JPH11188113A - Power transmission system, power transmission method and electric stimulation device provided with the power transmission system - Google Patents
Power transmission system, power transmission method and electric stimulation device provided with the power transmission systemInfo
- Publication number
- JPH11188113A JPH11188113A JP9359519A JP35951997A JPH11188113A JP H11188113 A JPH11188113 A JP H11188113A JP 9359519 A JP9359519 A JP 9359519A JP 35951997 A JP35951997 A JP 35951997A JP H11188113 A JPH11188113 A JP H11188113A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- power
- voltage level
- power transmission
- variable capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrotherapy Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、対向配置された1
対の電力供給コイルを用いて、両コイル間で電気エネル
ギーを伝送する電力伝送システムおよび電力伝送方法に
関する。より具体的には、種々の生体機能の外的制御を
行う装置、例えば脳卒中や脊髄損傷等、中枢性神経障害
で麻痺した生体の機能を電気的刺激で治療、再建する電
気刺激装置などに適用される電力伝送システムおよび電
力伝送方法に関する。ここでいう電力伝送とは、電力の
伝送だけでなく制御信号などの伝送をも含む。BACKGROUND OF THE INVENTION The present invention relates to a device having an opposing arrangement.
The present invention relates to a power transmission system and a power transmission method for transmitting electric energy between two coils using a pair of power supply coils. More specifically, the present invention is applied to a device for externally controlling various biological functions, for example, an electrical stimulation device for treating and reconstructing a function of a living body paralyzed by central nervous disorder such as stroke or spinal cord injury by electrical stimulation. The present invention relates to a power transmission system and a power transmission method to be performed. The power transmission here includes not only transmission of power but also transmission of control signals and the like.
【0002】[0002]
【従来の技術】麻痺した身体の機能を電気的刺激で治
療、再建する電気刺激装置は、基本的には、体内に埋め
込まれて生体の麻痺した部分を電気的に刺激する刺激装
置と、体外に配置され、体内に埋め込まれた刺激装置に
電力や信号を伝送して駆動する装置本体とから構成され
る。このような電気刺激装置において、装置本体側から
体内に埋め込まれた刺激装置に電力や信号を伝送する電
力伝送システムとしては、皮膚を挟んで対向配置された
電力供給コイル対(例えば、空芯コイルや磁芯コイルな
どにより構成される)を用い、体外の電力供給コイルか
ら体内の電力供給コイルへ電力や信号を伝送することに
より、体内に埋め込まれた刺激装置に電力や信号を伝送
するようにしたものが知られている。その一例として、
例えば特開平5-317434号公報には、非接触型電力供給コ
イルを備えたものが開示されている。2. Description of the Related Art An electrical stimulator for treating and reconstructing the function of a paralyzed body with electrical stimulation is basically a stimulator that is implanted in the body to electrically stimulate a paralyzed part of a living body, And a device main body that transmits and drives electric power and signals to a stimulator implanted in the body. In such an electric stimulator, as a power transmission system for transmitting power or a signal from the main body to a stimulator embedded in the body, a power supply coil pair (for example, an air-core coil Power and signals from an external power supply coil to a power supply coil inside the body to transmit power and signals to a stimulator embedded in the body. Is known. As an example,
For example, Japanese Unexamined Patent Publication No. 5-317434 discloses a device provided with a non-contact type power supply coil.
【0003】上記公報に開示されたシステムは、電気刺
激装置とともに体内に完全に埋め込まれる第1の電力供
給コイルと、その第1の電力供給コイルと皮膚を介して
平行に対向配置される第2の電力供給コイルとを備えて
おり、体外に置かれた第2の電力供給コイルに高周波電
力を供給することにより、その供給された高周波電力が
体内の第1の電力供給コイルへ誘導的に伝送され、第1
の電力供給コイルで所望の周波数に変換されるようにな
っている。[0003] The system disclosed in the above publication includes a first power supply coil completely embedded in a body together with an electrical stimulator, and a second power supply coil disposed in parallel with and opposed to the first power supply coil via the skin. And supplying the high-frequency power to a second power supply coil placed outside the body, so that the supplied high-frequency power is inductively transmitted to the first power supply coil in the body. And the first
Is converted into a desired frequency by the power supply coil.
【0004】この他、特開平4-285436号公報には、外部
の送出コイルから、植え込まれた容量性要素に接続され
ているターゲットコイルへ電力を誘導的に伝送するシス
テムで、両コイル間の共振結合を維持できるようにした
ものが開示されている。[0004] In addition, Japanese Patent Application Laid-Open No. 4-285436 discloses a system for inductively transmitting power from an external sending coil to a target coil connected to an implanted capacitive element. Which can maintain the resonance coupling of the above.
【0005】[0005]
【発明が解決しようとする課題】上述したような、対向
配置された1対の電力供給コイル間で電力伝送が行われ
る電力伝送システムにおいては、両コイルを共振状態と
して電力伝送が誘導的に行われる。しかしながら、この
ような従来のシステムでは、送受側のコイルの共振パラ
メータは固定で一定とされるため、例えば両コイル間の
距離が変わったり、あるいはコイルが横ずれしたりする
と、両コイルの相互インダクタンスが変化してしまい、
コイルの共振状態がくずれてしまう。この結果、受信側
コイルにおける受信電圧が低くなり、受信コイルに接続
された刺激装置などの負荷回路が動作しなくなるという
問題が生じる。In the above-described power transmission system in which power transmission is performed between a pair of power supply coils arranged opposite to each other, power transmission is performed inductively with both coils in a resonance state. Will be However, in such a conventional system, since the resonance parameters of the transmitting and receiving coils are fixed and constant, for example, when the distance between the two coils changes or when the coils are shifted sideways, the mutual inductance of the two coils becomes large. Has changed,
The resonance state of the coil is lost. As a result, a problem arises in that the reception voltage at the reception side coil decreases, and a load circuit such as a stimulator connected to the reception coil does not operate.
【0006】本発明の目的は、送受コイルの距離が変動
しても、コイルの共振状態がくずれることがなく、安定
した電力伝送を行うことができる電力伝送システムおよ
び電力伝送方法を提供することにある。さらには、その
電力伝送システムを備えた電気刺激装置を提供すること
にある。An object of the present invention is to provide a power transmission system and a power transmission method capable of performing stable power transmission without disturbing the resonance state of the coil even if the distance between the transmitting and receiving coils fluctuates. is there. It is still another object of the present invention to provide an electric stimulator provided with the power transmission system.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の電力伝送システムは、対向配置され
た1対の電力供給コイルを備え、一方を送信コイル、他
方を受信コイルとして電力が誘導的に伝送される電力伝
送システムにおいて、前記送信コイルと接続されて共振
回路を構成する第1の可変コンデンサと、前記受信コイ
ルと接続されて共振回路を構成する第2の可変コンデン
サと、前記送信コイルにおける電圧レベルを検出する第
1の電圧検出手段と、前記受信コイルにおける電圧レベ
ルを検出する第2の電圧検出手段と、前記第1の電圧検
出手段にて検出された電圧レベルを入力とし、該検出電
圧レベルが常に最高値をとるように前記第1の可変コン
デンサの容量を可変する第1の容量制御手段と、前記第
2の電圧検出手段にて検出された電圧レベルを入力と
し、該検出電圧レベルが常に最高値をとるように前記第
2の可変コンデンサの容量を可変する第2の容量制御手
段と、を有することを特徴とする。In order to achieve the above object, a first power transmission system according to the present invention includes a pair of power supply coils arranged opposite to each other, one of which is a transmission coil and the other is a reception coil. In a power transmission system in which power is transmitted inductively, a first variable capacitor connected to the transmission coil to form a resonance circuit, and a second variable capacitor connected to the reception coil to form a resonance circuit, A first voltage detecting means for detecting a voltage level in the transmitting coil, a second voltage detecting means for detecting a voltage level in the receiving coil, and a voltage level detected by the first voltage detecting means. An input, a first capacitance control unit that varies the capacitance of the first variable capacitor so that the detection voltage level always takes the maximum value, and a second voltage detection unit. And inputs the detected voltage level, and having a second capacity control means for varying the capacitance of the second variable capacitor to take always maximum voltage level said detectable, the.
【0008】本発明の第2の電力伝送システムは、対向
配置された1対の電力供給コイルを備え、一方を送信コ
イル、他方を受信コイルとして電力が誘導的に伝送され
る電力伝送システムにおいて、前記送信コイルと接続さ
れて共振回路を構成する第1の可変コンデンサと、前記
受信コイルと接続されて共振回路を構成する第2の可変
コンデンサと、前記受信コイルにおける電圧レベルを検
出する電圧検出手段と、前記電圧検出手段にて検出され
た電圧レベルを入力とし、該検出電圧レベルが常に最高
値をとるように前記第1および第2の可変コンデンサの
容量をそれぞれ可変する容量制御手段と、を有すること
を特徴とする。A second power transmission system according to the present invention includes a pair of power supply coils disposed to face each other, one of which is a transmission coil, and the other of which is a reception coil. A first variable capacitor connected to the transmission coil to form a resonance circuit; a second variable capacitor connected to the reception coil to form a resonance circuit; and voltage detection means for detecting a voltage level in the reception coil. And capacitance control means for inputting the voltage level detected by the voltage detection means and varying the capacitances of the first and second variable capacitors so that the detected voltage level always takes the maximum value. It is characterized by having.
【0009】上記の場合、前記電力供給コイル対とは異
なる、対向配置された送信コイルおよび受信コイルと、
前記送信コイルと接続されて第1の共振回路を構成する
第1のコンデンサと、前記受信コイルと接続されて第2
の共振回路を構成する第2のコンデンサと、前記容量制
御手段から出力される制御信号を入力とし、該入力信号
を前記第1の共振回路へ供給する信号送信手段と、前記
第2の共振回路を介して受信される前記制御信号を入力
とし、該入力制御信号を前記第1の可変コンデンサへ出
力する信号受信手段と、をさらに有するものとしてもよ
い。In the above case, a transmission coil and a reception coil which are different from the power supply coil pair and are arranged opposite to each other;
A first capacitor connected to the transmission coil to form a first resonance circuit; and a second capacitor connected to the reception coil.
A second capacitor constituting the resonance circuit of the above, a signal transmission unit which receives a control signal output from the capacitance control unit as an input, and supplies the input signal to the first resonance circuit, and the second resonance circuit And a signal receiving means for receiving the control signal received via the first variable capacitor and outputting the input control signal to the first variable capacitor.
【0010】本発明の電気刺激装置は、上述のいずれか
の電力伝送システムを備える電気刺激装置であって、前
記受信コイルとともに体内に埋め込まれ、該受信コイル
を介して電力供給を受けて生体の麻痺した部分を電気的
に刺激する刺激手段と、前記送信コイルに接続され、体
外から前記刺激手段に電力を供給して刺激動作を制御す
る制御手段と、を有することを特徴とする。[0010] An electrostimulation apparatus according to the present invention is an electrostimulation apparatus provided with any one of the above-described power transmission systems. Stimulating means for electrically stimulating the paralyzed portion; and control means connected to the transmitting coil and supplying power to the stimulating means from outside the body to control a stimulating operation.
【0011】本発明の第1の電力伝送方法は、対向配置
された1対の電力供給コイル間で、一方を送信コイル、
他方を受信コイルとして電力を誘導的に伝送する電力伝
送方法において、前記送信コイルおよび受信コイルにお
ける電圧レベルをそれぞれ検出し、それぞれの検出電圧
レベルが常に最高値をとるように前記送信コイルおよび
受信コイルの共振状態を制御することを特徴とする。According to a first power transmission method of the present invention, one of a pair of power supply coils disposed to face each other has a transmission coil,
In a power transmission method for inductively transmitting power using the other as a receiving coil, a voltage level in each of the transmitting coil and the receiving coil is detected, and the transmitting coil and the receiving coil are set so that each detected voltage level always takes a maximum value. Is characterized by controlling the resonance state.
【0012】本発明の第2の電力伝送方法は、対向配置
された1対の電力供給コイル間で、一方を送信コイル、
他方を受信コイルとして電力を誘導的に伝送する電力伝
送方法において、前記受信コイルにおける電圧レベルを
検出し、該検出電圧レベルが常に最高値をとるように前
記送信コイルおよび受信コイルの共振状態を制御するこ
とを特徴とする。According to a second power transmission method of the present invention, one of a pair of power supply coils disposed opposite to each other has a transmission coil,
In a power transmission method for inductively transmitting power using the other as a receiving coil, a voltage level in the receiving coil is detected, and a resonance state of the transmitting coil and the receiving coil is controlled such that the detected voltage level always takes a maximum value. It is characterized by doing.
【0013】(作用)本発明によれば、送信コイルと第
1の可変コンデンサにより共振回路が構成され、受信コ
イルと第2の可変コンデンサにより共振回路が構成され
ており、各共振回路の共振周波数はそれぞれの可変コン
デンサの容量を可変することにより制御可能になってい
る。したがって、例えば送受コイル間の距離が変動し
て、送受コイルの相互インダクタンスが変化しても、そ
の変化に応じて各共振回路の共振状態を制御することが
でき、送受コイル間における電力伝送を常に最適な状態
で行うことができる。(Operation) According to the present invention, a resonance circuit is constituted by the transmission coil and the first variable capacitor, and a resonance circuit is constituted by the reception coil and the second variable capacitor. Can be controlled by varying the capacity of each variable capacitor. Therefore, for example, even if the distance between the transmitting and receiving coils fluctuates and the mutual inductance of the transmitting and receiving coils changes, the resonance state of each resonance circuit can be controlled according to the change, and the power transmission between the transmitting and receiving coils is always performed. It can be performed in an optimal state.
【0014】[0014]
【発明の実施の形態】次に、本発明の実施形態について
図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.
【0015】(実施形態1)図1は、本発明の第1の実
施形態の電力伝送システムの概略構成を示すブロック図
である。この電力伝送システムは、生体の機能を電気的
刺激で治療、再建する電気刺激装置に適用されるもの
で、生体の麻痺した部分を電気的に刺激する負荷回路3
(刺激装置)が接続され、該負荷回路3とともに体内に
埋め込まれる電力受信部1と、体内に埋め込まれた負荷
回路3に電力や信号を伝送して刺激動作を制御する駆動
回路4(装置本体)が接続され、該駆動回路4とともに
体外に設置される電力送信部2とを有する。(First Embodiment) FIG. 1 is a block diagram showing a schematic configuration of a power transmission system according to a first embodiment of the present invention. This power transmission system is applied to an electric stimulator for treating and reconstructing the function of a living body with electric stimulation, and a load circuit 3 for electrically stimulating a paralyzed part of the living body.
(Stimulation device), a power receiving unit 1 embedded in the body together with the load circuit 3, and a drive circuit 4 for transmitting power and signals to the load circuit 3 embedded in the body to control a stimulating operation (device main body) ) Is connected, and the power transmission unit 2 is provided outside the body together with the drive circuit 4.
【0016】電力受信部1は、体外から供給される電力
を受信するための受信コイル11とこれに並列に接続さ
れた可変コンデンサ12とからなるLC回路(共振回
路)と、受信コイル11にて受信される電圧レベルを検
出する電圧検出回路13と、該電圧検出回路13にて検
出された電圧レベルを入力とし、該検出電圧レベルが常
に最高値をとるように可変コンデンサ12の容量を可変
する容量制御回路14と、受信コイル11にて受信され
る電圧を交流から直流に整流する整流回路15とを有す
る。The power receiving unit 1 includes an LC circuit (resonant circuit) including a receiving coil 11 for receiving power supplied from outside the body and a variable capacitor 12 connected in parallel to the receiving coil 11. A voltage detection circuit 13 for detecting a received voltage level, and a voltage level detected by the voltage detection circuit 13 are input, and the capacitance of the variable capacitor 12 is varied so that the detected voltage level always takes the maximum value. It has a capacity control circuit 14 and a rectifier circuit 15 for rectifying the voltage received by the receiving coil 11 from AC to DC.
【0017】電力送信部2は、体内に埋め込まれた受信
コイル11と平行に対向して配置され、該受信コイル1
1へ誘導的に電力を伝送する送信コイル21とこれに並
列に接続された可変コンデンサ22とからなるLC回路
(共振回路)と、送信コイル21にて伝送される電圧レ
ベルを検出する電圧検出回路23と、該電圧検出回路2
3にて検出された電圧レベルを入力とし、該検出電圧レ
ベルが常に最高値をとるように可変コンデンサ22の容
量を可変する容量制御回路24とを有する。The power transmitting unit 2 is disposed in parallel with and facing the receiving coil 11 embedded in the body.
An LC circuit (resonant circuit) including a transmitting coil 21 for inductively transmitting power to the transmission coil 1 and a variable capacitor 22 connected in parallel to the transmitting coil 21, and a voltage detecting circuit for detecting a voltage level transmitted by the transmitting coil 21 23 and the voltage detection circuit 2
3 has a capacitance control circuit 24 that receives the voltage level detected at 3 and changes the capacitance of the variable capacitor 22 so that the detected voltage level always takes the maximum value.
【0018】送受信コイル11,21は、両コイル間で
誘導的に電力伝送が可能であればどのようなものを用い
てもよく、例えば空芯コイル、磁芯コイルなど種々のコ
イルを使用することができる。The transmitting and receiving coils 11 and 21 may be of any type as long as power can be inductively transmitted between the two coils. For example, various coils such as an air core coil and a magnetic core coil may be used. Can be.
【0019】上述のように構成された電力伝送システム
では、駆動回路4から負荷回路3を駆動するための電力
が電力送信部2の送信コイル21に供給されると、送信
コイル21から電力受信部1の受信コイル11に誘導的
に電力が伝送される。このとき、電力搬送波の周波数に
電力受信部1および電力送信部2の各共振回路が共振し
た状態になっていれば、駆動回路4から供給される電力
のほとんどが負荷回路3にて使用され、共振していない
場合には、電力受信部1の受信コイル11とこれに接続
された各回路(電圧レギュレータ)で浪費される。受信
コイル11にて受信された電力は整流回路15を介して
負荷回路3へ供給される。In the power transmission system configured as described above, when power for driving the load circuit 3 is supplied from the drive circuit 4 to the transmission coil 21 of the power transmission unit 2, the transmission coil 21 transmits the power to the power reception unit. Power is inductively transmitted to one receiving coil 11. At this time, if the resonance circuits of the power receiving unit 1 and the power transmitting unit 2 are in a state of resonance at the frequency of the power carrier, most of the power supplied from the driving circuit 4 is used in the load circuit 3, If there is no resonance, it is wasted in the receiving coil 11 of the power receiving unit 1 and each circuit (voltage regulator) connected thereto. The power received by the receiving coil 11 is supplied to the load circuit 3 via the rectifier circuit 15.
【0020】いま、電力搬送波の周波数に電力受信部1
および電力送信部2の各共振回路が共振した状態で電力
伝送が行われている状態とする。ここで、送信コイル2
1と受信コイル11間の距離lが変化すると、これら送
受コイルの相互インダクタンスが変化し、これにより共
振パラメータも変化する。共振パラメータが変化する
と、電力搬送波の電圧レベルが小さくなり、この電圧レ
ベルの変化が電力受信部1および電力送信部2の各電圧
検出回路13,23で検出される。Now, the power receiving unit 1 is switched to the frequency of the power carrier.
In addition, it is assumed that power transmission is performed in a state where each resonance circuit of the power transmission unit 2 resonates. Here, the transmission coil 2
When the distance 1 between the coil 1 and the receiving coil 11 changes, the mutual inductance of the transmitting and receiving coils changes, and the resonance parameter also changes. When the resonance parameter changes, the voltage level of the power carrier decreases, and the change in the voltage level is detected by each of the voltage detection circuits 13 and 23 of the power receiving unit 1 and the power transmitting unit 2.
【0021】電圧レベルが低下すると、容量制御回路1
4は、電圧検出回路13の出力を基に、その検出電圧レ
ベルが最高値になるように可変コンデンサ12の容量を
可変する。同様に、容量制御回路24は、電圧検出回路
23の出力を基に、その検出電圧レベルが最高値になる
ように可変コンデンサ22の容量を可変する。これによ
り、送受コイルの相互インダクタンスが変化しても、常
に電力搬送波の周波数に共振した状態で電力伝送を行う
ことができる。When the voltage level decreases, the capacitance control circuit 1
4 varies the capacity of the variable capacitor 12 based on the output of the voltage detection circuit 13 so that the detected voltage level becomes the maximum value. Similarly, the capacitance control circuit 24 varies the capacitance of the variable capacitor 22 based on the output of the voltage detection circuit 23 so that the detected voltage level becomes the highest value. Thus, even if the mutual inductance of the transmitting and receiving coils changes, power transmission can be performed while always resonating at the frequency of the power carrier.
【0022】以上のように、本実施形態の電力伝送シス
テムでは、送信電圧、受信電圧の検出をそれぞれ送信
部、受信部個々に設けられた電圧検出部で行い、送信
部、受信部の個々の共振回路のコンデンサの容量を共振
状態を維持するように自動的に補正するようになってい
るので、最適の状態で電力伝送が行われる。As described above, in the power transmission system of the present embodiment, the detection of the transmission voltage and the reception voltage is performed by the voltage detection units provided in the transmission unit and the reception unit, respectively. Since the capacitance of the capacitor of the resonance circuit is automatically corrected so as to maintain the resonance state, power transmission is performed in an optimum state.
【0023】なお、以上の説明では、生体機能の外的制
御を行う装置に適用される例について説明したが、本発
明はこれに限定されるものではなく、対向配置された1
対の電力供給コイルを用いて、電気エネルギーを誘導的
に伝送することにより電力供給を行うことが可能な装置
であればどのようなものにも適用可能である。In the above description, an example in which the present invention is applied to an apparatus for externally controlling a biological function has been described. However, the present invention is not limited to this.
The present invention can be applied to any device that can supply power by inductively transmitting electric energy using a pair of power supply coils.
【0024】(実施形態2)上述した第1の実施形態で
は、送信部、受信部個々に独立して送受コイルの共振状
態を制御するようになっているが、受信コイルの電圧レ
ベルを検出して、その検出結果に基づいて送受コイルの
共振状態を制御することもできる。(Embodiment 2) In the above-described first embodiment, the resonance state of the transmission and reception coil is controlled independently of the transmission unit and the reception unit. However, the voltage level of the reception coil is detected. Thus, the resonance state of the transmitting and receiving coil can be controlled based on the detection result.
【0025】図2は、本発明の第2の実施形態の電力伝
送システムの概略構成を示すブロック図である。同図
中、図1に示した第1の実施形態の構成と同じ構成には
同じ符号を付してある。FIG. 2 is a block diagram showing a schematic configuration of a power transmission system according to a second embodiment of the present invention. In the figure, the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
【0026】本形態の電力伝送システムは、上述の第1
の実施形態の電力送信部2側の電圧検出回路23および
容量制御回路24を取り除き、電力受信部1側の容量制
御回路14が電圧検出回路13にて検出された電圧レベ
ルに基づいて、可変コンデンサ12,22の容量をそれ
ぞれ制御するようになっている。そのための構成とし
て、電力受信部1側に、送信コイル17とコンデンサ1
8からなる共振回路と、該共振回路に容量制御回路14
から送出された制御信号をフィードバック信号(電力送
信部2側の可変コンデンサ22の容量を制御するための
制御信号)として供給するフィードバック信号送信回路
19とを備え、電力送信2側に、送信コイル17に平行
に対向して配置された受信コイル27とコンデンサ28
からなる共振回路と、受信コイル27を介して受信され
る容量制御回路14から送出されたフィードバック信号
を受け、該受信信号を制御信号として可変コンデンサ2
2へ出力するフィードバック信号受信回路29とを備え
る。The power transmission system according to the present embodiment has the first
The voltage detection circuit 23 and the capacitance control circuit 24 on the power transmission unit 2 side of the embodiment are removed, and the capacitance control circuit 14 on the power reception unit 1 side changes the variable capacitor based on the voltage level detected by the voltage detection circuit 13. The capacities of 12 and 22 are respectively controlled. As a configuration for this, the transmission coil 17 and the capacitor 1
8 and a capacitance control circuit 14
Signal transmission circuit 19 for supplying the control signal sent from the power transmission unit 2 as a feedback signal (control signal for controlling the capacity of the variable capacitor 22 of the power transmission unit 2). Coil 27 and capacitor 28 arranged in parallel to and opposed to each other
And a feedback signal transmitted from the capacitance control circuit 14 which is received via the receiving coil 27, and the variable capacitor 2
2 and a feedback signal receiving circuit 29 that outputs the feedback signal to the control signal 2.
【0027】上述のように構成された電力伝送システム
では、第1の実施形態の場合と同様に、駆動回路4から
負荷回路3を駆動するための電力が電力送信部2の送信
コイル21に供給されると、送信コイル21から電力受
信部1の受信コイル11に誘導的に電力が伝送される。
受信コイル11にて受信された電力は整流回路15を介
して負荷回路3へ供給される。In the power transmission system configured as described above, power for driving the load circuit 3 from the drive circuit 4 is supplied to the transmission coil 21 of the power transmission unit 2 as in the case of the first embodiment. Then, power is inductively transmitted from the transmission coil 21 to the reception coil 11 of the power reception unit 1.
The power received by the receiving coil 11 is supplied to the load circuit 3 via the rectifier circuit 15.
【0028】いま、電力搬送波の周波数に電力受信部1
および電力送信部2の各共振回路が共振した状態で電力
伝送が行われている状態とする。ここで、送信コイル2
1と受信コイル11間の距離lが変化すると、これら送
受コイルの相互インダクタンスが変化し、これにより共
振パラメータも変化する。共振パラメータが変化する
と、電力搬送波の電圧レベルが小さくなり、この電圧レ
ベルの変化が電力受信部1の電圧検出回路13で検出さ
れる。Now, the power receiving unit 1 is switched to the power carrier frequency.
In addition, it is assumed that power transmission is performed in a state where each resonance circuit of the power transmission unit 2 resonates. Here, the transmission coil 2
When the distance 1 between the coil 1 and the receiving coil 11 changes, the mutual inductance of the transmitting and receiving coils changes, and the resonance parameter also changes. When the resonance parameter changes, the voltage level of the power carrier decreases, and this change in the voltage level is detected by the voltage detection circuit 13 of the power receiving unit 1.
【0029】電圧レベルが低下すると、容量制御回路1
4は、電圧検出回路13の出力を基に、その検出電圧レ
ベルが最高値になるように可変コンデンサ12の容量を
可変するとともに、可変コンデンサ22の容量を可変す
るためフィードバック信号をフィードバック信号送信回
路19へ送出する。フィードバック信号を受けたフィー
ドバック信号送信回路19は、該フィードバック信号を
所定の周波数で変調して各共振回路を介してフィードバ
ック信号受信回路29へ送信する。フィードバック信号
受信回路29は、受信した変調信号を復調して、これを
制御信号として可変コンデンサ22へ出力する。これに
より、可変コンデンサ22は電力受信部1の容量制御回
路14によって制御されることになる。When the voltage level decreases, the capacitance control circuit 1
Reference numeral 4 denotes a feedback signal transmission circuit which varies the capacitance of the variable capacitor 12 based on the output of the voltage detection circuit 13 so that the detected voltage level becomes the maximum value, and also varies the capacitance of the variable capacitor 22. Send to 19. The feedback signal transmitting circuit 19 that has received the feedback signal modulates the feedback signal at a predetermined frequency and transmits the modulated signal to the feedback signal receiving circuit 29 via each resonance circuit. The feedback signal receiving circuit 29 demodulates the received modulated signal and outputs the demodulated signal to the variable capacitor 22 as a control signal. Thus, the variable capacitor 22 is controlled by the capacity control circuit 14 of the power receiving unit 1.
【0030】上述のようにして、電力受信部1側の容量
制御回路14は、電圧検出回路13にて検出された電圧
レベルに基づいて、検出電圧レベルが最高値になるよう
に可変コンデンサ12,22の容量を可変する。これに
より、送受コイル11,21の相互インダクタンスが変
化しても、常に電力搬送波の周波数に共振した状態で電
力伝送を行うことができる。As described above, based on the voltage level detected by the voltage detection circuit 13, the capacitance control circuit 14 of the power receiving unit 1 sets the variable capacitor 12, so that the detected voltage level becomes the maximum value. 22 is varied. Thereby, even if the mutual inductance of the transmitting and receiving coils 11 and 21 changes, power transmission can always be performed in a state of resonance at the frequency of the power carrier.
【0031】本実施形態では、送信コイル17と受信コ
イル27における信号伝送は、送信コイル21と受信コ
イル11間で行われる誘導的な電力伝送と同じ原理で行
われるが、これら送受コイル17,27と接続されるコ
ンデンサ18,28は変調周波数に応じて所定の容量の
ものが用いられる。このようなフィードバック系では、
共振パラメータが固定であるため、送受コイル17,2
7間の距離が変動すると、受信されるフィードバック信
号の電圧レベルが変動することが予想されるが、この変
動は刺激装置への電力の供給に直接影響するものではな
いので問題とはならない。しかも、フィードバック信号
を受信する部分は体外に設けられる装置本体側に設けら
れるので、増幅回路など付加することができ、これによ
りフィードバック信号の電圧レベルの変動を回避するこ
ともできる。In the present embodiment, the signal transmission in the transmission coil 17 and the reception coil 27 is performed on the same principle as the inductive power transmission performed between the transmission coil 21 and the reception coil 11. The capacitors 18 and 28 to be connected to have a predetermined capacity according to the modulation frequency. In such a feedback system,
Since the resonance parameters are fixed, the transmitting and receiving coils 17, 2
Variations in the distance between the seven are expected to vary the voltage level of the received feedback signal, but this is not a problem since this variation does not directly affect the supply of power to the stimulator. In addition, since the portion for receiving the feedback signal is provided on the device main body side provided outside the body, an amplifier circuit or the like can be added, whereby fluctuations in the voltage level of the feedback signal can be avoided.
【0032】[0032]
【発明の効果】以上説明したように構成される本発明に
よれば、送受コイルの相互インダクタンスの変化に応じ
てコイルの共振状態を制御することができるので、送受
コイルの距離が変動しても、コイルの共振状態がくずれ
ることがなく、安定した電力伝送を行うことができると
いう効果がある。According to the present invention configured as described above, the resonance state of the coil can be controlled according to the change in the mutual inductance of the transmitting and receiving coils, so that even if the distance between the transmitting and receiving coils fluctuates. In addition, there is an effect that stable power transmission can be performed without disturbing the resonance state of the coil.
【0033】受信コイルにおける電圧レベルを検出し、
該電圧レベルが常に最高値をとるように送受コイルの共
振状態を制御する発明においては、より確実に受信コイ
ルを電力搬送波の周波数で共振するようにでき、より安
定的に電力伝送を行うことができるという効果がある。Detecting the voltage level at the receiving coil,
In the invention in which the resonance state of the transmitting and receiving coil is controlled so that the voltage level always takes the maximum value, the receiving coil can be made to resonate more reliably at the frequency of the power carrier, and power transmission can be performed more stably. There is an effect that can be.
【0034】本発明の電力伝送システムを備える電気刺
激装置においては、体内に埋め込まれた刺激装置に安定
して電力供給を行うことができるので、従来のような受
信側コイルにおける受信電圧が低下して刺激装置などの
負荷回路が動作しなくなるといった問題を防止でき、信
頼性の高い電気刺激装置を提供することができる。In the electric stimulator provided with the power transmission system of the present invention, since the power can be stably supplied to the stimulator implanted in the body, the received voltage at the receiving coil as in the prior art decreases. Thus, the problem that the load circuit such as the stimulator does not operate can be prevented, and a highly reliable electric stimulator can be provided.
【図1】本発明の第1の実施形態の電力伝送システムの
概略構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of a power transmission system according to a first embodiment of the present invention.
【図2】本発明の第2の実施形態の電力伝送システムの
概略構成を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration of a power transmission system according to a second embodiment of the present invention.
1 電力受信部 2 電力伝送部 3 負荷回路 4 駆動回路 11,27 受信コイル 12,22 可変コンデンサ 13,23 電圧検出回路 14,24 容量制御回路 15 整流回路 17,21 送信コイル 18,28 コンデンサ 19 フィードバック信号送信回路 29 フィードバック信号受信回路 REFERENCE SIGNS LIST 1 power receiving unit 2 power transmitting unit 3 load circuit 4 drive circuit 11, 27 receiving coil 12, 22 variable capacitor 13, 23 voltage detection circuit 14, 24 capacity control circuit 15 rectifier circuit 17, 21 transmission coil 18, 28 capacitor 19 feedback Signal transmission circuit 29 Feedback signal reception circuit
───────────────────────────────────────────────────── フロントページの続き (71)出願人 392013648 松木 英敏 宮城県仙台市太白区八木山本町2−36−4 (72)発明者 石川 清一 東京都港区芝五丁目7番1号 日本電気株 式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 392013648 Hidetoshi Matsuki 2-36-4 Yagiyama Honcho, Taihaku-ku, Sendai, Miyagi Prefecture (72) Inventor Seiichi Ishikawa 5-7-1 Shiba, Minato-ku, Tokyo NEC Within a stock company
Claims (8)
備え、一方を送信コイル、他方を受信コイルとして電力
が誘導的に伝送される電力伝送システムにおいて、 前記送信コイルと接続されて共振回路を構成する第1の
可変コンデンサと、 前記受信コイルと接続されて共振回路を構成する第2の
可変コンデンサと、 前記送信コイルにおける電圧レベルを検出する第1の電
圧検出手段と、 前記受信コイルにおける電圧レベルを検出する第2の電
圧検出手段と、 前記第1の電圧検出手段にて検出された電圧レベルを入
力とし、該検出電圧レベルが常に最高値をとるように前
記第1の可変コンデンサの容量を可変する第1の容量制
御手段と、 前記第2の電圧検出手段にて検出された電圧レベルを入
力とし、該検出電圧レベルが常に最高値をとるように前
記第2の可変コンデンサの容量を可変する第2の容量制
御手段と、を有することを特徴とする電力伝送システ
ム。1. A power transmission system comprising a pair of power supply coils disposed opposite to each other, one of which is a transmission coil and the other of which is a reception coil, in which power is inductively transmitted, wherein the resonance circuit is connected to the transmission coil. A first variable capacitor connected to the receiving coil, a second variable capacitor connected to the receiving coil to form a resonance circuit, first voltage detecting means for detecting a voltage level in the transmitting coil, A second voltage detecting means for detecting a voltage level; and a voltage level detected by the first voltage detecting means as an input, and the first variable capacitor being controlled so that the detected voltage level always takes a maximum value. A first capacitance control means for varying the capacitance and a voltage level detected by the second voltage detection means are input, and the detected voltage level always takes the maximum value. And a second capacitance control means for varying the capacitance of the second variable capacitor.
いて、 前記第1の容量制御手段が、電力搬送波の周波数で前記
送信コイルおよび第1の可変コンデンサからなる共振回
路が共振するように制御し、 前記第2の容量制御手段が、電力搬送波の周波数で前記
受信コイルおよび第2の可変コンデンサからなる共振回
路が共振するように制御することを特徴とする電力伝送
システム。2. The power transmission system according to claim 1, wherein the first capacitance control means controls a resonance circuit including the transmission coil and the first variable capacitor to resonate at a frequency of a power carrier. A power transmission system, wherein the second capacitance control means controls the resonance circuit including the receiving coil and the second variable capacitor to resonate at a frequency of a power carrier.
備え、一方を送信コイル、他方を受信コイルとして電力
が誘導的に伝送される電力伝送システムにおいて、 前記送信コイルと接続されて共振回路を構成する第1の
可変コンデンサと、 前記受信コイルと接続されて共振回路を構成する第2の
可変コンデンサと、 前記受信コイルにおける電圧レベルを検出する電圧検出
手段と、 前記電圧検出手段にて検出された電圧レベルを入力と
し、該検出電圧レベルが常に最高値をとるように前記第
1および第2の可変コンデンサの容量をそれぞれ可変す
る容量制御手段と、を有することを特徴とする電力伝送
システム。3. A power transmission system comprising a pair of power supply coils disposed opposite to each other, one of which is a transmission coil and the other of which is a reception coil, in which power is inductively transmitted, wherein the resonance circuit is connected to the transmission coil. A first variable capacitor, a second variable capacitor connected to the receiving coil to form a resonance circuit, a voltage detecting means for detecting a voltage level in the receiving coil, and a voltage detecting means for detecting the voltage level in the receiving coil. And a capacitance control means for varying the capacitances of the first and second variable capacitors so that the detected voltage level always takes the maximum value. .
いて、 前記電力供給コイル対とは異なる、対向配置された送信
コイルおよび受信コイルと、 前記送信コイルと接続されて第1の共振回路を構成する
第1のコンデンサと、 前記受信コイルと接続されて第2の共振回路を構成する
第2のコンデンサと、 前記容量制御手段から出力される制御信号を入力とし、
該入力信号を前記第1の共振回路へ供給する信号送信手
段と、 前記第2の共振回路を介して受信される前記制御信号を
入力とし、該入力制御信号を前記第1の可変コンデンサ
へ出力する信号受信手段と、をさらに有することを特徴
とする電力伝送システム。4. The power transmission system according to claim 3, wherein the transmission coil and the reception coil, which are different from the power supply coil pair and are arranged opposite to each other, are connected to the transmission coil to form a first resonance circuit. A first capacitor to be connected, a second capacitor connected to the receiving coil to form a second resonance circuit, and a control signal output from the capacitance control means as inputs.
Signal transmitting means for supplying the input signal to the first resonance circuit; inputting the control signal received via the second resonance circuit, and outputting the input control signal to the first variable capacitor Power transmission system, further comprising:
の電力伝送システムを備える電気刺激装置であって、 前記受信コイルとともに体内に埋め込まれ、該受信コイ
ルを介して電力供給を受けて生体の麻痺した部分を電気
的に刺激する刺激手段と、 前記送信コイルに接続され、体外から前記刺激手段に電
力を供給して刺激動作を制御する制御手段と、を有する
ことを特徴とする電気刺激装置。5. An electric stimulating apparatus comprising the power transmission system according to claim 1, wherein the electric stimulating apparatus is embedded in a body together with the receiving coil, and receives power supply via the receiving coil. Stimulation means for electrically stimulating a paralyzed part of a living body, and control means connected to the transmission coil and supplying power to the stimulation means from outside the body to control a stimulation operation, Stimulator.
で、一方を送信コイル、他方を受信コイルとして電力を
誘導的に伝送する電力伝送方法において、 前記送信コイルおよび受信コイルにおける電圧レベルを
それぞれ検出し、それぞれの検出電圧レベルが常に最高
値をとるように前記送信コイルおよび受信コイルの共振
状態を制御することを特徴とする電力伝送方法。6. A power transmission method for inductively transmitting power between a pair of power supply coils disposed opposite to each other, using one as a transmission coil and the other as a reception coil, wherein a voltage level in the transmission coil and the reception coil is determined. A power transmission method, wherein the power transmission method detects each of the voltages and controls the resonance state of the transmission coil and the reception coil so that the respective detected voltage levels always take the maximum value.
で、一方を送信コイル、他方を受信コイルとして電力を
誘導的に伝送する電力伝送方法において、 前記受信コイルにおける電圧レベルを検出し、該検出電
圧レベルが常に最高値をとるように前記送信コイルおよ
び受信コイルの共振状態を制御することを特徴とする電
力伝送方法。7. A power transmission method for inductively transmitting power between a pair of power supply coils disposed opposite to each other, using one as a transmission coil and the other as a reception coil, comprising: detecting a voltage level in the reception coil; A power transmission method, wherein the resonance state of the transmission coil and the reception coil is controlled so that the detection voltage level always takes the maximum value.
送方法において、 電力搬送波の周波数で前記送信コイルおよび受信コイル
が共振するように制御することをことを特徴とする電力
伝送方法。8. The power transmission method according to claim 6, wherein the transmission coil and the reception coil are controlled to resonate at a frequency of a power carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359519A JPH11188113A (en) | 1997-12-26 | 1997-12-26 | Power transmission system, power transmission method and electric stimulation device provided with the power transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359519A JPH11188113A (en) | 1997-12-26 | 1997-12-26 | Power transmission system, power transmission method and electric stimulation device provided with the power transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11188113A true JPH11188113A (en) | 1999-07-13 |
Family
ID=18464923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9359519A Pending JPH11188113A (en) | 1997-12-26 | 1997-12-26 | Power transmission system, power transmission method and electric stimulation device provided with the power transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11188113A (en) |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008032746A1 (en) * | 2006-09-12 | 2008-03-20 | The University Of Tokyo | Power supply sheet and electrically connecting circuit |
JP2008508842A (en) * | 2004-07-29 | 2008-03-21 | ジェーシー プロテク カンパニー リミテッド | Electromagnetic wave amplification repeater and wireless power conversion device using the same |
US7522878B2 (en) | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
WO2009131121A1 (en) * | 2008-04-22 | 2009-10-29 | オリンパス株式会社 | Power transmission system |
US7622891B2 (en) | 2002-10-28 | 2009-11-24 | Access Business Group International Llc | Contact-less power transfer |
EP2127105A2 (en) * | 2007-03-02 | 2009-12-02 | Qualcomm Incorporated | Wireless power apparatus and methods |
US7639514B2 (en) | 1999-06-21 | 2009-12-29 | Access Business Group International Llc | Adaptive inductive power supply |
JP2010098878A (en) * | 2008-10-17 | 2010-04-30 | Kyokko Denki Kk | Electric power supply system |
JP2010130800A (en) * | 2008-11-28 | 2010-06-10 | Nagano Japan Radio Co | Non-contact power transmission system |
JP2010154700A (en) * | 2008-12-26 | 2010-07-08 | Hitachi Ltd | Noncontacting power transmission system and load device thereof |
JP2010239769A (en) * | 2009-03-31 | 2010-10-21 | Fujitsu Ltd | Wireless power supply system |
JP2010252468A (en) * | 2009-04-14 | 2010-11-04 | Sony Corp | Power transmission device and method, power receiving device and method, and power transmission system |
JP2011508578A (en) * | 2007-11-16 | 2011-03-10 | クゥアルコム・インコーポレイテッド | Wireless power bridge |
CN102005827A (en) * | 2009-08-26 | 2011-04-06 | 索尼公司 | Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system |
CN102035267A (en) * | 2009-10-05 | 2011-04-27 | 索尼公司 | Power transmission apparatus, power reception apparatus and power transmission system |
JP2011091999A (en) * | 2008-09-18 | 2011-05-06 | Toyota Motor Corp | Non-contact power receiving apparatus and non-contact power transmitter |
WO2011061821A1 (en) * | 2009-11-18 | 2011-05-26 | 株式会社 東芝 | Wireless power transmission device |
JP2011523336A (en) * | 2008-05-13 | 2011-08-04 | クゥアルコム・インコーポレイテッド | Method and apparatus for adaptive tuning of wireless power transfer |
JP2012502602A (en) * | 2007-03-27 | 2012-01-26 | マサチューセッツ インスティテュート オブ テクノロジー | Wireless energy transfer device |
US8129864B2 (en) | 2008-01-07 | 2012-03-06 | Access Business Group International Llc | Inductive power supply with duty cycle control |
JP2012110154A (en) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | Wireless power transmission device |
US8222827B2 (en) | 1999-06-21 | 2012-07-17 | Access Business Group International Llc | Inductively coupled ballast circuit |
JP2012523210A (en) * | 2009-04-03 | 2012-09-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Wireless power infrastructure |
US8338990B2 (en) | 2008-03-13 | 2012-12-25 | Access Business Group International Llc | Inductive power supply system with multiple coil primary |
CN102884705A (en) * | 2010-05-14 | 2013-01-16 | 株式会社丰田自动织机 | Power reception equipment for resonance-type non-contact power supply system |
CN102884712A (en) * | 2010-05-14 | 2013-01-16 | 株式会社丰田自动织机 | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
JP2013070590A (en) * | 2011-09-21 | 2013-04-18 | Pioneer Electronic Corp | Non-contact power transmission device, non-contact power reception device and non-contact power supply system |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
JP2013135379A (en) * | 2011-12-27 | 2013-07-08 | Denso Corp | Power line communication system for vehicles |
WO2014030689A1 (en) * | 2012-08-23 | 2014-02-27 | 株式会社 豊田自動織機 | Non-contact power transmission device and power-receiving apparatus |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8692410B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
JP2014155303A (en) * | 2013-02-07 | 2014-08-25 | Nec Saitama Ltd | Charger and charging method |
US8836172B2 (en) | 2008-10-01 | 2014-09-16 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8854224B2 (en) | 2009-02-10 | 2014-10-07 | Qualcomm Incorporated | Conveying device information relating to wireless charging |
US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
JP2015050932A (en) * | 2013-08-30 | 2015-03-16 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Power supply apparatus |
US8994326B2 (en) | 2010-05-14 | 2015-03-31 | Kabushiki Kaisha Toyota Jidoshokki | Resonance-type non-contact power supply system |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
WO2015083573A1 (en) * | 2013-12-05 | 2015-06-11 | トヨタ自動車株式会社 | Contactless power transmission system and electric transmission device |
US9065286B2 (en) | 2005-07-12 | 2015-06-23 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
JP2015149890A (en) * | 2010-09-30 | 2015-08-20 | インテル コーポレイション | Wireless power transfer apparatus and method thereof |
US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9343225B2 (en) | 2012-01-13 | 2016-05-17 | Kabushiki Kaisha Toshiba | Power receiving device, power transmitting device and control device |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
EP2328253A3 (en) * | 2009-11-30 | 2016-08-03 | Broadcom Corporation | Device with integrated wireless power receiver |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US9559550B2 (en) | 2011-02-15 | 2017-01-31 | Toyota Jidosha Kabushiki Kaisha | Contactless power receiving apparatus and vehicle incorporating same, contactless power feeding facility, method of controlling contactless power receiving apparatus, and method of controlling contactless power feeding facility |
US9583953B2 (en) | 2009-02-10 | 2017-02-28 | Qualcomm Incorporated | Wireless power transfer for portable enclosures |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
-
1997
- 1997-12-26 JP JP9359519A patent/JPH11188113A/en active Pending
Cited By (253)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9397524B2 (en) | 1999-06-21 | 2016-07-19 | Access Business Group International Llc | Inductively coupled ballast circuit |
US10014722B2 (en) | 1999-06-21 | 2018-07-03 | Philips Ip Ventures B.V. | Inductively coupled ballast circuit |
US7953369B2 (en) | 1999-06-21 | 2011-05-31 | Access Business Group International Llc | System and method for inductive power supply control using remote device power requirements |
US8116681B2 (en) | 1999-06-21 | 2012-02-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US9590456B2 (en) | 1999-06-21 | 2017-03-07 | Access Business Group International Llc | Inductively coupled ballast circuit |
US8855558B2 (en) | 1999-06-21 | 2014-10-07 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8222827B2 (en) | 1999-06-21 | 2012-07-17 | Access Business Group International Llc | Inductively coupled ballast circuit |
US9299493B2 (en) | 1999-06-21 | 2016-03-29 | Access Business Group International Llc | Inductively coupled ballast circuit |
US7639514B2 (en) | 1999-06-21 | 2009-12-29 | Access Business Group International Llc | Adaptive inductive power supply |
US9368976B2 (en) | 1999-06-21 | 2016-06-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US7522878B2 (en) | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US9036371B2 (en) | 1999-06-21 | 2015-05-19 | Access Business Group International Llc | Adaptive inductive power supply |
US7622891B2 (en) | 2002-10-28 | 2009-11-24 | Access Business Group International Llc | Contact-less power transfer |
JP2009213351A (en) * | 2003-02-04 | 2009-09-17 | Access Business Group Internatl Llc | Adaptive induction power supply having communication means |
US9190874B2 (en) | 2003-02-04 | 2015-11-17 | Access Business Group International Llc | Adaptive inductive power supply |
US10505385B2 (en) | 2003-02-04 | 2019-12-10 | Philips Ip Ventures B.V. | Adaptive inductive power supply |
JP2019004698A (en) * | 2003-02-04 | 2019-01-10 | フィリップス アイピー ベンチャーズ ビー ヴィ | Adaptive inductive power supply with communication means |
US8116683B2 (en) | 2003-02-04 | 2012-02-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US10439437B2 (en) | 2003-02-04 | 2019-10-08 | Philips Ip Ventures B.V. | Adaptive inductive power supply with communication |
US9013895B2 (en) | 2003-02-04 | 2015-04-21 | Access Business Group International Llc | Adaptive inductive power supply |
US9906049B2 (en) | 2003-02-04 | 2018-02-27 | Access Business Group International Llc | Adaptive inductive power supply |
US8259429B2 (en) | 2004-07-29 | 2012-09-04 | Samsung Electronics Co., Ltd. | Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the device |
US7885050B2 (en) | 2004-07-29 | 2011-02-08 | Jc Protek Co., Ltd. | Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device |
JP2008508842A (en) * | 2004-07-29 | 2008-03-21 | ジェーシー プロテク カンパニー リミテッド | Electromagnetic wave amplification repeater and wireless power conversion device using the same |
JP2011120470A (en) * | 2004-07-29 | 2011-06-16 | Jc Protek Co Ltd | Electromagnetic wave amplifying repeater and wireless power converter using the same |
US8681465B2 (en) | 2004-07-29 | 2014-03-25 | Jc Protek Co., Ltd. | Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the device |
USRE48475E1 (en) | 2004-07-29 | 2021-03-16 | Jc Protek Co., Ltd. | Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the device |
US9450422B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless energy transfer |
US10141790B2 (en) | 2005-07-12 | 2018-11-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9065286B2 (en) | 2005-07-12 | 2015-06-23 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US11685271B2 (en) | 2005-07-12 | 2023-06-27 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US10666091B2 (en) | 2005-07-12 | 2020-05-26 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9509147B2 (en) | 2005-07-12 | 2016-11-29 | Massachusetts Institute Of Technology | Wireless energy transfer |
US11685270B2 (en) | 2005-07-12 | 2023-06-27 | Mit | Wireless energy transfer |
US9450421B2 (en) | 2005-07-12 | 2016-09-20 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9444265B2 (en) | 2005-07-12 | 2016-09-13 | Massachusetts Institute Of Technology | Wireless energy transfer |
US10097044B2 (en) | 2005-07-12 | 2018-10-09 | Massachusetts Institute Of Technology | Wireless energy transfer |
US9831722B2 (en) | 2005-07-12 | 2017-11-28 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
JPWO2008032746A1 (en) * | 2006-09-12 | 2010-01-28 | 国立大学法人 東京大学 | Power supply sheet and power supply circuit |
WO2008032746A1 (en) * | 2006-09-12 | 2008-03-20 | The University Of Tokyo | Power supply sheet and electrically connecting circuit |
EP2127105A4 (en) * | 2007-03-02 | 2013-01-16 | Qualcomm Inc | Wireless power apparatus and methods |
JP2010520716A (en) * | 2007-03-02 | 2010-06-10 | クゥアルコム・インコーポレイテッド | Wireless power apparatus and method |
JP2014039468A (en) * | 2007-03-02 | 2014-02-27 | Qualcomm Incorporated | Wireless power apparatus and methods |
US9774086B2 (en) | 2007-03-02 | 2017-09-26 | Qualcomm Incorporated | Wireless power apparatus and methods |
JP2016007131A (en) * | 2007-03-02 | 2016-01-14 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Wireless power apparatus and methods |
EP2127105A2 (en) * | 2007-03-02 | 2009-12-02 | Qualcomm Incorporated | Wireless power apparatus and methods |
JP2014060917A (en) * | 2007-03-27 | 2014-04-03 | Massachusetts Institute Of Technology | Wireless energy transfer device |
JP2012502602A (en) * | 2007-03-27 | 2012-01-26 | マサチューセッツ インスティテュート オブ テクノロジー | Wireless energy transfer device |
US9843230B2 (en) | 2007-06-01 | 2017-12-12 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US10348136B2 (en) | 2007-06-01 | 2019-07-09 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9943697B2 (en) | 2007-06-01 | 2018-04-17 | Witricity Corporation | Power generation for implantable devices |
US9095729B2 (en) | 2007-06-01 | 2015-08-04 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9101777B2 (en) | 2007-06-01 | 2015-08-11 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US10420951B2 (en) | 2007-06-01 | 2019-09-24 | Witricity Corporation | Power generation for implantable devices |
US9318898B2 (en) | 2007-06-01 | 2016-04-19 | Witricity Corporation | Wireless power harvesting and transmission with heterogeneous signals |
US9124120B2 (en) | 2007-06-11 | 2015-09-01 | Qualcomm Incorporated | Wireless power system and proximity effects |
JP2011508578A (en) * | 2007-11-16 | 2011-03-10 | クゥアルコム・インコーポレイテッド | Wireless power bridge |
US8729734B2 (en) | 2007-11-16 | 2014-05-20 | Qualcomm Incorporated | Wireless power bridge |
US9966188B2 (en) | 2007-11-16 | 2018-05-08 | Qualcomm Incorporated | Wireless power bridge |
US10170935B2 (en) | 2008-01-07 | 2019-01-01 | Philips Ip Ventures B.V. | Inductive power supply with duty cycle control |
US8129864B2 (en) | 2008-01-07 | 2012-03-06 | Access Business Group International Llc | Inductive power supply with duty cycle control |
US9257851B2 (en) | 2008-01-07 | 2016-02-09 | Access Business Group International Llc | Inductive power supply with duty cycle control |
US8338990B2 (en) | 2008-03-13 | 2012-12-25 | Access Business Group International Llc | Inductive power supply system with multiple coil primary |
US8653698B2 (en) | 2008-03-13 | 2014-02-18 | David W. Baarman | Inductive power supply system with multiple coil primary |
CN102017362A (en) * | 2008-04-22 | 2011-04-13 | 奥林巴斯株式会社 | Power transmission system |
JP2009268181A (en) * | 2008-04-22 | 2009-11-12 | Olympus Corp | Energy supply apparatus |
WO2009131121A1 (en) * | 2008-04-22 | 2009-10-29 | オリンパス株式会社 | Power transmission system |
US9130407B2 (en) | 2008-05-13 | 2015-09-08 | Qualcomm Incorporated | Signaling charging in wireless power environment |
US8878393B2 (en) | 2008-05-13 | 2014-11-04 | Qualcomm Incorporated | Wireless power transfer for vehicles |
US9184632B2 (en) | 2008-05-13 | 2015-11-10 | Qualcomm Incorporated | Wireless power transfer for furnishings and building elements |
US9178387B2 (en) | 2008-05-13 | 2015-11-03 | Qualcomm Incorporated | Receive antenna for wireless power transfer |
US8892035B2 (en) | 2008-05-13 | 2014-11-18 | Qualcomm Incorporated | Repeaters for enhancement of wireless power transfer |
US9954399B2 (en) | 2008-05-13 | 2018-04-24 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
US9991747B2 (en) | 2008-05-13 | 2018-06-05 | Qualcomm Incorporated | Signaling charging in wireless power environment |
JP2011523336A (en) * | 2008-05-13 | 2011-08-04 | クゥアルコム・インコーポレイテッド | Method and apparatus for adaptive tuning of wireless power transfer |
US9190875B2 (en) | 2008-05-13 | 2015-11-17 | Qualcomm Incorporated | Method and apparatus with negative resistance in wireless power transfers |
US9236771B2 (en) | 2008-05-13 | 2016-01-12 | Qualcomm Incorporated | Method and apparatus for adaptive tuning of wireless power transfer |
US8965461B2 (en) | 2008-05-13 | 2015-02-24 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
JP2011091999A (en) * | 2008-09-18 | 2011-05-06 | Toyota Motor Corp | Non-contact power receiving apparatus and non-contact power transmitter |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US10536034B2 (en) | 2008-09-27 | 2020-01-14 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US11958370B2 (en) | 2008-09-27 | 2024-04-16 | Witricity Corporation | Wireless power system modules |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US9698607B2 (en) | 2008-09-27 | 2017-07-04 | Witricity Corporation | Secure wireless energy transfer |
US10097011B2 (en) | 2008-09-27 | 2018-10-09 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US8947186B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US11479132B2 (en) | 2008-09-27 | 2022-10-25 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US11114896B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power system modules |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US9662161B2 (en) | 2008-09-27 | 2017-05-30 | Witricity Corporation | Wireless energy transfer for medical applications |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US11114897B2 (en) | 2008-09-27 | 2021-09-07 | Witricity Corporation | Wireless power transmission system enabling bidirectional energy flow |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US10673282B2 (en) | 2008-09-27 | 2020-06-02 | Witricity Corporation | Tunable wireless energy transfer systems |
US9806541B2 (en) | 2008-09-27 | 2017-10-31 | Witricity Corporation | Flexible resonator attachment |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US8847548B2 (en) | 2008-09-27 | 2014-09-30 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9742204B2 (en) | 2008-09-27 | 2017-08-22 | Witricity Corporation | Wireless energy transfer in lossy environments |
US10559980B2 (en) | 2008-09-27 | 2020-02-11 | Witricity Corporation | Signaling in wireless power systems |
US9711991B2 (en) | 2008-09-27 | 2017-07-18 | Witricity Corporation | Wireless energy transfer converters |
US9596005B2 (en) | 2008-09-27 | 2017-03-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and systems monitoring |
US9369182B2 (en) | 2008-09-27 | 2016-06-14 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US10218224B2 (en) | 2008-09-27 | 2019-02-26 | Witricity Corporation | Tunable wireless energy transfer systems |
US10446317B2 (en) | 2008-09-27 | 2019-10-15 | Witricity Corporation | Object and motion detection in wireless power transfer systems |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US9843228B2 (en) | 2008-09-27 | 2017-12-12 | Witricity Corporation | Impedance matching in wireless power systems |
US10084348B2 (en) | 2008-09-27 | 2018-09-25 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9780605B2 (en) | 2008-09-27 | 2017-10-03 | Witricity Corporation | Wireless power system with associated impedance matching network |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9444520B2 (en) | 2008-09-27 | 2016-09-13 | Witricity Corporation | Wireless energy transfer converters |
US10410789B2 (en) | 2008-09-27 | 2019-09-10 | Witricity Corporation | Integrated resonator-shield structures |
US9754718B2 (en) | 2008-09-27 | 2017-09-05 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US10340745B2 (en) | 2008-09-27 | 2019-07-02 | Witricity Corporation | Wireless power sources and devices |
US8692410B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US10300800B2 (en) | 2008-09-27 | 2019-05-28 | Witricity Corporation | Shielding in vehicle wireless power systems |
US9496719B2 (en) | 2008-09-27 | 2016-11-15 | Witricity Corporation | Wireless energy transfer for implantable devices |
US10264352B2 (en) | 2008-09-27 | 2019-04-16 | Witricity Corporation | Wirelessly powered audio devices |
US9515495B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless energy transfer in lossy environments |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US10230243B2 (en) | 2008-09-27 | 2019-03-12 | Witricity Corporation | Flexible resonator attachment |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9748039B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US9584189B2 (en) | 2008-09-27 | 2017-02-28 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US8836172B2 (en) | 2008-10-01 | 2014-09-16 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US9831682B2 (en) | 2008-10-01 | 2017-11-28 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
JP2010098878A (en) * | 2008-10-17 | 2010-04-30 | Kyokko Denki Kk | Electric power supply system |
JP2010130800A (en) * | 2008-11-28 | 2010-06-10 | Nagano Japan Radio Co | Non-contact power transmission system |
US8531059B2 (en) | 2008-12-26 | 2013-09-10 | Hitachi Consumer Electronics Co., Ltd. | Wireless power transfer system and a load apparatus in the same wireless power transfer system |
JP2010154700A (en) * | 2008-12-26 | 2010-07-08 | Hitachi Ltd | Noncontacting power transmission system and load device thereof |
US9583953B2 (en) | 2009-02-10 | 2017-02-28 | Qualcomm Incorporated | Wireless power transfer for portable enclosures |
US9312924B2 (en) | 2009-02-10 | 2016-04-12 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
US8854224B2 (en) | 2009-02-10 | 2014-10-07 | Qualcomm Incorporated | Conveying device information relating to wireless charging |
JP2010239769A (en) * | 2009-03-31 | 2010-10-21 | Fujitsu Ltd | Wireless power supply system |
JP2012523210A (en) * | 2009-04-03 | 2012-09-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Wireless power infrastructure |
JP2010252468A (en) * | 2009-04-14 | 2010-11-04 | Sony Corp | Power transmission device and method, power receiving device and method, and power transmission system |
CN102005827A (en) * | 2009-08-26 | 2011-04-06 | 索尼公司 | Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system |
EP2290782A3 (en) * | 2009-08-26 | 2012-09-12 | Sony Corporation | Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system |
US8912685B2 (en) | 2009-08-26 | 2014-12-16 | Sony Corporation | Noncontact electric power feeding apparatus, noncontact electric power receiving apparatus, noncontact electric power feeding method, noncontact electric power receiving method, and noncontact electric power feeding system |
US9257850B2 (en) | 2009-10-05 | 2016-02-09 | Sony Corporation | Power transmission apparatus, power reception apparatus and power transmission system |
CN102035267A (en) * | 2009-10-05 | 2011-04-27 | 索尼公司 | Power transmission apparatus, power reception apparatus and power transmission system |
TWI427890B (en) * | 2009-10-05 | 2014-02-21 | Sony Corp | Power transmission apparatus, power reception apparatus and power transmission system |
WO2011061821A1 (en) * | 2009-11-18 | 2011-05-26 | 株式会社 東芝 | Wireless power transmission device |
KR101423406B1 (en) * | 2009-11-18 | 2014-07-24 | 가부시끼가이샤 도시바 | Wireless power transmission device |
JP5580333B2 (en) * | 2009-11-18 | 2014-08-27 | 株式会社東芝 | Wireless power transmission device |
EP2515414A4 (en) * | 2009-11-18 | 2016-04-06 | Toshiba Kk | Wireless power transmission device |
US9231413B2 (en) | 2009-11-18 | 2016-01-05 | Kabushiki Kaisha Toshiba | Wireless power transmission device |
JPWO2011061821A1 (en) * | 2009-11-18 | 2013-04-04 | 株式会社東芝 | Wireless power transmission device |
EP2328253A3 (en) * | 2009-11-30 | 2016-08-03 | Broadcom Corporation | Device with integrated wireless power receiver |
US9590444B2 (en) | 2009-11-30 | 2017-03-07 | Broadcom Corporation | Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency |
US9391468B2 (en) | 2010-05-14 | 2016-07-12 | Kabushiki Kaisha Toyota Jidoshokki | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
CN102884705A (en) * | 2010-05-14 | 2013-01-16 | 株式会社丰田自动织机 | Power reception equipment for resonance-type non-contact power supply system |
US9142972B2 (en) | 2010-05-14 | 2015-09-22 | Kabushiki Kaisha Toyota Jidoshokki | Power reception equipment for resonance-type non-contact power supply system |
US8994326B2 (en) | 2010-05-14 | 2015-03-31 | Kabushiki Kaisha Toyota Jidoshokki | Resonance-type non-contact power supply system |
EP2571140A4 (en) * | 2010-05-14 | 2014-04-30 | Toyota Jidoshokki Kk | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
CN102884712A (en) * | 2010-05-14 | 2013-01-16 | 株式会社丰田自动织机 | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
EP2571140A1 (en) * | 2010-05-14 | 2013-03-20 | Kabushiki Kaisha Toyota Jidoshokki | Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
JP2015149890A (en) * | 2010-09-30 | 2015-08-20 | インテル コーポレイション | Wireless power transfer apparatus and method thereof |
JP2017099278A (en) * | 2010-09-30 | 2017-06-01 | インテル コーポレイション | Wireless power transfer device and method of the same |
JP2012110154A (en) * | 2010-11-18 | 2012-06-07 | Toshiba Corp | Wireless power transmission device |
US9559550B2 (en) | 2011-02-15 | 2017-01-31 | Toyota Jidosha Kabushiki Kaisha | Contactless power receiving apparatus and vehicle incorporating same, contactless power feeding facility, method of controlling contactless power receiving apparatus, and method of controlling contactless power feeding facility |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
US10734842B2 (en) | 2011-08-04 | 2020-08-04 | Witricity Corporation | Tunable wireless power architectures |
US9787141B2 (en) | 2011-08-04 | 2017-10-10 | Witricity Corporation | Tunable wireless power architectures |
US11621585B2 (en) | 2011-08-04 | 2023-04-04 | Witricity Corporation | Tunable wireless power architectures |
US9384885B2 (en) | 2011-08-04 | 2016-07-05 | Witricity Corporation | Tunable wireless power architectures |
US9442172B2 (en) | 2011-09-09 | 2016-09-13 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10778047B2 (en) | 2011-09-09 | 2020-09-15 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10027184B2 (en) | 2011-09-09 | 2018-07-17 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10424976B2 (en) | 2011-09-12 | 2019-09-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US11097618B2 (en) | 2011-09-12 | 2021-08-24 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
JP2013070590A (en) * | 2011-09-21 | 2013-04-18 | Pioneer Electronic Corp | Non-contact power transmission device, non-contact power reception device and non-contact power supply system |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US8875086B2 (en) | 2011-11-04 | 2014-10-28 | Witricity Corporation | Wireless energy transfer modeling tool |
JP2013135379A (en) * | 2011-12-27 | 2013-07-08 | Denso Corp | Power line communication system for vehicles |
US9343225B2 (en) | 2012-01-13 | 2016-05-17 | Kabushiki Kaisha Toshiba | Power receiving device, power transmitting device and control device |
US9306635B2 (en) | 2012-01-26 | 2016-04-05 | Witricity Corporation | Wireless energy transfer with reduced fields |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US10158251B2 (en) | 2012-06-27 | 2018-12-18 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
WO2014030689A1 (en) * | 2012-08-23 | 2014-02-27 | 株式会社 豊田自動織機 | Non-contact power transmission device and power-receiving apparatus |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
US10686337B2 (en) | 2012-10-19 | 2020-06-16 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10211681B2 (en) | 2012-10-19 | 2019-02-19 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9404954B2 (en) | 2012-10-19 | 2016-08-02 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9465064B2 (en) | 2012-10-19 | 2016-10-11 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9449757B2 (en) | 2012-11-16 | 2016-09-20 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US10186372B2 (en) | 2012-11-16 | 2019-01-22 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
JP2014155303A (en) * | 2013-02-07 | 2014-08-25 | Nec Saitama Ltd | Charger and charging method |
US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
US11112814B2 (en) | 2013-08-14 | 2021-09-07 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
US11720133B2 (en) | 2013-08-14 | 2023-08-08 | Witricity Corporation | Impedance adjustment in wireless power transmission systems and methods |
US9857821B2 (en) | 2013-08-14 | 2018-01-02 | Witricity Corporation | Wireless power transfer frequency adjustment |
JP2015050932A (en) * | 2013-08-30 | 2015-03-16 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Power supply apparatus |
US10122212B2 (en) | 2013-08-30 | 2018-11-06 | Samsung Electro-Mechanics Co., Ltd. | Power supply device |
WO2015083573A1 (en) * | 2013-12-05 | 2015-06-11 | トヨタ自動車株式会社 | Contactless power transmission system and electric transmission device |
US10457149B2 (en) | 2013-12-05 | 2019-10-29 | Toyota Jidosha Kabushiki Kaisha | Contactless power transfer system and power transmission device |
JP2015109769A (en) * | 2013-12-05 | 2015-06-11 | トヨタ自動車株式会社 | Non-contact power transmission system |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US10186373B2 (en) | 2014-04-17 | 2019-01-22 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
US10371848B2 (en) | 2014-05-07 | 2019-08-06 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10018744B2 (en) | 2014-05-07 | 2018-07-10 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10923921B2 (en) | 2014-06-20 | 2021-02-16 | Witricity Corporation | Wireless power transfer systems for surfaces |
US11637458B2 (en) | 2014-06-20 | 2023-04-25 | Witricity Corporation | Wireless power transfer systems for surfaces |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
US9929721B2 (en) | 2015-10-14 | 2018-03-27 | Witricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
US10063110B2 (en) | 2015-10-19 | 2018-08-28 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10141788B2 (en) | 2015-10-22 | 2018-11-27 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10651689B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10651688B2 (en) | 2015-10-22 | 2020-05-12 | Witricity Corporation | Dynamic tuning in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
US10637292B2 (en) | 2016-02-02 | 2020-04-28 | Witricity Corporation | Controlling wireless power transfer systems |
US10263473B2 (en) | 2016-02-02 | 2019-04-16 | Witricity Corporation | Controlling wireless power transfer systems |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
US11807115B2 (en) | 2016-02-08 | 2023-11-07 | Witricity Corporation | PWM capacitor control |
US10913368B2 (en) | 2016-02-08 | 2021-02-09 | Witricity Corporation | PWM capacitor control |
US11588351B2 (en) | 2017-06-29 | 2023-02-21 | Witricity Corporation | Protection and control of wireless power systems |
US11637452B2 (en) | 2017-06-29 | 2023-04-25 | Witricity Corporation | Protection and control of wireless power systems |
US11043848B2 (en) | 2017-06-29 | 2021-06-22 | Witricity Corporation | Protection and control of wireless power systems |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11188113A (en) | Power transmission system, power transmission method and electric stimulation device provided with the power transmission system | |
JP6794417B2 (en) | Adaptive inductive power supply with communication means | |
US10693299B2 (en) | Self-tuning resonant power transfer systems | |
US7151914B2 (en) | Transmitter system for wireless communication with implanted devices | |
US20190304679A1 (en) | Coupled inductor system having multi-tap coil | |
US20180262057A1 (en) | Wireless power transfer method, apparatus and system for low and medium power | |
US6047214A (en) | System and method for powering, controlling, and communicating with multiple inductively-powered devices | |
KR101842611B1 (en) | Inductive power supply with device identification | |
JP4644691B2 (en) | Adaptive induction power supply | |
US20160043590A1 (en) | Wireless power transfer system and wireless charging system | |
KR20140007273A (en) | Wireless power transfer method, apparatus and system | |
KR20140008020A (en) | Wireless power transmission apparatus and wireless power relay apparatus and wireless power reception apparatus | |
NZ565234A (en) | Selectable resonant frequency transcutaneous energy transfer system | |
KR20130025485A (en) | Communication system using wireless power | |
US11381116B2 (en) | Display system for wirelessly supplying power | |
JPH1014139A (en) | Power transmission device | |
CN114768092A (en) | Capacitive coupling energy transfer nerve electrical stimulation system and in-vivo nerve electrical stimulator and in-vitro energy controller thereof | |
US20140136742A1 (en) | Communication system | |
JPH10108391A (en) | Power supply for device to be implanted inside body | |
WO2009103293A1 (en) | Improving the power efficiency of the load-shift keying technique | |
US8760009B2 (en) | Wireless power source | |
CN217697661U (en) | Capacitive coupling energy transfer nerve electrical stimulation system and in-vivo nerve electrical stimulator and in-vitro energy controller thereof | |
KR20180106217A (en) | Device for transmitting and receiving wireless power, and electronic terminal, auxiliary battery, auxiliary apparatus with the same | |
US10630109B2 (en) | Rx headroom adjustment for stability improvement in wireless power systems | |
US20190067995A1 (en) | Wireless Power System With Power Management |