JPS62203024A - Fabry-perot spectroscope - Google Patents

Fabry-perot spectroscope

Info

Publication number
JPS62203024A
JPS62203024A JP4529586A JP4529586A JPS62203024A JP S62203024 A JPS62203024 A JP S62203024A JP 4529586 A JP4529586 A JP 4529586A JP 4529586 A JP4529586 A JP 4529586A JP S62203024 A JPS62203024 A JP S62203024A
Authority
JP
Japan
Prior art keywords
fabry
wavelength
light
interval
perot interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4529586A
Other languages
Japanese (ja)
Inventor
Minokichi Ban
箕吉 伴
Osamu Konouchi
此内 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4529586A priority Critical patent/JPS62203024A/en
Priority to US07/019,665 priority patent/US4850709A/en
Priority to DE19873706833 priority patent/DE3706833A1/en
Publication of JPS62203024A publication Critical patent/JPS62203024A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enhance wavelength resolving power by widening a spectral diffraction wavelength region, by a method wherein the interval and first and second angles of refraction of interference plates are selected properly and a wavelength intensified by the generation of interference is specified to perform the spectral diffraction only of the specified wavelength. CONSTITUTION:The beam emitted from a beam source 20 is converted to a parallel beam by a collimator lens 21 and incident to Fabry-Perot interference plates 17 so as to set a predetermined angle theta1' of refraction. These interference plates 17 are constituted so that half mirrors having high reflectivity are parallelly held on two planes at a predetermined interval by a piezoelectric element and the interval therebetween is made changeable in a predetermined range. The beam transmitted through said interference plates 17 is reflected by reflecting mirrors 23, 24, 25 to be again incident to the interference plates 17 at a predetermined angle theta2'. Then, by condensing the spectrally diffracted beam by a condensing lens 26, the beam of the beam source 20 can be spectrally diffracted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はファブリ・ペロー干渉板を用いた分光装置に関
し、詳しくは、同一ファプリ・(ロー干渉板に入射角あ
るいは屈折角の異なる光束を複数回入射式せることを特
徴としたファブリ・ペロー分光装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a spectroscopic device using a Fabry-Perot interference plate. This invention relates to a Fabry-Perot spectrometer characterized by a double-injection type.

〔従来の技術〕[Conventional technology]

各種の分光装置の中でファブリ・ペロー分光装置は、波
長分解能の高い分光装置として古くからよく知られてい
る。
Among various spectroscopic devices, the Fabry-Perot spectroscopic device has been well known for a long time as a spectroscopic device with high wavelength resolution.

第4図はファブリ・ペロー分光装置の基本原理の説明図
である。
FIG. 4 is an explanatory diagram of the basic principle of a Fabry-Perot spectrometer.

同図において、1,3はそれぞれ高反射膜、2゜4はそ
れぞれガラス板、5は入射光、6は透過光でめる。ファ
ブリ・ペロー分光装置においては、高反射[1の設けら
れたガラス板2と同様の高反射膜3の設けられたガラス
板4が間隔りをもって平行に対向してなるファブリ・ペ
ロー干渉板が使用される。
In the figure, 1 and 3 are high reflection films, 2.degree. 4 are glass plates, 5 is incident light, and 6 is transmitted light. In the Fabry-Perot spectrometer, a Fabry-Perot interference plate is used, which consists of a glass plate 2 provided with a high reflection [1] and a glass plate 4 provided with a similar high reflection film 3, facing each other in parallel with an interval. be done.

このファブリ・ペロー干渉板にある所定の入射角で、色
々な波長をもつ入射光5を入射させた時、透過光6は次
式で与えられる。ある波長λGの入射光強度工(1)に
対する透過光強度!(t)の比、透過率Tは。
When incident light 5 having various wavelengths is made incident on this Fabry-Perot interference plate at a predetermined angle of incidence, the transmitted light 6 is given by the following equation. Transmitted light intensity for incident light intensity (1) of a certain wavelength λG! (t) ratio, transmittance T is.

となる。ここでn′は媒体の屈折率、hはガラス板4の
間隔、θ′は媒体n′内での屈折角、Rは高反射膜1及
び2の反射率である。(参照:“Pr1ncipl@s
of Opticm”3rd Edition、M、 
Born and E、Wolf。
becomes. Here, n' is the refractive index of the medium, h is the interval between the glass plates 4, θ' is the refraction angle within the medium n', and R is the reflectance of the high reflective films 1 and 2. (Reference: “Pr1ncipl@s
of Opticm"3rd Edition, M,
Born and E, Wolf.

Pergamon Pr@s@e 1965年、327
頁)間隔りと屈折角θ′を一定とした時、波長λに対す
る透過率では第5図のようになる。すなわち複数の波長
が透過する。上記(1)式よシ、Tはδの周期関数とな
ってお!D、(2)式においてδ=2πN(但しNは整
数)の時、Tは最大となシ、その時の波長λNが透過す
る。
Pergamon Pr@s@e 1965, 327
Page) When the spacing and the refraction angle θ' are constant, the transmittance for the wavelength λ is as shown in FIG. That is, multiple wavelengths are transmitted. According to equation (1) above, T is a periodic function of δ! D, in equation (2), when δ=2πN (where N is an integer), T is maximum, and the wavelength λN at that time is transmitted.

いま、媒質n′=1とすると、(2)式よシとなシ、透
過光λNは次のようになる。
Now, if the medium n'=1, then according to equation (2), the transmitted light λN is as follows.

劇 具体的にh=10m、θ′=Oとした時は表1に示すよ
うになる。
Specifically, when h=10m and θ'=O, the results are shown in Table 1.

(表1) また、h=1.6X10””露、θ′=06とした時は
表2に示すようになる。
(Table 1) Furthermore, when h=1.6×10'' dew and θ'=06, the results are shown in Table 2.

(表2) すなわち間隔りによって隣接波長間隔が大きく異なる。(Table 2) In other words, the interval between adjacent wavelengths varies greatly depending on the interval.

波長間隔は表1の場合では、 0.0000125/jm = 0.0125nmに対
して、表2の場合では0.07619μm(N=6とN
=7の時の波長差)となる。
The wavelength interval is 0.0000125/jm = 0.0125 nm in Table 1, whereas it is 0.07619 μm in Table 2 (N=6 and N
= 7).

波長分解能として第5図に示すように、隣接波長差に対
する半値巾ΔλNの比フィネスFで表現する。フィネス
Fは次式で求められる。
As shown in FIG. 5, the wavelength resolution is expressed by the relative finesse F of the half-width ΔλN with respect to the difference in adjacent wavelengths. Finesse F is determined by the following formula.

すなわち、フィネスFは(3)式のFで決まり、Fは反
射率8で決まることから、フィネスFは反射率Rで決ま
る0例えばR=0.95とすると7’=61.2 となシ、波長分解能は前記の間隔h = 10 mの時
0.0125(μm)761.2 =0.0002 n
mで、間隔h=1.6X10−’mの時0.07619
(μm)761.2 =0.0012μm ” 1.2
nmとなシ非常に高い分解能をもっている。しかし他方
、前述した例のように隣接波長の間隔が小さく、分光法
あるいは分光器としては波長域の狭い欠点をもりている
In other words, finesse F is determined by F in equation (3), and since F is determined by reflectance 8, finesse F is determined by reflectance R. For example, if R = 0.95, then 7' = 61.2. , the wavelength resolution is 0.0125 (μm) 761.2 = 0.0002 n when the above interval h = 10 m
m and the interval h=1.6X10-'m is 0.07619
(μm) 761.2 = 0.0012μm ” 1.2
It has an extremely high resolution of nanometers. However, on the other hand, as in the above-mentioned example, the interval between adjacent wavelengths is small, and the wavelength range is narrow, making it difficult to use as a spectrometer or spectrometer.

第6図は上記問題点に対拠するために、他の分光器(″
;Imリズム分光器)と組み合せることによシ、める特
定波長を高分解能で測定する装置を示したものでるる(
参照:Pr1nciples of 0ptics”。
Figure 6 shows another spectrometer (''
This shows a device that can measure a specific wavelength with high resolution by combining it with an Im rhythm spectrometer.
Reference: "Pr1nciples of 0ptics".

3rd Edi tlons M、 Born & E
@ Wolf + Pergamon Press。
3rd Eddie trons M, Born & E
@Wolf + Pergamon Press.

1965年、336頁)。(1965, p. 336).

同図において、7は光源、8はコリメーターレンズ、9
はファブリ・ペロー干渉板、10は結像レンズ、11は
ピンホール、12はコリメーターレンズ、13はプリズ
ム、14は結像レンズ、15は観測面である。
In the same figure, 7 is a light source, 8 is a collimator lens, and 9 is a light source.
10 is a Fabry-Perot interference plate, 10 is an imaging lens, 11 is a pinhole, 12 is a collimator lens, 13 is a prism, 14 is an imaging lens, and 15 is an observation surface.

光源から発せられた光はコリメーターレンズ8で平行光
にされた後、ファブリ・ペロー干渉板9で分光され、結
像レンズ10によってピンホール11上に結像する。ピ
ンホール11より光軸上の光取外をカットされた光は、
コリメーターレンズ12によシ再度平行光とされ、プリ
ズム13によシ各波長に出射角変化を起こさせた後、結
像レンズ14によって観察面15上に各波長の集光点を
位置的に分離される。このようにして前述の隣接波長を
分離することができる。
The light emitted from the light source is collimated by a collimator lens 8, separated by a Fabry-Perot interference plate 9, and focused onto a pinhole 11 by an imaging lens 10. The light cut off from the pinhole 11 on the optical axis is
The collimator lens 12 converts the light into parallel light, and the prism 13 changes the output angle of each wavelength. The imaging lens 14 positions the focal point of each wavelength on the observation surface 15. Separated. In this way, the aforementioned adjacent wavelengths can be separated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のような分光装置では他の分光器で
あるプリズム分光器を使うことが必要不可欠となり、両
分光器のマツチング(光軸合せ、収差の補正等)が必要
であることや、コン)J?タクトが失われる問題点がめ
りた。
However, in the above-mentioned spectroscopic device, it is essential to use another spectrometer, a prism spectrometer, and it is necessary to match the two spectrometers (optical axis alignment, aberration correction, etc.). J? The problem of loss of tact was solved.

よって、主に実用となっているファプリ・ベロー光装置
は分光域の狭いレーデ光の縦モード測定用に限られてい
るのが現状でめった。
Therefore, the Fabry-Berrot optical devices that are mainly in practical use are currently limited to the measurement of the longitudinal mode of Rede light with a narrow spectral range.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、上記従来技術の問題点を解決し、他の
分光装置等を併用することなく、広い分光波長域を有す
るファブリ・ペロー分光装置を提供することにろる。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a Fabry-Perot spectrometer that has a wide spectral wavelength range without using other spectrometers in combination.

以上のような目的を達成する1本発明のファプリ・ベロ
ー分光装置は、ファブリ・ペロー干渉板と、該ファブリ
・ペロー干渉板の間隔を変化せしめる制御手段と、前記
ファブリ・ペロー干渉板に第1の屈折角で光束を入射せ
しめる第1光学手段と、前記ファブリ・ペロー干渉板を
通過した光束を前記第1の屈折角とは異なる第2の屈折
角で再び前記ファブリ・ペロー干渉板に入射せしめる第
2光学手段とを有することを特徴としている。
A Fabry-Bello spectrometer of the present invention that achieves the above objects includes a Fabry-Perot interference plate, a control means for changing the interval of the Fabry-Perot interference plate, and a first a first optical means for making the light beam incident at a refraction angle; and a first optical means for making the light beam that has passed through the Fabry-Perot interference plate enter the Fabry-Perot interference plate again at a second refraction angle different from the first refraction angle. It is characterized by having a second optical means.

〔作用〕[Effect]

上記の如き装置によれば、ファブリ・ペロー干渉板の間
隔りと例えば、2回入射嘔せるときは、第1の屈折角θ
′1および第2の屈折角θ′2とを適当に選んでやるこ
とによって、干渉が起こシ強められる波長が特定される
ので、特定波長のみの分光ができることになり、使用波
長域が拡大する。
According to the above-mentioned apparatus, the distance between the Fabry-Perot interference plates and the first refraction angle θ, for example, when two incidences are used,
By appropriately selecting the refraction angle θ'1 and the second refraction angle θ'2, the wavelength at which interference occurs and is strengthened can be specified, making it possible to perform spectroscopy of only a specific wavelength, thereby expanding the usable wavelength range. .

〔実施例〕〔Example〕

以下、本発明に係るファプリ・ベロー分光装置について
、図面に基づき詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the Fabry-Bello spectrometer according to the present invention will be explained in detail based on the drawings.

第1図は本発明の原理図を示したものである。FIG. 1 shows a principle diagram of the present invention.

同図において、17はファブリ・ペロー干渉板、40は
第1人射光、41は第2人射光、42゜43はそれぞれ
反射ミラーである。
In the figure, 17 is a Fabry-Perot interference plate, 40 is a first human radiation beam, 41 is a second human radiation beam, and 42 and 43 are reflecting mirrors, respectively.

本発明のファブリ・ペロー分光装置は、ファブリ・ペロ
ー干渉板17に複数回、異った屈折角で光を入射させ、
所定の波長のみ透過させることを特徴とする分光装置で
おる。つまシ、光束(第1人射光40)を間隔りのファ
ブリ・ペロー干渉板17に第1の屈折角θ′1になるよ
うに入射させ、その透過光を反射ミラー42.43によ
シ再度ファブリ・ペロー干渉板17に第2の屈折角θ′
2になるように入射させる(第2人射光41を示す)こ
とにより、隣接波長を除去できる。
The Fabry-Perot spectrometer of the present invention allows light to enter the Fabry-Perot interference plate 17 multiple times at different refraction angles,
It is a spectroscopic device that is characterized by transmitting only a predetermined wavelength. The light flux (first human incident light 40) is incident on the spaced Fabry-Perot interference plate 17 at a first refraction angle θ'1, and the transmitted light is reflected again by the reflecting mirror 42.43. A second refraction angle θ' is applied to the Fabry-Perot interference plate 17.
By making the incident light beams 2 (second human incident light 41 is shown), adjacent wavelengths can be removed.

例えば、間隔りが1.6μmでるり、第1屈折角θ/ 
1== O’とした時、前述の表1より、064〜0.
8μmの波長域で5つの波長が透過する。そこで第2人
射光41の第2屈折角θ’2t−36,87°となるよ
うに光を入射させると、0.4〜0,8μmの波長域で
次の表3の波長が透過する。
For example, if the interval is 1.6 μm, the first refraction angle θ/
When 1==O', from Table 1 mentioned above, 064 to 0.
Five wavelengths are transmitted in the 8 μm wavelength range. Therefore, when light is incident so that the second refraction angle θ'2t of the second human light 41 is 36.87°, the wavelengths shown in Table 3 below are transmitted in the wavelength range of 0.4 to 0.8 μm.

(表3) ここで1表2と比較すると明らかなように、一致してい
るのは0.64μmの波長だけである。従って0.4〜
0.8μmの波長域における特定波長のみが分光できる
ことになり、使用波長域が拡大する。
(Table 3) As is clear from the comparison with Table 1 and Table 2, only the wavelength of 0.64 μm matches. Therefore 0.4~
Only specific wavelengths in the 0.8 μm wavelength range can be spectrally analyzed, expanding the usable wavelength range.

第3図は屈折角θ′1=09の時の次数N1(実線)と
屈折角θ’1=36.87°の時の次数N2(点線)を
パラメータにとシ、透過波長λ(横軸)と干渉板17の
間隔h(縦軸)との関係を表したグラフである。
In Figure 3, the order N1 (solid line) when the refraction angle θ'1 = 09 and the order N2 (dotted line) when the refraction angle θ'1 = 36.87° are used as parameters, and the transmission wavelength ) and the distance h (vertical axis) between the interference plates 17.

間隔りが1゜0〜2.0pmの範囲で、かつ0.4〜0
.8μmの波長域で点線と実線が一致しているのは、N
1;5、N2=4の時のみである。
The spacing is in the range of 1°0 to 2.0pm, and 0.4 to 0.
.. The reason why the dotted line and the solid line match in the 8 μm wavelength range is N
1; 5, only when N2=4.

従って、間隔りをピエゾ素子等で微小に1.0μm〜2
.0μmまで連続的に変化させると、0.4μmから0
.8μmの光を連続的に分光することができる。
Therefore, the spacing can be reduced to 1.0 μm to 2 μm using piezo elements, etc.
.. If you change it continuously to 0μm, it will change from 0.4μm to 0
.. It is possible to continuously separate light of 8 μm.

第2図は本発明の分光装置をよシ具体的に説明するため
の図でるる。
FIG. 2 is a diagram for more specifically explaining the spectroscopic apparatus of the present invention.

同図において、20は分光しようとする光束を発する光
源、21はコリメーターレンズ、22はピエゾ素子等の
微小距離移動手段、17はファブリーペロー干渉板、2
3.24.25はそれぞれ反射ミラー、26は集光レン
ズ、27は発光ダイオード等の光源、28はコリメータ
ーレンズ、29は集光レンズ、30は光電変換素子でめ
る。
In the figure, 20 is a light source that emits a beam to be separated, 21 is a collimator lens, 22 is a minute distance moving means such as a piezo element, 17 is a Fabry-Perot interference plate, and 2
3, 24, and 25 are reflecting mirrors, 26 is a condensing lens, 27 is a light source such as a light emitting diode, 28 is a collimator lens, 29 is a condensing lens, and 30 is a photoelectric conversion element.

光源20から発せられた光をコリメーターレンズ21に
よって平行光束にした後、ファブリ・ペロー干渉板17
に所定の屈折角θ′1例えば前述の36.87°になる
ように入射させる。ファブリ・ペロー干渉板17は2板
の平面で高反射率の半透鏡をピエゾ素子等によシ所定の
間隔で平行に保持されると共に、しかも間隔を例えば、
1.0μmから2.0μmに変化できるようになってい
る。ファブリ・ペロー干渉板17を透過した光束は反射
ミラー23.24.25によシ再度ファブリ・ペロー干
渉板17に所定の屈折角θ′2、例えば前述の00で入
射される。そして、分光された透過光を集光レンズ26
で集光することによシ、光源20を分光することができ
る。
After the light emitted from the light source 20 is made into a parallel beam by the collimator lens 21, the Fabry-Perot interference plate 17
is made incident at a predetermined refraction angle θ'1, for example, 36.87° as mentioned above. The Fabry-Perot interference plate 17 has two planar semi-transparent mirrors with a high reflectivity held in parallel at a predetermined interval by a piezo element, etc.
The thickness can be changed from 1.0 μm to 2.0 μm. The light beam that has passed through the Fabry-Perot interference plate 17 is incident on the Fabry-Perot interference plate 17 again by the reflecting mirrors 23, 24, and 25 at a predetermined refraction angle θ'2, for example, 00 as described above. Then, the separated transmitted light is passed through a condensing lens 26.
By concentrating the light, the light source 20 can be divided into spectra.

ここで、特に重要なことはファブリ・ペロー干渉板17
の間隔の管理、保守である。この管理。
What is particularly important here is the Fabry-Perot interference plate 17.
This is interval management and maintenance. This management.

保守のために、ファブリ・ペロー干渉板17の間隔がる
る値においてのみ、所定の屈折角で入射したときに透過
するような波長を持つ光源とその光学系、検出系からな
る基準間隔検出のための光学系27.28,29.30
を設けた。すなわち、光源、例えば発光ダイオード27
から発せられた光をコリメーターレンズ28で平行光束
とした後、ファブリ・ペロー干渉板17に所定の屈折角
となるように入射させ、透過した光束を集光レンズ29
によシ光電変換素子30上に集光てせることによシ、光
電変換素子30からの出力からファプリ・(ロー干渉板
17の間隔を管理することができる。
For maintenance purposes, a standard interval detection system consisting of a light source with a wavelength that is transmitted when it is incident at a predetermined refraction angle, its optical system, and a detection system is used only when the interval between the Fabry-Perot interference plates 17 increases. Optical system of 27.28, 29.30
has been established. That is, a light source, for example a light emitting diode 27
After collimating the light emitted from the collimator lens 28 into a parallel light beam, the light is made to enter the Fabry-Perot interference plate 17 at a predetermined refraction angle, and the transmitted light beam is passed through the condenser lens 29.
By focusing the light onto the photoelectric conversion element 30, the spacing between the optical interference plates 17 can be controlled from the output from the photoelectric conversion element 30.

例えば、発光ダイオード27の中心波長0.65μm、
屈折角を45°とした時、間隔2.298μm(次数5
)。
For example, the center wavelength of the light emitting diode 27 is 0.65 μm,
When the refraction angle is 45°, the interval is 2.298 μm (order 5
).

1.838μm(次数4)、1.379μm(次数3)
1.838μm (order 4), 1.379μm (order 3)
.

0.919μm(次数2)で透過することになる。従っ
て、これらの間隔において、間隔りを管理、保守するこ
とによシ、常に正確に分光することができる。
It is transmitted at 0.919 μm (order 2). Therefore, by managing and maintaining these intervals, accurate spectroscopy can be performed at all times.

東に、本発明の方法の長所として、7丁ブリ・ペロー干
渉板17に少なくとも2回入射することにより、従来の
方法に比べ波長分解能が格段に向上することが挙げられ
る。これは、2回入射することによシ半値巾ΔλNが小
名くなり、隣接波長差と半値巾ΔλNの大小で決まる分
解能も同様に小゛石な値まで検出できることによる。
Another advantage of the method of the present invention is that wavelength resolution is significantly improved compared to conventional methods by making the light incident on the 7-hole Burri-Perot interference plate 17 at least twice. This is because the half-width ΔλN becomes small when the beam is incident twice, and the resolution determined by the difference in adjacent wavelengths and the magnitude of the half-width ΔλN can similarly be detected down to a small value.

本発明の方法は前記実施例に限らず、種々の変形が可能
である。
The method of the present invention is not limited to the above embodiments, and various modifications are possible.

例えば、前記実施例ではファブリ・ペロー干渉板に異な
る屈折角で2回入射させたが、2回以上でも可能である
For example, in the embodiment described above, the light is made to enter the Fabry-Perot interference plate twice at different refraction angles, but it is also possible to make the light enter the Fabry-Perot interference plate twice or more.

例えば、第3図に示した様に、更に屈折角51.13゜
になるようにファブリ・ペロー干渉板に人射名せること
によって、次数3で屈折角θ0.36.87°の時の次
数5.4に重′fkシ合う場合においては、2回入射の
ときに比べてさらに条件が厳しくなり、他の次数は一致
しないことからよシ波長の混入を防ぐことができる。
For example, as shown in Fig. 3, by attaching a human beam to the Fabry-Perot interference plate so that the refraction angle is 51.13°, the order when the refraction angle is θ0.36.87° is 3rd order. 5.4, the conditions are even stricter than in the case of double incidence, and since the other orders do not match, it is possible to prevent the mixing of higher wavelengths.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、ファブリ・ペロー干渉板に屈折
角の異なる光束を複a回入射させることのできる本発明
の分光装置によれば、隣接波長をカットし、分光波長域
を広くすることができる。
As explained above, according to the spectroscopic device of the present invention that can make light beams with different refraction angles enter the Fabry-Perot interference plate multiple times, it is possible to cut adjacent wavelengths and widen the spectral wavelength range. can.

更には複数回入射することによシ、波長分解能を向上式
せる効果もめる。
Furthermore, by making the light incident multiple times, the wavelength resolution can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るファブリ・ペロー分光装置の原理
を示す図、第2図はその具体的な実施例を示す概略構成
図で6る。 第3図は透過波長λと干渉板の間隔りとの関係を示した
グラフである。 第4図は従来の7アプリ・ぺ四−分光装置の基本原理を
示す図でるる、第5図は波長λと透過率Tの関係を示す
グラフ、第6図は従来のファプリ・ベロー分光装置の欠
点を補う分光装置を示す構格図でおる。 17・・・ファプリ・ベロー干渉板、40・・・第1入
射光、41・・・第2人射光、42.43,23゜24
.15・・・反射ミラー、20.27・・・光源、21
.28・・・コリメーターレンズ、26.29・・・集
光レンズ、22・・・微小距離移動手段、30・・・光
電変換素子。 代理人 弁理士 山 下 穣 平 第1図 第2図
FIG. 1 is a diagram showing the principle of a Fabry-Perot spectrometer according to the present invention, and FIG. 2 is a schematic diagram showing a specific embodiment thereof. FIG. 3 is a graph showing the relationship between the transmission wavelength λ and the interval between interference plates. Figure 4 is a diagram showing the basic principle of a conventional 7-application-P4 spectrometer, Figure 5 is a graph showing the relationship between wavelength λ and transmittance T, and Figure 6 is a conventional Fabry-Bello spectrometer. This is a structural diagram showing a spectroscopic device that compensates for the shortcomings of . 17...Fapri-Bello interference plate, 40...First incident light, 41...Second human incident light, 42.43, 23°24
.. 15...Reflection mirror, 20.27...Light source, 21
.. 28... Collimator lens, 26. 29... Condensing lens, 22... Minute distance moving means, 30... Photoelectric conversion element. Agent Patent Attorney Johei Yamashita Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ファブリ・ペロー干渉板と、 該ファブリ・ペロー干渉板の間隔を変化せしめる制御手
段と、 前記ファブリ・ペロー干渉板に第1の屈折角で光束を入
射せしめる第1光学手段と、前記ファブリ・ペロー干渉
板を通過した光束を前記第1の屈折角とは異なる第2の
屈折角で再び前記ファブリ・ペロー干渉板に入射せしめ
る第2光学手段とを有するファブリ・ペロー分光装置。
(1) A Fabry-Perot interference plate, a control means for changing the interval between the Fabry-Perot interference plates, a first optical means for making a light beam incident on the Fabry-Perot interference plate at a first refraction angle, and the Fabry-Perot interference plate; - A Fabry-Perot spectrometer comprising: second optical means for making the light beam that has passed through the Perot interference plate enter the Fabry-Perot interference plate again at a second refraction angle different from the first refraction angle.
JP4529586A 1986-03-04 1986-03-04 Fabry-perot spectroscope Pending JPS62203024A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4529586A JPS62203024A (en) 1986-03-04 1986-03-04 Fabry-perot spectroscope
US07/019,665 US4850709A (en) 1986-03-04 1987-02-27 Fabri-perot spectroscopy method and apparatus utilizing the same
DE19873706833 DE3706833A1 (en) 1986-03-04 1987-03-03 METHOD FOR FABRY PEROT SPECTROSCOPY AND SPECTROSCOPE WORKING WITH THIS METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4529586A JPS62203024A (en) 1986-03-04 1986-03-04 Fabry-perot spectroscope

Publications (1)

Publication Number Publication Date
JPS62203024A true JPS62203024A (en) 1987-09-07

Family

ID=12715320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4529586A Pending JPS62203024A (en) 1986-03-04 1986-03-04 Fabry-perot spectroscope

Country Status (1)

Country Link
JP (1) JPS62203024A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026487A2 (en) * 1999-02-04 2000-08-09 Cymer, Inc. Double pass etalon spectrometer
US6320663B1 (en) 1999-01-22 2001-11-20 Cymer, Inc. Method and device for spectral measurements of laser beam
US6359693B2 (en) 1999-02-04 2002-03-19 Cymer, Inc. Double pass double etalon spectrometer
JP2019148540A (en) * 2018-02-28 2019-09-05 セイコーエプソン株式会社 Light measurement device and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320663B1 (en) 1999-01-22 2001-11-20 Cymer, Inc. Method and device for spectral measurements of laser beam
EP1026487A2 (en) * 1999-02-04 2000-08-09 Cymer, Inc. Double pass etalon spectrometer
EP1026487A3 (en) * 1999-02-04 2000-12-13 Cymer, Inc. Double pass etalon spectrometer
US6243170B1 (en) 1999-02-04 2001-06-05 Cymer, Inc. Double pass etalon spectrometer
US6359693B2 (en) 1999-02-04 2002-03-19 Cymer, Inc. Double pass double etalon spectrometer
KR100356108B1 (en) * 1999-02-04 2002-10-19 사이머 인코포레이티드 Double pass etalon spectrometer
JP2019148540A (en) * 2018-02-28 2019-09-05 セイコーエプソン株式会社 Light measurement device and electronic apparatus

Similar Documents

Publication Publication Date Title
Harrison The production of diffraction gratings: II. the design of echelle gratings and spectrographs1
Gay et al. Surface Wave Generation and Propagation on Metallic Subwavelength Structures Measured<? format?> by Far-Field Interferometry
JP3624783B2 (en) Double pass etalon spectrometer
JP2008292473A (en) Film thickness measuring device and technique
White Gratings as broad band filters for the infra-red
CN110553736A (en) raman spectrometer
JP2000304614A (en) Spectroscope
CN101369015B (en) Light splitting apparatus of wind detection laser radar based on dual-edge detection
JP2001264168A (en) Spectroscope for measuring spectrum distribution
JPS62203024A (en) Fabry-perot spectroscope
JPH05281041A (en) Spectroscope
Kawata Instrumentation for near-infrared spectroscopy
Kruger et al. All-reflection interferometer for use as a Fourier-transform spectrometer
Trauger et al. Fabry-Perot spectrometer adjustment for the compensation of Doppler shift from rapidly rotating and rapidly flowing sources
Perevezentsev et al. First steps in the development of next-generation chirped volume Bragg gratings by means of fs laser inscription in fused silica
JPS62203025A (en) Fabry-perot spectroscopy
JP2001221688A (en) Spectroscope
CN115015221B (en) Rapid spectrum scanning stimulated Raman scattering microscopic imaging system and imaging method thereof
Greenler Interferometric spectrometer for the infrared
US7286582B1 (en) Optical external cavities having brewster angle wedges
TWI729615B (en) Reflective condensing interferometer
WO2022137902A1 (en) Optical member and optical device
JP2000321135A (en) Spectrometer
KR102728193B1 (en) Spectrometric optical system, and semiconductor inspection apparatus comprising the same
EP4334674A1 (en) Systems and methods to acquire three dimensional images using spectral information