JPS63238260A - Formation of heat ray reflecting film - Google Patents

Formation of heat ray reflecting film

Info

Publication number
JPS63238260A
JPS63238260A JP7272087A JP7272087A JPS63238260A JP S63238260 A JPS63238260 A JP S63238260A JP 7272087 A JP7272087 A JP 7272087A JP 7272087 A JP7272087 A JP 7272087A JP S63238260 A JPS63238260 A JP S63238260A
Authority
JP
Japan
Prior art keywords
film
alnx
heat ray
layer
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7272087A
Other languages
Japanese (ja)
Inventor
Michihiro Yamashita
山下 満弘
Kazuhide Okuda
奥田 和秀
Yasumitsu Watanabe
渡辺 康光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7272087A priority Critical patent/JPS63238260A/en
Publication of JPS63238260A publication Critical patent/JPS63238260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a heat ray reflecting film having excellent durability and high efficiency with high productivity by laminating an Ag film, sandwiched above and below by AlNX films, on a transparent base body and depositing the above-mentioned AlNX films by a reactive ion plating method. CONSTITUTION:The heat ray reflecting film having 3-layered constitution is formed on the transparent base body 1 by providing the AlNX film 2 as a 1st layer, the Ag film 3 which efficiently reflects the heat rays contained in the solar light, has the good transmittance of visible rays and has the excellent durability as a 2nd layer and the AlNX film 4 as the 3rd layer thereon. The AlNX films 2, 4 of the 1st and 3rd layers to sandwich the Ag film 3 in the above-mentioned method are formed by the reactive ion plating method. This method is executed by forming nitrogen ions by use of a plasma ion source, evaporating Al or AlN in these ions and depositing the AlNX films. The heat ray reflecting film having the three-layered constitution mentioned above is thereby formed with the high productivity and the cost thereof is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は太陽光線中に含まれる熱線を効率よく反射する
一方可視光線の透過率が良好で、耐久性に優れたAg膜
の上下をA I NX膜によりサンドインチ状に挟んだ
3層構成の熱線反射膜の生産性に優れた形成方法に関す
るものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an A-type film that efficiently reflects heat rays contained in sunlight, has good visible light transmittance, and is highly durable. The present invention relates to a highly productive method for forming a heat ray reflective film having a three-layer structure sandwiched between INX films in the form of a sandwich.

(従来の技術) 熱線反射膜は、建物、自動車窓などの熱線の透過による
内部温度の上昇を防止し空調の効率を上げる目的でガラ
スまたはフィルム上に形成され使用されている。
(Prior Art) A heat ray reflective film is formed on glass or a film and used for the purpose of preventing an increase in internal temperature due to the transmission of heat rays in buildings, automobile windows, etc. and increasing the efficiency of air conditioning.

かかる構成の熱線反射膜のAlN、膜形成手段としては
、スパッタリング法、RFビイオンプレーティング法主
として用いられている。しかし。
Sputtering method and RF bio-ion plating method are mainly used as the AlN film forming method for the heat ray reflective film having such a structure. but.

該スパッタリング法、RFイオンプレーティング法では
生産性に劣り実用上問題となっている。
The sputtering method and the RF ion plating method have poor productivity and pose a practical problem.

したがって1本発明の目的は太陽光線中に含まれる熱線
を効率よく反射する一方可視光線の透過率が良好で2耐
久性に優れたAg膜の上下をAlN、膜によりサンドイ
ンチ状に挟んだ3層構成の熱線反射膜の生産性に優れた
形成方法を提供することにある。
Therefore, (1) the purpose of the present invention is to efficiently reflect heat rays contained in sunlight while having good visible light transmittance; (2) sandwich a highly durable Ag film between the top and bottom of the AlN film in a sandwich-like manner; It is an object of the present invention to provide a method for forming a heat ray reflective film having a layered structure with excellent productivity.

(問題点を解決するための手段) 本発明者らは、上記のごとき問題を解決し太陽光線中に
含まれる熱線を効率よく反射する一方可視光綿の透過率
が良好で、耐久性に優れたAg膜の上下をA I NX
膜によりサンドインチ状に挟んだ3層構成の熱線反射膜
の生産性に優れた形成方法について鋭意研究の結果、第
1層及び第3層のA I N x膜の形成時にプラズマ
イオン源を用いた反応性イオンプレーティング法により
本発明の目的が達成しうろことを見出し1本発明に到達
した。
(Means for Solving the Problems) The present inventors have solved the above-mentioned problems by efficiently reflecting the heat rays contained in sunlight, while having good visible light transmittance and excellent durability. The upper and lower sides of the Ag film were
As a result of extensive research into a highly productive method for forming a three-layer heat-reflecting film sandwiched between two films, a plasma ion source was used to form the first and third A I N x films. The present invention was achieved by discovering that the object of the present invention could be achieved by using a reactive ion plating method.

すなわち1本発明は、透明基体上に、該透明基体面から
数えて第1層としてAlNX膜を、第2層としてAg膜
を、第3層としてAlNX膜を有する熱線反射膜を形成
する方法において、第1N及び第3層のAlN、liの
形成時にプラズマイオン源を用いて窒素イオンを形成し
、かかるイオン中でAlまたはAlNを蒸発させて、A
lNM膜を堆積させる反応性イオンプレーティング法に
より、AlNX膜を形成することを特徴とする熱線反射
膜の形成方法を要旨とするものである。
That is, 1 the present invention provides a method for forming a heat ray reflective film on a transparent substrate, which has an AlNX film as the first layer, an Ag film as the second layer, and an AlNX film as the third layer, counting from the surface of the transparent substrate. , forming nitrogen ions using a plasma ion source during the formation of the first N and third layers of AlN, li, and evaporating Al or AlN in the ions to form A
The gist of the present invention is a method for forming a heat ray reflective film, which is characterized in that an AlNX film is formed by a reactive ion plating method for depositing an INNM film.

本発明において、透明基体としては、ガラス板プラスチ
ック板9プラスチツクフイルムなどの透明基体があげら
れる。またこのような透明基体に第1層および第3層と
して厚さ100人〜5000人のAlNX膜、第2Nと
して厚さ30人〜300人のAg膜からなる多層膜を設
けるものであるが、AlNX膜のXは0.4以上1以下
であり0.4未満では十分な透明性は得られない。また
該Xは真空薄膜形成法および薄膜形成条件により変化す
るものである。
In the present invention, transparent substrates include glass plates, plastic plates, 9 plastic films, and the like. Furthermore, such a transparent substrate is provided with a multilayer film consisting of an AlNX film with a thickness of 100 to 5,000 layers as the first and third layers, and an Ag film with a thickness of 30 to 300 layers as the second layer. X of the AlNX film is 0.4 or more and 1 or less, and if it is less than 0.4, sufficient transparency cannot be obtained. Further, the value of X varies depending on the vacuum thin film forming method and thin film forming conditions.

本発明の第1層及び第3層のAlNK膜の形成方法は、
プラズマイオン源を用いて窒素イオンを形成し、かかる
イオン中でAlまたはAlNを蒸発させて、AlNイ膜
を堆積させる反応性イオンプレーティング法によるもの
であるが、窒素イオンの形成方法は、プラズマイオン源
に直接窒素ガスおよび/またはヘリウム、アルゴン等の
不活性ガスを導入して窒素イオンおよび/または不活性
ガスイオンを形成しペルジャー内に送り込む方法。
The method for forming the first and third layer AlNK films of the present invention is as follows:
The method for forming nitrogen ions is based on the reactive ion plating method, in which nitrogen ions are formed using a plasma ion source, and Al or AlN is evaporated in the ions to deposit an AlN film. A method of directly introducing nitrogen gas and/or an inert gas such as helium or argon into an ion source to form nitrogen ions and/or inert gas ions and sending them into the Pelger.

またはプラズマイオン源にヘリウム、アルゴンなどの不
活性ガスを導入し、不活性ガスイオンを形成し、ペルジ
ャー内で不活性ガスイオン流内の途中で窒素ガスを導入
し窒素イオンを形成する方法等が上げられが、プラズマ
イオン源の寿命が良い点から後者の不活性ガスを用いた
方が好ましい。
Alternatively, an inert gas such as helium or argon is introduced into the plasma ion source to form inert gas ions, and nitrogen gas is introduced into the inert gas ion flow in a Pelger to form nitrogen ions. However, it is preferable to use the latter inert gas in view of the long life of the plasma ion source.

またイオン供給方法としては、プラズマイオン源内とペ
ルジャー内とに圧力勾配を持たせた供給方法が優れてい
るが、それに限ったものでない。
Further, as an ion supply method, a supply method in which a pressure gradient is created between the inside of the plasma ion source and the inside of the Pelger is excellent, but the method is not limited to this.

プラズマイオン源とは、高密度のイオンを生成さるもの
であるが、このプラズマイオン源としては。
A plasma ion source is one that generates high-density ions.

高周波放電型、マイクロ波放電型、多極磁界によりイオ
ンを発生させるパケット型、冷陰極または熱陰極PIG
 (Penning  Ionization  Ga
uge)型、電子衝撃型、フィラメントを有するアーク
放電によりイオンを発生させるデュオプラズマ型、スパ
ッタリング原理を用いたヒル・ネルソン型のプラズマイ
オン源等が上げられる。
High frequency discharge type, microwave discharge type, packet type that generates ions using a multipolar magnetic field, cold cathode or hot cathode PIG
(Penning Ionization Ga
uge) type, electron impact type, duo plasma type in which ions are generated by arc discharge having a filament, and Hill-Nelson type plasma ion source using the sputtering principle.

このようにして得られた窒素イオン中で、電子銃加熱法
、抵抗加熱法、高周波誘導加熱法、アーク放電型加熱法
等により、または母材を陽極としプラズマイオン源より
生成した電子をアーク放電させることによりイオン発生
と母材加熱を兼ね備えた方法によりA1またはAlNを
蒸発させ、AlNX膜を透明基体および第2NのAg膜
上に堆積させるものであるが、加熱のコントロール、純
度、操作の容易さなどの面から電子銃加熱法が好ましく
、さらに好ましくはイオン発生と母材加熱を兼ね備えた
方法が好ましい。
In the nitrogen ions thus obtained, electrons generated by an electron gun heating method, resistance heating method, high frequency induction heating method, arc discharge heating method, etc., or from a plasma ion source using the base material as an anode, are discharged by arc discharge. In this method, A1 or AlN is evaporated by a method that combines ion generation and base material heating, and an AlNX film is deposited on a transparent substrate and a second N Ag film, but heating control, purity, and ease of operation are important. An electron gun heating method is preferred from the viewpoint of reliability, and a method that combines ion generation and base material heating is more preferred.

また第2NのAg膜の形成方法としては、蒸着法、また
はアルゴンプラズマを用いたRFビイオンプレーティン
グ法プラズマイオン源を用いたイオンプレーティング法
などがあるが、付着強度が優れている点からイオンプレ
ーティング法が好ましい。Agの蒸発方法は、Alまた
はAlNの蒸発方法と同様な方法が使われる。
Methods for forming the 2N Ag film include vapor deposition, RF bio-ion plating using argon plasma, and ion plating using a plasma ion source. Ion plating method is preferred. The method for evaporating Ag is similar to the method for evaporating Al or AlN.

この方法を用いれば、従来の方法に比べて数十倍から数
百倍の成膜速度かえられ、生産性の問題点が解決できる
If this method is used, the film formation speed can be increased by several tens to hundreds of times compared to conventional methods, and the productivity problem can be solved.

また、付着力向上のために、アンカー処理剤の塗布、透
明基体表面の放電処理または化学処理なども同時に行う
ことが可能である。
Further, in order to improve adhesion, it is possible to simultaneously apply an anchor treatment agent, and perform electrical discharge treatment or chemical treatment on the surface of the transparent substrate.

(実施例) 次に、実施例をあげて本発明をさらに具体的に説明する
(Example) Next, the present invention will be described in more detail with reference to Examples.

実施例1 プラズマイオン源内にアルゴンガスを導入して。Example 1 By introducing argon gas into the plasma ion source.

プラズマイオン苑内真空度を3 ’l’ o r rに
保ち。
Maintain the vacuum level inside the plasma ion garden at 3'l' o r r.

熱陰極にIOA、100V印加し、アルゴンイオンを形
成し、あらかじめポリエチレンテレフタレートフィルム
とAlおよびAgペレットを各所定の位置にセットし、
lXl0−’Torrまで排気したペルジャー内にアル
ゴンイオンを導入し、アルゴンイオン流内の途中で窒素
ガスを導入する一方、電子銃加熱法によりAl母材を蒸
発させ、厚さ300人の第1層のAlN、膜を成膜速度
3゜O人/Sの連続巻き取り方式により形成した。
IOA and 100V were applied to the hot cathode to form argon ions, and a polyethylene terephthalate film and Al and Ag pellets were set in advance at predetermined positions.
Argon ions were introduced into a Pel jar that had been evacuated to lXl0-' Torr, and nitrogen gas was introduced midway through the argon ion flow, while the Al base material was evaporated using an electron gun heating method to form the first layer with a thickness of 300 people. A film of AlN was formed using a continuous winding method at a film formation rate of 3°/s.

つぎに同様のプラズマイオン源を用いてペルジャー内に
アルゴンイオンを導入し、電子銃加熱法によりAg母材
を蒸発させ、厚さ150人の第2層のAg膜を成膜速度
300人/Sの連続巻き取り方式により第1層上に形成
した。
Next, argon ions are introduced into the Pelger using a similar plasma ion source, and the Ag base material is evaporated by an electron gun heating method to form a second layer of Ag film with a thickness of 150 mm at a deposition rate of 300 mm/sec. The film was formed on the first layer using a continuous winding method.

また第3層のAlNX膜は第1層と同様の方法で厚さ3
00人で第2層上に形成し、熱線反射膜をポリエチレン
テレフタレートフィルム上形成した。尚、AlNX膜の
XはX線光電子分光装置の測定により0.7であった・ このようにして得られた熱線反射フィルムの可視光の透
過率(550nm)および熱線の反射率(1500nm
)を分光光度計(U−3400゜日立製)により測定し
、可視光の透過率77%。
In addition, the third layer AlNX film was formed to a thickness of 3 by the same method as the first layer.
A heat ray reflective film was formed on the polyethylene terephthalate film by 00 people. In addition, the X of the AlNX film was found to be 0.7 as measured by an X-ray photoelectron spectrometer. The visible light transmittance (550 nm) and the heat ray reflectance (1500 nm) of the thus obtained heat ray reflective film were found to be 0.7.
) was measured using a spectrophotometer (U-3400° manufactured by Hitachi), and the transmittance of visible light was 77%.

熱線の反射率90%という優れた熱線反射フィルムが得
られ、大幅な高速成膜が可能となった。
An excellent heat ray reflective film with a heat ray reflectance of 90% was obtained, and it became possible to form a film at a significantly high speed.

実施例2 プラズマイオン源内にアルゴンガスおよび窒素ガス(流
量比;アルゴン:窒素=3:10)を導入して、プラズ
マイオン苑内真空度を3To r rに保ち、電圧2 
k V、周波数13.56MHzの高周波電界を800
W印加し、アルゴン・窒素混合イオンを形成し、あらか
じめポリエチレンテレフタレートフィルムとAlNおよ
びAgペレットを各所定の位置にセットし、lXl0−
’Torrまで排気したペルジャー内に導入する一方、
電子銃加熱法によりAlN母材を蒸発させ、厚さ300
人の第1NのA I N X膜を成膜速度300人/S
の連続巻き取り方式により形成した。
Example 2 Argon gas and nitrogen gas (flow rate ratio: argon:nitrogen = 3:10) were introduced into the plasma ion source, the vacuum level in the plasma ion source was maintained at 3 Torr, and the voltage was set to 2.
k V, high frequency electric field with a frequency of 13.56 MHz at 800
W is applied to form argon/nitrogen mixed ions, a polyethylene terephthalate film, AlN and Ag pellets are set in advance at respective predetermined positions, and lXl0-
While introducing it into the Pelger which was evacuated to 'Torr,
The AlN base material was evaporated by the electron gun heating method to a thickness of 300 mm.
Deposition rate of 1N AINX film by 300 people/s
It was formed using a continuous winding method.

つぎに同様のプラズマイオン源を用いてペルジャー内に
アルゴンイオンを導入し、電子銃加熱法によりAg母材
を蒸発させ、厚さ150人の第2層のAg膜を成膜速度
300人/Sの連続巻き取り方式により第1N上に形成
した。
Next, argon ions are introduced into the Pelger using a similar plasma ion source, and the Ag base material is evaporated by an electron gun heating method to form a second layer of Ag film with a thickness of 150 mm at a deposition rate of 300 mm/sec. It was formed on No. 1N by a continuous winding method.

また第3層のAlNK膜は第1層と同様の方法で厚さ3
00人で第2層上に形成し、熱線反射膜をポリエチレン
テレフタレートフィルム上形成シた。尚、AlNX膜の
XはX線光電子分光装置の測定により0.8であった。
In addition, the third layer of AlNK film was formed to a thickness of 3 by the same method as the first layer.
A heat ray reflective film was formed on the polyethylene terephthalate film by 00 people. Note that X of the AlNX film was 0.8 as measured by an X-ray photoelectron spectrometer.

このようにして得られた熱線反射フィルムの可視光の透
過率(550nm)および熱線の反射率(1500nm
)を分光光度計(U−3400゜日立製)により測定し
、可視光の透過率78%。
Visible light transmittance (550 nm) and heat ray reflectance (1500 nm) of the thus obtained heat ray reflective film
) was measured using a spectrophotometer (U-3400° manufactured by Hitachi), and the transmittance of visible light was 78%.

熱線の反射率90%という優れた熱線反射フィルムが得
られ、大幅な高速成膜が可能となった。
An excellent heat ray reflective film with a heat ray reflectance of 90% was obtained, and it became possible to form a film at a significantly high speed.

実施例3 プラズマイオン源内にアルゴンガスを導入して。Example 3 By introducing argon gas into the plasma ion source.

プラズマイオン苑内真空度を3To r rに保ち。The vacuum level inside the plasma ion garden is maintained at 3 Torr.

熱陰極にIOA、100V印加し、Al母材を陽極とし
て、あらかじめポリエチレンテレフタレートフィルムと
AlおよびAgペレットを各所定の位置にセットしたペ
ルジャー内にアーク放電を起起こし、Alを蒸発させる
一方、アーク放電流内の途中で窒素ガスを導入し、厚さ
300人の第1層のAlNに膜を成膜速度300人/S
の連続巻き取り方式により形成した。
By applying IOA and 100V to the hot cathode, an arc discharge is generated in a Pel jar in which a polyethylene terephthalate film, Al and Ag pellets have been set in advance with the Al base material as an anode, and while Al is evaporated, arc discharge is caused. Nitrogen gas is introduced in the middle of the current to form a film on the first layer of AlN with a thickness of 300 people/s.
It was formed using a continuous winding method.

つぎに同様のプラズマイオン源を用いてペルジャー内に
、Ag母材を陽極としてアーク放電をおこし、Agを蒸
発させ、150人の第2層のAg膜を成膜速度300人
/Sの連続巻き取り方式により第1層上に形成した。
Next, using the same plasma ion source, an arc discharge was generated in the Pelger using the Ag base material as an anode to evaporate the Ag, and a second layer of Ag film was continuously wound at a deposition rate of 300 people/s. It was formed on the first layer by a cutting method.

また第3層のAlNX膜は第1層と同様の方法で厚さ3
00人で第2N上に形成し、熱線反射膜をポリエチレン
テレフタレートフィルム上形成した。尚、Al Nx膜
のXはX線光電子分光装置の測定により0.7であった
In addition, the third layer AlNX film was formed to a thickness of 3 by the same method as the first layer.
A heat ray reflective film was formed on the polyethylene terephthalate film by 00 people. Note that X of the AlNx film was 0.7 as measured by an X-ray photoelectron spectrometer.

このようにして得られた熱線反射フィルムの可視光の透
過率(550nm)および熱線の反射率(1500nm
)を分光光度計(U−3400゜日立製)により測定し
、可視光の透過率78%。
Visible light transmittance (550 nm) and heat ray reflectance (1500 nm) of the thus obtained heat ray reflective film
) was measured using a spectrophotometer (U-3400° manufactured by Hitachi), and the transmittance of visible light was 78%.

熱線の反射率90%という優れた熱線反射フィルムが得
られ、大幅な高速成膜が可能となった。
An excellent heat ray reflective film with a heat ray reflectance of 90% was obtained, and it became possible to form a film at a significantly high speed.

比較例1 ポリエチレンテレフタレートフィルムとAlおよびAg
ペレットを各所定の位置にセットしたペルジャー内をl
Xl0−5Torrまで排気した後窒素ガスをIXLO
−’Torr導入し、高周波プラス? (13,56M
Hz、300W)を発生させ、電子銃加熱法によりAl
ベレットを加熱蒸発させ、3人/Sの成膜速度で第1層
のA I N x膜を300人で作成した。室温まで冷
却の後、Arガスを2X10−“Torr導入し、高周
波プラズマを発生させ、電子銃加熱法によりAgペレッ
トを加熱蒸発させて、5人/Sの成膜速度で第2MのA
g膜を膜厚150人で形成した。次に第1層のAlNX
膜形成方法と同様な方法で第3NのAlNX膜を300
人で形成し、熱線反射膜をポリエチレンテレフタレート
フィルム上に形成した。
Comparative Example 1 Polyethylene terephthalate film and Al and Ag
Place the pellets in each predetermined position inside the pellet jar.
After exhausting to Xl0-5 Torr, nitrogen gas is
-Introducing Torr and adding high frequency? (13,56M
Hz, 300W) and heat the Al by electron gun heating method.
The pellet was heated and evaporated, and the first layer of A IN x film was formed by 300 people at a film formation rate of 3 people/S. After cooling to room temperature, Ar gas was introduced at 2×10 Torr, high-frequency plasma was generated, and the Ag pellets were heated and evaporated using an electron gun heating method.
A film with a thickness of 150 g was formed. Next, the first layer of AlNX
A 3N AlNX film was formed using the same method as the film formation method.
A heat ray reflective film was formed on a polyethylene terephthalate film by hand.

AlNX膜のXはX線分光装置の測定により0゜5であ
った。
The X of the AlNX film was 0°5 as measured by an X-ray spectrometer.

このようにして得られた熱線反射フィルムの可視光の透
過率(550nm)および熱線の反射率(1500nm
)を分光光度計(U−3400゜日立製)により測定し
、可視光の透過率75%。
Visible light transmittance (550 nm) and heat ray reflectance (1500 nm) of the thus obtained heat ray reflective film
) was measured using a spectrophotometer (U-3400° manufactured by Hitachi), and the transmittance of visible light was 75%.

熱線の反射率90%という優れた熱線反射フィルムが得
られたが、成膜速度が遅く実用的でない。
Although an excellent heat ray reflective film with a heat ray reflectance of 90% was obtained, the film formation rate was slow and impractical.

(発明の効果) 本発明によれば、太陽光線中に含まれる熱線を効率よく
反射する一方可視光線の透過率が良好で耐久性に優れた
Ag膜の上下をAlNX膜によりサンドインチ状に挾ん
だ3N構成の熱線、反射膜の生産性が大幅に改善され、
また大幅なコストダウンが可能である。
(Effects of the Invention) According to the present invention, the upper and lower sides of the Ag film, which efficiently reflects heat rays contained in sunlight while having good visible light transmittance and excellent durability, are sandwiched in a sandwich shape by AlNX films. The productivity of the hot wire and reflective film with the solder 3N configuration has been greatly improved.
Also, significant cost reductions are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱線反射膜の断面図である。 (1)透明基体 (2)AlN=膜 (3)Ag膜 (4)AlNx膜 FIG. 1 is a sectional view of the heat ray reflective film of the present invention. (1) Transparent substrate (2) AlN=film (3) Ag film (4) AlNx film

Claims (1)

【特許請求の範囲】[Claims] 透明基体上に、該透明基体面から数えて第1層としてA
lN_x膜を、第2層としてAg膜を、第3層としてA
lN_x膜を有する熱線反射膜を形成する方法において
、第1層及び第3層のAlN_x膜の形成時にプラズマ
イオン源を用いて窒素イオンを形成し、かかるイオン中
でAlまたはAlNを蒸発させて、AlN_x膜を堆積
させる反応性イオンプレーティング法により、AlN_
x膜を形成することを特徴とする熱線反射膜の形成方法
A as a first layer on a transparent substrate, counting from the surface of the transparent substrate.
The lN_x film is used as the second layer, the Ag film is used as the third layer, and the Ag film is used as the third layer.
In a method for forming a heat ray reflective film having an IN_x film, nitrogen ions are formed using a plasma ion source during the formation of the first and third layer AlN_x films, and Al or AlN is evaporated in the ions, AlN_x film is deposited by reactive ion plating method to deposit AlN_x film.
A method for forming a heat ray reflective film, the method comprising forming an x film.
JP7272087A 1987-03-25 1987-03-25 Formation of heat ray reflecting film Pending JPS63238260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7272087A JPS63238260A (en) 1987-03-25 1987-03-25 Formation of heat ray reflecting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7272087A JPS63238260A (en) 1987-03-25 1987-03-25 Formation of heat ray reflecting film

Publications (1)

Publication Number Publication Date
JPS63238260A true JPS63238260A (en) 1988-10-04

Family

ID=13497472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7272087A Pending JPS63238260A (en) 1987-03-25 1987-03-25 Formation of heat ray reflecting film

Country Status (1)

Country Link
JP (1) JPS63238260A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129259A (en) * 2000-10-31 2002-05-09 Furuya Kinzoku:Kk Highly heat-resistant reflection film and laminated body, reflection plate for liquid crystal display element and glass as building material using the film
US9079802B2 (en) 2013-05-07 2015-07-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10160688B2 (en) 2013-09-13 2018-12-25 Corning Incorporated Fracture-resistant layered-substrates and articles including the same
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129259A (en) * 2000-10-31 2002-05-09 Furuya Kinzoku:Kk Highly heat-resistant reflection film and laminated body, reflection plate for liquid crystal display element and glass as building material using the film
US9079802B2 (en) 2013-05-07 2015-07-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10160688B2 (en) 2013-09-13 2018-12-25 Corning Incorporated Fracture-resistant layered-substrates and articles including the same
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9726786B2 (en) 2014-05-12 2017-08-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10451773B2 (en) 2015-09-14 2019-10-22 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures

Similar Documents

Publication Publication Date Title
US2886502A (en) Cathodic sputtering of metal and dielectric films
JPS63238260A (en) Formation of heat ray reflecting film
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
US20040083969A1 (en) Film forming apparatus, substrate for forming oxide thin film, and production method thereof
JPS59123768A (en) Method and device for simultaneous multi-element sputtering
JP3108681B2 (en) Method for producing conductive film
JPS61124902A (en) Formation of heat ray reflecting film
JPH11176325A (en) Protection layer for plasma display panel and foaming method of protection layer
JPS6362846B2 (en)
JPH02102036A (en) Article covered with optical film
JP2901370B2 (en) Method for manufacturing high contrast thin film EL device
JPS6047718B2 (en) Manufacturing method of thin film light emitting device
JPS6238432B2 (en)
JPH06181048A (en) Bulb and coat forming method on bulb thereof
JPH03188263A (en) Metal oxide coated plastics
JPS61183810A (en) Transparent electrode
JPS63205609A (en) Heat ray reflection film
JPH0511053B2 (en)
JPH11124689A (en) Production of low-emissivity laminated body
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPH0458598A (en) Electromagnetic wave shield body
JPH01299028A (en) Heat ray reflecting film
JPS6226869A (en) Manufacture of photovoltaic device
JPS6378493A (en) Method of forming light emitting layer of electroluminescence device
JPS63289785A (en) Transparent face heating unit