JPH11104936A - Machine tool - Google Patents
Machine toolInfo
- Publication number
- JPH11104936A JPH11104936A JP27302597A JP27302597A JPH11104936A JP H11104936 A JPH11104936 A JP H11104936A JP 27302597 A JP27302597 A JP 27302597A JP 27302597 A JP27302597 A JP 27302597A JP H11104936 A JPH11104936 A JP H11104936A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measuring
- work
- temperature sensor
- contact type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、工作機械において
相対移動部の位置決め精度を改善する技術に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the positioning accuracy of a relative moving portion in a machine tool.
【0002】[0002]
【従来の技術】一般に、工作機械において、相対移動す
る2つの部材のうち一方が発熱すると、熱膨張差によっ
て両者に位置決め誤差が生じる。例えば、マシニングセ
ンタにおいて、図6に示すように、ワーク1を工具2で
重切削すると、ワーク1及びテーブル3は発熱するが、
切削部位から離れた主軸頭4及びY軸5は殆ど発熱しな
い。このため、ワーク1側の部材と工具2側の部材との
熱膨張差により位置決め誤差が発生し、加工精度に悪影
響を及ぼす。2. Description of the Related Art Generally, in a machine tool, when one of two relatively moving members generates heat, a positioning error occurs between the two members due to a difference in thermal expansion. For example, in the machining center, as shown in FIG. 6, when the work 1 is heavy-cut with the tool 2, the work 1 and the table 3 generate heat.
The spindle head 4 and the Y-axis 5 distant from the cutting portion generate little heat. For this reason, a positioning error occurs due to a difference in thermal expansion between the member on the workpiece 1 side and the member on the tool 2 side, which adversely affects machining accuracy.
【0003】また、図7に示すように、金型等のワーク
1を工具2で仕上げ切削する場合は、切込量が僅かであ
ることからワーク1及びテーブル3は殆ど発熱しない
が、主軸頭4の繰り返し移動に伴いY軸5や摺動面6が
発熱する。従って、この場合も熱膨張差による位置決め
誤差が発生する。As shown in FIG. 7, when a work 1 such as a mold is finished cut by a tool 2, the work 1 and the table 3 hardly generate heat because of a small cutting amount. The Y-axis 5 and the sliding surface 6 generate heat with the repetitive movement of Step 4. Therefore, also in this case, a positioning error due to a difference in thermal expansion occurs.
【0004】そこで、従来、発熱部の熱変位量を推定
し、発熱部及びこれと対向する部材の相対移動量を補正
する技術が提案されている。熱変位の推定にあたって
は、発熱部の温度を測定する必要があり、従来は、テー
ブル等の発熱部に熱電対やサーミスタを埋設したり、手
持式のセンサを発熱部に接触させたりして、温度測定を
行っていた。Therefore, there has been proposed a technique for estimating the amount of thermal displacement of a heat generating portion and correcting the relative movement amount of the heat generating portion and a member facing the heat generating portion. In estimating thermal displacement, it is necessary to measure the temperature of the heating part.Conventionally, a thermocouple or thermistor is embedded in a heating part such as a table, or a hand-held sensor is brought into contact with the heating part, The temperature was being measured.
【0005】[0005]
【発明が解決しようとする課題】ところが、埋設型のセ
ンサは、設置箇所の変更が容易でなく、測定箇所の数も
制限されるという不具合があった。また、手持式のセン
サの場合は、測定作業が面倒であり、センサが発熱部の
温度と等しくなるまでの待ち時間が必要で、測定箇所が
増えるに従い総時間も長くなり、接触具合が悪いと測定
誤差を招き、また補正システムを自動化できないなどの
問題点があった。However, the buried type sensor has a problem that it is not easy to change the installation location and the number of measurement locations is limited. In the case of a hand-held sensor, the measurement operation is troublesome, and a waiting time is required until the sensor becomes equal to the temperature of the heat generating part. There were problems such as measurement errors and the inability to automate the correction system.
【0006】そこで、本発明の課題は、発熱部の温度を
短時間で容易に測定でき、自動補正システムによって相
対移動部を高精度に位置決めできる工作機械を提供する
ことにある。An object of the present invention is to provide a machine tool which can easily measure the temperature of a heat generating portion in a short time and can position a relative moving portion with high accuracy by an automatic correction system.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明の工作機械は、発熱部に対し相対移動可能
に対向する部材に発熱部の温度を測定する非接触式温度
センサを設けて構成される(請求項1)。In order to solve the above-mentioned problems, a machine tool according to the present invention includes a non-contact type temperature sensor for measuring the temperature of a heating section on a member which is movably opposed to the heating section. (Claim 1).
【0008】また、本発明の工作機械は、相対移動部の
熱変位補正を可能にするために、発熱部に対し相対移動
可能に対向する部材に発熱部の温度を測定する非接触式
温度センサを設け、常温部に基準温度を測定する基準温
度センサを設置し、各センサの出力に基づき発熱部及び
対向部材の相対移動量を補正する制御装置を設けて構成
される(請求項2)。The machine tool according to the present invention is a non-contact type temperature sensor for measuring the temperature of the heat generating portion on a member which is relatively movably opposed to the heat generating portion in order to enable the thermal displacement correction of the relative moving portion. , A reference temperature sensor for measuring a reference temperature is installed in the room temperature section, and a control device for correcting the relative movement amount of the heating section and the opposing member based on the output of each sensor is provided (claim 2).
【0009】特に、加工箇所において発熱部の温度を短
時間かつ高精度に測定するために、本発明の工作機械
は、ワークに対し相対移動可能な主軸にワークの温度を
測定する非接触式温度センサを備えた測温工具を着脱可
能に取り付けて構成される(請求項3)。In particular, in order to measure the temperature of the heat-generating portion at a machining point in a short time and with high accuracy, the machine tool of the present invention is a non-contact type temperature measuring device for measuring the temperature of the work on a spindle which is relatively movable with respect to the work. A temperature measuring tool provided with a sensor is detachably mounted (claim 3).
【0010】また、本発明の工作機械は、加工精度を向
上するために、ワークに対し相対移動可能な主軸にワー
クの温度を測定する非接触式温度センサを備えた測温工
具を着脱可能に取り付け、常温部に基準温度を測定する
基準温度センサを設置し、各センサの出力に基づきワー
ク及び主軸の相対移動量を補正する制御装置を設けて構
成される(請求項4)。Further, in order to improve the machining accuracy, the machine tool of the present invention makes it possible to detachably attach a temperature measuring tool provided with a non-contact type temperature sensor for measuring the temperature of the work on a spindle which can move relative to the work. Attachment, a reference temperature sensor for measuring a reference temperature in the room temperature section is provided, and a control device for correcting a relative movement amount of the workpiece and the spindle based on an output of each sensor is provided (claim 4).
【0011】ここで、非接触式温度センサとしては、高
い測定精度が得られる点で、赤外放射温度計を好ましく
使用できる(請求項5)。Here, as the non-contact type temperature sensor, an infrared radiation thermometer can be preferably used because high measurement accuracy can be obtained.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1〜図3は請求項1、2、5の
発明を門形マシニングセンタに実施した形態を示すもの
である。図1に示すように、このマシニングセンタにお
いては、発熱部であるワーク1がテーブル3上に載置さ
れ、テーブル3はベッド7上に支持されている。ワーク
1を加工する工具2は主軸8の下端に保持され、主軸8
は主軸頭4に回転可能に支持されている。Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show an embodiment in which the inventions of claims 1, 2 and 5 are applied to a portal machining center. As shown in FIG. 1, in this machining center, a work 1 which is a heat generating part is placed on a table 3, and the table 3 is supported on a bed 7. The tool 2 for processing the work 1 is held at the lower end of the spindle 8,
Are rotatably supported by the spindle head 4.
【0013】主軸頭4はワーク1に対し相対移動可能に
対向する部材であって、モータ(図示略)によりY軸5
を介しクロスレールの摺動面6に沿って左右に移動され
る。そして、この実施形態においては、主軸頭4の側面
にワーク1の温度を測定する非接触式の赤外放射温度計
9が取り付けられ、また、常温部であるベッド7には基
準温度を測定する基準温度センサ10が設置されてい
る。The spindle head 4 is a member opposed to the work 1 so as to be relatively movable, and the Y-axis 5 is driven by a motor (not shown).
Is moved left and right along the sliding surface 6 of the cross rail. In this embodiment, a non-contact infrared radiation thermometer 9 for measuring the temperature of the work 1 is attached to the side surface of the spindle head 4, and a reference temperature is measured on the bed 7 which is a room temperature part. A reference temperature sensor 10 is provided.
【0014】図2に示すように、赤外放射温度計9は、
ワーク1の表面から放射された赤外線を集光するレンズ
11と、集光した赤外線を電気信号に変換する素子であ
るサーモパイル12と、その電気信号を増幅する増幅回
路13とを備え、赤外線の強度に基づきワーク1の温度
をデータとして出力するように構成されている。As shown in FIG. 2, the infrared radiation thermometer 9
A lens 11 for collecting infrared rays emitted from the surface of the work 1, a thermopile 12 for converting the collected infrared rays into an electric signal, and an amplifier circuit 13 for amplifying the electric signal; Is configured to output the temperature of the work 1 as data based on.
【0015】なお、赤外放射温度計9を複数使用すれ
ば、ワーク1の複数のポイントを短時間で測定できる点
で有利である。赤外放射温度計9の設置箇所は主軸頭4
に限定されず、ワーク1からの赤外線を入射できるなら
ばどこでもよい。基準温度センサ10としては、熱電対
やサーミスタ等、通常の接触式センサを用いることがで
きる。また、基準温度センサ10の取付部位はベッド7
の側面に限定されず、ベッド7の他の部位、或いは、ベ
ッド7以外のマシニングセンタの常温部でもよい。The use of a plurality of infrared radiation thermometers 9 is advantageous in that a plurality of points on the work 1 can be measured in a short time. The infrared radiation thermometer 9 is installed at the spindle head 4
The present invention is not limited to this, and may be anywhere as long as infrared rays from the work 1 can be incident. As the reference temperature sensor 10, a normal contact sensor such as a thermocouple or a thermistor can be used. The reference temperature sensor 10 is attached to the bed 7.
However, the present invention is not limited to this, and may be another part of the bed 7 or a normal temperature part of a machining center other than the bed 7.
【0016】マシニングセンタの制御装置は、赤外放射
温度計9及び基準温度センサ10の出力に基づきワーク
1及び工具2の相対移動量を補正する熱変位補正システ
ムを備えている。この補正システム15には、図3に示
すように、温度測定指令を出力する回路16と、赤外放
射温度計9の測定位置を調整する回路17と、赤外放射
温度計9の出力に基き発熱部つまりワーク1の温度デー
タを算出する回路18と、その温度データを平均化する
などの演算処理を行う回路19と、基準温度センサ10
の出力に基づき常温部つまりベッド7の基準温度を測定
する回路20と、発熱部の温度と常温部の温度との差分
を演算する回路21とが設けられている。The control device of the machining center includes a thermal displacement correction system for correcting the relative movement amount of the work 1 and the tool 2 based on the outputs of the infrared radiation thermometer 9 and the reference temperature sensor 10. As shown in FIG. 3, the correction system 15 includes a circuit 16 for outputting a temperature measurement command, a circuit 17 for adjusting the measurement position of the infrared radiation thermometer 9, and a circuit 17 based on the output of the infrared radiation thermometer 9. A circuit 18 for calculating temperature data of the heat generating portion, that is, the work 1, a circuit 19 for performing arithmetic processing such as averaging the temperature data, and a reference temperature sensor 10
And a circuit 21 for calculating a difference between the temperature of the heating section and the temperature of the normal temperature section based on the output of the normal temperature section, that is, the reference temperature of the bed 7.
【0017】また、補正システム15には、温度差の演
算結果に従って熱変位補正指令を発生する回路22と、
温度差に適合する補正スケールを設定する回路23と、
加工プログラムから読み出した所要のNC軸指令を出力
する回路24と、補正スケール及びNC軸指令を総合し
て新たなNC軸制御データを作成する回路25とが設け
られている。The correction system 15 includes a circuit 22 for generating a thermal displacement correction command in accordance with the calculation result of the temperature difference.
A circuit 23 for setting a correction scale suitable for the temperature difference;
A circuit 24 for outputting a required NC axis command read from the machining program, and a circuit 25 for generating new NC axis control data by integrating the correction scale and the NC axis command are provided.
【0018】上記のように構成されたマシニングセンタ
によれば、ワーク1に対し相対移動可能に対向する主軸
頭4に非接触式の赤外放射温度計9が取り付けられてい
るので、主軸頭4の移動に伴いワーク1の多数箇所の温
度を短時間で自動的に測定できるとともに、ワーク1及
びベッド7の温度差に基づき工具2の位置を的確に自動
補正して、加工精度を向上することも可能である。ま
た、赤外放射温度計9を用いれば、測定に際して機械を
停止したり、主軸頭4をワーク1の形状に正確に追従さ
せたりする必要がなく、加工中に正確な温度データを収
集でき、リアルタイムな熱変位補正が可能となって、マ
シニングセンタの稼動率を向上できる利点もある。According to the machining center configured as described above, the non-contact infrared radiation thermometer 9 is attached to the spindle head 4 which is movably opposed to the work 1. In addition to automatically measuring the temperature of a large number of parts of the work 1 with the movement in a short time, the position of the tool 2 can be automatically corrected accurately based on the temperature difference between the work 1 and the bed 7 to improve the processing accuracy. It is possible. Further, if the infrared radiation thermometer 9 is used, it is not necessary to stop the machine at the time of measurement or to make the spindle head 4 accurately follow the shape of the work 1, so that accurate temperature data can be collected during processing. There is also an advantage that real-time thermal displacement correction can be performed and the operation rate of the machining center can be improved.
【0019】図4は請求項1、2、5の発明を門形マシ
ニングセンタに実施した別の形態を示すものであり、図
1の実施形態と同一の部材については図面に同一の符号
が付されている。このマシニングセンタにおいては、赤
外放射温度計9がクロスレールの摺動面6と対向するよ
うに主軸頭4に取り付けられ、主軸頭4の移動に伴い摺
動面6の多数箇所の温度を自動的に測定するようになっ
ている。この構成によれば、特に、金型等のワーク1の
仕上げ加工に際し、主軸頭4の繰り返し移動に伴って発
熱しやすい摺動面6の温度を赤外放射温度計9で正確に
測定し、この摺動面6とベッド7との温度差に基づき工
具2の位置を的確に自動補正して、仕上精度を向上する
ことができる。尚、測定部位は摺動面6に限定されるも
のではなく、この部位付近の温度で代表することができ
る。FIG. 4 shows another embodiment in which the inventions of claims 1, 2 and 5 are applied to a portal machining center. The same members as those in the embodiment of FIG. 1 are denoted by the same reference numerals. ing. In this machining center, an infrared radiation thermometer 9 is mounted on the spindle head 4 so as to face the sliding surface 6 of the cross rail. Is to be measured. According to this configuration, in particular, when finishing the work 1 such as a mold, the temperature of the sliding surface 6 that easily generates heat with the repetitive movement of the spindle head 4 is accurately measured by the infrared radiation thermometer 9, The position of the tool 2 can be accurately and automatically corrected based on the temperature difference between the sliding surface 6 and the bed 7, and the finishing accuracy can be improved. The measurement site is not limited to the sliding surface 6, but can be represented by a temperature near this site.
【0020】図5及び図6は請求項3、4、5の発明を
門形マシニングセンタに実施した形態を示すものであ
る。このマシニングセンタにおいては、図4に示すよう
に、ワーク1に対し相対移動可能な主軸8の下端にワー
ク1の温度を測定する測温工具27が着脱可能に取り付
けられている。図5に示すように、この測温工具27に
は、前記実施形態と同様の赤外放射温度計9と、その測
定データを無線で送信する送信器28とが内蔵されてい
る。また、測温工具27には通常工具と同様のシャンク
部27aが設けられ、測温工具27をATC(図示略)
により主軸8と工具マガジン(図示略)との間で自動交
換できるようになっている。主軸8の近傍には受信器2
9が配設され、送信器28から送られた温度データを受
信して、前記実施形態と同様の熱変位補正システム15
(図3参照)に出力するようになっている。FIGS. 5 and 6 show an embodiment in which the inventions of claims 3, 4, and 5 are applied to a portal machining center. In this machining center, as shown in FIG. 4, a temperature measuring tool 27 for measuring the temperature of the work 1 is detachably attached to the lower end of the main shaft 8 which can move relatively to the work 1. As shown in FIG. 5, the temperature measuring tool 27 has a built-in infrared radiation thermometer 9 similar to that of the above-described embodiment, and a transmitter 28 for wirelessly transmitting the measurement data. Further, the temperature measuring tool 27 is provided with a shank portion 27a similar to a normal tool, and the temperature measuring tool 27 is connected to an ATC (not shown).
This allows automatic exchange between the spindle 8 and a tool magazine (not shown). Receiver 2 near main shaft 8
9 is provided, receives the temperature data sent from the transmitter 28, and receives the same thermal displacement correction system 15 as in the above-described embodiment.
(See FIG. 3).
【0021】従って、この実施形態のマシニングセンタ
によれば、必要時に測温工具27を主軸8に取り付け、
その主軸8を移動することで、ワーク1の多数箇所の温
度を短時間に自動測定することができるとともに、ワー
ク1及びベッド7の温度差に基づき工具2の位置を自動
補正して、加工精度を向上することも可能である。ま
た、温度測定に際し、高い精度が要求される場合に主軸
8をワーク1の形状に沿ってパス移動したり、全体的な
温度分布が必要とされる場合に主軸8を平面移動したり
するなど、温度情報の種類に応じて測温工具27を任意
の軌跡で移動できる利点もある。Therefore, according to the machining center of this embodiment, the temperature measuring tool 27 is attached to the main shaft 8 when necessary,
By moving the spindle 8, the temperature of many points of the work 1 can be automatically measured in a short time, and the position of the tool 2 is automatically corrected based on the temperature difference between the work 1 and the bed 7, thereby improving the processing accuracy. Can also be improved. Also, when measuring the temperature, the spindle 8 may be moved along the shape of the workpiece 1 when high accuracy is required, or the spindle 8 may be moved in a plane when the entire temperature distribution is required. There is also an advantage that the temperature measuring tool 27 can be moved along an arbitrary trajectory according to the type of the temperature information.
【0022】なお、本発明はマシニングセンタ以外の各
種工作機械に適用でき、また、加工箇所以外の相対移動
部の温度測定並びに熱変位補正に応用することもでき
る。その他、本発明は上記実施形態に限定されるもので
はなく、発明の趣旨を逸脱しない範囲で各部の形状並び
に構成を適宜に変更して実施することも可能である。The present invention can be applied to various machine tools other than the machining center, and can also be applied to temperature measurement and thermal displacement correction of a relative moving portion other than a processing location. In addition, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the shape and configuration of each part without departing from the spirit of the invention.
【0023】[0023]
【発明の効果】以上詳述したように、請求項1の発明に
よれば、発熱部と対向する部材に発熱部の温度を測定す
る非接触式温度センサを設けたので、発熱部の温度を短
時間で容易に測定できる効果がある。As described above in detail, according to the first aspect of the present invention, since the non-contact type temperature sensor for measuring the temperature of the heat generating portion is provided on the member facing the heat generating portion, the temperature of the heat generating portion can be reduced. There is an effect that measurement can be easily performed in a short time.
【0024】請求項2の発明によれば、非接触式温度セ
ンサ及び基準温度センサの出力に基づき発熱部と対向部
材との相対移動量を補正する制御装置を設けたので、工
作機械の相対移動部を自動補正システムによって高精度
に位置決めできる効果がある。According to the second aspect of the present invention, since the control device for correcting the relative movement amount between the heat generating portion and the opposed member based on the outputs of the non-contact type temperature sensor and the reference temperature sensor is provided, the relative movement of the machine tool is provided. There is an effect that the portion can be positioned with high accuracy by the automatic correction system.
【0025】請求項3の発明によれば、主軸にワークの
温度を測定する非接触式温度センサを備えた測温工具を
着脱可能に取り付けたので、ワークの温度を短時間で容
易に測定できる効果がある。According to the third aspect of the present invention, since the temperature measuring tool having the non-contact type temperature sensor for measuring the temperature of the work is detachably attached to the main shaft, the temperature of the work can be easily measured in a short time. effective.
【0026】請求項4の発明によれば、非接触式温度セ
ンサ及び基準温度センサの出力に基づきワークと主軸と
の相対移動量を補正する制御装置を設けたので、ワーク
及び主軸を自動補正システムによって高精度に位置決め
して、加工精度を向上できる効果がある。According to the fourth aspect of the present invention, the control device for correcting the relative movement amount between the workpiece and the spindle based on the outputs of the non-contact type temperature sensor and the reference temperature sensor is provided. Thus, there is an effect that positioning can be performed with high accuracy and processing accuracy can be improved.
【0027】請求項5の発明によれば、非接触式温度セ
ンサとして赤外放射温度計を用いたので、発熱部の温度
を高精度に測定できる効果がある。According to the fifth aspect of the present invention, since the infrared radiation thermometer is used as the non-contact type temperature sensor, there is an effect that the temperature of the heat generating portion can be measured with high accuracy.
【図1】本発明の一実施形態を示すマシニングセンタの
要部正面図である。FIG. 1 is a front view of a main part of a machining center showing an embodiment of the present invention.
【図2】同マシニングセンタの赤外放射温度計を示す概
略図である。FIG. 2 is a schematic diagram showing an infrared radiation thermometer of the machining center.
【図3】同マシニングセンタの熱変位補正システムを示
すブロック図である。FIG. 3 is a block diagram showing a thermal displacement correction system of the machining center.
【図4】本発明の別の実施形態を示すマシニングセンタ
の要部正面図である。FIG. 4 is a front view of a main part of a machining center showing another embodiment of the present invention.
【図5】本発明のさらに別の実施形態を示すマシニング
センタの要部正面図である。FIG. 5 is a front view of a main part of a machining center showing still another embodiment of the present invention.
【図6】同マシニングセンタの測温工具を示す概略図で
ある。FIG. 6 is a schematic diagram showing a temperature measuring tool of the machining center.
【図7】重切削時における熱変位の説明図である。FIG. 7 is an explanatory diagram of thermal displacement during heavy cutting.
【図8】仕上げ切削時における熱変位の説明図である。FIG. 8 is an explanatory diagram of thermal displacement during finish cutting.
1・・ワーク、2・・工具、3・・テーブル、4・・主
軸頭、7・・ベッド、8・・主軸、9・・赤外放射温度
計、10・・基準温度センサ、15・・熱変位補正シス
テム、27・・測温工具。1. Work, 2. Tool, 3. Table, 4. Spindle head, 7. Bed, 8. Spindle, 9. Infrared radiation thermometer, 10. Reference temperature sensor, 15. Thermal displacement compensation system, 27 .. Temperature measuring tool.
Claims (5)
材に発熱部の温度を測定する非接触式温度センサを設け
てなる工作機械。1. A machine tool comprising a non-contact type temperature sensor for measuring a temperature of a heat generating portion provided on a member which is movably opposed to the heat generating portion.
材に発熱部の温度を測定する非接触式温度センサを設
け、常温部に基準温度を測定する基準温度センサを設置
し、各センサの出力に基づき発熱部及び対向部材の相対
移動量を補正する制御装置を設けてなる工作機械。2. A non-contact type temperature sensor for measuring the temperature of the heat generating part is provided on a member opposed to the heat generating part so as to be relatively movable, and a reference temperature sensor for measuring a reference temperature is installed in a normal temperature part. A machine tool provided with a control device that corrects a relative movement amount of a heating unit and an opposing member based on an output.
クの温度を測定する非接触式温度センサを備えた測温工
具を着脱可能に取り付けてなる工作機械。3. A machine tool comprising a temperature measuring tool provided with a non-contact type temperature sensor for measuring the temperature of a work on a spindle which is relatively movable with respect to the work.
クの温度を測定する非接触式温度センサを備えた測温工
具を着脱可能に取り付け、常温部に基準温度を測定する
基準温度センサを設置し、各センサの出力に基づきワー
ク及び主軸の相対移動量を補正する制御装置を設けてな
る工作機械。4. A temperature measuring tool having a non-contact type temperature sensor for measuring the temperature of a work is detachably mounted on a main shaft which is relatively movable with respect to the work, and a reference temperature sensor for measuring a reference temperature is provided at a room temperature portion. A machine tool provided with a control device for correcting the relative movement amount of the workpiece and the spindle based on the output of each sensor.
度計を用いた請求項1、2、3又は4記載の工作機械。5. The machine tool according to claim 1, wherein an infrared radiation thermometer is used as the non-contact type temperature sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27302597A JPH11104936A (en) | 1997-10-06 | 1997-10-06 | Machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27302597A JPH11104936A (en) | 1997-10-06 | 1997-10-06 | Machine tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11104936A true JPH11104936A (en) | 1999-04-20 |
Family
ID=17522124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27302597A Pending JPH11104936A (en) | 1997-10-06 | 1997-10-06 | Machine tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11104936A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7266903B2 (en) * | 2005-03-31 | 2007-09-11 | Okuma Corporation | Method for correcting thermal displacement in a machine tool |
WO2016010640A1 (en) * | 2014-07-16 | 2016-01-21 | Faro Technologies, Inc. | Measurement device for machining center |
CN108247424A (en) * | 2016-12-28 | 2018-07-06 | 大族激光科技产业集团股份有限公司 | A kind of test method and device of machine tooling temperature |
US10656617B2 (en) | 2014-07-16 | 2020-05-19 | Faro Technologies, Inc. | Measurement device for machining center |
-
1997
- 1997-10-06 JP JP27302597A patent/JPH11104936A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7266903B2 (en) * | 2005-03-31 | 2007-09-11 | Okuma Corporation | Method for correcting thermal displacement in a machine tool |
WO2016010640A1 (en) * | 2014-07-16 | 2016-01-21 | Faro Technologies, Inc. | Measurement device for machining center |
US10656617B2 (en) | 2014-07-16 | 2020-05-19 | Faro Technologies, Inc. | Measurement device for machining center |
CN108247424A (en) * | 2016-12-28 | 2018-07-06 | 大族激光科技产业集团股份有限公司 | A kind of test method and device of machine tooling temperature |
CN108247424B (en) * | 2016-12-28 | 2020-06-02 | 大族激光科技产业集团股份有限公司 | Method and device for testing machining temperature of machine tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7245983B2 (en) | Method and apparatus for correcting thermal displacement of machine tool | |
US4808048A (en) | Method and apparatus for error compensation | |
JP4803491B2 (en) | Position correction device for machine tool | |
JPH11333670A (en) | Thermal deformation error measuring and correcting system for machine tool | |
CN105358935A (en) | Method and apparatus for inspecting workpieces | |
JP3151655B2 (en) | Estimation method of thermal displacement of machine tools | |
EP1128156A1 (en) | Method and apparatus for automatically compensating for measurement error | |
JP6130242B2 (en) | Machine tool with measuring device | |
US6960052B2 (en) | Machine tool and method of adjusting the spindle of a machine tool | |
JPH10244440A (en) | Main spindle end displacement correction device for machine tool | |
JPH07266194A (en) | Tool cutting edge measurement compensator | |
JPH11104936A (en) | Machine tool | |
JP2022161355A (en) | Method and device for deriving motion error in machine tool | |
US20150012126A1 (en) | Thermal displacement correction method and thermal displacement correction unit | |
JPH08215983A (en) | Thermal displacement correcting method of machine tool and device thereof | |
JPH08174320A (en) | Device and method for machining up to fixed depth | |
JP2021076425A (en) | Position measurement method, position measurement system and position measurement program for object in machine tool | |
EP0126388B1 (en) | Method of controlling a numerically controlled machine tool | |
JP2002052439A (en) | Thermal displacement correcting method for lathe | |
JPH02100856A (en) | Method and device for correcting positioning error of machine tool feeding system | |
JPH08229774A (en) | Deformation correcting machining method for machine tool | |
WO2012082543A2 (en) | Method for automatic compensation of thermal distortion in a gantry machine | |
JP2004154907A (en) | Thermal displacement correction method and device for multishaft machining tool | |
JP2000326181A (en) | Thermal deformation correcting method for machine tool | |
JP2000190168A (en) | Nc machining method and its device |