JPS61133843A - Surface inspector - Google Patents
Surface inspectorInfo
- Publication number
- JPS61133843A JPS61133843A JP25578384A JP25578384A JPS61133843A JP S61133843 A JPS61133843 A JP S61133843A JP 25578384 A JP25578384 A JP 25578384A JP 25578384 A JP25578384 A JP 25578384A JP S61133843 A JPS61133843 A JP S61133843A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- sample
- radial
- beam spot
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/8901—Optical details; Scanning details
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、検査対象物の直径が大きい場合でも、比較的
短時間内に検査が終了するように、半径方向走査速度を
高めた円形物体の表面検査装置に関する。Detailed Description of the Invention [Industrial Application Field] The present invention provides a circular object with a high radial scanning speed so that even if the diameter of the object to be inspected is large, the inspection can be completed within a relatively short time. The present invention relates to a surface inspection device.
で発明が解決しようとする問題点〕
従来から、例えば半導体ウェハやアルミニウム円板など
の鏡面仕上げされた表面の付着異物、汚れ、傷などの欠
陥を検出するために、検査対象円形物体表面をレーザビ
ームで照射して、もし散乱光が検出されたときは、その
照射部位に欠陥が存在するものとみなすという原理に従
って、円形物体表面をdix旋形に走査して検査する方
式の表面検査装置が用いられていた。[Problems to be Solved by the Invention] Conventionally, in order to detect defects such as foreign matter, dirt, and scratches on mirror-finished surfaces such as semiconductor wafers and aluminum disks, laser beams have been used to scan the surface of circular objects to be inspected. A surface inspection device that scans and inspects the surface of a circular object in a dix spiral according to the principle that if scattered light is detected, it is assumed that a defect exists in the irradiated area. It was used.
しかし、従来はレーザビームスポットで検査対象物を照
射するのに、通常の光学系を用いていたので、照射され
ている検査対象物表面位置におけるスポット形状は例え
ば直径約40μmの円形をなしていた。レーザビームで
[旋形走査をする場合、検査の再現性、信頼性等を考慮
すると、第2図に示すように、走査の送りピッチはビー
ムスポット径の精々半分(例えば25〜30μm)が限
度である。そのため、従来はレーザビームスボ。However, in the past, a normal optical system was used to irradiate the inspection object with a laser beam spot, so the spot shape at the irradiated surface position of the inspection object was, for example, a circle with a diameter of about 40 μm. . When performing circular scanning with a laser beam, the scanning feed pitch is limited to at most half the beam spot diameter (for example, 25 to 30 μm), as shown in Figure 2, when considering inspection reproducibility and reliability. It is. Therefore, conventionally laser beam control was used.
トによる螺旋形走査を終了するのに長時間を要していた
。It took a long time to complete the spiral scan.
また、従来は、螺旋形走査の際、試料回転数を一定にし
て走査を行っていたので、検査対象試料が大口径化する
のに伴って、外部と内部とで、走査速度の相違が大きく
なっていた。同程度の表面欠陥による散乱光でも、走査
速度が速く、散乱光検出手段への入射時間が短ければ、
周波数が高(なり、信号処理系のレスポンスが遅れ、正
常な波高値が得られなくなる。このような理由で、従来
方式では、試料の大口径化に伴い、欠陥の程度の判定に
場所によるばらつきが目立つようになるという問題が生
じていた。In addition, conventionally, when performing spiral scanning, scanning was performed with a constant sample rotation speed, so as the diameter of the sample to be inspected becomes larger, the difference in scanning speed between the outside and the inside becomes large. It had become. Even for scattered light caused by surface defects of the same degree, if the scanning speed is fast and the incident time to the scattered light detection means is short,
The frequency becomes high (and the response of the signal processing system is delayed, making it impossible to obtain a normal peak value.For this reason, with the conventional method, as the diameter of the sample becomes larger, the determination of the degree of defect may vary depending on the location. A problem has arisen in that it becomes more noticeable.
本発明では、上記従来の検査方式で生じていた、螺旋形
走査で送りピッチを大きく採れない、一定な回転角速度
では、走査位置による走査速度の差が大きく、欠陥判定
にばらつきが生ずるなどの問題点を解消した、螺旋形走
査の送りピッチが大きく探れ、欠陥判定のばらつきをな
くすために、円周方向と半径方向の走査速度を合成した
(線)走査速度をほぼ一定とした表面検査装置を提供す
ることを目的とする。The present invention solves the problems that occurred in the conventional inspection method described above, such as not being able to use a large feed pitch in spiral scanning, and with a constant rotational angular velocity, there is a large difference in scanning speed depending on the scanning position, causing variations in defect determination. In order to eliminate the problem of dots, detect a large feed pitch in the spiral scan, and eliminate variations in defect determination, we have developed a surface inspection device that has a nearly constant (linear) scanning speed, which is a composite of the scanning speeds in the circumferential and radial directions. The purpose is to provide.
上記目的を達成するために、本発明においては、螺旋形
走査の送りピッチを太き(採れないのは、この送りピッ
チはレーザビーム径のほぼ半分が限度という制約がある
ことに起因するから、本発明では、検査対象物の半径方
向のレーザビーム径を特殊な照射光学系を用いて拡大し
、レーザビーム照射位置ではほぼ楕円形のレーザビーム
スポットが得られるようにして、前記送りピッチを太き
(し、また、大口径検査対象物の内外部でで欠陥程度の
判定にばらつきが生じるのは、一定角速度で検査対象試
料を回転させる従来の方式では、試料内外部で走査速度
の差が大きくなり過ぎるためであるから、本発明装置で
は、外周部では回転角速度を遅く、内周部では回転角速
度を速くして、円周方向走査速度と半径方向走査速度を
合成した走査速度が全検査工程を通じて、ほぼ一定とな
るような走査駆動系を用いることとした。In order to achieve the above object, in the present invention, the feed pitch of the helical scan is made thicker (the reason why this feed pitch cannot be adopted is that there is a restriction that this feed pitch is limited to approximately half the laser beam diameter. In the present invention, the diameter of the laser beam in the radial direction of the object to be inspected is expanded using a special irradiation optical system, so that a nearly elliptical laser beam spot is obtained at the laser beam irradiation position, and the feed pitch is increased. (Also, in the conventional method of rotating the inspection target sample at a constant angular velocity, the difference in the scanning speed between the inside and outside of the sample causes variations in the determination of the degree of defects between the inside and outside of the large-diameter inspection target.) Therefore, in the device of the present invention, the rotational angular velocity is slowed at the outer periphery and faster at the inner periphery, and the scanning speed that is the combination of the circumferential scanning speed and the radial scanning speed is used for all inspections. It was decided to use a scanning drive system that would remain approximately constant throughout the process.
第1図は本発明の一実施例を示し、1はHe−Neレー
ザ、2はミラー、3は楕円ビームエクスパンダ、4は集
光レンズ、5はピンホール、6は試料(半導体ウェハ)
、7はスピンドル、8は回転角検出用ロータリエンコー
ダ、9は回転用直流モータ、10はこれら回転関係部材
7.8.9を搭載したテーブル、11は半径方向移動用
テーブル、12は直流モータ、13は位置検出用ロータ
リエンコーダ、14はオプティカルファイバである。FIG. 1 shows an embodiment of the present invention, in which 1 is a He-Ne laser, 2 is a mirror, 3 is an elliptical beam expander, 4 is a condenser lens, 5 is a pinhole, and 6 is a sample (semiconductor wafer).
, 7 is a spindle, 8 is a rotary encoder for detecting rotation angle, 9 is a DC motor for rotation, 10 is a table on which these rotation related members 7, 8, 9 are mounted, 11 is a table for radial movement, 12 is a DC motor, 13 is a rotary encoder for position detection, and 14 is an optical fiber.
オプティカルファイバ14は、図示してない光電子増倍
管に接続された散乱光検出手段のヘッドである。この図
では、試料6の面に直角に入射するレーザビームの照射
点の周囲に、3(1mのオプティカルファイバが配置さ
れているように見えるが、実際は照射点を囲んで12個
のオプティカルファイバ14が配置されており、散乱光
がどの方向に向かって散乱されても、確実に検出される
。連続出力5mWのHe−Neレーザ1から放射された
ビームは断面円形であるが、このビームは、シリンドリ
カルレンズを組合せて一体化した楕円ビームエクスパン
ダ3により検査対象試料の半径方向にビームスポット径
が拡大され、楕円形になったビームスポットは更に両凸
レンズよりなる集光レンズ4によって試料面上に極めて
微小な楕円形(長径約184μm、短径約39μm)に
集光される。この楕円ビーム形状が、試料面上で長径が
試料半径方向、短径が試料円周方向に絞り込まれるよう
に楕円ビームエクスパンダ3の位置を決める。また、本
光学系において、試料面上に長径と短径が収差な(絞り
込まれるように集光レンズ4を選定する。試料面上での
レーザビームスポットは半径方向に長く伸びているため
、ガウスビームの裾野が広がり、そのため半径方向に走
査したとき、試料(例えば半導体ウェハ)のエツジから
の散乱光が迷光として受光器に入射し、エツジの処理を
誤らせてしまう。集光レンズと試料の間にピンホールを
挿入することにより外周からの迷光(ピンホールが無い
とエツジからの散乱光が集光レンズを照射しレンズ面で
反射されてオプティカルファイバに検出される量が無視
できない)を完全に取り除くことが出来る。試料(例え
ば半導体ウェハ)6を吸着固定させ、直流モータ9とタ
イミングベルトにより、スピンドル7を走査の半径方向
位置に対応した速度で回転させる。回転角の検出はロー
タリエンコーダ8 (1024パルス/回転)で行い、
欠陥のサンプリングパルスに使用する。半径方向移動用
テーブル11は半径方向走査を行うためのもので、直流
モータ12により半径方向位置に対応した可変速度で移
動される。半径方向位置検出はロータリエンコーダ13
(1000パルス/回転)により行い、データ取込み
のタイミングに使用する。なお、試料内部走査時の回転
速度を速(、外周近くでの回転速度を遅くする制御は、
MPUを用いて、予めROMにいれである手順に従って
周知の方法で行う。The optical fiber 14 is the head of a scattered light detection means connected to a photomultiplier tube (not shown). In this figure, it appears that 3 (1 m) optical fibers are arranged around the irradiation point of the laser beam that is incident at right angles to the surface of the sample 6, but in reality, 12 optical fibers (14) are placed around the irradiation point. are arranged, and the scattered light is reliably detected no matter what direction it is scattered in. The beam emitted from the He-Ne laser 1 with a continuous output of 5 mW has a circular cross section; The beam spot diameter is expanded in the radial direction of the specimen to be inspected by an elliptical beam expander 3 that is integrated with a combination of cylindrical lenses, and the elliptical beam spot is further focused onto the specimen surface by a condensing lens 4 made of a biconvex lens. The light is focused into an extremely small ellipse (major axis approximately 184 μm, minor axis approximately 39 μm).This elliptical beam shape is condensed onto the sample surface so that the major axis is focused in the radial direction of the sample and the minor axis is focused in the circumferential direction of the sample. Determine the position of the beam expander 3.In addition, in this optical system, select the condenser lens 4 so that the major axis and minor axis are aberrated (narrowed down) on the sample surface.The laser beam spot on the sample surface has a radius Since the Gaussian beam extends long in the direction, the base of the Gaussian beam widens, and therefore, when scanning in the radial direction, scattered light from the edge of the sample (for example, a semiconductor wafer) enters the receiver as stray light, causing incorrect processing of the edge. By inserting a pinhole between the condenser lens and the sample, stray light from the outer periphery (if there is no pinhole, scattered light from the edge illuminates the condenser lens, is reflected by the lens surface, and is detected by the optical fiber. The sample (for example, a semiconductor wafer) 6 is fixed by suction, and the spindle 7 is rotated by a DC motor 9 and a timing belt at a speed corresponding to the radial position of the scan. .The rotation angle is detected by rotary encoder 8 (1024 pulses/rotation).
Used for defect sampling pulse. The radial movement table 11 is for performing radial scanning, and is moved by a DC motor 12 at a variable speed corresponding to the radial position. Radial position detection is done by rotary encoder 13
(1000 pulses/rotation) and is used for data acquisition timing. Note that the rotation speed when scanning the inside of the sample can be set to high (and the rotation speed near the outer periphery can be slowed down).
This is carried out in a well-known manner using the MPU and following the procedures stored in the ROM in advance.
このようにして、螺旋形走査の送りピッチを約140μ
m(平均)にすることが出来、高速走査が可能となり、
従来の検査所要時間の約115で済むようになった。In this way, the feed pitch of the helical scan is approximately 140μ.
m (average), high-speed scanning is possible,
It now takes about 115 minutes compared to the conventional inspection time.
以上説明したように本発明によれば、半径方向送りピッ
チを大きくすることが出来て検査対象の蝮旋形走査に要
する時間が短縮され、しかも合成線走査速度がほぼ一定
なので高分解能で信頼性の高い表面検査を行うことが出
来る。As explained above, according to the present invention, it is possible to increase the radial feed pitch, reducing the time required to scan the spiral shape of the inspection target, and furthermore, the composite line scanning speed is almost constant, resulting in high resolution and reliability. It is possible to perform surface inspection with high quality.
第1図は本発明の一実施例図、第2図はレーザビームス
ポット径と螺旋走査送りピッチの関係を示す図である。
1 ・−He−Ne レーザ、 2− ベラ−13・
−・楕円ビームエクスパンダ、 4・−・集光レンズ
、 5・−・−・ピンホール、 6−・試料(半導体
ウェハ)、 7、−・スピンドル、 8−・回転角検
出用ロータリエンコーダ、 9・−・回転用直流モータ
、 10・−・テーブル、 11−・半径方向移動用
テーブル、12・−直流モータ、 13−位置検出用
ロータリエンコーダ、 14・−・オプティカルファ
イバ。FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the laser beam spot diameter and the helical scanning feed pitch. 1.-He-Ne laser, 2- Vera-13.
- Elliptical beam expander, 4 - Condenser lens, 5 - Pinhole, 6 - Sample (semiconductor wafer), 7 - Spindle, 8 - Rotary encoder for rotation angle detection, 9 10--Table, 11--Table for radial movement, 12--DC motor, 13--Rotary encoder for position detection, 14--Optical fiber.
Claims (1)
旋形をなすように照射、走査させ、散乱光が検出された
照射位置には傷、汚れ、表面異物などの欠陥が存在する
ものとみなす方式の表面検査装置において、照射位置に
おけるレーザビームスポットが、検査対象物体の半径方
向に本来の大きさより伸びて、ほぼ楕円形に集光する照
射光学系を用いることにより、螺旋形照射軌跡の半径方
向間隔を広げ、かつ、ビームスポットの、円周方向走査
速度と半径方向走査速度とを合成した表面走査速度が、
全走査行程を通じて常にほぼ一定となるような走査駆動
系を用いたことを特徴とする表面検査装置。A method in which the surface of a circular object is irradiated and scanned with a laser beam so that the irradiation trajectory forms a spiral, and it is assumed that defects such as scratches, dirt, and surface foreign matter exist at the irradiation position where scattered light is detected. In surface inspection equipment, by using an irradiation optical system in which the laser beam spot at the irradiation position extends beyond its original size in the radial direction of the object to be inspected and converges into an approximately elliptical shape, the radial spacing of the helical irradiation trajectory can be reduced. , and the surface scanning velocity which is the composite of the circumferential scanning velocity and the radial scanning velocity of the beam spot is
A surface inspection device characterized by using a scanning drive system that is always substantially constant throughout the entire scanning process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25578384A JPS61133843A (en) | 1984-12-05 | 1984-12-05 | Surface inspector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25578384A JPS61133843A (en) | 1984-12-05 | 1984-12-05 | Surface inspector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61133843A true JPS61133843A (en) | 1986-06-21 |
Family
ID=17283568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25578384A Pending JPS61133843A (en) | 1984-12-05 | 1984-12-05 | Surface inspector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61133843A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122937A (en) * | 1986-11-13 | 1988-05-26 | Hitachi Electronics Eng Co Ltd | Surface plate scanning system and controller for laser spot |
JPS63122936A (en) * | 1986-11-13 | 1988-05-26 | Hitachi Electronics Eng Co Ltd | System and apparatus for sampling detection signal of surface plate defect |
JPH04233404A (en) * | 1990-09-27 | 1992-08-21 | Internatl Business Mach Corp <Ibm> | Interatomic-power microscope |
JP2007309713A (en) * | 2006-05-17 | 2007-11-29 | Hitachi High-Technologies Corp | Optical inspection method and system |
WO2010100973A1 (en) * | 2009-03-06 | 2010-09-10 | 株式会社日立ハイテクノロジーズ | Surface inspecting apparatus and surface inspecting method |
WO2011122649A1 (en) * | 2010-03-30 | 2011-10-06 | 株式会社日立ハイテクノロジーズ | Surface inspection device and surface inspection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5328772B2 (en) * | 1975-05-14 | 1978-08-16 | ||
JPS54161385A (en) * | 1978-06-12 | 1979-12-20 | Hitachi Ltd | Flaw locator |
-
1984
- 1984-12-05 JP JP25578384A patent/JPS61133843A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5328772B2 (en) * | 1975-05-14 | 1978-08-16 | ||
JPS54161385A (en) * | 1978-06-12 | 1979-12-20 | Hitachi Ltd | Flaw locator |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122937A (en) * | 1986-11-13 | 1988-05-26 | Hitachi Electronics Eng Co Ltd | Surface plate scanning system and controller for laser spot |
JPS63122936A (en) * | 1986-11-13 | 1988-05-26 | Hitachi Electronics Eng Co Ltd | System and apparatus for sampling detection signal of surface plate defect |
JPH052263B2 (en) * | 1986-11-13 | 1993-01-12 | Hitachi Electr Eng | |
JPH052264B2 (en) * | 1986-11-13 | 1993-01-12 | Hitachi Electr Eng | |
JPH04233404A (en) * | 1990-09-27 | 1992-08-21 | Internatl Business Mach Corp <Ibm> | Interatomic-power microscope |
JP2007309713A (en) * | 2006-05-17 | 2007-11-29 | Hitachi High-Technologies Corp | Optical inspection method and system |
WO2010100973A1 (en) * | 2009-03-06 | 2010-09-10 | 株式会社日立ハイテクノロジーズ | Surface inspecting apparatus and surface inspecting method |
JP2010210279A (en) * | 2009-03-06 | 2010-09-24 | Hitachi High-Technologies Corp | Surface inspecting apparatus and surface inspecting method |
US8493557B2 (en) | 2009-03-06 | 2013-07-23 | Hitachi High-Technologies Corporation | Surface inspecting apparatus and surface inspecting method |
US9046499B2 (en) | 2009-03-06 | 2015-06-02 | Hitachi High-Technologies Corporation | Surface inspecting apparatus and surface inspecting method |
WO2011122649A1 (en) * | 2010-03-30 | 2011-10-06 | 株式会社日立ハイテクノロジーズ | Surface inspection device and surface inspection method |
JP2011209148A (en) * | 2010-03-30 | 2011-10-20 | Hitachi High-Technologies Corp | Surface inspection device and surface inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4423331A (en) | Method and apparatus for inspecting specimen surface | |
US7616299B2 (en) | Surface inspection method and surface inspection apparatus | |
JPH0786470B2 (en) | Disk surface inspection method and device | |
JPH11501727A (en) | Product surface inspection system and method | |
CN110849899A (en) | Wafer defect detection system and method | |
US5719840A (en) | Optical sensor with an elliptical illumination spot | |
US4465374A (en) | Method and apparatus for determining dimensional information concerning an object | |
JPS61133843A (en) | Surface inspector | |
US4800268A (en) | Method and apparatus for scanning a laser beam to examine the surface of semiconductor wafer | |
JPH0833354B2 (en) | Defect inspection equipment | |
JPH11230912A (en) | Apparatus and method for detection of surface defect | |
JP2990820B2 (en) | Surface defect inspection equipment | |
JPS61288143A (en) | Surface inspecting device | |
JPH0712747A (en) | Method of inspecting outer surface of disc covered with thin film and device therefor | |
JPH1194750A (en) | Method and apparatus for inspecting photoreceptor drum | |
JPH0431056B2 (en) | ||
JPH11287640A (en) | Method for detecting defect | |
JPH0422444B2 (en) | ||
JPH067104B2 (en) | Surface inspection device | |
JPH07146245A (en) | Apparatus and method for detecting foreign matter | |
JPH09159619A (en) | Defect inspection device of substrate surface | |
GB2174196A (en) | Container finish inspection apparatus | |
JP4388623B2 (en) | Surface inspection method and surface inspection apparatus | |
JPH0572146A (en) | Optical type surface defect detector | |
JPH064606U (en) | Surface inspection device for inspected objects |