JPH1160243A - Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate - Google Patents

Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate

Info

Publication number
JPH1160243A
JPH1160243A JP9218792A JP21879297A JPH1160243A JP H1160243 A JPH1160243 A JP H1160243A JP 9218792 A JP9218792 A JP 9218792A JP 21879297 A JP21879297 A JP 21879297A JP H1160243 A JPH1160243 A JP H1160243A
Authority
JP
Japan
Prior art keywords
lithium
aqueous solution
nickel hydroxide
nickel
lithium nickelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9218792A
Other languages
Japanese (ja)
Inventor
Shintaro Ishida
新太郎 石田
Akiko Sugimoto
晶子 杉元
Kenzo Hanawa
健三 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP9218792A priority Critical patent/JPH1160243A/en
Publication of JPH1160243A publication Critical patent/JPH1160243A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a lithium ion secondary battery having improved heat characteristics during charging without lowering battery characteristics, nickel hydroxide and lithium nickelate and to provide for producing nickel hydroxide and lithium nickelate. SOLUTION: This nickel hydroxide is shown by the formula; Ni1-x Ax (OH)2 (A is cobalt or manganese; 0.10<x<0.5), comprises a laminate or a single crystal arranged in crystal orientation, has 0.5-5 μm primary particle diameter, full width at half maximum by X-diffraction by sampling to orientate most of (001)<0.3 deg., (101)<0.4 deg. and the peak intensity ratio of I(101)/I(001)<0.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水酸化ニッケル、ニ
ッケル酸リチウム及びこれらの製造方法、並びに該水酸
化ニッケルを原料として焼成したニッケル酸リチウムを
用いたリチウムイオン二次電池に関する。なお、本発明
でいう水酸化ニッケルとは、ニッケルの一部がコバルト
又はマンガンによって置換されたものも包含するものと
する。また、本発明でいうニッケル酸リチウムも、ニッ
ケルの一部がコバルト又はマンガンによって置換された
ものも包含するものとする。
The present invention relates to nickel hydroxide, lithium nickelate and a method for producing the same, and a lithium ion secondary battery using lithium nickelate fired from the nickel hydroxide as a raw material. In addition, the nickel hydroxide in the present invention includes those in which a part of nickel is replaced by cobalt or manganese. Further, the lithium nickelate referred to in the present invention also includes those in which a part of nickel is replaced by cobalt or manganese.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年の
電話やパソコン等のポータブル化、コードレス化の急速
な進歩により、それらの駆動用電源としての二次電池の
需要が高まっている。その中でも小型、かつ軽量で高エ
ネルギー密度を有するリチウムイオン二次電池は特に期
待されている。上記の要望を満たすリチウムイオン二次
電池の正極活物質(正極材料)としてリチウムを脱離、
挿入可能なコバルト酸リチウム(LiCoO2 )、ニッ
ケル酸リチウム(LiNiO2 )等のリチウム複合酸化
物の研究が盛んに行われている。これらのリチウム複合
酸化物はリチウムに対し4V以上の電位を有し、正極材
料として用いると150mAh/g以上の放電容量が得
られることから高エネルギー密度を有する二次電池の実
現が期待されていた。
2. Description of the Related Art With the rapid progress of portable and cordless telephones and personal computers in recent years, a demand for a secondary battery as a power source for driving them is increasing. Among them, a lithium ion secondary battery having a small size, light weight and high energy density is particularly expected. Lithium is desorbed as a positive electrode active material (positive electrode material) for lithium ion secondary batteries satisfying the above demands,
Research on lithium composite oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ) that can be inserted has been actively conducted. These lithium composite oxides have a potential of 4 V or more with respect to lithium, and when used as a positive electrode material, a discharge capacity of 150 mAh / g or more can be obtained. Therefore, the realization of a secondary battery having a high energy density was expected. .

【0003】しかし、近年、リチウムイオン二次電池に
は、さらに高い放電容量が期待されている。また、経済
性の点から安価な正極材料が要求されている。
In recent years, however, higher discharge capacities have been expected for lithium ion secondary batteries. In addition, inexpensive cathode materials are required from the viewpoint of economy.

【0004】このような要求に応える正極材料としてL
iNi1-x Cox 2 (x>0)が提案されている。こ
のLiNi1-x Cox 2 (x>0)を用いたリチウム
イオン二次電池は、従来のLiCoO2 を用いたリチウ
ムイオン二次電池に比べ高容量であり、しかも原料が豊
富であり安価であるため、次期正極材料として有望であ
る。
[0004] As a positive electrode material that meets such demands, L
iNi 1-x Co x O 2 (x> 0) has been proposed. A lithium ion secondary battery using LiNi 1-x Co x O 2 (x> 0) has a higher capacity than a conventional lithium ion secondary battery using LiCoO 2 , and is rich in raw materials and inexpensive. Therefore, it is promising as the next positive electrode material.

【0005】しかるに、このLiNi1-x Cox
2 (x>0)を正極材料として用いたリチウムイオン二
次電池は、充電状態での熱的安定性が悪く、大きな問題
となっている。これは、充電でリチウムが脱インターカ
レートするにつれ構造が不安定になり、周囲の温度上昇
により構造が崩壊して有機電解液と反応し、発熱、発火
するために起こる。このように、LiNi1-x Cox
2 (x>0)はLiCoO 2 よりも低温で発熱、発火反
応が起こるために電池としての安全性に問題があり、改
善が強く求められている。
However, this LiNi1-xCoxO
Two(X> 0) as a positive electrode material
Secondary batteries have poor thermal stability in the charged state, which is a major problem
It has become. This is because lithium deintercalates on charging.
As the rate increases, the structure becomes unstable and the surrounding temperature rises.
The structure collapses and reacts with the organic electrolyte, generating heat and igniting
Happens to do. Thus, LiNi1-xCoxO
Two(X> 0) is LiCoO TwoHeat generation at lower temperature
Response to the battery, there is a problem with the safety of the battery.
Good is strongly sought.

【0006】この熱特性改善の一つに比表面積低下によ
る熱分解反応の抑制が挙げられる。即ち、正極材料と有
機電解液の接触面積を低減することで発熱反応速度を抑
制し、発熱開始温度を高めることを目的としている。こ
れには、一次粒子の増大が必要であり、具体的にはLi
Ni1-x Cox 2 (x>0)一次粒子が2μm以上の
正極材料を得ることが必要と考えられる。
One of the improvements in the thermal characteristics is suppression of a thermal decomposition reaction due to a decrease in specific surface area. That is, an object of the present invention is to reduce the contact area between the positive electrode material and the organic electrolyte to suppress the exothermic reaction rate and increase the exothermic onset temperature. This requires an increase in primary particles, specifically Li
It is considered necessary to obtain a positive electrode material having Ni 1-x Co x O 2 (x> 0) primary particles of 2 μm or more.

【0007】LiNi1-x Cox 2 (x>0)は、一
般的にNi(OH)2、Co(OH)2又は(Ni,Co)
(OH)2の微粉状又は球状の粉末を原料に用い、LiO
H粉末と混合し、焼成により得ている。これらの水酸化
物は一次粒子が0.5μm未満の凝集体であるために、
焼成時の焼結で一次粒子を増大させる必要がある。しか
し、この方法では粒子同士の凝集のために放電容量が大
きく低下してしまい、要求される粉末特性と電池特性が
両立できない。従って、電池特性を低下させることな
く、一次粒子の増大した正極材料を焼成し、電池の充電
時の熱特性を改善することが必要である。
LiNi 1-x Co x O 2 (x> 0) is generally Ni (OH) 2 , Co (OH) 2 or (Ni, Co)
Using fine or spherical powder of (OH) 2 as a raw material, LiO
It is obtained by mixing with H powder and firing. Since these hydroxides are aggregates in which primary particles are less than 0.5 μm,
It is necessary to increase the primary particles by sintering during firing. However, in this method, the discharge capacity is greatly reduced due to aggregation of the particles, and the required powder characteristics and battery characteristics cannot be compatible. Therefore, it is necessary to sinter the positive electrode material in which the primary particles are increased without deteriorating the battery characteristics, and to improve the thermal characteristics during charging of the battery.

【0008】従って、本発明の目的は、電池特性を低下
させることなく、充電時の熱特性を改善したリチウムイ
オン二次電池、該電池の正極材料の原料となる水酸化ニ
ッケル、リチウム酸ニッケル及びこれらの製造方法を提
供することを目的とする。
Accordingly, it is an object of the present invention to provide a lithium ion secondary battery having improved thermal characteristics during charging without deteriorating battery characteristics, nickel hydroxide, nickel lithium oxide, which is a raw material for a positive electrode material of the battery, and An object is to provide these manufacturing methods.

【0009】[0009]

【課題を解決するための手段】本発明者等は、鋭意検討
の結果、リチウムイオン二次電池の正極活物質の原料と
して用いられる水酸化ニッケルの一次粒子の増大を、焼
成時の焼結ではなく原料の段階で達成することによっ
て、上記目的を達成し得ることを知見した。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that primary particles of nickel hydroxide used as a raw material of a positive electrode active material of a lithium ion secondary battery are increased in sintering during firing. It has been found that the above object can be achieved by achieving the above at the raw material stage.

【0010】本発明は、上記知見に基づいてなされたも
ので、下記組成式(1) Ni1-x x (OH)2 (1) (Aはコバルト又はマンガン、0.10<x<0.5)
で示され、結晶方位の揃った積層体または単結晶からな
り、その一次粒子径が0.5〜5μm、最も配向しやす
いサンプリングをして得られたX線回折による半値全幅
が(001)<0.3deg.、(101)<0.4d
eg.、かつピーク強度比I(101)/I(001)
<0.5であることを特徴とする水酸化ニッケルを提供
するものである。
The present invention has been made based on the above findings, and has the following compositional formula (1): Ni 1-x A x (OH) 2 (1) (A is cobalt or manganese, 0.10 <x <0 .5)
And has a primary particle size of 0.5 to 5 μm and a full width at half maximum by X-ray diffraction obtained by sampling which is most easily oriented (001) < 0.3 deg. , (101) <0.4d
eg. And the peak intensity ratio I (101) / I (001)
The present invention provides nickel hydroxide characterized by being <0.5.

【0011】また、本発明は、本発明の水酸化ニッケル
の好ましい製造方法として、硝酸ニッケル水溶液、硝酸
コバルト又は硝酸マンガン水溶液、及びアンモニア水溶
液からなる混合水溶液を60〜90℃、3時間以上の条
件で撹拌下に混合し、次いでアルカリ水溶液を滴下しつ
つ煮沸して該混合水溶液をpH6.6〜7.5に維持
し、その後、アルカリ水溶液中で8時間以上熟成するこ
とを特徴とする水酸化ニッケルの製造方法を提供するも
のである。
The present invention also relates to a preferred method for producing the nickel hydroxide of the present invention, wherein a mixed aqueous solution comprising an aqueous solution of nickel nitrate, an aqueous solution of cobalt nitrate or manganese nitrate, and an aqueous solution of ammonia is used at 60 to 90 ° C. for 3 hours or more. The mixture is stirred under stirring, and then the mixture is boiled while dropping an aqueous alkaline solution to maintain the mixed aqueous solution at a pH of 6.6 to 7.5, and then aged in an aqueous alkaline solution for at least 8 hours. A method for producing nickel is provided.

【0012】更に、本発明は、下記組成式(2) LiNi1-x x 2 (2) (Aはコバルト又はマンガン、0.10<x<0.5)
で示され、その一次粒子径が0.5〜5μm、最も配向
しやすいサンプリングをして得られたX線回折によるピ
ーク強度比I(101)/I(001)<0.4である
ことを特徴とするニッケル酸リチウムを提供するもので
ある。
Further, the present invention provides a composition of the following formula (2): LiNi 1-x A x O 2 (2) (A is cobalt or manganese, 0.10 <x <0.5)
Where the primary particle diameter is 0.5 to 5 μm, and the peak intensity ratio I (101) / I (001) <0.4 by X-ray diffraction obtained by sampling which is most easily oriented. A feature of the present invention is to provide lithium nickelate.

【0013】また、本発明は、上記水酸化ニッケルをリ
チウム化合物と混合し、これを焼成して得られた上記ニ
ッケル酸リチウムを正極活物質に用いたことを特徴とす
るリチウムイオン二次電池を提供するものである。
Further, the present invention provides a lithium ion secondary battery characterized in that the above-mentioned nickel hydroxide is mixed with a lithium compound, and the above-mentioned lithium nickel oxide obtained by calcining the mixture is used as a positive electrode active material. To provide.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の水酸化ニッケルは、下記組成式(1) Ni1-x x (OH)2 (1) で示される。上記組成式において、Aはコバルト又はマ
ンガンであり、好ましくはコバルトである。また、xは
0.10超、かつ0.5未満である。xが0.1以下で
は、添加元素の効果が十分得られず、また0.5以上で
は容量低下が著しくなるため、いずれも好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The nickel hydroxide of the present invention is represented by the following composition formula (1): Ni 1-x A x (OH) 2 (1) In the above composition formula, A is cobalt or manganese, preferably cobalt. X is more than 0.10 and less than 0.5. When x is 0.1 or less, the effect of the added element is not sufficiently obtained, and when x is 0.5 or more, the capacity is remarkably reduced.

【0015】この水酸化ニッケルは、結晶方位の揃った
積層体または単結晶からなり、その一次粒子径が0.5
〜5μmである。一次粒子径が0.5μm未満では、比
表面積が大き過ぎ、十分な熱安定性に欠け、また5μm
を超えると焼成の際に粒子内部まで完全に反応させるこ
とが難しくなるため、いずれも好ましくない。
The nickel hydroxide is composed of a laminate or a single crystal having a uniform crystal orientation, and has a primary particle diameter of 0.5.
55 μm. If the primary particle size is less than 0.5 μm, the specific surface area is too large, lacks sufficient thermal stability, and
If the ratio exceeds, it is difficult to completely react the inside of the particles at the time of firing.

【0016】また、本発明の水酸化ニッケルの最も配向
しやすいサンプリングをして得られたX線回折による半
値全幅が(001)<0.3deg.、(101)<
0.4deg.、かつピーク強度比 I(101)/I
(001)<0.5であることが必要であり、この範囲
を逸脱した場合には結晶方位の揃い方又は単結晶と見な
せる粒界の大きさが不十分となり、好ましくない。
Further, the full width at half maximum by X-ray diffraction obtained by sampling the most easily oriented nickel hydroxide of the present invention is (001) <0.3 deg. , (101) <
0.4 deg. And peak intensity ratio I (101) / I
It is necessary that (001) <0.5, and if it is out of this range, the orientation of the crystallographic orientation or the size of the grain boundary regarded as a single crystal becomes insufficient, which is not preferable.

【0017】本発明の水酸化ニッケルの走査型電子顕微
鏡(SEM)写真(×5000)を図1に示す。また、
比較として従来の微粉状水酸化ニッケルの走査型電子顕
微鏡写真(×10000)を図2に、また球状水酸化ニ
ッケルの走査型電子顕微鏡写真(×10000)を図3
にそれぞれ示す。また、本発明の水酸化ニッケルのX線
回折図を図4に示す。
FIG. 1 shows a scanning electron microscope (SEM) photograph (× 5000) of the nickel hydroxide of the present invention. Also,
For comparison, FIG. 2 shows a scanning electron micrograph (× 10000) of a conventional powdery nickel hydroxide, and FIG. 3 shows a scanning electron micrograph (× 10000) of a spherical nickel hydroxide.
Are shown below. FIG. 4 shows an X-ray diffraction diagram of the nickel hydroxide of the present invention.

【0018】図1から明らかなように、本発明の水酸化
ニッケルは、結晶方位の揃った積層体または単結晶であ
ることが判る。また、図1と図2〜3との比較から明ら
かなように、本発明の水酸化ニッケルは、微粉状又は球
状の水酸化ニッケルに比較して一次粒子径が大きいこと
が判る。
As is clear from FIG. 1, the nickel hydroxide of the present invention is a laminate or a single crystal having a uniform crystal orientation. In addition, as is clear from the comparison between FIG. 1 and FIGS. 2 to 3, it is understood that the nickel hydroxide of the present invention has a larger primary particle diameter than the fine powder or spherical nickel hydroxide.

【0019】上述した本発明の水酸化ニッケルは、以下
の方法によって製造される。先ず、硝酸ニッケル水溶
液、硝酸コバルト又は硝酸マンガン水溶液、及びアンモ
ニア含有水溶液を用い、この混合水溶液を60〜90
℃、好ましくは75〜85℃、3時間以上撹拌下に混合
する。この際のアンモニア/(ニッケル+コバルト又は
マンガン)のモル比は、3〜4である。また、硝酸ニッ
ケル+硝酸コバルト又は硝酸マンガン水溶液の濃度は、
0.5〜2.0モル/lである。また、アンモニア含有
水溶液とは、アンモニウムイオンを供給できる水溶液で
あり、アンモニア水溶液や硝酸アンモニウム、炭酸アン
モニウム、塩化アンモニウム、尿素等が例示される。
The above-described nickel hydroxide of the present invention is produced by the following method. First, using an aqueous solution of nickel nitrate, an aqueous solution of cobalt nitrate or manganese nitrate, and an aqueous solution containing ammonia, the mixed aqueous solution
C., preferably at 75-85.degree. C., with stirring for 3 hours or more. In this case, the molar ratio of ammonia / (nickel + cobalt or manganese) is 3 to 4. The concentration of nickel nitrate + cobalt nitrate or manganese nitrate aqueous solution is
It is 0.5 to 2.0 mol / l. The ammonia-containing aqueous solution is an aqueous solution that can supply ammonium ions, and examples thereof include an aqueous ammonia solution, ammonium nitrate, ammonium carbonate, ammonium chloride, and urea.

【0020】混合温度が60℃未満又は90℃超では、
目的の粒子径が得られなくなり、また混合時間が3時間
未満では、粒径0.5μm以下の微粉が発生し、いずれ
も好ましくない。
When the mixing temperature is lower than 60 ° C. or higher than 90 ° C.,
If the desired particle size cannot be obtained, and if the mixing time is less than 3 hours, fine powder having a particle size of 0.5 μm or less is generated, which is not preferable.

【0021】次いで、この混合水溶液中に、アルカリ水
溶液、例えば水酸化ナトリウムを滴下しながら煮沸し、
アンモニアを除去する。この際には、混合水溶液は、p
Hを6.6〜7.5に維持することが必要であり、pH
がこの範囲を外れると粒径0.5μm以下の微粉が発生
し、望ましくない。
Next, an aqueous alkaline solution, for example, sodium hydroxide is dropped into the aqueous mixed solution while boiling,
Remove the ammonia. At this time, the mixed aqueous solution is p
It is necessary to maintain H between 6.6 and 7.5,
Is out of this range, a fine powder having a particle size of 0.5 μm or less is generated, which is not desirable.

【0022】その後、アルカリ水溶液中で60〜90℃
で8時間以上熟成し、不純物を除去する。熟成温度が上
記範囲を超えると溶液量の保持が難しく、上記範囲未満
では不純物除去に多大の時間を要する。熟成時間が8時
間未満では、不純物除去が不十分となる。アルカリ水溶
液の濃度は1.0モル/l近傍であることが望ましい。
Then, in an alkaline aqueous solution at 60 to 90 ° C.
For at least 8 hours to remove impurities. If the aging temperature exceeds the above range, it is difficult to maintain the amount of the solution, and if the aging temperature is below the above range, it takes a long time to remove impurities. If the aging time is less than 8 hours, the removal of impurities will be insufficient. It is desirable that the concentration of the alkaline aqueous solution is around 1.0 mol / l.

【0023】最後に、通常の条件、方法によって純水洗
浄、濾過、乾燥して上記物性及び性状を有する水酸化ニ
ッケルを得る。純水洗浄、濾過、乾燥の条件は、例えば
5倍量の純水で洗浄し、吸引濾過後、60〜100℃で
8時間以上真空乾燥する。
Finally, washing with pure water, filtration and drying are carried out under ordinary conditions and methods to obtain nickel hydroxide having the above-mentioned properties and properties. The conditions of washing with pure water, filtration, and drying are, for example, washing with pure water in an amount of 5 times, suction filtration, and vacuum drying at 60 to 100 ° C for 8 hours or more.

【0024】本発明の水酸化ニッケルは、炭酸リチウ
ム、水酸化リチウム、酸化リチウム等のリチウム源とな
るリチウム化合物と混合し、焼成してニッケル酸リチウ
ムとされる。このリチウム源となるリチウム化合物とし
ては水酸化リチウム一水和物が好適に用いられる。この
際の水酸化ニッケルと例えば水酸化リチウムの混合比
(モル比)は1:1.0〜1:1.1であることが必要
である。また、焼成条件は、大気中又は酸素雰囲気下、
700〜850℃、12〜40時間である。
The nickel hydroxide of the present invention is mixed with a lithium compound serving as a lithium source such as lithium carbonate, lithium hydroxide and lithium oxide, and calcined to form lithium nickel oxide. As the lithium compound serving as the lithium source, lithium hydroxide monohydrate is suitably used. At this time, the mixing ratio (molar ratio) between nickel hydroxide and, for example, lithium hydroxide needs to be 1: 1.0 to 1: 1.1. The firing conditions are as follows:
700-850 ° C, 12-40 hours.

【0025】本発明のリチウム酸ニッケルは、下記組成
式(2) LiNi1-x x 2 (2) (Aはコバルト又はマンガン、0.10<x<0.5)
で示され、その一次粒子径が0.5〜5μm、最も配向
しやすいサンプリングをして得られたX線回折によるピ
ーク強度比I(101)/I(001)<0.4である
ことを特徴とする。
The nickel lithium oxide of the present invention has the following composition formula (2) LiNi 1-x A x O 2 (2) (A is cobalt or manganese, 0.10 <x <0.5)
Where the primary particle diameter is 0.5 to 5 μm, and the peak intensity ratio I (101) / I (001) <0.4 by X-ray diffraction obtained by sampling which is most easily oriented. Features.

【0026】本発明のニッケル酸リチウムは、その一次
粒子径が0.5〜5μmである。一次粒子径が0.5μ
m未満では、粒子同士の凝集が無視できない位大きくな
り粉体特性が低下し、また5μmを超えると粒子内部に
充放電に使用されない領域を生じやすくなるため、いず
れも好ましくない。
The lithium nickelate of the present invention has a primary particle size of 0.5 to 5 μm. 0.5μ primary particle size
When the particle size is less than m, the aggregation of the particles becomes too large to be neglected and the powder characteristics are deteriorated.

【0027】また、このニッケル酸リチウムは最も配向
しやすいサンプリングをして得られたX線回析図による
ピーク強度比I(101)/I(001)<0.4であ
る。この範囲を逸脱した場合には積層体の結晶方位の揃
い方、又は単結晶と見なせる粒界の大きさが不十分とな
り、好ましくない。
The lithium nickelate has a peak intensity ratio I (101) / I (001) <0.4 according to an X-ray diffraction diagram obtained by sampling which is most easily oriented. If the ratio is out of this range, the orientation of the crystal orientation of the stacked body or the size of the grain boundary regarded as a single crystal becomes insufficient, which is not preferable.

【0028】本発明のニッケル酸リチウム(LiNi
1-x Cox 2 (x>0))の走査型電子顕微鏡(SE
M)写真(×5000)を図5に示す。また、比較とし
て従来の微粉状水酸化ニッケルを用いて得られたニッケ
ル酸リチウム(LiNi1-x Cox 2 (x>0))の
走査型電子顕微鏡写真(×10000)を図6に、また
球状水酸化ニッケルを用いて得られたニッケル酸リチウ
ム(LiNi1-x Cox2 (x>0))の走査型電子
顕微鏡写真(×10000)を図7にそれぞれ示す。ま
た、本発明のニッケル酸リチウムのX線回折図を図8に
示す。
The lithium nickelate of the present invention (LiNi
1-x Co x O 2 (x> 0)) scanning electron microscope (SE
M) A photograph (× 5000) is shown in FIG. For comparison, FIG. 6 shows a scanning electron micrograph (× 10000) of lithium nickelate (LiNi 1-x Co x O 2 (x> 0)) obtained by using conventional finely powdered nickel hydroxide. FIG. 7 shows scanning electron micrographs (× 10000) of lithium nickelate (LiNi 1-x Co x O 2 (x> 0)) obtained using spherical nickel hydroxide. FIG. 8 shows an X-ray diffraction diagram of the lithium nickelate of the present invention.

【0029】本発明では、このニッケル酸リチウムをリ
チウムイオン二次電池の正極活物質として用いる。この
ようにして得られたリチウムイオン二次電池は、電池特
性を低下させることなく、充電時の熱特性を改善するこ
とができる。
In the present invention, this lithium nickelate is used as a positive electrode active material of a lithium ion secondary battery. The thus obtained lithium ion secondary battery can improve the thermal characteristics during charging without deteriorating the battery characteristics.

【0030】[0030]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES Hereinafter, the present invention will be specifically described based on examples and the like.

【0031】(実施例1)硝酸ニッケル85%、硝酸コ
バルト15%水溶液、及びアンモニア水溶液を用い、こ
の混合水溶液を80℃、3時間以上撹拌下に混合した。
この際のアンモニア/(ニッケル+コバルト)のモル比
は、3である。また、硝酸ニッケル水溶液+硝酸コバル
ト水溶液の濃度は、1.7モル/lとした。
Example 1 An aqueous solution of 85% nickel nitrate, 15% cobalt nitrate and an aqueous ammonia solution were mixed with stirring at 80 ° C. for 3 hours or more.
At this time, the molar ratio of ammonia / (nickel + cobalt) is 3. The concentration of the aqueous solution of nickel nitrate + the aqueous solution of cobalt nitrate was 1.7 mol / l.

【0032】次いで、この混合水溶液中に、1.0モル
/lの水酸化ナトリウムを滴下しながら煮沸し、アンモ
ニアを除去した。この際には、混合水溶液のpHは6.
9〜7.2の範囲に維持された。その後、濃度1モル/
lの水酸化ナトリウム水溶液中で、80℃、8時間以上
熟成し、不純物を除去した。
Next, 1.0 mol / l sodium hydroxide was added dropwise to the mixed aqueous solution and the mixture was boiled to remove ammonia. In this case, the pH of the mixed aqueous solution is 6.
It was maintained in the range of 9-7.2. Then, a concentration of 1 mol /
The solution was aged at 80 ° C. for 8 hours or more in 1 l of an aqueous sodium hydroxide solution to remove impurities.

【0033】最後に、純水洗浄、濾過、乾燥してNi
0.85Co0.15(OH)2 の組成を有する水酸化ニッケル
を得た。純水洗浄、濾過、乾燥の条件は、5倍量の純水
で洗浄し、吸引濾過後、70℃で12時間真空乾燥し
た。このようにして得られた水酸化ニッケルは、図1に
示されるような粒子構造をしていた。また、一次粒子径
は2μm、半値全幅(001)=0.18deg.、
(101)=0.32deg.、ピーク強度比I(10
1)/I(001)=0.39であった。
Finally, washing with pure water, filtration, and drying
A nickel hydroxide having a composition of 0.85 Co 0.15 (OH) 2 was obtained. The conditions of washing with pure water, filtration, and drying were as follows: washing with 5 times the amount of pure water, suction filtration, and vacuum drying at 70 ° C. for 12 hours. The nickel hydroxide thus obtained had a particle structure as shown in FIG. The primary particle diameter was 2 μm, full width at half maximum (001) = 0.18 deg. ,
(101) = 0.32 deg. , Peak intensity ratio I (10
1) / I (001) = 0.39.

【0034】この組成を有する水酸化ニッケルと、水酸
化リチウム一水和物とを混合し、酸素雰囲気中、750
℃で20時間焼成し、Li(Ni0.85Co0.15)O2
組成を有するニッケル酸リチウムを得た。この時の水酸
化ニッケルと、水酸化リチウム一水和物の混合比(モル
比)は1:1.05 であった。このようにして得られ
たニッケル酸リチウムは、図5に示されるような粒子構
造をしていた。また、一次粒子径は2μm、ピーク強度
比I(101)/I(001)=0.198であった。
A mixture of nickel hydroxide having the above composition and lithium hydroxide monohydrate was mixed in an oxygen atmosphere at 750.
C. for 20 hours to obtain lithium nickelate having a composition of Li (Ni 0.85 Co 0.15 ) O 2 . At this time, the mixing ratio (molar ratio) of nickel hydroxide and lithium hydroxide monohydrate was 1: 1.05. The thus obtained lithium nickelate had a particle structure as shown in FIG. The primary particle diameter was 2 μm, and the peak intensity ratio I (101) / I (001) = 0.198.

【0035】このニッケル酸リチウムを正極材料(正極
活物質)として用い、正極材料:アセチレンブラック:
テフロンバインダー=0.85:0.1:0.03の重
量比率になるように混合し、120℃で2時間、予備乾
燥した。これから0.05gを秤量し直径1cmの円盤
状に3tの一軸圧力をかけて成型した後、200℃で2
時間乾燥して正極用ペレットとした。
Using this lithium nickelate as a positive electrode material (positive electrode active material), a positive electrode material: acetylene black:
The mixture was mixed so as to have a weight ratio of Teflon binder = 0.85: 0.1: 0.03, and preliminarily dried at 120 ° C. for 2 hours. From this, 0.05 g was weighed and molded into a disk having a diameter of 1 cm by applying a uniaxial pressure of 3 t.
After drying for a time, pellets for the positive electrode were obtained.

【0036】このペレットを図9に示すようなモデルセ
ルに組み込んだ。負極には直径1cmの金属リチウム、
電解液にはプロピレンカーボネートとジメチルエーテル
の1:1混合液を溶媒とした四フッ化ホウ素リチウム
(LiBF4)1mol/l溶液を使用した。なお、同図
において、1は負極端子、2は絶縁物(テフロン材)、
3は負極集電板、4は負極材料、5はセパレーター、6
は正極ペレット、7は正極端子をそれぞれ示す。電池試
験は0.441mAで4.3Vまで充電し、0.882
mAで3.0Vまで放電した。開放時間は10分とし
た。
The pellet was assembled in a model cell as shown in FIG. For the negative electrode, metallic lithium with a diameter of 1 cm,
As the electrolytic solution, a 1 mol / l solution of lithium boron tetrafluoride (LiBF 4 ) using a 1: 1 mixture of propylene carbonate and dimethyl ether as a solvent was used. In the figure, 1 is a negative electrode terminal, 2 is an insulator (Teflon material),
3 is a negative electrode current collector plate, 4 is a negative electrode material, 5 is a separator, 6
Denotes a positive electrode pellet, and 7 denotes a positive electrode terminal. The battery test was charged at 0.441 mA to 4.3 V and 0.882
Discharged to 3.0 V at mA. The opening time was 10 minutes.

【0037】このテストセルについて充電状態での正極
の示差熱分析を行い、結果を図10に示した。この示差
熱分析は、正電圧4.3Vまで充電後、ジメチルエーテ
ルで洗浄したものをサンプルとして行った。また、この
セルの充放電特性を図11に示した。
Differential thermal analysis of the positive electrode in the charged state was performed on this test cell, and the results are shown in FIG. This differential thermal analysis was performed using a sample which was charged to a positive voltage of 4.3 V and washed with dimethyl ether. FIG. 11 shows the charge / discharge characteristics of this cell.

【0038】(比較例1)水酸化ニッケルとして図2に
示されるような微粉状水酸化ニッケルを用いた以外は、
実施例1と同様にして、図6に示されるようなLi(N
0.85Co0.15)O2 の組成を有するニッケル酸リチウ
ムを得た。このニッケル酸リチウムを正極材料(正極活
物質)として用い、実施例1と同様にセストテセルに組
み込んだ。このテストセルについて、実施例1と同様に
充電状態での正極の示差熱分析を行い、結果を図10に
示した。また、このセルの充放電特性を図12に示し
た。
(Comparative Example 1) Except that a fine powdered nickel hydroxide as shown in FIG. 2 was used as the nickel hydroxide,
In the same manner as in Example 1, Li (N
A lithium nickelate having a composition of i 0.85 Co 0.15 ) O 2 was obtained. This lithium nickelate was used as a positive electrode material (positive electrode active material), and was incorporated in a Sest Tecell in the same manner as in Example 1. This test cell was subjected to differential thermal analysis of the positive electrode in the charged state in the same manner as in Example 1, and the results are shown in FIG. FIG. 12 shows the charge / discharge characteristics of this cell.

【0039】図10に示されるように、実施例1のほう
が比較例1よりも示差熱分析のピーク値が高温側にあ
り、熱特性に優れていることが判る。また、図11と図
12の比較から、実施例1のほうが比較例1よりも充放
電特性が良好であり、電池性能に優れることが判る。
As shown in FIG. 10, the peak value of the differential thermal analysis of Example 1 is higher than that of Comparative Example 1, indicating that the thermal characteristics are superior. Also, from a comparison between FIG. 11 and FIG. 12, it can be seen that Example 1 has better charge / discharge characteristics than Comparative Example 1 and is superior in battery performance.

【発明の効果】【The invention's effect】

【0040】以上説明したように、本発明の水酸化ニッ
ケルを正極活物質の原料とすることによって、電池特性
を低下させることなく、充電時の熱特性を改善したリチ
ウムイオン二次電池が得られる。また、本発明の製造方
法によって、上記水酸化ニッケルが簡便かつ高収率で得
られる。
As described above, by using the nickel hydroxide of the present invention as a raw material for the positive electrode active material, a lithium ion secondary battery having improved thermal characteristics during charging without lowering battery characteristics can be obtained. . In addition, the production method of the present invention allows the above-mentioned nickel hydroxide to be obtained simply and in high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水酸化ニッケルの粒子構造を示す走査
型電子顕微鏡写真(×5000)。
FIG. 1 is a scanning electron micrograph (× 5000) showing the particle structure of nickel hydroxide of the present invention.

【図2】微粉状の水酸化ニッケルの粒子構造を示す走査
型電子顕微鏡写真(×10000)。
FIG. 2 is a scanning electron micrograph (× 10000) showing the particle structure of finely divided nickel hydroxide.

【図3】球状の水酸化ニッケルの粒子構造を示す走査型
電子顕微鏡写真(×10000)。
FIG. 3 is a scanning electron micrograph (× 10000) showing the particle structure of spherical nickel hydroxide.

【図4】本発明の水酸化ニッケル(Ni1-x Cox (O
H)2 )のX線回折図。
FIG. 4 shows the nickel hydroxide (Ni 1-x Co x (O
H) X-ray diffraction diagram of 2 ).

【図5】本発明のニッケル酸リチウム(LiNi1-x
x 2 (x>0))の粒子構造を示す走査型電子顕微
鏡写真(×5000)。
FIG. 5 shows a lithium nickelate (LiNi 1-x C) of the present invention.
o x O 2 (x> 0 )) scanning electron microscope photograph showing the particle structure of the (× 5000).

【図6】微粉状の水酸化ニッケルを用いて得られたニッ
ケル酸リチウム(LiNi1-xCox 2 (x>0))
の粒子構造を示す走査型電子顕微鏡写真(×1000
0)。
FIG. 6 Lithium nickelate (LiNi 1 -x Co x O 2 (x> 0)) obtained using finely divided nickel hydroxide
Scanning electron micrograph (× 1000) showing the particle structure of
0).

【図7】球状の水酸化ニッケルを用いて得られたニッケ
ル酸リチウム(LiNi1-x Cox 2 (x>0))の
粒子構造を示す走査型電子顕微鏡写真(×1000
0)。
FIG. 7 is a scanning electron micrograph (× 1000) showing the particle structure of lithium nickelate (LiNi 1-x Co x O 2 (x> 0)) obtained using spherical nickel hydroxide.
0).

【図8】本発明のニッケル酸リチウム(LiNi1-x
x 2 (x>0))のX線回折図。
FIG. 8 shows a lithium nickelate (LiNi 1-x C) of the present invention.
o x O 2 X-ray diffraction pattern of the (x> 0)).

【図9】実施例及び比較例で用いたテストセルの概略断
面図。
FIG. 9 is a schematic sectional view of a test cell used in Examples and Comparative Examples.

【図10】実施例1及び比較例1の充電状態での正極の
示差熱分析図。
FIG. 10 is a differential thermal analysis diagram of a positive electrode in a charged state of Example 1 and Comparative Example 1.

【図11】実施例1のセルの充放電グラフ。FIG. 11 is a charge / discharge graph of the cell of Example 1.

【図12】比較例1のセルの充放電グラフ。FIG. 12 is a charge / discharge graph of the cell of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:負極端子、2:絶縁物(テフロン材)、3:負極集
電板、4:負極材料、5:セパレーター、6:正極ペレ
ット、7:正極端子。
1: negative electrode terminal, 2: insulator (Teflon material), 3: negative electrode current collector plate, 4: negative electrode material, 5: separator, 6: positive electrode pellet, 7: positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記組成式(1) Ni1-x x (OH)2 (1) (Aはコバルト又はマンガン、0.10<x<0.5)
で示され、結晶方位の揃った積層体または単結晶からな
り、その一次粒子径が0.5〜5μm、最も配向しやす
いサンプリングをして得られたX線回折による半値全幅
が(001)<0.3deg.、(101)<0.4d
eg.、かつピーク強度比I(101)/I(001)
<0.5であることを特徴とする水酸化ニッケル。
1. The following composition formula (1): Ni 1-x A x (OH) 2 (1) (A is cobalt or manganese, 0.10 <x <0.5)
And has a primary particle size of 0.5 to 5 μm and a full width at half maximum by X-ray diffraction obtained by sampling which is most easily oriented (001) < 0.3 deg. , (101) <0.4d
eg. And the peak intensity ratio I (101) / I (001)
Nickel hydroxide characterized by being <0.5.
【請求項2】 硝酸ニッケル水溶液、硝酸コバルト又は
硝酸マンガン水溶液、及びアンモニア水溶液からなる混
合水溶液を60〜90℃、3時間以上の条件で撹拌下に
混合し、次いでアルカリ水溶液を滴下しつつ煮沸して該
混合水溶液をpH6.6〜7.5に維持し、その後、ア
ルカリ水溶液中で8時間以上熟成することを特徴とする
水酸化ニッケルの製造方法。
2. A mixed aqueous solution composed of an aqueous solution of nickel nitrate, an aqueous solution of cobalt nitrate or manganese nitrate, and an aqueous solution of ammonia are mixed under stirring at 60 to 90 ° C. for 3 hours or more, and then the aqueous solution is boiled while adding an aqueous alkaline solution dropwise. A method for producing nickel hydroxide, comprising maintaining the mixed aqueous solution at a pH of 6.6 to 7.5 and then aging the aqueous solution in an alkaline aqueous solution for 8 hours or more.
【請求項3】 下記組成式(2) LiNi1-x x 2 (2) (Aはコバルト又はマンガン、0.10<x<0.5)
で示され、その一次粒子径が0.5〜5μm、最も配向
しやすいサンプリングをして得られたX線回折によるピ
ーク強度比I(101)/I(001)<0.4である
ことを特徴とするニッケル酸リチウム。
3. The following composition formula (2): LiNi 1-x A x O 2 (2) (A is cobalt or manganese, 0.10 <x <0.5)
Where the primary particle diameter is 0.5 to 5 μm, and the peak intensity ratio I (101) / I (001) <0.4 by X-ray diffraction obtained by sampling which is most easily oriented. Features lithium nickelate.
【請求項4】 請求項1に記載の水酸化ニッケルと、リ
チウム化合物との混合体を焼成することを特徴とするニ
ッケル酸リチウムの製造方法。
4. A method for producing lithium nickel oxide, comprising firing a mixture of the nickel hydroxide according to claim 1 and a lithium compound.
【請求項5】 請求項3に記載のニッケル酸リチウムを
正極活物質として用いたリチウムイオン二次電池。
5. A lithium ion secondary battery using the lithium nickelate according to claim 3 as a positive electrode active material.
JP9218792A 1997-08-13 1997-08-13 Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate Pending JPH1160243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218792A JPH1160243A (en) 1997-08-13 1997-08-13 Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218792A JPH1160243A (en) 1997-08-13 1997-08-13 Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate

Publications (1)

Publication Number Publication Date
JPH1160243A true JPH1160243A (en) 1999-03-02

Family

ID=16725448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218792A Pending JPH1160243A (en) 1997-08-13 1997-08-13 Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate

Country Status (1)

Country Link
JP (1) JPH1160243A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285918A (en) * 1999-03-31 2000-10-13 Kawatetsu Mining Co Ltd Material for positive electrode of lithium secondary battery
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2003086183A (en) * 2001-09-13 2003-03-20 Matsushita Electric Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery containing the same
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP2006059681A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
US8999573B2 (en) 2010-03-29 2015-04-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US10887506B2 (en) 2018-03-13 2021-01-05 Omron Corporation Image inspection device, image inspection method and computer readable recording medium
US20220399544A1 (en) * 2016-07-29 2022-12-15 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519959B2 (en) * 1999-03-31 2010-08-04 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery
JP2000285918A (en) * 1999-03-31 2000-10-13 Kawatetsu Mining Co Ltd Material for positive electrode of lithium secondary battery
KR100307163B1 (en) * 1999-06-12 2001-11-01 김순택 Method of preparing positive active material of lithium secondary battery
JP2003086183A (en) * 2001-09-13 2003-03-20 Matsushita Electric Ind Co Ltd Positive electrode active material and nonaqueous electrolyte secondary battery containing the same
WO2003026047A1 (en) * 2001-09-13 2003-03-27 Matsushita Electric Industrial Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2006059681A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP2006059682A (en) * 2004-08-20 2006-03-02 Bridgestone Corp Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
US8999573B2 (en) 2010-03-29 2015-04-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
US9553311B2 (en) 2010-03-29 2017-01-24 Sumitomo Metal Mining Co., Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
JP2012074366A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Lithium cobaltate, production method therefor, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
US20220399544A1 (en) * 2016-07-29 2022-12-15 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US11742483B2 (en) * 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US10887506B2 (en) 2018-03-13 2021-01-05 Omron Corporation Image inspection device, image inspection method and computer readable recording medium

Similar Documents

Publication Publication Date Title
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP4063350B2 (en) Method for producing composite oxide using sol-gel method
JP2903469B1 (en) Method for producing anode material for lithium ion battery
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP4185191B2 (en) Method for producing spinel type lithium manganate
JPH08180904A (en) Nonaqueous electrolyte secondary battery
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP4973826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
KR20220127517A (en) Method of manufacturing cathode active material for lithium secondary battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2003081639A (en) Manganese-containing layer lithium-transition metal compound oxide, and production method therefor
JPH1064516A (en) Lithium battery
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
KR100393684B1 (en) A positive active material for lithium secondary battery and a method of preparing same
CN109962217B (en) Lithium manganese silicate coated nickel-cobalt-manganese ternary material and preparation method thereof
JP3315910B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
JP4306868B2 (en) Method for producing spinel type lithium manganate
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees