JPS596477Y2 - electric clock - Google Patents

electric clock

Info

Publication number
JPS596477Y2
JPS596477Y2 JP52-79177U JP7917777U JPS596477Y2 JP S596477 Y2 JPS596477 Y2 JP S596477Y2 JP 7917777 U JP7917777 U JP 7917777U JP S596477 Y2 JPS596477 Y2 JP S596477Y2
Authority
JP
Japan
Prior art keywords
signal
circuit
pulse width
frequency divider
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52-79177U
Other languages
Japanese (ja)
Other versions
JPS596477Y1 (en
Inventor
波間哲郎
Original Assignee
セイコーエプソン株式会社
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to JP52-79177U priority Critical patent/JPS596477Y2/en
Application granted granted Critical
Publication of JPS596477Y2 publication Critical patent/JPS596477Y2/en
Publication of JPS596477Y1 publication Critical patent/JPS596477Y1/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案に間欠パルス信号で電気機械変換器を駆動した電
気時計に関する。
[Detailed Description of the Invention] The present invention relates to an electric clock in which an electromechanical converter is driven by an intermittent pulse signal.

本考案は比較的高い振動周波数の例えば水晶振動子等の
如き標準信号を分周回路で超低振動数まで分周し、その
信号で電気機械変換器を駆動した電気時計に関し、分周
回路及び変換器を駆動するための波形整形は従来の抵抗
要素、コンデンサ要素を全く用いないで構或したことを
特徴とし、本実施例は電界効果型トランジスタ(FET
)をIC集積回路の技術だけで組み立てる際に効果を発
揮する。
The present invention relates to an electric clock in which a standard signal of relatively high vibration frequency, such as a crystal oscillator, is frequency-divided to an ultra-low frequency using a frequency dividing circuit, and the resulting signal drives an electromechanical converter. The waveform shaping for driving the converter is characterized by the fact that it does not use any conventional resistance elements or capacitor elements, and this embodiment uses field effect transistors (FETs).
) is effective when assembled using only IC integrated circuit technology.

本考案の目的は直結型論理回路を用いた水晶腕時計等の
ための駆動回路を供するにある。
The purpose of the present invention is to provide a drive circuit for a crystal wristwatch or the like using a direct-coupled logic circuit.

本考案の他の目的は受動素子は殆んど用いないで能動素
子例えば酸化膜(SiO2)を介して半導体表面に誘起
される静電荷をうまく利用したMOSFETによる製作
しやすい高信頼性の集積回路による電気時計を供するに
ある。
Another purpose of the present invention is to create an easy-to-manufacture highly reliable integrated circuit using active elements such as MOSFETs that effectively utilize static charges induced on the semiconductor surface through an oxide film (SiO2) without using any passive elements. The company provides electric clocks.

従来の電気時計は第1図に示す如くRとCを用いたフリ
ツプフロツプ(FF)に例えば1秒信号を入れてFFの
右側と左側から夫々RとCを用いた単安定マルチ(MV
1,MV2)をトリガーして所定のパルス幅にして駆動
用トランジスタに入れて変換器のコイルL1とL2に交
互に電流を流していた。
As shown in Figure 1, in a conventional electric clock, a 1-second signal is input to a flip-flop (FF) using R and C, and a monostable multi (MV) signal is input from the right and left side of the FF using R and C, respectively.
1, MV2) was triggered to a predetermined pulse width, which was then inserted into a driving transistor to alternately flow current through the converter coils L1 and L2.

このMV1又はMv2に使用するRとCは駆動する電流
パルス幅を15msec必要とするときはRが10MJ
7とするとCは約1500 PFという高抗抵値と高容
量値の受動素子を組み込まなければならず、腕時計の如
き狭い体積内に収納することは困難で、しかも素子.が
大型になるために電子回路がら外部にとび出して配線す
るために信頼性も上らない。
When R and C used for this MV1 or Mv2 require a driving current pulse width of 15 msec, R is 10 MJ.
7, C must incorporate passive elements with high resistance and capacitance of about 1500 PF, which makes it difficult to store in a narrow volume such as a wristwatch, and the elements. Since the electronic circuit is large and the wiring is extended outside, reliability is not improved.

最近発達してきたすべて半導体の集積技術だけで電気回
路を組み立てる大規模集積回路(LSI又はMSI)技
術で腕時計を駆動すると小型化は勿論のこと信頼性が一
段と高くなり、作業工程も減少し、量産効果が大である
ことは明らがである。
If a wristwatch is driven by the recently developed large-scale integrated circuit (LSI or MSI) technology that assembles electrical circuits using only semiconductor integration technology, it will not only be smaller but also more reliable, reducing work steps and mass production. It is clear that the effect is great.

本考案は上記のような必要性から第2図のようなパルス
モーターを駆動する回路を具体例にとって詳述する。
Due to the above-mentioned necessity, the present invention will be described in detail using a circuit for driving a pulse motor as shown in FIG. 2 as a specific example.

第2図の1はモーターのロータで永久磁石の6極子であ
る。
1 in Fig. 2 is the rotor of the motor, which is a hexapole of permanent magnets.

これらの変換器は他のあらゆる形式が考えられる。All other forms of these transducers are conceivable.

2は継鉄、3は駆動コイル、4はロータから回転を伝え
る歯車、5は秒針、6,7,8.9はバイボーラ型np
nとp叩型駆動用トランジスタでMOSTでは電流容量
が間に合わなしために、この場合はバイボーラ型で行っ
ている。
2 is a yoke, 3 is a drive coil, 4 is a gear that transmits rotation from the rotor, 5 is a second hand, 6, 7, 8.9 are bibolar type np
In this case, bibolar type driving transistors are used because the current capacity cannot be kept up with MOST using n- and p-type drive transistors.

トランジスタ6と8には同時に駆動信号が与えられて、
コイル3に1方向に電流を流し、次の瞬間には7と9に
信号を与えて、コイル3に反対方向に電流を流している
Drive signals are simultaneously applied to transistors 6 and 8,
A current is passed through the coil 3 in one direction, and at the next moment a signal is given to 7 and 9, causing a current to flow through the coil 3 in the opposite direction.

この具体例ではtMは15msecのパルス幅で1秒お
きに秒針を駆動している。
In this specific example, tM drives the second hand every second with a pulse width of 15 msec.

第3図は第2図の駆動用トランジスタの入力波形図でi
nput iと2は常時正電位でパルス幅tMの駆動電
流を流すときだけ零電位になるinput 3と4はそ
の逆であり、input 1. 3とinput 2
.4とは互いに1秒間ずれている。
Figure 3 is an input waveform diagram of the driving transistor in Figure 2.
nputs i and 2 are always at a positive potential, and inputs 3 and 4 have a zero potential only when a drive current with a pulse width of tM is applied. 3 and input 2
.. 4 and 1 second apart from each other.

外部からのリセット手段によってReset信号がきて
から最悪の場合td間だけ時間的遅れを生してinpu
t 1,2,3.4の信号が駆動回路に与えられている
In the worst case, there will be a time delay of td after the Reset signal is received by an external reset means, and the input
Signals at t 1, 2, and 3.4 are given to the drive circuit.

リセット端子Rを(+電位)にすると、トランジスタが
導通状態となって、信号が遮断される。
When the reset terminal R is set to (+ potential), the transistor becomes conductive and the signal is cut off.

このとき、回路A,B,Cの各トランジスタのゲートに
もつ容量がすべて重なって影響するため、tMの信号が
生ずるまでにtdの時間遅れがある。
At this time, since the capacitances of the gates of the transistors of circuits A, B, and C all overlap and influence each other, there is a time delay of td before the signal of tM is generated.

第4図は標準信号源Foを分周器フリツプフロツプ(F
.・・・・・・Fn・・・・・・Fx)で1秒信号まで
分周して波形整形回路A,B,Cに入れて第3図の如き
input信号1,2,3.4をえている。
Figure 4 shows the standard signal source Fo as a frequency divider flip-flop (F
..・・・・・・Fn・・・・・・Fx) to divide the frequency to a 1 second signal and input it into waveform shaping circuits A, B, C to generate input signals 1, 2, 3.4 as shown in Fig. 3. It is growing.

波形整形回路Aは入力信号Fxの信号がもう1つの入力
信号Fnのパルス幅だけ遅延させる役目をしている。
The waveform shaping circuit A serves to delay the input signal Fx by the pulse width of another input signal Fn.

ここではFxは1秒おきに反転して2秒間周期のフリツ
プフロツプの出力波であり、Fnは32サイクルのフリ
ツフ゜フロツフ゜の出力波で゛行っている。
Here, Fx is the output wave of a flip-flop which is inverted every second and has a cycle of 2 seconds, and Fn is the output wave of a flip-flop which has a cycle of 32 cycles.

したがって2秒周期のFxの波形は1/64秒間もとの
信号より遅れている。
Therefore, the Fx waveform with a period of 2 seconds is delayed from the original signal by 1/64 seconds.

波形整形回路BとCは上記Aからの信号と2秒周期のF
x及びFxと180゜移相のずれたFxとの信号をNA
NDゲート回路B及びNORゲート回路Cに入れて第3
図の如き信号が与えられている。
Waveform shaping circuits B and C receive the signal from A above and F with a 2 second period.
The signal between x and Fx and Fx with a 180° phase shift is
ND gate circuit B and NOR gate circuit C
A signal as shown in the figure is given.

第5図の点線でかこまれたA,B,Cは第4図のA,B
,Cに相当している。
A, B, and C surrounded by dotted lines in Figure 5 are A, B, and B in Figure 4.
,C.

Bにおいて左半分はNAND回路で右半分はインバータ
回路となり、Cにおいて左半分はNOR回路で右半分は
インバータ回路で゛ある。
In B, the left half is a NAND circuit and the right half is an inverter circuit, and in C, the left half is a NOR circuit and the right half is an inverter circuit.

以上の如く、本考案は受動素子である抵抗又はコンデン
サを全く使用せずに任意のパルス幅、即ち第4図のFn
を任意にFn−1又はFn+1にずらすことによって、
任意のパルス幅をうろことができ、さらに第2図の如き
トランジスタ4本の駆動回路と結合することにより、超
低周波の反転パルスかえられ、第2図のようなn極パル
スモータの変換器を駆動することができることから低電
力化された水晶腕時計、その他高級な電気時計には重要
度が高いことは明らかであり、半導体集積技術を駆動し
た高信頼性でコンパクトな駆動方式である。
As described above, the present invention can generate an arbitrary pulse width without using any resistor or capacitor as a passive element, that is, Fn in FIG.
By arbitrarily shifting to Fn-1 or Fn+1,
It can vary any pulse width, and by combining it with a four-transistor drive circuit as shown in Figure 2, an extremely low frequency inverted pulse can be changed, and it can be used as a converter for an n-pole pulse motor as shown in Figure 2. It is clear that it is highly important for low-power quartz wristwatches and other high-end electric watches, as it is a highly reliable and compact drive system that uses semiconductor integrated technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の考え方による水晶時計等の駆動回路、第
2図は本考案による電気機械変換器と駆動回路、第3図
は本考案による駆動波形、第4図,第5図は本考案を詳
述するための駆動回路の一具体例を夫々示す略図である
Figure 1 shows a drive circuit for a quartz watch, etc. according to the conventional concept, Figure 2 shows an electromechanical converter and drive circuit according to the present invention, Figure 3 shows drive waveforms according to the present invention, and Figures 4 and 5 show the invention according to the present invention. 2A and 2B are schematic diagrams each showing a specific example of a drive circuit for explaining in detail.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 時間標準信号、前記時間標準信号を分周するための複数
段のフリツプフロツプよりなる分周器、前記分周器の出
力信号に基づいて駆動されるステップモー夕より構戊さ
れる電気時計に於いて、前記出力信号のパルス幅を制限
して前記ステップモーターの駆動信号を形或するための
波形整形回路を備え、前記波形整形回路は前記出力信号
を遅延させるためのMOSFETのみよりなる遅延回路
及び前記出力信号と前記遅延回路より得られた遅延信号
を合成して前記駆動信号を得るためのMOSFETのみ
よりなる論理和又は論理積回路より構威され、前記遅延
回路には遅延時間に相当するパルス幅をもった前記分周
器の途中段の信号が入力され、前記駆動信号のパルス幅
は前記遅延回路に入力された信号のパルス幅と等しいこ
とを特徴とする電気時計。
In an electric clock comprising a time standard signal, a frequency divider consisting of a plurality of stages of flip-flops for dividing the frequency of the time standard signal, and a step motor driven based on the output signal of the frequency divider. , a waveform shaping circuit for shaping a drive signal for the step motor by limiting the pulse width of the output signal, the waveform shaping circuit comprising a delay circuit consisting only of MOSFETs for delaying the output signal; The output signal and the delay signal obtained from the delay circuit are synthesized to obtain the drive signal. An electric timepiece characterized in that a signal from an intermediate stage of the frequency divider having a frequency divider is input, and a pulse width of the drive signal is equal to a pulse width of a signal input to the delay circuit.
JP52-79177U 1977-06-16 electric clock Expired JPS596477Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52-79177U JPS596477Y2 (en) 1977-06-16 electric clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52-79177U JPS596477Y2 (en) 1977-06-16 electric clock

Publications (2)

Publication Number Publication Date
JPS596477Y2 true JPS596477Y2 (en) 1984-02-28
JPS596477Y1 JPS596477Y1 (en) 1984-02-28

Family

ID=

Similar Documents

Publication Publication Date Title
JPS6217198B2 (en)
US3864582A (en) Mosfet dynamic circuit
US4031448A (en) Motor driving system and circuit therefor
JPS596477Y2 (en) electric clock
US4104860A (en) High speed dynamic flip-flop system
US4227135A (en) Step motor driving circuit
US3742697A (en) Driving arrangement for an electric watch
US3568091A (en) Astable multivibrator using two complementary transistor pairs
CN101021716B (en) Step motor drive circuit and analog electronic timepiece
JPS6243147B2 (en)
JPS5886480A (en) Analog electronic timepiece
US3742698A (en) Circuit for quartz crystal timepiece
US3899691A (en) Driving circuits for electronic watches
JP2004080172A (en) D type flip-flop and electronic circuit
JPS585393B2 (en) electronic clock
JPS6233552B2 (en)
JPS6124957Y2 (en)
JP4542714B2 (en) Semiconductor integrated circuit
JPH0429319B2 (en)
JPS586400B2 (en) electronic clock
CN205028039U (en) Run a second core
JPS5937680B2 (en) step motor
JPH04216213A (en) Semiconductor integrated circuit
JPS6123516B2 (en)
JPS589086A (en) Driving system for step motor of electronic clock