JPS59109852A - Reference oxygen electrode of oxygen sensor for molten metal - Google Patents

Reference oxygen electrode of oxygen sensor for molten metal

Info

Publication number
JPS59109852A
JPS59109852A JP57220893A JP22089382A JPS59109852A JP S59109852 A JPS59109852 A JP S59109852A JP 57220893 A JP57220893 A JP 57220893A JP 22089382 A JP22089382 A JP 22089382A JP S59109852 A JPS59109852 A JP S59109852A
Authority
JP
Japan
Prior art keywords
powder
metal
oxygen
reference electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57220893A
Other languages
Japanese (ja)
Other versions
JPH033903B2 (en
Inventor
Koichi Yamada
興一 山田
Mitsutoshi Murase
村瀬 光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP57220893A priority Critical patent/JPS59109852A/en
Publication of JPS59109852A publication Critical patent/JPS59109852A/en
Publication of JPH033903B2 publication Critical patent/JPH033903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4115Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4117Reference electrodes or reference mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To obtain a reference oxygen electrode suitably used for a sensor with high responsiveness for measuring an oxygen concn. in molten metal by mixing metallic powder or metallic powder and metallic oxides having higher m.p. than Cr with powder of Cr or Cr and Cr2O3 in a specified ratio. CONSTITUTION:50-200pts.wt. metallic powder having higher m.p. than Cr such as Mo or W or powder of the oxides of the same metals are mixed with 100pts.wt. powder of Cr or Cr and Cr2O3 and pulverized. The pulverized mixture is packed in the bottom of a zirconia tube 2 closed at one end as a reference oxygen electrode 1, and an electrode 4 consisting of Mo wire and a standard electrode containing rod 3 are inserted to assemble an oxygen sensor. The Cr2O3 powder is regulated to <=50wt% of the Cr and the metallic oxide to <=10wt% of the added metals (Mo, W). When the Cr and Cr2O3 are previously sintered in a gaseous CO atmosphere, pulverized and mixed with the added metals (oxides), the responsiveness of the sensor is further improved.

Description

【発明の詳細な説明】 本発明は溶融金属中の溶存酸素濃度の測定を目的とした
酸素センサーの酸素基準極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the oxygen reference electrode of an oxygen sensor for measuring dissolved oxygen concentration in molten metal.

更に詳細には、該酸素センサーの固体酸素基準極構成物
質に特定物質を添加共存せしめるこりかつ、該基準極の
発生する酸素基準分極を小変更せしめることにより溶融
金属中への浸漬時に示す起電力を迅速に変化せしめ、変
化後の起電力を安定指示せしめうる所謂、応答性に優れ
た酸素センサーの酸素基準極に関するものである。
More specifically, by adding a specific substance to the constituent material of the solid oxygen reference electrode of the oxygen sensor and by slightly changing the oxygen reference polarization generated by the reference electrode, the electromotive force exhibited when immersed in molten metal can be reduced. This invention relates to a so-called oxygen reference electrode for an oxygen sensor with excellent responsiveness, which can quickly change the electromotive force and stably indicate the electromotive force after the change.

近年、安定化或は部分安定化ジルコニアを固体電解質と
して酸素イオン伝導体に用いた酸素センサーが自動車排
ガス制御やボイラー等の燃焼管理、更には製鋼や製鋼分
野の溶融金属中の酸素分析計として迅速な応答が得られ
かつ、廉価であるという点より広く用いられている。
In recent years, oxygen sensors using stabilized or partially stabilized zirconia as a solid electrolyte and an oxygen ion conductor have been rapidly used for automobile exhaust gas control, combustion management in boilers, etc., and even as oxygen analyzers in molten metal in the steelmaking field. It is widely used because it provides a good response and is inexpensive.

酸素センサーの酸素基準極としては従来空気を用いるこ
とが多かったが、空気を酸素基準極として用いる場合に
は酸素センサーの構造が複雑となることから、特に消耗
型の溶融金属用の酸素センサーではジルコニア管の底に
詰めるだけで良いという構造の簡便さより特定の金属と
その金属の酸化物との混合物から成る固体基準極が使用
されている。
Conventionally, air has often been used as the oxygen reference electrode in oxygen sensors, but when air is used as the oxygen reference electrode, the structure of the oxygen sensor becomes complicated, so it is particularly difficult to use consumable oxygen sensors for molten metal. A solid reference electrode made of a mixture of a specific metal and an oxide of that metal is used because of its simple structure, which only requires filling the bottom of the zirconia tube.

溶融金属用酸素センサーは主として鉄鋼業界で使用され
ており、転炉の終点判定、RH炉、DH炉での真空脱ガ
ス、脱酸反応の事前分析と反応後の確認分析、連続鋳造
時のタンディシュでの測定或は各製鋼分野での工程管理
等の酸素測定が主である。測定は1600℃前後の高温
溶鋼中に酸素センサーを浸漬して実施するため、酸素セ
ンサーの構成要素が浸食される前に(例えば5〜10秒
で)安定した平衡起電力を求める必要がある。かかる迅
速な応答が得られる酸素センサーとしては耐熱衝撃性に
優れたMpO部分安定化ジルコニア管を固体電解質とし
、Mo/MOO2、0r10r20a等の金属/金属酸
化物の混合物又は焼結体を固体酸素基準極としたものが
知られている。しかしながら酸素基準極としてかかる構
成要素を使用した場合、その応答性が異なる現象が観測
される。例えば添付M1図に示すごと<Cr/Cr20
B系基準極が示す起電力変化は浸漬直後の急激な起電力
値の増加、引き続いて起る減少後の平衡値への変化で、
起電力差はMO/MOO2系基準極にくらべ大きく、こ
のため平衡値への到達時間が長い。Cr/Cr20B系
基準極は上述のごとき欠点を有するが、溶鋼中の溶存酸
素濃度(通常1〜101000ppが低い場合(例えば
i o o ppm以下) ニハOr10r20g 基
準極自体の示す酸素分圧(1600’Cで溶鋼中28P
Pm相当)に近いために、酸素分圧差に基づく測定誤差
が原理的には少なく、脱e鋼や亮炭素鋼などの酸素セン
サー用に適している。
Oxygen sensors for molten metal are mainly used in the steel industry, and are used for determining the end point of converters, vacuum degassing in RH and DH furnaces, preliminary analysis of deoxidation reactions and confirmation analysis after the reaction, and tundish during continuous casting. Oxygen measurement is mainly used for measurement in steel manufacturing fields or process control in various steel manufacturing fields. Since the measurement is performed by immersing the oxygen sensor in high-temperature molten steel at around 1600°C, it is necessary to determine a stable equilibrium electromotive force before the oxygen sensor components are eroded (for example, in 5 to 10 seconds). An oxygen sensor that can obtain such a quick response uses an MpO partially stabilized zirconia tube with excellent thermal shock resistance as a solid electrolyte, and uses a metal/metal oxide mixture or sintered body such as Mo/MOO2, 0r10r20a as a solid oxygen standard. The most extreme one is known. However, when such a component is used as an oxygen reference electrode, a phenomenon in which the response is different is observed. For example, as shown in the attached M1 diagram <Cr/Cr20
The electromotive force change exhibited by the B-based reference electrode is a rapid increase in electromotive force value immediately after immersion, followed by a change to an equilibrium value after a subsequent decrease.
The electromotive force difference is larger than that of the MO/MOO2 system reference pole, and therefore it takes a long time to reach the equilibrium value. Although the Cr/Cr20B reference electrode has the above-mentioned drawbacks, when the dissolved oxygen concentration in molten steel (usually 1 to 101000 ppm or less (e.g. less than IO ppm)), the oxygen partial pressure indicated by the reference electrode itself (1600' 28P in molten steel at C
Since it is close to Pm (equivalent to Pm), measurement errors based on oxygen partial pressure differences are theoretically small, and it is suitable for oxygen sensors such as e-free steel and light carbon steel.

これに対してB4o/MoO2系基準極は第2図に示す
ごとくその酸素分圧が1600 ’Cの溶鋼の飽和酸素
0度以上に相当するものであり、高酸素濃度測定用の固
体酸素基準極としては適するが、低酸素溶鋼用に使用す
る場合には分圧差が大きく測定誤差が大きくなる。それ
故低酸素濃度域では原理的にCr/Cr2O5系基準極
の方が有利である。
On the other hand, as shown in Figure 2, the B4o/MoO2-based reference electrode corresponds to the saturated oxygen of molten steel with an oxygen partial pressure of 1600'C or higher, and is a solid oxygen reference electrode for measuring high oxygen concentrations. However, when used for low-oxygen molten steel, the partial pressure difference is large and the measurement error becomes large. Therefore, in principle, a Cr/Cr2O5 reference electrode is more advantageous in a low oxygen concentration region.

かかる事情下に本発明者らは0r10r20s系基準極
の応答性改良につき鋭意検討を行なった結果、特定の金
属或は該金属とその金属の酸化物を添加共存せしめる場
合には上記目的が満足されるCr/Cr2O5系固体酸
素基準極となしうろことを見出し、本発明を完成するに
至った。
Under these circumstances, the inventors of the present invention have conducted extensive studies on improving the response of the 0r10r20s reference electrode, and have found that the above objective is satisfied when a specific metal or an oxide of the metal is added to the coexistence of the metal. The inventors discovered a Cr/Cr2O5 solid oxygen reference electrode and a scale, and completed the present invention.

すなわち本発明は金属クロム粉末、又は金属りo ム粉
末(!: Cr5Os 粉末100 Tf、R部ニCr
rOsよりも不安定な酸化物を形成しがっ、金属クロム
よりも高融点を有する金属の粉末、又は該金属粉末と該
金属の酸化物粉末を50〜20Oi量部共存せしめて構
成されたことを特徴とする溶融金属用酸素センサーの酸
素基準極を提供するにある。
That is, the present invention uses metallic chromium powder or metallic rim powder (!: Cr5Os powder 100 Tf, R part Ni Cr
Powder of a metal that forms an oxide that is more unstable than rOs and has a higher melting point than metallic chromium, or composed of 50 to 20 Oi parts of the metal powder and oxide powder of the metal coexisting. An object of the present invention is to provide an oxygen reference electrode for an oxygen sensor for molten metal, which is characterized by:

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の対象となる溶融金属用酸素センサーは、シJL
/コニア質酸化物を固体電解質トシ、cr/Cr2O5
を酸素基準極とする公知汎用のジJL/コニア質酸素士
ンサー、例えばY2OB 、 (:aO、淘0の内の少
なくとも1種とジルコニアとからなる所謂、部分安定化
又は安定化ジルコニア質酸化物を固体電解質とし、使用
時においてOr/CrrOsを酸素基準極゛として構成
された酸素センサーであり、該センサーの形状は例えば
石英等のガラス管先端に固体電解質チップを接着したプ
ラグ型、固体電、解質を成形焼結した管型のいずれにも
適用可能である。
The oxygen sensor for molten metal that is the object of the present invention is
/conial oxide as solid electrolyte, cr/Cr2O5
A well-known general-purpose diJL/conia oxidizer using as an oxygen reference electrode, for example, a so-called partially stabilized or stabilized zirconia oxide consisting of at least one of Y2OB, (:aO, TA0) and zirconia. This is an oxygen sensor that uses Or/CrrOs as a solid electrolyte and uses Or/CrrOs as an oxygen reference pole during use.The shape of the sensor is, for example, a plug type in which a solid electrolyte chip is glued to the tip of a glass tube such as quartz, a solid electrolyte, It can be applied to any type of tube formed by molding and sintering the solute.

本発明の酸素基準極はCr粉末、又はCr粉末とOr 
20B粉末100重量部ニCr2O5ヨりも不安定な酸
化物を形成しかつ、Orよりも高い融点を有する金属の
粉末、又は該金属とその金属の酸化物粉末を50〜20
0重量部添加混合して構″旬 成される固体基準極である。
The oxygen reference electrode of the present invention is made of Cr powder or Cr powder and Or
100 parts by weight of Cr2O5 powder of a metal that forms an unstable oxide and has a melting point higher than Or, or 50 to 20 parts by weight of the metal and its oxide powder.
This is a solid reference electrode constructed by adding and mixing 0 parts by weight.

ここでOr sosよりも不安定な酸化物を形成しかつ
、Orよりも高い軸点を有する金属の粉末、又は該金属
粉末とその金属の酸化物粉末とは1500〜1800°
Cの温度領域で金属クロムと上述の如き定義に該当する
金属の酸化物(例えばMxOy )との反応でCr2O
5と金属Mを形成するような金属およびその金属の酸化
物であって、具体的にはモリブデン(Mo)、二酸化モ
リブテン(MOO2) 、タングステン(W)、二酸化
タングステン(WO2)である。
Here, a metal powder that forms an oxide that is more unstable than Or sos and has an axis point higher than Or, or the metal powder and the metal oxide powder are at an angle of 1500 to 1800°.
Cr2O is produced by the reaction of metallic chromium with a metal oxide (e.g. MxOy) that falls under the above definition in the temperature range of C.
5 and metal M, and oxides of the metals, specifically molybdenum (Mo), molybdenum dioxide (MOO2), tungsten (W), and tungsten dioxide (WO2).

該添加量が50重量部未満の場合には応答速度の改良効
果が十分なものとはならず、他方200重量部を越える
場合には添加物の酸素分圧による波形が現われ、その後
にOr/Cr+Oaの波形が生起するので結果として応
答時間が長くなり好ましくない。
If the amount added is less than 50 parts by weight, the response speed improvement effect will not be sufficient, while if it exceeds 200 parts by weight, a waveform due to the oxygen partial pressure of the additive will appear, and then Or/ Since a waveform of Cr+Oa occurs, the response time becomes longer as a result, which is not preferable.

本発明において固体酸素基準極を構成するOrとCr2
0gの混合比は通常、Or粉末ζこ対しCr 20B粉
末の割合が50重量%以下の範囲で使用される。Orに
対するOr 20aの混合比が50重量%を越える場合
には管内に残留する空気中の酸素がすみやかに除去され
ず、基準極の導電性が悪化するので適当ではない。他方
酸化性雰囲気下にジルコニア質固体電解質容器に該基準
極を構成するCr粉末を詰める場合には、Cr粉末が雰
囲気中の酸素により酸化物を生成するので、Or 20
8粉末なしでCr粉末のみの使用も可能である。
Or and Cr2 constituting the solid oxygen reference electrode in the present invention
A mixing ratio of 0 g is usually used in a range where the ratio of Cr 20B powder to Or powder ζ is 50% by weight or less. If the mixing ratio of Or 20a to Or exceeds 50% by weight, it is not suitable because the oxygen in the air remaining in the tube will not be removed quickly and the conductivity of the reference electrode will deteriorate. On the other hand, when the zirconia solid electrolyte container is packed with Cr powder constituting the reference electrode in an oxidizing atmosphere, the Cr powder generates oxides due to oxygen in the atmosphere.
It is also possible to use only the Cr powder without the 8 powder.

かかるCr粉末、あるいはCr/Cr20g粉末はその
ままジルコニア固体電解質容器に詰めて使用してもよい
が、予め焼結せしめ、これを粉砕して使用する場合には
溶鋼等に浸漬中焼結による収縮が起りに<<、平衡に達
する時間が短かくなるのでより好ましい。更には焼結時
炭素存在下に焼結せしめ、これを、粉砕して使用する場
合にはOr/Cr20a系基準極の特徴である波形がV
字型に落ち込むことがなく、このため応答時間が著しく
短縮されるので特に推奨される。
Such Cr powder or 20g Cr/Cr powder may be used as it is by being packed into a zirconia solid electrolyte container, but if it is sintered in advance and then pulverized for use, shrinkage due to sintering while immersed in molten steel etc. may occur. << is more preferable since the time to reach equilibrium is shorter. Furthermore, when sintering is performed in the presence of carbon and used after being crushed, the waveform characteristic of the Or/Cr20a reference electrode becomes V.
This is particularly recommended as it does not cause sagging and therefore significantly reduces response times.

本発明においてCr/Cr20Bに添加共存せしめるM
oA1o02および/又はW/W02等の金属と金属酸
化物の割合は該金属粉末に対して通常10重量%以下の
範囲で用いられる。その混合割合が10重里%を越える
場合には該金属酸化物の影響が強く現われ、2段の起電
力値を示し、応答時間が長くなるので適当ではない。
In the present invention, M added to Cr/Cr20B
The proportion of metal such as oA1o02 and/or W/W02 and metal oxide is usually 10% by weight or less based on the metal powder. If the mixing ratio exceeds 10%, the influence of the metal oxide will be strong, two levels of electromotive force will be exhibited, and the response time will be long, which is not appropriate.

以上詳述した構成により何故観測される起電力波形、即
ち応答性が改良されるかの理由は詳らかではないが、添
加剤である少量の金属酸化物が初期にのみCr/Cr2
O3の分圧よ0も高い分圧を示し、このため第1図にみ
られる起電力差を補償するとともに該添加物中の金属酸
化物の割合が少ないため、起電力差を補償したあと該添
加金属酸化物は直ちに分解を終了し、本来の基準極の示
す起電力値に大きな変化を与えず、また残部の添加金属
はCrlorga8の焼結防止剤として作用し、この両
者の効果が相俟って本発明の効果が達成されるものと考
える。
It is not clear why the configuration described above improves the observed electromotive force waveform, that is, the response, but the reason is that a small amount of the metal oxide as an additive is only present in the initial stages of Cr/Cr2.
The partial pressure of O3 is also higher than that of O3, so the difference in electromotive force shown in Figure 1 is compensated, and since the proportion of metal oxide in the additive is small, the difference in electromotive force is compensated for. The added metal oxide immediately completes its decomposition and does not significantly change the electromotive force value of the original reference electrode, and the remaining added metal acts as a sintering inhibitor for Crlorga8, and these two effects work together. Therefore, it is believed that the effects of the present invention can be achieved.

以上詳述した如く本発明は従来使用されている酸素基準
極構成物質であるCr/Cr20g粉末に単にMoおよ
び/又はWの金属粉末とそれぞれの金属酸化物粉末を特
定量で混合使用するのみで、起電力を安定指示せしめか
つ、応答性に優れた溶鍛用酸素センサーの提供を可能な
らしめるもので、その工業的利用価値は頗る大なるもの
である。
As detailed above, the present invention is achieved by simply mixing specific amounts of Mo and/or W metal powders and respective metal oxide powders with 20 g of Cr/Cr powder, which is the constituent material of the oxygen reference electrode conventionally used. This makes it possible to provide an oxygen sensor for melting and forging that stably indicates electromotive force and has excellent responsiveness, and its industrial value is extremely high.

以下実施例により本発明を更に詳細に説明するが、実施
例は本発明の実施態様を示すものであって、本発明はか
かる実施例により限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the Examples show embodiments of the present invention, and the present invention is not limited by these Examples.

実施例 金属クロム粉末70重量部、Or 20B粉末30重量
部をボールミルで混合後、CO雰囲気下1300°Cで
2時間焼結せしめ、その後乳鉢で解砕、粉砕し、平均粒
径5μmのCr/Cr2O5混合粉末を得た。
Example 70 parts by weight of metallic chromium powder and 30 parts by weight of Or 20B powder were mixed in a ball mill, sintered at 1300°C for 2 hours in a CO atmosphere, and then crushed and ground in a mortar to form Cr/20B powder with an average particle size of 5 μm. A Cr2O5 mixed powder was obtained.

このようにして得たCr/Cr+Oa混合粉に第1表(
実験点2〜7)に示すMo/MoO2および/又はW/
WO2混合粉を添加し、ボールミルで混合した後、得ら
れた混合粉体を第3図に示す構造の外径5.6 rrm
、長さ35調の7モル%のMgOで部分安定化されたジ
ルコニアの一端閉管(2)の底部に充填し、酸素基準極
(1)となし、該基準極(1)にモリブデン線よりなる
電極(4)を挿入し、更に基準極押え棒(3)を挿入設
置することにより酸素センサーを組立てた。
The Cr/Cr+Oa mixed powder thus obtained is shown in Table 1 (
Mo/MoO2 and/or W/ shown in experimental points 2 to 7)
After adding WO2 mixed powder and mixing in a ball mill, the obtained mixed powder was made into a powder having an outer diameter of 5.6 rrm as shown in Fig. 3.
The bottom of a closed tube (2) of zirconia partially stabilized with 7 mol% MgO with a length of 35 mm was filled to form an oxygen reference electrode (1), and the reference electrode (1) was made of a molybdenum wire. The oxygen sensor was assembled by inserting the electrode (4) and further inserting and installing the reference electrode holding rod (3).

かようにして構成しtこ酸素センサーをアルミナルツボ
中で高周波溶融した1600°Cの溶鋼中に浸漬し、3
0秒間起電力を観測記録した。得られた結果を第4〜1
0図に示す。
The oxygen sensor thus constructed was immersed in 1600°C molten steel melted by high frequency in an alumina crucible.
The electromotive force was observed and recorded for 0 seconds. The obtained results are shown in Sections 4 to 1.
Shown in Figure 0.

またOr粉末90重量部、Cr 20Jl粉末10重量
部よりなる混合粉体をボールミルを用いて混合後アルゴ
ン雰囲気、炭素存在下に1300°Cで2時間焼結し、
その後乳鉢で解砕、粉砕し、平均粒径311m(7) 
Or/CrzOs %金粉末としたものに第1表実験A
8に表示した添加物を混合し、前記と同様に酸素センサ
ーを構成しその性能を測定した。その結果を第11図に
示す。
Further, a mixed powder consisting of 90 parts by weight of Or powder and 10 parts by weight of Cr 20Jl powder was mixed using a ball mill, and then sintered at 1300°C for 2 hours in an argon atmosphere and in the presence of carbon.
After that, it was crushed and crushed in a mortar, and the average particle size was 311 m (7).
Or/CrzOs% gold powder Table 1 Experiment A
The additives shown in No. 8 were mixed, an oxygen sensor was constructed in the same manner as above, and its performance was measured. The results are shown in FIG.

第  1  表−1 * 添加物中の金属粉末に対する酸化物の重量%以上の
結果本発朋に該当する実験A 2 、6 。
Table 1-1 *Results of weight percent of oxide to metal powder in additives Experiments A 2 and 6 corresponding to the present invention.

7.8は従来のOr/Crs+08単独よりなる酸素基
準極を使用した酸素センサーに比較し、著しく応答性が
改良されていることがわかる。
7.8 shows that the response is significantly improved compared to the conventional oxygen sensor using an oxygen reference electrode made of Or/Crs+08 alone.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第4〜11図は酸素センサーの示
す起電力波形図を示し、第8図は実施例に用いた酸素セ
ンサーの概要を示す縦断面図であり図中1は基準極溝成
物質、2はジルコニア質一端閉管、3は基準極押え棒、
4は電極を示す。 住人アルミニウ14裂潟、イ朱武会社 躬4図       第5国 12 ALL7 AIL乙 第61園      第7図 15 AJLこ             10 AQ
L第 3 図 易8 図 1AAL 易10図 72諏− 第9国 第11凹  15i0
Figures 1, 2, and 4 to 11 show electromotive force waveform diagrams shown by the oxygen sensor, and Figure 8 is a vertical cross-sectional view showing an outline of the oxygen sensor used in the example. 2 is a zirconia closed tube at one end, 3 is a reference pole holding rod,
4 indicates an electrode. Resident Aluminum 14 Lagoon, Lee Zhumu Company 4 Figure 5 Country 12 ALL 7 AIL Otsu No. 61 Garden Figure 7 15 AJL Ko 10 AQ
L No. 3 Fig. 8 Fig. 1 AAL E. 10 Fig. 72 Su - Country 9 No. 11 Concave 15i0

Claims (1)

【特許請求の範囲】 1)金属クロム粉末、又は金属クロム粉末とCr20a
粉末100!量部に0r20aよりも不安定な酸化物を
形成しかつ、金属クロムよりも高融点を有する金属の粉
末、又は該金属粉末と該金属の酸化物粉末を50〜20
0重量部共存せしめて構成されたことを特徴とする溶融
金属用酸素センサーの酸素基準極。 2)金属クロム粉末に対するCr 20B粉末の割合が
50重量%以下である特許請求の範囲第1項記載の酸素
基準極。           3゜3)金属クロム粉
末、又は金属クロム粉末とOr 20!1粉末とに添加
共存せしめる金属粉末に対する該金属の酸化物の割合が
10重量%以下である特許請求の範囲第1項記載の酸素
基準極。 とに添加共存せしめる金属粉末、又は金属粉末とその金
属の酸化物がモリブデンおよび/又はタングステン、お
よびそれらの金属の酸化物である特許請求の範囲第1項
記載の酸素基準極。 5)予め焼結せしめた後これを粉砕した金属クロム粉末
、又は金属クロム粉末とCr 2011粉末を使用する
特許請求の範囲第1項記載の酸素基準極。 6)予め炭素存在下に焼結せしめた後粉砕した金属クロ
ム粉末、又は金属クロム粉末とCr20B粉末を使用す
る特許請求の範囲第1項記載の酸素基準極。
[Claims] 1) Metal chromium powder or metal chromium powder and Cr20a
Powder 100! A powder of a metal that forms an oxide more unstable than 0r20a and has a melting point higher than that of metal chromium, or a powder of the metal and an oxide powder of the metal is added in an amount of 50 to 20%.
An oxygen reference electrode for an oxygen sensor for molten metal, characterized in that the oxygen reference electrode is configured such that 0 parts by weight coexist. 2) The oxygen reference electrode according to claim 1, wherein the ratio of Cr 20B powder to metal chromium powder is 50% by weight or less. 3゜3) Oxygen according to claim 1, wherein the proportion of the metal oxide to the metal chromium powder or the metal powder added to the metal chromium powder and the Or 20!1 powder is 10% by weight or less Reference pole. 2. The oxygen reference electrode according to claim 1, wherein the metal powder, or the metal powder and oxide of the metal, added to and coexisting with the metal powder is molybdenum and/or tungsten, and oxides of these metals. 5) The oxygen reference electrode according to claim 1, which uses metallic chromium powder that has been sintered in advance and then pulverized, or metallic chromium powder and Cr 2011 powder. 6) The oxygen reference electrode according to claim 1, which uses metallic chromium powder that has been sintered in advance in the presence of carbon and then pulverized, or metallic chromium powder and Cr20B powder.
JP57220893A 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal Granted JPS59109852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220893A JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220893A JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Publications (2)

Publication Number Publication Date
JPS59109852A true JPS59109852A (en) 1984-06-25
JPH033903B2 JPH033903B2 (en) 1991-01-21

Family

ID=16758180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220893A Granted JPS59109852A (en) 1982-12-16 1982-12-16 Reference oxygen electrode of oxygen sensor for molten metal

Country Status (1)

Country Link
JP (1) JPS59109852A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695528B2 (en) 2000-03-29 2004-02-24 Tomio Fukui Method for constructing structures useful as scaffolds on slopes
KR100594841B1 (en) 2004-12-21 2006-06-30 한국원자력연구소 Reference Electrode for Molten Salt and Its Preparation Method
KR101136903B1 (en) * 2009-11-04 2012-04-20 한국수력원자력 주식회사 A Reference Electrode for Electrochemistry of Molten Salt and a Preparation Method for the Same
CN103586455A (en) * 2013-10-15 2014-02-19 钟祥市中原电子有限责任公司 Reference electrode powder for molten metal oxygen-measuring batteries and production process
CN106770586A (en) * 2017-01-10 2017-05-31 湖南镭目科技有限公司 A kind of oxygen cell reference electrode powder and preparation method thereof
RU2689253C1 (en) * 2015-12-10 2019-05-24 Хунань Рамон Сайенс Энд Текнолоджи Ко., Лтд. Comparison electrode for oxygen sensor and method of its preparation and oxygen sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695528B2 (en) 2000-03-29 2004-02-24 Tomio Fukui Method for constructing structures useful as scaffolds on slopes
KR100594841B1 (en) 2004-12-21 2006-06-30 한국원자력연구소 Reference Electrode for Molten Salt and Its Preparation Method
KR101136903B1 (en) * 2009-11-04 2012-04-20 한국수력원자력 주식회사 A Reference Electrode for Electrochemistry of Molten Salt and a Preparation Method for the Same
CN103586455A (en) * 2013-10-15 2014-02-19 钟祥市中原电子有限责任公司 Reference electrode powder for molten metal oxygen-measuring batteries and production process
RU2689253C1 (en) * 2015-12-10 2019-05-24 Хунань Рамон Сайенс Энд Текнолоджи Ко., Лтд. Comparison electrode for oxygen sensor and method of its preparation and oxygen sensor
CN106770586A (en) * 2017-01-10 2017-05-31 湖南镭目科技有限公司 A kind of oxygen cell reference electrode powder and preparation method thereof

Also Published As

Publication number Publication date
JPH033903B2 (en) 1991-01-21

Similar Documents

Publication Publication Date Title
KR101768227B1 (en) Measuring probes for measuring and taking samples with a metal melt
US3773641A (en) Means for determining the oxygen content of liquid metals
JPS59109852A (en) Reference oxygen electrode of oxygen sensor for molten metal
US4399022A (en) Reference electrode for oxygen probe
US5656143A (en) Sensors for the analysis of molten metals
SU556126A1 (en) Refractory mass for the manufacture of vacuum-tight products
Enaka et al. Chemical potentials of oxygen within 3‐phase assemblages of the system CaO+ SiO2+ FexO
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
JP3000692B2 (en) Sensor for measuring oxygen and metal concentration in molten metal
JP2638298B2 (en) A method for determining the carbon equivalent, carbon content and silicon content of cast iron, as well as predicting its physical and mechanical properties
JPH06258282A (en) Oxygen probe
JP2566343B2 (en) Oxygen concentration measurement sensor for molten metal
JPH0246103B2 (en)
JPH0440351A (en) Solid electrolyte for sensor for measuring quantity of oxygen in molten material
JPS6140343B2 (en)
JPH0648257B2 (en) Sensor for measuring silicon concentration in molten metal
JPH0222901B2 (en)
Yamada et al. Determination of mixed ionic and electronic conduction in commercial-grade magnesia-stabilized zirconia electrolyte
JP2002131272A (en) Probe and method for measuring activity of oxygen in slag
JPH037264B2 (en)
JPH0439030B2 (en)
Tshilombo, KG & Pistorius Oxygen activity measurements in simulated converter matte
Mugita et al. Development of probes for electrochemical measurement of free oxygen content in liquid steel and its application
Weijiang et al. Development of long-term oxygen sensor in molten copper using MgO-PSZ electrolyte
JPH04213050A (en) Sensor for measuring oxygen/metal concentration in fused metal