KR20140075526A - an electrode having conductive material integral structure and a secondary battery using thereof - Google Patents

an electrode having conductive material integral structure and a secondary battery using thereof Download PDF

Info

Publication number
KR20140075526A
KR20140075526A KR1020120143958A KR20120143958A KR20140075526A KR 20140075526 A KR20140075526 A KR 20140075526A KR 1020120143958 A KR1020120143958 A KR 1020120143958A KR 20120143958 A KR20120143958 A KR 20120143958A KR 20140075526 A KR20140075526 A KR 20140075526A
Authority
KR
South Korea
Prior art keywords
conductive material
sulfur
binder
electrode
active material
Prior art date
Application number
KR1020120143958A
Other languages
Korean (ko)
Inventor
이윤지
류희연
류경한
박상진
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020120143958A priority Critical patent/KR20140075526A/en
Publication of KR20140075526A publication Critical patent/KR20140075526A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an electrode with a conductive structure and a secondary battery using the same, and more specifically, to a method for manufacturing the anode of a lithium sulfur battery by injecting a sulfur active material into a porous conductive structure. The porous conductive structure has 40-80% of porosity. The structure is manufactured through a reaction template method, a gas foaming method, or a sacrificial template method.

Description

도전재 일체 구조형 전극 및 이를 이용한 이차전지 {an electrode having conductive material integral structure and a secondary battery using thereof}[0001] The present invention relates to a conductive material integral structure electrode and a secondary battery using the same,

본 발명은 리튬 황 배터리의 양극(cathode) 구성에 관한 것이며, 특히 활물질 삽입 이전에 이미 단단한 구조를 가지고 있는 다공성 시트(sheet) 형태의 양극의 도전재를 사용하는 셀에 관한 것이다.
The present invention relates to a cathode structure of a lithium sulfur battery, and more particularly to a cell using an anode conductive material in the form of a porous sheet having already a rigid structure prior to insertion of the active material.

리튬 황 배터리의 양극을 제조하는 종래의 기술로서, PCT/JP 제2002/007779호는 수소, 물 및 수증기로 이루어진 군으로부터 선택되는 1종 또는 2종 이상과, 도전성 탄소 및/또는 가열분해에 의해 도전성 탄소를 생성할 수 있는 물질을 첨가하여, 원료를 소성하는 것을 특징으로 하여 양극재료의 1차 입자의 결정성장을 억제하여, 얻어지는 양극재료의 결정입자를 세립화하는 기술을 개시하고 있다. As a conventional technique for manufacturing a positive electrode of a lithium sulfur battery, PCT / JP 2002/007779 discloses a method for producing a positive electrode of a lithium sulfur battery, which comprises one or more selected from the group consisting of hydrogen, water and water vapor, Discloses a technology for refining crystal grains of a cathode material obtained by suppressing crystal growth of primary particles of a cathode material by adding a substance capable of generating conductive carbon and firing the raw material.

한편, 출원 제10-2002-0029327호는 리튬 2차 전지의 양극 활물질로서 유용한 리튬 망간 복합산화물 분말, 즉 하기 화학식 1로 표시되는 리튬 망간 복합산화물 분말에 있어서, 하기 화학식 1로 표시되는 리튬 망간 복합산화물의 분쇄물을 300∼800℃에서 가열 처리하여 얻어지는 것으로서, 평균 입자경이 0.1∼50㎛이고, 또한 BET 비표면적이 0.1∼2.0 m 2/g인 것을 개시하고 있다:On the other hand, Japanese Patent Application No. 10-2002-0029327 discloses a lithium manganese composite oxide powder useful as a cathode active material of a lithium secondary battery, that is, a lithium manganese composite oxide powder represented by the following Chemical Formula 1, Wherein the average particle diameter is 0.1 to 50 占 퐉 and the BET specific surface area is 0.1 to 2.0 m 2 / g, which is obtained by heat-treating the pulverized product of the oxide at 300 to 800 占 폚.

[화학식 1][Chemical Formula 1]

Li x Mn 2-y Me y O 4-z Li x Mn 2-y Me y O 4-z

여기서, Me는 A1, Zr 또는 Zn이고, x는 0<x<2.0, y는 0≤y<0.6, z는 0≤z≤2.0의 값을 갖는다.Here, Me is A1, Zr or Zn, x is 0 <x <2.0, y is 0? Y <0.6, and z is 0? Z? 2.0.

그러나 상기의 기술을 포함하는 종래 전극 제작 방법은 일정 비율의 황, 바인더, 도전재, 용매를 슬러리 형태로 혼합한 후 metal collector 위에 캐스팅(casting) 후 말린 후 전극으로 사용하는데, 이 경우 용매를 사용하는 습식 혹은 사용하지 않는 건식 모두 황과 도전재가 고른 접촉 면적(contact area)을 가지고 있는 상태로 혼합하기 어렵다. 이에 리튬 황 배터리의 수명이 짧은 이유로서 헐겁게 유지되어 있는 구조가 충방전 이후 급속히 무너진다는 연구 결과가 최근 많이 나오고 있다[Journal of The Electrochemical Society, 159 (8) A1226-A1229 (2012)]. 종래의 리튬 황 배터리의 양극이 충방전 사이클 이후 붕괴되는 과정을 도1에 도시하였다.
However, in the conventional method of manufacturing an electrode including the above-described techniques, a certain amount of sulfur, a binder, a conductive material, and a solvent are mixed in a slurry form, then cast on a metal collector, dried and then used as an electrode. It is difficult to mix both the sulfur and the conductive material with a uniform contact area. Recently, many studies have been made on the structure of lithium-sulfur battery because of its short lifetime, which is rapidly loosened after charging and discharging (Journal of The Electrochemical Society, 159 (8) A1226-A1229 (2012)). A process in which the anode of a conventional lithium-sulfur battery collapses after a charge-discharge cycle is shown in FIG.

이에 본 발명자는 도전재 자체가 양극의 지지체로도 작용하여 수회 이상의 충방전 이후에도 구조가 유지되는 리튬 황 이차전지의 양극을 제공하고자 한다.
Therefore, the present inventor intends to provide a positive electrode of a lithium sulfur secondary battery in which the conductive material itself also functions as a support for the positive electrode and the structure is maintained even after charging and discharging several times.

본 발명은 다공성 도전재 구조체 상에 유황 활물질을 주입하여 리튬 황 배터리의 양극을 제조하는 방법을 제공한다.
The present invention provides a method of manufacturing a positive electrode of a lithium sulfur battery by injecting a sulfur active material onto a porous conductive material structure.

도전재 구조체 적용 양극은 미리 도전재를 다공성 시트(sheet)로 만들고 활물질 혹은 활물질 용해 용액을 주입함으로써 도전재가 양극의 지지체 역할을 하기 때문에 충방전 시 구조가 붕괴되지 않고 유지되며 전자 전달이 우수하여 전지의 성능을 향상 시킬 수 있다.
Conductive material structure The applied anode is made of a porous sheet as a conductive material in advance, and the active material or the active material dissolution solution is injected, so that the conductive material serves as a support for the anode. Therefore, the structure is not collapsed during charging and discharging, Can be improved.

도 1은 종래의 리튬 황 배터리의 양극이 충방전 이후 붕괴되는 것을 도식화한 것이다.
도2는 기본 단위의 셀 assembly를 간단히 도식화한 것이다.
도3은 Sacrificial template 등으로 다공성 도전재 제작 후 여러 방법의 활물질 주입을 통해 셀 제작하는 것을 도식화한 것이다.
FIG. 1 schematically illustrates that the anode of a conventional lithium-sulfur battery is collapsed after charging and discharging.
Figure 2 is a simplified schematic of a cell assembly of a base unit.
FIG. 3 is a schematic view illustrating cell fabrication using a sacrificial template or the like to prepare a porous conductive material and then injecting an active material into the porous conductive material.

본 발명은 리튬 황 배터리의 양극(cathode) 구성에 관한 것이며, 특히 활물질 삽입 이전에 이미 단단한 구조를 가지고 있는 다공성 시트(sheet) 형태의 양극의 도전재를 사용하는 셀에 관한 것이다. 리튬 황 배터리 양극은 보통 도전재, 활물질, 바인더, 용매가 함께 혼합된 슬러리 상태로 제조되어 casting을 거쳐 전극으로 제작된다. 초기 혼합을 통해 도전재-도전재, 도전재-활물질 간 접촉을 아무리 잘 유지해놓더라도 싸이클이 진행되면 구조가 무너져 용량 및 수명 감소를 일으킨다. 도전재 구조체 적용 양극은 미리 도전재를 다공성 시트로 만들고 활물질 혹은 활물질 용해 용액을 주입함으로써 도전재가 양극의 지지체 역할을 하기 때문에 충방전시 구조가 붕괴되지 않고 유지되며 전자 전달이 우수하여 전지의 성능을 향상 시킬 수 있다.The present invention relates to a cathode structure of a lithium sulfur battery, and more particularly to a cell using an anode conductive material in the form of a porous sheet having already a rigid structure prior to insertion of the active material. Lithium Sulfur Batteries The anode is usually made of slurry mixed with conductive material, active material, binder and solvent, casted and made into an electrode. No matter how well the contact between the conductive material and the conductive material and the conductive material and the active material are maintained through the initial mixing, the structure is broken and the capacity and life are reduced when the cycle progresses. Conductive material structure The applied anode is made of a porous sheet made of a conductive material in advance and injected with an active material or an active material dissolution solution, so that the conductive material serves as a support for the anode. Therefore, the structure is not collapsed during charging and discharging. Can be improved.

본 발명의 양극은 다공성 도전재 구조체 상에 유황 활물질을 주입하여 제조된다. 상기 다공성 도전재 구조체는 기공율이 40 ~ 80 % 인 것이 바람직하며, 구조체를 제작하는 방법으로서 Reaction template 방법, 기체발포법을 이용할 수 있고, 바람직하게는 sacrificial template 방법으로 제작될 수 있으나 이에 한정되는 것은 아니다.The positive electrode of the present invention is produced by injecting a sulfur active material onto a porous conductive material structure. Preferably, the porous conductive material structure has a porosity of 40 to 80%. As the method of fabricating the structure, a reaction template method or a gas foaming method can be used. Preferably, the method can be manufactured by a sacrificial template method. no.

상기 유황 활물질은 바인더 없이 용융 혹은 액상으로 주입될 수 있고, 또는 폴리설파이드(PS)나 황을 용해한 전해질(catholyte)을 에 다공성 구조체를 함침하여 제조될 수 있다. 상기 전해질은 DME, TEGDME, Dioxlane 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 또한, 유황 활물질과 함께 추가의 바인더를 이용할 수 있으며, PVdF, PVdF-HFP, SBR-CMC, PVA, PTFE 등으로 구성된 군에서 선택된 1종 이상을 사용할 수 있으나 이에 한정되는 것은 아니다.The sulfur active material may be injected in a molten or liquid state without a binder, or may be prepared by impregnating a porous structure with a polysulfide (PS) or an electrolyte in which sulfur is dissolved. The electrolyte may be at least one selected from the group consisting of DME, TEGDME, Dioxlane, and the like. Further, an additional binder may be used together with the sulfur active material, and at least one selected from the group consisting of PVdF, PVdF-HFP, SBR-CMC, PVA, and PTFE may be used.

종래의 유황/바인더/용매/도전재 등의 혼합 슬러리를 캐스팅(casting)하여 전극을 제작하는 방법의 경우 바인더 양을 전체 도전재의 50 ~ 100 %로 사용(예. 유황:도전재:바인더 = 6:2:2 ~ 7:2:1)했던 것에 비교하여 본원 발명에 선택적으로 추가되는 바인더는 전체 도전재의 10 ~ 50 %를 사용하는 것이 바람직하다. 즉, 본 발명의 양극은 바인더를 사용하지 않는 경우의 조성비로 황:도전재 = 6:4 ~ 9:1, 바인더를 사용하는 경우의 조성비로는 황:도전재:바인더 = 6:2:2 ~ 7:2:1가 바람직하며, 리튬황 전지에서는 충방전 시 도전재 구조 유지가 수명에 중요한 영향을 미치기 때문에 구조가 잘 유지될 수 있도록 바인더 비율이 리튬 이온전지보다 더 크다.In the case of a conventional method for producing an electrode by casting a mixed slurry of sulfur / binder / solvent / conductive material, the amount of binder is used in an amount of 50 to 100% of the entire conductive material (for example, sulfur: conductive material: binder = 6 : 2: 2 to 7: 2: 1), 10 to 50% of the entire conductive material is preferably used as the binder optionally added to the present invention. That is, the anode of the present invention is composed of sulfur: conductive material = 6: 4 to 9: 1 in composition ratio when the binder is not used, and sulfur: conductive material: binder = 6: 2: 2 To 7: 2: 1. In the lithium sulfur battery, the binder ratio is larger than that of the lithium ion battery so that the retention of the conductive material structure significantly affects the lifetime of the lithium ion battery.

하기 도 2와 도3에 본 발명의 양극을 제조하는 방법을 참조하시오.See FIGS. 2 and 3 below for a method of producing the positive electrode of the present invention.

이하, 본 발명의 실시예를 하기에 더욱 자세히 설명하며 본원발명의 범위가 이에 한정되는 것은 아님을 주지한다.Hereinafter, embodiments of the present invention will be described in detail below, and it is noted that the scope of the present invention is not limited thereto.

실시예 1~2Examples 1 to 2

구조체 제작(도전재 제작)Construction of structures

도전재 구조체는 silica sacrificial template를 이용해 제작하였다. Colloidal silica powder를 일정 압력을 가해 눌러준 후 ethanol 용매에 녹인 일정 비율의 고분자화 촉매(옥살산)와 전구체(furfuryl alcohol)를 주입하였다. 열처리를 통해 polymerization과 carbonization이 이뤄진 시료를 40% HF 용액에 담궈 silica template를 제거하여 75% 다공성 도전재를 얻었다.
The conductive material structure was fabricated using a silica sacrificial template. Colloidal silica powder was pressurized with constant pressure, and a certain amount of polymerizing catalyst (oxalic acid) and furfuryl alcohol dissolved in ethanol solvent were injected. The polymerized and carbonized samples were immersed in 40% HF solution to remove the silica template to obtain a 75% porous conductive material.

비교예 1~2Comparative Examples 1 to 2

종래의 양극 캐스팅법은 활물질인 세라믹 분말을 도전재 및 바인더와 함께 알콜이나 물과 같은 액상용매와 섞어 슬러리를 만든 후, 알루미늄 포일과 같은 집전이 가능한 금속 기재에 일정한 두께로 코팅하는 방법이다. 이 때, 코팅은 닥터블레이드와 같이 일정한 두께를 가지는 어플리케이터를 사용하여 일정한 속도로 이루어지며, 코팅된 전극은 특정 분위기 하에서 건조하여 완성된다.
In the conventional anode casting method, ceramic powder, which is an active material, is mixed with a conductive material and a binder together with a liquid solvent such as alcohol or water to form a slurry, and then the conductive metal material is coated with a certain thickness on a collectable metal substrate such as an aluminum foil. At this time, the coating is performed at a constant rate using an applicator having a uniform thickness, such as a doctor blade, and the coated electrode is completed by drying under a specific atmosphere.

본원발명의 실시예1~2와 비교예1~2의 양극의 조성 및 그 충방전 사이클을 하기 표1에 나타내었다.The compositions of the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 of the present invention and their charge and discharge cycles are shown in Table 1 below.

제작 방법How to make 조성
(유황:도전재:바인더)
Furtherance
(Sulfur: conductive material: binder)
방전용량(mAh/g_S)Discharge capacity (mAh / g_S)
1 cycle1 cycle 50 cycle50 cycles 유지율(50th/1st)The retention rate (50 th / 1 st ) 1One 일반 slurry castingGeneral slurry casting 7:2:17: 2: 1 10201020 632632 61.9%61.9% 22 8:1:18: 1: 1 975975 570570 58.5%58.5% 1One 도전재 plateConductive plate 7:3:07: 3: 0 965965 854854 88.5%88.5% 22 7.5:2.5:07.5: 2.5: 0 958958 845845 88.2%88.2%

실시예 3Example 3

양극의 제작(황 용융방법)Production of anode (sulfur melting method)

155 ~ 165 ℃ 핫 플레이트 위에 다공성 탄소재를 놓고 유황 가루를 고르게 뿌린 후 10 분 정도 infiltration을 시킨다. 황 로딩양은 무게 변화를 통해 계산하였다. Place the porous carbon material on a hot plate at 155 ~ 165 ℃, spray the sulfur powder evenly, and infiltrate for 10 minutes. The amount of sulfur loading was calculated by weight change.

실시예 4 Example 4

Polysulfide 용해 방법Polysulfide dissolution method

0.2 M Polysulfide 용액 제조(Li2S8): 50 ml Dioxlane에 Li2S(45.95 g/mol) + S(32.06 g/mol) 첨가하였고, 황 로딩양을 계산하여 전해질에 PS 용액 주입 후 셀 을 평가하였다.Preparation of 0.2 M Polysulfide Solution (Li 2 S 8 ): Li 2 S (45.95 g / mol) + S (32.06 g / mol) was added to 50 ml of Dioxlane and the amount of sulfur loading was calculated. Respectively.

본 발명의 실시예 3~4의 양극의 조성 및 충방전 사이클을 하기 표2에 나타내었다.The compositions and charging / discharging cycles of the positive electrodes of Examples 3 to 4 of the present invention are shown in Table 2 below.

제작 방법How to make 조성
(유황:도전재:바인더)
Furtherance
(Sulfur: conductive material: binder)
방전용량(mAh/g_S)Discharge capacity (mAh / g_S)
1 cycle1 cycle 50 cycle50 cycles 유지율(50th/1st)The retention rate (50 th / 1 st ) 33 황 용융 방법Sulfur melting method 7:3:07: 3: 0 965965 854854 88.5%88.5% 44 Polysulfide
용해 방법
Polysulfide
Dissolution method
7:3:07: 3: 0 750750 670670 89.3%89.3%

본 발명의 양극을 포함하는 리튬 황 배터리는 전해액에 의해 바인더가 swelling되지 않고 딱딱한 구조를 가지기 때문에 싸이클이 진행됨에 따라 형태가 무너지지 않아 수명이 향상된다.The lithium-sulfur battery including the positive electrode of the present invention has a hard structure because the binder does not swell due to the electrolyte solution, so that the shape is not broken as the cycle progresses, and the lifetime is improved.

또한, 비교적 일정 크기의 기공(pore)을 가지므로 반응 최종 부산물인 Li2S가 고체로 석출될 때에도 도전재 사이사이를 막는 막힘 현상이 덜하여 수명이 개선된다.In addition, since Li 2 S, which is a final by-product of the reaction, is deposited in a solid state due to relatively large pores, the plugging between the conductive materials is less clogged and the lifetime is improved.

한편, 높은 에너지 밀도를 유지하기 위해 유황 전극을 최대한 두껍게, 단위면적당 최대한의 유황의 양 유지, 최대한 많이 적층 하는 방법 등을 쓰고 있는데 이러한 방법들은 충방전이 반복됨에 따라 집전체에서 멀리 떨어진 활물질이 떨어지거나 전도 경로(path)가 줄어드는 문제가 있는데, 도전재 구조체를 사용하면 이미 두께가 조절 가능한 단단한 틀을 가지므로 위와 같은 문제를 해결할 수 있다.On the other hand, in order to maintain a high energy density, the sulfur electrode is made as thick as possible, the maximum amount of sulfur per unit area is maintained, and a maximum number of layers are stacked. In these methods, as the charge and discharge are repeated, Or the conduction path (path) is reduced. When using the conductive material structure, the above problem can be solved because the conductive material has a rigid frame that is already adjustable in thickness.

또한, 널리 알려진 다공성 소재의 경우 다공성이 80 %를 넘기 힘들며 셀 구성 시 높은 다공성 도전재 사용은 강성 및 전자 전달 경로 등의 문제가 있는 반면, 에너지 밀도 측면에서는 낮은 도전재 비율, 즉 높은 다공성의 도전재가 필요하게 되는데, 본 기술에서는 도전재가 단단한 틀이 있는 plate 형태로 존재하기 때문에 양극 활물질(유황)을 종래 기술과 달리 용융방법으로 주입하거나, PS 상태로 녹인 전해질을 활물질로 사용하기 때문에 종래 기술보다 바인더 함량을 크게 줄일 수 있고, 도전재 비율을 다공성 소재에 맞게 유지 혹은 늘일 수 있기 때문에 전극 효율이 향상된다.
In addition, the well-known porous material has a porosity of less than 80%, and the use of a high-porosity conductive material in a cell configuration has problems such as rigidity and electron transfer path. On the other hand, in terms of energy density, Since the conductive material is present in the form of a plate having a rigid frame, the cathode active material (sulfur) is injected by the melting method unlike the prior art, or the electrolyte dissolved in the PS state is used as the active material, The binder content can be greatly reduced, and the conductive material ratio can be maintained or extended to match the porous material, thereby improving the electrode efficiency.

Claims (8)

다공성 도전재 구조체 상에 유황 활물질을 주입하여 리튬 황 배터리의 양극을 제조하는 방법.A method of manufacturing a positive electrode of a lithium sulfur battery by injecting a sulfur active material onto a porous conductive material structure. 제1항에 있어서, 상기 다공성 도전재 구조체는 기공율이 40 ~ 80 % 인 것인 방법.The method of claim 1, wherein the porous conductive material structure has a porosity of 40 to 80%. 제1항에 있어서, 상기 구조체는 리액션 템플레이트(Reaction template) 방법, 기체발포법 또는 새크리피셜 템플레이트(sacrificial template) 방법으로 제조되는 것인 방법.The method of claim 1, wherein the structure is manufactured by a reaction template method, a gas foaming method, or a new sacrificial template method. 제1항에 있어서, 상기 유황 활물질은 용융 주입, 액상 주입, 또는 폴리설파이드(PS)나 황을 용해한 전해질(catholyte)에 다공성 구조체를 함침하여 제조되는 것인 방법.The method of claim 1, wherein the sulfur active material is prepared by melt injection, liquid injection, or impregnation of a porous structure with a polysulfide (PS) or sulfur-dissolved electrolyte. 제1항에 있어서, 유황:도전재는 6:4 ~ 9:1의 범위인 것인 방법.The method of claim 1, wherein the sulfur: conductive material ranges from 6: 4 to 9: 1. 제1항 내지 제5항 중 어느 한 항에 있어서, 바인더를 추가로 포함하는 것인 방법.The method according to any one of claims 1 to 5, further comprising a binder. 제6항에 있어서, 유황:도전재:바인더는6:2:2 ~ 7:2:1 의 범위인 것인 방법.7. The method of claim 6 wherein the sulfur: conductive material: binder is in the range of 6: 2: 2 to 7: 2: 1. 제6항에 있어서, 상기 바인더는 PVdF, PVdF-HFP, SBR-CMC, PVA 및 PTFE로 이루어진 군에서 선택되는 1종 이상인 것인 방법.

7. The method according to claim 6, wherein the binder is at least one selected from the group consisting of PVdF, PVdF-HFP, SBR-CMC, PVA and PTFE.

KR1020120143958A 2012-12-11 2012-12-11 an electrode having conductive material integral structure and a secondary battery using thereof KR20140075526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120143958A KR20140075526A (en) 2012-12-11 2012-12-11 an electrode having conductive material integral structure and a secondary battery using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120143958A KR20140075526A (en) 2012-12-11 2012-12-11 an electrode having conductive material integral structure and a secondary battery using thereof

Publications (1)

Publication Number Publication Date
KR20140075526A true KR20140075526A (en) 2014-06-19

Family

ID=51128221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120143958A KR20140075526A (en) 2012-12-11 2012-12-11 an electrode having conductive material integral structure and a secondary battery using thereof

Country Status (1)

Country Link
KR (1) KR20140075526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008890A (en) * 2014-07-15 2016-01-25 삼성전자주식회사 Apparatus and method for providing touch inputs by using human body
CN105742559A (en) * 2014-12-31 2016-07-06 现代自动车株式会社 Cathode Of All-Solid Lithium Battery And Secondary Battery Using The Same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160008890A (en) * 2014-07-15 2016-01-25 삼성전자주식회사 Apparatus and method for providing touch inputs by using human body
CN105742559A (en) * 2014-12-31 2016-07-06 现代自动车株式会社 Cathode Of All-Solid Lithium Battery And Secondary Battery Using The Same
KR20160083485A (en) * 2014-12-31 2016-07-12 현대자동차주식회사 A cathode of wholly solid lithium battery and a secondary battery comprising thereof
CN105742559B (en) * 2014-12-31 2019-05-28 现代自动车株式会社 The cathode of solid lithium battery and the secondary cell for using the cathode
US10326128B2 (en) 2014-12-31 2019-06-18 Hyundai Motor Company Cathode of all-solid lithium battery and secondary battery using the same
US11177472B2 (en) 2014-12-31 2021-11-16 Hyundai Motor Company Cathode of all-solid lithium battery and secondary battery using the same

Similar Documents

Publication Publication Date Title
KR102293359B1 (en) Anode Active Material for lithium secondary battery and Method for preparing the same
JP6820298B2 (en) Method for manufacturing lithium carbonate composite powder
KR101365980B1 (en) Lithium air battery
Wang et al. A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes
KR102321503B1 (en) Anode Active Material of Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
US11417870B2 (en) Solid state battery and method for producing same
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
US12034152B2 (en) Cathodes for solid-state lithium sulfur batteries and methods of manufacturing thereof
KR20170052698A (en) Active material compositions comprising high surface area carbonaceous materials
US20130252091A1 (en) Lithium Ion Battery Electrode and Its Fabrication Method
KR101670353B1 (en) Method for synthesis of Silicon/Carbon/CNT as the lithium secondary battery anode material
KR102530678B1 (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
CN110890530B (en) Lithium metal secondary battery based on porous ceramic composite lithium metal cathode and preparation method thereof
KR20140048822A (en) Silicon oxide??carbon composite and manufacturing method thereof
CN112635917A (en) High-strength functional diaphragm for alkali metal-based battery, preparation method of high-strength functional diaphragm and alkali metal-based battery
KR101932463B1 (en) Lithium metal electrode and manufacturing method thereof
KR20140075526A (en) an electrode having conductive material integral structure and a secondary battery using thereof
CN108172906A (en) A kind of lithium-sulfur cell containing hydrotalcite film and preparation method thereof
KR101704186B1 (en) A cathode for all-solid-state lithium sulfur battery
KR102587556B1 (en) Method of preparing nanoporous silicon and anode active material for lithium secondary battery comprising nanoprous silicon prepared thereby
CN116715219A (en) Negative electrode material, preparation method thereof, negative electrode sheet, battery cell and sodium ion battery
CN115548418A (en) Inorganic/organic composite film solid electrolyte based on porous ceramic solid electrolyte and preparation method and application thereof
CN211017237U (en) Porous ceramic composite lithium metal negative electrode and lithium metal secondary battery based on negative electrode
KR102587972B1 (en) Method for Preparing Anode and Anode Prepared Therefrom
KR101250259B1 (en) Fabrication method of the electrolyte-impregnated metal electrode for molten carbonate fuel cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment