KR20130121516A - Using new alylamine as hole transporting mateial and organic electroluminescent device using the same - Google Patents

Using new alylamine as hole transporting mateial and organic electroluminescent device using the same Download PDF

Info

Publication number
KR20130121516A
KR20130121516A KR1020120044781A KR20120044781A KR20130121516A KR 20130121516 A KR20130121516 A KR 20130121516A KR 1020120044781 A KR1020120044781 A KR 1020120044781A KR 20120044781 A KR20120044781 A KR 20120044781A KR 20130121516 A KR20130121516 A KR 20130121516A
Authority
KR
South Korea
Prior art keywords
group
formula
layer
compound
organic
Prior art date
Application number
KR1020120044781A
Other languages
Korean (ko)
Other versions
KR101415734B1 (en
Inventor
신선호
심나영
박성우
Original Assignee
(주)위델소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)위델소재 filed Critical (주)위델소재
Priority to KR1020120044781A priority Critical patent/KR101415734B1/en
Publication of KR20130121516A publication Critical patent/KR20130121516A/en
Application granted granted Critical
Publication of KR101415734B1 publication Critical patent/KR101415734B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides tertiary aryl amine with a thiophen and fluorene structure and an organic electroluminescent device including the same. The compound has excellent electric and luminescent properties and high electric charge transfer capability, and is useful as an electric charge transfer material suitable for the fluorescence in colors like red, blue, or white, and a phosphorescent dopant. The compound has excellent positive hole transfer and electron transfer capability with an economical synthesis process by having an asymmetrical structure provided by the present invention, is thermally and electrically stable by having the high glass transition temperature for the preservation of the device and the reduction of the crystallization while driving, and extends the lifetime of the device. [Reference numerals] (01) Substrate;(02) Anode;(03) Cathode;(06) Light-emitting layer

Description

신규한 아릴아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자 {USING NEW ALYLAMINE AS HOLE TRANSPORTING MATEIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME}   Hole transporting material using novel arylamine and organic electroluminescent device including same {USING NEW ALYLAMINE AS HOLE TRANSPORTING MATEIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME}

본 발명은 아민계의 정공 수송 물질 유도체 및 이를 이용한 유기전계 발광 소자에 관한 것으로, 보다 구체적으로는 3차 아릴 아민의 특정한 구조를 포함하는 유기전계 발광소자에 관한 것이다. The present invention relates to an amine-based hole transport material derivative and an organic electroluminescent device using the same, and more particularly to an organic electroluminescent device comprising a specific structure of the tertiary aryl amine.

유기 전계 발광 소자는 1965년에 Pope 등에 의해 안트라센의 단결정으로부터 유기 발광물질이 처음 발견된 것을 이래로, 1987년 코닥사의 Tang에 의해 유기 재료를 정공 수송층과 발광층으로 나눈 기능 분리형의 적층 구조를 갖는 유기 발광 다이오드가 제안된 이후, "적층형 소자에 의한 저전압 구동 유기 EL 소자"(C.W.Tang, S.A.Vanslyke, Applied Physics Letters, 1987, 51, 913) 지금까지 다양한 종류의 유기 재료를 포함하는 발광 소자용 재료들이 개발되고 있다. Since the organic electroluminescent device was first discovered by an anthracene single crystal by Pope et al. In 1965, an organic light emitting diode having a functional separation type laminated structure in which organic materials were divided into a hole transporting layer and a light emitting layer by Kodak's Tang in 1987. Since the diode has been proposed, "low voltage driving organic EL devices by stacked devices" (CWTang, SAVanslyke, Applied Physics Letters, 1987, 51 , 913), materials for light emitting devices including various kinds of organic materials have been developed so far. .

디스플레이 소자의 기본적인 성능을 나타내는 기준은 구동전압, 소비전력, 효율, 휘도, 콘트라스트, 응답시간, 수명, 디스플레이색 (색좌표) 및 색순도 등이 있다. 비발광형 디스플레이 소자 중 하나인 LCD는 가볍고, 소비전력이 적은 이점이 있어 현재 가장 널리 사용되고 있다. 그러나 응답시간, 콘트라스트, 시야각 등의 특성이 만족할 수 있는 수준에 도달하고 있지 않고, 개선의 여지가 아직 많다. 따라서 이러한 문제점을 보완할 수 있는 차세대 디스플레이 소자로서 유기 전기 발광 소자(Organic Light-Emitting Diode, 이하, OLED)가 주목받고 있다. OLED는 자체 발광형 디스플레이 소자로서 시야각이 넓고 콘트라스트가 우수할 뿐만 아니라, 응답시간이 빠른 장점이 있다. The criteria for the basic performance of the display device are driving voltage, power consumption, efficiency, brightness, contrast, response time, lifetime, display color (color coordinate) and color purity. One of the non-luminous display devices, LCD, is the most widely used because of its light weight, low power consumption. However, the characteristics such as response time, contrast, viewing angle, etc. have not reached a satisfactory level, and there is still much room for improvement. Therefore, organic light-emitting diodes (OLEDs) are attracting attention as next-generation display devices that can compensate for these problems. OLEDs are self-luminous display devices that have wide viewing angles, excellent contrast, and fast response times.

일반적인 유기 발광 소자는 유기물 박막에 음극과 양극을 통하여 주입된 전자와 정공이 재결합 에너지를 가지는 여기자를 형성하고, 형성된 여기자로부터 특정한 파장의 빛이 발생하는 원리를 이용한 자발광 소자다.A general organic light emitting device is a self-light emitting device using a principle that electrons and holes injected through a cathode and an anode form an exciton having recombination energy in an organic thin film, and light of a specific wavelength is generated from the formed excitons.

이러한 발광 재료는 크게 형광과 인광으로 나뉘며, 발광층 형성 방법은 형광 호스트(Host)에 인광(Dopant)을 도핑하는 방법과 형광 호스트에 형광 도판트를 도핑하여 양자효율을 증가시키는 방법 및 발광체에 도판트 (DCM, Rubrene, DCJTB 등)를 이용하여 발광파장을 장파장으로 이동시키는 방법 등이 있다. 이러한 도핑을 통해 발광 파장, 효율, 구동전압, 수명 등을 개선하려 하고 있다. Such a light emitting material is largely divided into fluorescence and phosphorescence. The method of forming a light emitting layer includes a method of doping a fluorescent host with a dopant, a method of increasing a quantum efficiency by doping a fluorescent dopant into a fluorescent host, (DCM, Rubrene, DCJTB, etc.) and moving the emission wavelength to a long wavelength. Through such doping, the emission wavelength, efficiency, driving voltage, and lifespan are improved.

일반적인 유기 전계 발광 소자의 구조는 양극, 정공을 양극으로부터 받아들이는 정공 주입층(HIL), 정공을 이송하는 정공 수송층(HTL), 정공과 전자가 결합하여 빛을 내는 발광층(EML), 전자를 음극으로부터 받아들여 발광층으로 전달하는 전자 수송층(ETL), 그리고 음극으로 구성되어 있다. 진공증착법에 의해 형성된 이러한 박막 구조는 정공과 전자의 이동 속도를 조절하여 발광층에서 정공과 전자의 밀도가 균형을 이루도록 하여 발광효율을 높일 수 있게 한다. 또한 유기 전계 발광 소자의 실용화 및 특성 향상을 위해서는, 상기와 같이 다층 구조로 소자를 구성할 뿐만 아니라 소자 재료 특히, 정공 전달 물질이 열적 및 전기적으로 안정적이어야 한다. 왜냐하면, 전압을 걸어주었을 때 소자에서 발생되는 열로 인하여 열 안정성이 낮은 분자는 결정 안정성이 낮아 재배열현상이 일어나게 되고, 결국 국부적으로 결정화가 발생되어 소자의 열화 및 파괴를 가져오기 때문이다. The structure of a general organic EL device includes an anode, a hole injection layer (HIL) that receives holes from an anode, a hole transport layer (HTL) that transports holes, an emission layer (EML) that combines holes and electrons, and emits electrons. It consists of an electron transport layer (ETL) and a cathode which receive from and deliver to a light emitting layer. Such a thin film structure formed by the vacuum evaporation method can adjust the moving speed of holes and electrons to balance the densities of holes and electrons in the light emitting layer, thereby enhancing the luminous efficiency. In addition, in order to commercialize and improve the characteristics of the organic electroluminescent device, not only the device is configured in a multilayer structure as described above, but also the device material, in particular, the hole transport material must be thermally and electrically stable. This is because molecules with low thermal stability due to the heat generated from the device when the voltage is applied are low in crystal stability and are rearranged, resulting in local crystallization and deterioration and destruction of the device.

지금까지 사용되어 왔던 정공 전달 물질에는 m-MTDATA [4,4',4"-트리스 (N-3-메틸페닐-N-페닐아미노)-트리페닐아민, 2-TNATA [4,4',4"-트리스(N-(나프틸렌 -2-일)-N-페닐아미노)-트리페닐아민], TPD [N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4' -디아미노비페닐], 및 NPB [N,N'-디(나프탈렌-1-일)-N,N'-디페닐벤지딘] 등이 있는데, m-MTDATA와 2-TNATA는 유리전이온도 (Tg)가 낮을 뿐만 아니라 대량화 하는 과정에서 문제점이 많이 발생하기 때문에 총 천연색을 구현하는 데에 문제가 있고, TPD 및 NPB도 유리전이온도가 각각 60 ℃ 및 96℃로 낮기 때문에 상기와 같은 이유로 소자의 수명을 단축시킨다는 치명적인 단점이 있다.The hole transport materials that have been used up to now include m-MTDATA [4,4 ', 4 "-tris ( N- 3-methylphenyl- N -phenylamino) -triphenylamine, 2-TNATA [4,4', 4" -Tris ( N- (naphthylene-2-yl) -N -phenylamino) -triphenylamine], TPD [ N , N' -diphenyl- N , N' -di (3-methylphenyl) -4,4 '-Diaminobiphenyl], and NPB [ N , N' -di (naphthalen-1-yl) -N , N' -diphenylbenzidine]. M-MTDATA and 2-TNATA have a glass transition temperature ( Tg) is not only low, but also a lot of problems occur in the process of mass production, there is a problem in realizing the total color, TPD and NPB also have a low glass transition temperature of 60 ℃ and 96 ℃, respectively, There is a fatal disadvantage of shortening the lifespan.

유기 전계 발광 소자에 사용되는 상기 종래의 정공 전달 물질은 여전히 성능 개선이 요구되고, 따라서 소자의 수명 및 발광효율을 향상시킬 수 있는 우수한 재료에 대한 필요성이 존재한다.
The conventional hole transport materials used in organic electroluminescent devices still need to improve performance, and thus there is a need for excellent materials that can improve device lifetime and luminous efficiency.

본 발명은 상기와 같은 종래 기술의 문제점을 향상시키기 위하여 고안된 것으로 3차 아민에 방향족와 플로렌 헤테로 아릴기등을 도입하여 다층구조의 유기 전계발광 소자의 전달물질로써 열안정성이 우수하고 수명이 증가될 뿐만 아니라 발광 휘도 및 효율이 우수한 유기 전계 발광 소자를 제공한다.The present invention is designed to improve the problems of the prior art as described above, by introducing aromatic and florene heteroaryl groups in the tertiary amine, and excellent thermal stability as a transport material of the organic electroluminescent device of a multi-layer structure and increase the lifespan In addition, the present invention provides an organic EL device having excellent luminescence brightness and efficiency.

상기 해결하고자는 과제를 이루기 위하여 본 발명에서는, 하기 화학식1,In the present invention to achieve the above object,

화학식2 로 표시되는 3차 아릴 아민계 화합물을 제공한다.It provides a tertiary aryl amine compound represented by the formula (2).

화학식 1Formula 1

Figure pat00001
Figure pat00001

상기 A각각

Figure pat00002
중에서 선택되며,Each of A
Figure pat00002
Lt; / RTI >

상기 a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C4~C25의 아릴기, C4~C25의 헤테로아릴기, 아미노기 및 치환된 아미노기로 이루어진 군에서 선택된 어느 하나이며,A1 and a2 are the same or different, each selected from the group consisting of H, C4 ~ C25 aryl group, C4 ~ C25 heteroaryl group, amino group and substituted amino group,

상기Y는 C 또는 N이며,Y is C or N,

상기Y가 N일 경우, a1는 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, C4~C25의 아릴기 및 C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이고, 상기Y가 C일 경우, a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C1~C13의 알킬기, C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이거나, 상기 a1 및 a2가 C4~C20의 고리로 연결된 구조이다.When Y is N, a1 is a non-covalent electron pair, a2 is any one selected from the group consisting of H, an alkyl group of C1 to C13, an aryl group of C4 to C25, and a heteroaryl group of C4 to C25, and Y is Cyl In this case, a1 and a2 are the same or different, and each one selected from the group consisting of H, C1 to C13 alkyl groups, and C4 to C25 heteroaryl groups, or a1 and a2 are connected to a ring of C4 to C20.

상기 X는 탄소수 6 내지 20의 치환 또는 비치환된 아릴기, 탄소수 4 내지 15의 치환 또는 비치환된 헤테로 아릴기 또는 탄소수 4 내지 20의 치환 또는 비치환된 축합 다환기를 나타낸다.    X represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 4 to 15 carbon atoms, or a substituted or unsubstituted condensed polycyclic group having 4 to 20 carbon atoms.

상기 화학식 1의 Y가 N인 경우, a1은 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthracenyl),    When Y in Formula 1 is N, a1 is a non-covalent electron pair, a2 is H, C1-C13 alkyl group, phenyl group (phenyl), naphthyl group, anthracenyl group (anthracenyl),

퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다. A quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.

상기 화학식 1의 Y가 C 일 경우, a1 및 a2는 동일 또는 상이한 것으로 각각 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthrac      When Y in Formula 1 is C, a1 and a2 are the same or different, H, C1-C13 alkyl group, phenyl group, naphthyl group, anthracenyl group (anthrac)

enyl), 퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.enyl), quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.

상기 화학식 1의 Y가 C 이며 a1,a2가 CH3일 때, 하기 화학식으로 표시되는 화합물When Y in Formula 1 is C and a1, a2 is CH 3 , a compound represented by the following formula

화학식 2(2)

Figure pat00003
Figure pat00003

상기 화학식 2의 X는 각각 독립적으로 수소원자, 페닐기, 나프틸기, 플루오렌기, 카바졸릴기,니트릴기, 니트로기,아민기, 아릴아민기, 또는 C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 알콕시기, C3~C40의 시클로 알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 화합물X in Formula 2 is each independently a hydrogen atom, a phenyl group, a naphthyl group, a fluorene group, a carbazolyl group, a nitrile group, a nitro group, an amine group, an arylamine group, or an alkyl group of C 1 ~ C 40 , C 2 ~ C 40 alkenyl group, C 1 to C 40 alkoxy group, C 1 to C 40 alkoxy group, C 3 to C 40 cycloalkyl group, C 3 to C 40 heterocycloalkyl group, C 6 to C 40 aryl Group and C 5 ~ C 40 A compound characterized in that any one selected from the group consisting of heteroaryl groups

상기 화학식 2의 X는 하기 구조들로부터 선택되는 것을 특징으로 하는 화합물일 수 있으며 이에 한정되는 것은 아니다.
X in Chemical Formula 2 may be a compound selected from the following structures, but is not limited thereto.

Figure pat00004

Figure pat00004

상기 화학식 2에서 A가

Figure pat00005
인 경우,하기 화학식으로 표시되는 화합물In Formula 2, A is
Figure pat00005
In the case of the compound represented by the following formula

화학식3(3)

Figure pat00006

Figure pat00006

상기 화학식 2에서 A가

Figure pat00007
인 경우,하기 화학식으로 표시되는 화합물In Formula 2, A is
Figure pat00007
In the case of the compound represented by the following formula

화학식4Formula 4

Figure pat00008

Figure pat00008

상기 3차 아릴 아민은 평면 패널 디스플레이, 평면 발광체, 조명용 면발광 OLED의 발광체,flexible 발광체, 복사기, 프린터, LCD 백라이트, 계량기 광원, 디스플레이판, 유기전계 발광소자(OLED), 유기태양전지(OSC), 전자종이(E-paper), 유기 감광체(OPC) 및 유기트랜지스터(OTFT) 중에서 선택된 어느 하나에 적용될 수 있으나, 이에 한정되는 것은 아니다.The tertiary aryl amines are flat panel displays, flat emitters, illuminators for surface emitting OLEDs for illumination, flexible emitters, copiers, printers, LCD backlights, meter light sources, display panels, organic light emitting diodes (OLEDs), organic solar cells (OSCs) , E-paper, an organic photoconductor (OPC), and an organic transistor (OTFT) may be applied to any one selected from, but is not limited thereto.

본 발명은 또한, 제1 전극, 제 2 전극 및 이들 전극 사이에 1 층 이상의 유기물층을 포함하며, 상기 유기물층의 적어도 1층 이상이 상기 3차 아릴 아민을 포함하는 유기전계 발광소자를 제공한다.The present invention also provides an organic electroluminescent device comprising a first electrode, a second electrode and at least one organic layer between these electrodes, wherein at least one layer of the organic layer comprises the tertiary aryl amine.

상기 1 층 이상의 유기물층은 발광층을 포함하며, 정공 주입층, 정공 수송층, 정공 저지층, 전자수송층, 및 전자 주입층으로 이루어진 군에서 선택된 1종 이상의 층을 더 포함할 수 있다.The at least one organic layer may include a light emitting layer, and may further include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, and an electron injection layer.

본 발명에 따른 화합물은 종래 기술의 문제점을 향상시키기 위하여 고안된 것으로, 아릴 아민에 방향족와 플로렌 헤테로 아릴기등을 도입하여 다층구조의 유기 전계발광 소자의 전달물질로써 열안정성이 우수하고 수명이 증가될 뿐만 아니라 발광 휘도 및 효율이 우수한 유기 전계 발광 소자를 제공할 수 있을 것이다. 또한 본 발명에 따른 아릴아민 유도체는 정공수송을 위한 물질 이외에 그 치환체의 종류에 따라 다양한 특성을 구비할 수 있어서 치환체에 따라 정공주입, 정공 수송, 전자 주입 및 수송의 역할을 모두 할 수 있으며, 고효율, 고색순도가 우수한 유기 전계 발광소자를 제공하여 디스플레이 산업의 기술 향상에 이바지 할 것으로 기대된다.Compound according to the present invention is designed to improve the problems of the prior art, by introducing an aromatic and florene hetero aryl group in the aryl amine as a transport material of the organic electroluminescent device of a multi-layer structure, excellent thermal stability and increase the lifespan In addition, it will be possible to provide an organic EL device having excellent luminescence brightness and efficiency. In addition, the arylamine derivative according to the present invention may have various characteristics depending on the type of substituents in addition to the material for hole transport, and may serve as a hole injection, hole transport, electron injection and transport depending on the substituent, and high efficiency In addition, it is expected to contribute to the improvement of technology of the display industry by providing an organic EL device having excellent color purity.

본 발명에 따른 화합물은 종래 기술의 문제점을 향상시키기 위하여 고안된 것으로, 아릴 아민에 방향족와 플로렌 헤테로 아릴기등을 도입하여 다층구조의 유기 전계발광 소자의 전달물질로써 열안정성이 우수하고 수명이 증가될 뿐만 아니라 발광 휘도 및 효율이 우수한 유기 전계 발광 소자를 제공할 수 있을 것이다. 또한 본 발명에 따른 아릴아민 유도체는 정공수송을 위한 물질 이외에 그 치환체의 종류에 따라 다양한 특성을 구비할 수 있어서 치환체에 따라 정공주입, 정공 수송, 전자 주입 및 수송의 역할을 모두 할 수 있으며, 고효율, 고색순도가 우수한 유기 전계 발광소자를 제공하여 디스플레이 산업의 기술 향상에 이바지 할 것으로 기대된다.Compound according to the present invention is designed to improve the problems of the prior art, by introducing an aromatic and florene hetero aryl group in the aryl amine as a transport material of the organic electroluminescent device of a multi-layer structure, excellent thermal stability and increase the lifespan In addition, it will be possible to provide an organic EL device having excellent luminescence brightness and efficiency. In addition, the arylamine derivative according to the present invention may have various characteristics depending on the type of substituents in addition to the material for hole transport, and may serve as a hole injection, hole transport, electron injection and transport depending on the substituent, and high efficiency In addition, it is expected to contribute to the improvement of technology of the display industry by providing an organic EL device having excellent color purity.

상기 해결하고자는 과제를 이루기 위하여 본 발명에서는, 하기 화학식1,In the present invention to achieve the above object,

표시되는 3차 아릴 아민계 화합물을 제공한다.Provided is the tertiary aryl amine compound represented.

화학식 1Formula 1

Figure pat00009
Figure pat00009

상기 A각각

Figure pat00010
중에서 선택되며,Each of A
Figure pat00010
Lt; / RTI >

상기 a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C4~C25의 아릴기, C4~C25의 헤테로아릴기, 아미노기 및 치환된 아미노기로 이루어진 군에서 선택된 어느 하나이며,A1 and a2 are the same or different, each selected from the group consisting of H, C4 ~ C25 aryl group, C4 ~ C25 heteroaryl group, amino group and substituted amino group,

상기Y는 C 또는 N이며,Y is C or N,

상기Y가 N일 경우, a1는 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, C4~C25의 아릴기 및 C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이고, 상기Y가 C일 경우, a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C1~C13의 알킬기, C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이거나, 상기 a1 및 a2가 C4~C20의 고리로 연결된 구조이다.When Y is N, a1 is a non-covalent electron pair, a2 is any one selected from the group consisting of H, an alkyl group of C1 to C13, an aryl group of C4 to C25, and a heteroaryl group of C4 to C25, and Y is Cyl In this case, a1 and a2 are the same or different, and each one selected from the group consisting of H, C1 to C13 alkyl groups, and C4 to C25 heteroaryl groups, or a1 and a2 are connected to a ring of C4 to C20.

상기 X는 탄소수 6 내지 20의 치환 또는 비치환된 아릴기, 탄소수 4 내지 15의 치환 또는 비치환된 헤테로 아릴기 또는 탄소수 4 내지 20의 치환 또는 비치환된 축합 다환기를 나타낸다.    X represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 4 to 15 carbon atoms, or a substituted or unsubstituted condensed polycyclic group having 4 to 20 carbon atoms.

상기 화학식 1의 Y가 N인 경우, a1은 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthracenyl),    When Y in Formula 1 is N, a1 is a non-covalent electron pair, a2 is H, C1-C13 alkyl group, phenyl group (phenyl), naphthyl group, anthracenyl group (anthracenyl),

퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다. A quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.

상기 화학식 1의 Y가 C 일 경우, a1 및 a2는 동일 또는 상이한 것으로 각각 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthrac      When Y in Formula 1 is C, a1 and a2 are the same or different, H, C1-C13 alkyl group, phenyl group, naphthyl group, anthracenyl group (anthrac)

enyl), 퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.enyl), quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.

또한,상기 화학식 1의 Y가 C 이며 a1,a2가 CH3일 때, 하기 화학식으로 표시되는 화합물In addition, when Y in Formula 1 is C and a1, a2 is CH 3 , the compound represented by the following formula

화학식 2(2)

Figure pat00011
Figure pat00011

상기 화학식 2의 X는 각각 독립적으로 수소원자, 페닐기, 나프틸기, 플루오렌기, 카바졸릴기,니트릴기, 니트로기,아민기, 아릴아민기, 또는 C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 알콕시기, C3~C40의 시클로 알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 화합물X in Formula 2 is each independently a hydrogen atom, a phenyl group, a naphthyl group, a fluorene group, a carbazolyl group, a nitrile group, a nitro group, an amine group, an arylamine group, or an alkyl group of C 1 ~ C 40 , C 2 ~ C 40 alkenyl group, C 1 to C 40 alkoxy group, C 1 to C 40 alkoxy group, C 3 to C 40 cycloalkyl group, C 3 to C 40 heterocycloalkyl group, C 6 to C 40 aryl Group and C 5 ~ C 40 A compound characterized in that any one selected from the group consisting of heteroaryl groups

상기 화학식 2의 X는 하기 구조들로부터 선택되는 것을 특징으로 하는 화합물일 수 있으며 이에 한정되는 것은 아니다.
X in Chemical Formula 2 may be a compound selected from the following structures, but is not limited thereto.

Figure pat00012

Figure pat00012

상기 화학식 2에서 A가

Figure pat00013
인 경우,하기 화학식으로 표시되는 화합물In Formula 2, A is
Figure pat00013
In the case of the compound represented by the following formula

화학식3(3)

Figure pat00014

Figure pat00014

상기 화학식 2에서 A가

Figure pat00015
인 경우,하기 화학식으로 표시되는 화합물In Formula 2, A is
Figure pat00015
In the case of the compound represented by the following formula

화학식4Formula 4

Figure pat00016

Figure pat00016

도3 및 도 4에는 상기 화학식1로 표시되는 3차아릴 아민의 일 예인 하기 화합물 A1의 UV/(Ulttraviolet)/PL(Photoluminescence) 스펙트럼 및 열적 안정성에 대한 데이터를 나타내었다.3 and 4 show data on UV / (Ulttraviolet) / PL (Photoluminescence) spectrum and thermal stability of Compound A1, which is an example of the tertiary aryl amine represented by Chemical Formula 1.

Figure pat00017
Figure pat00017

상기 도 3의 UV(Ultraviolet)/PL(Photoluminescene) 스펙트럼은 OLED를 특성화하기 위하여 각 화합물이 갖는 발광 파장을 측정하는 것으로, UV를 통하여 흡수되는 파장의 빛을 조사하여 가장 발광이 잘 일어나는 파장을 측정한 그래프이다. The UV (Ultraviolet) / PL (Photoluminescene) spectrum of FIG. 3 measures the emission wavelength of each compound to characterize the OLED, and measures the wavelength at which the most emission occurs by irradiating light of the wavelength absorbed through the UV. One graph.

상기 UV(Ultraviolet)/PL(Photoluminescene) 스펙트럼은 당 업계의 공지의 방법을 통하여 얻을 수 있으며, 본 발명에서는 퀄츠(quartz)에 상기 화합물 A1이 포함된 용액을 코팅하여 제조된 고체 필름에 약 340nm 파장의 여기광을 조사하여 도 3의 스펙트럼을 얻었으며, 도 3에 도시한 바와 같이 약 432nm에서 최대 발광 피크를 가지므로 발광 효율이 우수할 것으로 기대된다. 그러나, 그 구체적 수치는 화합물의 순도, 주변 환경 등에 따라 달라질 것인바, 세부적 수치보다는 데이터의 경향이 중요하다고 할 수 있다.The UV (Ultraviolet) / PL (Photoluminescene) spectrum can be obtained through a method known in the art, in the present invention, the wavelength of about 340nm to a solid film prepared by coating a solution containing the compound A1 in the quartz (quartz) The spectrum of FIG. 3 was obtained by irradiating the excitation light, and since it has a maximum emission peak at about 432 nm as shown in FIG. However, the specific value will vary depending on the purity of the compound, the surrounding environment, etc., and thus, the trend of the data is more important than the detailed value.

상기 도4는 정공전달 물질의 열안정성 특성을 알아보기 위한 것으로, 이 역시 당 업계의 공지의 방법을 통하여 평가될 수 있으며, 본 발명에서는 열중량분석법(TGA)을 이용하여 질소 분위기 하에서 팬에 일정 무게의 화합물 A1의 시료를 달아 일정한 속도로 온도를 증가시키면서 시료의 무게 변화를 측정하여 열적 안정성에 대한 데이터를 얻었다. 그 결과 도 4에 도시한 바와 같이 화합물 A1의 열분해 온도가 약 300 ℃ 이상으로 우수한 열적 안정성을 갖는 것을 확인할 수 있었으며, 이를 토대로 본 발명에 따른 상기 화학식1로 표시되는 3차 아릴 아민은 300 ℃ 정도의 고온에서도 열적 안정성을 나타냄을 확인할 수 있다.Figure 4 is to determine the thermal stability characteristics of the hole transport material, which can also be evaluated through a method known in the art, in the present invention, the thermogravimetric analysis (TGA) using a constant temperature in the fan under nitrogen atmosphere A sample of the compound A1 of weight was weighed to measure the change in weight of the sample while increasing the temperature at a constant rate to obtain data on thermal stability. As a result, as shown in FIG. 4, the thermal decomposition temperature of Compound A1 was confirmed to have excellent thermal stability at about 300 ° C. or more. Based on this, the tertiary aryl amine represented by Formula 1 according to the present invention is about 300 ° C. It can be seen that the thermal stability is shown even at high temperature.

한편, 본 발명은 또한 상기와 같은 화학식 1의 아릴아민 화합물을 포함하는 유기전계 발광 재료를 더 제공한다. On the other hand, the present invention also provides an organic electroluminescent material comprising the arylamine compound of Formula 1 as described above.

상기 유기전계 발광 재료는 전술한 화학식 1의 아릴아민 화합물을 이용하여 한 층 이상의 유기물 층을 형성하는 것을 제외하고는, 통상의 유기전자소자의 제조방법 및 재료에 의하여 제조될 수 있다.The organic electroluminescent material may be prepared by a conventional method and material for manufacturing an organic electronic device, except that at least one organic layer is formed using the arylamine compound of Formula 1 described above.

즉, 본 발명의 유기 전자소자는 제 1전극, 제 2전극 및 이들 전극사이에 배치된 1층 이상의 유기물층을 포함하며, 상기 유기물층 중 적어도 1층 이상이 본 발명의 화학식 1로 표시되는 아릴아민유도체를 포함한다. That is, the organic electronic device of the present invention includes a first electrode, a second electrode and one or more organic material layers disposed between these electrodes, and at least one or more of the organic material layers is an arylamine derivative represented by Chemical Formula 1 of the present invention. It includes.

또한 본 발명의 유기 전자소자에서 유기물층은 정공주입층, 정공수송층, 발광층, 정공저지층, 전자수송층을 포함하고, 필요에 따라 정공주입층, 정공수송층, 정공저지층, 전자수송층이 한 개 또는 두 개 층이 생략된 상태로 사용할 수 있다. In addition, in the organic electronic device of the present invention, the organic material layer includes a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, and if necessary, one or two hole injection layers, hole transport layers, hole blocking layers, and electron transport layers. It can be used with the layers omitted.

본 발명의 유기 발광 소자 중 유기물층은 1층으로 이루어진 단층 구조일 수도 있으나, 발광층을 포함하는 2층 이상의 다층구조일 수도 있다. 본 발명의 유기 발광 소자 중 유기물층이 다층 구조인 경우, 이는 예컨대 정공주입층 (Hole Injection Layer), 정공수송층 (Hole Transport Layer), 발광층 (Electroluminescence Layer), 정공저지층, (Hole Blocking Layer), 전자수송층 (Electron Transport Layer) 등이 적층된 구조일 수 있다. The organic material layer of the organic light emitting device of the present invention may be a single layer structure consisting of one layer, may be a multilayer structure of two or more layers including a light emitting layer. When the organic material layer of the organic light emitting device of the present invention has a multi-layer structure, for example, it is a hole injection layer (Hole Injection Layer), a hole transport layer (Hole Transport Layer), an emission layer (Electroluminescence Layer), a hole blocking layer, (Hole Blocking Layer), electron It may have a structure in which an electron transport layer or the like is stacked.

예컨대, 본 발명의 유기 발광 소자의 구조는 도 1 내지 도 3에 나타낸 것과 같은 구조를 가질 수 있으나, 이들에만 한정되는 것은 아니다.For example, the structure of the organic light emitting device of the present invention may have a structure as shown in Figs. 1 to 3, but is not limited thereto.

예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering) 이나 전자빔 증발(e-beam evaporation)과 같은 공지의 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 정공저지층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. For example, the organic light emitting device according to the present invention is a metal oxide having a metal or conductivity on a substrate or a metal oxide on a substrate using known physical vapor deposition (PVD) methods such as sputtering or e-beam evaporation It can be prepared by depositing an alloy of the anode to form an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon have.

이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다.In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

상기 유기물층은 정공주입층, 정공수송층, 발광층, 정공저지층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.The organic material layer may have a multi-layer structure including a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, but is not limited thereto and may have a single layer structure. The organic material layer may be formed using a variety of polymer materials by a method such as a solvent process such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, .

상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 티타늄 산화물 (TiO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the anode material, a material having a large work function is preferably used so that hole injection can be smoothly conducted into the organic material layer. Specific examples of the cathode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), titanium oxide (TiO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline.

상기 음극 물질로는 통상 유기물층으로 전자주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiAl 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.The negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiAl and LiF / Al or LiO2 / Al, but are not limited thereto.

정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 또한 양극과의 표면 접착력이 좋으며, 양극의 표면 거칠기를 완화해줄 수 있는 평탄화 능력이 있는 물질이 바람직하다. 그리고 발광층의 밴드갭보다 큰 HOMO와 LUMO 값을 갖는 물질이 바람직하다. 또한 화학 구조적으로 열적 안정성이 높은 물질이 바람직하다. As the hole injecting material, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injecting material be between the work function of the anode material and the HOMO of the surrounding organic layer. In addition, a material having good surface adhesion with the positive electrode and having a planarization ability that can alleviate the surface roughness of the positive electrode is preferable. And a material having HOMO and LUMO values larger than the bandgap of the light emitting layer is preferable. In addition, materials having high thermal stability in chemical structure are preferable.

정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.Specific examples of the hole injecting material include metal porphyrine, oligothiophene, arylamine-based organic materials, hexanitrile hexaazatriphenylene-based organic materials, quinacridone-based organic materials, perylene , Anthraquinone, polyaniline and polythiophene-based conductive polymers, but the present invention is not limited thereto.

정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 발광층의 밴드갭보다 큰 HOMO와 LUMO 값을 갖는 물질이 적합하다. 또한 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. As the hole transporting material, a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility to holes is suitable. A material having HOMO and LUMO values larger than the bandgap of the light emitting layer is suitable. Materials with high chemical stability and thermal stability are also suitable.

구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.

발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 양자효율이 좋은 물질이 바람직하다. As the light emitting material, a material capable of emitting light in the visible light region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting layer, respectively, is preferably a material having good quantum efficiency.

구체적인 예로는 청색 계열의 ADN 또는 MADN 및 DPVBi, BAlq 등과 녹색 계열의 Alq3 및 기타의 안트라센, 파이렌, 플루오렌, 스파이(spiro)로 플루오렌, 카르바졸, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열로 표시되는 화합물 및 고분자성의 폴리(p-페닐렌비닐렌), 폴리스파이로, 폴리플루오렌 등이 있으나, 이들에만 한정되는 것은 아니다.Specific examples include fluorene, carbazole, benzoxazole, benzthiazole and benzimidazole with blue ADN or MADN and DPVBi, BAlq and green Alq3 and other anthracenes, pyrenes, fluorenes, spiros, etc. Compounds represented by the series, and polymeric poly (p-phenylenevinylene), polypyro, polyfluorene, and the like, but are not limited thereto.

정공저지층 물질로는 발광의 HOMO 값보다 큰 물질이 적합하다. 또한 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. As the hole blocking layer material, a material larger than the HOMO value of luminescence is suitable. Materials with high chemical stability and thermal stability are also suitable.

구체적인 예로 TPBi와 BCP가 주로 이용되며, CBP와 PBD 및 PTCBI, BPhen 등이 사용될 수 있으며, 이들에만 한정되는 것은 아니다.Specifically, TPBi and BCP are mainly used, and CBP, PBD, PTCBI, BPhen, and the like can be used, but not limited thereto.

전자수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. As the electron transporting material, a material capable of transferring electrons from the cathode well into the light emitting layer, which is highly mobile, is suitable.

또한 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. Materials with high chemical stability and thermal stability are also suitable.

구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.Specific examples include an Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.

본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 본 발명에 따른 화합물은 유기태양전지, 유기감광체, 유기트랜지스터, 전자종이 (e-Paper) 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다. The organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used. The compound according to the present invention may act on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, electronic paper (e-Paper) and the like.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.

본 발명의 아릴 아민 화합물은 우수한 전기적 특성 및 정공 수송 특성을 보이므로 유기전계발광소자의 정공 수송층 물질로서 유용하게 사용될 수 있다.Since the aryl amine compound of the present invention exhibits excellent electrical and hole transport properties, it may be usefully used as a hole transport layer material of an organic light emitting device.

합성예Synthetic example 1: 화합물 A의 제조 1: Preparation of Compound A

Figure pat00018
Figure pat00018

건조된 둥근플라스크에 2-보로닉애시드-9,9-다이메틸-9H-플루오렌 (8g, 33.60mmol)1.0eq, 1,4다이브로모벤젠 (15.85g 67.20mmol)2eq, 테트라키즈 (트리페닐포스핀)팔라듐 (0) (1.16g, 1.00mmol)0.03eq, 2M K2CO3 을 넣고 질소를 충분히 충진시킨 후 무수 테트라하이드로퓨란 250ml 을 넣어 110℃에서 18시간 환류 교반을 시킨다.2-boronic acid-9,9-dimethyl-9H-fluorene (8 g, 33.60 mmol) 1.0 eq, 1,4 dibromobenzene (15.85 g 67.20 mmol) 2 eq, tetrakis (triphenyl) in a dried round flask Phosphine) palladium (0) (1.16 g, 1.00 mmol) 0.03 eq, 2M K 2 CO 3 was added to the nitrogen and sufficiently filled with 250 ml of anhydrous tetrahydrofuran and stirred under reflux at 110 ℃ for 18 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 A (8.6g, 72%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, and Compound A (8.6 g, 72%) was obtained.

1H NMR (400 MHz, CDCl3): δ7.90 (d, 1H), 7.84 (d, 1H), 7.77 (s, 1H), 7.53~7.60(m, 6H), 7.38 (t, 1H), 7.28 (t, 1H), 1.67(s, 6H)
1H NMR (400 MHz, CDCl3):? 7.90 (d, 1H), 7.84 (d, IH), 7.77 (s, IH), 7.53-7.60 t, 1 H), 1.67 (s, 6 H)

합성예Synthetic example 2: 화합물 B의 제조 2: Preparation of compound B

Figure pat00019
Figure pat00019

건조된 둥근플라스크에 2-보로닉애시드-9,9-다이메틸-9H-플루오렌 (2.86g 12.01mmol)1eq, 2,5다이브로모티오펜 (5.83g, 24.02mmol)2eq, 테트라키즈 (트리페닐포스핀)팔라듐 (0) (0.416, 0.36mmol)0.03eq, 2M K2CO3 을 넣고 질소를 충분히 충진시킨 후 무수 테트라하이드로퓨란 250ml 을 넣어 110℃에서 18시간 환류 교반을 시킨다.2-boronic acid-9,9-dimethyl-9H-fluorene (2.86 g 12.01 mmol) 1 eq, 2,5 dibromothiophene (5.83 g, 24.02 mmol) 2 eq, tetrakis (tri Phenylphosphine) palladium (0) (0.416, 0.36 mmol) 0.03 eq, 2M K 2 CO 3 was added to the nitrogen and sufficiently filled with 250 ml of anhydrous tetrahydrofuran and stirred under reflux at 110 ℃ for 18 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 B (3.2g, 76%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain Compound B (3.2 g, 76%).

1H NMR (400 MHz, CDCl3): δ7.92 (d, 1H), 7.86 (d, 1H), 7.79 (s, 1H), 7.55~7.60(q, 6H), 7.40 (t, 1H), 7.30 (t, 1H), 6.9(d, 1H), 6.7(d, 1H), 1.69(s, 6H)
1 H NMR (400 MHz, CDCl3 ): δ7.92 (d, 1H), 7.86 (d, 1H), 7.79 (s, 1H), 7.55 ~ 7.60 (q, 6H), 7.40 (t, 1H), 7.30 (t, 1 H), 6.9 (d, 1 H), 6.7 (d,

합성예Synthetic example 3: 화합물 C의 제조 3: Preparation of compound C

Figure pat00020
Figure pat00020

건조된 둥근플라스크에 1-보로닉애시드 나프탈렌(3g, 17.44mmol)1eq, 4-브로모아닐린(3g, 17.44mmol)1eq, 테트라키즈(트리페닐포스핀)팔라듐 (0) (0.604g, 0.523mmol) 0.03eq, 2M Na2CO3 을 넣고 질소를 충분히 충진시킨 후 무수 테트라하이드로퓨란 90ml 을 넣어 110℃에서 24시간 환류 교반을 시킨다.1- boronic acid naphthalene (3 g, 17.44 mmol) 1 eq, 4-bromoaniline (3 g, 17.44 mmol) 1 eq, tetrakis (triphenylphosphine) palladium (0) (0.604 g, 0.523 mmol) in a dried round flask ) 0.03eq, 2M Na 2 CO 3 and the nitrogen was sufficiently filled with 90ml of anhydrous tetrahydrofuran and stirred at reflux at 110 ℃ for 24 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 C (2.1g, 55%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain Compound C (2.1 g, 55%).

1H NMR (400 MHz, CDCl3): δ8.55 (d, 1H), 8.42 (d, 1H), 7.61~7.67 (m, 3H), 7.46 (m, 3H), 7.32 (t, 1H), 6.52 (d, 2H) 5.85 (s, 2H)
1 H NMR (400 MHz, CDCl 3): δ 8.55 (d, 1H), 8.42 (d, 1H), 7.61-77.6 (m, 3H), 7.46 (m, 3H), 7.32 (t, 1H), 6.52 ( d, 2H) 5.85 (s, 2H)

합성예Synthetic example 4: 화합물 D의 제조 4: Preparation of compound D

Figure pat00021
Figure pat00021

건조된 둥근플라스크에 8-보로닉애시드 퀴놀린(3g, 17.34mmol)1eq, 4-브로모아닐린(2.98g, 17.34mmol)1eq, 테트라키즈(트리페닐포스핀)팔라듐 (0) (0.601g,0.520mmol) 0.03eq, 2M Na2CO3 을 넣고 질소를 충분히 충진시킨 후 무수 테트라하이드로퓨란 90ml 을 넣어 110℃에서 24시간 환류 교반을 시킨다.8-boronic acid quinoline (3 g, 17.34 mmol) 1 eq, 4-bromoaniline (2.98 g, 17.34 mmol) 1 eq, tetrakis (triphenylphosphine) palladium (0) (0.601 g, 0.520) in a dried round flask mmol) add 0.03eq, 2M Na 2 CO 3 , and sufficiently fill with nitrogen, add 90 ml of anhydrous tetrahydrofuran and stir at reflux at 110 ° C. for 24 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 D (2.1g, 55%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain a compound D (2.1 g, 55%).

1H NMR (400 MHz, CDCl3):δ 8.81 (d, 1H), 8.00 (d, 1H), 7.46~7.83 (m, 6H), 6.52 (d, 2H), 5.83 (s, 2H)
1 H NMR (400 MHz, CDCl 3): δ 8.81 (d, 1H), 8.00 (d, 1H), 7.46-7.83 (m, 6H), 6.52 (d, 2H), 5.83 (s, 2H)

합성예Synthetic example 5: 화합물 A1의 제조 5: Preparation of compound A1

Figure pat00022
Figure pat00022

건조된 둥근플라스크에 화합물 A (2g, 5.726mmol) 2.2eq, 바이페닐-4-아민(0.44g, 2.6mmol)1.0eq, 트리스(다이벤질디네아세톤)다이팔라듐(0) (0.0476g, 0.052mmol) 0.03eq, 트라이-터트-뷰틸포스핀 (0.0315g , 0.156mmol) 0.06eq, 소듐 터트-부톡사이드 (0.375g, 3.9mmol) 1.5eq 을 넣고 질소를 충분히 충진시킨 후 무수 톨루엔 50ml 을 넣어 110℃에서 12시간 환류 교반을 시킨다.Compound A (2 g, 5.726 mmol) 2.2 eq, biphenyl-4-amine (0.44 g, 2.6 mmol) 1.0 eq, tris (dibenzyldineacetone) dipalladium (0) (0.0476 g, 0.052 mmol) in a dried round flask ) 0.03eq, tri-tert-butylphosphine (0.0315g, 0.156mmol) 0.06eq, sodium tert-butoxide (0.375g, 3.9mmol) 1.5eq was added and filled with nitrogen sufficiently, 50ml of anhydrous toluene was added to 110 ℃ At reflux stirring for 12 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 A1 (1.32g, 72%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain Compound A1 (1.32 g, 72%).

1H NMR (400 MHz, CDCl3): δ.75~7.90 (m, 8H), 7.38~7.60 (m, 15H), 7.28 (t, 2H), 6.52 (d, 6H), 1.67 (s, 4H)
1 H NMR (400 MHz, CDCl 3): δ.75-7.90 (m, 8H), 7.38-7.60 (m, 15H), 7.28 (t, 2H), 6.52 (d, 6H), 1.67 (s, 4H)

합성예Synthetic example 6: 화합물 A2의 제조 6: Preparation of compound A2

Figure pat00023
Figure pat00023

건조된 둥근플라스크에 화합물 A (2g, 5.726mmol) 2.2eq, 화합물 C (0.57g, 2.6mmol)1.0eq, 트리스(다이벤질디네아세톤)다이팔라듐(0) (0.0476g, 0.052mmol) 0.03eq, 트라이-터트-뷰틸포스핀 (0.0315g , 0.156mmol) 0.06eq, 소듐 터트-부톡사이드 (0.375g, 3.9mmol) 1.5eq 을 넣고 질소를 충분히 충진시킨 후 무수 톨루엔 50ml 을 넣어 110℃에서 12시간 환류 교반을 시킨다.Compound A (2 g, 5.726 mmol) 2.2 eq, Compound C (0.57 g, 2.6 mmol) 1.0 eq, Tris (dibenzyldineacetone) dipalladium (0) (0.0476 g, 0.052 mmol) 0.03 eq. Add tri-tert-butylphosphine (0.0315g, 0.156mmol) 0.06eq, sodium tert-butoxide (0.375g, 3.9mmol) 1.5eq and fill with sufficient nitrogen. Add 50ml of anhydrous toluene and reflux at 110 ℃ for 12 hours. Stir.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 A2 (1.355g, 69%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain Compound A2 (1.355 g, 69%).

1H NMR (400 MHz, CDCl3): δ8.55(d, 1H), 8.42(d, 1H) 7.75~7.88 (m, 6H), 7.36~7.65 (m, 16H), 7.26~7.30 (m, 3H), 6.50 (d, 6H), 1.65 (s, 4H)
1 H NMR (400 MHz, CDCl 3): δ8.55 (d, 1H), 8.42 (d, 1H) 7.75 ~ 7.88 (m, 6H), 7.36 ~ 7.65 (m, 16H), 7.26 ~ 7.30 (m, 3H) , 6.50 (d, 6H), 1.65 (s, 4H)

합성예Synthetic example 7: 화합물 B3의 제조 7: Preparation of compound B3

Figure pat00024
Figure pat00024

건조된 둥근플라스크에 화합물 B (2g, 5.629mmol) 2.2eq, 바이페닐-4-아민(0.433g, 2.56mmol)1.0eq, 트리스(다이벤질디네아세톤)다이팔라듐(0) (0.0468g, 0.051mmol) 0.03eq, 트라이-터트-뷰틸포스핀 (0.0310g , 0.153mmol) 0.06eq, 소듐 터트-부톡사이드 (0.369g, 3.84mmol) 1.5eq 을 넣고 질소를 충분히 충진시킨 후 무수 톨루엔 50ml 을 넣어 110℃에서 12시간 환류 교반을 시킨다.Compound B (2 g, 5.629 mmol) 2.2 eq, biphenyl-4-amine (0.433 g, 2.56 mmol) 1.0 eq, tris (dibenzyldineacetone) dipalladium (0) (0.0468 g, 0.051 mmol) in a dried round flask ) 0.03eq, tri-tert-butylphosphine (0.0310g, 0.153mmol) 0.06eq, sodium tert-butoxide (0.369g, 3.84mmol) 1.5eq was added and filled with nitrogen sufficiently, 50ml of anhydrous toluene was added to 110 ℃ At reflux stirring for 12 hours.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 B3 (1.231g, 67%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, thereby obtaining a compound B3 (1.231 g, 67%).

1H NMR (400 MHz, CDCl3):δ7.79~7.93 (m, 8H), 7.41~7.70 (m, 11H), 7.32 (t, 2H), 6.50 (d, 4H), 6.00 (d, 2H), 1.70 (s, 4H)
1 H NMR (400 MHz, CDCl3 ): δ7.79 ~ 7.93 (m, 8H), 7.41 ~ 7.70 (m, 11H), 7.32 (t, 2H), 6.50 (d, 4H), 6.00 (d, 2H) , 1.70 (s, 4H)

합성예Synthetic example 8: 화합물 B9의 제조 8: Preparation of compound B9

Figure pat00025
Figure pat00025

건조된 둥근플라스크에 화합물 B (2g, 5.629mmol) 2.2eq, 화합물 D(0.564g, 2.56mmol)1.0eq, 트리스(다이벤질디네아세톤)다이팔라듐(0) (0.0468g, 0.051mmol) 0.03eq, 트라이-터트-뷰틸포스핀 (0.0310g , 0.153mmol) 0.06eq, 소듐 터트-부톡사이드 (0.369g, 3.84mmol) 1.5eq 을 넣고 질소를 충분히 충진시킨 후 무수 톨루엔 50ml 을 넣어 110℃에서 12시간 환류 교반을 시킨다.Compound B (2g, 5.629mmol) 2.2eq, Compound D (0.564g, 2.56mmol) 1.0eq, Tris (dibenzyldineacetone) dipalladium (0) (0.0468g, 0.051mmol) 0.03eq, in a dried round flask. Tri-tert-butylphosphine (0.0310g, 0.153mmol) 0.06eq, sodium tert-butoxide (0.369g, 3.84mmol) 1.5eq was added and filled with nitrogen sufficiently, 50ml of anhydrous toluene was added to reflux at 110 ℃ for 12 hours Stir.

이후 상온으로 냉각시키고 증류수를 넣어 반응을 종료하여 다이에틸 에테르와 증류수로 추출한 뒤, 유기층을 무수 황산마그네슘으로 건조하여 여과하였다. 여과된 유기층을 감압 농축하여 얻어진 혼합물을 에틸아세테이트와 헥산으로 여액층을 컬럼으로 분리하여 화합물 B9 (1.22g, 62%)를 얻었다.After the reaction mixture was cooled to room temperature, distilled water was added thereto to complete the reaction. The mixture was extracted with diethyl ether and distilled water. The organic layer was dried over anhydrous magnesium sulfate and filtered. The filtered organic layer was concentrated under reduced pressure, and the resulting mixture was partitioned between ethyl acetate and hexane to obtain a filtrate layer, which was subjected to column chromatography to obtain Compound B9 (1.22 g, 62%).

1H NMR (400 MHz, CDCl3): δ8.81(d, 1H) 8.00(d, 1H) 7.74~7.88 (m, 7H), 7.33~7.64 (m, 11H), 7.23 (t, 2H), 6.48 (d, 4H), 6.02 (d, 2H), 1.65 (s, 4H)
1 H NMR (400 MHz, CDCl 3): δ 8.81 (d, 1H) 8.00 (d, 1H) 7.74-7.88 (m, 7H), 7.33-77.6 (m, 11H), 7.23 (t, 2H), 6.48 ( d, 4H), 6.02 (d, 2H), 1.65 (s, 4H)

실시 예1: Example 1: 유기전계Organic field 발광소자의 제조 Manufacture of light emitting device

ITO(indium tin oxide)가 1500 Å의 두께로 박막 코팅된 유리 기판을 피셔사의 세제를 녹인 2차 증류수에 넣고 초음파로 세척하였다. ITO를 30분간 세턱한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 , 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후, 플라즈마 세정기로 이송시켰다. 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 이송시켰다.A glass substrate coated with a film of ITO (indium tin oxide) having a thickness of 1500 Å was placed in secondary distilled water in which Fischer's detergent was dissolved, and ultrasonically cleaned. After ITO was fined for 30 minutes, the ultrasonic cleaning was performed twice with distilled water for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transferred to a plasma cleaner. The substrate was cleaned for 5 minutes using an oxygen plasma and then transferred to a vacuum evaporator.

이렇게 준비된 ITO 투명 전극 위에 아민 계열의 ELM200을 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공 수송하는 물질인 상기 합성 예 5에서 얻어진 화합물 A1(300Å)을 진공증착한 후, 발광층으로 안트라센 계열의 MADN을 300Å의 두께로 진공 증착 하였으며, 전자 수송층으로 Alq3 화합물을 300Å의 두께로 진공증착 한 후, 순차적으로 리튬 플루오라이드(LiF) 7 Å과 1000Å두께의 알루미늄을 증착하여 음극을 형성하였다. An amine-based ELM200 was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer. After vacuum depositing Compound A1 (300 Pa) obtained in Synthesis Example 5, which is a material for hole transport thereon, an anthracene-based MADN was vacuum deposited at a thickness of 300 kPa as an emission layer, and an Alq3 compound was vacuumed at a thickness of 300 kPa as an electron transporting layer. After deposition, lithium fluoride (LiF) 7 Å and 1000 Å thickness of aluminum were deposited to form a cathode.

상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였고, 리튬플루오라이드는 0.2 Å/sec, 알루미늄은 3~7 Å/sec의 증착속도를 유지하였다. In the above process, the deposition rate of the organic material was maintained at 1 Å / sec, the lithium fluoride was 0.2 Å / sec, and the aluminum was maintained at the deposition rate of 3-7 Å / sec.

상기에서 제조된 유기전계 발광소자의 전류밀도 50mA/cm2에서의 구동전압, 발광휘도, 발색좌표, 발광효율 등의 특성을 조사하여 표 1에 나타내었다.
Table 1 shows the characteristics of the organic electroluminescent device manufactured at the current density of 50 mA / cm 2 , such as driving voltage, luminescence brightness, coloring coordinates, and luminous efficiency.

실시 예2: Example 2: 유기전계Organic field 발광소자의 제조 Manufacture of light emitting device

정공을 수송하는 물질로 화합물 A1대신 합성예 7에서 얻어진 화합물 B3를 이용한 것을 제외하고는, 실시예 1과 동일하게 유기전계 발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound B3 obtained in Synthesis Example 7 was used instead of Compound A1 as a material for transporting holes.

상기 유기전계 발광소자의 전류밀도 50 mA/cm2 에서의 구동전압, 발광휘도, 발색좌표, 발광효율 등의 특성을 조사하여 표 1에 나타내었다.The characteristics of the organic electroluminescent device at a current density of 50 mA / cm 2 , such as driving voltage, luminescence brightness, coloring coordinates, and luminous efficiency, were shown in Table 1.

비교 예1:Comparative Example 1: 유기전계Organic field 발광소자의 제조 Manufacture of light emitting device

정공을 수송하는 물질로 화합물 A1 대신 다음 화학식 7로 표시되는 N,N'디(나프탈렌-1-일)-N,-N'디페닐벤지딘(NPB)를 이용한 것을 제외하고는, 실시예 1과 동일하게 유기전계 발광소자를 제작하였다.
Example 1 except that N, N'di (naphthalen-1-yl) -N, -N'diphenylbenzidine (NPB) represented by the following formula (7) instead of compound A1 as a material for transporting holes In the same manner, an organic EL device was manufactured.

화학식 7Formula 7

Figure pat00026
Figure pat00026

상기에서 제조된 유기전계 발광소자의 전류밀도 50mA/cm2 에서의 구동전압, 발광휘도, 발색좌표, 발광효율 등의 특성을 조사하여 표1에 나타내었다.
The characteristics of the driving voltage, light emission luminance, color coordinate, and light emission efficiency at the current density of 50 mA / cm 2 of the organic light emitting device manufactured above are shown in Table 1 below.

실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 구동전압(V)The driving voltage (V)  6.496.49  6.606.60  7.457.45 발광휘도(cd/m2)Light emission luminance (cd / m2)  59205920  48704870  43054305 색좌표Color coordinates (0.14, 0.19)(0.14, 0.19) (0.14, 0.18)(0.14, 0.18) (0.14, 0.19)(0.14, 0.19) 발광효율(cd/A)The luminous efficiency (cd / A)  10.510.5  10.110.1  9.39.3

본 발명에 따른 화학식1로 표시되는 비대칭 구조의 3차아릴 아민을 정공수송물질로 유기전계 발광소자에 사용한 결과를 상용화되어 있는 물질인 NPB를 유기전계 발광소자에 사용한 결과와 비교해 볼 때, 본 발명에 따른 유기전계 발광소자는 모두 구동전압이 낮으면서도 효율이 대폭 향상된 우수한 I-V-L 특성을 나타내었다. 이와 같이, 본 발명에 따르면 월등하게 홀과 전자의 이동 능력이 향상됨으로써 우수한 정공수송 및 전자 수송 능력을 바탕으로 한 저전압, 고효율, 고휘도, 장수명의 유기전계 발광소자를 제작할 수 있다.
When the result of using the tertiary aryl amine having an asymmetric structure represented by the formula (1) according to the present invention as a hole transporting material in the organic light emitting device is compared with the result of using NPB, which is a commercially available material in the organic light emitting device, All of the organic light emitting diodes exhibited excellent IVL characteristics with significantly improved efficiency while low driving voltage. As described above, according to the present invention, excellent mobility of holes and electrons is improved, and thus low-voltage, high-efficiency, high brightness, and long-life organic light emitting devices based on excellent hole transport and electron transport capabilities can be manufactured.

01 기판
02 양극
03 음극
04 정공주입층
05 정공수송층
06 발광층
07 정공저지층
08 전자수송층
09 전자주입층
01 substrate
02 Anode
03 cathode
04 Hole injection layer
05 hole transport layer
06 Light emitting layer
07 Hole blocking layer
08 Electron transport layer
09 Electron injection layer

Claims (13)

하기 화학식 1로 표시되는 3차 아릴 아민:
화학식 1
Figure pat00027

상기 A각각
Figure pat00028
중에서 선택되며,
상기 a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C4~C25의 아릴기, C4~C25의 헤테로아릴기, 아미노기 및 치환된 아미노기로 이루어진 군에서 선택된 어느 하나이며,
상기Y는 C 또는 N이며,
상기Y가 N일 경우, a1는 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, C4~C25의 아릴기 및 C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이고,
상기Y가 C일 경우, a1 및 a2 는 동일 또는 상이한 것으로, 각각 H, C1~C13의 알킬기, C4~C25의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나이거나, 상기 a1 및 a2가 C4~C20의 고리로 연결된 구조이다.
상기 X는 탄소수 6 내지 20의 치환 또는 비치환된 아릴기, 탄소수 4 내지 15의 치환 또는 비치환된 헤테로 아릴기 또는 탄소수 4 내지 20의 치환 또는 비치환된 축합 다환기를 나타낸다.
Tertiary aryl amines represented by Formula 1:
Formula 1
Figure pat00027

Each of A
Figure pat00028
Lt; / RTI >
A1 and a2 are the same or different, each selected from the group consisting of H, C4 ~ C25 aryl group, C4 ~ C25 heteroaryl group, amino group and substituted amino group,
Y is C or N,
When Y is N, a1 is a non-covalent electron pair, a2 is any one selected from the group consisting of H, an alkyl group of C1-C13, an aryl group of C4-C25, and a heteroaryl group of C4-C25,
When Y is C, a1 and a2 are the same or different, and each one selected from the group consisting of H, C1-C13 alkyl group and C4-C25 heteroaryl group, or a1 and a2 are C4-C20 ring It is connected to the structure.
X represents a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group having 4 to 15 carbon atoms, or a substituted or unsubstituted condensed polycyclic group having 4 to 20 carbon atoms.
상기 화학식 1의 Y가 N인 경우, a1은 비공유전자쌍이며, a2는 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthracenyl),
퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
When Y in Formula 1 is N, a1 is a non-covalent electron pair, a2 is H, C1-C13 alkyl group, phenyl group (phenyl), naphthyl group, anthracenyl group (anthracenyl),
A quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.
상기 화학식 1의 Y가 C 일 경우, a1 및 a2는 동일 또는 상이한 것으로 각각 H, C1~C13의 알킬기, 페닐기(phenyl), 나프틸기(naphthyl), 안트라세닐기(anthrac
enyl), 퀴놀리닐기(quinolinyl) 및 이소퀴놀릴리닐기(isoquinolinyl)로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
When Y in Formula 1 is C, a1 and a2 are the same or different, H, C1-C13 alkyl group, phenyl group, naphthyl group, anthracenyl group (anthrac)
enyl), quinolinyl group (quinolinyl) and isoquinolinyl group (isoquinolinyl) may be any one selected from the group consisting of, but is not limited thereto.
제1항에 있어서 상기 화학식 1의 Y가 C 이며 a1,a2가 CH3일 때, 하기 화학식으로 표시되는 화합물
화학식 2
Figure pat00029

The compound of claim 1, wherein when Y of Formula 1 is C and a1, a2 is CH 3
(2)
Figure pat00029

제4항에 있어서,
상기 화학식 2의 X는 각각 독립적으로 수소원자, 페닐기, 나프틸기, 플루오렌기, 카바졸릴기,니트릴기, 니트로기,아민기, 아릴아민기, 또는 C1~C40의 알킬기, C2~C40의 알케닐기, C1~C40의 알콕시기, C1~C40의 알콕시기, C3~C40의 시클로 알킬기, C3~C40의 헤테로시클로알킬기, C6~C40의 아릴기 및 C5~C40의 헤테로아릴기로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 화합물:
5. The method of claim 4,
X in Formula 2 is each independently a hydrogen atom, a phenyl group, a naphthyl group, a fluorene group, a carbazolyl group, a nitrile group, a nitro group, an amine group, an arylamine group, or an alkyl group of C 1 ~ C 40 , C 2 ~ C 40 alkenyl group, C 1 to C 40 alkoxy group, C 1 to C 40 alkoxy group, C 3 to C 40 cycloalkyl group, C 3 to C 40 heterocycloalkyl group, C 6 to C 40 aryl A compound characterized in that it is any one selected from the group consisting of a group and a C 5 ~ C 40 heteroaryl group:
제4항에 있어서,
상기 화학식 2의 X는 하기 구조들로부터 선택되는 것을 특징으로 하는 화합물일 수 있으며 이에 한정되는 것은 아니다.

Figure pat00030
5. The method of claim 4,
X in Chemical Formula 2 may be a compound selected from the following structures, but is not limited thereto.

Figure pat00030
제 4항에 있어서,
상기 화학식 2에서 A가
Figure pat00031
인 경우,하기 화학식으로 표시되는 화합물
화학식3
Figure pat00032

5. The method of claim 4,
In Formula 2, A is
Figure pat00031
In the case of the compound represented by the following formula
Formula 3
Figure pat00032

제4항에 있어서,
상기 화학식 2에서 A가
Figure pat00033
인 경우,하기 화학식으로 표시되는 화합물
화학식4
Figure pat00034


5. The method of claim 4,
In Formula 2, A is
Figure pat00033
In the case of the compound represented by the following formula
Formula 4
Figure pat00034


본 발명의 일 실시예에 따른 화합물인 화학식 3에 속하는 화합물의 구체적 예로서 A가
Figure pat00035
일 경우 화학식 5의 화합물들이 있으나, 본 발명이 이들에만 한정되는 것은 아니다.
화학식5
Figure pat00036
Figure pat00037
As a specific example of the compound belonging to the formula (3) which is a compound according to an embodiment of the present invention
Figure pat00035
In some cases, there are compounds of Formula 5, but the present invention is not limited thereto.
Formula 5
Figure pat00036
Figure pat00037
본 발명의 일 실시예에 따른 화합물인 화학식 4에 속하는 화합물의 구체적 예로서 A가
Figure pat00038
일 경우 화학식 6의 화합물들이 있으나, 본 발명이 이들에만 한정되는 것은 아니다.
화학식6
Figure pat00039
Figure pat00040

As a specific example of the compound belonging to the formula (4) which is a compound according to an embodiment of the present invention
Figure pat00038
In some cases, there are compounds of Formula 6, but the present invention is not limited thereto.
Formula 6
Figure pat00039
Figure pat00040

제 1항 내지 제 10항 중 어느 한 항에 있어서,
상기 아릴아민 화합물은 평면 패널 디스플레이, 평면 발광체, 조명용 면발광 OLED의 발광체,flexble 발광체, 복사기, 프린터, LCD 백라이트, 계량기 광원, 디스플레이판, 유기전계 발광소자(OLED), 유기태양전지(OSC), 전자종이(e-paper), 유기 감광체(OPC) 및 유기트랜지스터(OTFT) 중에서 선택된 어느 하나에 적용되는 것을 특징으로 하는 3차 아릴아민 화합물
11. The method according to any one of claims 1 to 10,
The arylamine compound may be a flat panel display, a flat light emitter, a light emitter of a surface emitting OLED for illumination, a flexible light emitter, a copy machine, a printer, an LCD backlight, a meter light source, a display panel, an organic light emitting diode (OLED), an organic solar cell (OSC), Tertiary arylamine compound, characterized in that applied to any one selected from e-paper, organic photoconductor (OPC) and organic transistor (OTFT)
제 1전극, 제 2전극 및 이들 전극 사이에 1층 이상의 유기물층을 포함하며, 상기 유기물층의 적어도 1층 이상이 상기 제 1항 내지 제 10항 중 어느 한 항에 따른 3차 아릴 아민을 포함하는 것을 특징으로 하는 유기전계 발광소자.A first electrode, a second electrode and at least one organic layer between these electrodes, wherein at least one layer of the organic layer comprises the tertiary aryl amine according to any one of claims 1 to 10. An organic electroluminescent device characterized by. 제12항에 있어서,
상기 1층 이상의 유기물층은 발광층을 포함하며, 정공 주입층, 정공수송층, 정공 저지층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택된 1종 이상의 층을 더 포함하는 것을 특징으로 하는 유기전계 발광소자.
The method of claim 12,
The at least one organic material layer includes a light emitting layer, and further comprising at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer and an electron injection layer.
KR1020120044781A 2012-04-27 2012-04-27 Hole transporting material using new arylamine and organic electroluminescent device comprising the same KR101415734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120044781A KR101415734B1 (en) 2012-04-27 2012-04-27 Hole transporting material using new arylamine and organic electroluminescent device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120044781A KR101415734B1 (en) 2012-04-27 2012-04-27 Hole transporting material using new arylamine and organic electroluminescent device comprising the same

Publications (2)

Publication Number Publication Date
KR20130121516A true KR20130121516A (en) 2013-11-06
KR101415734B1 KR101415734B1 (en) 2014-07-04

Family

ID=49851741

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120044781A KR101415734B1 (en) 2012-04-27 2012-04-27 Hole transporting material using new arylamine and organic electroluminescent device comprising the same

Country Status (1)

Country Link
KR (1) KR101415734B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530049B1 (en) * 2014-10-24 2015-06-18 덕산네오룩스 주식회사 Display device using a composition for organic electronic element, and an organic electronic element thereof
KR20150114636A (en) 2014-04-01 2015-10-13 에스에프씨 주식회사 Novel aromatic amine compounds for organic light-emitting diode and organic light-emitting diode including the same
WO2016064111A1 (en) * 2014-10-24 2016-04-28 덕산네오룩스 주식회사 Organic electronic device and display apparatus using composition for organic electronic device
KR20160052136A (en) * 2014-11-04 2016-05-12 덕산네오룩스 주식회사 Display device using a composition for organic electronic element, and an organic electronic element thereof
WO2016072691A1 (en) * 2014-11-05 2016-05-12 덕산네오룩스 주식회사 Organic electronic device and display device using composition for organic electronic device
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10411192B2 (en) 2013-10-11 2019-09-10 Idemitsu Kosan Co., Ltd. Aromatic amine compound, organic electroluminescent element and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021520A1 (en) * 2009-08-19 2011-02-24 出光興産株式会社 Aromatic amine derivatives and organic electroluminescent elements using same
EP2502908B1 (en) * 2009-11-16 2018-01-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11362279B2 (en) 2012-08-31 2022-06-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10411192B2 (en) 2013-10-11 2019-09-10 Idemitsu Kosan Co., Ltd. Aromatic amine compound, organic electroluminescent element and electronic device
KR20150114636A (en) 2014-04-01 2015-10-13 에스에프씨 주식회사 Novel aromatic amine compounds for organic light-emitting diode and organic light-emitting diode including the same
CN107004770B (en) * 2014-10-24 2019-05-07 德山新勒克斯有限公司 Utilize the display and organic electronic element of organic electronic element constituent
CN107004770A (en) * 2014-10-24 2017-08-01 德山新勒克斯有限公司 Utilize the display and organic electronic element of organic electronic element constituent
KR101530049B1 (en) * 2014-10-24 2015-06-18 덕산네오룩스 주식회사 Display device using a composition for organic electronic element, and an organic electronic element thereof
WO2016064110A1 (en) * 2014-10-24 2016-04-28 덕산네오룩스 주식회사 Organic electronic device and display apparatus using composition for organic electronic device
WO2016064111A1 (en) * 2014-10-24 2016-04-28 덕산네오룩스 주식회사 Organic electronic device and display apparatus using composition for organic electronic device
WO2016072690A1 (en) * 2014-11-04 2016-05-12 덕산네오룩스 주식회사 Organic electronic device and display device using composition for organic electronic device
KR20160052136A (en) * 2014-11-04 2016-05-12 덕산네오룩스 주식회사 Display device using a composition for organic electronic element, and an organic electronic element thereof
WO2016072691A1 (en) * 2014-11-05 2016-05-12 덕산네오룩스 주식회사 Organic electronic device and display device using composition for organic electronic device

Also Published As

Publication number Publication date
KR101415734B1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
KR101694492B1 (en) Amine compound and organic electroluminescent device using the same
KR100867526B1 (en) New diamine derivatives, preparation method thereof and organic electronic device using the same
KR101694487B1 (en) Quinoxaline derivative compound, pyridopyrazine derivative compound and organic electroluminescent devices using the sames
JP2006045503A (en) Luminescent material and organic electroluminescent element using the same
KR20130121597A (en) Using triphenylamine as hole transporting mateial and organic electroluminescent device using the same
KR101415734B1 (en) Hole transporting material using new arylamine and organic electroluminescent device comprising the same
CN102775398A (en) Novel bipolar material and application thereof
KR101694496B1 (en) Dibenzothiophene derivative compound and organic electroluminescent device using the same
KR101334204B1 (en) A New Pyrene Compounds, Method of Producing the Same and Organic Electroluminescent Device Comprising the Same
KR101749943B1 (en) An organoelectro luminescent compounds and organoelectro luminescent device using the same
KR101375542B1 (en) Hole transporting material comprising thiophen derivative and organic electroluminescent device using the same
KR101311840B1 (en) Novel tetiary aryl amine and organic electroluminescent device using the same
KR101779915B1 (en) Fused arylamine compound and organic electroluminescent devices comprising the same
KR101415730B1 (en) Aromatic compound derivatives and organic electroluminescent device using the same
KR102004385B1 (en) New compounds and organic light-emitting diode including the same
KR101324150B1 (en) Organic compounds for organic electro luminescente device and organic electro luminescent device using same
KR101327301B1 (en) Amine derivative as hole transporting material and organic electroluminescent device using the same
KR101379765B1 (en) Asymmetric aryl amine structure of the blue light-emitting material containing meta-substituted phenyl and organic electroluminescent device using the same
KR20150082156A (en) New compounds and organic light emitting device comprising the same
KR20150044592A (en) Method of preparing amine compound
KR20150114658A (en) An organoelectro luminescent compounds and organoelectro luminescent device using the same
KR20140091496A (en) Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same
KR101294144B1 (en) Pyrene derivative and organic electroluminescent device using the pyrene derivatives
KR100754474B1 (en) Anthracene based organic luminescent compound and organic light-emitting diode including the same
KR101329047B1 (en) Amine derivative as hole transporting material and organic electroluminescent device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 6