JPS63123605A - Control device for tapping machining - Google Patents
Control device for tapping machiningInfo
- Publication number
- JPS63123605A JPS63123605A JP61269448A JP26944886A JPS63123605A JP S63123605 A JPS63123605 A JP S63123605A JP 61269448 A JP61269448 A JP 61269448A JP 26944886 A JP26944886 A JP 26944886A JP S63123605 A JPS63123605 A JP S63123605A
- Authority
- JP
- Japan
- Prior art keywords
- time constant
- acceleration
- spindle
- tapping
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010079 rubber tapping Methods 0.000 title claims abstract description 25
- 238000003754 machining Methods 0.000 title abstract description 10
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23G—THREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
- B23G1/00—Thread cutting; Automatic machines specially designed therefor
- B23G1/16—Thread cutting; Automatic machines specially designed therefor in holes of workpieces by taps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/182—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
- G05B19/186—Generation of screw- or gearlike surfaces
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/43—Speed, acceleration, deceleration control ADC
- G05B2219/43107—Correction acceleration and deceleration as function of speed, time constants in rom
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45216—Tapping
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Automatic Control Of Machine Tools (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は数値制御工作機械におけるタッピング加工制御
装置に関し、特に、主軸回転速度の加減速時定数を自動
的に決定することにより、高速で安定したタッピング加
工を行うようにしたクツピング加工制御装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a tapping processing control device for a numerically controlled machine tool, and in particular, it can achieve high speed and stability by automatically determining the acceleration/deceleration time constant of the spindle rotation speed. The present invention relates to a clipping processing control device that performs tapping processing.
加工の高速化の要請により、タッピング加工においても
、その高速化が強く要求されており、特に、アルミニュ
ウム等の金属をタッピング加工する場合は主軸の回転速
度と2軸の送り速度が精度よく同期している必要がある
。このために、従来のフローティングタッパを使用した
タッピング加工にかえ、リジットタッパを使用し、且つ
主軸の回転とZ軸の送りをパルス分配により、同期させ
てタッピング加工を行うリジットタッピング加工が採用
されている。Due to the demand for faster machining, there is a strong demand for higher speeds in tapping machining, and in particular, when tapping metals such as aluminum, the rotation speed of the main spindle and the feed rate of the two axes must be synchronized with high accuracy. need to be. For this purpose, instead of the conventional tapping process using a floating tapper, a rigid tapping process was adopted that uses a rigid tapper and synchronizes the rotation of the spindle and the Z-axis feed by pulse distribution. There is.
このリジットタッピング加工については、本出願人は特
願昭61−175868及び特願昭61−175869
の2つの出願をしている。Regarding this rigid tapping process, the present applicant has filed Japanese Patent Applications No. 61-175868 and No. 61-175869.
I have filed two applications.
しかし、このタッピング加工においては、主軸の回転及
びZ軸の送り速度の加減速制御の時定数は1つのみであ
り、高速のタッピング加工を行うとするとオーバーシュ
ート等の不具合があり、逆に時定数を大きくとると、低
速のときに加工時間が長(なるという問題点があった。However, in this tapping process, there is only one time constant for acceleration/deceleration control of the rotation of the spindle and the feed rate of the Z axis, and if high-speed tapping is performed, problems such as overshoot may occur, and conversely, the time constant If the constant is set large, there is a problem that machining time becomes long at low speeds.
本発明の目的は上記問題点を解決し、主軸回転速度の加
減速時定数を自動的に決定することにより、高速で安定
したタッピング加工を行うようにしたタッピング加工制
御装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a tapping processing control device that performs stable tapping processing at high speed by automatically determining the acceleration/deceleration time constant of the spindle rotation speed. .
本発明では上記の問題点を解決するために、第1図に示
すように、
主軸の回転とZ軸の移動とをパルス分配により同期させ
て、回転及び移動させてタッピング加工を行うタッピン
グ加工制御装置において、主軸速度に対応して時定数を
決定する時定数決定手段(2)を有し、
該時定数決定手段によって、指令された主軸速度から時
定数を決定して、加減速制御回路(10,20)に時定
数を与えてタッピング加工を行うように構成したことを
特徴とするタッピング加工制御装置が、
提供される。In order to solve the above problems, in the present invention, as shown in FIG. 1, the rotation of the main spindle and the movement of the Z axis are synchronized by pulse distribution, and tapping processing is performed by rotating and moving the main shaft. The device has a time constant determining means (2) for determining a time constant in accordance with the spindle speed, and the time constant determining means determines the time constant from the commanded spindle speed to control the acceleration/deceleration control circuit (2). A tapping processing control device is provided, characterized in that it is configured to perform tapping processing by giving a time constant to 10, 20).
主軸の回転速度に応じて、時定数が選択されるので、主
軸の回転速度が高速の場合は時定数が大きく取られオー
バーシュート等を防ぎ、主軸の回転速度が低いときは、
時定数を小さくして加工を高速に行う。The time constant is selected according to the spindle rotation speed, so when the spindle rotation speed is high, the time constant is set large to prevent overshoot, etc., and when the spindle rotation speed is low, the time constant is set large.
Machining is performed at high speed by reducing the time constant.
以下本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.
第1図に本発明の一実施例のブロック図を示す。FIG. 1 shows a block diagram of an embodiment of the present invention.
図において、1はパルス分配回路であり、指令値P(タ
ッピング加工すべきネジのピッチ)、S(主軸の回転速
度)によって、主軸の回転を行うための出力パルスPs
とZ軸の送りを制御する出力パルスPzを出力する。勿
論ここでは、主軸の回転とZ軸の移動がネジのリードに
沿って加工を行うように同期すぺ(、PsとPzが計算
される。In the figure, 1 is a pulse distribution circuit, which outputs pulses Ps for rotating the spindle according to the command values P (pitch of the screw to be tapped) and S (rotational speed of the spindle).
and an output pulse Pz that controls the Z-axis feed. Of course, here, Ps and Pz are calculated so that the rotation of the main spindle and the movement of the Z-axis are synchronized so that machining is performed along the lead of the screw.
即ち、Psの速度をVS% P2の速度をVzとすると
、
Vs・−一−−−−−主軸回転速度Sに相当する速度V
z (m/min ) = S (rpm) ・P
(m)を満足するようにパルス分配される。That is, if the speed of Ps is VS% and the speed of P2 is Vz, then the speed V corresponding to the main shaft rotational speed S is Vs.
z (m/min) = S (rpm) ・P
Pulses are distributed so as to satisfy (m).
2は時定数決定手段であり、本実施例では主軸回転速度
Sに対応する時定数Tの対応テーブルである時定数テー
ブル3を存し、主軸回転数Sが指令されるとこれに対応
して時定数Tが選択される。Reference numeral 2 denotes a time constant determining means, and in this embodiment, there is provided a time constant table 3 which is a table corresponding to the time constant T corresponding to the spindle rotation speed S, and when the spindle rotation speed S is commanded, A time constant T is selected.
選択された時定数はそれぞれ加減速制御回路に送られる
。The selected time constants are each sent to an acceleration/deceleration control circuit.
10は主軸モータの加減速制御回路であり、分配パルス
Psを加減速する。このときの時定数は図に示すように
Tである。20はZ軸の加減速制御回路であり、Z軸の
分配パルスPzを加減速制御し、そのときの加減速時定
数はTである。10 is an acceleration/deceleration control circuit for the main shaft motor, which accelerates/decelerates the distribution pulse Ps. The time constant at this time is T as shown in the figure. Reference numeral 20 denotes a Z-axis acceleration/deceleration control circuit, which accelerates/decelerates the Z-axis distribution pulse Pz, and has an acceleration/deceleration time constant of T at that time.
加減速制御回路10で加減速制御された、主軸の出力パ
ルスはエラーカウンタ11へ送られ、エラーカウンタ1
1をカウントアツプする。エラーカウンタ11は出力パ
ルスによって、カウントアツプされ後述の帰還パルスに
よってカウントダウンされる。従って、エラーカウンタ
21の内部には出力パルスと帰還パルスの差分があり、
これを図示されていないDAコンバータでアナログ指令
信号に変換し、出力する。アナログ指令信号は主軸ドラ
イブ回路12に送られ、主軸ドライブ回路12は主軸モ
ータ13を回転制御する。主軸モータ13は主軸14に
図示されていないギア等で結合されており、これによっ
て、主軸が回転する。The output pulse of the main shaft, which has been accelerated/decelerated controlled by the acceleration/deceleration control circuit 10, is sent to the error counter 11.
Count up 1. The error counter 11 counts up by the output pulse and counts down by the feedback pulse, which will be described later. Therefore, there is a difference between the output pulse and the feedback pulse inside the error counter 21.
This is converted into an analog command signal by a DA converter (not shown) and output. The analog command signal is sent to the spindle drive circuit 12, and the spindle drive circuit 12 controls the rotation of the spindle motor 13. The main shaft motor 13 is connected to the main shaft 14 by a gear (not shown), thereby rotating the main shaft.
主軸には直結またはギア結合等によって位置検出器15
が結合されており、主軸の回転に応じて帰還パルスを発
生する。尚、図においては速度帰還ループは省略しであ
る。これらは公知の方法で速度帰還ループを構成してい
る。A position detector 15 is connected to the main shaft by direct connection or gear connection.
are coupled to generate feedback pulses in response to the rotation of the main shaft. Note that the speed feedback loop is omitted in the figure. These form a velocity feedback loop in a known manner.
一方、加減速制御回路20で加減速制御された、Z軸の
出力パルスはエラーカウンタ21へ送られ、エラーカウ
ンタ21をカウントアツプする。エラーカウンタ21は
出力パルスによって、カウントアンプされ後述の帰還パ
ルスによってカウントダウンされる。従って、エラーカ
ウンタ21の内部には出力パルスと帰還パルスの差分が
あり、これを図示されていないDAコンバーダでアナロ
グ指令信号に変換し、出力する。アナログ指令信号はZ
軸ドライブ回路22に送られ、Z軸ドライブ回路22は
Z軸モータ23を回転制御する。Z軸モータ23は図示
されていないZ軸にギア等で結合されており、これによ
って、Z軸が移動する。Z軸モータには位置検出器15
が結合されており、Z軸モータの回転に応じて帰還パル
スを発生する。On the other hand, the Z-axis output pulse whose acceleration/deceleration is controlled by the acceleration/deceleration control circuit 20 is sent to the error counter 21, and the error counter 21 is counted up. The error counter 21 is count-amplified by the output pulse and counted down by the feedback pulse described later. Therefore, there is a difference between the output pulse and the feedback pulse inside the error counter 21, which is converted into an analog command signal by a DA converter (not shown) and output. Analog command signal is Z
The signal is sent to the shaft drive circuit 22, and the Z-axis drive circuit 22 controls the rotation of the Z-axis motor 23. The Z-axis motor 23 is connected to a Z-axis (not shown) through a gear or the like, and thereby moves the Z-axis. Position detector 15 for Z-axis motor
is coupled to generate a feedback pulse in response to the rotation of the Z-axis motor.
尚、図においては速度帰還ループは省略しである。Note that the speed feedback loop is omitted in the figure.
これらは公知の方法で速度帰還ループを構成している。These form a velocity feedback loop in a known manner.
このように、指令された主軸回転速度Sに対応した時定
数Tでタッピング加工が行われるので、主軸回転速度が
高速の場合でもオーバシュート等の不具合を発生せず、
主軸回転速度が低速の場合は時定数を小さくとり、加工
速度を早、くすることができる。In this way, since tapping is performed with the time constant T corresponding to the commanded spindle rotation speed S, problems such as overshoot do not occur even when the spindle rotation speed is high.
When the spindle rotation speed is low, the time constant can be set small to increase the machining speed.
上記の実施例では時定数決定手段2に時定数テーブル3
を使用したが、これにかえて、主軸の回転数をSとし、
Kを定数とし、加減速時定数をTとしたとき、
T=KS
として、加減速時定数を決定する手段を使用することも
できる。In the above embodiment, the time constant determining means 2 includes the time constant table 3.
was used, but instead, the rotation speed of the spindle is set to S,
When K is a constant and the acceleration/deceleration time constant is T, it is also possible to use means for determining the acceleration/deceleration time constant by setting T=KS.
以上説明したように本発明では、時定数決定手段によっ
て、主軸回転速度に応じた加減速時定数が選択されるの
で、高速でオーバシュート等の不具合を発生せず、低速
でタッピング加工時間を小さくすることができる。As explained above, in the present invention, the time constant determining means selects the acceleration/deceleration time constant according to the spindle rotation speed, so problems such as overshoot do not occur at high speeds, and the tapping time is reduced at low speeds. can do.
第1図は本発明の一実施例のブロック図である。 FIG. 1 is a block diagram of one embodiment of the present invention.
Claims (3)
期させて、回転及び移動させてタッピング加工を行うタ
ッピング加工制御装置において、主軸速度に対応して時
定数を決定する時定数決定手段を有し、 該時定数決定手段によって、指令された主軸回転速度か
ら時定数を決定して、加減速制御回路に時定数を与えて
タッピング加工を行うように構成したことを特徴とする
タッピング加工制御装置。(1) In a tapping processing control device that synchronizes the rotation of the spindle and the movement of the Z-axis by pulse distribution and performs tapping processing by rotating and moving the spindle, a time constant determining means determines the time constant in accordance with the spindle speed. A tapping process characterized in that the time constant determining means determines a time constant from the commanded spindle rotation speed, and performs tapping by giving the time constant to an acceleration/deceleration control circuit. Control device.
する時定数からなるテーブルを有することを特徴とする
特許請求の範囲第1項記載のタッピング加工制御装置。(2) The tapping processing control device according to claim 1, wherein the time constant determining means has a table consisting of spindle rotational speeds and time constants corresponding thereto.
数をT、Kを定数とするときに、 であることを特徴とする特許請求の範囲第1項記載のタ
ッピング加工制御装置。(3) The tapping processing control device according to claim 1, wherein the time constant determining means is as follows, where S is the spindle rotational speed, T is the time constant, and K is a constant.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61269448A JPS63123605A (en) | 1986-11-12 | 1986-11-12 | Control device for tapping machining |
US07/221,249 US4912385A (en) | 1986-11-12 | 1987-11-11 | Tapping control apparatus |
DE87907526T DE3787170T2 (en) | 1986-11-12 | 1987-11-11 | THREAD CONTROL DEVICE. |
KR1019880700812A KR920007639B1 (en) | 1986-11-12 | 1987-11-11 | Position control system |
EP87907526A EP0294486B1 (en) | 1986-11-12 | 1987-11-11 | Tapping controller |
PCT/JP1987/000878 WO1988003451A1 (en) | 1986-11-12 | 1987-11-11 | Tapping controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61269448A JPS63123605A (en) | 1986-11-12 | 1986-11-12 | Control device for tapping machining |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63123605A true JPS63123605A (en) | 1988-05-27 |
Family
ID=17472569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61269448A Pending JPS63123605A (en) | 1986-11-12 | 1986-11-12 | Control device for tapping machining |
Country Status (6)
Country | Link |
---|---|
US (1) | US4912385A (en) |
EP (1) | EP0294486B1 (en) |
JP (1) | JPS63123605A (en) |
KR (1) | KR920007639B1 (en) |
DE (1) | DE3787170T2 (en) |
WO (1) | WO1988003451A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427808A (en) * | 1987-04-27 | 1989-01-30 | Mitsubishi Electric Corp | Numerical control device |
JPH03117515A (en) * | 1989-09-28 | 1991-05-20 | Okuma Mach Works Ltd | Numerical control unit |
US9513619B2 (en) | 2012-06-05 | 2016-12-06 | Mitsubishi Electric Corporation | Numerical control device which performs tapping operation by using a main spindle and a feed shaft |
JP2017185619A (en) * | 2016-03-31 | 2017-10-12 | 株式会社牧野フライス製作所 | Control method and control device for tap processing |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833763B2 (en) * | 1988-03-01 | 1996-03-29 | 義昭 垣野 | Numerical control unit |
JPH02256436A (en) * | 1989-03-29 | 1990-10-17 | Okuma Mach Works Ltd | Tapping work controller |
JPH0777691B2 (en) * | 1989-04-28 | 1995-08-23 | オ−クマ株式会社 | Numerical control method and apparatus thereof |
KR900017735A (en) * | 1989-05-19 | 1990-12-19 | 강진구 | Straight line conveying method |
JP2935713B2 (en) * | 1989-08-22 | 1999-08-16 | ファナック株式会社 | Numerical control unit |
JPH0386446A (en) * | 1989-08-25 | 1991-04-11 | Fanuc Ltd | Copying control device |
JPH048423A (en) * | 1990-04-26 | 1992-01-13 | Fanuc Ltd | Tapping method |
US5165828A (en) * | 1991-08-12 | 1992-11-24 | Penn Engineering & Manufacturing Corp. | Cam-actuated thread tapper |
JPH05324046A (en) * | 1992-05-18 | 1993-12-07 | Mitsubishi Electric Corp | Method and device for numerically controlling multiple system |
JP2866556B2 (en) * | 1993-09-02 | 1999-03-08 | 三菱電機株式会社 | Control device and control method for machine tool |
US5508596A (en) * | 1993-10-07 | 1996-04-16 | Omax Corporation | Motion control with precomputation |
IT1279369B1 (en) * | 1994-08-30 | 1997-12-10 | Nuovo Pignone Spa | PERFECTED AUTOMATIC POSITIONING SYSTEM |
JP3625901B2 (en) | 1995-06-30 | 2005-03-02 | 三菱電機株式会社 | Method and apparatus for automatically optimizing servo control system |
US10859997B1 (en) | 2017-12-04 | 2020-12-08 | Omax Corporation | Numerically controlled machining |
US11554461B1 (en) | 2018-02-13 | 2023-01-17 | Omax Corporation | Articulating apparatus of a waterjet system and related technology |
US12051316B2 (en) | 2019-12-18 | 2024-07-30 | Hypertherm, Inc. | Liquid jet cutting head sensor systems and methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413080A (en) * | 1977-07-01 | 1979-01-31 | Oki Electric Ind Co Ltd | Method of forming screw thread by numerical control |
JPS60150260A (en) * | 1984-01-18 | 1985-08-07 | Victor Co Of Japan Ltd | Servo circuit of magnetic recording and reproducing device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3555254A (en) * | 1967-04-17 | 1971-01-12 | Gerber Scientific Instr Co | Error correcting system and method for use with plotters, machine tools and the like |
JPS6020134B2 (en) * | 1980-10-17 | 1985-05-20 | ファナック株式会社 | Thread cutting control method |
JPS5776608A (en) * | 1980-10-30 | 1982-05-13 | Fanuc Ltd | Position error correction device |
JPS57114340A (en) * | 1980-12-30 | 1982-07-16 | Fanuc Ltd | Thermal displacement compensation |
JPS584320A (en) * | 1981-06-25 | 1983-01-11 | Fanuc Ltd | System for controlling electrospark machining machine |
JPS5835607A (en) * | 1981-08-27 | 1983-03-02 | Fanuc Ltd | Numerical controlling system |
JPS58172709A (en) * | 1982-04-02 | 1983-10-11 | Toko Inc | Automatic variable speed controller |
JPS58211211A (en) * | 1982-06-01 | 1983-12-08 | Fanuc Ltd | Numerical controlling system |
JPS5962909A (en) * | 1982-10-01 | 1984-04-10 | Fanuc Ltd | Accelerating and decelerating circuit |
JPS60146649A (en) * | 1984-01-11 | 1985-08-02 | Kira Tekkosho:Kk | Universal tapping apparatus |
JPS60167731A (en) * | 1984-02-03 | 1985-08-31 | Fanuc Ltd | Method of tapping |
-
1986
- 1986-11-12 JP JP61269448A patent/JPS63123605A/en active Pending
-
1987
- 1987-11-11 DE DE87907526T patent/DE3787170T2/en not_active Expired - Fee Related
- 1987-11-11 WO PCT/JP1987/000878 patent/WO1988003451A1/en active IP Right Grant
- 1987-11-11 EP EP87907526A patent/EP0294486B1/en not_active Expired - Lifetime
- 1987-11-11 KR KR1019880700812A patent/KR920007639B1/en not_active IP Right Cessation
- 1987-11-11 US US07/221,249 patent/US4912385A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5413080A (en) * | 1977-07-01 | 1979-01-31 | Oki Electric Ind Co Ltd | Method of forming screw thread by numerical control |
JPS60150260A (en) * | 1984-01-18 | 1985-08-07 | Victor Co Of Japan Ltd | Servo circuit of magnetic recording and reproducing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427808A (en) * | 1987-04-27 | 1989-01-30 | Mitsubishi Electric Corp | Numerical control device |
JPH03117515A (en) * | 1989-09-28 | 1991-05-20 | Okuma Mach Works Ltd | Numerical control unit |
US9513619B2 (en) | 2012-06-05 | 2016-12-06 | Mitsubishi Electric Corporation | Numerical control device which performs tapping operation by using a main spindle and a feed shaft |
JP2017185619A (en) * | 2016-03-31 | 2017-10-12 | 株式会社牧野フライス製作所 | Control method and control device for tap processing |
Also Published As
Publication number | Publication date |
---|---|
EP0294486B1 (en) | 1993-08-25 |
US4912385A (en) | 1990-03-27 |
KR890700057A (en) | 1989-03-02 |
DE3787170D1 (en) | 1993-09-30 |
DE3787170T2 (en) | 1993-12-09 |
EP0294486A4 (en) | 1990-04-10 |
EP0294486A1 (en) | 1988-12-14 |
KR920007639B1 (en) | 1992-09-14 |
WO1988003451A1 (en) | 1988-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63123605A (en) | Control device for tapping machining | |
JPH09319418A (en) | Method for correcting lost motion | |
JPS6210776B2 (en) | ||
EP0299080B1 (en) | Speed controller in a servo system | |
US4347470A (en) | Spindle orientation control apparatus | |
US4386407A (en) | Lathe control system | |
US5062744A (en) | Apparatus for confirming movement of tap when rigid tapping | |
JP2700819B2 (en) | Tapping method | |
JPH048423A (en) | Tapping method | |
JP3136851B2 (en) | Screw processing equipment | |
JPS63162114A (en) | Tapping process control device | |
EP0120973B1 (en) | Numerically controlled machine tool | |
JPH0223285B2 (en) | ||
JPH02137006A (en) | Speed controller | |
JPS6334018A (en) | Tap processing control device | |
JP2575894B2 (en) | Numerical control unit | |
JPH11156638A (en) | Numerical control device | |
JPH07112322A (en) | Tapping machining control device | |
JP2712881B2 (en) | Numerical control unit | |
JPH05173617A (en) | Controller for machine tool | |
JP2624771B2 (en) | Arbitrary direction tapping method | |
JPS63103686A (en) | Controlling method foe spindle | |
JPS63193213A (en) | Speed controller for digital servo system with pulse encoder | |
JPH01177893A (en) | Synchronized operation method for main shaft | |
JPH01271145A (en) | Positioning instruction device for machine tool |