JPS62211387A - Production of ceramic coated heat resistant member - Google Patents

Production of ceramic coated heat resistant member

Info

Publication number
JPS62211387A
JPS62211387A JP5248886A JP5248886A JPS62211387A JP S62211387 A JPS62211387 A JP S62211387A JP 5248886 A JP5248886 A JP 5248886A JP 5248886 A JP5248886 A JP 5248886A JP S62211387 A JPS62211387 A JP S62211387A
Authority
JP
Japan
Prior art keywords
tbc
layer
coating layer
ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5248886A
Other languages
Japanese (ja)
Inventor
Nobuyuki Iizuka
飯塚 信之
Fumiyuki Hirose
文之 広瀬
Naotatsu Asahi
朝日 直達
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5248886A priority Critical patent/JPS62211387A/en
Publication of JPS62211387A publication Critical patent/JPS62211387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To prevent the cracking and exfoliating of a ceramic coating layer by forming an alloy bond layer on a metallic base material, forming the ceramic coating layer via an Al layer on the bond layer and converting the Al layer to an oxide layer. CONSTITUTION:The bond layer of the alloy (essentially consisting of either Co or Ni and contg. 10-30wt% Cr, 5-30wt% Al, etc.) which is higher in the resistance to high-temp. oxidation and high-temp. corrosion than the base material essentially consisting of at least one kind among Ni, Co and Fe is formed to 0.03-0.5mm thickness on the above-mentioned base material by plasma spraying in an atmosphere of <=10<-3>atm oxygen partial pressure. The Al coating layer is formed on such bond layer by a pack method and is heated for 1-200hr at 600-1,200 deg.C in the atm. to form the Al oxide layer to 0.1-20mu thickness. The ceramic coating layer which consists essentially of ZrO2 and contains any one among CaO, MgO and Y2O3 or the combination thereof is formed to 0.05-0.8mm thickness on such Al oxide layer by plasma spraying in the atm. The heat resistant member useful for a gas turbine member is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温あるいは高温腐蝕環境下で用いられる耐熱
部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a heat-resistant member used in high-temperature or high-temperature corrosive environments.

〔従来の技術〕[Conventional technology]

発電用ガスタービンプラントの発電効率を向上すること
を目的として、ガスタービンの高温化技術が検討されて
いる。このような高温化に伴なって、ガスタービン部材
の耐熱温度の向上が望まれている。Ni基あるいはCO
基等の合金材料の開発により、これら耐熱合金の耐熱温
度が向上してきているが、現状では850℃程度で飽和
している。一方、セラミック材料は耐熱性の点では金属
材料に比べて優れているが、構造材として用いるには靭
性等の問題がある。従って、このような部材の高温化に
対処するために、部材が高温にならないような方法の検
討が盛んに行なわれている。
With the aim of improving the power generation efficiency of gas turbine plants for power generation, technology to increase the temperature of gas turbines is being studied. With such rising temperatures, it is desired to improve the heat resistance temperature of gas turbine members. Ni group or CO
With the development of alloy materials such as base metals, the heat resistance temperature of these heat-resistant alloys has improved, but currently it is saturated at about 850°C. On the other hand, although ceramic materials are superior to metal materials in terms of heat resistance, they have problems such as toughness when used as structural materials. Therefore, in order to cope with such an increase in the temperature of the members, studies are actively being conducted on methods to prevent the members from reaching high temperatures.

このような方法として、部材の冷却方法が各種検討され
ている。又、もう一つの方法として熱伝導率の小さいセ
ラミックを、金属部材の表面にコーティングする方法が
ある。このようなコーティングは熱遮蔽コーティング(
Thet+++al BarrierCoating以
下TBCと略す)と呼ばれる。TBCは各種の冷却方法
と組み合わせて用いることにより、その効果は大きくな
る。−例として、基材である金属部材の温度をTBCを
施さないものに比べて50〜100℃低減できるという
報告もある、このような方法を用いることによって、高
温ガスタービン等の構成部材の信頼性を向上させること
ができる。ところで、TBCの技術的課題としては、T
BCは基材を構成する耐熱合金と物性値が異なるセラミ
ック被覆層1を組み合せたものであるため、基材とセラ
ミック被覆層との密着機構及びその信頼性の問題がある
。特に、ガスタービン等では起動停止等の熱サイクルに
より、セラミック被覆層の剥離、脱落等の損傷が生じる
。そこで。
As such methods, various methods of cooling members have been studied. Another method is to coat the surface of a metal member with a ceramic having low thermal conductivity. Such coatings are called thermal barrier coatings (
The barrier coating (hereinafter abbreviated as TBC). When TBC is used in combination with various cooling methods, its effects become greater. - For example, there is a report that the temperature of the base metal member can be reduced by 50 to 100 degrees Celsius compared to one without TBC. By using such a method, the reliability of components such as high-temperature gas turbines can be improved. can improve sex. By the way, as a technical issue of TBC, T
Since BC is a combination of a heat-resistant alloy constituting a base material and a ceramic coating layer 1 having different physical properties, there are problems with the adhesion mechanism between the base material and the ceramic coating layer and its reliability. In particular, in gas turbines and the like, damage such as peeling and falling off of the ceramic coating layer occurs due to thermal cycles such as starting and stopping. Therefore.

このような点を解決する方法として各種の手段が用いら
れている。主な方法としては、例えば、特開昭55−1
12804号公報に見られる如くセラミック被覆層と基
材との間に、金属材料からなる結合層を設けるものがあ
る。その結合層は基材とセラミック被覆層の物性値の相
異を緩和することを目的としている。この場合、セラミ
ック被覆層と結合層との密着機構は機械的な結合にすぎ
ずその強度は2〜5kg/awe”である。更に、結合
層の他に、結合層とセラミック被覆層の間に、結合層を
構成する合金材とセラミック被覆層を構成する材料との
混合物からなる層を形成したものがある。この方法はセ
ラミック被覆層と結合層との物性値の相異を緩和するこ
とを目的としたものであるが、この場合も、セラミック
と合金材料との結合状態は機械的な結合にすぎない、従
って、熱サイクル等により、TBCに大きな熱応力が生
じた場合、結合力の弱い部分から剥離、脱落等の損傷が
生じることになる。
Various means have been used to solve these problems. The main methods include, for example, JP-A-55-1
As seen in Japanese Patent No. 12804, there is a method in which a bonding layer made of a metal material is provided between the ceramic coating layer and the base material. The purpose of the bonding layer is to alleviate the difference in physical properties between the base material and the ceramic coating layer. In this case, the adhesion mechanism between the ceramic coating layer and the bonding layer is only a mechanical bond, and its strength is 2 to 5 kg/awe''. There is a method in which a layer is formed of a mixture of an alloy material constituting the bonding layer and a material constituting the ceramic coating layer.This method aims to alleviate the difference in physical properties between the ceramic coating layer and the bonding layer. However, in this case as well, the bonding state between the ceramic and the alloy material is only a mechanical bond. Therefore, if large thermal stress is generated in the TBC due to thermal cycles, etc., the bonding strength will be weak. Damage such as peeling or falling off of the parts will occur.

更に、このようなTBCに用いるセラミック被[’f結
合層及び中間層は、主にプラズマ溶射法で形成される。
Furthermore, the ceramic bonding layer and intermediate layer used in such TBCs are mainly formed by plasma spraying.

その理由は被覆層形成速度が速く経済性に優れているこ
との他に、セラミック被覆層に適用した場合に溶射被膜
の多孔質な構造を利用することにある。すなわち、空孔
や微細なりラックを形成することにより、空孔やクラッ
クを、熱応力の緩和作用に利用している。このように、
プラズマ溶射で形成したセラミック溶射被膜は、スパッ
タリング等の方法で形成した緻密なセラミック被覆層に
比べ熱サイクル等の作用による熱衝撃作に優れている。
The reason for this is that in addition to the fast coating layer formation rate and excellent economic efficiency, it also utilizes the porous structure of the sprayed coating when applied to a ceramic coating layer. That is, by forming pores and fine racks, the pores and cracks are used to alleviate thermal stress. in this way,
Ceramic sprayed coatings formed by plasma spraying are superior in thermal shock effects caused by thermal cycles, etc., compared to dense ceramic coating layers formed by methods such as sputtering.

しかし、TBCは高温度で、燃料中の不純物等による高
温腐蝕条件下で用いられるため、プラズマ溶射により多
孔質構造のセラミック被覆層を形成したTBCでは、結
合層あるいは中間層を形成する合金材料の高温酸化、高
温腐食の問題がある。合金材料は高温耐酸化、耐食性に
優れた成分であるが、それらの合金被覆層の形成方法に
より、必ずしも、本来の合金材料で予想される高温耐酸
化性、耐食性を発揮するものではないと考えられる。本
発明者らの検討によればTBCを高温酸化或いは高温腐
食環境下にさらした後、熱サイクル試験を行なった結果
、その耐久性は著しく低下することが判明した。この場
合、セラミック材料と合金材料との結合が本来機械的な
結合でその強度が弱いことに加え、更に、その境界部分
の合金材料の表面が酸化あるいは腐蝕されその密着力が
更に低下したためと考えられる。
However, since TBC is used at high temperatures and under high-temperature corrosive conditions due to impurities in the fuel, TBC with a porous ceramic coating layer formed by plasma spraying cannot be used with alloy materials forming the bonding layer or intermediate layer. There are problems with high temperature oxidation and high temperature corrosion. Although alloy materials have excellent high-temperature oxidation and corrosion resistance, we believe that due to the method of forming the alloy coating layer, they do not necessarily exhibit the high-temperature oxidation and corrosion resistance expected of original alloy materials. It will be done. According to studies conducted by the present inventors, when TBC was subjected to a thermal cycle test after being exposed to a high-temperature oxidation or high-temperature corrosive environment, it was found that its durability was significantly reduced. In this case, it is thought that in addition to the fact that the bond between the ceramic material and the alloy material is originally a mechanical bond and its strength is weak, the surface of the alloy material at the boundary was oxidized or corroded, further reducing the adhesion. It will be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のTBCでは、セラミックと合金材料の結合力が低
いということ、更に、高温酸化、高温腐蝕等により合金
材の表面が変化しセラミック合金材料の結合力が更に低
下すると考えられる。このような問題点はTBCの信頼
性を大巾に低下させるものである。プラズマ溶射法にお
いても、大気中で溶射を行なう方法の他に、プラズマア
ークの周囲の雰囲気を制御し更にその雰囲気圧力をも制
御する減圧雰囲気中溶射が行なわれている。このような
減圧雰囲気中溶射によれば、溶射中の溶射粒子が酸素等
によって汚染されないので、非常に良好な金属合金結合
層が形成できる。このような金属合金結合層は高温ガス
タービン部材の高温酸化、高温腐食を防止する被覆層と
して利用されている。そこで、本発明者らは以上の点に
かんがみて、TBCの4?頼性を向上させることを目的
として、セラミックと合金材料の結合機構の強化という
点に注目し各種の検討を行なった。
In conventional TBCs, it is believed that the bonding strength between the ceramic and the alloy material is low, and that the surface of the alloy material changes due to high-temperature oxidation, high-temperature corrosion, etc., which further reduces the bonding strength of the ceramic alloy material. These problems greatly reduce the reliability of the TBC. In the plasma spraying method, in addition to the method of spraying in the atmosphere, there is also a method of spraying in a reduced pressure atmosphere in which the atmosphere around the plasma arc is controlled and the pressure of the atmosphere is also controlled. According to such thermal spraying in a reduced pressure atmosphere, the sprayed particles during thermal spraying are not contaminated by oxygen or the like, so that a very good metal alloy bonding layer can be formed. Such a metal alloy bonding layer is used as a coating layer to prevent high-temperature oxidation and high-temperature corrosion of high-temperature gas turbine components. Therefore, the inventors of the present invention have considered the above-mentioned points and decided on TBC 4? With the aim of improving reliability, various studies were conducted with a focus on strengthening the bonding mechanism between ceramic and alloy materials.

本発明者らは、従来用いられている各種の材料によるT
BCについて検討した1例えば、Zr0z系セラミック
被覆層と金属合金材料からなる結合層とから成るTBC
を用い、TBCの高温酸化試験を実施した。この試験は
高温条件下で使用されるガスタービン部品あるいは局部
的に高温になるガスタービン部品へのTBCの施工を考
慮したものである。その結果、従来のTBCはZr0z
系被覆層と結合層の界面の酸化が著しく進行することが
判った。そして、試験前後のTBCの密着力を判定した
結果、1000℃、500時間の酸化試験で、Zr0z
系被覆層と結合層との界面の密着力は1/2〜1/4に
低下することがわかった。
The present inventors have discovered that T
For example, a TBC consisting of a Zr0z ceramic coating layer and a bonding layer made of a metal alloy material.
A high temperature oxidation test of TBC was carried out using the following. This test takes into account the construction of TBCs on gas turbine parts that are used under high-temperature conditions or that become locally hot. As a result, the conventional TBC is Zr0z
It was found that oxidation at the interface between the system coating layer and the bonding layer progressed significantly. As a result of judging the adhesion of TBC before and after the test, Zr0z
It was found that the adhesion force at the interface between the system coating layer and the bonding layer was reduced to 1/2 to 1/4.

このような密着力の低下は、Zr0z系被覆層の厚さ、
気孔率、更にZr0zへの添加剤の種類及び量によって
若干の相異が認められるが、いずれもその低下は著しい
、又、結合層の合金材料の成分に関しても若干の相異が
あるが、いずれも低下していた。このような界面の密着
力の低下は酸化試験の温度が高くなるほど、或いは試験
時間の増加とともに著しくなる。そして、1100’C
1100時間の試験では一部、界面からの剥離損傷が認
められるものがあった。一方、金属合金材料とZr0z
系材料との混合物を中間層として用いたTBCでは、酸
化試験による密着力の低下は更に著しいものであった。
This decrease in adhesion is caused by the thickness of the Zr0z coating layer,
Although there are some differences in porosity and the type and amount of additives added to Zr0z, the decrease in both cases is remarkable.Also, there are some differences in the composition of the alloy material of the bonding layer, but both was also decreasing. Such a decrease in interfacial adhesion becomes more significant as the temperature of the oxidation test becomes higher or as the test time increases. And 1100'C
During the 1,100 hour test, peeling damage from the interface was observed in some cases. On the other hand, metal alloy materials and Zr0z
In the case of TBC using a mixture with other materials as the intermediate layer, the decrease in adhesion in the oxidation test was even more remarkable.

このような結果は、本発明者らが実施した高温熱サイク
ル試験の結果とも対応している。すなわち、970℃、
1020℃。
These results also correspond to the results of high-temperature thermal cycle tests conducted by the present inventors. That is, 970℃,
1020℃.

1070℃、1120℃のそれぞれの温度で30分間保
持、空冷により150℃までの冷却を繰り返す試験にお
いても試験温度が高くなるに従って、TBCの損傷が生
じるまでの繰り返し数は著しく低下していた。このよう
な従来のTBCの問題は、ガスタービンの高温化に対処
した信頼性の優れたTBCを得る上で重大な障害となる
。すなわち、ガスタービン部品の基材温度が高くなるの
を防止し、その温度を低減化することを目的としてTB
Cを実施するに際して、従来のTBCを施した部品では
TBCの高温耐久性が低いので、部品の基材温度の低減
を十分発揮することは困難である。
Even in a test in which the test was held at each temperature of 1070°C and 1120°C for 30 minutes and repeatedly cooled to 150°C by air cooling, the number of repetitions until TBC damage occurred decreased significantly as the test temperature increased. Such problems with conventional TBCs become a serious obstacle in obtaining a highly reliable TBC that can cope with the high temperatures of gas turbines. In other words, TB is used for the purpose of preventing the base material temperature of gas turbine components from increasing and reducing the temperature.
When performing C, it is difficult to sufficiently reduce the base material temperature of parts with conventional TBC because the TBC has low high-temperature durability.

そこで、本発明者らは従来のTBCを施工したガスター
ビン部品に代り、高温稼動条件下でもガスタービン部品
の基材温度の低減化を十分発揮しうる高温耐久性に優れ
たTBCを施工したガスタービン部品について検討した
Therefore, in place of gas turbine parts with conventional TBCs, the present inventors developed a gas turbine with TBCs with excellent high-temperature durability that can sufficiently reduce the base material temperature of gas turbine parts even under high-temperature operating conditions. Turbine parts were studied.

すなわち1本発明者らは以上のような点を考慮して、ガ
スタービンの高温化を達成しうるに十分なTBCを得る
ことを目的として各種の検討を行ない、耐久性に優れた
TBCを有したガスタービン部品を発明するに至った。
In other words, 1. In consideration of the above points, the present inventors conducted various studies with the aim of obtaining a TBC sufficient to raise the temperature of the gas turbine, and have developed a TBC with excellent durability. This led to the invention of a gas turbine component.

本発明の目的は、TBCの信頼性を向上させることにあ
る。すなわち、セラミック材料と基材との結合力が長期
間にわたって安定しており、クラックや剥離の起りにく
いTBCを提供することにある。
An object of the present invention is to improve the reliability of TBC. That is, the object is to provide a TBC in which the bonding force between the ceramic material and the base material is stable over a long period of time, and is less prone to cracking or peeling.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属材料より成る基材上に、この基材よりも
高温耐酸化、高温耐蝕性に優れた合金の結合層を形成し
、前記結合層上にA1層を形成し、その上にセラミック
被覆層を形成し、且つ前記Alを酸化物層に変換するこ
とを特徴とする。
In the present invention, a bonding layer of an alloy having higher high-temperature oxidation resistance and high-temperature corrosion resistance than that of the substrate is formed on a base material made of a metal material, an A1 layer is formed on the bonding layer, and an A1 layer is formed on the bonding layer. It is characterized by forming a ceramic coating layer and converting the Al into an oxide layer.

基材は、Niを35〜61重景%、Coを1〜3重量%
、Feを14〜27重量%含むNi基合金が望ましい。
The base material contains 35-61% by weight of Ni and 1-3% by weight of Co.
, a Ni-based alloy containing 14 to 27% by weight of Fe is desirable.

結合層は、Ni又はCoを主成分とし、Crを10〜3
0重量%及びAlを5〜30重量%含む合金が望ましい
、これに更にHf、Ta、Y。
The bonding layer mainly contains Ni or Co, and contains 10 to 3 Cr.
An alloy containing 0% by weight and 5-30% by weight of Al is desirable, as well as Hf, Ta, and Y.

Si、Zrの1つ以上を0.1〜5重量%含むと更に望
ましい。
It is more desirable to contain 0.1 to 5% by weight of one or more of Si and Zr.

セラミック層は、ZrO2を主成分とし、CaOとMg
OとY2O3の1つを含むものが望ましい。
The ceramic layer mainly contains ZrO2, CaO and Mg.
Preferably, it contains one of O and Y2O3.

CaOの量は4〜10重量%、MgOの量は8〜24重
量%、Y2.03の量は4〜20重景%が望ましい。C
aOとMgOとYzOsの2つ以上を複合添加すること
も可能である。
Desirably, the amount of CaO is 4 to 10% by weight, the amount of MgO is 8 to 24% by weight, and the amount of Y2.03 is 4 to 20% by weight. C
It is also possible to add two or more of aO, MgO, and YzOs in combination.

〔作用〕[Effect]

本発明によれば、Alを主成分とする酸化物層が、高温
雰囲気中でも安定であり、これにより合金結合層の酸化
の進行を防止し、しかもセラミック被覆層との結合強度
も強いため、長期間の使用に対してもセラミック被覆層
のクラックの発生、剥離を防止できる。
According to the present invention, the oxide layer containing Al as a main component is stable even in high-temperature atmospheres, prevents the progress of oxidation of the alloy bonding layer, and has strong bonding strength with the ceramic coating layer, so it can last for a long time. Even when used for a period of time, cracking and peeling of the ceramic coating layer can be prevented.

〔実施例〕〔Example〕

以下、本発明の詳細について説明する。先ず、従来のT
BCの問題点について詳細に検討し、その原因について
調べた。各種の酸化試験を実施したTBCについて、そ
の断面組織の観察を行なった。その結果Zr0z系被覆
層と結合層との界面部分に欠陥が生じていた。結合層と
Zr0z系被覆層との間に合金材料とZr0z系材料と
の混合層を形成したTBCの酸化試験の結果では、中間
層の合金材料は著しく酸化していた。これらの現象は高
温熱サイクル試験でも認められる。すなわち、TBCで
は、熱応力を緩和する多孔質あるいは微細クラックを有
した構造のZr0z系被覆層を通じて結合層或いは中間
層の酸化という問題が生じる。このような酸化は、界面
の密着力を著しく低下させ、熱応力等によってその界面
部からTBCに剥離損傷が生じることになる。このよう
な界面の酸化の原因としては、高温状態でZr0z系材
料が半導体となり、酸素の移動を容易にし、境界面部の
酸素分圧の増加を生じることも一つの重要な要因である
と考えられる。このような酸化は例えば中間層を形成し
た場合、界面の面積の増加を招くのでより促進すると考
えられる。従来のTBCについて界面の状態を分析した
結果、界面にはCrを主成分とする酸化物が形成されて
いた。
The details of the present invention will be explained below. First, the conventional T
We examined the problems of BC in detail and investigated their causes. The cross-sectional structures of TBCs subjected to various oxidation tests were observed. As a result, defects occurred at the interface between the Zr0z-based coating layer and the bonding layer. The results of an oxidation test of a TBC in which a mixed layer of an alloy material and a Zr0z-based material was formed between a bonding layer and a Zr0z-based coating layer showed that the alloy material in the intermediate layer was significantly oxidized. These phenomena are also observed in high temperature thermal cycle tests. That is, in the TBC, a problem arises in that the bonding layer or intermediate layer is oxidized through the Zr0z-based coating layer having a porous or micro-cracked structure to alleviate thermal stress. Such oxidation significantly reduces the adhesion of the interface and causes peeling damage to the TBC from the interface due to thermal stress or the like. One of the important causes of such oxidation at the interface is thought to be that the Zr0z-based material becomes a semiconductor at high temperatures, facilitating the movement of oxygen and causing an increase in the oxygen partial pressure at the interface. . Such oxidation is considered to be more accelerated when an intermediate layer is formed, for example, because the area of the interface increases. As a result of analyzing the state of the interface of a conventional TBC, it was found that an oxide containing Cr as a main component was formed at the interface.

このようなCr系酸化物は高温で不安定であるため、そ
の酸化物を生じた部分から損傷が生じていた。従って、
高温ガスタービン用TBCにおいては、界面での酸化と
いうものを十分考慮することが必要である0本発明者ら
は、このような観点から、各種の方法について検討した
結果、界面部にAlを主成分とする緻密な構造の酸化物
薄膜を形成することが有望であることを見い出した。A
l゛系酸化物を高温で安定であり、かつ、Zr0z系材
料のように高温で半導体にもならない。従って。
Since such Cr-based oxides are unstable at high temperatures, damage occurs from the portion where the oxides are formed. Therefore,
In TBCs for high-temperature gas turbines, it is necessary to give sufficient consideration to oxidation at the interface. From this perspective, the present inventors investigated various methods, and found that We have found that it is promising to form a thin oxide film with a dense structure as a component. A
l'-based oxides are stable at high temperatures, and unlike ZrOz-based materials, they do not become semiconductors at high temperatures. Therefore.

Al系酸化物の薄膜は内部酸化を防止するバリヤーとし
て有効なものである。一方、このようなAl系酸化物層
の厚さは、厚い場合AΩ系酸化物の物性値を反映した新
たな中間層となる。その結果、熱応力等によりAl系酸
化物層から損傷を生じることになる。一方、薄すぎる場
合は、内部酸化防止作用を十分満足するバリヤーとなり
得ない。
A thin film of Al-based oxide is effective as a barrier to prevent internal oxidation. On the other hand, when such an Al-based oxide layer is thick, it becomes a new intermediate layer that reflects the physical properties of the AΩ-based oxide. As a result, the Al-based oxide layer will be damaged due to thermal stress or the like. On the other hand, if it is too thin, it cannot serve as a barrier that satisfies the internal antioxidant effect.

従って、その厚さは0.1 μm以上、20μm以下で
あることが望ましい、このような範囲のAl系酸化物層
は結合層を通じての内部酸化を防止するバリヤ一層とし
て十分なものになる。一方、このようなAΩ系酸化物の
薄膜の他の重要な作用として、Zr0z系セラミツクと
結合層の重要な作用として、Zr0z系セラミツクと結
合層との密着力を向上させることを見い出した。すなわ
ち。
Therefore, the thickness of the Al-based oxide layer is preferably 0.1 μm or more and 20 μm or less, and the Al-based oxide layer in this range is sufficient as a barrier layer to prevent internal oxidation through the bonding layer. On the other hand, it has been discovered that another important function of such a thin film of AΩ-based oxide, which is an important function of the Zr0z-based ceramic and the bonding layer, is that it improves the adhesion between the Zr0z-based ceramic and the bonding layer. Namely.

従来のTBCがZr0z系セラミツクと結合層を構成す
る金属合金とが機械的に結合していたのに比べ、本発明
者らが見い出したAl系酸化物の薄膜を介してのZr○
2系セラミックと結合層との密着は、Al系酸化物とZ
r0z系セラミツクという酸化物どうしの界面と、結合
層を構成する金属合金中のAI2成分から生じるAl系
酸化物というものになり、その密着機構は非常に強固な
ものになる。−例として、このようなAl系酸化物の薄
膜を有するTBC(7)1000’C,500時間の酸
化試験において、結合層とZr0z系セラミック被用層
の密着力はほとんど低下せず7kg/閣2以上である。
In contrast to conventional TBCs in which the ZrOz-based ceramic and the metal alloy constituting the bonding layer are mechanically bonded, the ZrO
The adhesion between the 2-based ceramic and the bonding layer is due to the Al-based oxide and Z
This is an Al-based oxide produced from the interface between oxides called r0z-based ceramics and the two AI components in the metal alloy constituting the bonding layer, and the adhesion mechanism is extremely strong. - As an example, in an oxidation test of TBC (7) having a thin film of such an Al-based oxide at 1000'C for 500 hours, the adhesion between the bonding layer and the Zr0z-based ceramic coating layer was 7 kg/min with almost no decrease. It is 2 or more.

第1図は高温酸化試験後のTBCの断面組織の一例であ
り、倍率は100倍である。
FIG. 1 is an example of a cross-sectional structure of TBC after a high-temperature oxidation test, and the magnification is 100 times.

第1図ではZr0z系セラミック被覆層と結合層との界
面部には何ら欠陥が生じていない、又、1100℃、1
00時間の酸化試験でも同様で密着力の低下、あるいは
界面部での欠陥の発生は全く認められない。更に、10
30℃、1070℃。
In Fig. 1, there are no defects at the interface between the Zr0z ceramic coating layer and the bonding layer.
Even in the 00 hour oxidation test, no decrease in adhesion or occurrence of defects at the interface was observed. Furthermore, 10
30℃, 1070℃.

1120℃、1170’C(7)それぞれの温度で30
分間保持、空冷による150℃までの冷却を繰り返す試
験の結果は表1のようである。
1120℃, 1170'C (7) 30 at each temperature
Table 1 shows the results of a test in which the sample was held for several minutes and cooled down to 150°C by air cooling.

表    1 表1中試料Ha 201〜204は従来のTBc、&2
05〜208はAl系酸化物の薄膜を有するTBCの結
果である。その結果、Al系酸化物の薄膜を有するTB
Cは従来のTBCに比べTBCが損傷にいたるまでの繰
り返し数は約3〜7倍であった。又、試験温度が高くな
るに従って、その効果は顕著になる。このように、本発
明者らが見い出した、Al系酸化物の薄膜を有するTB
Cは。
Table 1 Samples Ha 201 to 204 in Table 1 are conventional TBc, &2
05 to 208 are the results of TBC having a thin film of Al-based oxide. As a result, TB with a thin film of Al-based oxide
In case of C, the number of repetitions required for TBC to become damaged was about 3 to 7 times that of conventional TBC. Moreover, as the test temperature becomes higher, the effect becomes more pronounced. In this way, the present inventors found that the TB with a thin film of Al-based oxide
C is.

高温条件下で特に効果が顕著なものである。このような
TBCを施したガスタービン部品は高温条件下でも安定
なものとなりうる。更に、Al系酸化物の薄膜を介して
接合したZr0z系被覆層を有するTBCでは、Zr0
z系被覆層の密着力が7kg/m”以上である。この密
着力は従来のTBCのZr0z系被覆層の密着力が3〜
5kg/l1112程度であったのに比べ非常に大きい
。従って、燃焼器部品等で生じる燃焼振動によるTBC
の損傷を防止することが可能である。そこで、このよう
なTBCを施したことによる効果について検討した。ガ
スタービン部品において燃焼器等のように基材温度が高
くなる部品においては、高温の燃焼ガスにさらされる部
分に上記のような高温耐久性に優れたTBCを施工する
ことにより、基材の温度低減を安定して得ることが可能
である。−例として、円筒形状の燃焼器に対して、高温
ガスにさらされる円筒の内面に上記のようなAfi系酸
化物の薄膜を有するTBCを施した設焼器は、従来のT
BCを施した部品に比べ、TBCが損傷に至るまでの稼
動時間は約3倍になっていた。これは、Al系酸化物の
薄膜を有するTBCが耐久性特に高温条件下での耐久性
に優れているためである。
The effect is particularly remarkable under high temperature conditions. Gas turbine components provided with such TBC can be stable even under high temperature conditions. Furthermore, in a TBC having a Zr0z-based coating layer bonded via a thin film of Al-based oxide, Zr0
The adhesion force of the Z-based coating layer is 7 kg/m" or more. This adhesion force is higher than that of the Zr0z-based coating layer of the conventional TBC.
This is much larger than the previous 5kg/l1112. Therefore, TBC due to combustion vibrations generated in combustor parts etc.
It is possible to prevent damage to the Therefore, we investigated the effects of applying such TBC. In gas turbine parts where the base material temperature is high, such as a combustor, the temperature of the base material can be reduced by applying TBC with excellent high-temperature durability as described above to the parts exposed to high-temperature combustion gas. It is possible to obtain a stable reduction. - As an example, for a cylindrical combustor, a burner in which a TBC having a thin film of Afi-based oxide as described above is applied to the inner surface of the cylinder exposed to high-temperature gas is different from the conventional TBC.
Compared to parts treated with BC, it took about three times as long for the TBC to operate before it was damaged. This is because the TBC having a thin film of Al-based oxide has excellent durability, especially under high-temperature conditions.

従って、TBCを施すことによって得られる燃焼器の基
材温度の低減効果は安定して維持される。
Therefore, the effect of reducing the combustor base material temperature obtained by applying TBC is stably maintained.

一方、従来のTBCを施した燃焼器では、短時間でTB
Cが損傷し、特に基材温度の高い部分のTBCの損傷が
著しくなってしまう。その結果TBCによる基材の温度
低減の効果は消失し、基材の温度が高くなり、部品の損
傷に至ってしまう。
On the other hand, in a combustor with conventional TBC, TBC is reduced in a short time.
C will be damaged, and the TBC will be particularly damaged in areas where the base material temperature is high. As a result, the effect of reducing the temperature of the base material by TBC disappears, and the temperature of the base material increases, resulting in damage to the parts.

更に、燃焼器において、基材の強度、あるいは燃焼器の
固定等の構造上から圧縮空気等による冷却が十分に行な
えない部分は、特に基材の温度上昇が生じ易くなってい
る。このような部分ではTBCの役割は特に重要で、T
BCの熱遮蔽効果による基材の温度低減の他に、熱伝導
率の小さいセラミックス被覆層を有するTBCは、局部
的な基材の温度上昇を防止し、基材の温度を均一化させ
る作用も有している。その結果、TBCは、構造上或い
は燃焼条件等のため部品の局部的な温度上昇を防止し、
基材の局部的な温度上昇による部品の変形成いは損傷を
防止する上で非常に重要なものになる。しかるに、従来
のTBCは、特に高温での耐久性に問題があり、このよ
うな基材の温度が局部的に高くなる部品においては、そ
の部分のTBCは短時間で損傷し易い。燃焼器では燃焼
振動により基材が振動するので高温条件下でセラミック
被覆管の密着力の低下したTBCは更に損傷を生じ易く
なる。そのため、最もTBCの効果が必要である部分に
対して、十分な効果を発揮することができなくなる。そ
して、TBCの損傷した部分では他のTBCが健全であ
る部分に比べ基材の温度はむしろ高くなる可能性もあり
うる1例えば燃焼器のように火災に接している部品では
TBCはセラミック被覆層のふく射の効果により火災か
ら基材への入熱量を低減する作用のものである。従って
TBCの損傷した部分の基材温度は、TBCを施工しな
い場合に比べて高くなってしまうこともありうる。その
結果、従来のTBCを補工した燃焼器は、TBCの効果
は十分に発揮しうろことは困難であり、むしろ、基材の
温度が高い部分に対しては、従来のTBCを施工した部
品では、信頼性を損うこともありうる。一方、Al系酸
化物の薄膜を有するTBCを施工した本発明のガスター
ビン部品では、TBCが特に高温での耐久性に優れたも
のであるため、基材の温度が高くる部分でのTBCの損
傷は生じ難い。従って、Al系酸化物の薄膜を有する本
発明のガスタービン部品は、基材の温度が局部的に高く
なっても、TBCによる熱遮蔽効果が十分維持され、か
つ、TBCによる局部的な温度上昇を緩和する作用も発
揮される。
Further, in the combustor, the temperature of the base material is particularly likely to rise in parts where cooling with compressed air or the like cannot be performed sufficiently due to the strength of the base material or the structure such as fixation of the combustor. The role of TBC is particularly important in such areas.
In addition to reducing the temperature of the base material due to the heat shielding effect of BC, TBC, which has a ceramic coating layer with low thermal conductivity, also has the effect of preventing a local temperature rise of the base material and making the temperature of the base material uniform. have. As a result, TBC prevents local temperature increases in parts due to structural or combustion conditions, etc.
This is very important in preventing deformation or damage to parts due to localized temperature increases in the base material. However, conventional TBCs have a problem in durability, especially at high temperatures, and in such parts where the temperature of the base material locally increases, the TBC in those areas is likely to be damaged in a short period of time. In a combustor, the base material vibrates due to combustion vibrations, so a TBC with reduced adhesion of the ceramic cladding becomes more susceptible to damage under high-temperature conditions. Therefore, it becomes impossible to exert a sufficient effect on the part where the effect of TBC is most needed. In addition, there is a possibility that the temperature of the base material in the damaged part of the TBC is higher than that in other healthy parts of the TBC.For example, in parts that are in contact with fire, such as a combustor, the TBC has a ceramic coating layer. It has the effect of reducing the amount of heat input from a fire to the base material due to the radiation effect. Therefore, the temperature of the base material in the damaged part of the TBC may be higher than in the case where the TBC is not installed. As a result, it is difficult to fully demonstrate the effect of TBC in combustors supplemented with conventional TBC, and in fact, parts with conventional TBC supplemented with However, reliability may be compromised. On the other hand, in the gas turbine parts of the present invention in which a TBC having a thin film of Al-based oxide is applied, since the TBC has particularly excellent durability at high temperatures, Damage is unlikely to occur. Therefore, in the gas turbine component of the present invention having a thin film of Al-based oxide, even if the temperature of the base material locally increases, the heat shielding effect of the TBC is sufficiently maintained, and the TBC can prevent a local temperature increase. It also has a mitigating effect.

その結果、本発明のガスタービン部品は信頼性の高いも
のになる。また、基材の温度が局部的に高くなる部品に
おいては、その部分に、Al系酸化物を有するTBCを
施工することも有効である。
As a result, the gas turbine component of the present invention is highly reliable. Furthermore, in parts where the temperature of the base material becomes locally high, it is also effective to apply a TBC containing an Al-based oxide to that part.

すなわち、TBCの熱遮蔽効果により1局部的な温度上
昇を防止することができるからである。更に、他の部分
はTBCが無い場合、TBCのセラミック被覆管のふく
射の効果により、TBCを施工した部分の基材への入熱
量を低くすることができ、他のTBCの無い部分との入
熱量のバランスをとり、基材の局部的な温度上昇を防止
することも期待できうる。このように、Al系酸化物の
薄膜を有するTBCはガスタービン部品の高温にさらさ
れる部分の全面あるいは一部分に施工することによって
、いずれの場合もその効果を十分発揮しうるものである
。このような基材の温度の局部的な温度上昇はガスター
ビンが高温化するに伴なって大きくなる傾向がある。従
って、Al系酸化物の薄膜を有する耐久性に優れたTB
Cを形成したガスタービン部品は信頼性の高いものとな
り、ガスタービンの高温化を可能にするものになりうる
。以下、本発明について実施例により詳細に説明する。
That is, this is because the heat shielding effect of the TBC can prevent a local temperature rise. Furthermore, if other parts do not have TBC, the amount of heat input to the base material in the part where TBC is applied can be lowered due to the radiation effect of the ceramic cladding of TBC, and the heat input to other parts without TBC can be reduced. It can also be expected to balance the amount of heat and prevent local temperature increases in the base material. In this way, the TBC having a thin film of Al-based oxide can fully exhibit its effects by applying it to the entire surface or a portion of the part of the gas turbine component that is exposed to high temperatures. Such a local temperature increase in the temperature of the base material tends to increase as the temperature of the gas turbine increases. Therefore, a highly durable TB with a thin film of Al-based oxide
Gas turbine components formed with C can be highly reliable and enable gas turbines to operate at higher temperatures. Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 基材としてNi基合金であるハステロイ−X(22重量
%Cr1.5重量%C0−9重量%M o 20重量%
F e O,1重量%C−残部Ni)を用い、その表面
を脱脂洗浄後、スチール製のグリッドを用いてプラスチ
ングし、しかる後、プラズマ溶射を行い、10重量%N
 i −25重量%Cr−7重量%Al−0.6 重量
%Y−5重量%Ta−残部Coからなる合金材料の被覆
層を形成した。プラズマ溶射は200Torrの圧力の
Ar中で行なった。この場合プラズマ溶射を行う雰囲気
中の酸素分圧は、酸素センサーで測定した結果1o−8
気圧以下であった。プラズマの出力は40kWである。
Example 1 Hastelloy-X, a Ni-based alloy, was used as a base material (22 wt% Cr1.5 wt% C0-9 wt% Mo 20 wt%
After degreasing and cleaning the surface, plasting was performed using a steel grid, and then plasma spraying was performed to coat the surface with 10% N by weight.
A coating layer of an alloy material consisting of i-25% by weight Cr-7% by weight Al-0.6% by weight Y-5% by weight Ta and the balance Co was formed. Plasma spraying was performed in Ar at a pressure of 200 Torr. In this case, the oxygen partial pressure in the atmosphere in which plasma spraying is performed is 1o-8 as measured by an oxygen sensor.
It was below atmospheric pressure. The plasma output is 40kW.

このような条件で厚さ0.1naのCo、Ni、Cr、
Afi、Y合金被覆層を形成し。
Under these conditions, Co, Ni, Cr,
Afi, Y alloy coating layer is formed.

TBCの結合層とした。その後、前述の結合層表面部に
Al被覆管を形成した。形成方法はバック法である。そ
の方法は、AlzOδ粒子とAl粒粉末にハロゲン活性
剤であるNH4CQ  を加えた混合物中に上記基材を
埋め込み、750℃の温度で1時間保持した。このよう
な処理により結合層表面に約2μmのAl被覆層が形成
できた。しかる後、直ちに前述の結合層の上にZr0z
  8%Y2O3被覆層を形成した。溶射条件はプラズ
マ出力50kWで、大気中溶射である。Zr0z−8%
Y2.08被覆層の厚さは0.3ffDである。その後
、1060℃10時間の真空中加熱処理を行い結合層と
基材との拡散処理並びに結合層とセラミック被覆層との
境界部のAlの結合層中への拡散処理を行った。なお、
比較のため、従来法によって本発明のTBCと同じ材料
を用いて、同じ厚さの被覆層からなるTBCを作成した
。従来法として前述の合金材料を大気中でArガスを使
用して溶射し、次いで前述と同様にZr0z −8%Y
2O3を被覆した。次に1本発明のTBCの効果を確認
するため、以下に述べる各種の試験を実施した。先ず、
各種の温度で酸化試験を行ない、試験後の外i観察及び
断面組織観察更に密着力試験を実施した6表2は外観1
g!察及び密着力試験の結果である。
It was used as a bonding layer for TBC. Thereafter, an Al-coated tube was formed on the surface of the bonding layer described above. The forming method is the back method. In this method, the above substrate was embedded in a mixture of AlzOδ particles, Al grain powder, and NH4CQ as a halogen activator, and held at a temperature of 750°C for 1 hour. Through such treatment, an Al coating layer of about 2 μm could be formed on the surface of the bonding layer. After that, Zr0z is immediately deposited on the bonding layer described above.
An 8% Y2O3 coating layer was formed. The thermal spraying conditions were a plasma output of 50 kW and thermal spraying in the atmosphere. Zr0z-8%
The thickness of the Y2.08 coating layer is 0.3ffD. Thereafter, heat treatment was performed in vacuum at 1060° C. for 10 hours to perform a diffusion treatment between the bonding layer and the base material, and a diffusion treatment of Al at the boundary between the bonding layer and the ceramic coating layer into the bonding layer. In addition,
For comparison, a TBC consisting of the same material as the TBC of the present invention and a coating layer of the same thickness was prepared by a conventional method. As a conventional method, the above-mentioned alloy material is thermally sprayed in the atmosphere using Ar gas, and then Zr0z -8% Y is sprayed in the same manner as above.
Coated with 2O3. Next, in order to confirm the effects of the TBC of the present invention, various tests described below were conducted. First of all,
Oxidation tests were conducted at various temperatures, external observations and cross-sectional microstructure observations were conducted after the tests, and an adhesion test was conducted.Table 2 shows the appearance 1.
g! These are the results of the inspection and adhesion test.

表2中Nα1〜&6は従来のTBCの結果、−7〜Nα
11は本実施例で作成した本発明のTBCの結果である
。すなわち、従来のTBCでは1070℃以上ノ温度(
100時間保持) で、Zr0z −8%Y z Oa
被覆層が剥離しTBCは損傷した。一方、本発明の&7
〜魔11のTBCは外観的に何ら損傷は認められない。
In Table 2, Nα1 to &6 are the results of conventional TBC, -7 to Nα
11 shows the results of the TBC of the present invention created in this example. In other words, with conventional TBCs, temperatures of 1070°C or higher (
(held for 100 hours), Zr0z -8%Yz Oa
The coating layer peeled off and the TBC was damaged. On the other hand, &7 of the present invention
~ There is no visible damage to the Demon 11 TBC.

一方、酸化試験後のTBCの密着力試験の結果も、TB
Cが損傷していないN(L1〜Na6の従来のTBCは
、その密着力は2〜5kg / m ”で、酸化試験温
度の増加とともに密着力は低下している。又、密着力試
験での破断部分は合金被覆層とZr0z −8%YzO
s被覆層との境界部である。一方、嵐7〜&11に示し
た本発明のTBCではいずれの酸化試験条件下でもTB
Cの密着力の低下は認められず、接着剤(接着剤の密着
強度7 kg/ +m” )を用いた密着力試験法の限
界値である7kg/nm”以上の値であった。従って、
試験後の破断部はいずれも接着剤の部分である。
On the other hand, the results of the TBC adhesion test after the oxidation test also showed that TBC
Conventional TBCs with undamaged N (L1 to Na6) have an adhesion force of 2 to 5 kg/m'', and the adhesion force decreases as the oxidation test temperature increases. The broken part is the alloy coating layer and Zr0z -8% YzO
This is the boundary with the s-covering layer. On the other hand, in the TBC of the present invention shown in Arashi 7 to &11, TBC
No decrease in the adhesion force of C was observed, and the value was 7 kg/nm'' or more, which is the limit value of the adhesion test method using an adhesive (adhesive strength of 7 kg/+m''). Therefore,
All broken parts after the test were adhesive parts.

次に、上記酸化試験後の試験片を用いて熱サイクル試験
を実施した。試験条件は750℃、15分間保持、20
〜25℃水中、15秒間保持の繰り返しである6表3は
その結果である。
Next, a thermal cycle test was conducted using the test piece after the above oxidation test. Test conditions were 750°C, 15 minutes hold, 20
Table 3 shows the results of repeated holding for 15 seconds in ~25°C water.

表   3 熱サイクル試験結果 表3中の試料はそれぞれの酸化試験を実施した後の試料
である。表3中Nα1〜魔3の従来のTBCは200〜
500回の熱サイクル試験でZrOz−8%yzoa被
覆層が剥離しTBCが損傷した。
Table 3 Thermal Cycle Test Results The samples in Table 3 are samples after each oxidation test was conducted. The conventional TBC of Nα1 to Magic 3 in Table 3 is 200~
After 500 thermal cycle tests, the ZrOz-8% yzoa coating layer peeled off and the TBC was damaged.

一方、表3中Nα7〜Nα11の本発明のTBCは、1
400〜1700回の熱サイクルの繰り返し後も損傷が
無く、最高1700回の熱サイクル試験でTBCの損傷
が認められた。このように本発明のTBCは従来のTB
Cに比べ高温耐酸化性、あるいは耐熱WI撃性に優れた
耐久性に富むTBCである。
On the other hand, the TBC of the present invention of Nα7 to Nα11 in Table 3 is 1
There was no damage even after 400 to 1700 thermal cycles, and damage to the TBC was observed after a maximum of 1700 thermal cycles. In this way, the TBC of the present invention is similar to the conventional TB.
It is a highly durable TBC with superior high temperature oxidation resistance or heat WI impact resistance compared to C.

実施例2 実施例1と同様の材料を用い、実施例1と同様の方法で
TBCを作成した。しかる後、1060℃、3時間の真
空中加熱を行ない、Co、Ni。
Example 2 A TBC was created using the same materials as in Example 1 and in the same manner as in Example 1. After that, heating was performed in vacuum at 1060°C for 3 hours to form Co and Ni.

Cr、Al、Y被覆層から成る結合層と基材との拡散処
理を行なった。更に、その後、1000℃、15時間の
大気中加熱処理を行なった。このようにして作製した本
発明のTBCはZr0z −8%Y2.08被覆層とC
o t N x + Cr HA Q t Y被覆層と
の界面部に約2μmの厚さの境界層がほぼ均一に形成さ
れていた。この境界層はEPNA分析或いはX41回折
の結果、Afl系酸化物を主成分とするものであること
が判った。なお、比較のため、本発明のTBCと同じ材
料を用いて、従来方法でTBCを作成し、更に、そのT
BCを本発明のTBCと同じ真空中拡散処理及び大気中
加熱処理を行なった。表3中Nα101及びNα102
はこのようにして作成した本発明のTBC及び比較のた
めの従来のTBCを用いて、実施例1と同様の熱サイク
ル試験を行なった結果である。表3中Nα101の従来
のTBCは約500回の繰り返しでZr0z−8%Yz
Oa被覆層が剥離した。一方。
A bonding layer consisting of Cr, Al, and Y coating layers and a base material were subjected to a diffusion treatment. Furthermore, after that, heat treatment was performed in the air at 1000° C. for 15 hours. The TBC of the present invention produced in this way has a Zr0z -8% Y2.08 coating layer and a C
A boundary layer with a thickness of about 2 μm was almost uniformly formed at the interface with the o t N x + Cr HA Q t Y coating layer. As a result of EPNA analysis or X41 diffraction, it was found that this boundary layer was mainly composed of Afl-based oxides. For comparison, a TBC was prepared by the conventional method using the same material as the TBC of the present invention, and the TBC was
The BC was subjected to the same vacuum diffusion treatment and atmospheric heat treatment as the TBC of the present invention. Nα101 and Nα102 in Table 3
These are the results of a thermal cycle test similar to that in Example 1 using the thus prepared TBC of the present invention and a conventional TBC for comparison. In Table 3, the conventional TBC of Nα101 is Zr0z-8%Yz after about 500 repetitions.
The Oa coating layer peeled off. on the other hand.

表3中&1o2の本発明のTBCは約1500回の繰り
返しで損傷が生じた。このように、本発明のTBCは、
従来のTBCに比べ約3倍の耐久性がある。
The TBC of the present invention labeled &1o2 in Table 3 was damaged after about 1500 repetitions. Thus, the TBC of the present invention
It has approximately three times the durability compared to conventional TBC.

実施例3 実施例1と同様の材料を用い、実施例1の同様の方法で
結合層を形成し、しかる後実施例1と同様の方法でAM
被覆層を形成した。その後、 ioo。
Example 3 A bonding layer was formed using the same materials as in Example 1 and in the same manner as in Example 1, and then AM was formed in the same manner as in Example 1.
A coating layer was formed. Then ioo.

℃、15時間の大気中加熱処理を行なった6その後、実
施例1と同じ方法でセラミック被覆層を形成した。
C. for 15 hours in the air.6 Thereafter, a ceramic coating layer was formed in the same manner as in Example 1.

このような本発明の方法で形成したTBCはセラミック
被覆管と結合層との界面部に約2μmの厚さのAl20
8から成る境界層がほぼ均一に形成されていた。
The TBC formed by the method of the present invention has an Al20 layer with a thickness of about 2 μm at the interface between the ceramic cladding tube and the bonding layer.
A boundary layer consisting of 8 layers was formed almost uniformly.

又このようにして得られたTBCの耐久性は実施例2の
場合とほぼ同様であった。
Furthermore, the durability of the TBC thus obtained was almost the same as in Example 2.

実施例4 実施例1と同様の材料を用い、実施例1と同様の方法で
結合層を形成し、しかる後、前述の結合層の表面にAl
lを蒸着し、約3μmの厚さのAl被覆層を形成した。
Example 4 A bonding layer was formed using the same material as in Example 1 and in the same manner as in Example 1, and then Al was applied to the surface of the bonding layer.
1 was deposited to form an Al coating layer with a thickness of about 3 μm.

その後、実施例1と同様にセラミック被覆層を形成した
。更にこのようにして得られたTBCを1000℃、1
5時間の大気中加熱処理を行なった。このような本発明
の方法で形成したTBCはセラミック被覆層と結合層と
の境界部に約2.5 μmの厚さのAl2z’Oaから
成る境界層がほぼ均一に形成されていた。又このように
して得られたTBCの耐久性は実施例2の場合とほぼ同
様であった。
Thereafter, a ceramic coating layer was formed in the same manner as in Example 1. Furthermore, the TBC obtained in this way was heated at 1000°C for 1
Heat treatment was performed in the air for 5 hours. In the TBC formed by the method of the present invention, a boundary layer made of Al2z'Oa with a thickness of about 2.5 μm was formed almost uniformly at the boundary between the ceramic coating layer and the bonding layer. Furthermore, the durability of the TBC thus obtained was almost the same as in Example 2.

実施例5 実施例1と同様の材料を用い、実施例1と同様の方法で
結合層を形成し、しかる後、前述の結合層の表面にA 
Q CQ a とH2混合ガスを流し、結合層の表面に
約2μmのAl被覆層を形成した。
Example 5 A bonding layer was formed using the same material as in Example 1 and in the same manner as in Example 1, and then A was applied to the surface of the bonding layer.
A mixed gas of Q CQ a and H2 was flowed to form an Al coating layer of about 2 μm on the surface of the bonding layer.

このようなAl被覆層を形成する条件は基材温度700
℃で約1時間である。しかる後、AΩ被覆層を有した結
合層の上に実施例1と同様にセラミック被覆層を形成し
た。更に1000℃、15時間の大気中加熱処理を行な
った。このような本発明の方法で形成したTBCはセラ
ミック被覆層と結合層との境界部に約2μmの厚さのA
Ω20Bから成る境界層がほぼ均一に形成されていた。
The conditions for forming such an Al coating layer are a substrate temperature of 700
℃ for about 1 hour. Thereafter, a ceramic coating layer was formed in the same manner as in Example 1 on the bonding layer having the AΩ coating layer. Further, heat treatment was performed in the air at 1000° C. for 15 hours. The TBC formed by the method of the present invention has a thickness of approximately 2 μm at the boundary between the ceramic coating layer and the bonding layer.
A boundary layer consisting of Ω20B was formed almost uniformly.

又このようにして得られたTBCの耐久性は実施例2の
場合とほぼ同様であった。
Furthermore, the durability of the TBC thus obtained was almost the same as in Example 2.

次に、ガスタービン燃焼器ライナに適用した例を第2図
に示した。
Next, FIG. 2 shows an example in which the present invention is applied to a gas turbine combustor liner.

TBCの施工部分は第3図の燃焼器ライナ1の円筒状の
部品の内面である。この燃焼器ライナ1の下流部1aは
、冷却空気開孔部(以下ルーバ2と称す)があるがメタ
ル温度が非常に高くなるため第2図のAで示した部分に
TBCを施工するようにした。燃焼器ライナ1の基材の
材質はハステロイ−x(22%Cr −1、5%Co−
9%MO−19%Fe−0,1%C−残Ni)である。
The construction part of the TBC is the inner surface of the cylindrical part of the combustor liner 1 shown in FIG. The downstream part 1a of the combustor liner 1 has a cooling air opening (hereinafter referred to as louver 2), but since the metal temperature becomes very high, a TBC is installed in the part shown by A in Fig. 2. did. The material of the base material of the combustor liner 1 is Hastelloy-x (22% Cr-1, 5% Co-
9% MO-19% Fe-0,1% C-remaining Ni).

AIl系酸化物を有するTBCの形成はプラズマ溶射を
用いて行なった。その詳細は以下のようである。先ず、
ライナを脱脂洗浄し、その後、AlzOB製グリッドグ
リッドプラスチングした。このような基材表面に直ちに
10%Ni−25%Cr−7%Al−0.6 %Y−5
%Ta−残部coから成る合金材料をプラズマ溶射し結
合層を形成した。
The TBC containing Al-based oxide was formed using plasma spraying. The details are as follows. First of all,
The liner was degreased and cleaned and then grid plasted with AlzOB. 10%Ni-25%Cr-7%Al-0.6%Y-5 is immediately applied to the surface of such a base material.
An alloy material consisting of % Ta and balance Co was plasma sprayed to form a bonding layer.

このような結合層の形成条件としてはプラズマ出力は高
出力であることが望ましく、かつ、溶融中のプラズマジ
ェット周辺の雰囲気を制御することが望ましい。特に、
雰囲気制御の要素としては酸素分圧を少くする、望まし
くは10−3気圧以下にすることが好ましい。又、雰囲
気制御の他の要素として減圧雰囲気で実施するのが望ま
しい。このような雰囲気制御を行うことによって本発明
を得る上で好ましい結合層を形成することが可能になる
。本実施例では、酸素分圧を10−8気圧以下にしたA
r雰囲気中で、かつ、その雰囲気圧力を200Torr
に制御した雰囲気中で行なった。又、溶射中の基材温度
は5oO〜1000℃に維持して行うのが、本発明を得
る上で好ましい。本実施例では6.00〜700℃の範
囲内で行なった。このような条件下で、厚さ約Q、1m
m厚さの結合層を形成した。しかる後、実施例1と同様
の方法で、結合層の表面に約2μmのAlQ覆層を形成
した。
As conditions for forming such a bonding layer, it is desirable that the plasma output be high and that the atmosphere around the plasma jet during melting be controlled. especially,
As an element of atmosphere control, it is preferable to reduce the oxygen partial pressure, preferably to 10 −3 atmospheres or less. Further, as another element of atmosphere control, it is desirable to carry out the process in a reduced pressure atmosphere. By controlling the atmosphere in this manner, it becomes possible to form a bonding layer that is preferable for obtaining the present invention. In this example, A
r atmosphere and the atmospheric pressure is 200 Torr.
It was carried out in a controlled atmosphere. Further, in order to obtain the present invention, it is preferable to maintain the substrate temperature during thermal spraying at 5oO to 1000°C. In this example, the temperature was within the range of 6.00 to 700°C. Under these conditions, the thickness of about Q, 1m
A bonding layer of m thickness was formed. Thereafter, in the same manner as in Example 1, an approximately 2 μm thick AlQ covering layer was formed on the surface of the bonding layer.

しかる後、結合層の上にZr0z −6%YzOsから
成るセラミック材の被覆層を形成した。被覆層はプラズ
マ溶射で形成した。溶射条件は、高出力プラズマ溶射法
を用い、55kWの出力で実施した。被覆層の厚さは約
0.3niである。このようにして、TBCを形成した
後、部品を真空中で加熱し、結合層とセラミック被覆層
の境界部のAlの結合層中への拡散処理と結合層と基材
との拡散処理を実施した。拡散処理は、約10−’To
rrの真空中で1060”C15時間保持する条件であ
る。
Thereafter, a coating layer of a ceramic material consisting of Zr0z -6% YzOs was formed on the bonding layer. The coating layer was formed by plasma spraying. Thermal spraying was carried out using a high-power plasma spraying method with an output of 55 kW. The thickness of the covering layer is approximately 0.3 ni. After forming the TBC in this way, the component is heated in a vacuum, and aluminum at the boundary between the bonding layer and the ceramic coating layer is diffused into the bonding layer and between the bonding layer and the base material. did. The diffusion process is about 10-'To
The conditions are to hold 1060"C in a vacuum of rr for 15 hours.

しかる後、大気中で900℃、20時間の熱処理を実施
した。拡散処理或いは熱処理の条件については、特に制
限は無いが拡散処理は基材の溶射体温度以下、800℃
以上の範囲で、3時間以上100時間以下の範囲で行う
のが望ましく、一方、熱処理は600以上1200℃以
下の範囲で1時間以上、200時間以下の範囲で行うの
が望ましい。このようにして、Al系系膜膜有するTB
Cを被覆した本発明の燃焼器ライナを作製した。なお、
燃焼器ライナ1は第3図に示したような冷却用のルーバ
2を有する構造である。ルーバ2を冷却効果を十分に発
揮させるためにその寸法を所定の範囲内に入れる必要が
ある。ルーバ一部でTBCの厚さが極度に厚くなった場
合、その部分の冷却効果が著しく低下し基材の温度上昇
を招く。更に、TBCの厚さが局部的に厚くなった場合
、その部分のTBCの耐久性は著しく低下する。そこで
本実施例では第4図中に示したBの角度範囲すなわち9
0度以下で内面3に行うようにした。このような条件下
で、結合層或いはZr0z −6%Y2O3被覆層を形
成することによって、ルーバ一部でTBCの厚さが厚く
ないTBCが得られた。
Thereafter, heat treatment was performed at 900° C. for 20 hours in the air. There are no particular restrictions on the conditions for the diffusion treatment or heat treatment, but the diffusion treatment should be performed at a temperature below the temperature of the sprayed body of the base material, at 800°C.
Within the above range, it is desirable to carry out the heat treatment for at least 3 hours and at most 100 hours, while the heat treatment is desirably carried out at a temperature of at least 600° C. and at most 1200° C. for at least 1 hour and at most 200 hours. In this way, TB with Al-based film
A combustor liner of the present invention coated with C was prepared. In addition,
The combustor liner 1 has a structure including cooling louvers 2 as shown in FIG. In order for the louver 2 to sufficiently exhibit its cooling effect, its dimensions must fall within a predetermined range. If the thickness of the TBC becomes extremely thick in a part of the louver, the cooling effect of that part will be significantly reduced, leading to an increase in the temperature of the base material. Furthermore, when the thickness of the TBC becomes locally thick, the durability of the TBC in that area is significantly reduced. Therefore, in this embodiment, the angle range of B shown in FIG.
The test was performed on the inner surface 3 at temperatures below 0 degrees. By forming a bonding layer or a Zr0z -6% Y2O3 coating layer under these conditions, a TBC in which the thickness of the TBC was not thick in a portion of the louver was obtained.

このようにして形成した燃焼器ライナのTBCは、その
断面組織は第1図とほぼ同様で、結合層とZr0z −
6%Y2O3被覆層との界面部に約3μm厚さのAM系
酸化物から成る境界層が形成されていた。この燃焼器ラ
イナを用いて、1000℃、30分間保持と20〜25
℃の水中5分間保持を繰り返す熱サイクル試験を実施し
た。又、比較のため、AD系酸化物の薄膜を有しないT
BCを本発明の燃焼器ライナと同様に形成したものを用
いて、同様の熱サイクル試験を実施した。その結果、本
発明の燃焼器ライナは50回の繰り返しでもTBCに何
ら損傷は生じなかったが、従来のTBCを施した燃焼器
ライナでは約90回でTBGの損傷が生じた。
The TBC of the combustor liner formed in this way has a cross-sectional structure almost similar to that shown in Fig. 1, and has a bonding layer and Zr0z-
A boundary layer made of AM-based oxide and having a thickness of about 3 μm was formed at the interface with the 6% Y2O3 coating layer. Using this combustor liner, hold at 1000℃ for 30 minutes and
A thermal cycle test was conducted in which the sample was repeatedly held in water at ℃ for 5 minutes. Also, for comparison, T without a thin film of AD-based oxide
A similar thermal cycle test was conducted using a BC formed similarly to the combustor liner of the present invention. As a result, the combustor liner of the present invention did not cause any damage to the TBC even after 50 cycles, whereas the combustor liner with the conventional TBC suffered damage to the TBG after about 90 cycles.

上記のようにして作製した本発明の燃焼器ライナと比較
のため作製した従来の燃焼器ライナとを用いてそれぞれ
同一の条件下で燃焼試験を実施した。その結果、約15
00時間の試験で、従来のTBCでは第2図のAの範囲
で示した冷却用ルーバーの無い部分でTBCの損傷が生
じていた。一方1本発明の燃焼器ライナは全ての部分に
おいても、TBCの損傷は認められなかった6次に、第
2図のAの範囲の部分について、試験後の燃焼器ライナ
を切断しTBCの状態を観察した。その結果、断面組織
のa察で、TBCの各部において何ら損傷は生じていな
かった。
A combustion test was conducted under the same conditions using the combustor liner of the present invention produced as described above and a conventional combustor liner produced for comparison. As a result, about 15
In the 00 hour test, damage to the conventional TBC occurred in the area where there was no cooling louver, as shown in the area A in Figure 2. On the other hand, 1. No damage to the TBC was observed in any part of the combustor liner of the present invention. 6.Next, the combustor liner after the test was cut in the area A in Fig. 2, and the TBC condition was observed. As a result, inspection of the cross-sectional structure revealed that no damage had occurred in any part of the TBC.

又、本発明の燃焼器ライナでは第2図のAの範囲の部分
のライナ径の寸法変化は約3%以下であった。一方、T
BCが損傷した従来の燃焼器ではその寸法変化はライナ
径の約5%と大きくなっていた。以上のように、本発明
の燃焼器ライナはTBCの効果が長時間にわたって維持
される結果。
Further, in the combustor liner of the present invention, the dimensional change in the liner diameter in the area A in FIG. 2 was about 3% or less. On the other hand, T
In a conventional combustor with damaged BC, the dimensional change was as large as about 5% of the liner diameter. As described above, the combustor liner of the present invention maintains the TBC effect over a long period of time.

燃焼器ライナの変形等の問題を防止する上で十分な効果
がある。
This is sufficiently effective in preventing problems such as deformation of the combustor liner.

第4図に示した構造の燃焼器ライナに対して本発明を適
用した。この構造の燃焼器ライナは第4図のCで示した
範囲の基材の温度上昇が著しい゛。
The present invention was applied to a combustor liner having the structure shown in FIG. In the combustor liner having this structure, the temperature of the base material increases significantly in the range shown by C in FIG.

そこで、第2図の場合と同様の被覆層材料を用いて同様
の条件で第4図のCの部分の内面側の燃焼ガスにさらさ
れる部分にTBCを施し、本発明の燃焼器ライナを作製
した。比較のため、第4図のCの部分に、Al系酸化物
の薄膜を有しない従来のTBCを施した燃焼器ライナを
作製した。それぞれの燃焼器ライナを用いて、同一の燃
焼条件下で試験を実施した。その結果、本発明の燃焼器
ライナでは約2000時間の試験後においてもTBCの
損傷は認められず、ライナ径の変化等の燃焼器ライナの
変形も生じなかった。一方、従来のTBGを施した燃焼
器ライナは約2000時間の試験後、TBCは著しく損
傷していた。又、その部分のライナ径の変化も大きく、
燃焼器ライナの変形が生じていた。このように、基材の
温度が高くなる部分に対してのみTBCを施した本発明
の燃焼器ライナは耐久性或いは信頼性に十分価れたもの
である。なお、第4図に示した燃焼器ライナに対して、
第2図の例と同様にライナの内面全面にTBCを施した
もにおいても1本実施例と同じ効果が得られる。
Therefore, the combustor liner of the present invention was fabricated by applying TBC to the inner surface of portion C in FIG. 4, which is exposed to combustion gas, using the same coating layer material as in FIG. 2 and under the same conditions. did. For comparison, a combustor liner was prepared in which a conventional TBC without an Al-based oxide thin film was applied to the portion C in FIG. 4. Tests were conducted under identical combustion conditions using each combustor liner. As a result, in the combustor liner of the present invention, no damage to the TBC was observed even after about 2000 hours of testing, and no deformation of the combustor liner such as a change in liner diameter occurred. On the other hand, in the combustor liner with conventional TBG, the TBC was significantly damaged after approximately 2000 hours of testing. Also, the change in liner diameter in that area is large,
Deformation of the combustor liner had occurred. As described above, the combustor liner of the present invention, in which TBC is applied only to the portions of the base material where the temperature becomes high, has sufficient durability and reliability. Furthermore, for the combustor liner shown in Fig. 4,
Similar to the example shown in FIG. 2, the same effect as in this embodiment can be obtained even when TBC is applied to the entire inner surface of the liner.

なお、TBCを構成する結合層材料はAlが5%以以上
3拓 又,セラミック被覆層を構成する材料は、ZrO2を主
成分とし、安定化剤として,Cab,MgQ。
The bonding layer material constituting the TBC contains 5% or more of Al, and the material constituting the ceramic coating layer contains ZrO2 as a main component, with Cab and MgQ as stabilizers.

Y2O3等のいずれか一つを含むものが好ましい。Those containing any one of Y2O3 and the like are preferred.

又,それぞれの被覆層の厚さに関しては、TBCの遮熱
効果と耐久性の点を考慮した場合,結合層は0.03w
以上0.5園以下.Zr0z系被覆層は0.05■以上
0.8■以下が好ましい。
Regarding the thickness of each coating layer, considering the heat shielding effect and durability of TBC, the bonding layer should be 0.03w.
More than 0.5 gardens or less. The thickness of the Zr0z-based coating layer is preferably 0.05 or more and 0.8 or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、結合層の酸化腐蝕
の進行を防止できるので,セラミック被覆層の結合強度
を長期間にわたり,安定的に維持することができる。
As explained above, according to the present invention, progress of oxidative corrosion of the bonding layer can be prevented, so that the bonding strength of the ceramic coating layer can be stably maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施したTBCの断面組織写真、第
2図は.TBCを施すガスタービン燃焼器の外観図,第
3図は第2図■−■線に沿う断面図,第4図1±、TB
Cを施した別のタイプの燃焼器の外観図である。 1・・・燃焼器ライナ、2・・・ルーバ。 ・−一,′ め (の #7喝 蔓3 阻
Fig. 1 is a photograph of the cross-sectional structure of TBC according to the present invention, and Fig. 2 is a photograph of the cross-sectional structure of TBC according to the present invention. External view of the gas turbine combustor to which TBC is applied, Figure 3 is a sectional view taken along line ■-■ in Figure 2, Figure 4 is 1±, TB
FIG. 3 is an external view of another type of combustor subjected to C. 1... Combustor liner, 2... Louver.・-1,'me (#7 cheering vine 3

Claims (1)

【特許請求の範囲】 1、Ni、Co、Feの少なくとも1種を主成分とする
基材上に、前記基材よりも高温耐酸化、高温耐食性に優
れた合金の結合層を形成し、前記結合層上にセラミック
から成る被覆層を形成する耐熱部材の製造法において、
前記結合層を形成したのちその上にAl被覆層を形成す
る工程を含み、更に前記Al被覆層をAl酸化物に変換
する工程を含むことを特徴とするセラミック被覆耐熱部
材の製造方法。 2、特許請求の範囲第1項において、前記セラミック被
覆層を構成する材料が、ZrO_2を主成分とし、Ca
O、MgO、Y_2O_3のいずれか1つもしくはそれ
らを組み合せたものを含むことを特徴とするセラミック
被覆耐熱部材の製造方法。 3、特許請求の範囲第1項において、前記合金の結合層
を構成する材料が、CoあるいはNiのいずれか1つを
主成分とし、Crを10〜30重量%及びAlを5〜3
0重量%含み、更にHf、Ta、Y、Si、Zrの1つ
以上を0.1〜5重量%含む合金よりなることを特徴と
するセラミック被覆耐熱部材の製造方法。 4、特許請求の範囲第1項において、前記酸化物層の厚
さが0.1μm〜20μmであることを特徴とするセラ
ミック被覆耐熱部材の製造方法。 5、特許請求の範囲第4項において、前記合金の結合層
の厚さが0.03mm〜0.5mm、前記セラミック被
覆層の厚さが0.05mm〜0.8mmであることを特
徴とするセラミック被覆耐熱部材の製造方法。 6、特許請求の範囲第1項において、前記合金の結合層
を、酸素分圧10^−^3気圧以下の雰囲気中でプラズ
マ溶射にて形成することを特徴とするセラミック被覆耐
熱部材の製造方法。 7、特許請求の範囲第1項において、前記酸化物層を形
成する工程は、600℃〜1200℃の温度範囲で1時
間〜200時間、大気中で加熱処理する工程を含むこと
を特徴とするセラミック被覆耐熱部材の製造方法。
[Scope of Claims] 1. A bonding layer of an alloy having superior high temperature oxidation resistance and high temperature corrosion resistance than the base material is formed on a base material containing at least one of Ni, Co, and Fe as a main component; In a method for manufacturing a heat-resistant member in which a coating layer made of ceramic is formed on a bonding layer,
A method for manufacturing a ceramic-coated heat-resistant member, comprising the steps of forming the bonding layer and then forming an Al coating layer thereon, and further comprising the step of converting the Al coating layer into Al oxide. 2. In claim 1, the material constituting the ceramic coating layer contains ZrO_2 as a main component and Ca
A method for manufacturing a ceramic-coated heat-resistant member, characterized in that it contains any one of O, MgO, Y_2O_3, or a combination thereof. 3. In claim 1, the material constituting the bonding layer of the alloy contains either Co or Ni as a main component, 10 to 30% by weight of Cr, and 5 to 3% by weight of Al.
1. A method for manufacturing a ceramic-coated heat-resistant member, characterized in that the alloy is made of an alloy containing 0% by weight and further 0.1 to 5% by weight of one or more of Hf, Ta, Y, Si, and Zr. 4. The method for manufacturing a ceramic-coated heat-resistant member according to claim 1, wherein the oxide layer has a thickness of 0.1 μm to 20 μm. 5. Claim 4, characterized in that the alloy bonding layer has a thickness of 0.03 mm to 0.5 mm, and the ceramic coating layer has a thickness of 0.05 mm to 0.8 mm. A method for manufacturing a ceramic-coated heat-resistant member. 6. A method for manufacturing a ceramic-coated heat-resistant member according to claim 1, characterized in that the bonding layer of the alloy is formed by plasma spraying in an atmosphere with an oxygen partial pressure of 10^-^3 atm or less. . 7. In claim 1, the step of forming the oxide layer includes a step of heat treatment in the air at a temperature range of 600° C. to 1200° C. for 1 hour to 200 hours. A method for manufacturing a ceramic-coated heat-resistant member.
JP5248886A 1986-03-12 1986-03-12 Production of ceramic coated heat resistant member Pending JPS62211387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248886A JPS62211387A (en) 1986-03-12 1986-03-12 Production of ceramic coated heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248886A JPS62211387A (en) 1986-03-12 1986-03-12 Production of ceramic coated heat resistant member

Publications (1)

Publication Number Publication Date
JPS62211387A true JPS62211387A (en) 1987-09-17

Family

ID=12916099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248886A Pending JPS62211387A (en) 1986-03-12 1986-03-12 Production of ceramic coated heat resistant member

Country Status (1)

Country Link
JP (1) JPS62211387A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073061C (en) * 1996-09-19 2001-10-17 株式会社东芝 Thermal insulation coating components, their manufacture and gas turbine parts using them
EP1816236A1 (en) * 2006-02-06 2007-08-08 Hamilton Sundstrand Corporation Coating process for fatigue critical components
US7445434B2 (en) 2003-03-24 2008-11-04 Tocalo Co., Ltd. Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same
EP1995350A1 (en) 2007-04-18 2008-11-26 Hitachi, Ltd. High temperature component with thermal barrier coating
EP2270313A2 (en) 2009-06-30 2011-01-05 Hitachi, Ltd. High-temperature resistant gas turbine component
US7901790B2 (en) 2004-09-28 2011-03-08 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same
EP2471974A1 (en) 2010-12-28 2012-07-04 Hitachi Ltd. Gas turbine component having thermal barrier coating and a gas turbine using the component
EP2725120A1 (en) 2012-10-24 2014-04-30 Hitachi Ltd. High temperature components with thermal barrier coatings for gas turbine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073061C (en) * 1996-09-19 2001-10-17 株式会社东芝 Thermal insulation coating components, their manufacture and gas turbine parts using them
US7445434B2 (en) 2003-03-24 2008-11-04 Tocalo Co., Ltd. Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same
US7901790B2 (en) 2004-09-28 2011-03-08 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same
EP1816236A1 (en) * 2006-02-06 2007-08-08 Hamilton Sundstrand Corporation Coating process for fatigue critical components
US7854966B2 (en) 2006-02-06 2010-12-21 Hamilton Sundstrand Corporation Coating process for fatigue critical components
US8182931B2 (en) 2006-02-06 2012-05-22 Hamilton Sundstrand Corporation Coated fatigue critical components
EP1995350A1 (en) 2007-04-18 2008-11-26 Hitachi, Ltd. High temperature component with thermal barrier coating
EP2270313A2 (en) 2009-06-30 2011-01-05 Hitachi, Ltd. High-temperature resistant gas turbine component
JP2011012287A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Heat-resistant member, and gas turbine hot part
US8460799B2 (en) 2009-06-30 2013-06-11 Hitachi, Ltd. High-temperature resistant component and gas turbine hot part
EP2471974A1 (en) 2010-12-28 2012-07-04 Hitachi Ltd. Gas turbine component having thermal barrier coating and a gas turbine using the component
EP2725120A1 (en) 2012-10-24 2014-04-30 Hitachi Ltd. High temperature components with thermal barrier coatings for gas turbine

Similar Documents

Publication Publication Date Title
JP4166977B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
US5236745A (en) Method for increasing the cyclic spallation life of a thermal barrier coating
EP1640477B2 (en) High temperature component with thermal barrier coating and gas turbine using the same
US4942732A (en) Refractory metal composite coated article
JP3302589B2 (en) Ceramic coated gas turbine blade
JPH01279781A (en) Ceramic coated heat resistant member
CA1306146C (en) Refractory metal composite coated article
US20090110904A1 (en) Sandwich Thermal Insulation Layer System and Method for Production
US5223045A (en) Refractory metal composite coated article
JPH0251978B2 (en)
JP2008266698A (en) Heat resistant member with thermal barrier coating
KR20030011690A (en) Thermal barrier coating
US4927714A (en) Refractory metal composite coated article
JPS63118059A (en) Adiabatic coating method and gas turbine combustor
JP2002339052A (en) Heat-insulating film coated member and thermal-spray powder
JPS62211387A (en) Production of ceramic coated heat resistant member
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPS61174385A (en) Ceramic-coated fire resistant member and its production
GB2159838A (en) Surface strengthening of overlay coatings
JPS62211390A (en) Ceramic coated heat resistant member and its production
JPH0688197A (en) Surface layer of dynamic and static vanes
JPS62211389A (en) Ceramic coated turbo charger and its production
JPS62211386A (en) Ceramic coated heat resistant member and its production
JPS62210327A (en) Gas turbine combustor coated with ceramic and manufacture thereof
JPH0978257A (en) Thermal insulation coating material