JPS6144785A - Manufacture of thin film of semiconductor single crystal - Google Patents
Manufacture of thin film of semiconductor single crystalInfo
- Publication number
- JPS6144785A JPS6144785A JP16619184A JP16619184A JPS6144785A JP S6144785 A JPS6144785 A JP S6144785A JP 16619184 A JP16619184 A JP 16619184A JP 16619184 A JP16619184 A JP 16619184A JP S6144785 A JPS6144785 A JP S6144785A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- polycrystalline semiconductor
- single crystal
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は半導体単結晶薄膜の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a semiconductor single crystal thin film.
従来の技術
第11図及び第12図を参照して従来の半導体単結晶薄
膜の製造方法について説明する。先ず第11図を参照し
て、半導体単結晶薄膜を形成すべき半導体装置について
説明する。(1)は石英等からなる絶縁基板(St基板
上に8102眉を被着形成したものも可)、(2)はそ
の上に減圧化学蒸着法等によシ帯状−に被着形成された
多結晶シリコン層、(3)は基板(1)上及び多結晶シ
リコン層(2)上に亘って被着形成された8102等よ
シなるキャップ層である。BACKGROUND OF THE INVENTION A conventional method for manufacturing a semiconductor single crystal thin film will be described with reference to FIGS. 11 and 12. First, referring to FIG. 11, a semiconductor device in which a semiconductor single crystal thin film is to be formed will be described. (1) is an insulating substrate made of quartz or the like (8102 eyebrows formed on a St substrate is also possible), and (2) is formed in a band shape by low-pressure chemical vapor deposition, etc. The polycrystalline silicon layer (3) is a cap layer, such as 8102, deposited over the substrate (1) and the polycrystalline silicon layer (2).
しかして、第12図に示す如く、斯る帯状の多結晶シリ
コン層(2)に対し、キャップ層(3)を介してその長
手方向(走査方向)(5)にカーがンヒータ、レーザビ
ーム発生源、ハロゲンランプ、IRランノ、電子ビーム
発生器源等の線状の加熱手段(4)を走査させる。かく
すると、キャップ層(3)を介して加熱手段(4) K
よシ加熱された多結晶シリコン層(2)は溶融し、加熱
手段(4)が遠ざかるにつれて自然冷却されて固化し、
再結晶化して単結晶となる。As shown in FIG. 12, a Kerr heater and laser beam generator are applied to the belt-shaped polycrystalline silicon layer (2) in the longitudinal direction (scanning direction) (5) via the cap layer (3). A linear heating means (4) such as a source, a halogen lamp, an IR lamp, an electron beam generator source, etc. is scanned. Thus, the heating means (4) K through the cap layer (3)
The heated polycrystalline silicon layer (2) melts, and as the heating means (4) moves away, it naturally cools and solidifies.
Recrystallizes to become a single crystal.
この場合、帯状の多結晶シリコン層(2)の両側から中
央に向って冷却が進むので、加熱手段(4)が既に通過
した部分の等温線は、破線aにて示す如く、図に於いて
下側(走査方向aと反対方向)に凸の曲線にガる。かく
して多結晶シリコン層(2)は矢印(6)に示すごとく
その両側縁から中心に向って冷却固化して単結晶化して
行く。このため得られた単結晶シリコン層(1)の中央
には符号(7)にて示すとと、 き結晶粒界(7)が
形成され、結晶の品質が低下する。In this case, since the cooling progresses from both sides of the band-shaped polycrystalline silicon layer (2) toward the center, the isothermal line of the part where the heating means (4) has already passed is as shown by the broken line a in the figure. It forms a convex curve downwards (in the direction opposite to the scanning direction a). In this way, the polycrystalline silicon layer (2) is cooled and solidified to become a single crystal from both side edges toward the center as shown by the arrow (6). Therefore, a crystal grain boundary (7) is formed in the center of the obtained single-crystal silicon layer (1), as shown by the symbol (7), and the quality of the crystal deteriorates.
斯る結晶粒界(7)は、この単結晶層翰に不純物を注入
して、半導体(集積)回路を形成した場合、その部分で
漏れ電流が生じるので、好ましくない。Such grain boundaries (7) are undesirable because leakage current will occur at these grain boundaries when a semiconductor (integrated) circuit is formed by implanting impurities into this single crystal layer.
発明が解決しようとする問題点
斯る点に鑑み本発明は、結晶粒界の発生し難い、高品質
の半導体単結晶薄膜を製造することのできる半導体単結
晶薄膜の製造方法を提案せんとするものである。Problems to be Solved by the Invention In view of these points, the present invention seeks to propose a method for manufacturing a semiconductor single crystal thin film that can manufacture a high quality semiconductor single crystal thin film in which grain boundaries are unlikely to occur. It is something.
問題点を解決するための手段
本発明による半導体単結晶薄膜の製造方法は、半導体層
に対し加熱手段を走査させて、半導体層を溶融させた後
冷却固化させて半導体単結晶薄膜を形成するようにした
半導体単結晶薄膜の製造方法において、半導体層の加熱
走査方向と略直交する方向の温度分布を双峰形にする放
熱制御層を、略50001以下の反応防止層を介して半
導体層上に選択的に被着するようにしたものである。Means for Solving the Problems The method of manufacturing a semiconductor single crystal thin film according to the present invention involves scanning a heating means over a semiconductor layer to melt the semiconductor layer, and then cooling and solidifying the semiconductor layer to form a semiconductor single crystal thin film. In the method for manufacturing a semiconductor single crystal thin film, a heat dissipation control layer that makes the temperature distribution in a direction substantially orthogonal to the heating scanning direction of the semiconductor layer bimodal is formed on the semiconductor layer through a reaction prevention layer of about 50,000 mm or less. It is designed to be applied selectively.
作用
かくすると、加熱手段によって加熱溶融された半導体層
は加熱手段の通過後、その中央から両側に向って冷却が
進むので、中央部から両側に向って再結晶化が進むから
、従来技術のような結晶粒界が発生し難く、高品質の半
導体単結晶薄膜を得ることができる。In this way, after the semiconductor layer heated and melted by the heating means passes through the heating means, cooling progresses from the center to both sides, and recrystallization progresses from the center to both sides. It is possible to obtain a high-quality semiconductor single-crystal thin film in which crystal grain boundaries are less likely to occur.
実施例 以下に第1図を参照して本発明の一実施例を説明する。Example An embodiment of the present invention will be described below with reference to FIG.
第1図は半導体単結晶薄膜を形成すべき半導体装菅を示
し、(1)は石英等の絶縁基板である。FIG. 1 shows a semiconductor device in which a semiconductor single crystal thin film is to be formed, and (1) is an insulating substrate made of quartz or the like.
この絶縁基板(1)としては、S1基板上に5IO2層
を被着形成したものも可能である。基板(1)上には例
えばシリコンからなる多結晶半導体層(2)が帯状に被
着形成される。そして基板(1)上及び多結晶半導体層
(2)上に亘って略5000X以下の例えば8102か
ら成る反応防止層(8)を被着形成する。そして多結晶
半導体層(2)の長手方向に沿ってその中央部に、反応
防止層(8)を介して、多結晶半導体層(2)よシ熱伝
導率の高い高熱伝導率層(9A)を被着形成する。この
高熱伝導率層(9A)としては、Mo * Ta 、
W 。This insulating substrate (1) may also be one in which a 5IO2 layer is deposited on an S1 substrate. A polycrystalline semiconductor layer (2) made of silicon, for example, is formed in a band shape on the substrate (1). Then, a reaction prevention layer (8) made of, for example, 8102 and having a thickness of approximately 5000× or less is deposited over the substrate (1) and the polycrystalline semiconductor layer (2). A high thermal conductivity layer (9A) having higher thermal conductivity than the polycrystalline semiconductor layer (2) is placed in the center of the polycrystalline semiconductor layer (2) along its longitudinal direction via a reaction prevention layer (8). Form the adhesion. This high thermal conductivity layer (9A) includes Mo*Ta,
W.
Pt 、 Nb等が用いられる。これらの物質のSlの
融点1412℃に於ける熱伝導率(’/see 、(W
I−deg)は夫夫Mo : 0.21 、 Ta :
0.19 、W: 0.25.Pt : 0.157
、 Nb:0.154で、St : 0.058の3
倍以上である。又、これらの物質の比熱はStのそれの
凶以下である。Pt, Nb, etc. are used. Thermal conductivity of these substances at the melting point of Sl (1412°C) ('/see, (W
I-deg) is Huo Mo: 0.21, Ta:
0.19, W: 0.25. Pt: 0.157
, Nb: 0.154, St: 0.058 3
That's more than double that. Further, the specific heat of these substances is lower than that of St.
尚、この高熱伝導率層(9A)の幅及び厚さは加熱手段
、多結晶半導体層(2)の厚さ、幅等によって任意に設
定される。Note that the width and thickness of this high thermal conductivity layer (9A) are arbitrarily set depending on the heating means, the thickness and width of the polycrystalline semiconductor layer (2), etc.
しかして、上述したごときカーデンヒータ、レーザーヒ
ーム発生源、ハロゲンランプ、IRラング、電子ビーJ
・発生源の如き線状加熱手段を帯状多結晶半導体層(2
)の長手方向に対し略直交させて配置し、これをその長
手方向に移動させる。かくすると、その加熱手段の直下
付近の多結晶半導体層(2)は溶融され、加熱手段が遠
ざかるにつれてその部分が自然冷却によシ固化して、再
結晶化される。Therefore, the above-mentioned carden heater, laser beam generation source, halogen lamp, IR rung, electronic beam J
・A linear heating means such as a generation source is connected to a band-shaped polycrystalline semiconductor layer (2
) and move it in the longitudinal direction. As a result, the polycrystalline semiconductor layer (2) immediately below the heating means is melted, and as the heating means moves away, that portion is solidified by natural cooling and recrystallized.
この場合、多結晶半導体層(2)の中央部には高熱伝導
率層(9A)が設けられているので、この部分の熱が高
熱伝導率層(9A)を通じて外部に速やかに放熱され、
高熱伝導率層(9A)のない部分は遅く放熱されるので
、帯状半導体層(2)の幅方向の温度分布は双峰型と々
る。このため多結晶半導体層(2)の中央部から単結晶
化(再結晶化)が開始され、徐々にその両側に向って単
結晶化が進んで行く。かくして従来のごとき結晶粒界が
単結晶半導体層の中央部に形成される虞は殆んどなくな
る。In this case, since the high thermal conductivity layer (9A) is provided in the center of the polycrystalline semiconductor layer (2), the heat in this area is quickly radiated to the outside through the high thermal conductivity layer (9A).
Since the portion without the high thermal conductivity layer (9A) radiates heat slowly, the temperature distribution in the width direction of the band-shaped semiconductor layer (2) is bimodal. Therefore, single crystallization (recrystallization) starts from the center of the polycrystalline semiconductor layer (2) and gradually progresses toward both sides. In this way, there is almost no possibility that grain boundaries will be formed in the center of the single crystal semiconductor layer as in the conventional case.
第1図の実施例においては、多結晶半導体層(2)の上
に反応防止層(8)す介して高熱伝導率層(9A)を設
けた場合について述べたが、第2図に示す如く多結晶半
導体層(2)の下側、即ち基板(1)と多結晶半導体層
(2)との間に、反応防止層(8)を介して高熱伝導率
層(9A)を設けてもよい。In the embodiment shown in FIG. 1, the case was described in which the high thermal conductivity layer (9A) was provided on the polycrystalline semiconductor layer (2) through the reaction prevention layer (8), but as shown in FIG. A high thermal conductivity layer (9A) may be provided below the polycrystalline semiconductor layer (2), that is, between the substrate (1) and the polycrystalline semiconductor layer (2), with a reaction prevention layer (8) interposed therebetween. .
この場合は、多結晶半導体層(2)の高熱伝導率層(9
A)の設けられている部分の、基板(1)側への放熱が
、他部より速やかに行なわれる。In this case, the high thermal conductivity layer (9) of the polycrystalline semiconductor layer (2)
Heat is dissipated from the portion where A) is provided to the substrate (1) side more quickly than from other portions.
又、第3図に示すごとく多結晶半導体層(2)上に反応
防止層(8a)を介して高熱伝導率層(9Aa)を被着
形成すると共に、多結晶半導体層(2)の下側、即ち基
板(1)と多結晶半導体層(2)との間に反応防止層(
8b)を介して高熱伝導率層(9Ab)を配するように
してもよい。かくすれば、高熱伝導率層(9Aa) 。Further, as shown in FIG. 3, a high thermal conductivity layer (9Aa) is formed on the polycrystalline semiconductor layer (2) via a reaction prevention layer (8a), and the lower side of the polycrystalline semiconductor layer (2) is coated with a high thermal conductivity layer (9Aa). , that is, a reaction prevention layer (
A high thermal conductivity layer (9Ab) may be disposed via the layer 8b). Thus, a high thermal conductivity layer (9Aa).
(9Ab)で挾まれた多結晶半導体層(2)の部分は他
部に比し、上側の高熱伝導率層(9Aa)’から速やか
に熱が放散されると共に、下側の高熱伝導率層(9Ab
)及び基板(1)を介して速やかに熱が放散される。Compared to other parts of the polycrystalline semiconductor layer (2) sandwiched by (9Ab), heat is quickly dissipated from the upper high thermal conductivity layer (9Aa)', and the lower high thermal conductivity layer (9Ab
) and the substrate (1).
上述の第1図〜第3図の実施例では、反応防止層(8)
を介して、多結晶半導体層(2)の中央部に高熱伝導率
層(9A)を設けた場合であるが、逆に多結晶半導体層
(2)の両側に反応防止層(8)を介して多結晶半導体
層(2)よシ熱伝導率の低い低熱伝導率層を被着するこ
ともできる。即ち、第4図に示す如く、反応防止層(8
)を介して、多結晶半導体層(8)上の中央に溝が形成
される如く、その両側及び基板(1)上に低熱伝導率層
(9B) 、 (9B)を被着形成する。In the embodiments of FIGS. 1 to 3 described above, the reaction prevention layer (8)
This is a case in which a high thermal conductivity layer (9A) is provided in the center of the polycrystalline semiconductor layer (2) through a reaction prevention layer (8) on both sides of the polycrystalline semiconductor layer (2). It is also possible to deposit a low thermal conductivity layer that has a lower thermal conductivity than the polycrystalline semiconductor layer (2). That is, as shown in FIG.
), low thermal conductivity layers (9B) are deposited on both sides of the polycrystalline semiconductor layer (8) and on the substrate (1) so that a groove is formed in the center of the polycrystalline semiconductor layer (8).
この低熱伝導率層(9B)としては3A/1.203−
28102、At203、Z rO2等が可能で、これ
らの熱伝導率(m/see 、 crn、 deg )
は、31120.−2s102: 0.013 、At
203:0.014゜Z rO2: 0.005以下で
、Si : 0.058のφ以下である。This low thermal conductivity layer (9B) is 3A/1.203-
28102, At203, Z rO2, etc. are possible, and their thermal conductivity (m/see, crn, deg)
is 31120. -2s102: 0.013, At
203: 0.014°Z rO2: 0.005 or less, Si: 0.058 or less.
尚、これら物質の比熱は81のそれよシも大きい。Incidentally, the specific heat of these substances is even greater than that of 81.
かくして、多結晶半導体層(2)の中央部が他部に比べ
て熱放散が速やかに行表われ、この部分から冷却固化に
よる単結晶化(再結晶化)が開始され、これが徐々両側
に進むことになり、やはシ従来のような中央部での結晶
粒界の発生は殆んどない。As a result, heat dissipates more quickly in the central part of the polycrystalline semiconductor layer (2) than in other parts, and single crystallization (recrystallization) by cooling and solidification starts from this part, which gradually progresses to both sides. As a result, grain boundaries hardly occur in the center as in the conventional case.
第4図の実施例では、低熱伝導率層(9B)、(9B)
を反応防止層(8)を介して多結晶半導体層(2)上の
両側に配するようにした場合であるが、第5図に示す如
く仁の低熱伝導率層(9B)を多結晶半導体層(2)上
の両側に設けるのみならず、反応防止層(8)を介して
多結晶半導体層(2)の下側、即ち基板(1)と多結晶
半導体層(2)との間に設けるようにすることもできる
。この場合は、多結晶半導体層(2)の中央部での熱放
散が他部より一層速やかになる。In the example of FIG. 4, the low thermal conductivity layers (9B), (9B)
In this case, the low thermal conductivity layer (9B) is placed on both sides of the polycrystalline semiconductor layer (2) via the reaction prevention layer (8). It is not only provided on both sides of the layer (2), but also under the polycrystalline semiconductor layer (2) via the reaction prevention layer (8), that is, between the substrate (1) and the polycrystalline semiconductor layer (2). It is also possible to provide one. In this case, heat dissipates more quickly in the center of the polycrystalline semiconductor layer (2) than in other parts.
又、第6図に示す如く、反応防止層(8)を介して、低
熱伝導率層(9B) 、 (9B)を多結晶半導体層(
2)の下側、即ち基板(1)と多結晶半導体層(2)と
の間の両側に設けても良い。Furthermore, as shown in FIG. 6, the low thermal conductivity layers (9B) and (9B) are connected to the polycrystalline semiconductor layer (9B) via the reaction prevention layer (8).
2), that is, on both sides between the substrate (1) and the polycrystalline semiconductor layer (2).
第7図は第1図及び第4図の実施例を折衷したものであ
って、これによれば多結晶半導体層(2)の中央部に高
熱伝導率層(9A)が、その両側に低熱伝導率層(9B
)が夫々設けられるもので、半導体多結晶層(2)の中
央部の両側部に対する放熱の速さが頗る大となる。FIG. 7 is a compromise between the embodiments shown in FIGS. 1 and 4, and according to this, a high thermal conductivity layer (9A) is provided in the center of the polycrystalline semiconductor layer (2), and a low heat conductivity layer (9A) is provided on both sides of the polycrystalline semiconductor layer (2). Conductivity layer (9B
), the speed of heat dissipation to both sides of the central portion of the semiconductor polycrystalline layer (2) is significantly increased.
第8図の実施例は、多結晶半導体層(2)上に反応防止
層(8)を介して、多結晶半導体層(2)より熱輻射率
の高い高熱輻射重層(9C)をその長手方向に沿ってそ
の中央部に設けた場合である。この高熱輻射重層(9C
)としてはカーがンを用いる。Slの融点(1412℃
)に於ける輻射率は、カー?ンが0.8゜シリコンが0
.5である。In the embodiment shown in FIG. 8, a high thermal radiation multilayer (9C) having a higher thermal emissivity than the polycrystalline semiconductor layer (2) is placed on the polycrystalline semiconductor layer (2) via a reaction prevention layer (8) in the longitudinal direction. This is the case where it is provided in the center along the This high heat radiation multilayer (9C
), use Kargan. Melting point of Sl (1412℃
) is the emissivity at Kerr? silicon is 0.8°
.. It is 5.
これによれば加熱手段によって多結晶半導体層(2)が
加熱溶融され、加熱手段が通過した後、多結晶半導体層
(2)の熱輻射がその両側に比べて中央部に於いて迅速
に行われるので、その中央部から冷却固化による結晶化
が開始し、それが両側に進むことになり、やはり従来の
ごとき結晶粒界は発生し難い。According to this, the polycrystalline semiconductor layer (2) is heated and melted by the heating means, and after the heating means passes, thermal radiation of the polycrystalline semiconductor layer (2) occurs more quickly in the center than on both sides. As a result, crystallization by cooling and solidification starts from the center and progresses to both sides, making it difficult to form grain boundaries as in the conventional case.
第9図は第8図における高熱輻射重層(9C)を多結晶
半導体層(2)の長手方向と直交する方向に分割してそ
の表面積を大とし、輻射効率を向上せしめた場合である
。FIG. 9 shows a case where the high thermal radiation multilayer (9C) in FIG. 8 is divided in a direction perpendicular to the longitudinal direction of the polycrystalline semiconductor layer (2) to increase its surface area and improve radiation efficiency.
尚、第1図〜第9図の実施例は、これらを適宜折衷する
ことができる。その場合、高熱伝導率層又は及び高熱輻
射重層と、低熱伝導率層とを組合せて用いることになる
。Incidentally, the embodiments shown in FIGS. 1 to 9 can be modified as appropriate. In that case, a combination of a high thermal conductivity layer or a high thermal radiation overlay and a low thermal conductivity layer will be used.
以下に第10図を参照して、本発明に用いられる放熱制
御層としての高熱伝導率層を、f−)電極としても用い
たMO8電界効果トランジスタの製法の一例について説
明する。第10図Aにおいて、(1)は石英等の絶縁基
板であって、その上に5102等の絶縁層a1を被着形
成する。この絶縁層(10上にシリコンからなる多結晶
半導体層(2)を被着形成し、その上に100OX以下
の8102層のごとき反応防止層(8)を被着形成する
。多結晶半導体層(2)上においてその中央部に反応防
止層(8)を介して金属から成る高熱伝導率層(9A)
を被着形成する。そして、多結晶半導体層(2)を上述
と同様に加熱手段によって加熱溶融及び冷却固化するこ
とにより、多結晶半導体層(2)を単結晶半導体層−に
変換する。An example of a method for manufacturing an MO8 field effect transistor in which the high thermal conductivity layer as the heat dissipation control layer used in the present invention is also used as the f-) electrode will be described below with reference to FIG. In FIG. 10A, (1) is an insulating substrate made of quartz or the like, on which an insulating layer a1 such as 5102 is formed. A polycrystalline semiconductor layer (2) made of silicon is deposited on this insulating layer (10), and a reaction prevention layer (8) such as an 8102 layer of 100 OX or less is deposited thereon. 2) On top, a high thermal conductivity layer (9A) made of metal is placed in the center with a reaction prevention layer (8) interposed therebetween.
Form the adhesion. Then, the polycrystalline semiconductor layer (2) is heated and melted by heating means and cooled and solidified in the same manner as described above, thereby converting the polycrystalline semiconductor layer (2) into a single-crystalline semiconductor layer.
次に第10図Bに示す如く、イオンプランテーシヨン等
の技法によシ、P型又はN型の不純物を単結晶シリコン
半導体層翰の両側の領域に打ち込んで、p型又はn型の
不純物領域(20a) 、 (20b)を形成する。Next, as shown in FIG. 10B, p-type or n-type impurities are implanted into regions on both sides of the single-crystal silicon semiconductor layer by a technique such as ion implantation. Regions (20a) and (20b) are formed.
しかる後第10図Cに示す如<゛、反応防止層(8)の
不純物領域(201L) 、 (zob)上の部分にエ
ツチングによシ孔を穿け、ドレイン及びソース電極とな
る金属電極層(21a) 、 (21b)をその孔を通
じて不純物領域(20a) 、 (20b)上及び反応
防止層(8)上に亘って被着形成する。この場合、ダー
ト電極としての高熱伝導率層(9A)の下の反応防止層
(8)は単結晶半導体層鎗との間の絶縁膜として機能す
るのでその厚さは、上述の如く約1000X以下が好適
である。Thereafter, as shown in FIG. 10C, holes are etched on the impurity regions (201L) and (zob) of the reaction prevention layer (8), and the metal electrode layer (201L), which will become the drain and source electrodes, is etched. 21a), (21b) are deposited through the holes over the impurity regions (20a), (20b) and the reaction prevention layer (8). In this case, the reaction prevention layer (8) under the high thermal conductivity layer (9A) as a dirt electrode functions as an insulating film between the single crystal semiconductor layer and the thickness thereof is approximately 1000X or less as described above. is suitable.
第10図においては、多結晶半導体層(2)を単結晶シ
リコン半導体層(イ)に変換してから不純物のドープを
行ったが、多結晶シリコン半導体層(2)に予めイオン
プランテーション技術等により不純物をドープさせるこ
とも可能である。In FIG. 10, the polycrystalline semiconductor layer (2) is converted into a single-crystalline silicon semiconductor layer (a) and then doped with impurities. It is also possible to dope with impurities.
第10図の実施例によれば多結晶半導体層を単結晶半導
体層に変換する際の、結晶の高品質化に用いる金属から
成る高熱伝導率層をMO8電界効果トランジスタのゲー
ト電極として用いるので単結晶薄膜を用いてMO8電界
効果トランジスタを製造コストヲ少なくして容易に作る
ことができる。According to the embodiment shown in FIG. 10, a high thermal conductivity layer made of a metal used to improve the quality of crystal when converting a polycrystalline semiconductor layer into a single-crystalline semiconductor layer is used as a gate electrode of an MO8 field effect transistor. MO8 field effect transistors can be easily manufactured using crystalline thin films at reduced manufacturing costs.
発明の効果
上述せる本発明によれば、中央部に結晶粒界の生じ難い
品質の良好な半導体単結晶薄膜を形成することのできる
半導体単結晶薄膜の製造方法を得ることができる。Effects of the Invention According to the present invention described above, it is possible to obtain a method for manufacturing a semiconductor single crystal thin film that can form a semiconductor single crystal thin film of good quality in which grain boundaries are unlikely to occur in the central portion.
第1図〜第9図は本発明による半導体単結晶薄膜の製造
方法の各実施例を示す断面図、第10図は本発明による
半導体単結晶薄膜の製造方法を応用したMO3電界効果
トランジスタの製造方法の工程を示す断面図、第11図
は従来の半導体単結晶薄膜の製造方法の説明に供する断
面図、第12図は第11図の多結晶半導体層の結晶化の
説明に供する線上である。
(1)は基板、(2)は多結晶半導体層、(8)は反応
防止層、(9A)〜(9C)は放熱制御層で、そのうち
(9A)は高熱伝導率層、(9B)は低熱伝導率層、(
9C)は高熱伝導率層である。1 to 9 are cross-sectional views showing each embodiment of the method for manufacturing a semiconductor single crystal thin film according to the present invention, and FIG. 10 is a manufacturing method for an MO3 field effect transistor applying the method for manufacturing a semiconductor single crystal thin film according to the present invention. 11 is a cross-sectional view showing the steps of the method; FIG. 11 is a cross-sectional view explaining the conventional method for manufacturing a semiconductor single crystal thin film; FIG. 12 is a line along the line showing the crystallization of the polycrystalline semiconductor layer in FIG. . (1) is a substrate, (2) is a polycrystalline semiconductor layer, (8) is a reaction prevention layer, (9A) to (9C) are heat dissipation control layers, of which (9A) is a high thermal conductivity layer, and (9B) is a Low thermal conductivity layer, (
9C) is a high thermal conductivity layer.
Claims (1)
溶融させた後冷却固化させて半導体単結晶薄膜を形成す
るようにした半導体単結晶薄膜の製造方法に於いて、上
記半導体層の上記加熱走査方向と略直交する方向の温度
分布を双峰形にする放熱制御層を、略5000Å以下の
反応防止層を介して上記半導体層上に選択的に被着する
ことを特徴とする半導体単結晶薄膜の製造方法。In a method for producing a semiconductor single crystal thin film, the semiconductor layer is melted by scanning a heating means over the semiconductor layer, and then cooled and solidified to form a semiconductor single crystal thin film. A semiconductor single crystal characterized in that a heat dissipation control layer that makes the temperature distribution in a direction substantially orthogonal to the scanning direction bimodal is selectively deposited on the semiconductor layer via a reaction prevention layer of approximately 5000 Å or less. Method for manufacturing thin films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16619184A JPS6144785A (en) | 1984-08-08 | 1984-08-08 | Manufacture of thin film of semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16619184A JPS6144785A (en) | 1984-08-08 | 1984-08-08 | Manufacture of thin film of semiconductor single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6144785A true JPS6144785A (en) | 1986-03-04 |
JPH0556314B2 JPH0556314B2 (en) | 1993-08-19 |
Family
ID=15826773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16619184A Granted JPS6144785A (en) | 1984-08-08 | 1984-08-08 | Manufacture of thin film of semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6144785A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227423A (en) * | 1988-03-07 | 1989-09-11 | Rikagaku Kenkyusho | Laser melting and recrystallization of semiconductor thin film |
JPH0283915A (en) * | 1988-09-20 | 1990-03-26 | Ricoh Co Ltd | Manufacture of semiconductor single crystal thin film |
JPH02112227A (en) * | 1988-10-21 | 1990-04-24 | Masakuni Suzuki | Manufacture of semiconductor crystal layer |
JPH02138725A (en) * | 1988-06-28 | 1990-05-28 | Ricoh Co Ltd | Semiconductor substrate and manufacture thereof |
US10161605B2 (en) | 2012-04-05 | 2018-12-25 | Michael W. May | Lighting assembly |
US10302292B2 (en) | 2016-01-07 | 2019-05-28 | Michael W. May | Connector system for lighting assembly |
US10941908B2 (en) | 2016-02-09 | 2021-03-09 | Michael W. May | Networked LED lighting system |
-
1984
- 1984-08-08 JP JP16619184A patent/JPS6144785A/en active Granted
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227423A (en) * | 1988-03-07 | 1989-09-11 | Rikagaku Kenkyusho | Laser melting and recrystallization of semiconductor thin film |
JPH02138725A (en) * | 1988-06-28 | 1990-05-28 | Ricoh Co Ltd | Semiconductor substrate and manufacture thereof |
JPH0283915A (en) * | 1988-09-20 | 1990-03-26 | Ricoh Co Ltd | Manufacture of semiconductor single crystal thin film |
JPH02112227A (en) * | 1988-10-21 | 1990-04-24 | Masakuni Suzuki | Manufacture of semiconductor crystal layer |
US11067258B2 (en) | 2012-04-05 | 2021-07-20 | Michael W. May | Connector system for lighting assembly |
US10851974B2 (en) | 2012-04-05 | 2020-12-01 | Michael W. May | Lighting apparatus |
US10161605B2 (en) | 2012-04-05 | 2018-12-25 | Michael W. May | Lighting assembly |
US11162667B2 (en) | 2012-04-05 | 2021-11-02 | Michael W. May | Illuminating assembly |
US10302292B2 (en) | 2016-01-07 | 2019-05-28 | Michael W. May | Connector system for lighting assembly |
US10480764B2 (en) | 2016-01-07 | 2019-11-19 | Michael W. May | Connector system for lighting assembly |
US10488027B2 (en) | 2016-01-07 | 2019-11-26 | Michael W. May | Connector system for lighting assembly |
US10794581B2 (en) | 2016-01-07 | 2020-10-06 | Michael W. May | Connector system for lighting assembly |
US11193664B2 (en) | 2016-01-07 | 2021-12-07 | Michael W. May | Connector system for lighting assembly |
US11655971B2 (en) | 2016-01-07 | 2023-05-23 | Dva Holdings Llc | Connector system for lighting assembly |
US10941908B2 (en) | 2016-02-09 | 2021-03-09 | Michael W. May | Networked LED lighting system |
US10948136B2 (en) | 2016-02-09 | 2021-03-16 | Michael W. May | Networked LED lighting system |
US11713853B2 (en) | 2016-02-09 | 2023-08-01 | Dva Holdings Llc | Networked LED lighting system |
Also Published As
Publication number | Publication date |
---|---|
JPH0556314B2 (en) | 1993-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5371381A (en) | Process for producing single crystal semiconductor layer and semiconductor device produced by said process | |
JP2616741B2 (en) | Method for manufacturing polycrystalline silicon-germanium thin film transistor | |
JPS6144785A (en) | Manufacture of thin film of semiconductor single crystal | |
KR900002686B1 (en) | Recrystalizing method for conductor film | |
FR2517123A1 (en) | METHOD FOR FORMING A SINGLE-CRYSTAL SEMICONDUCTOR FILM ON AN INSULATOR | |
JPH0588544B2 (en) | ||
JPS6356912A (en) | Manufacture of recrystallized semiconductor thin-film | |
JPS59138329A (en) | Fabrication of single crystal thin film on insulative substrate | |
JPH01168050A (en) | Laminated type semiconductor device | |
JPH11145484A (en) | Manufacture of thin-film transistor | |
JPS6352407A (en) | Manufacture of semiconductor substrate | |
JPH0614511B2 (en) | Crystallization method of semiconductor thin film | |
JPS5825220A (en) | Manufacture of semiconductor substrate | |
JPS60140717A (en) | Manufacture of semiconductor thin film crystal layer | |
JPS60161396A (en) | Manufacture of silicon thin film | |
JPH0573324B2 (en) | ||
JPH0354819A (en) | Manufacture of soi substrate | |
JPH03286520A (en) | Manufacture of thin crystalline semiconductor film | |
JPS61113229A (en) | Manufacture of semiconductor thin film crystal layer | |
JPH0432039B2 (en) | ||
JPS61136219A (en) | Formation of single crystal si film | |
JPS6362893B2 (en) | ||
JPH043459A (en) | Manufacture of laminated semiconductor device | |
JPS6336512A (en) | Manufacture of thin single-crystal semiconductor film | |
JPS6076117A (en) | Method for crystallization of semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |