JPWO2019163744A1 - Variable magnification optics for endoscopes and endoscopes - Google Patents

Variable magnification optics for endoscopes and endoscopes Download PDF

Info

Publication number
JPWO2019163744A1
JPWO2019163744A1 JP2020501768A JP2020501768A JPWO2019163744A1 JP WO2019163744 A1 JPWO2019163744 A1 JP WO2019163744A1 JP 2020501768 A JP2020501768 A JP 2020501768A JP 2020501768 A JP2020501768 A JP 2020501768A JP WO2019163744 A1 JPWO2019163744 A1 JP WO2019163744A1
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
endoscope
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020501768A
Other languages
Japanese (ja)
Other versions
JP6754916B2 (en
Inventor
幸子 那須
幸子 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Application granted granted Critical
Publication of JP6754916B2 publication Critical patent/JP6754916B2/en
Publication of JPWO2019163744A1 publication Critical patent/JPWO2019163744A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nonlinear Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡用変倍光学系は、物体側から順に、負のパワーを持つ第一のレンズ群と、正のパワーを持ち、光軸上を移動可能な第二のレンズ群、を備える。前記第一のレンズ群は、物体側から順に、像側に凹面を向けた負レンズと物体側に凸面を向けた正レンズを有し、前記第二のレンズ群は、物体側に凸面を向けた正レンズと接合した接合レンズを有する。前記第一、第二のレンズ群それぞれの合成焦点距離f1[mm]、f2[mm]、遠距離観察時の全系の合成焦点距離fw[mm]、拡大観察時の全系の合成焦点距離ft[mm]、及び、前記第一のレンズ群内で最も像側にある正レンズの焦点距離fs1に関して、0.6<|fs1/f1|<1.6、1.2<ft/fw<1.4、0.5<|f2/f1|<0.8、を満足する。The variable magnification optical system for an endoscope includes a first lens group having a negative power and a second lens group having a positive power and being movable on the optical axis in order from the object side. The first lens group has a negative lens having a concave surface facing the image side and a positive lens having a convex surface facing the object side in order from the object side, and the second lens group has a convex surface facing the object side. It has a bonded lens bonded to a positive lens. The combined focal lengths f1 [mm] and f2 [mm] of each of the first and second lens groups, the combined focal length fw [mm] of the entire system during long-distance observation, and the combined focal length of the entire system during magnified observation. With respect to ft [mm] and the focal length fs1 of the positive lens closest to the image side in the first lens group, 0.6 << | fs1 / f1 | <1.6, 1.2 <ft / fw < 1.4, 0.5 << f2 / f1 | <0.8, are satisfied.

Description

本発明は、内視鏡対物レンズユニットに用いる内視鏡用変倍光学系及び内視鏡に関する。 The present invention relates to a variable magnification optical system for an endoscope and an endoscope used in an endoscope objective lens unit.

今日、人体内部の生体組織を検査するために内視鏡が用いられる。内視鏡は、人体内に挿入される先端部に、照明光で照明された生体組織を撮像する撮像素子及び撮像素子に付随した対物レンズユニットを備える。対物レンズユニットは、先端部の小型化のために、極めて小さいサイズであり高い光学性能を有することが求められる。 Today, endoscopes are used to inspect living tissues inside the human body. The endoscope is provided with an image pickup element for imaging a living tissue illuminated by illumination light and an objective lens unit attached to the image pickup element at a tip portion inserted into the human body. The objective lens unit is required to have an extremely small size and high optical performance in order to reduce the size of the tip portion.

内視鏡において、病変部の観察を精細に行うために、変倍機能を持つ変倍光学系を搭載したものがある。このような変倍光学系としては、物体側のレンズ先端から像面までの距離を一定に保ったまま、病変部を拡大する必要があるため、可動するレンズ群を少なくとも1つ有する構成が一般的に用いられる。
このような変倍光学系において、物体側に最も近い第一のレンズ群を正のパワーを持つレンズ群で構成した場合、各正レンズ群内で収差の補正がし易くなるため、変倍による性能低下を抑えることが可能であるが、レンズ枚数がある程度必要となるため全長は長くなるといった不都合がある。
物体側に最も近い第一のレンズ群を負のパワーを持つレンズ群で構成した場合、光学系の全長を短くすることは可能であるが、正のパワーを持つレンズ群が可動することで収差の変化は大きくなるため、その影響を抑えるために他にもレンズも可動させる必要が生じる。
Some endoscopes are equipped with a variable magnification optical system having a magnification change function in order to observe a lesion in detail. As such a variable magnification optical system, since it is necessary to enlarge the lesion while maintaining a constant distance from the lens tip on the object side to the image plane, a configuration generally having at least one movable lens group is used. Used for
In such a variable magnification optical system, when the first lens group closest to the object side is composed of lens groups having positive power, it becomes easy to correct aberrations in each positive lens group. Although it is possible to suppress performance deterioration, there is a disadvantage that the total length becomes long because a certain number of lenses are required.
When the first lens group closest to the object side is composed of a lens group with negative power, it is possible to shorten the overall length of the optical system, but aberration is caused by the movement of the lens group with positive power. Since the change in the lens becomes large, it is necessary to move the lens in order to suppress the influence.

例えば、物点距離の変化に応じてフォーカシングが可能であり、その際に画角変化がほとんど生じない、高画素撮像素子に対応した高性能な対物光学系が知られている(特許文献1)。
当該対物光学系では、物体側から順に、負の第一のレンズ群、正の第二のレンズ群、明るさ絞り、正の第三のレンズ群で構成され、第二のレンズ群のみが動くことで物点距離の変化に対してフォーカシングを行い、遠距離観察時の最大半画角と、近距離観察時の最大半画角と、第一のレンズ群の焦点距離と、遠距離観察時の全系の焦点距離とについて、所定の条件を満足する。
For example, there is known a high-performance objective optical system compatible with a high-pixel image sensor, which is capable of focusing according to a change in object distance and hardly causes a change in angle of view at that time (Patent Document 1). ..
The objective optical system is composed of a negative first lens group, a positive second lens group, a brightness aperture, and a positive third lens group in order from the object side, and only the second lens group moves. By focusing on changes in the distance between objects, the maximum half-angle of view during long-distance observation, the maximum half-angle of view during short-distance observation, the focal length of the first lens group, and the time of long-distance observation The predetermined conditions are satisfied with respect to the focal length of the entire system.

特許第4819969号公報Japanese Patent No. 4819969

上述の対物光学系では、変倍の際に画角変化がほとんど生じないものの、遠距離観察時の半画角は最大でも80.8度である(段落0118参照)。
今日の内視鏡では、変倍率を維持しつつ、広い視野角が求められており、例えば、遠距離観察時視野角として160度(半画角80度)を超え、165度以上であることが好ましい。
In the above-mentioned objective optical system, although the angle of view hardly changes at the time of magnification change, the half angle of view at the time of long-distance observation is 80.8 degrees at the maximum (see paragraph 0118).
Today's endoscopes are required to have a wide viewing angle while maintaining variable magnification. For example, the viewing angle during long-distance observation exceeds 160 degrees (half angle of view 80 degrees) and is 165 degrees or more. Is preferable.

そこで、本発明は、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した、内視鏡用変倍光学系及び内視鏡を提供することを目的とする。 Therefore, the present invention has a wide viewing angle during normal observation (during long-distance observation) despite its small size, and maintains lens performance suitable for observation without lowering the magnification during magnified observation. It is an object of the present invention to provide a variable magnification optical system for an endoscope and an endoscope.

本発明の一態様は、内視鏡対物レンズユニットに用いる内視鏡用変倍光学系である。当該内視鏡用変倍光学系は、
物体側から順に、
負のパワーを持つ第一のレンズ群と、
正のパワーを持つ第二のレンズ群と、を少なくとも備え、
前記第一のレンズ群の最も物体側のレンズ面から像面までの距離を一定に保ちながら、固定レンズ群である前記第一のレンズ群に対して前記第二のレンズ群を光軸方向の広角端位置と望遠端位置の間を移動させることで光学像を変倍させるように構成される。
前記第一のレンズ群は、
物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズと、を少なくとも有し、
前記第二のレンズ群は、
物体側から順に、物体側に凸面を向けた正レンズと、負レンズ及び正レンズを接合した接合レンズと、を少なくとも有する。
前記第一のレンズ群の合成焦点距離をf[mm]とし、前記第二のレンズ群の合成焦点距離をf[mm]とし、前記第二のレンズ群が前記広角端位置にあるときの全系の合成焦点距離をf[mm]とし、記第二のレンズ群が前記望遠端位置にあるときの全系の合成焦点距離をf[mm]とし、前記第一のレンズ群内の前記正レンズの焦点距離をfs1としたとき、
(1)0.6<|fs1/f|<1.6、
(2)1.2<f/f<1.4、
(3)0.5<|f/f|<0.8、
を満足する。
One aspect of the present invention is a variable magnification optical system for an endoscope used in an endoscope objective lens unit. The variable magnification optical system for the endoscope is
From the object side,
The first lens group with negative power and
With at least a second lens group with positive power,
While keeping the distance from the lens surface on the most object side of the first lens group to the image surface constant, the second lens group is set in the optical axis direction with respect to the first lens group which is a fixed lens group. It is configured to change the magnification of the optical image by moving between the wide-angle end position and the telephoto end position.
The first lens group is
It has at least a negative lens with a concave surface facing the image side and a positive lens with a convex surface facing the object side in order from the object side.
The second lens group is
In order from the object side, it has at least a positive lens having a convex surface facing the object side and a bonded lens in which a negative lens and a positive lens are joined.
When the combined focal length of the first lens group is f 1 [mm], the combined focal length of the second lens group is f 2 [mm], and the second lens group is at the wide-angle end position. The combined focal length of the entire system is ft [mm], and the combined focal length of the entire system when the second lens group is at the telephoto end position is ft [mm], and the first lens group is described. When the focal length of the positive lens is f s1 ,
(1) 0.6 << f s1 / f 1 | <1.6,
(2) 1.2 < ft / f w <1.4,
(3) 0.5 << f 2 / f 1 | <0.8,
To be satisfied.

前記内視鏡用変倍光学系は、
(4)2.0<|fs1/f|<4.0、
を満足する、ことが好ましい。
The variable magnification optical system for endoscopes
(4) 2.0 << f s1 / f w | <4.0,
It is preferable to satisfy.

また、前記内視鏡用変倍光学系は、
(5)2.0<|f/f|<4.0、
を満足する、ことが好ましい。
In addition, the variable magnification optical system for endoscopes
(5) 2.0 << f 1 / f w | <4.0,
It is preferable to satisfy.

前記第一のレンズ群内の前記正レンズの、物体側の面の曲率半径をrp1[mm]とし、像側の面の曲率半径をrp2(rp2≠rp1)[mm]とし、SF=(rp1+rp2)/(rp1−rp2)を定めたとき、
前記内視鏡用変倍光学系は、
(6)−8.0<SF<−2.0、
を満足する、ことが好ましい。
The radius of curvature of the surface of the positive lens in the first lens group on the object side is rp1 [mm], the radius of curvature of the surface on the image side is rp2 (rp2 ≠ rp1) [mm], and SF 1 = ( When rp1 + rp2) / (rp1-rp2) is determined,
The variable magnification optical system for endoscopes
(6) -8.0 <SF 1 <-2.0,
It is preferable to satisfy.

前記内視鏡用変倍光学系は、前記第二のレンズ群に対して像側に、少なくとも物体側に凸面を向けた正レンズを備えた固定レンズ群である第三のレンズ群を備える、ことが好ましい。 The variable magnification optical system for an endoscope includes a third lens group which is a fixed lens group including a positive lens having a convex surface facing at least an object side on the image side with respect to the second lens group. Is preferable.

前記第一のレンズ群と前記第二のレンズ群の間の、前記第二のレンズ群の物体側には、絞りが設けられ、
前記絞りは、前記第二のレンズ群とともに一体で移動する、ことが好ましい。
A diaphragm is provided on the object side of the second lens group between the first lens group and the second lens group.
It is preferable that the diaphragm moves integrally with the second lens group.

本発明の他の一態様は、
前記内視鏡用変倍光学系と、
前記内視鏡用変倍光学系により結像した物体の像を受光する撮像素子と、を備える内視鏡である。
Another aspect of the present invention is
The variable magnification optical system for endoscopes,
The endoscope includes an image pickup element that receives an image of an object imaged by the variable magnification optical system for an endoscope.

上述の内視鏡用変倍光学系及び内視鏡によれば、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持することができる。 According to the above-mentioned variable magnification optical system for endoscopes and endoscopes, although they are small in size, they have a wide viewing angle during normal observation (during long-distance observation) and without lowering the magnification during magnified observation. It is possible to maintain lens performance suitable for observation.

本実施形態の内視鏡用変倍光学系を搭載した内視鏡の構成の一例を模式的に示す図である。It is a figure which shows typically an example of the structure of the endoscope which mounted the variable magnification optical system for an endoscope of this embodiment. (a),(b)は、一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of the variable magnification optical system for an endoscope according to the embodiment. (a),(b)は、他の一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of a variable magnification optical system for an endoscope according to another embodiment. (a),(b)は、さらに他の一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of a variable magnification optical system for an endoscope according to still another embodiment. (a),(b)は、さらに他の一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of a variable magnification optical system for an endoscope according to still another embodiment. (a),(b)は、さらに他の一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of a variable magnification optical system for an endoscope according to still another embodiment. (a),(b)は、さらに他の一実施形態の内視鏡用変倍光学系の構成の一例を示す図である。(A) and (b) are diagrams showing an example of the configuration of a variable magnification optical system for an endoscope according to still another embodiment. (a)〜(d)は、実施例1において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例1において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 1, and (e) to (h) are the second lenses in Example 1. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position. (a)〜(d)は、実施例2において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例2において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 2, and (e) to (h) are the second lenses in Example 2. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position. (a)〜(d)は、実施例3において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例3において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 3, and (e) to (h) are the second lenses in Example 3. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position. (a)〜(d)は、実施例4において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例4において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 4, and (e) to (h) are the second lenses in Example 4. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position. (a)〜(d)は、実施例5において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例5において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 5, and (e) to (h) are the second lenses in Example 5. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position. (a)〜(d)は、実施例6において第二のレンズ群G2が広角端位置にあるときの各種収差図であり、(e)〜(h)は、実施例6において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。(A) to (d) are various aberration diagrams when the second lens group G2 is at the wide-angle end position in Example 6, and (e) to (h) are the second lenses in Example 6. 6 is a diagram of various aberrations when the group G2 is at the telephoto end position.

以下、本実施形態の内視鏡用変倍光学系及び内視鏡について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る内視鏡1の外観を示す外観図である。
内視鏡1は、図1に示されるように、可撓性を有するシース11aによって外装された挿入部可撓管11を備えている。挿入部可撓管11の先端部分に設けられる湾曲部14は、挿入部可撓管11の基端に連結された手元操作部13からの、湾曲操作ノブ13aの回転操作に応じて湾曲する。湾曲機構は、一般的な内視鏡に組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を湾曲させる。湾曲部14の先端には、硬質性を有する樹脂製筐体によって外装された先端部12の基端が連結している。先端部12の方向が湾曲操作ノブ13aの回転操作による湾曲動作に応じて変わることにより、内視鏡1による撮影領域が移動する。
Hereinafter, the variable magnification optical system for an endoscope and the endoscope of the present embodiment will be described with reference to the drawings. FIG. 1 is an external view showing the appearance of the endoscope 1 according to the embodiment of the present invention.
As shown in FIG. 1, the endoscope 1 includes an insertion portion flexible tube 11 which is covered with a flexible sheath 11a. The curved portion 14 provided at the tip end portion of the insertion portion flexible pipe 11 is curved according to the rotation operation of the bending operation knob 13a from the hand operation portion 13 connected to the base end of the insertion portion flexible pipe 11. The bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 14 by pulling an operation wire linked to a rotation operation of the bending operation knob 13a. The base end of the tip portion 12 exteriord by a rigid resin housing is connected to the tip of the curved portion 14. The direction of the tip portion 12 changes according to the bending operation due to the rotation operation of the bending operation knob 13a, so that the imaging region by the endoscope 1 moves.

このような先端部12の樹脂製筐体の内部には、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した、対物レンズユニットとして用いる内視鏡用変倍光学系100が組み込まれている。内視鏡用変倍光学系100は、撮影領域中の被写体の画像データを採取するため、被写体からの光の像を撮像素子(図示省略)の受光面上に結像させ撮像素子に受光させる。撮像素子としては、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが挙げられる。 The inside of the resin housing of the tip portion 12 has a wide viewing angle during normal observation (during long-distance observation), and is suitable for observation without lowering the magnification during magnified observation. A variable magnification optical system 100 for an endoscope used as an objective lens unit, which maintains the performance, is incorporated. In order to collect image data of a subject in a photographing region, the variable magnification optical system 100 for an endoscope forms an image of light from the subject on a light receiving surface of an image sensor (not shown) and causes the image sensor to receive light. .. Examples of the image sensor include a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor.

図2(a),(b)は、一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図2(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図2(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図2(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。内視鏡用変倍光学系100は、第一のレンズ群G1の最も物体側のレンズ面から像面までの距離(すなわち、内視鏡用変倍光学系100の全長)を一定に保ちながら、固定レンズ群である第一のレンズ群G1に対して第二のレンズ群G2を光軸方向AXの広角端位置と望遠端位置の間を移動させることで、合焦状態を保持しつつ全系の焦点距離(第一のレンズ群G1から第三のレンズ群G3までの合成焦点距離)を変化させ、光学像を変倍させる構成となっている。すなわち最も物体側のレンズ面から物体までの被写体距離が近づくと、この被写体距離に応じて撮像素子の受光面で被写体が結像するように、第二のレンズ群G2を移動させて合焦状態を保持する。内視鏡用変倍光学系100は、第二のレンズ群G2が広角端位置にあるとき、視野角が160°超(半画角が80°超)となっている。各レンズ群G1,G2,G3を構成する各レンズは、内視鏡用変倍光学系100の光軸AXを中心として回転対称な形状を有している。第三のレンズ群G3の後段には、撮像素子用の色補正フィルタが配置されている。色補正フィルタは、撮像素子を保護する図示されないカバーガラスに接着されている。図中の“×”は光軸AX上の結像位置を表す。
第二のレンズ群G2が広角端位置にある場合、内視鏡1において通常観察(遠距離観察)が行われ、倍率が最も低い状態で観察される。第二のレンズ群G2が望遠端位置にある場合、内視鏡1において病変部等の拡大観察が行われ、倍率が最も高い状態で観察される。第二のレンズ群G2は、被写体から第一のレンズ群Gの物体側の面までの被写体距離の遠近に応じて、撮像素子の受光面上で結像できるように、広角端位置と望遠端位置の間の任意の位置に移動することができる。広角端位置では、最も視野角が広がる。
2A and 2B are diagrams showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to the embodiment. FIG. 2A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed with the endoscope 1. FIG. 2B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 2 (a) and 2 (b), the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive lens group in order from the object (subject) side. It has a second lens group G2 having the power of, and a third lens group G3 having a positive power. The variable magnification optical system 100 for an endoscope keeps the distance from the lens surface to the image plane on the most object side of the first lens group G1 (that is, the total length of the variable magnification optical system 100 for an endoscope) constant. By moving the second lens group G2 between the wide-angle end position and the telescopic end position in the optical axis direction AX with respect to the first lens group G1 which is a fixed lens group, the entire lens group G1 is maintained in focus. The focal distance of the system (composite focal distance from the first lens group G1 to the third lens group G3) is changed to change the magnification of the optical image. That is, when the subject distance from the lens surface on the object side to the object is closest, the second lens group G2 is moved to focus so that the subject is imaged on the light receiving surface of the image sensor according to the subject distance. To hold. The variable magnification optical system 100 for an endoscope has a viewing angle of more than 160 ° (a half angle of view of more than 80 °) when the second lens group G2 is at the wide-angle end position. Each lens constituting each lens group G1, G2, G3 has a shape rotationally symmetric with respect to the optical axis AX of the variable magnification optical system 100 for an endoscope. A color correction filter for an image sensor is arranged after the third lens group G3. The color correction filter is adhered to a cover glass (not shown) that protects the image sensor. “X” in the figure represents an imaging position on the optical axis AX.
When the second lens group G2 is at the wide-angle end position, normal observation (long-distance observation) is performed with the endoscope 1, and observation is performed at the lowest magnification. When the second lens group G2 is at the telephoto end position, the endoscope 1 performs magnified observation of the lesion or the like and observes the lesion at the highest magnification. The second lens group G2 has a wide-angle end position and a telephoto end so that an image can be formed on the light receiving surface of the image sensor according to the distance of the subject from the subject to the object-side surface of the first lens group G. You can move to any position between the positions. At the wide-angle end position, the viewing angle is widest.

第一のレンズ群G1は、物体側から順に、像側に凹面を向けた負レンズ(図2の例では、レンズL1)、物体側に凸面を向けた正レンズL3と、を少なくとも有し、絞りSよりも物体側に配置された負のパワーを持つレンズ群である。「少なくとも有し」とは、第一のレンズ群G1において、レンズL1とレンズL3の間に別のレンズや平板等の光学素子を有してもよく、レンズL3の像側に、光学素子を有してもよいことを意味する。後述する第二のレンズ群G2及び第三のレンズ群G3においても、同じ意味内容で、「少なくとも有している」と表現している。図2(a)に示すように、第一のレンズ群G1では、物体側の面が平面で、像側の面が凸面である正レンズL2が設けられている。 The first lens group G1 has at least a negative lens (lens L1 in the example of FIG. 2) having a concave surface facing the image side and a positive lens L3 having a convex surface facing the object side in order from the object side. This is a lens group having a negative power arranged on the object side of the aperture S. “At least possessing” means that in the first lens group G1, another optical element such as a lens or a flat plate may be provided between the lens L1 and the lens L3, and the optical element is provided on the image side of the lens L3. It means that you may have it. The second lens group G2 and the third lens group G3, which will be described later, also have the same meaning and are expressed as "having at least". As shown in FIG. 2A, the first lens group G1 is provided with a regular lens L2 in which the surface on the object side is a flat surface and the surface on the image side is a convex surface.

第二のレンズ群G2は、絞りSの直後に配置された正のパワーを持つレンズ群であり、色収差の発生を抑えるため、物体側から順に、物体側に凸面を向けた正レンズであるレンズL4と、正負2枚のレンズL5,L6を接合した接合レンズCL1を少なくとも有する構成となっている。図2(a)に示す例では、第二のレンズ群G2は、接合レンズCL1の像側に正レンズであるレンズL7を備える。
なお、接合レンズCL1は、負レンズであるレンズL5が物体側に配置され、正レンズであるレンズL6が像側に配置されているが、一実施形態では、正レンズが物体側に配置され、負レンズが像側に配置されてもよい。
The second lens group G2 is a lens group having positive power arranged immediately after the aperture S, and is a positive lens having a convex surface directed toward the object side in order from the object side in order to suppress the occurrence of chromatic aberration. It has at least a junction lens CL1 in which L4 and two positive and negative lenses L5 and L6 are joined. In the example shown in FIG. 2A, the second lens group G2 includes a lens L7 which is a positive lens on the image side of the junction lens CL1.
In the bonded lens CL1, the negative lens L5 is arranged on the object side and the positive lens L6 is arranged on the image side, but in one embodiment, the positive lens is arranged on the object side. The negative lens may be arranged on the image side.

第二のレンズ群G2は、撮像素子の受光面上に結像される光学像を変倍するため、絞りSと一体に光軸AX方向に移動する。第二のレンズ群G2と絞りSとを一体に移動させることにより、第二のレンズ群G2が望遠端位置にあるときの非点収差の発生が効果的に抑えられる。 The second lens group G2 moves in the optical axis AX direction integrally with the diaphragm S in order to change the magnification of the optical image formed on the light receiving surface of the image sensor. By integrally moving the second lens group G2 and the aperture S, the occurrence of astigmatism when the second lens group G2 is at the telephoto end position is effectively suppressed.

絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材、あるいは第二のレンズ群G2の、絞りSに最も近いレンズ面、具体的には、図2(a)に示す例では、レンズL4の物体側面に、光軸AXを中心とした所定の円形領域以外にコーティングされた遮光膜である。絞りSの厚みは、内視鏡用変倍光学系100を構成する各光学レンズの厚みと比べて非常に薄く、内視鏡用変倍光学系100の光学性能を計算する上で無視しても差し支えない。 The diaphragm S is a plate-shaped member having a predetermined circular opening centered on the optical axis AX, or a lens surface of the second lens group G2 closest to the diaphragm S, specifically shown in FIG. 2 (a). In the example, it is a light-shielding film coated on the side surface of the object of the lens L4 other than a predetermined circular region centered on the optical axis AX. The thickness of the aperture S is very thin compared to the thickness of each optical lens constituting the variable magnification optical system 100 for an endoscope, and is ignored in calculating the optical performance of the variable magnification optical system 100 for an endoscope. There is no problem.

第二のレンズ群G2の像側には、第三のレンズ群G3が設けられている。第三のレンズ群G3は、正のパワーを持ち、物体側に凸面を向けた正レンズであるレンズL8で構成されている。第三のレンズ群G3は、第一のレンズ群G1と同様に、固定レンズ群である。図2(a)に示す例では、第三のレンズ群G3が設けられているが、第三のレンズ群G3は設けられなくてもよい。物体側に凸面を向けた正レンズを第三のレンズ群G3として設けることにより、変倍したときの射出瞳から撮像素子に向かう光の射出角度を抑えることができる点から、第三のレンズ群G3を設けることが好ましい。
レンズ群とは、第一のレンズ群G1あるいは第二のレンズ群G2のように、複数のレンズが設けられている構成のほかに、第三のレンズ群G3のように、単一のレンズで構成されたものも含まれる。
A third lens group G3 is provided on the image side of the second lens group G2. The third lens group G3 is composed of a lens L8 which has a positive power and is a positive lens having a convex surface facing the object side. The third lens group G3 is a fixed lens group like the first lens group G1. In the example shown in FIG. 2A, the third lens group G3 is provided, but the third lens group G3 may not be provided. By providing a positive lens with a convex surface facing the object side as the third lens group G3, it is possible to suppress the emission angle of light from the exit pupil to the image sensor when the magnification is changed, so that the third lens group It is preferable to provide G3.
The lens group is a single lens such as the third lens group G3, in addition to the configuration in which a plurality of lenses are provided as in the first lens group G1 or the second lens group G2. The configured ones are also included.

このような内視鏡用変倍光学系100において、第一のレンズ群G1内の最も絞り側にある正レンズであるレンズL3は、物体側に凸面を向けた正のメニスカスレンズとすることにより、入射光線高さを抑えることができる。上述したように、絞りSを第二のレンズ群G2と一体に移動させることで、拡大観察時における非点収差の発生を抑えることができる。
また、第二のレンズ群G2の中央付近に接合レンズCL1を配置することにより、変倍時の色収差の変化を抑えることができる。
In such a variable magnification optical system for an endoscope 100, the lens L3, which is the positive lens on the most aperture side in the first lens group G1, is a positive meniscus lens with a convex surface facing the object side. , The height of the incident light beam can be suppressed. As described above, by moving the aperture S integrally with the second lens group G2, it is possible to suppress the occurrence of astigmatism during magnified observation.
Further, by arranging the junction lens CL1 near the center of the second lens group G2, it is possible to suppress the change in chromatic aberration at the time of magnification change.

ここで、第一のレンズ群G1の合成焦点距離をf[mm]とし、第二のレンズ群G2の合成焦点距離をf[mm]とし、第二のレンズ群G2が広角端位置にあるときの全系の合成焦点距離をf[mm]とし、第二のレンズ群G2が望遠端位置にあるときの全系の合成焦点距離をf[mm]とし、第一のレンズ群G1内で最も像側にある正レンズ(図2(a)に示す例では、レンズL3)の焦点距離をfs1としたとき、内視鏡用変倍光学系100は、
式(1)0.6<|fs1/f|<1.6、
式(2)1.2<f/f<1.4、
式(3)0.5<|f/f|<0.8、
を満足する。
Here, the combined focal length of the first lens group G1 is f 1 [mm], the combined focal length of the second lens group G2 is f 2 [mm], and the second lens group G2 is at the wide-angle end position. the combined focal length of the entire system is when the f w [mm], the entire system combined focal length of the time the group the second lens G2 is at the telephoto end position and f t [mm], the first lens group When the focal length of the positive lens (lens L3 in the example shown in FIG. 2A) closest to the image side in G1 is f s1 , the variable magnification optical system 100 for an endoscope
Equation (1) 0.6 << f s1 / f 1 | <1.6,
Equation (2) 1.2 < ft / f w <1.4,
Equation (3) 0.5 << f 2 / f 1 | <0.8,
To be satisfied.

上記式(1)は、第一のレンズ群G1内のメニスカスレンズであるレンズL3の焦点距離fs1と第一のレンズ群G1の合成焦点距離fの比の範囲を表す。この式(1)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態にしつつ、内視鏡用変倍光学系100を小径化することができる。焦点距離fs1と第一のレンズ群G1の合成焦点距離fの比の絶対値|fs1/f|が1.6以上になると、レンズL3の正のパワーが弱くなり第一のレンズ群G1の外径は小さくなるが、レンズの中心が光軸AX1からずれることにより(偏心により)レンズ性能の低下が大きくなり易くなる。また、コマ収差や歪曲収差が大きく発生し補正が困難になる。一方、比の絶対値|fs1/f|が0.6以下になると、レンズL3の正のパワーが強くなり、視野角を確保するには第一のレンズ群G1の外径が大きくなり内視鏡用変倍光学系100の全長も長くなる。 The above formula (1) represents the range of the ratio of the focal length f s1 of the lens L3, which is a meniscus lens in the first lens group G1, to the combined focal length f 1 of the first lens group G1. By satisfying this equation (1), it is possible to reduce the diameter of the variable magnification optical system 100 for an endoscope while widening the viewing angle during normal observation (long-distance observation). When the absolute value of the ratio of the focal length f s1 and the combined focal length f 1 of the first lens group G1 | f s1 / f 1 | becomes 1.6 or more, the positive power of the lens L3 becomes weak and the first lens Although the outer diameter of the group G1 becomes smaller, the lens performance is likely to be significantly deteriorated (due to eccentricity) due to the deviation of the center of the lens from the optical axis AX1. In addition, coma aberration and distortion are greatly generated, which makes correction difficult. On the other hand, when the absolute value of the ratio | f s1 / f 1 | is 0.6 or less, the positive power of the lens L3 becomes stronger, and the outer diameter of the first lens group G1 becomes larger in order to secure the viewing angle. The total length of the variable magnification optical system 100 for an endoscope is also increased.

上記式(2)は、通常観察(遠距離観察)時の全系の焦点距離fと拡大観察時の全系の焦点距離fの比f/fの範囲を表す。式(2)は、観察距離に対して像の変倍を適正な範囲に収めるための条件式である。比f/fが1.4以上になると、変倍によるFナンバーの変化が大きくなり、拡大観察時の解像が低下する。比f/fが1.2以下になると、拡大観察時の像の倍率が小さく、十分な観察が行えない。The above equation (2) represents the range of the ratio ft / f w of the focal length f w of the entire system during normal observation (long-distance observation) and the focal length f w of the entire system during magnified observation. Equation (2) is a conditional equation for keeping the magnification of the image within an appropriate range with respect to the observation distance. When the ratio f t / f w is 1.4 or more, the change in the F number due to the scaling becomes large, and the resolution at the time of magnified observation decreases. When the ratio ft / f w is 1.2 or less, the magnification of the image at the time of magnified observation is small, and sufficient observation cannot be performed.

上記式(3)は、第二のレンズ群G2の合成焦点距離fと第一のレンズ群G1の合成焦点距離fの比の範囲を表す。式(3)を満足することにより、内視鏡用変倍光学系100は、小型でありながら、変倍に必要な第二のレンズ群G2の移動量を確保することができる。比の絶対値|f/f|が0.8以上になると、第二のレンズ群G2のパワーが弱くなり、変倍に伴う移動量が長くなるため内視鏡用変倍光学系100の全長が長くなる。比の絶対値|f/f|が0.5以下になると、第二のレンズ群G2のパワーが強くなり、変倍に伴う移動量は小さくなるが、ペッツバール和が負の値でその絶対値が大きくなり像面湾曲の補正が困難になる。The formula (3) represents the range of the ratio of the composite focal length f 1 of the composite focal length f 2 of the second lens group G2 first lens group G1. By satisfying the equation (3), the variable magnification optical system 100 for an endoscope can secure the amount of movement of the second lens group G2 required for the variable magnification while being small in size. When the absolute value of the ratio | f 2 / f 1 | becomes 0.8 or more, the power of the second lens group G2 becomes weak and the amount of movement due to the magnification becomes long, so that the magnification optical system for endoscope 100 The total length of is increased. When the absolute value of the ratio | f 2 / f 1 | becomes 0.5 or less, the power of the second lens group G2 becomes stronger and the amount of movement due to scaling becomes smaller, but the Petzval sum is a negative value. The absolute value becomes large and it becomes difficult to correct the curvature of field.

したがって、内視鏡用変倍光学系100は、上記式(1)〜(3)を満足するように構成することにより、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 Therefore, the variable magnification optical system 100 for an endoscope is configured to satisfy the above equations (1) to (3), and thus has a wide viewing angle during normal observation (during long-distance observation) while being compact. Moreover, it is possible to obtain a variable magnification optical system for an endoscope that maintains lens performance suitable for observation without lowering the magnification at the time of magnified observation.

図3(a),(b)は、他の一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図3(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図3(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図3(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。
3A and 3B are diagrams showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to another embodiment. FIG. 3A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed with the endoscope 1. FIG. 3B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 3A and 3B, the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive lens in order from the object (subject) side. It has a second lens group G2 having the power of, and a third lens group G3 having a positive power.

図3(a),(b)に示す内視鏡用変倍光学系100の構成では、図2(a),(b)に示す内視鏡用変倍光学系100の構成に比べて、レンズL2がなく、そのかわり、第三のレンズ群G3として物体側に凸面を有し、像側にも凸面を有する正レンズであるレンズL9が設けられる。図3(a),(b)に示す内視鏡用変倍光学系100の構成では、さらに、図2(a),(b)に示す構成と異なり、レンズL8は、第二のレンズ群G2の一部となって、移動する構成となっている。 The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 3 (a) and 3 (b) is compared with the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b). There is no lens L2, and instead, a lens L9, which is a positive lens having a convex surface on the object side and a convex surface on the image side, is provided as the third lens group G3. In the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 3A and 3B, the lens L8 is a second lens group, unlike the configuration shown in FIGS. 2A and 2B. It becomes a part of G2 and is configured to move.

このような構成の場合において、上述の式(1)〜(3)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態に維持しつつ、内視鏡用変倍光学系100を小径化することができ、さらに、観察距離に対して像の変倍を適正な範囲に収めることができ、しかも、変倍に必要な第二のレンズ群G2の移動量を確保することができる。すなわち、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 In the case of such a configuration, by satisfying the above equations (1) to (3), the variable magnification optics for an endoscope can be maintained while maintaining a wide viewing angle during normal observation (long-distance observation). The diameter of the system 100 can be reduced, the magnification of the image can be kept within an appropriate range with respect to the observation distance, and the amount of movement of the second lens group G2 required for the magnification can be secured. be able to. That is, although it is small, it has a wide viewing angle during normal observation (during long-distance observation), and it maintains lens performance suitable for observation without lowering the magnification during magnified observation. It can be a magnification optical system.

図4(a),(b)は、さらに、他の一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図4(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図4(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図4(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。
4 (a) and 4 (b) are diagrams further showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to another embodiment. FIG. 4A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed by the endoscope 1. FIG. 4B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 4A and 4B, the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive lens in order from the object (subject) side. It has a second lens group G2 having the power of, and a third lens group G3 having a positive power.

図4(a),(b)に示す内視鏡用変倍光学系100の構成では、図2(a),(b)に示す内視鏡用変倍光学系100の構成と同じ構成であるが、図2(a),(b)に示すレンズL2の代わりに平板が用いられる。図4(a),(b)では、同じ符号L2を示しているが平板L2である。 The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 4 (a) and 4 (b) is the same as the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b). However, a flat plate is used instead of the lens L2 shown in FIGS. 2 (a) and 2 (b). In FIGS. 4A and 4B, the same reference numerals L2 are shown, but the flat plate L2 is used.

このような構成の場合においても、上述の式(1)〜(3)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態に維持しつつ、内視鏡用変倍光学系100を小径化することができ、さらに、観察距離に対して像の変倍を適正な範囲に収めることができ、しかも、変倍に必要な第二のレンズ群G2の移動量を確保することができる。すなわち、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 Even in the case of such a configuration, by satisfying the above equations (1) to (3), the magnification for endoscopy can be maintained while maintaining a wide viewing angle during normal observation (long-distance observation). The diameter of the optical system 100 can be reduced, the magnification of the image can be kept within an appropriate range with respect to the observation distance, and the amount of movement of the second lens group G2 required for the magnification can be secured. can do. That is, although it is small, it has a wide viewing angle during normal observation (during long-distance observation), and it maintains lens performance suitable for observation without lowering the magnification during magnified observation. It can be a magnification optical system.

図5(a),(b)は、さらに、他の一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図5(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図5(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図5(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2を有している。
5 (a) and 5 (b) are still diagrams showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to another embodiment. FIG. 5A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed with the endoscope 1. FIG. 5B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 5A and 5B, the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive number in order from the object (subject) side. It has a second lens group G2 having the power of.

図5(a),(b)に示す内視鏡用変倍光学系100の構成では、図2(a),(b)に示す内視鏡用変倍光学系100の構成に比べて、レンズL2がない。図3(a),(b)に示す内視鏡用変倍光学系100の構成に比べてレンズL9もない。すなわち、図5(a),(b)に示す内視鏡用変倍光学系100は、第三のレンズ群G3がなく、レンズL4〜L8が絞りSと一体に移動する構成となっている。 The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 5 (a) and 5 (b) is compared with the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b). There is no lens L2. Compared to the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 3A and 3B, there is no lens L9. That is, the variable magnification optical system 100 for an endoscope shown in FIGS. 5A and 5B does not have the third lens group G3, and the lenses L4 to L8 move integrally with the aperture S. ..

このような構成の場合においても、上述の式(1)〜(3)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態に維持しつつ、内視鏡用変倍光学系100を小径化することができ、さらに、観察距離に対して像の変倍を適正な範囲に収めることができ、しかも、変倍に必要な第二のレンズ群G2の移動量を確保することができる。すなわち、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 Even in the case of such a configuration, by satisfying the above equations (1) to (3), the magnification for endoscopy can be maintained while maintaining a wide viewing angle during normal observation (long-distance observation). The diameter of the optical system 100 can be reduced, the magnification of the image can be kept within an appropriate range with respect to the observation distance, and the amount of movement of the second lens group G2 required for the magnification can be secured. can do. That is, although it is small, it has a wide viewing angle during normal observation (during long-distance observation), and it maintains lens performance suitable for observation without lowering the magnification during magnified observation. It can be a magnification optical system.

図6(a),(b)は、さらに、他の一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図6(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図6(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図6(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。
6 (a) and 6 (b) are views showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to another embodiment. FIG. 6A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed with the endoscope 1. FIG. 6B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 6A and 6B, the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive lens in order from the object (subject) side. It has a second lens group G2 having the power of, and a third lens group G3 having a positive power.

図6(a),(b)に示す内視鏡用変倍光学系100の構成では、図2(a),(b)に示す内視鏡用変倍光学系100の構成に比べて、レンズL2がない。また、図6(a),(b)に示す内視鏡用変倍光学系100の構成では、図5(a),(b)に示す内視鏡用変倍光学系100の構成と異なり、レンズL8は、図6(b)に示すように、第三のレンズ群G3として、移動しない構成となっている。 The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 6 (a) and 6 (b) is compared with the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b). There is no lens L2. Further, the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 6 (a) and 6 (b) is different from the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 5 (a) and 5 (b). As shown in FIG. 6B, the lens L8 has a configuration that does not move as the third lens group G3.

このような構成の場合においても、上述の式(1)〜(3)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態に維持しつつ、内視鏡用変倍光学系100を小径化することができ、さらに、観察距離に対して像の変倍を適正な範囲に収めることができ、しかも、変倍に必要な第二のレンズ群G2の移動量を確保することができる。すなわち、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 Even in the case of such a configuration, by satisfying the above equations (1) to (3), the magnification for endoscopy can be maintained while maintaining a wide viewing angle during normal observation (long-distance observation). The diameter of the optical system 100 can be reduced, the magnification of the image can be kept within an appropriate range with respect to the observation distance, and the amount of movement of the second lens group G2 required for the magnification can be secured. can do. That is, although it is small, it has a wide viewing angle during normal observation (during long-distance observation), and it maintains lens performance suitable for observation without lowering the magnification during magnified observation. It can be a magnification optical system.

図7(a),(b)は、さらに、他の一実施形態の内視鏡用変倍光学系100の構成の一例を示す図である。図7(a)は、第二のレンズ群G2が広角端位置にあり、内視鏡1において通常観察(遠距離観察)が行われる状態を示している。図7(b)は、第二のレンズ群G2が望遠端位置にあり、内視鏡1において拡大観察が行われる状態を示している。
内視鏡用変倍光学系100は、図7(a),(b)に示されるように、物体(被写体)側から順に、負のパワーを持つ第一のレンズ群G1、絞りS、正のパワーを持つ第二のレンズ群G2、正のパワーを持つ第三のレンズ群G3を有している。
7 (a) and 7 (b) are views showing an example of the configuration of the variable magnification optical system 100 for an endoscope according to another embodiment. FIG. 7A shows a state in which the second lens group G2 is located at the wide-angle end position and normal observation (long-distance observation) is performed with the endoscope 1. FIG. 7B shows a state in which the second lens group G2 is at the telephoto end position and magnified observation is performed with the endoscope 1.
As shown in FIGS. 7A and 7B, the variable magnification optical system 100 for an endoscope has a first lens group G1 having a negative power, an aperture S, and a positive lens in order from the object (subject) side. It has a second lens group G2 having the power of, and a third lens group G3 having a positive power.

図7(a),(b)に示す内視鏡用変倍光学系100の構成では、図2(a),(b)に示す内視鏡用変倍光学系100の構成と同じ構成であるが、図7(a),(b)に示すレンズL2は像側の面が凸面である正レンズではなく、凹面である負レンズとなっている。 The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 7 (a) and 7 (b) is the same as the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b). However, the lens L2 shown in FIGS. 7A and 7B is not a positive lens having a convex surface on the image side but a negative lens having a concave surface.

このような構成の場合においても、上述の式(1)〜(3)を満足することにより、通常観察(遠距離観察)時の視野角を広い状態に維持しつつ、内視鏡用変倍光学系100を小径化することができ、さらに、観察距離に対して像の変倍を適正な範囲に収めることができ、変倍に必要な第二のレンズ群G2の移動量を確保することができる。すなわち、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持した内視鏡用変倍光学系とすることができる。 Even in the case of such a configuration, by satisfying the above equations (1) to (3), the magnification for endoscopy can be maintained while maintaining a wide viewing angle during normal observation (long-distance observation). The diameter of the optical system 100 can be reduced, the magnification of the image can be kept within an appropriate range with respect to the observation distance, and the amount of movement of the second lens group G2 required for the magnification can be secured. Can be done. That is, although it is compact, it has a wide viewing angle during normal observation (during long-distance observation), and it maintains lens performance suitable for observation without lowering the magnification during magnified observation. It can be a magnification optical system.

このような図2〜図7に示す内視鏡用変倍光学系100の構成において、以下説明する形態を備えることが好ましい。 In such a configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 to 7, it is preferable to have the form described below.

すなわち、内視鏡用変倍光学系100の一実施形態によれば、内視鏡用変倍光学系100は、
式(4)2.0<|fs1/f|<4.0、
を満足することが好ましい。
式(4)は、第一のレンズ群G1内の最も絞りS側にある正レンズであるレンズL3の焦点距離fs1と通常観察(遠距離観察)時の全系の焦点距離fの比の範囲を表す。式(4)を満足することにより、第一のレンズ群G1内で発生する収差を抑え、変倍時のレンズ性能の変化を抑えることができる。比の絶対値|fs1/f|が4.0以上になると、レンズL3の正のパワーが弱くなり、負レンズで発生する収差を相殺することが難しくなる。また、レンズ収差を適正な範囲に抑えようとすると、視野角が狭くなる。比の絶対値|fs1/f|が2.0以下になると、レンズL3の正のパワーが強くなり過ぎるため、通常観察時の歪曲収差の発生が大きくなり周辺解像が低下する。また、拡大観察時に正レンズで発生する収差を補正することが困難になるため、光学性能の維持が困難になる。
That is, according to one embodiment of the variable magnification optical system 100 for an endoscope, the variable magnification optical system 100 for an endoscope is
Equation (4) 2.0 << f s1 / f w | <4.0,
It is preferable to satisfy.
Equation (4) is the ratio of the focal length f s1 of the lens L3, which is the positive lens on the most aperture S side in the first lens group G1, to the focal length f w of the entire system during normal observation (long-distance observation). Represents the range of. By satisfying the equation (4), it is possible to suppress the aberration generated in the first lens group G1 and suppress the change in the lens performance at the time of magnification change. When the absolute value of the ratio | f s1 / f w | becomes 4.0 or more, the positive power of the lens L3 becomes weak and it becomes difficult to cancel the aberration generated in the negative lens. Further, if the lens aberration is suppressed to an appropriate range, the viewing angle becomes narrow. When the absolute value of the ratio | f s1 / f w | is 2.0 or less, the positive power of the lens L3 becomes too strong, so that distortion during normal observation becomes large and the peripheral resolution deteriorates. Further, since it becomes difficult to correct the aberration generated by the positive lens during magnified observation, it becomes difficult to maintain the optical performance.

また、内視鏡用変倍光学系100の一実施形態によれば、内視鏡用変倍光学系100は、
式(5)2.0<|f/f|<4.0、
を満足することが好ましい。
式(5)は、第一のレンズ群G1の合成焦点距離fと通常観察(遠距離観察)時の全系の焦点距離fとの比|f/f|の範囲を表す。この条件式(5)を満足することにより、第一のレンズ群G1の有効径を抑えることができる。比の絶対値|f/f|が2.0以下になると、第一のレンズ群G1の負のパワーが強くなり、物体側のレンズL1の負のパワーが強くなるため、コマ収差が大きくなる。比の絶対値|f/f|が4.0以上になると、第一のレンズ群G1の負のパワーを確保するため、最も物体側に位置する負レンズの有効径を大きくしなければならない。
Further, according to one embodiment of the variable magnification optical system 100 for an endoscope, the variable magnification optical system 100 for an endoscope is:
Equation (5) 2.0 << f 1 / f w | <4.0,
It is preferable to satisfy.
Equation (5) represents the range of the ratio | f 1 / f w | of the combined focal length f 1 of the first lens group G1 to the focal length f w of the entire system during normal observation (long-distance observation). By satisfying this conditional expression (5), the effective diameter of the first lens group G1 can be suppressed. When the absolute value of the ratio | f 1 / f w | is 2.0 or less, the negative power of the first lens group G1 becomes stronger and the negative power of the lens L1 on the object side becomes stronger, so that coma aberration occurs. growing. When the absolute value of the ratio | f 1 / f w | becomes 4.0 or more, the effective diameter of the negative lens located closest to the object must be increased in order to secure the negative power of the first lens group G1. It doesn't become.

また、内視鏡用変倍光学系100の一実施形態によれば、内視鏡用変倍光学系100は、
式(6)−8.0<SF<−2.0、
を満足することが好ましい。
ここで、第一のレンズ群G1内で最も像側にある正レンズ、図2(a)に示す例ではレンズL3の、物体側の面の曲率半径をrp1[mm]とし、像側の面の曲率半径をrp2(rp2≠rp1)[mm]としたとき、SF=(rp1+rp2)/(rp1−rp2)と定める。
Further, according to one embodiment of the variable magnification optical system 100 for an endoscope, the variable magnification optical system 100 for an endoscope is:
Equation (6) -8.0 <SF 1 <-2.0,
It is preferable to satisfy.
Here, the radius of curvature of the surface of the lens L3, which is the positive lens closest to the image side in the first lens group G1 and is shown in FIG. 2A, is rp1 [mm], and the surface on the image side When the radius of curvature of is rp2 (rp2 ≠ rp1) [mm], SF 1 = (rp1 + rp2) / (rp1-rp2) is defined.

SFは、第一のレンズ群G1内で最も像側にある正レンズ、図2(a)に示す例では、レンズL3の形状を規定している。式(6)を満足することにより、視野角が広い状態を維持したまま通常観察(遠距離観察)時のレンズによる像の歪を抑え、レンズの中心が光軸AX1からずれることによる(偏心による)レンズ収差の変化を抑えることができる。SFが−8.0以下になると、物体側の面の曲率半径rp1が大きくなり、諸収差の発生が抑えられるため、変倍時のレンズの収差補正が困難になる。SFが−2.0以上になると、物体側の面の曲率半径rp1が小さくなり、ディストーションが大きくなる。また、レンズの中心が光軸AX1からずれることによる(偏心による)レンズ収差の変化が大きくなりレンズ性能の低下が大きくなる。SF 1 defines the shape of the positive lens closest to the image side in the first lens group G1, and the lens L3 in the example shown in FIG. 2A. By satisfying equation (6), distortion of the image due to the lens during normal observation (long-distance observation) is suppressed while maintaining a wide viewing angle, and the center of the lens deviates from the optical axis AX1 (due to eccentricity). ) Changes in lens aberration can be suppressed. When SF 1 is −8.0 or less, the radius of curvature rp1 of the surface on the object side becomes large and the occurrence of various aberrations is suppressed, so that it becomes difficult to correct the aberration of the lens at the time of magnification change. When SF 1 becomes −2.0 or more, the radius of curvature rp1 of the surface on the object side becomes small and the distortion becomes large. In addition, the change in lens aberration (due to eccentricity) due to the deviation of the center of the lens from the optical axis AX1 becomes large, and the deterioration of lens performance becomes large.

次に、図2〜図7に示す内視鏡用変倍光学系100の構成におけるレンズ性能を、実施例1〜6を用いて説明する。 Next, the lens performance in the configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 to 7 will be described with reference to Examples 1 to 6.

(実施例1)
図2(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例1として用いた。 実施例1の具体的な数値(設計値)は、表1に示される。表1の上欄(面データ)に示される面番号NOは、絞りSに対応する面番号7を除き、図2(a)中の面符号rn(nは自然数)に対応する。表1の上欄において、R[mm]はレンズを含む光学部材の各面の曲率半径を、D[mm]は光軸AX上の光学部材の厚さ又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、VDはd線のアッベ数を、それぞれ示す。
(Example 1)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 2 (a) and 2 (b) was used as Example 1. Specific numerical values (design values) of Example 1 are shown in Table 1. The surface number NO shown in the upper column (surface data) of Table 1 corresponds to the surface code rn (n is a natural number) in FIG. 2A, except for the surface number 7 corresponding to the aperture S. In the upper column of Table 1, R [mm] is the radius of curvature of each surface of the optical member including the lens, and D [mm] is the thickness of the optical member or the interval between the optical members on the optical axis AX. Indicates the refractive index of the d-line (wavelength 588 nm), and VD indicates the Abbe number of the d-line.

表1の下欄(各種データ)は、実施例1の仕様(実効Fナンバー、全系の合成焦点距離[mm]、光学倍率、半画角[度]、像高[mm]、群間隔D6[mm]、群間隔D14[mm])を示す。
群間隔D6は、第一のレンズ群G1と第二のレンズ群G2との間の間隔である。群間隔D14は、第二のレンズ群G2と第三のレンズ群G3との間の間隔である。群間隔D6、群間隔D14は、変倍位置(広角端位置と望遠端位置)に応じて変わる。表1では、内視鏡用変倍光学系100が位置する広角端位置は、“広角”と表し、望遠端位置は“望遠”と表している。
The lower column (various data) of Table 1 shows the specifications of Example 1 (effective F number, composite focal length [mm] of the whole system, optical magnification, half angle of view [degree], image height [mm], group spacing D6. [Mm], group spacing D14 [mm]) is shown.
The group spacing D6 is the spacing between the first lens group G1 and the second lens group G2. The group spacing D14 is the spacing between the second lens group G2 and the third lens group G3. The group spacing D6 and the group spacing D14 change according to the variable magnification position (wide-angle end position and telephoto end position). In Table 1, the wide-angle end position where the variable magnification optical system 100 for an endoscope is located is represented as "wide-angle", and the telephoto end position is represented as "telephoto".

Figure 2019163744
Figure 2019163744

図8(a)〜(d)は、実施例1において第二のレンズ群G2が広角端位置にあるときの各種収差図である。図8(e)〜(h)は、実施例1において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。図8(a),(e)は、d線、g線(波長436nm)、C線(波長656nm)での球面収差及び軸上色収差を示す。図8(b),(f)は、d線、g線、C線での倍率色収差を示す。図8(a),(b),(e),(f)中、実線はd線における収差を、点線はg線における収差を、一点鎖線はC線における収差を、それぞれ示す。図8(c)、(g)は、非点収差を示す。図8(c),(g)中、実線はサジタル成分“S”を、点線はメリディオナル成分“M”を、それぞれ示す。図8(d),(h)は、歪曲収差を示す。図8(a)〜(c)及び(e)〜(g)の縦軸は像高を、横軸は収差量を、それぞれ示す。図8(d),(h)の縦軸は像高を、横軸は歪曲率(%表示)を、それぞれ示す。なお、実施例1の表1又は図8(a)〜(h)についての説明は、以降の実施例の各表または各図面においても適用する。 8 (a) to 8 (d) are various aberration diagrams when the second lens group G2 is in the wide-angle end position in the first embodiment. 8 (e) to 8 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the first embodiment. 8 (a) and 8 (e) show spherical aberration and axial chromatic aberration at line d, line g (wavelength 436 nm), and line C (wavelength 656 nm). 8 (b) and 8 (f) show chromatic aberration of magnification on the d-line, g-line, and C-line. In FIGS. 8 (a), (b), (e), and (f), the solid line shows the aberration at the d line, the dotted line shows the aberration at the g line, and the alternate long and short dash line shows the aberration at the C line. 8 (c) and 8 (g) show astigmatism. In FIGS. 8 (c) and 8 (g), the solid line indicates the sagittal component “S” and the dotted line indicates the meridional component “M”. 8 (d) and 8 (h) show distortion. 8 (a) to (c) and (e) to (g) show the image height on the vertical axis and the amount of aberration on the horizontal axis. The vertical axis of FIGS. 8D and 8H shows the image height, and the horizontal axis shows the strain curvature (% display). The description of Table 1 or FIGS. 8A to 8H of Example 1 also applies to each table or each drawing of the following Examples.

実施例1では、第二のレンズ群G2が広角端位置にあるときの半画角を85.6度(視野角171.2度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図8(a)〜(h)参照)。 In the first embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 85.6 degrees (viewing angle 171.2 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 8 (a) to 8 (h)).

(実施例2)
図3(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例2として用いた。
実施例2の具体的な数値(設計値)は、表2に示される。
表2の下欄(各種データ)において、表1の群間隔D6[mm]の代わりに、群間隔D4[mm]となっている、群間隔D4は、第一のレンズ群G1と第二のレンズ群G2との間の間隔である。
(Example 2)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 3A and 3B was used as Example 2.
Specific numerical values (design values) of Example 2 are shown in Table 2.
In the lower column (various data) of Table 2, the group spacing D4 [mm] is used instead of the group spacing D6 [mm] in Table 1. The group spacing D4 is the first lens group G1 and the second lens group G1. This is the distance between the lens group G2 and the lens group G2.

Figure 2019163744
Figure 2019163744

図9(a)〜(d)は、実施例2において第二のレンズ群G2が広角端位置にあるときの各種収差図である。図9(e)〜(h)は、実施例2において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。 9 (a) to 9 (d) are various aberration diagrams when the second lens group G2 is in the wide-angle end position in the second embodiment. 9 (e) to 9 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the second embodiment.

実施例2でも、第二のレンズ群G2が広角端位置にあるときの半画角を88.0度(視野角176.0度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図9(a)〜(h)参照)。 Also in the second embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 88.0 degrees (viewing angle 176.0 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 9 (a) to 9 (h)).

(実施例3)
図4(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例3として用いた。
実施例3の具体的な数値(設計値)は、表3に示される。
(Example 3)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 4A and 4B was used as Example 3.
Specific numerical values (design values) of Example 3 are shown in Table 3.

Figure 2019163744
Figure 2019163744

図10(a)〜(d)は、実施例3において第二のレンズ群G2が広角端位置にあるときの各種収差図である。図10(e)〜(h)は、実施例3において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。 10 (a) to 10 (d) are various aberration diagrams when the second lens group G2 is in the wide-angle end position in the third embodiment. 10 (e) to 10 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the third embodiment.

実施例3でも、第二のレンズ群G2が広角端位置にあるときの半画角を86.7度(視野角173.4度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図10(a)〜(h)参照)。 Also in the third embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 86.7 degrees (viewing angle 173.4 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 10 (a) to 10 (h)).

(実施例4)
図5(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例4として用いた。
実施例4の具体的な数値(設計値)は、表4に示される。表4の下欄(各種データ)において、表1の群間隔D6[mm]の代わりに、群間隔D4[mm]となっている、群間隔D4は、第一のレンズ群G1と第二のレンズ群G2との間の間隔である。
(Example 4)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 5A and 5B was used as Example 4.
Specific numerical values (design values) of Example 4 are shown in Table 4. In the lower column (various data) of Table 4, the group spacing D4 [mm] is used instead of the group spacing D6 [mm] in Table 1. The group spacing D4 is the first lens group G1 and the second lens group G1. This is the distance between the lens group G2 and the lens group G2.

Figure 2019163744
Figure 2019163744

図11(a)〜(d)は、実施例4において第二のレンズ群G2が広角端位置にあるとの各種収差図である。図11(e)〜(h)は、実施例4において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。 11 (a) to 11 (d) are various aberration diagrams in which the second lens group G2 is located at the wide-angle end position in the fourth embodiment. 11 (e) to 11 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the fourth embodiment.

実施例4でも、第二のレンズ群G2が広角端位置にあるときの半画角を86.6度(視野角173.2度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図11(a)〜(h)参照)。 Also in the fourth embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 86.6 degrees (viewing angle 173.2 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 11 (a) to 11 (h)).

(実施例5)
図6(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例5として用いた。
実施例5の具体的な数値(設計値)は、表5に示される。表5の下欄(各種データ)において、表1の群間隔D6[mm]の代わりに、群間隔D4[mm]となっており、群間隔D14の代わりに、群間隔D12となっている、群間隔D4は、第一のレンズ群G1と第二のレンズ群G2との間の間隔である。群間隔D12は、第二のレンズ群G2と第三のレンズ群G3との間の間隔である。
(Example 5)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 6A and 6B was used as Example 5.
Specific numerical values (design values) of Example 5 are shown in Table 5. In the lower column (various data) of Table 5, the group spacing D6 [mm] in Table 1 is replaced with the group spacing D4 [mm], and the group spacing D14 is replaced with the group spacing D12. The group spacing D4 is the spacing between the first lens group G1 and the second lens group G2. The group spacing D12 is the spacing between the second lens group G2 and the third lens group G3.

Figure 2019163744
Figure 2019163744

図12(a)〜(d)は、実施例5において第二のレンズ群G2が広角端位置にあるときの各種収差図である。図12(e)〜(h)は、実施例5において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。 12 (a) to 12 (d) are various aberration diagrams when the second lens group G2 is in the wide-angle end position in the fifth embodiment. 12 (e) to 12 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the fifth embodiment.

実施例5でも、第二のレンズ群G2が広角端位置にあるときの半画角を86.3度(視野角172.6度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図12(a)〜(h)参照)。 Also in the fifth embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 86.3 degrees (viewing angle 172.6 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 12 (a) to 12 (h)).

(実施例6)
図7(a),(b)に示す内視鏡用変倍光学系100の構成を、実施例6として用いた。
実施例6の具体的な数値(設計値)は、表6に示される。
(Example 6)
The configuration of the variable magnification optical system 100 for an endoscope shown in FIGS. 7 (a) and 7 (b) was used as Example 6.
Specific numerical values (design values) of Example 6 are shown in Table 6.

Figure 2019163744
Figure 2019163744

図13(a)〜(d)は、実施例6において第二のレンズ群G2が広角端位置にあるときの各種収差図である。図13(e)〜(h)は、実施例6において第二のレンズ群G2が望遠端位置にあるときの各種収差図である。 13 (a) to 13 (d) are various aberration diagrams when the second lens group G2 is in the wide-angle end position in the sixth embodiment. 13 (e) to 13 (h) are various aberration diagrams when the second lens group G2 is in the telephoto end position in the sixth embodiment.

実施例6でも、第二のレンズ群G2が広角端位置にあるときの半画角を86.2度(視野角172.4度)としつつ、レンズL1の有効径を抑えることができ、内視鏡用変倍光学系100全体の径方向の寸法が抑えられた構成となっている。しかも、拡大観察時の倍率を下げることなく、広角端位置、望遠端位置のいずれにおいても収差が良好に抑えられている(図13(a)〜(h)参照)。 Also in the sixth embodiment, the effective diameter of the lens L1 can be suppressed while setting the half angle of view when the second lens group G2 is at the wide-angle end position to 86.2 degrees (viewing angle 172.4 degrees). The configuration is such that the radial dimension of the entire variable magnification optical system 100 for an endoscope is suppressed. Moreover, aberrations are satisfactorily suppressed at both the wide-angle end position and the telephoto end position without lowering the magnification during magnified observation (see FIGS. 13 (a) to 13 (h)).

表7は、表1〜6に示す各寸法から算出される式(1)〜(6)の比あるいは比の絶対値を示す。 Table 7 shows the ratio or the absolute value of the ratio of the formulas (1) to (6) calculated from each dimension shown in Tables 1 to 6.

Figure 2019163744
Figure 2019163744

実施例1〜6の各実施例では、表7に示されるように、上述の式(1)〜(3)を満足する。これにより、本実施例1〜6の各実施例では、小型でありながら、通常観察時(遠距離観察時)、広い視野角を有し、しかも、拡大観察時の倍率を下げることなく、観察に適したレンズ性能を保持することができる。さらに、式(4)〜(6)を満足する各実施例では、上述した更なる効果を有する。 In each of Examples 1 to 6, as shown in Table 7, the above formulas (1) to (3) are satisfied. As a result, in each of the first to sixth embodiments, although it is small, it has a wide viewing angle during normal observation (during long-distance observation), and it is observed without lowering the magnification during magnified observation. It is possible to maintain the lens performance suitable for. Further, each of the examples satisfying the formulas (4) to (6) has the above-mentioned further effect.

以上、本発明の内視鏡用変倍光学系及び内視鏡について詳細に説明したが、本発明の内視鏡用変倍光学系及び内視鏡は上記実施形態あるいは実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 Although the variable magnification optical system for endoscopes and endoscopes of the present invention have been described in detail above, the variable magnification optical system for endoscopes and endoscopes of the present invention are not limited to the above-described embodiments or examples. Of course, various improvements and changes may be made without departing from the gist of the present invention.

1 内視鏡
11 挿入部可撓管
11a シース
12 先端部
13 手元操作部
13a 湾曲操作ノブ
14 湾曲部
100 内視鏡用変倍光学系
1 Endoscope 11 Insertion part Flexible tube 11a Sheath 12 Tip part 13 Hand operation part 13a Curved operation knob 14 Curved part 100 Variable magnification optical system for endoscope

Claims (7)

内視鏡対物レンズユニットに用いる内視鏡用変倍光学系であって、
物体側から順に、
負のパワーを持つ第一のレンズ群と、
正のパワーを持つ第二のレンズ群と、を少なくとも備え、
前記第一のレンズ群の最も物体側のレンズ面から像面までの距離を一定に保ちながら、固定レンズ群である前記第一のレンズ群に対して前記第二のレンズ群を光軸方向の広角端位置と望遠端位置の間を移動させることで光学像を変倍させるように構成され、
前記第一のレンズ群は、
物体側から順に、像側に凹面を向けた負レンズと、物体側に凸面を向けた正レンズと、を少なくとも有し、
前記第二のレンズ群は、
物体側から順に、物体側に凸面を向けた正レンズと、負レンズ及び正レンズを接合した接合レンズと、を少なくとも有し、
前記第一のレンズ群の合成焦点距離をf[mm]とし、前記第二のレンズ群の合成焦点距離をf[mm]とし、前記第二のレンズ群が前記広角端位置にあるときの全系の合成焦点距離をf[mm]とし、記第二のレンズ群が前記望遠端位置にあるときの全系の合成焦点距離をf[mm]とし、前記第一のレンズ群内の前記正レンズの焦点距離をfs1としたとき、
(1)0.6<|fs1/f|<1.6、
(2)1.2<f/f<1.4、
(3)0.5<|f/f|<0.8、
を満足する、内視鏡用変倍光学系。
It is a variable magnification optical system for endoscopes used for endoscope objective lens units.
From the object side,
The first lens group with negative power and
With at least a second lens group with positive power,
While keeping the distance from the lens surface on the most object side of the first lens group to the image surface constant, the second lens group is set in the optical axis direction with respect to the first lens group which is a fixed lens group. It is configured to change the magnification of the optical image by moving between the wide-angle end position and the telephoto end position.
The first lens group is
It has at least a negative lens with a concave surface facing the image side and a positive lens with a convex surface facing the object side in order from the object side.
The second lens group is
In order from the object side, it has at least a positive lens having a convex surface facing the object side and a bonded lens in which a negative lens and a positive lens are joined.
When the combined focal length of the first lens group is f 1 [mm], the combined focal length of the second lens group is f 2 [mm], and the second lens group is at the wide-angle end position. The combined focal length of the entire system is ft [mm], and the combined focal length of the entire system when the second lens group is at the telephoto end position is ft [mm], and the first lens group is described. When the focal length of the positive lens is f s1 ,
(1) 0.6 << f s1 / f 1 | <1.6,
(2) 1.2 < ft / f w <1.4,
(3) 0.5 << f 2 / f 1 | <0.8,
Satisfying, variable magnification optical system for endoscopes.
(4)2.0<|fs1/f|<4.0、
を満足する、請求項1に記載の内視鏡用変倍光学系。
(4) 2.0 << f s1 / f w | <4.0,
The variable magnification optical system for an endoscope according to claim 1.
(5)2.0<|f/f|<4.0、
を満足する、請求項1または2に記載の内視鏡用変倍光学系。
(5) 2.0 << f 1 / f w | <4.0,
The variable magnification optical system for an endoscope according to claim 1 or 2.
前記第一のレンズ群内の前記正レンズの、物体側の面の曲率半径をrp1[mm]とし、像側の面の曲率半径をrp2(rp2≠rp1)[mm]とし、SF=(rp1+rp2)/(rp1−rp2)を定めたとき、
(6)−8.0<SF<−2.0、
を満足する、請求項1〜3のいずれか1項に記載の内視鏡用変倍光学系。
The radius of curvature of the surface of the positive lens in the first lens group on the object side is rp1 [mm], the radius of curvature of the surface on the image side is rp2 (rp2 ≠ rp1) [mm], and SF 1 = ( When rp1 + rp2) / (rp1-rp2) is determined,
(6) -8.0 <SF 1 <-2.0,
The variable magnification optical system for an endoscope according to any one of claims 1 to 3, which satisfies the above.
前記第二のレンズ群に対して像側に、少なくとも物体側に凸面を向けた正レンズを備えた固定レンズ群である第三のレンズ群を備える、請求項1〜4のいずれか1項に記載の内視鏡用変倍光学系。 The invention according to any one of claims 1 to 4, further comprising a third lens group which is a fixed lens group including a positive lens having a convex surface facing at least the object side on the image side with respect to the second lens group. The variable magnification optical system for an endoscope described. 前記第一のレンズ群と前記第二のレンズ群の間の、前記第二のレンズ群の物体側には、絞りが設けられ、
前記絞りは、前記第二のレンズ群とともに一体で移動する、
請求項1〜5のいずれか1項に記載の内視鏡用変倍光学系。
A diaphragm is provided on the object side of the second lens group between the first lens group and the second lens group.
The diaphragm moves integrally with the second lens group.
The variable magnification optical system for an endoscope according to any one of claims 1 to 5.
請求項1〜6のいずれか1項に記載の内視鏡用変倍光学系と、
前記内視鏡用変倍光学系により結像した物体の像を受光する撮像素子と、を備えることを特徴とする内視鏡。
The variable magnification optical system for an endoscope according to any one of claims 1 to 6.
An endoscope characterized by comprising an image pickup element that receives an image of an object imaged by the variable magnification optical system for an endoscope.
JP2020501768A 2018-02-23 2019-02-19 Variable magnification optics for endoscopes and endoscopes Active JP6754916B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018031072 2018-02-23
JP2018031072 2018-02-23
PCT/JP2019/006027 WO2019163744A1 (en) 2018-02-23 2019-02-19 Variable power optical system for endoscope and endoscope

Publications (2)

Publication Number Publication Date
JP6754916B2 JP6754916B2 (en) 2020-09-16
JPWO2019163744A1 true JPWO2019163744A1 (en) 2020-10-22

Family

ID=67686844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501768A Active JP6754916B2 (en) 2018-02-23 2019-02-19 Variable magnification optics for endoscopes and endoscopes

Country Status (3)

Country Link
JP (1) JP6754916B2 (en)
CN (1) CN111630429B (en)
WO (1) WO2019163744A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467070A (en) * 2021-07-06 2021-10-01 卓外(上海)医疗电子科技有限公司 Endoscope imaging objective lens with focusing function and focusing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287926A (en) * 1985-10-14 1987-04-22 Canon Inc Zoom lens
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JP2015215406A (en) * 2014-05-08 2015-12-03 Hoya株式会社 Zoom lens system
JP2016161628A (en) * 2015-02-27 2016-09-05 株式会社タムロン Optical system and image capturing device
WO2017043352A1 (en) * 2015-09-07 2017-03-16 Hoya株式会社 Variable power optical system for endoscope, and endoscope

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152552A (en) * 1995-11-28 1997-06-10 Nikon Corp Zoom lens
JP3726271B2 (en) * 1996-06-14 2005-12-14 株式会社ニコン Zoom lens
JP2000330020A (en) * 1999-05-20 2000-11-30 Asahi Optical Co Ltd Endoscope objective variable power optical system
JP4406112B2 (en) * 1999-05-20 2010-01-27 Hoya株式会社 Endoscope objective variable magnification optical system
JP4634578B2 (en) * 2000-06-29 2011-02-16 Hoya株式会社 Endoscope objective variable magnification optical system
US8605365B2 (en) * 2009-08-28 2013-12-10 Pentax Ricoh Imaging Company, Ltd. Zoom lens system
JP5528211B2 (en) * 2010-05-24 2014-06-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
EP2741117B1 (en) * 2012-12-04 2020-05-13 Samsung Electronics Co., Ltd Zoom lens and electronic device including the same
JP2016194638A (en) * 2015-04-01 2016-11-17 富士フイルム株式会社 Zoom lens for projection and projection type display unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287926A (en) * 1985-10-14 1987-04-22 Canon Inc Zoom lens
JPH0519169A (en) * 1991-06-29 1993-01-29 Olympus Optical Co Ltd Zoom lens
JP2015215406A (en) * 2014-05-08 2015-12-03 Hoya株式会社 Zoom lens system
JP2016161628A (en) * 2015-02-27 2016-09-05 株式会社タムロン Optical system and image capturing device
WO2017043352A1 (en) * 2015-09-07 2017-03-16 Hoya株式会社 Variable power optical system for endoscope, and endoscope

Also Published As

Publication number Publication date
CN111630429A (en) 2020-09-04
JP6754916B2 (en) 2020-09-16
CN111630429B (en) 2022-06-14
WO2019163744A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
CN107076967B (en) Zoom optical system for endoscope and endoscope
JP6126812B2 (en) Endoscope objective lens and endoscope system
US8243129B2 (en) Objective lens and endoscope apparatus
JP5601924B2 (en) Endoscope variable magnification optical system and endoscope
JP2876252B2 (en) Endoscope objective lens
WO2017145265A1 (en) Variable magnification optical system for endoscope and endscope
JP6046322B1 (en) Endoscope variable magnification optical system and endoscope
JP6797105B2 (en) Objective optical system for endoscopes and endoscopes
JP5567225B2 (en) Endoscope objective lens and endoscope
JP2016014754A (en) Endoscope objective lens and endoscope
WO2017043351A1 (en) Variable power optical system for endoscope, and endoscope
JP2009251432A (en) Objective optical system for endoscope
JP2011227380A (en) Objective lens for endoscope, and imaging apparatus
JP6503383B2 (en) Zoom imaging device
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
JP2019008251A (en) Endoscope objective optical system
CN107703606B (en) Objective optical system for endoscope and endoscope
WO2019054309A1 (en) Objective lens unit for endoscope and endoscope
JP2019061169A (en) Endoscope objective optical system and endoscope
JP4394197B2 (en) Endoscope objective variable magnification optical system
JP6877309B2 (en) Objective optical system for endoscopes and endoscopes
JP2021144111A (en) Image capturing optical system and image capturing device having the same
WO2023012866A1 (en) Endoscope objective optical system, imaging unit, and endoscope
WO2024166167A1 (en) Objective optical system, endoscope, and imaging device
JP2019061167A (en) Endoscope objective optical system and endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200629

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250