을 파악할 수 있는 등 전체적인 업무 프로세스 개선에 사용할 수 있다. By this process, a process model that reflects user-selected option items such as the distance of two tasks, the structure of work flow, the number of overlapping working relationships, and the like can be derived. In addition, by analyzing the analysis results of the derived process model and verifying the overall performance of the process, it can be used to improve the overall business process, such as the bottleneck process or the bottleneck process.

다음으로 본 발명에 따른 프로세스 도출 방법에서는 사용하는 옵션 항목에 대하여 설명한다. 본 발명에 따른 프로세스 도출 방법에서는 미리 설정된 옵션 항목 중에서 하나 이상을 선택적으로 사용할 수 있다. 즉, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수 등과 같은 옵션 항목 중에서 하나 이상을 선택하여, 선택한 옵션 항목을 반영한 최종 프로세스 모델을 도출할 수 있다.Next, an option item to be used in the process derivation method according to the present invention will be described. In the process derivation method according to the present invention, one or more of the preset option items can be selectively used. That is, a final process model reflecting the selected option item can be derived by selecting one or more option items such as the distance between two jobs, the structure of the workflow, and the number of overlapping working relationships.

먼저, 두 작업의 거리는, 직접 상관관계와 간접 상관관계의 두 가지 상관관계의 거리로 나눌 수 있다. 직접 상관관계는 연속되는 두 업무 사이의 관계를 의미한다. 예컨대, 두 가지 업무 A, B가 있다고 할 때, 로그에서 A - B 순으로 업무가 수행되었을 경우, 업무 A와 B 사이에는 직접 상관관계가 존재하는 것으로 한다. 직접 상관관계를 나타내는 두 작업 사이의 거리는 1로 계산한다. First, the distance between two tasks can be divided into two correlations of direct correlation and indirect correlation. Direct correlation means the relationship between two successive tasks. For example, if there are two tasks A and B, it is assumed that there is a direct correlation between tasks A and B when the task is performed in the order of A to B in the log. The distance between two tasks that represent direct correlation is calculated as 1.

직접 상관관계를 고려하지 않는 경우에는 간접 상관관계를 고려한다. 간접 상관관계는 연속되지 않는 두 업무 사이의 관계를 의미한다. 예컨대, 세 가지 업무 A, B, C가 있다고 할 때, 로그에서 A-C-B 순으로 업무가 수행되었을 경우, 업무 A와 B 사이에 간접 상관관계가 존재하는 것으로 한다.If direct correlation is not taken into account, indirect correlation is taken into account. Indirect correlation refers to the relationship between two tasks that are not consecutive. For example, assume that there are three tasks A, B, and C, and there is an indirect correlation between tasks A and B when the task is performed in the order of A-C-B in the log.

간접 상관관계의 경우, 두 작업 사이의 거리를 (β)m-1 로 정의한다. 여기서, β는 임의의 값이며, m은 작업 A에서 작업 B까지의 거리를 계산할 때, A를 제외한 A와 B 사이에 존재하는 모든 작업과 B를 포함한 개수이다. In the case of indirect correlation, the distance between two tasks is defined as (β) m-1 . Where β is an arbitrary value, and m is the number of jobs including A and B, including B, when calculating the distance from job A to job B, except A.

따라서, 직접 상관관계의 거리는 항상 1로 계산되며, 간접 상관관계는 β값에 따라 같은 거리라도 다른 값으로 계산될 수 있고, 거리가 멀수록 값이 작아지게 된다. 다음의 [표 1]은 β = 0.5인 경우, 직접 상관관계와 간접 상관관계의 계산 예를 나타낸 것이다.Therefore, the distance of the direct correlation is always calculated as 1, and the indirect correlation can be calculated as another value even if the distance is equal to the value of β, and the value becomes smaller as the distance increases. The following Table 1 shows an example of a direct correlation and an indirect correlation when β = 0.5.


이벤트로그Event Log

작업 관계Working relationship

직접 상관관계Direct correlation

간접 상관관계Indirect correlation


A-B-C-D


ABCD

A-B

AB

1

One

1

One

A-C

AC

X

X

0.5(=0.5(2-1))

0.5 (= 0.5 (2-1) )

A-D

AD

X

X

0.25(=0.5(3-1))

0.25 (= 0.5 (3-1) )

B-C

BC

1

One

1

One

B-D

BD

X

X

0.5(=0.5(2-1))

0.5 (= 0.5 (2-1) )

C-D

CD

1

One

1

One

이와 같이 두 작업의 거리를 수치화할 수 있다. 이에 따라, 임계값을 설정하여, 두 작업의 거리가 설정된 임계값 이하의 값을 갖는 두 작업 사이의 연결 경로를 삭제하여, 연결 경로를 재구성하여 간소화된 최종 프로세스 모델을 생성할 수 있다. Thus, the distance between two operations can be quantified. Accordingly, a threshold value can be set, and a connection path between two jobs having a value equal to or less than a threshold value of the distance between two jobs can be deleted, and the connection path can be reconstructed to generate a simplified final process model.

다음으로, 작업 흐름의 구조의 고려 여부를 옵션 항목으로 선택할 수 있다. 작업 흐름의 구조, 즉 작업 간의 관계에 대한 고려 여부에 따라 작업 관계의 수가 달라질 수 있다. Next, you can choose whether to consider the structure of the workflow as an option item. The number of working relationships can vary depending on the structure of the workflow, that is, whether or not the relationship between tasks is taken into consideration.

도 3은 프로세스 모델의 일 예이며, 다음의 [표 2]는 도 3에 도시한 프로세스 모델을 기반으로 작성된 작업 관계도이다.3 is an example of a process model, and the following [Table 2] is a working relationship diagram based on the process model shown in FIG.


A

A

B

B

C

C

D

D

E

E

F

F

AA

0

0

1

One

1

One

0

0

0

0

0

0

BB

0

0

0

0

0

0

1

One

0

0

0

0

CC

0

0

0

0

0

0

1

One

0

0

0

0

DD

0

0

0

0

0

0

0

0

0

0

0

0

EE

0

0

0

0

0

0

0

0

0

0

1

One

FF

0

0

0

0

0

0

0

0

0

0

0

0

[표 2]에서 A, B, C, D, E는 작업을 의미하며, 각 숫자 값은 작업 관계의 유무를 의미한다. 즉, 가장 왼쪽의 작업자 열을 기준으로 기준작업이 수행된 후에 해당하는 열의 작업이 수행된 경우 1, 관계가 없는 경우 0으로 나타낸다. 예컨대, 가장 왼쪽의 작업자 열의 A를 기준으로 0, 1, 1, 0, 0, 0 은, 작업 A 다음에 작업 B, 작업 C가 수행됨을 의미한다.In Table 2, A, B, C, D, and E mean work, and each numerical value indicates the presence or absence of a working relationship. That is, it is indicated as 1 when the operation of the corresponding column is performed after the reference operation is performed based on the leftmost worker row, and when it is not related, it is indicated as 0. For example, 0, 1, 1, 0, 0, and 0 based on A in the leftmost worker column mean that Job B and Job C are performed after Job A.

직접 상관관계를 고려할 때, 작업 이관 관계가 반영된다. 다음의 [표 3]은 로그의 일 예를 나타낸 것이다. When direct correlation is considered, the work transfer relationship is reflected. The following [Table 3] shows an example of the log.


케이스

case

로그

Log

1

One

A-C-B-D

ACBD

2

2

A-B-C-D

ABCD

3

3

E-F

EF

[표 3]의 1번과 2번 케이스의 로그를 예로, 도 3의 프로세스 모델에서 작업 흐름의 구조를 고려하였는지 여부에 따라 작업 관계의 수를 비교하면, 다음의 [표 4]와 같다.Table 3 shows the log of cases 1 and 2 as examples. When the number of working relationships is compared according to whether or not the structure of the work flow is considered in the process model of FIG. 3, the following table 4 is obtained.


이벤트로그Event Log

작업 관계Working relationship

작업 흐름의 구조 고려함Consider structure of workflow

작업 흐름의 구조 고려하지 않음Workflow structure not considered

A-C-B-D

ACBD

A-C

AC

O

O

O

O

C-B

CB

X

X

O

O

B-D

BD

O

O

O

O

A-B-C-D

ABCD

A-B

AB

O

O

O

O

B-C

BC

X

X

O

O

C-D

CD

O

O

O

O

[표 4]에서 작업 흐름의 구조, 즉 작업 간의 관계를 고려하는 경우와 고려하지 않는 경우, 작업 관계의 수가 달라짐을 알 수 있다. 이와 같이 작업 흐름의 구조를 고려 여부에 따라, 작업 관계의 수가 달라지므로, 전체적인 프로세스 모델 분석 결과에도 영향을 미치게 된다. In Table 4, it can be seen that the number of working relationships is different when the structure of the workflow, ie, the relationship between the tasks, is considered. In this way, considering the structure of the work flow, the number of working relationships changes, which also affects the overall process model analysis result.

다음으로 중복되는 작업 관계의 횟수를 고려하는 경우, 하나의 작업 관계가 전체 케이스에서 나타내는 횟수가 반영될 수 있다. 이러한 중복되는 작업 관계의 횟수의 반영에 따라 전체적인 프로세스 모델 분석 결과가 달라질 수 있다.Next, when considering the number of redundant working relationships, the number of times that one working relationship is represented in the entire case may be reflected. The results of the analysis of the overall process model can be changed by reflecting the number of duplicate work relationships.

다음의 표는 이벤트 로그의 예를 나타낸 것이다. The following table shows examples of event logs.


케이스case

로그Log

1

One

A-B-D

USA

2

2

A-C-D

ACD

3

3

E-F

EF

4

4

A-B-C-D

ABCD

5

5

A-B-C-A-B-D

ABCABD

6

6

A-B-C-B-D

ABCBD

7

7

A-B-E-F

ABEF

8

8

A-B-D

USA

9

9

A-B-D-E-F

ABDEF

10

10

A-D-E-F

ADEF

이와 같은 10개의 케이스에서 A-B의 작업관계 회수를 계산할 때, 중복 여부를 고려하지 않을 경우, 다음과 같이 1, 4, 5, 6, 7, 8, 9 케이스에서 A-B가 나타난다. 따라서, 모두 10개의 케이스에서 나타나므로, 이를 수치로 나타내면 0.7 (=7/10)의 값이 된다.In this case, A-B appears in cases 1, 4, 5, 6, 7, 8, and 9 as follows, Therefore, since all 10 cases are shown, the value is 0.7 (= 7/10).


케이스case

로그Log

1One

A-B-D

USA

2

2

A-C-D

ACD

3

3

E-F

EF

44

A-B-C-D

ABCD

55

A-B-C-A-B-D

ABCABD

66

A-B-C-B-D

ABCBD

77

A-B-E-F

ABEF

88

A-B-D

USA

99

A-B-D-E-F

ABDEF

10

10

A-D-E-F

ADEF

다음의 표는 [표 7]을 참고하여 케이스 내에서 중복 여부를 고려할 경우, 8번의 A-B가 나타나는 것으로 계산된다. 즉, 5번 케이스에서 A-B의 작업관계가 중복되어 두 번 나타났기 때문에 중복되는 작업 관계를 고려하지 않은 경우와 차이가 발생한다.
The following table is calculated by referring to [Table 7], where 8 ABs are shown when duplication is considered in the case. That is, the difference between the case where the overlapping working relationship is not taken into consideration and the difference occurs because the working relationship of AB appears twice in case of the case No. 5.


케이스case

로그Log

1

One

A-B-D

AB- D

2

2

A-C-D

ACD

3

3

E-F

EF

4

4

A-B-C-D

AB- CD

5

5

A-B-C-A-B-D

AB- C- AB- D

6

6

A-B-C-B-D

AB -CBD

7

7

A-B-E-F

AB- EF

8

8

A-B-D

AB- D

9

9

A-B-D-E-F

AB -DEF

10

10

A-D-E-F

ADEF

또한, 다음의 [표 8]에 나타낸 중복 여부에 따른 값 정의에 따라 직접 상관관계를 고려하였다고 가정하였을 경우, 이를 수치로 나타내면 0.28 (=8/29)의 값이 된다. Assuming that the direct correlation is considered according to the value definition according to the overlapping shown in the following Table 8, if it is expressed as a numerical value, it becomes 0.28 (= 8/29).

여기서, 29는 다음과 같이 모든 케이스에서 직접 상관관계의 작업관계의 경우의 수이다.Here, 29 is the number of cases of direct correlation work relationships in all cases as follows.

케이스 1 : A-B, B-D Case 1: A-B, B-D

케이스 2 : A-C, C-D Case 2: A-C, C-D

케이스 3 : E-F Case 3: E-F

케이스 4 : A-B, B-C, C-D Case 4: A-B, B-C, C-D

케이스 5 : A-B, B-C, C-A, A-B, B-D Case 5: A-B, B-C, C-A, A-B, B-D

케이스 6 : A-B, B-C, C-B, B-DCase 6: A-B, B-C, C-B, B-D

케이스 7 : A-B, B-E, E-FCase 7: A-B, B-E, E-F

케이스 8 : A-B, B-DCase 8: A-B, B-D

케이스 9 : A-B, B-D, D-E, E-FCase 9: A-B, B-D, D-E, E-F

케이스10 : A-D, D-E, E-FCase 10: A-D, D-E, E-F


중복여부Duplicate 고려함 Considering

중복여부Duplicate 고려하지 않음 Not considered

정의

Justice

Figure pat00001


Figure pat00001


Figure pat00002

Figure pat00002

[표 8]의 정의에서 단위작업은 목표로 하는 작업관계를 형성하는 두 작업을 의미한다.In the definition of [Table 8], unit work means two tasks that form the target working relationship.

전술한 바와 같은 옵션 항목인, 두 작업의 거리, 작업 흐름의 구조, 중복되는 작업 관계의 횟수의 고려 여부에 따라, 총 8가지의 경우의 수가 발생한다. 사용자의 편의나 목적에 따라 이와 같은 옵션 항목의 조합 중에서 원하는 조합을 선택하여 적용할 수 있다. There are a total of 8 cases depending on whether the option item, the distance of the two tasks, the structure of the work flow, and the number of overlapping working relationships are taken into consideration. A desired combination can be selected from the combination of such option items according to the convenience and purpose of the user.

도 4 내지 도 6은 임계값의 조정에 따라 단순화되는 프로세스 모델을 설명하기 위해 참조되는 도면이다. Figures 4-6 are diagrams that are referenced to describe a process model that is simplified in accordance with the adjustment of the threshold.

먼저, 도 4는 EDM(Enterprise Document Management)의 로그를 이용하여 본 발명에 따른 프로세스 도출 방법에 따라 도출한 프로세스 모델의 일 예를 나타낸 것이다. FIG. 4 shows an example of a process model derived according to a process derivation method according to the present invention using a log of an Enterprise Document Management (EDM).

이와 같이 도출된 프로세스 모델에서, 임계값을 조정하여 프로세스 모델을 단순화할 수 있다. 즉, 선택된 옵션 항목에 따라, 각 단위 프로세서 사이의 관계가 수치로 계산될 수 있으므로, 설정된 임계값 이하의 값을 가지는 관계가 지워지는 원리로 프로세스 모델을 단순화할 수 있다. In the process model thus derived, the process model can be simplified by adjusting the threshold value. That is, according to the selected option item, since the relationship between each unit processor can be calculated numerically, it is possible to simplify the process model on the principle that the relationship having a value equal to or less than the set threshold value is deleted.

도 5의 경우 임계값이 0.00078 인 경우, 최종 프로세스 모델을 나타낸 것이고, 도 6의 경우에는 임계값이 0.002365인 경우, 최종 프로세스 모델을 나타낸 것이다. 5 shows the final process model when the threshold value is 0.00078, and the final process model when the threshold value is 0.002365 in the case of FIG.

이와 같은 임계값의 조정에 따라, 프로세서 모델이 단순화되면, 다른 작업과의 관계성이 약한 작업이 나타난다. 이러한 작업들은 프로세스 모델에 속해 있는 다른 작업들에 비하여 중요도가 낮은 것으로 처리할 수 있다. According to the adjustment of the threshold value, when the processor model is simplified, a task having a weak relation with other tasks appears. These tasks can be treated as less important than other tasks belonging to the process model.

한편, 본 발명은 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-클ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.Meanwhile, the present invention can be implemented as a code that can be read by a processor in a recording medium readable by the processor. The processor-readable recording medium includes all kinds of recording apparatuses in which data that can be read by the processor is stored. Examples of the recording medium that can be read by the processor include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet . In addition, the processor readable recording medium may be distributed over networked computer systems so that code readable by the processor in a distributed manner can be stored and executed.

또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It should be understood that various modifications may be made by those skilled in the art without departing from the spirit and scope of the present invention.

110 : 이벤트 로그 수집부 120 : 프로세스 모델링부
130 : 프로세스 필터링부 140 : 프로세스 분석부
110: event log collecting unit 120: process modeling unit
130: Process Filtering Unit 140: Process Analysis Unit

Claims (13)

특정 업무에 대한 이벤트 로그를 수집하는 단계;
상기 수집한 이벤트 로그에 기초하여, 상기 특정 업무에 대한 프로세스 모델을 생성하는 단계; 및
사용자 명령에 따라 선택되는 옵션 항목과 임계값에 기초하여, 상기 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성하는 단계를 포함하는 프로세스 모델 도출 방법.
Collecting an event log for a specific task;
Generating a process model for the specific task based on the collected event log; And
Reconstructing a connection path between unit processes in the process model based on an option item and a threshold selected according to a user command to generate a final process model.
제1항에 있어서,
상기 옵션 항목은, 두 작업의 거리, 작업 흐름의 구조, 및 중복되는 작업 관계의 횟수 중 적어도 하나인 것을 특징으로 하는 프로세서 모델 도출 방법.
The method according to claim 1,
Wherein the option item is at least one of a distance between two jobs, a structure of a workflow, and a number of times of overlapping working relationships.
제2항에 있어서,
상기 두 작업의 거리는, 연속되는 두 업무 사이의 관계인 직접 상관관계에 의한 거리, 및 연속되지 않은 두 업무 사이의 관계인 간접 상관관계에 의한 거리를 포함하는 것을 특징으로 하는 프로세스 모델 도출 방법.
3. The method of claim 2,
Wherein the distance between the two tasks includes a distance due to a direct correlation that is a relationship between two consecutive tasks and a distance due to an indirect correlation that is a relationship between two consecutive tasks.
제2항에 있어서,
상기 작업 흐름의 구조는, 상기 프로세스 모델에서 작업 간의 관계를 고려할 것인지 여부를 선택하는 항목인 것을 특징으로 하는 프로세스 모델 도출 방법.
3. The method of claim 2,
Wherein the structure of the workflow is an item for selecting whether or not to consider the relationship between jobs in the process model.
제2항에 있어서,
상기 중복되어 작업 관계의 횟수는, 하나의 작업 관계가 전체 이벤트 로그 케이스에서 나타나는 횟수를 고려할 것인지 여부를 선택하는 항목인 것을 특징으로 하는 프로세스 모델 도출 방법.
3. The method of claim 2,
Wherein the number of duplicate job relationships is an item that selects whether to consider the number of times that one job relationship appears in the entire event log case.
제1항에 있어서,
상기 최종 프로세스 모델은, 상기 선택된 옵션 항목에 따라 계산된 단위 프로세스들 사이의 수치가 상기 임계값보다 작은 연결 경로를 삭제하여 생성하는 것을 특징으로 하는 프로세스 모델 도출 방법.
The method according to claim 1,
Wherein the final process model is generated by deleting a connection path whose numerical value between unit processes calculated according to the selected option item is smaller than the threshold value.
제1항에 있어서,
상기 옵션 항목과 상기 임계값의 선택을 위한 메뉴를 제공하는 단계를 더 포함하는 프로세스 모델 도출 방법.
The method according to claim 1,
Further comprising providing a menu for selection of the option item and the threshold value.
제1항에 있어서,
상기 최종 프로세스 모델에 기반한 분석 결과를 출력하는 단계를 더 포함하는 프로세스 모델 도출 방법.
The method according to claim 1,
And outputting an analysis result based on the final process model.
특정 업무에 대한 이벤트 로그를 수집하는 이벤트 로그 수집부;
상기 수집한 이벤트 로그에 기초하여 프로세스 모델을 생성하는 프로세스 모델링부; 및
사용자 명령에 따라 선택되는 옵션 항목과 임계값에 기초하여, 상기 프로세스 모델에서 단위 프로세스들 사이의 연결 경로를 재구성하여 최종 프로세스 모델을 생성하는 프로세스 필터링부를 포함하는 프로세스 모델 도출 장치.
An event log collecting unit for collecting an event log for a specific task;
A process modeling unit for generating a process model based on the collected event logs; And
And a process filtering unit for generating a final process model by reconstructing a connection path between unit processes in the process model based on an option item and a threshold value selected according to a user command.
제9항에 있어서,
상기 옵션 항목은, 작업 흐름의 구조, 및 중복되는 작업 관계의 횟수 중 적어도 하나인 것을 특징으로 하는 프로세서 모델 도출 장치.
10. The method of claim 9,
Wherein the option item is at least one of a structure of a work flow and a number of times of overlapping working relationships.
제9항에 있어서,
상기 프로세스 필터링부는, 상기 선택된 옵션 항목에 따라 계산된 단위 프로세스들 사이의 수치가 상기 임계값보다 작은 연결 경로를 삭제하여 상기 최종 프로세스 모델을 생성하는 것을 특징으로 하는 프로세스 모델 도출 장치.
10. The method of claim 9,
Wherein the process filtering unit deletes a connection path whose numerical value between unit processes calculated according to the selected option item is smaller than the threshold value to generate the final process model.
제9항에 있어서,
상기 최종 프로세스 모델에 기반한 분석 결과를 출력하는 프로세스 분석부를 더 포함하는 프로세스 모델 도출 장치.
10. The method of claim 9,
And a process analyzer for outputting an analysis result based on the final process model.
제1항 내지 제8항 중 어느 한 항의 프로세스 모델 도출 방법을 프로세서에서 실행시키기 위한 프로그램을 기록한 프로세서가 읽을 수 있는 기록매체. 9. A processor-readable recording medium having recorded thereon a program for causing a processor to execute the process model derivation method according to any one of claims 1 to 8.
KR1020140002339A 2014-01-08 2014-01-08 Method and appartus for process model discovery using process mining KR101660892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140002339A KR101660892B1 (en) 2014-01-08 2014-01-08 Method and appartus for process model discovery using process mining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140002339A KR101660892B1 (en) 2014-01-08 2014-01-08 Method and appartus for process model discovery using process mining

Publications (2)

Publication Number Publication Date
KR20150082864A true KR20150082864A (en) 2015-07-16
KR101660892B1 KR101660892B1 (en) 2016-09-29

Family

ID=53884770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140002339A KR101660892B1 (en) 2014-01-08 2014-01-08 Method and appartus for process model discovery using process mining

Country Status (1)

Country Link
KR (1) KR101660892B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028201A (en) * 2018-09-06 2020-03-16 주식회사 퍼즐데이터 Method and apparatus for outputting process mining results
KR20210032685A (en) * 2019-09-17 2021-03-25 경기대학교 산학협력단 Process Mining System and Method based on the Structured Information Control Nets
WO2021230394A1 (en) * 2020-05-13 2021-11-18 한국시험인증원 주식회사 Software development and test automation framework
WO2022003737A1 (en) * 2020-07-03 2022-01-06 Giarolo Davide Platform and method for pluggable ai and machine learning cataloguing and prediction
KR20230033044A (en) 2021-08-26 2023-03-08 주식회사 포스코 Apparatus and method for creating production process simulation model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974271B1 (en) * 2017-05-31 2019-04-30 부산대학교 산학협력단 Hierarchical process discovering method for multi-staged process, and hierarchical process discovering system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013742A (en) * 2001-08-09 2003-02-15 박헌재 Implementation Method and Application System for Business Model based on Event and Relationship
JP2009093620A (en) * 2007-10-04 2009-04-30 Mitsubishi Electric Research Laboratories Inc Computer execution method for modeling business process
JP2009116673A (en) * 2007-11-07 2009-05-28 Nomura Research Institute Ltd Business support apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013742A (en) * 2001-08-09 2003-02-15 박헌재 Implementation Method and Application System for Business Model based on Event and Relationship
JP2009093620A (en) * 2007-10-04 2009-04-30 Mitsubishi Electric Research Laboratories Inc Computer execution method for modeling business process
JP2009116673A (en) * 2007-11-07 2009-05-28 Nomura Research Institute Ltd Business support apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
송민석 외 3명. "자취 군집화를 통한 프로세스 마이닝의 성능 개선". 대한 산업공학회지 Vol.34, 2008.12.* *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028201A (en) * 2018-09-06 2020-03-16 주식회사 퍼즐데이터 Method and apparatus for outputting process mining results
KR20210032685A (en) * 2019-09-17 2021-03-25 경기대학교 산학협력단 Process Mining System and Method based on the Structured Information Control Nets
WO2021230394A1 (en) * 2020-05-13 2021-11-18 한국시험인증원 주식회사 Software development and test automation framework
KR20210138933A (en) * 2020-05-13 2021-11-22 한국시험인증원 주식회사 Software development and test automation framework
WO2022003737A1 (en) * 2020-07-03 2022-01-06 Giarolo Davide Platform and method for pluggable ai and machine learning cataloguing and prediction
KR20230033044A (en) 2021-08-26 2023-03-08 주식회사 포스코 Apparatus and method for creating production process simulation model

Also Published As

Publication number Publication date
KR101660892B1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
KR101660892B1 (en) Method and appartus for process model discovery using process mining
US9378079B2 (en) Detection of anomalies in error signals of cloud based service
Curbera et al. Business provenance–a technology to increase traceability of end-to-end operations
CA2598132C (en) Apparatus and method for dynamically auditing data migration to produce metadata
JP6709871B2 (en) Generate project artifacts using data model objects
Yarmohammadi et al. Mining implicit 3D modeling patterns from unstructured temporal BIM log text data
US20090204416A1 (en) Business unit outsourcing model
US9436553B2 (en) Recovering usability of cloud based service from system failure
KR20170040210A (en) Visual tools for failure analysis in distributed systems
Bayomie et al. Deducing case IDs for unlabeled event logs
Naderifar et al. A review on conformance checking technique for the evaluation of process mining algorithms
Astromskis et al. A process mining approach to measure how users interact with software: an industrial case study
van der Aalst Business Alignment: Using Process Mining as a Tool for Delta Analysis.
van Cruchten et al. Process mining in logistics: The need for rule-based data abstraction
CN109189675A (en) Big data Framework Software test method, device, computer equipment and storage medium
Seeliger et al. Finding structure in the unstructured: hybrid feature set clustering for process discovery
Tang et al. An approach for mining web service composition patterns from execution logs
KR20140085866A (en) Method and appartus for process mining capable of analyzing various performance metrics
JP5582540B2 (en) Method for extracting frequent partial structure from data having graph structure, apparatus and program thereof
JP2017045080A (en) Business flow specification regeneration method
US20190026759A1 (en) System and method for universal data modeling
JP7427896B2 (en) Database partitioning system, database partitioning method, and database partitioning program
CN112735605A (en) Personnel close contact identification tracking analysis method and device
Al-Fedaghi et al. Diagramming language for process documentation
Shani et al. Time performance evaluation of agile software development

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant