JPS6154630A - Dry etching process - Google Patents

Dry etching process

Info

Publication number
JPS6154630A
JPS6154630A JP17664384A JP17664384A JPS6154630A JP S6154630 A JPS6154630 A JP S6154630A JP 17664384 A JP17664384 A JP 17664384A JP 17664384 A JP17664384 A JP 17664384A JP S6154630 A JPS6154630 A JP S6154630A
Authority
JP
Japan
Prior art keywords
gas
etching
concentration
silicide
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17664384A
Other languages
Japanese (ja)
Inventor
Hidehiko Ishizu
石津 英彦
Kazuyuki Nishimura
西村 和行
Masaaki Shinohara
正明 篠原
Mitsuaki Shiba
光明 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17664384A priority Critical patent/JPS6154630A/en
Publication of JPS6154630A publication Critical patent/JPS6154630A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5346Dry etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the dimensional precision of pattern and coating property of step difference while changing the sectional shape of processed silicide by a method wherein the concentration of O2 gas mixed with F base main gas is changed remarkable. CONSTITUTION:Electrodes 4, 5 are arranged in an airtight chamber 3 and after grounding the electrode 5, temperature controlling solution is circulated in a vessel 7 to control temperature. The gas flow rate controlled 8 and properly mixed by operating valves 9 is fed to the chamber 3 to be exhausted 10. The electrodes are supplied with high frequency voltage under specific pressure to cause plasma discharge for etching the film on wafer 11. When etching e.g. MoSi2 utilizing CF4O2 gas, if anisotropic etching is performed with O2 gas concentration of around 40%, pattern with the same dimension L as that of resist mask is formed while with O2 gas concentration of around 10%, tappered etching may be performed to improve the coating property of upper film while if O2 concentration is reduced, anisotropic etching sidewall of lower layer 25 with large step difference may be perfectly performed leaving no residual nonetched part.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体製造工程においてシリサイドをエツチ
ングするドライエツチング法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a dry etching method for etching silicide in a semiconductor manufacturing process.

〔発明の背景〕[Background of the invention]

半導体製造工程においてシリサイドのエツチング技術の
向上は、半導体装置の高集積度化と高速度化の実現に大
きく影響する重要な事項である。
Improvement of silicide etching technology in the semiconductor manufacturing process is an important matter that greatly influences the realization of higher integration and higher speed of semiconductor devices.

このエツチングは、CF4 、SF、 、NF、等のフ
ッ素系の主ガスと02ガスとのプラズマにより行なわれ
、従来よシ02ガスの濃度がシリサイドのエツチング速
度を大きく左右するパラメータであることが知られてい
るが、シリサイドの加工形状については詳細に知られて
いなかった。外お、クリサイドのエツチングに関しては
次のような文献に詳しく説明されている。
This etching is performed using a plasma of 02 gas and a fluorine-based main gas such as CF4, SF, NF, etc., and it has been known that the concentration of 02 gas is a parameter that greatly influences the etching rate of silicide. However, the details of the processed shape of silicide were not known. In addition, the etching of chrysanthemum is explained in detail in the following literature.

(i) r Po1y−8i’/Ta5izのRIEJ
 W、 Beinuogl。
(i) RIEJ of r Po1y-8i'/Ta5iz
W, Beinuogl.

B、 )(aster、J、una、 1983.5o
lid 5tateTeehnol。
B, ) (aster, J, una, 1983.5o
lid 5tateTehnol.

(2)[低周波励起平行平板型リアクタを用いた81g
グロー放電によるポリサイド構造のエツチングJ M、
 1. Co@、8.H,Rogers、 0ctob
er。
(2) [81g using a low frequency excitation parallel plate reactor]
Etching of polycide structure by glow discharge JM,
1. Co@, 8. H, Rogers, 0ctob
Er.

1983.5olid 5tate Technol。1983.5olid 5tate Technol.

(3)「ポリサイド構造のRI El西岡久作0cto
ber。
(3) “RI El Hisaku Nishioka 0cto with polycide structure
ber.

1983 、8emieonduetor World
〔発明の目的〕 本発明はこのような事情に鑑みてなされたものであシ、
その目的は、シリサイドの加工形状を制御し半導体素子
の特性やプロセスに柔軟に対応できるシリサイドのドラ
イエツチング法を提供することにある。
1983, 8emieonduetor World
[Object of the invention] The present invention has been made in view of the above circumstances.
The purpose is to provide a dry etching method for silicide that can control the processed shape of silicide and flexibly respond to the characteristics and processes of semiconductor devices.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、シリサイ
ドの加工形状に対する02ガス濃度の影響を解析した結
果に基いて、チャンバ内に2種以上のガスをそれぞれ独
立に流量制御しかつ同時に混合ガスとして導入できるエ
ツチング装置を用い、02ガス濃度を変化させることに
よりシリサイドの線幅および断面形状を制御するように
したものである。
In order to achieve such an objective, the present invention is based on the results of analyzing the influence of 02 gas concentration on the processed shape of silicide, and the present invention independently controls the flow rate of two or more gases in a chamber and mixes them simultaneously. Using an etching device that can introduce gas, the line width and cross-sectional shape of the silicide can be controlled by changing the O2 gas concentration.

〔発明の実施例〕[Embodiments of the invention]

次に、実施例を用いて本発明の詳細な説明する。 Next, the present invention will be explained in detail using examples.

第1図は本発明の一実施例を示すドライエツチング装置
の構成図である。同図において、ステージ1に、0リン
グ2を介して気密シールされた状、態でチャンバ3が装
着され、その内部に上部電極4と下部電極5が配置され
る。両電極間には高周波電源6が接続され、下部電極5
は接地されている。また下部電極5は温調槽7をもち、
温度制御された温調液が常時循環するようになっている
FIG. 1 is a block diagram of a dry etching apparatus showing an embodiment of the present invention. In the figure, a chamber 3 is attached to a stage 1 in an airtight manner via an O-ring 2, and an upper electrode 4 and a lower electrode 5 are arranged inside the chamber 3. A high frequency power source 6 is connected between both electrodes, and the lower electrode 5
is grounded. Further, the lower electrode 5 has a temperature control tank 7,
Temperature-controlled liquid is constantly circulated.

ガスは、複数(図示の例では3個)設けられたマスフロ
ーコントローラ(MFC)8A〜80に!り(−れぞれ
流量制御されてバルブ9八〜9Cの開放によりチャンバ
3内に供給される。シリサイドのエツチングにおいては
、例えばMFC8AによF)CFa等の流量制御を、M
F08Bにより02の流量制御を行ない、チャンバ3に
至る前に混合してチャンバ3に供給する。図上省略した
が真空排気装置により排気口10を通して排気を行表う
。チャンバ3内の圧力が設定したエツチング圧力に安定
してから、高周波電源6により両電極間に高周波電圧を
印加し、両電極間にプラズマ放電を起こさせて、化学反
応および物理反応によりウェハ11上に被着した膜のエ
ツチングを行なう。
Gas is supplied to a plurality of (three in the illustrated example) mass flow controllers (MFC) 8A to 80! - are supplied into the chamber 3 by opening the valves 98 to 9C with their flow rates controlled.In etching silicide, for example, the flow rate of CFa, etc. is controlled by MFC8A.
The flow rate of 02 is controlled by F08B, and the mixture is mixed before reaching chamber 3 and supplied to chamber 3. Although omitted in the figure, exhaust is performed through the exhaust port 10 by a vacuum exhaust device. After the pressure in the chamber 3 stabilizes to the set etching pressure, a high frequency voltage is applied between the two electrodes by the high frequency power supply 6, causing plasma discharge between the two electrodes, and a chemical reaction and a physical reaction occur on the wafer 11. The film deposited on the surface is etched.

ここで、CF4 、SF’6.NF、等の主ガスに添加
する02ガスの濃度により、加工されるシリサイドの断
面形状は大きく異なる。例えば第2図は、CF4に02
を混合したガスを用いてシリサイド(データをMo51
2のもの)をエツチングした場合の、第3図に示すよう
なシリサイド膜21の断面の下層膜22に対するテーパ
角θとOXガス濃度(0!/ CF4 +02 )との
関係を示したものであるが、OXガス濃度を10係から
40係まで変化させることによりシリサイドのテーパ角
を30度から90度まで変化させることができる。
Here, CF4, SF'6. The cross-sectional shape of the processed silicide varies greatly depending on the concentration of the 02 gas added to the main gas such as NF. For example, in Figure 2, CF4 has 02
silicide (data Mo51) using a gas mixed with
This figure shows the relationship between the taper angle θ of the cross section of the silicide film 21 with respect to the lower layer film 22 and the OX gas concentration (0!/CF4 +02) when etching the silicide film 21 shown in FIG. However, by changing the OX gas concentration from 10 degrees to 40 degrees, the taper angle of the silicide can be changed from 30 degrees to 90 degrees.

したがって、Mo8のゲート部のようにパターン寸法を
厳しく制御する必要があるものでは0雪ガス濃度を増し
て40チ付近に設定し、テーパをつけない完全異方性の
エツチングを行なうことにより、第4図に示すようにレ
ジストパターン23の寸法と同等のゲート寸法りを得る
ことができる。
Therefore, in cases where the pattern dimensions need to be strictly controlled, such as the gate part of Mo8, the zero snow gas concentration is increased to around 40 inches, and completely anisotropic etching without tapering is performed. As shown in FIG. 4, gate dimensions equivalent to those of the resist pattern 23 can be obtained.

また、第5図(、)に示したように上層膜24Aのステ
ップカバレージが悪く、シリサイド膜21と下層膜22
との段差部で断線が問題となる素子構造では、02ガス
を15チ程度の少量混合し、テーパをつけるエツチング
を行なうことによって、同図(b)に示すように上層膜
24のステップカバレージを改善することができる。な
お、図中t、およびt3は上記段差部での上層膜24の
膜厚で11<1.である。
In addition, as shown in FIG.
In an element structure where disconnection is a problem at the stepped portion, step coverage of the upper layer film 24 can be improved by mixing a small amount of 02 gas (approximately 15 cm) and etching to create a taper, as shown in FIG. It can be improved. In addition, t and t3 in the figure are the film thicknesses of the upper layer film 24 at the step portion, and 11<1. It is.

さらに、第6図(、)に示すような下層部25の段差が
大きい素子断面構造を用いるプロセスにおいては、完全
異方性のエツチングを行なった場合、段差部の側壁に1
点鎖線で示したようにエツチングされない部分が残るが
、上述したように0鵞ガス濃度を少量に制御すれば同図
(b)に示したようにこの残シを解消することができる
Furthermore, in a process using an element cross-sectional structure with a large step difference in the lower layer 25 as shown in FIG.
Although an unetched portion remains as shown by the dashed dotted line, if the zero gas concentration is controlled to a small amount as described above, this residual portion can be eliminated as shown in FIG. 2(b).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、フッ素系の主ガ
スに混合するO!ガスの濃度を変化させることにより、
シリサイドの加工断面形状を制御することができ、パタ
ーン寸法精度やステップカバレージを向上させ、半導体
装置の高集積度化と高速度化を実現することが可能とな
る。
As explained above, according to the present invention, O! By changing the concentration of gas,
It is possible to control the processed cross-sectional shape of silicide, improve pattern dimensional accuracy and step coverage, and make it possible to achieve higher integration and speed of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すドライエツチング装置
の構成図、第2図は0.ガス濃度とシリサイドの加工断
面のテーパ角との関係を示す図、第3図はテーパ角を説
明するための断面図、第4図ないし第6図は各種実施例
の効果を説明するための断面図である。 3・・・・チャンバ、4・・・・上部電極、5・・・φ
下部電極、8A〜8C・・・・マスフローコントローラ
、9A〜9C・・・・バルブ、11・・・会ウェハ、2
1・・・・シリサイド膜、22−−・、下層膜、23・
・・、レジストパターン、24・、・・上層膜、25.
書。 ′−7− 、ト−°〈<  ■ (やビ) 洒6図 /、X rh) (U) \l+/l
FIG. 1 is a block diagram of a dry etching apparatus showing an embodiment of the present invention, and FIG. A diagram showing the relationship between gas concentration and the taper angle of a processed cross section of silicide, FIG. 3 is a cross-sectional view for explaining the taper angle, and FIGS. 4 to 6 are cross-sectional views for explaining the effects of various embodiments. It is a diagram. 3...chamber, 4...upper electrode, 5...φ
Lower electrode, 8A to 8C... Mass flow controller, 9A to 9C... Valve, 11... Group wafer, 2
1... Silicide film, 22--, Lower layer film, 23-
..., resist pattern, 24., ... upper layer film, 25.
book. '-7- , To-°〈< ■ (Yabi) Sha 6 figure/, X rh) (U) \l+/l

Claims (1)

【特許請求の範囲】[Claims] 離間した上部電極と下部電極とをチャンバ内に有するド
ライエッチング装置を用いフッ素系の主ガスとO_2ガ
スとのプラズマによりシリサイドのエッチングを行なう
ドライエッチング法において、ドライエッチング装置を
2種以上のガスをそれぞれ独立に流量制御しかつ混合ガ
スとしてチャンバ内に導入できるものとし、O_2ガス
濃度を変化させることによりシリサイドの線幅および断
面形状を制御するようにしたことを特徴とするドライエ
ッチング法。
In the dry etching method, silicide is etched by a plasma of a fluorine-based main gas and O_2 gas using a dry etching device that has an upper electrode and a lower electrode spaced apart in a chamber. A dry etching method characterized in that each gas can be independently controlled in flow rate and introduced into a chamber as a mixed gas, and the line width and cross-sectional shape of silicide can be controlled by changing the O_2 gas concentration.
JP17664384A 1984-08-27 1984-08-27 Dry etching process Pending JPS6154630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664384A JPS6154630A (en) 1984-08-27 1984-08-27 Dry etching process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664384A JPS6154630A (en) 1984-08-27 1984-08-27 Dry etching process

Publications (1)

Publication Number Publication Date
JPS6154630A true JPS6154630A (en) 1986-03-18

Family

ID=16017164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664384A Pending JPS6154630A (en) 1984-08-27 1984-08-27 Dry etching process

Country Status (1)

Country Link
JP (1) JPS6154630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199428A (en) * 1987-02-16 1988-08-17 Nippon Telegr & Teleph Corp <Ntt> Photo-dry etching device and method
JPS6457623A (en) * 1987-08-28 1989-03-03 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199428A (en) * 1987-02-16 1988-08-17 Nippon Telegr & Teleph Corp <Ntt> Photo-dry etching device and method
JPS6457623A (en) * 1987-08-28 1989-03-03 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
KR101108613B1 (en) Fine pattern forming method and film forming apparatus
US5714031A (en) Topology induced plasma enhancement for etched uniformity improvement
US20210404061A1 (en) Atomic layer self aligned substrate processing and integrated toolset
WO2003007357A1 (en) Dry etching method
JPH07142449A (en) Plasma etching system
KR20120069583A (en) Slimming method of carbon-containing thin film and oxidizing apparatus
US20180047545A1 (en) Substrate processing apparatus and substrate processing method
JP2006203035A (en) Plasma etching method
EP0945896B1 (en) Plasma etching method
JPH0359573B2 (en)
JP2007005377A (en) Plasma etching method, control program, computer storage medium and plasma etching apparatus
JPH02234419A (en) Plasma electrode
US8070972B2 (en) Etching method and etching apparatus
JPS6154630A (en) Dry etching process
CN106611701A (en) Preparation method of semiconductor device
JPS60170238A (en) Dry etching method
JPS61174388A (en) Etching device
US5908791A (en) Method of forming a polycide gate of a semiconductor device
JPS62250643A (en) Plasma etching method
JP3251439B2 (en) Etching method
JP2598524B2 (en) Dry etching method
JPH0797575B2 (en) Plasma etching method
JPH10242116A (en) Parallel flat plate type rie apparatus
JPH01274398A (en) Erc plasma source
JP2002299255A (en) Semiconductor manufacturing device