KR100486637B1 - Deposition of multi-component thin layer using an atomic layer chemical vapor deposition - Google Patents

Deposition of multi-component thin layer using an atomic layer chemical vapor deposition Download PDF

Info

Publication number
KR100486637B1
KR100486637B1 KR10-2002-0046449A KR20020046449A KR100486637B1 KR 100486637 B1 KR100486637 B1 KR 100486637B1 KR 20020046449 A KR20020046449 A KR 20020046449A KR 100486637 B1 KR100486637 B1 KR 100486637B1
Authority
KR
South Korea
Prior art keywords
thin film
deposition
raw material
chemical vapor
multicomponent
Prior art date
Application number
KR10-2002-0046449A
Other languages
Korean (ko)
Other versions
KR20040013494A (en
Inventor
이시우
강상우
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR10-2002-0046449A priority Critical patent/KR100486637B1/en
Publication of KR20040013494A publication Critical patent/KR20040013494A/en
Application granted granted Critical
Publication of KR100486637B1 publication Critical patent/KR100486637B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 원자층 화학증착법(ALCVD)을 이용한 다성분 박막의 증착에 관한 것으로서, ALCVD의 원료 주입 단계에서, 서로 반응성이 없는 2종 이상의 원료기체를 동시에 주입하고, 이때 상기 원료기체는 증착시키고자 하는 조성비에 해당하는 각각의 양으로 조절하여 주입됨을 특징으로 하며, 본 발명의 방법에 의하면, 목적하는 조성의 다성분 박막을 용이하고 신속하게 증착시킬 수 있다.The present invention relates to the deposition of a multi-component thin film using atomic layer chemical vapor deposition (ALCVD), in the injection of the raw material step of ALCVD, simultaneously injecting two or more raw material gases that are not reactive with each other, wherein the raw material gas is to be deposited It is characterized in that the injection is adjusted to each amount corresponding to the composition ratio, according to the method of the present invention, it is possible to easily and quickly deposit a multi-component thin film of the desired composition.

Description

원자층 화학증착법을 이용한 다성분 박막의 증착{DEPOSITION OF MULTI-COMPONENT THIN LAYER USING AN ATOMIC LAYER CHEMICAL VAPOR DEPOSITION} DEPOSITION OF MULTI-COMPONENT THIN LAYER USING AN ATOMIC LAYER CHEMICAL VAPOR DEPOSITION}

본 발명은 원자층 화학증착법을 이용한 다성분 박막의 증착에 관한 것으로, 구체적으로는 선별된 2종 이상의 원료를 동시에 주입함으로써 목적하는 바에 따라 다양하게 조절된 조성의 다성분 박막을 용이하고 신속하게 증착시킬 수 있는 원자층 화학증착법에 관한 것이다.The present invention relates to the deposition of a multicomponent thin film using atomic layer chemical vapor deposition, and specifically, by simultaneously injecting at least two selected raw materials, a multicomponent thin film having variously controlled compositions can be easily and quickly deposited as desired. The atomic layer chemical vapor deposition method which can be made.

반도체 소자용 다성분 단층 또는 다층 극초박막은 단일 조성의 박막으로는 불가능한 특성을 나타낼 수 있다는 장점 때문에 다양한 분야에서 응용되고 있으며, 이 경우 극초박막의 제조에 유리한 원자층 화학증착법(ALCVD, Atomic Layer Chemical Vapor Deposition)이 주로 사용된다.Multicomponent monolayer or multilayer ultrathin films for semiconductor devices have been applied in various fields because of their advantages that cannot be achieved with single-layer thin films.In this case, atomic layer chemical vapor deposition (ALCVD, Atomic Layer Chemical) is advantageous for the production of ultrathin films. Vapor Deposition) is mainly used.

그러나, 일반적으로, ALCVD는 원자층 한층을 증착하는데 기본적으로 4단계의 공정(원료기체 주입→원료기체 퍼지→반응기체 주입→반응기체 퍼지)을 필요로 하기 때문에 공정시간이 길다는 단점을 갖는다.However, in general, ALCVD has a disadvantage in that the process time is long because basically four steps are required to deposit a single layer of the atomic layer (raw gas injection → raw gas purge → reactive gas injection → reactive gas purge).

특히, ALCVD를 이용하여 다성분 박막을 증착시키는 경우에는, 원료들의 예비기상반응에 의한 부산물의 생성 가능성 및 목적하는 조성비로의 성분 조절의 어려움 때문에 원료 각각을 별도로 주입한 후 퍼지시키고 있어서, 기본적인 4단계에 추가로 2단계 이상을 필요로 하여 공정시간이 더욱 길어진다는 문제가 있었다.In particular, in the case of depositing a multi-component thin film using ALCVD, each raw material is separately injected and purged due to the possibility of formation of by-products due to preliminary vapor reactions of raw materials and difficulty in controlling the components to a desired composition ratio. In addition to the step required two or more steps, there was a problem that the process time is longer.

이에 본 발명자들은 예의 연구한 결과, 원자층 화학증착법의 원료 주입 단계에서, 선별된 2종 이상의 원료를 동시에 주입함으로써 목적하는 조성의 다성분 박막을 용이하고 신속하게 증착시킬 수 있음을 발견하고 본 발명을 완성하게 되었다.As a result of intensive studies, the present inventors have found that, in the raw material injection step of atomic layer chemical vapor deposition, two or more selected raw materials are simultaneously injected to easily and quickly deposit a multicomponent thin film having a desired composition. To complete.

본 발명의 목적은 목적하는 바에 따라 다양하게 조성을 조절하면서 신속하게 다성분 박막을 증착시킬 수 있는 원자층 화학증착법을 제공하는 것이다. It is an object of the present invention to provide an atomic layer chemical vapor deposition method capable of rapidly depositing a multicomponent thin film while controlling the composition in various ways as desired.

상기 목적을 달성하기 위하여 본 발명에서는, 원자층 화학증착법을 이용하여 다성분 박막을 제조함에 있어서, 원료 주입 단계에서, 서로 반응성이 없는 2종 이상의 원료기체를 동시에 주입하고, 이때 상기 원료기체는 증착시키고자 하는 조성비에 해당하는 각각의 양으로 조절하여 주입됨을 특징으로 하는 방법을 제공한다.In order to achieve the above object, in the present invention, in preparing a multi-component thin film using atomic layer chemical vapor deposition, in the raw material injection step, two or more kinds of raw materials which are not reactive with each other are simultaneously injected, wherein the raw material gases are deposited. It provides a method characterized in that the injection is adjusted to each amount corresponding to the composition ratio to be made.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 다성분 박막은 다성분 단층, 다성분 및 단성분 다층, 또는 다성분 다층의 형태일 수 있다. 다성분 단층 박막 제조시에는, 서로 반응성이 없는 2종 이상의 원료기체를 동시에 주입한 다음 반응기체를 주입하는데, 증착시키고자 하는 조성비에 해당하는 원료기체 각각의 주입량은 운반기체의 양, 원료 증기압(버블러의 온도), 밸브의 온/오프(on/off) 펄스주입시간 등에 의해 조절할 수 있다. 이때, 원료기체의 주입량을 잘 조절하기 위해서는 원료(전구체) 자체의 기화특성 및 분해특성의 평가가 선행되어야 한다.Multicomponent thin films according to the present invention may be in the form of multicomponent monolayers, multicomponent and monocomponent multilayers, or multicomponent multilayers. In the production of a multi-component monolayer thin film, two or more kinds of raw materials which are not reactive with each other are injected at the same time, followed by injection of a reactive gas. The injection amount of each raw material corresponding to the composition ratio to be deposited is the amount of carrier gas and the raw material vapor pressure ( Bubbler temperature), valve on / off pulse injection time, and the like. At this time, in order to control the injection amount of the raw material gas well, evaluation of the vaporization characteristics and decomposition characteristics of the raw material (precursor) itself should be preceded.

다성분 및 단성분 다층 박막 제조시에는, 상기한 바와 같이 다성분 단층 박막을 제조한 다음 단일 성분 원료기체만을 주입하여서 다성분 박막과 단성분 박막을 번갈아 증착시킬 수 있으며, 다른 조성의 다성분 박막을 번갈아 증착시켜 다성분 다층 박막도 제조할 수 있다.In the preparation of multicomponent and monocomponent thin films, the multicomponent thin film and the single component thin film may be alternately deposited by preparing a multicomponent single layer thin film as described above, and then injecting only a single component raw material gas, and multicomponent thin films having different compositions. By alternately depositing, multicomponent multilayer thin films can also be prepared.

본 발명에서 증착가능한 다성분 박막의 예로는 지르코늄 실리케이트, 하프늄 실리케이트, 란타늄 실리케이트, 란타늄 알루미네이트, 스트론튬 티타네이트 및 비스머스 란타늄 티타네이트 박막 등을 들 수 있다.Examples of the multicomponent thin film that can be deposited in the present invention include zirconium silicate, hafnium silicate, lanthanum silicate, lanthanum aluminate, strontium titanate and bismuth lanthanum titanate thin film.

이러한 다성분 단층 및 다층 박막은 원자층 화학증착 장치에 설치된 원료 용기(버블러)의 수에 따라 다양한 조합으로 증착가능하며, 2개의 버블러를 가진 ALCVD 장치의 개략도를 도 1에 나타내었다.These multicomponent monolayer and multilayer thin films can be deposited in various combinations according to the number of raw material containers (bubbles) installed in the atomic layer chemical vapor deposition apparatus, and a schematic diagram of an ALCVD apparatus having two bubblers is shown in FIG. 1.

또한, 상기한 ALCVD가 응용된 직접 액체 주입 원자층 화학증착법(Direct Liquid Injection(DLI) ALCVD)에서도, 목적하는 다성분 단층 및 다층 박막의 구성성분에 해당하는 종류의 원료(서로 반응하지 않는) 각각을 용매에 용해시켜 용액을 제조한 다음 각각의 용액을 기화기에 주입하여 기화된 원료를 반응기로 동시에 공급함으로써 다성분 박막을 증착시킬 수 있다.In addition, in the above-mentioned Direct Liquid Injection (DLI) ALCVD to which the ALCVD is applied, each type of raw material (not reacting with each other) corresponding to the constituents of the desired multicomponent monolayer and multilayer thin film, respectively. The solution may be prepared by dissolving in a solvent, and then, each solution may be injected into a vaporizer, and the vaporized raw material may be simultaneously supplied to the reactor to deposit a multicomponent thin film.

본 발명에 따른 원료로는 화학증착가능한 모든 전구체를 사용할 수 있고, 반응기체로는 물, 과산화수소, 오존, 산소 및 산소라디칼과 같은 산화력을 갖는 것이면 모두 가능하다.As a raw material according to the present invention, any precursor capable of chemical vapor deposition can be used, and any reactive substance can be used as long as it has an oxidizing power such as water, hydrogen peroxide, ozone, oxygen and oxygen radicals.

이와 같은 본 발명의 ALCVD에 의하면, 박막 특성이 우수한 다성분 박막을 목적하는 바에 따라 다양하게 조성을 조절하면서 신속하게(단성분 박막 제조시와 동일한 시간동안) 증착시킬 수 있다. 본 발명의 ALCVD에 의해 형성된 다성분 박막은 금속막, 산화막, 질화막 등 모든 박막을 포함하며, 단층 또는 다층 박막의 형태로 반도체 소자에 유용하게 사용될 수 있다.According to the ALCVD of the present invention, a multicomponent thin film having excellent thin film characteristics can be deposited quickly (for the same time as when manufacturing a single component thin film) while controlling various compositions as desired. The multi-component thin film formed by ALCVD of the present invention includes all thin films such as metal films, oxide films, and nitride films, and can be usefully used for semiconductor devices in the form of single layer or multilayer thin films.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.

실시예 1 : 다성분 단층 박막의 증착Example 1 Deposition of Multicomponent Monolayer Thin Films

도 1에 도시된 본 발명에 따른 ALCVD 장치를 사용하여 Si 기판 위에 지르코늄 실리케이트 막을 성장시켰다. 원료로서 서로 반응성이 없는 Si(N(C2H5)2) 4 및 Zr(N(C2H5)2)4을 사용하였고, 반응기체로는 H2O를, 퍼지기체로는 아르곤을 사용하였다. 1 Torr의 반응기 압력 하에서, 상기 두 원료의 기체를 동시에 싸이클 당 2초 동안 반응기에 주입하고, 퍼지기체를 500sccm의 유량으로 싸이클 당 2초 동안 주입하였다. 이때, 원료 Si(N(C2H5)2)4를 담은 버블러의 온도는 80℃로, 원료 Zr(N(C2H5)2)4을 담은 버블러의 온도는 60℃로 유지하였다. 또한, 운반기체 아르곤의 주입량은 20sccm이었고, 반응기체 H2O의 주입시간 및 버블러의 온도는 각각 싸이클 당 2초 및 30℃이었다. 이때, 기판의 온도를 200 내지 400℃ 내에서 변화시켰다.A zirconium silicate film was grown on a Si substrate using an ALCVD apparatus according to the invention shown in FIG. As raw materials, Si (N (C 2 H 5 ) 2 ) 4 and Zr (N (C 2 H 5 ) 2 ) 4, which are not reactive with each other, were used. H 2 O was used as the reactor gas and argon was used as the purge gas. . Under a reactor pressure of 1 Torr, the gases of the two raw materials were simultaneously injected into the reactor for 2 seconds per cycle and purge gas was injected for 2 seconds per cycle at a flow rate of 500 sccm. At this time, the temperature of the bubbler containing the raw material Si (N (C 2 H 5 ) 2 ) 4 is 80 ℃, the temperature of the bubbler containing the raw material Zr (N (C 2 H 5 ) 2 ) 4 is maintained at 60 ℃. It was. In addition, the injection amount of carrier gas argon was 20 sccm, and the injection time of the reactor H 2 O and the temperature of the bubbler were 2 seconds and 30 ° C. per cycle, respectively. At this time, the temperature of the board | substrate was changed within 200-400 degreeC.

형성된 지르코늄 실리케이트 박막에 대해, XPS(X-ray photoelectron spectroscopy) 분석을 수행하여 증착 온도에 따른 박막 내 조성의 변화를 측정하여 도 2에 나타내었다. 도 2로부터, 증착 온도가 증가할수록 실리콘 원소의 함량이 증가하는 것을 알 수 있다. 또한, 증착된 지르코늄 실리케이트 박막의 증착 온도에 따른 박막 증착속도(Å/cycle)의 변화를 측정하여 도 3에 나타내었다. 도 3으로부터, 본 발명에 따르면 다성분 박막을 빠른 속도로 용이하게 증착시킬 수 있음을 알 수 있다.X-ray photoelectron spectroscopy (XPS) analysis was performed on the formed zirconium silicate thin film, and the change in composition in the thin film according to deposition temperature was measured and shown in FIG. 2. 2, it can be seen that the content of the silicon element increases as the deposition temperature increases. In addition, it is shown in Figure 3 by measuring the change in the deposition rate (Å / cycle) of the thin film according to the deposition temperature of the deposited zirconium silicate thin film. 3, it can be seen that according to the present invention, the multicomponent thin film can be easily deposited at a high speed.

또한, 기판 온도 250℃에서 증착된 지르코늄 실리케이트 박막의 유전상수가 8인 것으로 미루어 볼 때, 본 발명에 의해 박막 특성이 우수한 박막이 증착되었음을 알 수 있다. In addition, when the dielectric constant of the zirconium silicate thin film deposited at a substrate temperature of 250 ° C. is 8, it can be seen that the thin film having excellent thin film characteristics is deposited by the present invention.

실시예 2 : 다성분 및 단성분 다층 박막의 증착Example 2 Deposition of Multicomponent and Monocomponent Multilayer Thin Films

상기 실시예 1과 동일한 방법으로 지르코늄 실리케이트 박막을 성장시킴에 있어서, 기판 온도 250℃에서 150 싸이클을 수행하여 약 10nm의 박막을 증착시켰다. 이어, 상기 지르코늄 실리케이트 박막 제조시와 동일한 조건하에서 실리콘 원료기체의 주입을 멈추고 지르코늄 원료기체만을 주입하였는데, 지르코늄 산화막의 경우 원자층 화학증착법을 통해 250℃에서 0.6Å/cycle의 증착속도 및 20 정도의 유전상수를 갖는다는 실험결과를 바탕으로 150 싸이클을 수행하여 두께 약 10nm의 지르코늄 산화막을 증착시켜, 지르코늄 실리케이트와 지르코늄 산화막으로 이루어진 다층 박막을 제조하였다.In growing the zirconium silicate thin film in the same manner as in Example 1, a 150 cycle was performed at a substrate temperature of 250 ° C. to deposit a thin film of about 10 nm. Subsequently, the injection of silicon raw material gas was stopped and only zirconium raw material gas was injected under the same conditions as in the preparation of the zirconium silicate thin film. In the case of zirconium oxide film, the deposition rate of 0.6 Å / cycle at 250 ° C. and the deposition rate of about 20 Based on the experimental results of having a dielectric constant, 150 cycles were carried out to deposit a zirconium oxide film having a thickness of about 10 nm, thereby preparing a multilayer thin film made of zirconium silicate and zirconium oxide film.

형성된 다층 박막의 유전상수가 12인 것으로 미루어 볼 때, 본 발명에 의해 박막 특성이 우수한 박막이 증착되었음을 알 수 있다. Considering that the dielectric constant of the formed multilayer thin film is 12, it can be seen that the thin film having excellent thin film characteristics was deposited by the present invention.

상기한 바와 같이, 본 발명의 ALCVD에 의하면, 박막 특성이 우수한 다성분 박막을 목적하는 바에 따라 다양하게 조성을 조절하면서 용이하고 신속하게 증착시킬 수 있다.As described above, according to the ALCVD of the present invention, a multicomponent thin film having excellent thin film characteristics can be easily and quickly deposited while controlling various compositions as desired.

도 1은 본 발명에 따른 하나의 실시양태로서 2가지 원료를 동시에 주입하는 ALCVD법에 사용되는 장치의 개략도이고,1 is a schematic diagram of an apparatus used in an ALCVD method for simultaneously injecting two raw materials as one embodiment according to the present invention,

도 2는 본 발명에 따른 실시예 1에서 증착된 지르코늄 실리케이트 박막의 증착 온도에 따른 박막 조성(Zr/(Zr+Si))의 변화 그래프이고,2 is a graph showing the change in the film composition (Zr / (Zr + Si)) according to the deposition temperature of the zirconium silicate thin film deposited in Example 1 according to the present invention,

도 3은 본 발명에 따른 실시예 1에서 증착된 지르코늄 실리케이트 박막의 증착 온도에 따른 박막 증착속도(Å/cycle)의 변화 그래프이다.3 is a graph showing a change in film deposition rate (Å / cycle) according to the deposition temperature of the zirconium silicate thin film deposited in Example 1 according to the present invention.

Claims (6)

원자층 화학증착법을 이용하여 지르코늄 실리케이트 박막을 제조하는 방법에 있어서, 원료기체로서 서로 반응성이 없는 Si(N(C2H5)2)4 기체와 Zr(N(C2H5)2)4 기체를 증착시키고자 하는 조성비에 해당하는 각각의 양으로 동시에 주입하는 것을 특징으로 하는 방법.In the method for producing a zirconium silicate thin film using atomic layer chemical vapor deposition, Si (N (C 2 H 5 ) 2 ) 4 gas and Zr (N (C 2 H 5 ) 2 ) 4 which are not reactive with each other as a raw material gas And injecting the gas simultaneously in respective amounts corresponding to the composition ratios to be deposited. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2002-0046449A 2002-08-07 2002-08-07 Deposition of multi-component thin layer using an atomic layer chemical vapor deposition KR100486637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046449A KR100486637B1 (en) 2002-08-07 2002-08-07 Deposition of multi-component thin layer using an atomic layer chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046449A KR100486637B1 (en) 2002-08-07 2002-08-07 Deposition of multi-component thin layer using an atomic layer chemical vapor deposition

Publications (2)

Publication Number Publication Date
KR20040013494A KR20040013494A (en) 2004-02-14
KR100486637B1 true KR100486637B1 (en) 2005-05-03

Family

ID=37320818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0046449A KR100486637B1 (en) 2002-08-07 2002-08-07 Deposition of multi-component thin layer using an atomic layer chemical vapor deposition

Country Status (1)

Country Link
KR (1) KR100486637B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292620A (en) * 1987-05-26 1988-11-29 Fujitsu Ltd Apparatus for depositing single atom layer thin film
JPH07226380A (en) * 1994-02-10 1995-08-22 Nippon Telegr & Teleph Corp <Ntt> Atomic layer crystal growth method
KR20010097163A (en) * 2000-04-20 2001-11-08 윤종용 Method of manufacturing barrier metal layer using atomic layer deposition method
KR20020050364A (en) * 2000-12-21 2002-06-27 박종섭 Method of manufacturing a capacitor in semiconductor device
KR100356965B1 (en) * 2000-07-13 2002-10-18 주식회사 에버테크 Atomic thin layer deposition appratus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292620A (en) * 1987-05-26 1988-11-29 Fujitsu Ltd Apparatus for depositing single atom layer thin film
JPH07226380A (en) * 1994-02-10 1995-08-22 Nippon Telegr & Teleph Corp <Ntt> Atomic layer crystal growth method
KR20010097163A (en) * 2000-04-20 2001-11-08 윤종용 Method of manufacturing barrier metal layer using atomic layer deposition method
KR100363088B1 (en) * 2000-04-20 2002-12-02 삼성전자 주식회사 Method of manufacturing barrier metal layer using atomic layer deposition method
KR100356965B1 (en) * 2000-07-13 2002-10-18 주식회사 에버테크 Atomic thin layer deposition appratus
KR20020050364A (en) * 2000-12-21 2002-06-27 박종섭 Method of manufacturing a capacitor in semiconductor device
KR100383771B1 (en) * 2000-12-21 2003-05-16 주식회사 하이닉스반도체 Method of manufacturing a capacitor in semiconductor device

Also Published As

Publication number Publication date
KR20040013494A (en) 2004-02-14

Similar Documents

Publication Publication Date Title
KR100275738B1 (en) Method for producing thin film using atomatic layer deposition
Pinna et al. Atomic layer deposition of nanostructured materials
KR100468847B1 (en) Chemical vapor deposition method using alcohols for forming metal-oxide thin film
Parsons et al. Progress and future directions for atomic layer deposition and ALD-based chemistry
KR101379015B1 (en) METHOD OF DEPOSITING Ru FILM USING PEALD AND DENSE Ru FILM
Jones et al. Some recent developments in the chemical vapour deposition of electroceramic oxides
KR20020002579A (en) A method for forming zirconium oxide film using atomic layer deposition
EP2298957A2 (en) Method and apparatus of using solution based precursors for atomic layer deposition
KR102190532B1 (en) Composition for silicon-containing thin films and method for producing silicon-containing thin film
US20080317972A1 (en) Method for depositing thin films by mixed pulsed cvd and ald
Malm et al. Atomic layer deposition of WO3 thin films using W (CO) 6 and O3 precursors
US20100227476A1 (en) Atomic layer deposition processes
KR20060003895A (en) System and method for forming multi-component dielectric films
KR20090048338A (en) Preparation of a metal-containing film via ald or cvd processes
EP2116633B1 (en) Preparation of metal oxide thin film via cyclic CVD or ALD
EP2310551B1 (en) Method of forming a tantalum-containing layer on a substrate
KR101372162B1 (en) Method for making oriented tantalum pentoxide films
KR100486637B1 (en) Deposition of multi-component thin layer using an atomic layer chemical vapor deposition
KR20020061880A (en) A method for formation of semiconductor capacitor having Ta2O5 film as dielectric layer
KR100531464B1 (en) A method for forming hafnium oxide film using atomic layer deposition
Liu et al. Metal oxides and metal thin films by atomic layer deposition (ALD), liquid-ALD, and successive ionic layer adsorption and reaction methods for THR applications
Johansson Surface Modification of Plastics: Atomic Layer Deposition
KR100497926B1 (en) Method for manufacturing a ferroelectric thin film and source material for metal organic chemical vapor deposition
KR101094611B1 (en) Preparation of metal oxide thin film via cyclic cvd or ald
KR102562274B1 (en) Organometallic precursor compounds

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090421

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee