JPS61266576A - Production of member coated with high-hardness boron nitride - Google Patents

Production of member coated with high-hardness boron nitride

Info

Publication number
JPS61266576A
JPS61266576A JP10874685A JP10874685A JPS61266576A JP S61266576 A JPS61266576 A JP S61266576A JP 10874685 A JP10874685 A JP 10874685A JP 10874685 A JP10874685 A JP 10874685A JP S61266576 A JPS61266576 A JP S61266576A
Authority
JP
Japan
Prior art keywords
boron nitride
nitrogen
hydrogen
borazine
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10874685A
Other languages
Japanese (ja)
Inventor
Masaru Yagi
優 八木
Yoshitaka Maekawa
前川 善孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP10874685A priority Critical patent/JPS61266576A/en
Publication of JPS61266576A publication Critical patent/JPS61266576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily produce a member coated with high-hardness boron nitride at a low temp. by passing an active material in which a hydrogen element and nitrogen element exist and a material to be activated such as boron hydride through electric discharge then introducing the same into the surface of a substrate kept at an adequate temp. CONSTITUTION:The gaseous mixture formed by passing the active material which consists of nitrogen, hydrogen or nitrogen hydride, etc., and in which at least the hydrogen element and nitrogen element exist and the material to be activated which is <=1 kinds among boron hydride, borazine or borazine deriv. through the electric discharge or the gaseous mixture formed by passing the above-mentioned active material through the electric discharge, then mixing the same with the above-mentioned material to be activated is introduced into the surface of the substrate heated to 200-1,500 deg.C preferably under the internal pressure of 0.001-300Torr in a reaction vessel in which the electric discharge is generated by DC, high frequency or microwave. The coating layer of the boron nitride having the excellent density, high hardness and crystallinity is thus formed on the substrate surface and the member coated with the high-hardness boron nitride is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相反応法によって基体表面に窒化ホウ素か
らなる被覆層を形成する高硬度窒化ホウ素被覆部材の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a highly hard boron nitride coated member, which forms a coating layer made of boron nitride on the surface of a substrate by a gas phase reaction method.

(従来の技術) 窒化ホウ素は、大別すると低圧型と高圧型の2種類のも
のが存在し、低圧型の代表例としては常圧で容易に合成
される軟質で潤滑性にすぐれた六方晶窒化ホウ素があり
、高圧型の代表例としては高圧、高温という特殊な条件
で合成される硬質で緻密な立方晶窒化ホウ素がある。こ
の内、立方晶窒化ホウ素は、ダイヤモンドに次いで高硬
度で。
(Prior art) Boron nitride can be roughly divided into two types: low-pressure type and high-pressure type. A typical example of low-pressure type is a soft hexagonal crystal that is easily synthesized at normal pressure and has excellent lubricity. There is boron nitride, and a typical example of the high-pressure type is cubic boron nitride, which is hard and dense and synthesized under special conditions of high pressure and high temperature. Among these, cubic boron nitride has the second highest hardness after diamond.

しかもダイヤモンドは鉄との親和性が高いのに対して立
方晶窒化ホウ素は鉄との親和性が低いことから、例えば
鉄系材料の切削用工具として注目されている材料である
。このように鉄との親和性が低く、高硬度、高熱伝導性
及び高電気絶縁性を有する立方晶窒化ホウ素を被覆層と
して基体表面に形成する方法が種々研究されている。
Moreover, diamond has a high affinity for iron, whereas cubic boron nitride has a low affinity for iron, so it is a material that is attracting attention as a tool for cutting iron-based materials, for example. Various methods have been studied to form cubic boron nitride, which has a low affinity for iron and has high hardness, high thermal conductivity, and high electrical insulation, as a coating layer on the surface of a substrate.

従来、基体表面に窒化ホウ素からなる被WI層を形成さ
せる方法としては、大別すると化学蒸着法(CVD)と
物理蒸着法(PVD)がある、この内、前者の方法とし
ては、ハロゲン化ホウ素又はジポランの如きホウ化物と
アンモニア又はとドラジンと水素との反応ガス中で行な
う方法がある。
Conventionally, methods for forming a WI layer made of boron nitride on the surface of a substrate can be roughly divided into chemical vapor deposition (CVD) and physical vapor deposition (PVD). Alternatively, there is a method in which the reaction is carried out in a reaction gas of a boride such as diporan, ammonia, or drazine and hydrogen.

一方後者の方法としては、イオンビームデポジシ璽ン法
、イオン注入法又はイオンビームデポジション法と蒸着
法を組合わせた方法もしくはイオン注入法を組合わせた
方法がある。
On the other hand, the latter method includes ion beam deposition, ion implantation, a combination of ion beam deposition and vapor deposition, or a combination of ion implantation.

(発明が解決しようとする問題点) 従来、基体表面に窒化ホウ素からなる被覆層を形成する
方法の内、CVDによる場合は、単なる熱的な気相反応
であるために軟質な六方晶窒化ホウ素からなる被覆層し
か形成されないという問題がある。PVDの内、イオン
ビームデポジション法による場合は、高真空高電圧用装
置とイオンビーム発生装置及び集束装置が必要で設備容
量に対する処理量も少ないために高価に付き、しかも形
成される被覆層は立方晶窒化ホウ素の含有量が少ないた
めに立方晶窒化ホウ素本来の硬さに比べて相当低かった
り又は緻密で薄膜状の被覆層が形成され難いという問題
がある。また、イオン注入法による場合は、処理に要す
る時間が長くしかも立方晶窒化ホウ素が形成され難いと
いう問題がある。さらに、各種の方法を組合わせた場合
においても立方晶窒化ホウ素の含有量が少なかったり薄
膜状の形成が困難なために実用化できないという問題が
ある。
(Problems to be Solved by the Invention) Among the conventional methods for forming a coating layer made of boron nitride on the surface of a substrate, CVD is a simple thermal gas phase reaction, and therefore soft hexagonal boron nitride is used. There is a problem that only a coating layer consisting of is formed. Among PVD, the ion beam deposition method requires high vacuum, high voltage equipment, ion beam generator, and focusing equipment, and the throughput is small relative to the equipment capacity, making it expensive, and the coating layer formed is expensive. Since the content of cubic boron nitride is small, there is a problem that the hardness is considerably lower than the original cubic boron nitride or that it is difficult to form a dense and thin coating layer. Furthermore, when using the ion implantation method, there are problems in that the processing time is long and it is difficult to form cubic boron nitride. Furthermore, even when various methods are combined, there is a problem that it cannot be put to practical use because the content of cubic boron nitride is small or it is difficult to form a thin film.

本発明は、上記のような問題点を解決したもので、特に
基体表面に緻密性、高硬度性及び結晶性にすぐれた窒化
ホウ素の被覆層を低温で容易に形成することができる方
法を提供することを目的とするものである。
The present invention solves the above-mentioned problems, and particularly provides a method for easily forming a coating layer of boron nitride with excellent density, high hardness, and crystallinity on the surface of a substrate at a low temperature. The purpose is to

(問題点を解決するための手段) 本発明者らは、基体表面に高硬度で緻密な膜状の窒化ホ
ウ素からなる被覆層を形成する方法を検討することによ
って本発明を完成するに至ったものである。すなわち1
本発明の高硬度窒化ホウ素被覆部材の製造方法は、直流
、高周波又はマイクロ波により放電させた反応容器内で
、窒素、水素又は水素化窒素の中から選択して少なくと
も水素元素と窒素元素の存在してなる活性物質と水素化
ホウ素、ボラジン又はボラジン誘導体の中の少なくとも
1種の被活性物質を放電中に通過させてなる混合ガス、
もしくは窒素、水素又は水素化窒素の中から選択して少
なくとも水素元素と窒素元素の存在してなる活性物質を
放電中に通過させた検水素化ホウ素、ボラジン又はボラ
ジン誘導体の中の少なくとも1種の被活性物質とで混合
してなる混合ガスを200℃〜1500℃に加熱した基
体表面に導入して、該基体表面に窒化ホウ素からなる被
覆層を形成させる方法である。この本発明の方法を具体
的に説明すると、金属9合金、焼結合金、セラミックス
を含めた焼結体又は複合材料からなる基体の表面を必要
によっては研削、研摩又はラッピングなどの加工を施し
た後木、中性洗剤、有機溶剤などで洗浄したり、必要に
よっては蒸気洗浄、超音波洗浄又は表面エツチングを行
ない、次いで基体を乾燥後反応容器内に設置する。
(Means for Solving the Problems) The present inventors completed the present invention by studying a method of forming a coating layer made of boron nitride in the form of a highly hard and dense film on the surface of a substrate. It is something. i.e. 1
The method for manufacturing a high hardness boron nitride coated member of the present invention includes the presence of at least hydrogen element and nitrogen element selected from nitrogen, hydrogen or nitrogen hydride in a reaction vessel which is discharged by direct current, high frequency or microwave. a mixed gas formed by passing an active substance formed by the active substance and at least one active substance selected from borohydride, borazine or borazine derivatives during discharge;
or at least one of borohydride, borazine or borazine derivatives, through which an active substance selected from nitrogen, hydrogen or nitrogen hydride and containing at least hydrogen element and nitrogen element is passed during discharge. In this method, a mixed gas mixed with a substance to be activated is introduced onto the surface of a substrate heated to 200° C. to 1500° C., and a coating layer made of boron nitride is formed on the surface of the substrate. To specifically explain the method of the present invention, the surface of a substrate made of a sintered body or a composite material including a metal 9 alloy, sintered alloy, and ceramics is subjected to processing such as grinding, polishing, or lapping as necessary. After that, the substrate is washed with a neutral detergent, an organic solvent, etc., and if necessary, steam cleaning, ultrasonic cleaning, or surface etching is performed, and then the substrate is dried and placed in a reaction vessel.

この反応容器を真空に排気した後窒素、水素又は水素化
窒素の中から選択して少なくとも水素元素と窒素元素の
存在してなる活性物質と水素化ホウ素、ボラジン又はボ
ラジン誘導体の中の少なくとも1種の被活性物質を反応
容器内に送入して直流、高周波又はマイクロ波による放
電中を通過させた混合ガスを200℃〜1500℃に加
熱した基体表面に導入して、この基体表面に窒化ホウ素
からなる被覆層を形成させることができる。また、反応
容器を真空に排気した後窒素、水素又は水素化窒素の中
から選択して少なくとも水素元素と窒素元素の存在して
なる活性物質を反応容器に送入して直流、高周波又はマ
イクロ波による放電中を通過させて別経路から反応容器
に送入した水素化ホウ素、ボラジン又はボラジン誘導体
の中の少なくとも1種の被活性物質と混合した混合ガス
を200℃〜1500℃に加熱した基体表面に導大して
、この基体表面に窒化ホウ素からなる被覆層を形成させ
ることができる。ここで用いている用語で少なくとも水
素元素と窒素元素の存在してなる活性物質とは、アンモ
ニア、ヒドラジンなどの水素化窒素の少なくとも1種で
もよく、又はこの水素化窒素の少なくとも1種と水素の
混合ガス、もしくは水素化窒素の少なくとも1種と窒素
の混合ガス、あるいは水素化窒素の少なくとも1種と水
素と窒素の混合ガス、さらには水素と窒素の混合ガスで
あってもよい、また、被活性物質としての水素化ホウ素
とは、例えばジポラン(BzH6)、 テトラポラン(
Bs H+ o )、ペンタポラン9(85H9)、ペ
ンタポラン11 (Bs)+■)ヘキサポランL O(
B6H+o)、ヘキサポラン12 (86H12)、オ
クタポラン12 (88HI2)、オクタポランl 8
 (BeH+s)があり、ボラジン又はボラジン誘導体
とは化学式が83 N3 Hbのボラジン又はBxNJ
rで表示されるボラジン誘導体を示し、ボラジン誘導体
としては六員環構造からなる例えばポランナフタレン(
BsM5Hs)。
After evacuating the reaction vessel to vacuum, an active substance selected from nitrogen, hydrogen or nitrogen hydride in which at least hydrogen element and nitrogen element are present, and at least one kind of borohydride, borazine or borazine derivative. The substance to be activated is introduced into a reaction vessel and the mixed gas is passed through a discharge by direct current, high frequency or microwave, and then introduced onto the surface of a substrate heated to 200°C to 1500°C. A coating layer consisting of the following can be formed. In addition, after evacuating the reaction vessel, an active substance selected from nitrogen, hydrogen, or hydrogenated nitrogen and containing at least hydrogen element and nitrogen element is introduced into the reaction vessel, and then the active substance is energized by direct current, high frequency, or microwave. The surface of the substrate is heated to 200°C to 1500°C with a mixed gas mixed with at least one active substance selected from borohydride, borazine, or borazine derivatives, which is passed through an electrical discharge and fed into the reaction vessel from a separate route. As a result, a coating layer made of boron nitride can be formed on the surface of the substrate. As used herein, the active substance containing at least hydrogen element and nitrogen element may be at least one type of hydrogenated nitrogen such as ammonia or hydrazine, or a combination of at least one type of hydrogenated nitrogen and hydrogen. It may be a mixed gas, or a mixed gas of at least one type of hydrogenated nitrogen and nitrogen, or a mixed gas of at least one type of hydrogenated nitrogen and hydrogen and nitrogen, or a mixed gas of hydrogen and nitrogen. Boron hydride as an active substance is, for example, diporan (BzH6), tetraporan (
Bs H+ o), Pentaporan 9 (85H9), Pentaporan 11 (Bs) + ■) Hexaporan L O (
B6H+o), hexaporan 12 (86H12), octaporan 12 (88HI2), octaporan l 8
(BeH+s), and borazine or borazine derivatives are borazine or BxNJ with the chemical formula 83 N3 Hb.
Borazine derivatives represented by r are examples of borazine derivatives, such as porannaphthalene (
BsM5Hs).

ポラゾビ7 x ニル(86N6HIO)、2 、4−
ジアミノボラジン(83H5H8)などがある、これら
の水素化ホウ素、ボラジン又はボラジン誘導体を反応容
器内に送入するときは、ジポランのように常温常圧で気
体のものはそのまま気体のジポランを送入したり、ジポ
ランと不活性ガスとの混合ガスとして送入することもで
きる。その他ペンタボランのような水素化ホウ素又はボ
ラジンなどのように常温常圧で液体状のものは、不活性
ガスもしくは活性物質をキャリアガスとして反応容器内
に送入することができる。また、デカポラン(JoH口
)のような水素化ホウ素やポランナフタレン又はポラン
ビフェニルのようなボラジン誘導体などのように常温常
圧で固体状のものは、加熱によって液体状にしだ後不活
性ガスもしくは活性物質をキャリアガスとして反応容器
内に送入することができる。
porazobi7 x nil (86N6HIO), 2, 4-
When feeding boron hydride, borazine or borazine derivatives such as diaminoborazine (83H5H8) into the reaction vessel, if they are gaseous at room temperature and pressure, such as diporan, feed the gaseous diporan as it is. Alternatively, it can also be delivered as a mixed gas of diporane and an inert gas. In addition, borohydrides such as pentaborane or those that are liquid at normal temperature and pressure, such as borazine, can be introduced into the reaction vessel using an inert gas or an active substance as a carrier gas. In addition, substances that are solid at room temperature and normal pressure, such as boron hydride such as decaporane (JoH) and borazine derivatives such as porannaphthalene or poranbiphenyl, are heated to liquid form and then inert gas or activated The substance can be introduced into the reaction vessel as a carrier gas.

活性物質と被活性物質を放電中に通過させた混合ガスを
基体表面に導入するときは、反応容器内に設置する基体
の位置が放電領域内もしくは放電領域外で放電中を通過
した混合ガスが排出口側に対流している対流領域内であ
ってもよい、また活性物質を放電中に通過させた後被活
性物質と混合した混合ガスを基体表面に導入するときは
、反応容器内に設置する基体の位置は放電領域内よりも
むしろ放電領域外で混合ガスが排出口側に対流している
対流領域内の方が望ましい、ここで使用する基体は、加
熱温度が200℃〜1500℃であることからA、Q、
Cu、Fe、Ni 、Go。
When introducing the mixed gas that has passed through the active substance and the activated substance during discharge onto the surface of the substrate, the position of the substrate installed in the reaction vessel must be within the discharge area or outside the discharge area so that the mixed gas that has passed through the discharge It may be placed in a convection region where convection flows toward the discharge port side, or it may be installed in a reaction vessel when a mixed gas mixed with an activated substance is introduced to the substrate surface after the active substance has passed through it during discharge. It is preferable to place the substrate in a convection region outside the discharge region where the mixed gas is convected toward the outlet side rather than in the discharge region. For some reason, A, Q,
Cu, Fe, Ni, Go.

St 、Mo 、W、Ti 、Taなどの割合低融点金
属のものから高融点金属のものまで含めた各種金属、又
はA1合金、Cu合金、Si合金、ステンレス、耐熱合
金°、工具鋼、鋳物などの各種の合金、もしくは粉末冶
金法によって作製される焼結ハイス、超硬合金、サーメ
ットなどの焼結合金、あるいはAR203系セラミツク
ス、ZrO2系セラミックス、5ijNn系セラミツク
ス。
Various metals ranging from low melting point metals to high melting point metals such as St, Mo, W, Ti, Ta, etc., A1 alloy, Cu alloy, Si alloy, stainless steel, heat-resistant alloy °, tool steel, casting, etc. various alloys, or sintered alloys such as sintered high speed steel, cemented carbide, and cermet produced by powder metallurgy, or AR203 ceramics, ZrO2 ceramics, and 5ijNn ceramics.

SiC系セラミックス、Tic系セラミックス。SiC ceramics, Tic ceramics.

TiBz系セラミックス、AIN系セラミックスなどの
各種セラミックスを含む焼結体やダイヤモンド系高圧焼
結体、立方晶窒化ホウ素系高圧焼結体などの各種焼結体
、さらにはこれらの金属9合金、焼結合金、焼結体など
にメッキ、CVD。
Various sintered bodies including various ceramics such as TiBz ceramics and AIN ceramics, diamond-based high-pressure sintered bodies, and cubic boron nitride-based high-pressure sintered bodies, as well as nine alloys of these metals, and sintered bodies. Plating, CVD on gold, sintered bodies, etc.

PVDによって金属2合金又は周期律表4a。Metal 2 alloy or periodic table 4a by PVD.

5a、6a族金属の炭化物、窒化物、酸化物、ホウ化物
もしくはこれらの相互固溶体あるいはA見zo3 、A
uNなどを単層又は多重層で被覆した複合材料並びにこ
れら金属1合金、焼結合金、焼結体などの異種材料を少
なくとも2種以上で積層した複合材料などが使用できる
Carbides, nitrides, oxides, borides of Group 5a and 6a metals, or mutual solid solutions thereof or Azo3, A
Composite materials coated with uN or the like in a single layer or multiple layers, as well as composite materials laminated with at least two or more different materials such as these metal 1 alloys, sintered alloys, and sintered bodies, can be used.

本発明の高硬度窒化ホウ素被覆部材の製造方法において
、緻密性、高硬度性及び結晶性にすぐれた窒化ホウ素の
被m層を形成するためには、特に反応容器内の内圧が大
きく影響し、この内圧によって軟質な六方晶窒化ホウ素
又は非晶質の窒化ホウ素の混在した低硬度の被覆層にな
ることから反応容器内の内圧は0.001Torr 〜
300Torrにすることが望ましい、また、放電エネ
ルギーも被覆層の特性に大きく影響する。そのために、
マイクロ波による放電が好ましく、その照射強度はIO
W以上好ましくは100W以Eにするのがよい、これら
各種の基体の表面に被覆する窒化ホウ素からなる被覆層
は、用途及び形状によって異なるけれども被覆層の特性
を有効に発揮させるためと被覆層内剥離を防ぐ必要から
(mlpm〜30gm厚さにすることが望ましく、特に
衝撃が加わるような用途に応用するとき、切削用工具の
中でもドリルのように鋭角な刃先形状に応用するとき又
は耐摩耗用工具の中でもペンポールやドツトビンのよう
に極小形のものに応用するときには被覆層厚さはO0l
ルm〜3ルmと薄くすることが望ましい、被覆層を形成
するときの基体の加熱温度は、基体の材質又は形状によ
っても異なるけれども基体と被覆層との密着性、被覆層
の粒径及び被覆層の析出速度から500℃〜1100℃
が望ましい。
In the method for manufacturing a high-hardness boron nitride-coated member of the present invention, in order to form a boron nitride coated layer with excellent density, high hardness, and crystallinity, the internal pressure in the reaction vessel has a particularly large influence. This internal pressure creates a low-hardness coating layer containing a mixture of soft hexagonal boron nitride or amorphous boron nitride, so the internal pressure inside the reaction vessel is 0.001 Torr ~
It is desirable to set the temperature to 300 Torr, and the discharge energy also greatly affects the properties of the coating layer. for that,
Discharge by microwave is preferable, and the irradiation intensity is IO
The coating layer made of boron nitride coated on the surface of these various substrates, which is preferably W or more and preferably 100W or more, is used in order to effectively exhibit the characteristics of the coating layer and to Due to the need to prevent peeling (it is desirable to have a thickness of mlpm to 30gm), especially when applied to applications where impact is applied, when applied to cutting tools with sharp cutting edges such as drills, or for wear resistance. When applying to extremely small tools such as pen poles and dot bottles, the coating layer thickness should be O0l.
The heating temperature of the substrate when forming the coating layer, which is preferably as thin as 1 to 3 mm, varies depending on the material or shape of the substrate, but it depends on the adhesion between the substrate and the coating layer, the particle size of the coating layer, 500°C to 1100°C based on the deposition rate of the coating layer
is desirable.

(作用) 本発明の高硬度窒化ホウ素被覆部材の製造方法は、実際
の理論的メカニズムについては明らかでないが水素元素
と窒素元素の共存した状態のガスを直流、高周波又はマ
イクロ波による放電中に通過させると励起状態又は原子
状態の高いエネルギー状態の水素及び窒素が生じ、この
高いエネルギー状態をもつ水素及び窒素がそれ自体でも
活性の高い水素化ホウ素、ボラジン又はボラジン誘導体
などの被活性物質に対して更に高いエネルギーをケえる
ことになって被活性物質の結合解離を誘発し、被活性物
質がラジカル開裂のような状態に誘起されて放電中で原
子の再配列が生じてB−N結合構造を形成していくもの
である。被活性物質は、化学的反応性に富み高いエネル
ギー状態の水素及び窒素と反応しやすいけれども被活性
物質自体も放電中を通過させる方がより反応しやすく、
高硬度で結晶性にすぐれた窒化ホウ素の被覆層を形成し
やすくなる。被活性物質の内、特にボラジン又はボラジ
ン誘導体のように水素と窒素を含有したホウ素化合物の
方がより高硬度性、緻密性及び結晶性のすぐれた被覆層
を形成する傾向にある。この本発明の方法は、気相反応
法によって低温で容易に硬質窒化ホウ素の被覆層の形成
が可能で、その被覆層は1.0pm以下の微細粒子で緻
密な膜状の薄膜を形成しやすく、このために被覆層と基
体との密着性もすぐれたものとなる。
(Function) Although the actual theoretical mechanism is not clear in the method of manufacturing a high-hardness boron nitride-coated member of the present invention, gas in which hydrogen and nitrogen elements coexist is passed through a discharge using direct current, high frequency, or microwave. When this occurs, hydrogen and nitrogen in a high energy state in an excited state or an atomic state are generated, and these hydrogen and nitrogen in a high energy state are highly active against active substances such as boron hydride, borazine, or borazine derivatives. Even higher energy is applied, which induces bond dissociation in the active substance, and the active substance is induced into a state similar to radical cleavage, causing rearrangement of atoms during the discharge and forming a B-N bond structure. It is something that continues to form. Although the activated substance is highly chemically reactive and easily reacts with hydrogen and nitrogen in a high energy state, it is easier for the activated substance itself to react if it is passed through an electric discharge.
It becomes easier to form a coating layer of boron nitride with high hardness and excellent crystallinity. Among the active substances, boron compounds containing hydrogen and nitrogen, such as borazine or borazine derivatives, tend to form a coating layer with higher hardness, density, and crystallinity. The method of the present invention enables the formation of a hard boron nitride coating layer easily at low temperatures using a gas phase reaction method, and the coating layer can easily form a dense film-like thin film with fine particles of 1.0 pm or less. Therefore, the adhesion between the coating layer and the substrate is also excellent.

(実施例) 実施例1 反応容器内を真空排気した後水素150 mQ /si
nとアンモニアガス50mQ/鳳1nを供給した0次い
で窒素をキャリアガスとしてボラジン30WIQ/腸i
nを反応容器内に供給して容器内圧を5Torrに保持
した。この反応容塁にマイクロ波出力400Wによって
放電を生じさせて、水素、アンモニア及びボラジンを放
電中に通過させた。この放電中を通過した水素、アンモ
ニア及びボラジンの混合ガスを放電領域内に設置して1
000℃に加熱した基体表面に導入し、窒化ホウ素から
なる被覆層を形成した。ここで使用した基体は、JIS
規格に20相当の超硬合金の表面にl 、 O,’g 
mのT1CN層の内層と0.51LmのAiNfiを外
層とする複合材料であった。得られた被覆材料を走査型
電子顕微鏡、X線回折、オージェ分光法により測定した
所、最外層の被覆層は2.0pm厚さで、粒径が1.0
gm以下の立方晶窒化ホウ素に相当する膜状の薄層であ
ることが確認できた。このようにして得た被覆層硬さは
、 4200 kg/++u+2ビッカース硬度であっ
た。
(Example) Example 1 After evacuating the inside of the reaction vessel, 150 mQ/si of hydrogen was added.
Then, borazine 30WIQ/intestinal was supplied with nitrogen and ammonia gas 50mQ/1n as a carrier gas.
n was supplied into the reaction vessel to maintain the internal pressure of the vessel at 5 Torr. A discharge was generated in this reaction vessel using a microwave power of 400 W, and hydrogen, ammonia and borazine were passed through during the discharge. The mixed gas of hydrogen, ammonia and borazine that has passed through this discharge is placed in the discharge area.
The boron nitride was introduced onto the surface of the substrate heated to 000° C. to form a coating layer made of boron nitride. The substrate used here is JIS
l, O,'g on the surface of cemented carbide equivalent to standard 20
It was a composite material with an inner layer of T1CN layer of 0.51 Lm and an outer layer of AiNfi of 0.51 Lm. When the obtained coating material was measured using a scanning electron microscope, X-ray diffraction, and Auger spectroscopy, it was found that the outermost coating layer had a thickness of 2.0 pm and a particle size of 1.0.
It was confirmed that the film was a thin film-like layer corresponding to cubic boron nitride of less than gm. The hardness of the coating layer thus obtained was 4200 kg/++u+2 Vickers hardness.

実施例2 反応容器内を真空排気した。後水素200a/uin、
ヒドラジン50 ron /win 、窒素20.、Q
/sin及びジポラン50J/winを供給して容器内
圧を50To r rに保持した。この水素、ヒドラジ
ン、窒素及びジポランをマイクロ波出力400Wによる
放電中に通過させて混合した混合ガスを放電領域外でガ
ス排出口側に設置して1ioo℃に加熱した5i3Na
系セラミツクス(Si3N4−5%Y2O3−10%A
IN組IO&)の基体表面に導入して窒化ホウ素からな
る被覆層を形成した。得られた被覆材料を実施例1と同
様に調べた所、被覆層はり、OJLm厚さで、粒径が1
.0pm以下の立方晶窒化ホウ素に相当する膜状の薄層
であることが確認できた。
Example 2 The inside of the reaction vessel was evacuated. Rear hydrogen 200a/uin,
Hydrazine 50 ron/win, nitrogen 20. ,Q
/sin and Diporan 50 J/win were supplied to maintain the internal pressure of the container at 50 Torr. A mixed gas of hydrogen, hydrazine, nitrogen, and diporan was passed through it during discharge using a microwave output of 400 W, and the mixed gas was placed outside the discharge area on the gas outlet side and heated to 1ioo°C.
Ceramics (Si3N4-5%Y2O3-10%A
A coating layer made of boron nitride was formed by introducing boron nitride onto the surface of the substrate of the IN group IO&). The obtained coating material was examined in the same manner as in Example 1, and it was found that the coating layer thickness was OJLm and the particle size was 1.
.. It was confirmed that the film was a thin film-like layer corresponding to cubic boron nitride with a particle size of 0 pm or less.

実施例3 反応容器内を真空排気した後水素200−/腸in、ア
ンモニアガス50J/履inを供給して容器内圧を0.
05Torrに保持した。この水素とアンモニアをマイ
クロ波出力400Wによる放電中に通過させた後ジポラ
ンをキャリアガスとしたボラジン50J/sinと混合
した混合ガスを放電領域外でガス排出口側に設置して5
00℃に加熱した基体表面に導入して窒化ホウ素からな
る被覆層を形成した。ここで使用した基体は、高速度鋼
(SKH−9)の表面に1.OBmのT i CN層の
内層と0.5JLmのAiN層を外層とする複合材料で
あった。得られた被覆材料を実施例1と同様に調べた所
、最外層の被覆層は1.5JLm厚さで1粒径が1.0
pm以下の立方晶窒化ホウ素に相当する膜状の薄層であ
ることが確認できた。
Example 3 After evacuating the inside of the reaction container, 200 J/in of hydrogen and 50 J/in of ammonia gas were supplied to bring the internal pressure of the container to 0.
The temperature was maintained at 0.05 Torr. After passing this hydrogen and ammonia during discharge with a microwave output of 400 W, a mixed gas mixed with 50 J/sin of borazine using diporane as a carrier gas was placed outside the discharge area on the gas outlet side.
A coating layer made of boron nitride was formed by introducing the boron nitride onto the surface of the substrate heated to 00°C. The substrate used here was made of high-speed steel (SKH-9) with 1. It was a composite material with an inner layer of OBm T i CN layer and an outer layer of 0.5 JLm AiN layer. When the obtained coating material was examined in the same manner as in Example 1, the outermost coating layer had a thickness of 1.5 JLm and a grain size of 1.0.
It was confirmed that it was a film-like thin layer corresponding to cubic boron nitride of pm or less.

(発明の効果) 以上の結果、本発明の高硬度窒化ホウ素被覆部材の製造
方法は、立方晶窒化ホウ素からなる硬質な被覆層が低温
で容易に得られることから切削用工具及び耐摩耗用工具
に応用することができる。
(Effects of the Invention) As a result of the above, the method for manufacturing a high-hardness boron nitride-coated member of the present invention is suitable for cutting tools and wear-resistant tools because a hard coating layer made of cubic boron nitride can be easily obtained at low temperatures. It can be applied to

特に、鉄との親和性の低い高硬度な立方晶窒化ホウ素に
相当する被覆層を形成することができることから、鋼、
鋳物又は耐熱合金を含めた各種の高硬度材料及び難削材
料の切削用工具として利用することができる。また、耐
食性及び化学的安定性にすぐれた緻密で薄膜状の窒化ホ
ウ素からなる被覆層であることからノズル、メカニカル
シール。
In particular, steel,
It can be used as a cutting tool for various hard materials and difficult-to-cut materials, including cast metals and heat-resistant alloys. In addition, the coating layer is made of boron nitride, which is a dense and thin film with excellent corrosion resistance and chemical stability, so it is suitable for nozzles and mechanical seals.

バルブなどの耐摩耗用工具にも利用することができ漬、
さらに高電気絶縁性、高熱伝導性及び高硬度性の被覆層
を有する被覆部料の製造方法であることから半導体用チ
ップを含めたエレクトロニクス材料などの機能材料から
構造用材料にと応用の可能性がある産業上有用な製造方
法である。
It can also be used for wear-resistant tools such as valves.
Furthermore, since this is a method for producing a coating material that has a coating layer with high electrical insulation, high thermal conductivity, and high hardness, it has the potential to be applied to functional materials such as electronics materials including semiconductor chips, as well as structural materials. This is an industrially useful manufacturing method.

Claims (2)

【特許請求の範囲】[Claims] (1)直流、高周波又はマイクロ波により放電させた反
応容器内で、窒素、水素又は水素化窒素の中から選択し
て少なくとも水素元素と窒素元素の存在してなる活性物
質と水素化ホウ素、ボラジン又はボラジン誘導体の中の
少なくとも1種の被活性物質を放電中に通過させてなる
混合ガス、もしくは窒素、水素又は水素化窒素の中から
選択して少なくとも水素元素と窒素元素の存在してなる
活性物質を放電中に通過させた後水素化ホウ素、ボラジ
ン又はボラジン誘導体の中の少なくとも1種の被活性物
質とで混合してなる混合ガスを200℃〜1500℃に
加熱した基体表面に導入して、該基体表面に窒化ホウ素
からなる被覆層を形成させることを特徴とする高硬度窒
化ホウ素被覆部材の製造方法。
(1) In a reaction vessel discharged by direct current, high frequency, or microwave, an active substance selected from nitrogen, hydrogen, or nitrogen hydride in which at least hydrogen element and nitrogen element are present, and boron hydride, borazine. or a mixed gas formed by passing at least one activated substance among borazine derivatives during discharge, or an activation formed by the presence of at least hydrogen element and nitrogen element selected from nitrogen, hydrogen, and hydrogenated nitrogen. After passing the substance through the discharge, a mixed gas mixed with at least one active substance selected from borohydride, borazine or borazine derivatives is introduced onto the surface of the substrate heated to 200°C to 1500°C. A method for manufacturing a high hardness boron nitride coated member, which comprises forming a coating layer made of boron nitride on the surface of the substrate.
(2)上記反応容器が0.001Torr〜300To
rrの内圧であることを特徴とする特許請求の範囲第1
項記載の高硬度窒化ホウ素被覆部材の製造方法。
(2) The reaction vessel is 0.001 Torr to 300 Torr
Claim 1 characterized in that the internal pressure is rr.
A method for manufacturing a high hardness boron nitride coated member as described in 2.
JP10874685A 1985-05-21 1985-05-21 Production of member coated with high-hardness boron nitride Pending JPS61266576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10874685A JPS61266576A (en) 1985-05-21 1985-05-21 Production of member coated with high-hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10874685A JPS61266576A (en) 1985-05-21 1985-05-21 Production of member coated with high-hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS61266576A true JPS61266576A (en) 1986-11-26

Family

ID=14492459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10874685A Pending JPS61266576A (en) 1985-05-21 1985-05-21 Production of member coated with high-hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS61266576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275198A (en) * 1985-05-30 1986-12-05 Mitsubishi Metal Corp Formation of deposition for boron nitride coated film
US5079038A (en) * 1990-10-05 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Hot filament CVD of boron nitride films
JP2016063007A (en) * 2014-09-17 2016-04-25 株式会社日立国際電気 Manufacturing method of semiconductor device, substrate processing apparatus, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275198A (en) * 1985-05-30 1986-12-05 Mitsubishi Metal Corp Formation of deposition for boron nitride coated film
JPH0246559B2 (en) * 1985-05-30 1990-10-16 Mitsubishi Metal Corp
US5079038A (en) * 1990-10-05 1992-01-07 The United States Of America As Represented By The United States Department Of Energy Hot filament CVD of boron nitride films
JP2016063007A (en) * 2014-09-17 2016-04-25 株式会社日立国際電気 Manufacturing method of semiconductor device, substrate processing apparatus, and program

Similar Documents

Publication Publication Date Title
US4731303A (en) Cubic boron nitride coated material and producing method of the same
US5382293A (en) Plasma jet CVD apparatus for forming diamond films
JP2562442B2 (en) Composite powder particles, manufacturing method and manufacturing apparatus
EP0413834B1 (en) Diamond-covered member and process for producing the same
JPS62196371A (en) Diamond coated member having high adhesiveness
Murakawa et al. Chemical vapour deposition of a diamond coating onto a tungsten carbide tool using ethanol
JP4295830B2 (en) Coating of cemented carbide substrate or carbide containing cermet substrate with hard material
Klages et al. Diamond coatings and cBN coatings for tools
EP0779940B1 (en) Method for the deposition of a diamond film on an electroless-plated nickel layer
JPS61266576A (en) Production of member coated with high-hardness boron nitride
EP0721998B1 (en) Method for vapour deposition of diamond film
US5445887A (en) Diamond coated microcomposite sintered body
JPS61109628A (en) Diamond coated tool
JPS62133068A (en) Diamond coated member
JPS5993869A (en) Structure coated with hard layer containing diamond
JPS61174378A (en) Production of rigid material coated with boron nitride
JPH06262405A (en) Coating part for tool
JPH0582473B2 (en)
JP3260157B2 (en) Method for producing diamond-coated member
JPS61104078A (en) Hard coated sintered alloy and its manufacture
US5492770A (en) Method and apparatus for vapor deposition of diamond film
JP2539922B2 (en) Diamond coated cemented carbide
JPS61106478A (en) Diamond coated part
JPH0558066B2 (en)
KR930011165B1 (en) Apparatus for adhering diamond film on the plate and processing method thereof