JPS63133765A - Pattern detection processing system - Google Patents

Pattern detection processing system

Info

Publication number
JPS63133765A
JPS63133765A JP61280222A JP28022286A JPS63133765A JP S63133765 A JPS63133765 A JP S63133765A JP 61280222 A JP61280222 A JP 61280222A JP 28022286 A JP28022286 A JP 28022286A JP S63133765 A JPS63133765 A JP S63133765A
Authority
JP
Japan
Prior art keywords
change point
pattern
information
point information
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280222A
Other languages
Japanese (ja)
Inventor
Hisashi Ibaraki
久 茨木
Hiroshi Ochi
宏 越智
Makoto Kobayashi
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61280222A priority Critical patent/JPS63133765A/en
Publication of JPS63133765A publication Critical patent/JPS63133765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Character Discrimination (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To perform the calculation of degree of difference with a simple processing, by detecting the black-and-white change point of a picture signal on one line and the black-and-white change information between lines, and performing the segmentation of an area according to the information of a relative position. CONSTITUTION:A change point information detecting part 2 detects change point information such as the deviation of a change point with a runlength or a preceding line based on the picture signal read from a picture signal memory 1, and set it to a segmentation deciding part 3 and a change point information memory 4. The segmentation deciding part 3 traces inputted change point information along which boundary it is generated, and based on the result of boundary tracing, the change point information memory 4 stores the information independently at every consecutive boundary in a phasewise. Also, when segmentation is decided at the segmentation deciding part 3, the content of the change point information stored in the memory is sent to a difference degree calculating part 5. The difference degree calculating part 5 finds the degree of difference between the content of the information and a fundamental pattern, and generates the same pattern at a deciding part 7.

Description

【発明の詳細な説明】 (1)発明の属する分野 本発明は1画信号中より基本パターンと同一のパターン
を検出するパターン検出処理方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a pattern detection processing method for detecting a pattern identical to a basic pattern from a single image signal.

(2)従来の技術 ファクシミリは1文書形態によらず、いかなる文書も手
軽に送れるという利点から、その普及はめざましい、し
かし、ファクシミリ通信では1文字情報の百める割合が
多くありながら、センサで読取られた画信号を、フォト
グラフィック要素として符号化するため、キャラクタ要
素として符号化可能な情報に対しては、必ずしも符号化
効率が良いとはいえない。
(2) Conventional technology Facsimile has become rapidly popular due to its ability to easily send any document regardless of its format. Since the read image signal is encoded as a photographic element, the encoding efficiency is not necessarily good for information that can be encoded as a character element.

このような文字情報を効率良く処理する符号化方式とし
て、パターンマツチング符号化方式がある。これは、同
−文書内に出てくるパターンを。
As an encoding method for efficiently processing such character information, there is a pattern matching encoding method. This is a pattern that appears within the same document.

ライブラリパターンに登録し、同じようなパターンが出
現した場合には、そのライブラリパターンのrDを送る
ことにより、符号化を行う方式である。
In this method, a pattern is registered in a library pattern, and when a similar pattern appears, encoding is performed by sending the rD of that library pattern.

これらの方式で用いられている同一パターンの検出方式
は、検出を行う領域を、孤立する黒画素領域を囲む矩形
で切出し、その領域内のドツトパターンと、ライブラリ
内のドツトパターンとの画素毎の相違度を総計し、この
値により同一であるか否かを検出する等のものである。
The method of detecting the same pattern used in these methods cuts out the detection area as a rectangle surrounding an isolated black pixel area, and compares the dot pattern in that area with the dot pattern in the library for each pixel. For example, the degree of difference is totaled, and based on this value, it is detected whether or not they are the same.

しかしながら、これらのパターン検出の方式では、孤立
黒画素領域を矩形で切出す必要があり。
However, in these pattern detection methods, it is necessary to cut out the isolated black pixel area in a rectangular shape.

また、各画素毎に相違度を求める等の処理を行う必要が
あるため、処理量が膨大となる欠点があっ(3)発明の
目的 本発明は、これらの欠点を解決するためになされたもの
で、簡単な処理でパターン検出を行う領域を切出し、ま
た、相違度算出を行えるパターン検出処理方式を提供す
ることを目的とする。
In addition, since it is necessary to perform processing such as determining the degree of difference for each pixel, there is a drawback that the amount of processing is enormous. (3) Purpose of the Invention The present invention has been made to solve these drawbacks. An object of the present invention is to provide a pattern detection processing method that can cut out a region for pattern detection and calculate the degree of dissimilarity using simple processing.

(4)発明の構成 (4−1)発明の特徴と従来の技術との差異本発明の特
徴は、lライン上の画信号の白黒変化点、ならびに、ラ
イン間での白黒変化情報を検出し、その相対位置情報に
より領域の切出しを行い、基本パターンとの相違度を求
めていることにある。
(4) Structure of the invention (4-1) Differences between the characteristics of the invention and the conventional technology The characteristics of the present invention are to detect the black and white change point of the image signal on the l line and the black and white change information between the lines. , the region is cut out based on the relative position information, and the degree of difference from the basic pattern is determined.

そのため1位相的に連続する境界に沿って情報を抽出す
れば、パターン検出を行う領域を矩形と廿ず切出すこと
が可能となる。また、相違度を求めるために、相対位置
情報を利用しているため。
Therefore, by extracting information along one phase-continuous boundary, it is possible to cut out a region for pattern detection without being a rectangle. Also, relative position information is used to calculate the degree of dissimilarity.

変化点毎に処理を行えば相違度が算出でき、領域内の全
ての画素に対し相違度算出を行う必要がない。さらに5
画信号がライン順次に入力されてくる場合にも、ライン
毎に相違度算出が行える。また、変化点の相対位置情報
は、ファクシミリで用いられているMR符号化で利用さ
れているものであるため、MR符号化の情報を利用すれ
ばファクシミリ等とも親和性が良い。
The degree of difference can be calculated by performing processing for each change point, and there is no need to calculate the degree of difference for all pixels within the region. 5 more
Even when image signals are input line by line, the degree of difference can be calculated for each line. Further, since the relative position information of the change point is used in MR encoding used in facsimile, if the MR encoding information is used, it is compatible with facsimile and the like.

(4−2)実施例 〔実施例!〕 第1図は1本発明の第1の実施例を示すものである。(4-2) Example 〔Example! ] FIG. 1 shows a first embodiment of the present invention.

図中、lは画信号メモリであり、同一パターンの検出を
行うべき画信号がメモリされている。2は変化点情報検
出部であり5画信号メモリlから読出された画信号に基
づいて、ラン長や前ラインとの変化点のずれ等の変化点
情報を検出する。
In the figure, 1 is an image signal memory in which image signals for which the same pattern should be detected are stored. Reference numeral 2 denotes a changing point information detecting section, which detects changing point information such as run length and deviation of a changing point from the previous line based on the image signal read out from the 5-image signal memory l.

3は切出し判定部であり、変化点情報検出部2で求めら
れた変化点情報が1例えば第2図に太線(a)〜(d)
で示すような境界に関し、どの境界に沿って発生してい
るかを追跡し、その追跡結果と、パターン検出を行う単
位である領域の切出しを孤立領域が検出される場合等の
規則に従って判定し、その判定結果との2つの結果を出
力するものである。
Reference numeral 3 denotes a cutout determination unit, and the change point information obtained by the change point information detection unit 2 is 1. For example, in FIG. 2, thick lines (a) to (d)
With regard to the boundaries shown in , trace the boundary along which the occurrence occurs, and determine the tracking results and the extraction of the area, which is the unit for pattern detection, according to rules such as when an isolated area is detected, It outputs two results including the judgment result.

4は変化点情報メモリであり、変化点情報検出部2で求
められた情報を、切出し判定部3の境界追跡結果に基づ
き9位相的に連続する境界毎に別個にメモリする0例え
ば、第2図においては。
Reference numeral 4 denotes a changing point information memory, which stores the information obtained by the changing point information detecting section 2 separately for each of nine topologically continuous boundaries based on the boundary tracking result of the cutout determining section 3. In the figure.

(a)〜(d)の境界に関し、変化点情報を個別にメモ
リすることになる。また、切出し判定部゛3で切出しが
判定された場合には、切出された境界に沿って発生した
変化点情報のメモリ内容を相違度算出部5に送る。
Regarding the boundaries of (a) to (d), change point information is individually memorized. Further, when the extraction determining unit 3 determines that extraction is necessary, the memory contents of the change point information generated along the extracted boundary are sent to the dissimilarity calculating unit 5.

5は相違度算出部であり、切出し判定部3で切出しが判
定され、変化点情報メモリ4から変化点情報が送られて
くれば、その情報内容と、6の基本パターンライブラリ
に基本パターンごとに蓄えられている情報との相違度を
、基本パターン毎に別個に求める。7は判定部であり、
相違度算出部5で求められた相違度から1判定規則に従
って切出された領域と同一の基本パターンを検出する。
Reference numeral 5 denotes a dissimilarity calculation unit, and when the extraction judgment unit 3 determines whether to cut out and the change point information is sent from the change point information memory 4, the information content and the basic pattern library 6 are stored for each basic pattern. The degree of difference from stored information is determined separately for each basic pattern. 7 is a judgment section;
From the dissimilarity calculated by the dissimilarity calculation unit 5, a basic pattern that is the same as the area cut out according to the 1 judgment rule is detected.

その判定結果は8の出力端子に出力される。The determination result is output to the output terminal 8.

次に、簡単な例を用い動作を説明する。Next, the operation will be explained using a simple example.

変化点情報には、前ラインとの変化点のずれの大きさや
位置の他、ずれの個数やずれの方向等種々のものがある
が、ここでは変化点情報の一例として、黒画素領域の始
まりの黒ラン長と、その黒画素領域における左右の境界
の変化点に関する前ラインとのずれを用いる場合を、第
2図を用いて説明する。
The changing point information includes various things such as the size and position of the deviation of the changing point from the previous line, the number of deviations, the direction of the deviation, etc. Here, as an example of the changing point information, the beginning of the black pixel area The case of using the black run length of , and the deviation from the previous line regarding the changing point of the left and right boundaries in the black pixel area will be described with reference to FIG.

まず、順次画信号を調べ、黒画素領域の始まりを検出す
る。求められた始まりに対し、その黒ラン長Rを求める
。第2図の例では*  R””2  ”1として求めら
れる。
First, the image signals are sequentially examined to detect the beginning of a black pixel area. For the determined beginning, the black run length R is determined. In the example of FIG. 2, it is determined as *R''2''1.

次に、その黒画素領域の左右の境界で変化点のずれΔ”
(1)+  a、、bz  at)を、ライン毎に次々
求める。ただし+al+  b+ は白画素から黒画素
+  a!+  b!は黒画素から白画素への変化位置
である。
Next, the shift point Δ” at the left and right boundaries of the black pixel area
(1) + a, , bz at) are found one after another for each line. However, +al+ b+ is from white pixel to black pixel + a! + b! is the change position from a black pixel to a white pixel.

第2図に示す境界(a)〜(d)に対する変化点情報の
抽出例を2第3図に示す。第1図に示す基本パターンラ
イブラリ6には、基本パターンに対する変化点情報が同
様にして抽出され、ライブラリとして蓄えられている。
Examples of extraction of change point information for the boundaries (a) to (d) shown in FIG. 2 are shown in FIG. In the basic pattern library 6 shown in FIG. 1, change point information for basic patterns is similarly extracted and stored as a library.

今、第4図に示す画信号が入力されたとする。Assume now that the image signal shown in FIG. 4 is input.

境界N)に関する変化点情報は、第5図に示すように求
められ、この情報と基本パターンライブラリ6の内容と
の相違度を求める0本例で、第2図の(a)〜(d)に
対する情報が、基本パターンとして蓄えであるとすると
、第3図の変化点情報と第5図の変化点情報との間で相
違度を求めることになる。
The change point information regarding the boundary N) is obtained as shown in FIG. 5, and the degree of difference between this information and the contents of the basic pattern library 6 is determined. Assuming that the information for is stored as a basic pattern, the degree of difference is determined between the change point information in FIG. 3 and the change point information in FIG. 5.

変化点情報の相違凍の算出法には2種々のものがあるが
、ここでは境界の高さHが一致するパターン間で、各変
化点情報の差の絶対値を求め、その和を相違度とする場
合を説明する8本例では。
There are two different methods for calculating the difference in change point information, but here we calculate the absolute value of the difference in each change point information between patterns with the same boundary height H, and calculate the sum as the difference degree. In this example, we will explain the case where:

(a)、(d)が第4図の境界(+)の高さと一致し、
その相違度はそれぞれ(a)、(i)間で、ABS (
Ri  Ra)+ABS (Δ直、−Δ、)+・・・・
・・=Q+Q+0+l+1+o+o+t+o+o+1十
〇−4となり、  (d)、(+>間で0+1+1+1
+3+O+O+1+2+O+5+1=15となる。その
結果、 (i)は相違度の小さい(a)と同一のパター
ンと検出される。
(a) and (d) match the height of the boundary (+) in Figure 4,
The degree of difference is between (a) and (i), respectively, and ABS (
Ri Ra)+ABS (Δdirect, -Δ,)+・・・
...=Q+Q+0+l+1+o+o+t+o+o+100-4, (d), (0+1+1+1 between +>
+3+O+O+1+2+O+5+1=15. As a result, (i) is detected as the same pattern as (a) with a small degree of difference.

相違度の算出については、もちろん境界の高さが異なる
場合に定義してもよいし、相違度を求める変化点の対応
関係を変化させてもよい、また。
Regarding the calculation of the degree of dissimilarity, of course it may be defined when the heights of the boundaries are different, or the correspondence of the change points for calculating the degree of dissimilarity may be changed.

これ以外の相違度の基準を用いてもよい、さらに。Other dissimilarity criteria may also be used.

同一か否かの判定については、相違度の小さいものがな
い場合には、同一パターンが見つからないとしてもよい
し、また1 そのパターンを新たにライブラリに登録す
ることもできる。
Regarding the determination of whether or not they are the same, if there is no pattern with a small degree of difference, it may be determined that no identical pattern is found, or the pattern may be newly registered in the library.

〔実施例■〕[Example ■]

第6図は1本発明の第2の実施例を示すもので。 FIG. 6 shows a second embodiment of the present invention.

白黒2値画像の国際標準符号化方式であるMod i 
f ied READ (M R)方式(CCITT、
勧告T、6)を用いる場合を示している。
Mod i is an international standard encoding method for black and white binary images.
fied READ (MR) method (CCITT,
The case where Recommendation T, 6) is used is shown.

図中、10は画信号入力端子であり1画信号がライン順
次に入力される。11は変化点情報を抽出するための2
ライン分の画信号メモリであり。
In the figure, reference numeral 10 denotes an image signal input terminal, into which one image signal is input line-sequentially. 11 is 2 for extracting change point information.
This is image signal memory for lines.

12のMR符号化器に画信号を送り、変化点情報を抽出
する。抽出された情報は、切出し判定部13に送られ、
境界の追跡が行われる。
The image signal is sent to 12 MR encoders and change point information is extracted. The extracted information is sent to the extraction determination section 13,
Boundary tracking is performed.

また、相違度算出部14では5基本パターンライブラリ
15の内容と逐次比較し、相違度算出が行われる。16
は相違度メモリであり、切出し判定部13の結果をもと
に、相違度算出部14で求められた相違度を、それぞれ
の境界で別個に、また、基本パターン毎に記憶し、新し
い相違度が求まる毎に、メモリ内容との和を求め内容を
書きかえる。
Further, the difference calculation unit 14 successively compares the contents with the contents of the 5 basic pattern library 15 to calculate the difference. 16
is a dissimilarity memory, which stores the dissimilarity calculated by the dissimilarity calculation unit 14 based on the results of the extraction determination unit 13 separately for each boundary and for each basic pattern, and stores the dissimilarity calculated by the dissimilarity calculation unit 14 based on the results of the cutout determination unit 13, separately for each boundary and for each basic pattern, and stores the dissimilarity calculated by the dissimilarity calculation unit 14 based on the results of the cutout determination unit 13. Each time , the sum is calculated with the memory contents and the contents are rewritten.

判定部17では、相違度メモリ16のメモリ内容に従っ
て判定を順次行い、境界の途中でも、相違度が規定以上
になるパターンに関しては、同一パターンの対象から除
外し、最後まで残ったパターンから同一パターンを求め
る。その判定結果は。
The determination unit 17 sequentially performs determination according to the memory contents of the dissimilarity memory 16. Even in the middle of the boundary, patterns whose dissimilarity exceeds a specified value are excluded from the target of the same pattern, and the same patterns are selected from the remaining patterns until the end. seek. What is the judgment result?

出力端子18から出力される0本実施例では、逐次的に
パターンの検出処理が実行できる。
In this embodiment, pattern detection processing can be executed sequentially.

〔実施例!〕、 〔実施例■〕で用いる基本パターンの
内容としては、あらかじめ普遍的なものを用いてもよい
し、与えられた原稿から求めてもよい。また、相違度が
基準値以上となるパターンが発生した場合に、そのパタ
ーンを新たに基本パターンとして登録するなど逐次ライ
ブラリを更新してもよい。さらに、パターンの検出を行
う領域は。
〔Example! ], The contents of the basic pattern used in [Example 2] may be universal in advance, or may be determined from a given manuscript. Furthermore, when a pattern whose degree of difference is equal to or greater than a reference value is generated, the library may be updated sequentially, such as by registering that pattern as a new basic pattern. Furthermore, the area in which pattern detection is performed.

境界の途中であらかじめ定められた規則に従って強制的
に切出してもよい。
It may be forcibly cut out in the middle of the boundary according to predetermined rules.

(5)発明の詳細 な説明したように本発明によれば、パターン検出を行う
領域を矩形としないで切出すことが可能になり、また領
域内の全ての画素に対し相違度算出を行う必要がなくな
るので、処理が簡易化され、かつ高速に処理できるよう
になる。
(5) As described in detail, according to the present invention, it is possible to cut out the area for pattern detection without making it rectangular, and it is necessary to calculate the degree of dissimilarity for all pixels in the area. , the processing is simplified and can be performed at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例。 第2図は変化点情報の検出を説明するための図。 第3図は第2図図示境界<a>〜(d)に対する変化点
情報を示す図。 第4図は同一パターン検出が行われる画信号例。 第5図は第4図図示境界(1)に対する変化点情報を示
す図。 第6図は本発明の第2の実施例である。 l・・・画信号メモリ  2・・・変化点情報検出部3
・・・切出し判定部  4・・・変化点情報メモリ5・
・・相違度算出部  6・・・基本パターンライブラリ
7・・・判定部     8・・・出力端子IO・・・
入力端子   11・・・画信号メモリ12・・・MR
符号化器 13・・・切出し判定部14・・・相違度算
出部 15・・・基本パターンライブラリ16・・・相
違度メモリ 17・・・判定部18・・・出力端子
FIG. 1 shows a first embodiment of the present invention. FIG. 2 is a diagram for explaining detection of change point information. FIG. 3 is a diagram showing change point information for the illustrated boundaries <a> to (d) in FIG. FIG. 4 is an example of an image signal in which the same pattern is detected. FIG. 5 is a diagram showing change point information for the illustrated boundary (1) in FIG. 4. FIG. 6 shows a second embodiment of the invention. l... Image signal memory 2... Change point information detection section 3
... Extraction judgment section 4 ... Change point information memory 5.
...Difference calculation unit 6...Basic pattern library 7...Judgment unit 8...Output terminal IO...
Input terminal 11... Image signal memory 12... MR
Encoder 13... Extraction determination section 14... Dissimilarity calculation section 15... Basic pattern library 16... Dissimilarity memory 17... Judgment section 18... Output terminal

Claims (2)

【特許請求の範囲】[Claims] (1)画信号中に発生する種々の白黒パターンから、基
本的なパターンに対応するパターンを検出するパターン
検出処理方式において、 画信号の白黒変化点をライン内およびライン間で検出し
、位相的に連続する境界に沿って発生する変化点の相対
位置情報を求める手段と、 基本パターンの変化点の相対位置情報を記憶する手段と
、 前記基本パターンの変化点の相対位置情報と前記求めら
れた変化点の相対位置情報とを比較し、両者の相違度を
算出する手段と、 前記算出された相違度により、前記位相的に連続する境
界に囲まれる領域が基本パターンと同一であるか否かを
検出する手段と を有することを特徴とするパターン検出処理方式。
(1) In a pattern detection processing method that detects a pattern corresponding to a basic pattern from various black and white patterns occurring in an image signal, black and white transition points of the image signal are detected within and between lines, and the phase means for determining relative position information of changing points occurring along a continuous boundary; means for storing relative position information of changing points of the basic pattern; and means for storing relative position information of changing points of the basic pattern and the determined means for comparing the relative position information of the change point and calculating the degree of difference between the two; and determining whether the area surrounded by the topologically continuous boundary is the same as the basic pattern based on the calculated degree of difference. 1. A pattern detection processing method, comprising means for detecting.
(2)前記変化点の相対位置情報を求める手段として、
MR符号化による変化点情報を用いることを特徴とする
特許請求の範囲第(1)項記載のパターン検出処理方式
(2) As a means for obtaining relative position information of the change point,
The pattern detection processing method according to claim (1), characterized in that change point information obtained by MR encoding is used.
JP61280222A 1986-11-25 1986-11-25 Pattern detection processing system Pending JPS63133765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280222A JPS63133765A (en) 1986-11-25 1986-11-25 Pattern detection processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280222A JPS63133765A (en) 1986-11-25 1986-11-25 Pattern detection processing system

Publications (1)

Publication Number Publication Date
JPS63133765A true JPS63133765A (en) 1988-06-06

Family

ID=17622013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280222A Pending JPS63133765A (en) 1986-11-25 1986-11-25 Pattern detection processing system

Country Status (1)

Country Link
JP (1) JPS63133765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120421A (en) * 1991-09-04 1993-05-18 Ricoh Co Ltd Expressing method for linear graphic and character recognizing method
JPH05258113A (en) * 1992-03-11 1993-10-08 Ricoh Co Ltd Character recognition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120421A (en) * 1991-09-04 1993-05-18 Ricoh Co Ltd Expressing method for linear graphic and character recognizing method
JPH05258113A (en) * 1992-03-11 1993-10-08 Ricoh Co Ltd Character recognition method

Similar Documents

Publication Publication Date Title
US4896364A (en) Method of detecting boundary structures in a video signal
US6141460A (en) Method for detecting edges in an image signal
EP0177763B1 (en) Apparatus for detecting a movement in an encoded television picture
EP0309655B1 (en) Image processing apparatus and method
EP1156444B1 (en) Detection of circular pattern in digital image
KR20020064897A (en) Segmentation of digital images
JPH04225149A (en) Apparatus and method for three-state database for automatic optical inspection system
JPS63133765A (en) Pattern detection processing system
JPH09187017A (en) Calculation support type movement estimation method for pixels of images successively continuous in terms of time in video sequence
US6252987B1 (en) Image data coding by pattern matching
JPH0750496B2 (en) Image signal processor
JPH07120392B2 (en) Character pattern cutting device
JP3628536B2 (en) Binary image converter
JPH0564396B2 (en)
US20210150788A1 (en) Media vectorization
JP2824991B2 (en) Image identification method
JP3000480B2 (en) Character area break detection method
JPS6252911B2 (en)
JP2929710B2 (en) Character reading method
JP4100321B2 (en) Segment unit image encoding apparatus and segment unit image encoding program
JPH05128308A (en) Character recognition device
CN116258870A (en) Method and system for rapidly converting pixel directional contour into grid boundary contour
JPH05344329A (en) Picture area discriminating device
CN117765505A (en) Target detection method, traffic sign detection device and computing equipment
JPH0879534A (en) Circuit and method for encoding binary image data