JPS58202560A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS58202560A
JPS58202560A JP8476282A JP8476282A JPS58202560A JP S58202560 A JPS58202560 A JP S58202560A JP 8476282 A JP8476282 A JP 8476282A JP 8476282 A JP8476282 A JP 8476282A JP S58202560 A JPS58202560 A JP S58202560A
Authority
JP
Japan
Prior art keywords
etching
hole
section
substrate
corners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8476282A
Other languages
Japanese (ja)
Inventor
Tokuo Kure
久礼 得男
Hideo Sunami
英夫 角南
Yoshifumi Kawamoto
川本 佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8476282A priority Critical patent/JPS58202560A/en
Publication of JPS58202560A publication Critical patent/JPS58202560A/en
Pending legal-status Critical Current

Links

Classifications

    • H01L27/04
    • H01L29/78

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the concentration of an electric field, and to improve reliability by removing an acute angle section of a corner of a convexo-concave section of a device storing and transferring charges in the convexo-concave section formed to a substrate. CONSTITUTION:An n type diffusion layer 52 is formed onto the p type Si substrate 51, and a hole 24 with corner sections 23, 25 from which the acute angle sections are removed is formed. The hole section 24 is formed in such a manner that a mask is formed, the corner section 23 is formed through light etching, a hole is deepened through anisotropic etching, and the corner section 25 is rounded through isotropic etching. A gate electrode is formed to the hole section through a gate insulating film 53, and an MOSFET using the hole is prepared. Accordingly, field concentration at the corners formed to the substrate is avoided, and the reliability of the device is improved.

Description

【発明の詳細な説明】 本発明は基板に凹凸部を形成した半導体装置およびその
製造方法に係り、特に凹凸部角の電界集中を防止した半
導体装置および凹凸部角の欽角部を除去する半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device in which uneven portions are formed on a substrate and a method for manufacturing the same, and more particularly to a semiconductor device that prevents electric field concentration at the corners of the uneven portion and a semiconductor device in which diagonal portions at the corners of the uneven portion are removed. The present invention relates to a method for manufacturing a device.

MO8型キャパシタを例にとると、LSIの高集積化に
伴い、キャパシタ面積の微小化が進みつつある。キャパ
シタ面積の微小化は、容量の減少すなわち蓄積信号量の
減少をひきおこし、これを用いたメモリ素子の誤動作に
つながる。
Taking MO8 type capacitors as an example, the area of capacitors is becoming smaller as LSIs become more highly integrated. Miniaturization of the capacitor area causes a decrease in capacitance, that is, a decrease in the amount of stored signals, leading to malfunction of a memory element using this.

従来は、第1図に示す平面構造のキャパシタにおいて、
絶縁膜2を薄くすることによって容量の減少を防いでき
た。しかし、絶縁膜を薄くすると、キャパシタの耐圧不
足やショートの原因となるため、薄膜化には限界がある
。このため、LSIチップ上の占有面積は微小であるが
、キャパシタ面積を増大できる、第2図のような立体構
造のキャパシタが提案されている(%願昭5O−538
83)すなわち、半導体基板11に孔12を形成し、孔
12の側面13もキャパシタとして用いることにより、
容量を増加させるものである。微小な孔12の形成には
基板の結晶面方位に依存するエツチングやドライエツチ
ングなどの方向性のエツチング方法が従来より考えられ
ているが、このような方法で形成した孔12の上部およ
び下部の端部14.15には鋭い角が形成され、角にお
いて電界の集中および絶縁膜16の不良が発生し易く、
立体構造キャパシタ形成上の大きな問題となっていた。
Conventionally, in a capacitor with a planar structure shown in FIG.
Decrease in capacitance has been prevented by making the insulating film 2 thinner. However, there is a limit to how thin the insulating film can be made, since making the insulating film thinner may cause insufficient withstand voltage of the capacitor or short circuits. For this reason, a capacitor with a three-dimensional structure as shown in Fig. 2 has been proposed, which occupies a small area on an LSI chip but can increase the capacitor area.
83) That is, by forming the hole 12 in the semiconductor substrate 11 and using the side surface 13 of the hole 12 as a capacitor,
This increases capacity. Conventionally, directional etching methods such as etching or dry etching that depend on the crystal plane orientation of the substrate have been considered for forming the minute holes 12. Sharp corners are formed in the end portions 14 and 15, and electric field concentration and defects in the insulating film 16 are likely to occur at the corners.
This has been a major problem in the formation of three-dimensional capacitors.

本発明の目的は、上記問題を解決するために、孔の上部
および下部の角を丸め、角における不良を防止した半導
体装置およびその製造方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above problem, an object of the present invention is to provide a semiconductor device in which the upper and lower corners of the hole are rounded to prevent defects at the corners, and a method for manufacturing the same.

本発明は、通常の微細パターン形成において発生するパ
ターン端の鋭い角の部分が素子の電気特性に悪影響を及
ぼすことに着目し、通常のパターン形成エツチングに加
えて、鋭い角を除去するエツチングを行なうものである
The present invention focuses on the fact that sharp corners at pattern edges that occur during normal fine pattern formation have a negative effect on the electrical characteristics of devices, and performs etching to remove sharp corners in addition to normal pattern formation etching. It is something.

以下、実施例によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 第3図は本発明による立体構造MO8キャパシタの製造
工程を示す断面図である。筐ず、第3図(1)に示すよ
うに、シリコン(以下Siと記す)基板21上に通常の
ホトエツチングによってキャパシタ形成部に開孔をもつ
マスク22全形成した後、フッ酸・硝酸混液を用いたウ
ェットエツチングまたはフレオンガスを用いたプラズマ
エツチングなどによってSiを軽くエツチングする。こ
のエツチングはパターンの角23含丸めるために行うも
のであり、アンダーカットを伴うエツチングであればよ
く、エツチング量は10〜200nmが適当である。マ
スク22の材料としては、sho、やSi、N4 など
3iとのエツチング選択性の良いものを選ぶ必要がある
。続いて孔の形状をほぼ決定する深い異方性エツチング
を行うと第3図(2)のようになる。このエツチング方
法としては、CCl4とO!の混合ガスを用いた反応性
スパッタエツチングや8F、ガスを用いたマイクロ波プ
ラズマエツチングが適し、アンダーカットなしに加工精
度よく孔24を形成できる。この時に孔24の下部には
ほぼ直角の角25ができるため、続いてこの角25を丸
めるために軽く等方性エツチングを行う。等方性エツチ
ングの量は、パターン寸法をサイドエッチングンよって
損わない程度に、10〜200nmの範囲が適当である
。このようにして、第3図(3〕に示すような上下の角
23.26’に丸めた孔が得られる。続いて、マスク2
2を除去した後、絶縁膜として例えばSi0,27e熱
酸化によって形成し、ゲートとしてPo1yS i (
多結晶シリコン)28を形成して、第3図(4)に示す
MO8キャパシタが完成する。絶縁膜27は何層かの異
なる絶縁膜の組み合わせであってもよい。
Example 1 FIG. 3 is a sectional view showing the manufacturing process of a three-dimensional MO8 capacitor according to the present invention. As shown in FIG. 3 (1), after a mask 22 with openings in the capacitor formation area is completely formed on a silicon (hereinafter referred to as Si) substrate 21 by normal photoetching, a mixed solution of hydrofluoric acid and nitric acid is applied. The Si is lightly etched by wet etching or plasma etching using Freon gas. This etching is performed to round the corners 23 of the pattern, and any etching that involves undercutting is sufficient, and the etching amount is suitably 10 to 200 nm. As the material of the mask 22, it is necessary to select a material having good etching selectivity with respect to 3i, such as sho, Si, or N4. Subsequently, deep anisotropic etching is performed to approximately determine the shape of the hole, resulting in the result as shown in FIG. 3(2). This etching method uses CCl4 and O! Reactive sputter etching using a mixed gas of 8F or microwave plasma etching using an 8F gas is suitable, and the hole 24 can be formed with high processing accuracy without undercutting. At this time, a substantially right-angled corner 25 is formed at the bottom of the hole 24, so light isotropic etching is subsequently performed to round this corner 25. The amount of isotropic etching is suitably in the range of 10 to 200 nm to the extent that pattern dimensions are not impaired by side etching. In this way, rounded holes are obtained at the upper and lower corners 23 and 26' as shown in Figure 3 (3).Subsequently, the mask 2
After removing 2, an insulating film is formed by thermal oxidation of, for example, Si0,27e, and a gate is formed of Po1yS i (
Polycrystalline silicon) 28 is formed to complete the MO8 capacitor shown in FIG. 3(4). The insulating film 27 may be a combination of several different insulating films.

絶縁膜27として熱酸化によるSiQ!5 nm。SiQ by thermal oxidation as the insulating film 27! 5 nm.

CVD (化学蒸着)によるS 1BN4 13 nm
、熱酸化によるSin、3imから成る膜を用いた場合
、−辺0.5 wnの正方形の平面構造のキャパシタで
は耐圧約20Vでショートの発生率はほぼ0%であった
。これに対し、−辺0.5簡の正方形の中に一辺2μm
の正方形で深さ2μmの孔i 10000個配列し定立
体構造キャパシタを上記製造方法で作成した場合では、
耐圧19.5 Vでショートの発生率は同じくほぼ0%
であった。同様の立体構造キャパシタを、従来通り、角
を丸めるエツチングを行なわずに作成した場合、ショー
トの発生率は50%以上にもなり耐圧は10〜19V間
でばらついた。
S 1BN4 13 nm by CVD (Chemical Vapor Deposition)
In the case of using a film made of thermally oxidized Sin, 3im, a capacitor having a square planar structure with a -side of 0.5 wn had a withstand voltage of about 20V and a short-circuit occurrence rate of almost 0%. On the other hand, in a square with -side 0.5 square, one side is 2μm.
When a constant three-dimensional structure capacitor with 10,000 square holes i of 2 μm in depth is arranged using the above manufacturing method,
With a withstand voltage of 19.5 V, the occurrence rate of short circuits is also almost 0%.
Met. When a capacitor with a similar three-dimensional structure was fabricated without performing the conventional etching to round the corners, the occurrence rate of short circuits was more than 50%, and the withstand voltage varied between 10 and 19V.

このように、孔の上下端にある鋭い角を丸めることが立
体構造キャパシタの歩留り向上のために重要であり、角
を丸めることによって平面構造キャパシタと同程度の耐
圧および歩留で立体構造のキャパシタを製造できること
が明らかになった。
In this way, it is important to round the sharp corners at the top and bottom ends of the hole to improve the yield of three-dimensional structure capacitors. It has become clear that it is possible to produce

角を丸めない立体構造キャパシタにおける制圧不良の原
因は、鋭い角において絶縁膜の膜質に不良が発生し易い
ことや角に電界が集中することによるものと考えられる
It is thought that the causes of poor control in a three-dimensional structure capacitor with unrounded corners are that defects tend to occur in the film quality of the insulating film at sharp corners and that the electric field is concentrated at the corners.

実施例2 第4図は本発明の他の実施例を示し、孔を形成する前に
サイドエツチングを伴う軽いエツチングを行う方法の工
程図である。
Embodiment 2 FIG. 4 shows another embodiment of the present invention, and is a process diagram of a method in which light etching with side etching is performed before forming holes.

(100)結晶面のSi基板31上にStO。StO on the (100) crystal plane Si substrate 31.

32、Si、N、33  の2層から成るマスクパター
ンヲ形成する。2層マスクはホトレジストをマスクにし
てCHF、やCF、−H!混合ガスを用いた反応性スパ
ッタエツチングによってサイドエツチングなくパターン
を形成できる。2層マスクの下層であるS i02 f
 7ツ酸溶液によって軽くサイドエッチングした後、ヒ
ドラジンやKOH等のアルカリ溶液を用いてSiの異方
性エツチングを行う。このようにすると(1111結晶
面がエツチングされずに(100)Si基板面に約55
 傾斜した側面34が形成される。この側面34が、第
4図(1)に示すように、マスクパターン端よりも孔の
内側へ延びる筐で異方性エツチングした後、実施例1で
述べた孔を形成するエツチングを行うと第4図(りに示
す形状となる。孔35の上下端には、第1回目のエツチ
ングで形成した斜面が分割されて残り、角を丸める傾斜
36.37が得られる。
A mask pattern consisting of two layers of 32, Si, N, and 33 is formed. The two-layer mask uses photoresist as a mask and uses CHF, CF, -H! Patterns can be formed without side etching by reactive sputter etching using mixed gas. S i02 f, the lower layer of the two-layer mask
After light side etching with a heptonic acid solution, Si is anisotropically etched using an alkaline solution such as hydrazine or KOH. In this way, the (1111 crystal plane is not etched and the (100)
Sloped side surfaces 34 are formed. As shown in FIG. 4(1), this side surface 34 is etched by anisotropic etching with a casing extending inward from the edge of the mask pattern toward the inside of the hole, and then etched to form the hole as described in Example 1. The shape is shown in FIG. 4. At the upper and lower ends of the hole 35, the slopes formed in the first etching are divided and remain, resulting in slopes 36 and 37 that round the corners.

このようにして形成した孔も、実施例1と同様の効果を
有し、孔の上に形成したキャパシタの電気特性は良好で
あった。
The holes formed in this manner also had the same effects as in Example 1, and the capacitor formed above the holes had good electrical characteristics.

実施例3 第5図は、孔を形成した後5サイドエツチングを伴う軽
いエツチングを行う方法の工程図である。
Embodiment 3 FIG. 5 is a process diagram of a method in which holes are formed and then light etching is performed with five side etching.

実施例2と同様にSt Ot 42とSi3N、43か
ら成る2層マスクのパターンを形成し、続いて孔44v
il−形成するエツチングを行い、第5図(1)の形状
を得る。次に、sto!+2−、軽くサイドエツチング
した後、等方性エツチングを軽く行うと、第5図(2)
に示すように、孔44の上下端の角45゜46が等方性
エツチングによって丸められた形状を得る。この形状は
実施例1と同じであり、2層マスクを用いることによっ
て等方性エツチングの回数を1回減らしている。キャパ
シタ等のデバイスに対して、実施例1と同じ効果が得ら
れるのは言う1でもない。
A two-layer mask pattern consisting of St Ot 42 and Si3N, 43 is formed in the same manner as in Example 2, and then holes 44v are formed.
An il-forming etching process is performed to obtain the shape shown in FIG. 5(1). Next, sto! +2-, after light side etching, light isotropic etching results in Figure 5 (2)
As shown in FIG. 3, a shape is obtained in which the upper and lower corners 45° 46 of the hole 44 are rounded by isotropic etching. This shape is the same as in Example 1, and by using a two-layer mask, the number of isotropic etching steps is reduced by one. It is obvious that the same effects as in the first embodiment can be obtained for devices such as capacitors.

実施例4 第6図は、本発明の製造方法によって形成した孔を用い
たnチャネルMO8電界効果トランジスタの構造図であ
り、以下のような製造工程によって得られたものである
。p型Si基板51上にn型拡散層52’(l−形成し
た後、前述の製造方法によりゲート部に孔赫形成する。
Example 4 FIG. 6 is a structural diagram of an n-channel MO8 field effect transistor using holes formed by the manufacturing method of the present invention, which was obtained by the following manufacturing process. After forming an n-type diffusion layer 52' (l-) on a p-type Si substrate 51, a hole is formed in the gate portion using the manufacturing method described above.

続いてゲート絶縁膜・’ ””””””’1.. 53を介して孔の部分にゲート電極54を形成して第6
図の構造が得られる。
Next, the gate insulating film ``''''''''''1. .. A gate electrode 54 is formed in the hole through the sixth electrode 53.
The structure of the figure is obtained.

このようなMO8電界効果トランジスタは、ゲート寸法
が孔の寸法によって決11かつソースおよびドレーンと
なるn型拡散層とゲートは自動的に位置合せされる(セ
ルフ・アライン)ので、高集積化に有利である。筐た、
前述のごとく孔の角によるゲート耐圧の不良の発生を防
止しているので、信頼性の高いトランジスタが得られる
In such MO8 field effect transistors, the gate dimensions are determined by the hole dimensions11, and the gate is automatically aligned with the n-type diffusion layer that becomes the source and drain (self-alignment), so it is advantageous for high integration. It is. Cabinet,
As described above, since defects in gate breakdown voltage due to the corners of the holes are prevented, a highly reliable transistor can be obtained.

なお、以上の説明はSi基板を例にとって行ったが、Q
aAs等の他の半導体基板を用いた場合でも同様であり
、1だ、キャパシタ、MO8電界効果トランジスタ以外
のデバイスにおいても基板に形成した孔の角を丸め電界
集中を避けることがデバイスの信頼性の向上に有効であ
ることは言う1でもない。
Note that the above explanation was made using a Si substrate as an example, but Q
The same is true when other semiconductor substrates such as aAs are used, and in devices other than capacitors and MO8 field effect transistors, rounding the corners of holes formed in the substrate to avoid electric field concentration improves device reliability. There is no denying that it is effective for improvement.

以上説明したように、本発明によれば、半導体基板に形
成した孔の角を丸めることによって、角での電界の集中
や角の部分での絶縁膜の不良の発生上防止できるので、
MOSキャパシタ、MO8電界効果トランジスタなどに
おいて耐圧不良を防止し信頼性の高い半導体装置が得ら
れるという効果がある。
As explained above, according to the present invention, by rounding the corners of the holes formed in the semiconductor substrate, it is possible to prevent the concentration of electric fields at the corners and the occurrence of defects in the insulating film at the corners.
This has the effect of preventing breakdown voltage defects in MOS capacitors, MO8 field effect transistors, etc. and providing highly reliable semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の平面構造MOSキャパシタ、第2図は従
来の立体構造MOSキャパシタの断面図、第3図、第4
図、第5図は本発明の製造工程を示す断面図、第6図は
本発明によるMO8電界効果トランジスタの断面図。 23.36.45・・・孔の上の角の丸め部、26゜3
7.46・・・孔の下の角の丸め部。 代理人 弁理士 薄田利幸 ! 1  図 3 高2図 第 3  図 (1) (2ン 蔓  3  図 (3〕 (4) 8 冨4図 (1) (2)
Figure 1 is a conventional planar structure MOS capacitor, Figure 2 is a cross-sectional view of a conventional three-dimensional structure MOS capacitor, Figures 3 and 4.
5 is a cross-sectional view showing the manufacturing process of the present invention, and FIG. 6 is a cross-sectional view of an MO8 field effect transistor according to the present invention. 23.36.45... Rounded corner above the hole, 26°3
7.46... Rounded part of the bottom corner of the hole. Agent Patent Attorney Toshiyuki Usuda! 1 Figure 3 High school 2nd figure Figure 3 (1) (2nd vine 3 Figure (3) (4) 8 Tomi 4 figure (1) (2)

Claims (1)

【特許請求の範囲】 1、半導体基板に形成した凹凸部で電荷の蓄積筐たは輸
送を行う半導体装置において、凹凸部の角の欽角部を除
去することによって電界の集中を防止した構造を有する
ことを特徴とする半導体装置。 2、半導体基板に凹凸部を形成する異方性エツチングを
行なう前後もしくは前後どちらか一万に、サイドエツチ
ングを伴うエツチングを行なうことによって凹凸部の上
端および下端に傾斜をもうける工程を含むことを特徴と
する半導体装置の製造方法。
[Scope of Claims] 1. In a semiconductor device in which electric charge is stored or transported using an uneven portion formed on a semiconductor substrate, a structure is provided in which electric field concentration is prevented by removing the diagonal corners of the uneven portion. A semiconductor device comprising: 2. It is characterized by including the step of creating slopes at the upper and lower ends of the unevenness by performing etching with side etching either before or after performing anisotropic etching to form unevenness on the semiconductor substrate. A method for manufacturing a semiconductor device.
JP8476282A 1982-05-21 1982-05-21 Semiconductor device and its manufacture Pending JPS58202560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8476282A JPS58202560A (en) 1982-05-21 1982-05-21 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8476282A JPS58202560A (en) 1982-05-21 1982-05-21 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS58202560A true JPS58202560A (en) 1983-11-25

Family

ID=13839689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8476282A Pending JPS58202560A (en) 1982-05-21 1982-05-21 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS58202560A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214558A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
JPH02275662A (en) * 1988-12-13 1990-11-09 Toshiba Corp Semiconductor device and manufacture thereof
EP0449418A2 (en) * 1990-02-26 1991-10-02 Advanced Micro Devices, Inc. Insulated gate field effect device with a curved channel and method of fabrication
US5248893A (en) * 1990-02-26 1993-09-28 Advanced Micro Devices, Inc. Insulated gate field effect device with a smoothly curved depletion boundary in the vicinity of the channel-free zone
JPH09500241A (en) * 1994-06-03 1997-01-07 シリコニックス インコーポレーテッド Trench type DMOS transistor having channel blocking means at corner of cell trench
WO2003009391A1 (en) * 2001-07-10 2003-01-30 Sony Corporation Trench-gate semiconductor device and its manufacturing method
JP2005183976A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Manufacturing method of recess channel array transistor using mask layer with higher etching selectivity to silicon substrate
JP2006210913A (en) * 2005-01-31 2006-08-10 Hynix Semiconductor Inc Semiconductor element having stepped gate and manufacturing method thereof
JP2007013085A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Method for manufacturing semiconductor device
JP2008283030A (en) * 2007-05-11 2008-11-20 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2009528671A (en) * 2005-12-19 2009-08-06 エヌエックスピー ビー ヴィ Asymmetric field effect semiconductor device having STI region
CN103578967A (en) * 2012-07-19 2014-02-12 上海华虹Nec电子有限公司 Preparation method for improving grid electrode breakdown capability of groove type IGBT

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214558A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US5100822A (en) * 1984-04-11 1992-03-31 Hitachi, Ltd. Semiconductor integrated circuit device and method of production thereof
JPH02275662A (en) * 1988-12-13 1990-11-09 Toshiba Corp Semiconductor device and manufacture thereof
EP0449418A2 (en) * 1990-02-26 1991-10-02 Advanced Micro Devices, Inc. Insulated gate field effect device with a curved channel and method of fabrication
US5248893A (en) * 1990-02-26 1993-09-28 Advanced Micro Devices, Inc. Insulated gate field effect device with a smoothly curved depletion boundary in the vicinity of the channel-free zone
JPH09500241A (en) * 1994-06-03 1997-01-07 シリコニックス インコーポレーテッド Trench type DMOS transistor having channel blocking means at corner of cell trench
WO2003009391A1 (en) * 2001-07-10 2003-01-30 Sony Corporation Trench-gate semiconductor device and its manufacturing method
US7015543B2 (en) 2001-07-10 2006-03-21 Sony Corporation Trench-gate semiconductor device and fabrication method thereof
JP2005183976A (en) * 2003-12-19 2005-07-07 Samsung Electronics Co Ltd Manufacturing method of recess channel array transistor using mask layer with higher etching selectivity to silicon substrate
JP2006210913A (en) * 2005-01-31 2006-08-10 Hynix Semiconductor Inc Semiconductor element having stepped gate and manufacturing method thereof
JP2007013085A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Method for manufacturing semiconductor device
JP2009528671A (en) * 2005-12-19 2009-08-06 エヌエックスピー ビー ヴィ Asymmetric field effect semiconductor device having STI region
JP2008283030A (en) * 2007-05-11 2008-11-20 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
CN103578967A (en) * 2012-07-19 2014-02-12 上海华虹Nec电子有限公司 Preparation method for improving grid electrode breakdown capability of groove type IGBT

Similar Documents

Publication Publication Date Title
US5814547A (en) Forming different depth trenches simultaneously by microloading effect
JPS58202560A (en) Semiconductor device and its manufacture
JPH0648719B2 (en) Semiconductor memory device
US20050164446A1 (en) Method for manufacturing single-sided buried strap in semiconductor devices
US20090161291A1 (en) Capacitor for Semiconductor Device and Method of Manufacturing the Same
JP3104666B2 (en) Semiconductor device and manufacturing method thereof
JPH03147364A (en) Manufacture of semiconductor device
KR100244411B1 (en) Method for manufacturing semiconductor device
JPS61129872A (en) Manufacture of semiconductor device
JPH05267251A (en) Formation of contact hole in semiconductor device
KR100205339B1 (en) Method for forming isolation region of semiconductor device
JP2827377B2 (en) Semiconductor integrated circuit
JPH03227065A (en) Manufacture of semiconductor device
JPH02122560A (en) Semiconductor storage device
KR0166032B1 (en) Capacitor fabrication method of semiconductor device
JPH11261003A (en) Semiconductor device and its manufacture
KR100579862B1 (en) Metal-insulator-metal capacitor and method of fabricating the same
JPH07249693A (en) Semiconductor device and its manufacture
JP3373134B2 (en) Method for manufacturing semiconductor device
JPH06283599A (en) Semiconductor device and its manufacture
CN111653476A (en) Etching method and structure of contact hole
JPH11354626A (en) Element separating method for semiconductor element and semiconductor device
JP2002158279A (en) Semiconductor ic circuit and manufacturing method thereof
JPH0555463A (en) Manufacture of semiconductor device
KR19980051519A (en) Manufacturing method of semiconductor device