JPH09246852A - Patch type array antenna system - Google Patents

Patch type array antenna system

Info

Publication number
JPH09246852A
JPH09246852A JP5734896A JP5734896A JPH09246852A JP H09246852 A JPH09246852 A JP H09246852A JP 5734896 A JP5734896 A JP 5734896A JP 5734896 A JP5734896 A JP 5734896A JP H09246852 A JPH09246852 A JP H09246852A
Authority
JP
Japan
Prior art keywords
antenna
patch
patch antenna
parasitic
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5734896A
Other languages
Japanese (ja)
Other versions
JP2806350B2 (en
Inventor
Masaji Hirabe
正司 平部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8057348A priority Critical patent/JP2806350B2/en
Publication of JPH09246852A publication Critical patent/JPH09246852A/en
Application granted granted Critical
Publication of JP2806350B2 publication Critical patent/JP2806350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the patch type array antenna in which a degree of freedom of arrangement of a patch antenna is extended, a degree of freedom of directivity synthesis is extended, the antenna is applied to a circularly polarized wave and deterioration in the directivity due to spurious radiation from a stub is improved. SOLUTION: The antenna system is made up of a feeding patch antenna 1 formed on a dielectric material 4 and, and parasitic patch antennas 2, 3 arranged at both sides of the patch antenna 1 at least in one direction, and the directivity synthesis of the antenna system is attained by changing the resonance frequency of the parasitic patch antennas 2, 3 to be different from the resonance frequency of the feeding patch antenna 1. It is not required to provide a stub to the patch antenna, a degree of freedom of the directivity synthesis is extended, the disturbance in the directivity is prevented, and a circularly polarized wave antenna is employed for the feeding patch antenna to allow the system to be applicable to a circularly polarized wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアンテナ装置に関
し、特にマイクロ波・ミリ波帯の指向性合成のパッチ型
のアレイアンテナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna device, and more particularly to a patch type array antenna device for directivity synthesis in a microwave / millimeter wave band.

【0002】[0002]

【従来の技術】従来のパッチ型のアレイアンテナ装置は
給電されたパッチアンテナとその両側に置かれた無給電
のパッチアンテナから構成され、無給電のパッチアンテ
ナには位相調整用のスタブが設けられている。例えば、
図5は従来のこの種のアンテナ装置の一例であり、「最
新平面アンテナ技術」羽石 操,株式会社総合技術セン
ター,平成5年3月25日発行,P.334〜336に
記載されたものである。同図(a)は平面図、同図
(b)は断面図であり、誘電体14の表面にパッチアン
テナ11とその両側に無給電パッチアンテナ12,13
が形成され、誘電体14の裏面にグランド板15が形成
されている。そして、パッチアンテナ11は誘電体14
を貫通するピン17を通して裏面側から給電される。パ
ッチアンテナ11に給電された信号は電磁結合により無
給電パッチアンテナ12,13を励振し、スタブ18,
19により励振電流は移相される。
2. Description of the Related Art A conventional patch-type array antenna apparatus comprises a fed patch antenna and a parasitic patch antenna placed on both sides thereof, and the parasitic patch antenna is provided with a stub for phase adjustment. ing. For example,
FIG. 5 shows an example of a conventional antenna device of this type. “Latest Planar Antenna Technology” Misao Haneishi, General Technology Center Co., Ltd., issued March 25, 1993, p. 334-336. 5A is a plan view, and FIG. 5B is a cross-sectional view. A patch antenna 11 is provided on the surface of a dielectric 14 and parasitic patch antennas 12 and 13 are provided on both sides thereof.
Are formed, and a ground plate 15 is formed on the back surface of the dielectric 14. And the patch antenna 11 is a dielectric 14
Power is supplied from the back side through a pin 17 penetrating through. The signal fed to the patch antenna 11 excites the parasitic patch antennas 12 and 13 by electromagnetic coupling,
19 causes the excitation current to be phase shifted.

【0003】このとき、パッチアンテナ11,12,1
3はそれぞれ励振電流が、 a11 a12×exp(j(φ12+φ18)) a13×exp(j(φ13+φ19)) のアレイアンテナとして動作する。ここで、φ12,φ
13は電磁結合によっで生じる移相量で、パッチアンテ
ナ11,12,13の配置により決まる。φ18,φ1
9はスタブ18,19による移相量で、スタブ18,1
9の長さにより決まる。したがって、パッチアンテナ1
1,12,13の配置及びスタブ18,19の長さによ
り励振電流分布を調整して指向性合成を行うことができ
る。
At this time, patch antennas 11, 12, 1
3 operates as an array antenna having an excitation current of a11 a12 × exp (j (φ12 + φ18)) a13 × exp (j (φ13 + φ19)). Here, φ12, φ
Reference numeral 13 denotes an amount of phase shift caused by electromagnetic coupling, which is determined by the arrangement of the patch antennas 11, 12, and 13. φ18, φ1
9 is the phase shift amount by the stubs 18 and 19,
Determined by length of 9. Therefore, patch antenna 1
The directivity synthesis can be performed by adjusting the excitation current distribution according to the arrangement of 1, 12, 13 and the length of the stubs 18, 19.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のアンテナでは、次のような問題がある。第1
の問題点は、アンテナの指向性が乱れることである。そ
の理由は、アンテナと同じ面内にスタブを設けるため、
スタブからの不要放射がアンテナの指向性を乱すためで
ある。第2の問題点は、アンテナの配置の機械的制約が
大きくなる。その理由は、アンテナと同じ面内にスタブ
を設けると、スタブが無給電パッチアンテナより突出す
るため、隣接する素子アンテナとの機械的干渉が生じて
しまうためである。第3の問題点は、円偏波のアンテナ
に適用できないことである。その理由は、無給電パッチ
アンテナの直交する二つの面にスタブを設ける必要があ
り、隣接素子アンテナと機械的干渉を起こしてしまうた
めである。
However, such a conventional antenna has the following problems. First
The problem is that the directivity of the antenna is disturbed. The reason is that the stub is provided in the same plane as the antenna,
This is because unnecessary radiation from the stub disturbs the directivity of the antenna. The second problem is that mechanical restrictions on the arrangement of the antennas are increased. The reason for this is that if a stub is provided in the same plane as the antenna, the stub protrudes from the parasitic patch antenna, causing mechanical interference with an adjacent element antenna. A third problem is that it cannot be applied to circularly polarized antennas. The reason is that it is necessary to provide stubs on two orthogonal surfaces of the parasitic patch antenna, which causes mechanical interference with the adjacent element antenna.

【0005】本発明の目的は、パッチアンテナの配置の
自由度を拡大し、指向性合成の自由度の拡大、円偏波へ
の適用を行うことを可能とし、かつスタブからの不要放
射による指向性の劣化の改善を図ったパッチ型アレイア
ンテナを提供することにある。
An object of the present invention is to increase the degree of freedom in the arrangement of patch antennas, to increase the degree of freedom in directivity synthesis, to apply to circularly polarized waves, and to improve the directivity by unnecessary radiation from a stub. It is an object of the present invention to provide a patch-type array antenna in which deterioration of performance is improved.

【0006】[0006]

【課題を解決するための手段】本発明は、給電された1
つのパッチアンテナと、このパッチアンテナの少なくと
も一方向の両側にそれぞれ配置された無給電パッチアン
テナとで構成されるアレイアンテナ装置において、給電
パッチアンテナと無給電パッチアンテナの共振周波数を
相違させたことを特徴とする。例えば、無給電パッチア
ンテナはその寸法を変化させることで共振周波数が変化
され、給電パッチアンテナとの共振周波数が相違され
る。ここで、無給電パッチアンテナは、給電パッチアン
テナの一方向の両側にそれぞれ配置された2つのパッチ
アンテナから構成される。あるいは、無給電パッチアン
テナは、給電パッチアンテナの一方向の両側と、これに
直交する他の方向の両側とにそれぞれ配置された4つの
パッチアンテナから構成される。さらに、給電パッチア
ンテナは円偏波パッチアンテナで構成されてもよい。
SUMMARY OF THE INVENTION The present invention provides a powered 1
In an array antenna device composed of two patch antennas and parasitic patch antennas arranged on both sides in at least one direction of the patch antenna, the resonance frequencies of the feeding patch antenna and the parasitic patch antenna are different. Characterize. For example, the resonance frequency of the non-feeding patch antenna is changed by changing its size, and the resonance frequency of the non-feeding patch antenna is different from that of the feeding patch antenna. Here, the parasitic patch antenna is composed of two patch antennas arranged on both sides in one direction of the feeding patch antenna. Alternatively, the parasitic patch antenna is composed of four patch antennas arranged on both sides of the feeding patch antenna in one direction and on both sides of the other direction orthogonal to the feeding patch antenna. Further, the feeding patch antenna may be a circular polarization patch antenna.

【0007】[0007]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1(a),(b)は本発明の第1
の実施形態を示す平面図と断面図である。誘電体4の裏
面にはグランド板5が形成され、また誘電体4の表面に
は金属薄膜からなるパッチアンテナ1,2,3が形成さ
れる。中央のパッチアンテナ1は正方形に形成され、誘
電体4の裏面側に突出されたコネクタ6から給電ピン7
を介して給電されている。また、両側のパッチアンテナ
2,3は無給電パッチアンテナとして構成され、パッチ
アンテナ1よりも縦横寸法が若干小さい正方形に形成さ
れる。ここで、パッチアンテナ1の共振周波数はf1
で、無給電パッチアンテナ2,3の共振周波数f2(≠
f1)である。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A and 1B show a first embodiment of the present invention.
FIG. 3 is a plan view and a sectional view showing the embodiment of FIG. A ground plate 5 is formed on the back surface of the dielectric 4, and patch antennas 1, 2, 3 made of a metal thin film are formed on the front surface of the dielectric 4. The patch antenna 1 in the center is formed in a square shape, and the connector 6 protruding from the back surface side of the dielectric 4 is connected to the feeding pin 7
Powered through. Further, the patch antennas 2 and 3 on both sides are configured as a parasitic patch antenna, and are formed in a square having a vertical and horizontal dimensions slightly smaller than the patch antenna 1. Here, the resonance frequency of the patch antenna 1 is f1.
Then, the resonance frequency f2 of the parasitic patch antennas 2 and 3 (≠
f1).

【0008】前記各パッチアンテナ1,2,3のインピ
ーダンスの周波数特性を図2に示す。同図において、1
01,201,301はそれぞれのインピーダンスのコ
ンダクタンス成分、102,202,302はそれぞれ
のインピーダンスのサセプタンス成分である。ここで、
パッチアンテナ1を周波数f1の信号で励振すると、電
磁結合により無給電パッチアンテナ2,3も周波数f1
で励振される。無給電パッチアンテナ2,3の共振周波
数はf2であるから、図2に示すように無給電パッチア
ンテナ2,3はサセプタンス成分を持ち、このサセプタ
ンス成分により無給電パッチアンテナ2,3の励振電流
は移相される。ここで、パッチアンテナ1,2,3はそ
れぞれ励振電流が a1 a2×exp(φ21+φ2) a3×exp(φ31+φ3) のアレイアンテナとして動作する。なお、φ21,φ3
1は電磁結合により生じる移相量で、φ2,φ3は無給
電パッチアンテナ2,3のサセプタンス成分による移相
量である。
FIG. 2 shows the frequency characteristic of the impedance of each of the patch antennas 1, 2, and 3. In the figure, 1
01, 201 and 301 are the conductance components of the respective impedances, and 102, 202 and 302 are the susceptance components of the respective impedances. here,
When the patch antenna 1 is excited by a signal having a frequency f1, the parasitic patch antennas 2 and 3 also have a frequency f1 due to electromagnetic coupling.
Excited by Since the resonance frequency of the parasitic patch antennas 2 and 3 is f2, the parasitic patch antennas 2 and 3 have a susceptance component as shown in FIG. 2, and the excitation current of the parasitic patch antennas 2 and 3 is reduced by the susceptance component. Phase shifted. Here, each of the patch antennas 1, 2, and 3 operates as an array antenna having an excitation current of a1 a2 × exp (φ21 + φ2) a3 × exp (φ31 + φ3). Note that φ21, φ3
1 is a phase shift amount caused by electromagnetic coupling, and φ2 and φ3 are phase shift amounts due to susceptance components of the parasitic antennas 2 and 3.

【0009】ここで、無給電パッチアンテナ2,3の大
きさ、ここでは正方形をした無給電パッチアンテナ2,
3の縦横寸法を適宜に変えて共振周波数f2を変える
と、サセプタンス成分が変化し、φ2,φ3を調整する
ことができる。つまり、無給電パッチアンテナ2,3の
大きさを調整することにより指向性合成を行うことがで
きる。
Here, the sizes of the parasitic patch antennas 2 and 3, here, the square parasitic patch antennas 2 and 3 are used.
When the resonance frequency f2 is changed by appropriately changing the vertical and horizontal dimensions of No.3, the susceptance component changes, and φ2 and φ3 can be adjusted. That is, directivity synthesis can be performed by adjusting the size of the parasitic antennas 2 and 3.

【0010】このように、このアンテナでは、給電され
たパッチアンテナ1の両側に配置された無給電のパッチ
アンテナ2,3の大きさを調整して共振周波数を変える
ことにより励振電流の位相を調整することができるた
め、パッチアンテナの外側に突出するものがなく、機械
的な干渉がなくなり、素子アンテナの配置の機械的制約
が小さくなり、アンテナ配置の自由度を高めることがで
きる。また、素子アンテナにスタブを付ける必要がない
ため、指向性の乱れもなくなる。
As described above, in this antenna, the phase of the excitation current is adjusted by adjusting the size of the non-feeding patch antennas 2 and 3 arranged on both sides of the fed patch antenna 1 to change the resonance frequency. Therefore, there is nothing protruding outside the patch antenna, mechanical interference is eliminated, mechanical restrictions on the arrangement of element antennas are reduced, and the degree of freedom in antenna arrangement can be increased. Further, since there is no need to attach a stub to the element antenna, the directivity is not disturbed.

【0011】図3は本発明の第2の実施形態の平面図で
あり、断面構造は図1と同様である。この実施形態で
は、パッチアンテナ1のX方向両側に無給電パッチアン
テナ2,3が形成されている点は第1の実施形態と同じ
であるが、パッチアンテナ1のY方向両側に無給電パッ
チアンテナ8,9が形成されている。この構成では、無
給電パッチアンテナ2,3によりX−Z面の指向性合成
を行うことができ、かつ無給電パッチアンテナ8,9に
よりY−Z面の指向性合成を行うことができる。
FIG. 3 is a plan view of the second embodiment of the present invention, and its sectional structure is similar to that of FIG. This embodiment is the same as the first embodiment in that parasitic patch antennas 2 and 3 are formed on both sides of the patch antenna 1 in the X direction, but the parasitic patch antennas are arranged on both sides of the patch antenna 1 in the Y direction. 8 and 9 are formed. In this configuration, the parasitic patch antennas 2 and 3 can perform directivity synthesis of the XZ plane, and the parasitic patch antennas 8 and 9 can perform directivity synthesis of the YZ plane.

【0012】図4は本発明を円偏波放射に適用した第3
の実施形態の平面図である。この実施形態では、図3に
示したアンテナ装置の給電されたパッチアンテナ1を円
偏波パッチアンテナ10に交換したものである。この構
成では、無給電パッチアンテナ2,3によりX−Z面の
指向性合成を、無給電パッチアンテナ8,9によりY−
Z面の指向性合成を行うことができる。また、直交する
2つの面に対してスタブを設ける必要がないため、機械
的干渉なくアンテナを配置することができ、しかも円偏
波パッチアンテナを用いていることで円偏波放射に適用
することが可能となる。
FIG. 4 shows a third application of the present invention to circularly polarized radiation.
2 is a plan view of the embodiment of FIG. In this embodiment, the fed patch antenna 1 of the antenna device shown in FIG. 3 is replaced with a circularly polarized patch antenna 10. In this configuration, directivity synthesis on the XZ plane is performed by parasitic patch antennas 2 and 3, and Y-direction is synthesized by parasitic patch antennas 8 and 9.
Directivity synthesis of the Z plane can be performed. In addition, since it is not necessary to provide a stub for two orthogonal surfaces, the antenna can be arranged without mechanical interference. In addition, since a circularly polarized patch antenna is used, the antenna can be applied to circularly polarized radiation. Becomes possible.

【0013】なお、前記各実施形態では、パッチアンテ
ナの形状として正方形の場合を説明したが、円形形状で
も本発明を適用することは可能である。
In the above embodiments, the case where the shape of the patch antenna is a square has been described. However, the present invention can be applied to a circular shape.

【0014】[0014]

【発明の効果】以上説明したように本発明は、給電され
た1つのパッチアンテナの少なくとも一方向の両側にそ
れぞれ配置された無給電パッチアンテナの共振周波数を
給電パッチアンテナの共振周波数とは相違させているの
で、無給電パッチアンテナの共振周波数を変えることに
より励振電流の位相を調整して指向性合成を行なうこと
ができる。このため、アンテナ面にスタブを設ける必要
がなく、スタブによる不要放射がなくなって放射パター
ンの乱れをなくすことができる。また、アンテナ外形か
ら突出するものがなくなるため、アンテナの配置の自由
度が大きくなり、指向性合成の自由度が大きくなる。さ
らに、直交する2つの面に対してスタブを設ける必要が
ないため、機械的干渉なくアンテナを配置することがで
き、給電パッチアンテナに円偏波パッチアンテナを用い
ることで円偏波放射に適用することができる効果があ
る。
As described above, according to the present invention, the resonance frequency of the parasitic patch antennas arranged on both sides of at least one direction of one fed patch antenna is made different from the resonance frequency of the fed patch antenna. Therefore, by changing the resonance frequency of the parasitic patch antenna, it is possible to adjust the phase of the excitation current and perform directivity synthesis. For this reason, it is not necessary to provide a stub on the antenna surface, and unnecessary radiation due to the stub is eliminated, and disturbance of the radiation pattern can be eliminated. Further, since there is no protrusion from the outer shape of the antenna, the degree of freedom in arranging the antenna is increased, and the degree of freedom in directivity synthesis is increased. Furthermore, since there is no need to provide a stub for two orthogonal surfaces, the antenna can be arranged without mechanical interference, and the present invention is applied to circularly polarized radiation by using a circularly polarized patch antenna as a feeding patch antenna. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の平面図と断面図であ
る。
FIG. 1 is a plan view and a cross-sectional view of a first embodiment of the present invention.

【図2】図1における各パッチアンテナの周波数特性図
である。
FIG. 2 is a frequency characteristic diagram of each patch antenna in FIG. 1;

【図3】本発明の第2の実施形態の平面図である。FIG. 3 is a plan view of a second embodiment of the present invention.

【図4】本発明の第3の実施形態の平面図である。FIG. 4 is a plan view of a third embodiment of the present invention.

【図5】従来のパッチ型アレイアンテナの一例の平面図
と断面図である。
FIG. 5 is a plan view and a cross-sectional view of an example of a conventional patch-type array antenna.

【符号の説明】[Explanation of symbols]

1 給電パッチアンテナ 2,3 無給電パッチアンテナ 4 誘電体 5 グラウド板 6 コネクタ 8,9 無給電パッチアンテナ 10 円偏波パッチアンテナ DESCRIPTION OF SYMBOLS 1 Feeding patch antenna 2, 3 Parasitic patch antenna 4 Dielectric 5 Groud plate 6 Connector 8, 9 Parasitic patch antenna 10 Circularly polarized patch antenna

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 給電された1つのパッチアンテナと、こ
のパッチアンテナの少なくとも一方向の両側にそれぞれ
配置された無給電パッチアンテナとで構成され、前記給
電パッチアンテナと無給電パッチアンテナの共振周波数
を相違させたことを特徴とするパッチ型アレイアンテナ
装置。
1. A patch antenna comprising one fed patch antenna and parasitic patch antennas arranged on both sides of at least one direction of the patch antenna. Resonant frequencies of the fed patch antenna and the parasitic patch antenna are set. A patch type array antenna device characterized in that they are different.
【請求項2】 無給電パッチアンテナは、その寸法を変
化させて給電パッチアンテナとの共振周波数が相違され
る請求項1のパッチ型アレイアンテナ装置。
2. The patch array antenna device according to claim 1, wherein the parasitic patch antenna has a resonance frequency different from that of the feeding patch antenna by changing its size.
【請求項3】 無給電パッチアンテナは、給電パッチア
ンテナの一方向の両側にそれぞれ配置された2つのパッ
チアンテナからなる請求項2のパッチ型アレイアンテナ
装置。
3. The patch array antenna apparatus according to claim 2, wherein the parasitic patch antenna comprises two patch antennas arranged on both sides of the feeding patch antenna in one direction.
【請求項4】 無給電パッチアンテナは、給電パッチア
ンテナの一方向の両側と、これに直交する他の方向の両
側とにそれぞれ配置された4つのパッチアンテナからな
る請求項2のパッチ型アレイアンテナ装置。
4. The patch array antenna according to claim 2, wherein the parasitic patch antenna comprises four patch antennas arranged on both sides in one direction of the feeding patch antenna and on both sides in the other direction orthogonal thereto. apparatus.
【請求項5】 給電パッチアンテナが円偏波パッチアン
テナである請求項4のパッチ型アレイアンテナ装置。
5. The patch type array antenna device according to claim 4, wherein the feeding patch antenna is a circular polarization patch antenna.
JP8057348A 1996-03-14 1996-03-14 Patch type array antenna device Expired - Fee Related JP2806350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057348A JP2806350B2 (en) 1996-03-14 1996-03-14 Patch type array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057348A JP2806350B2 (en) 1996-03-14 1996-03-14 Patch type array antenna device

Publications (2)

Publication Number Publication Date
JPH09246852A true JPH09246852A (en) 1997-09-19
JP2806350B2 JP2806350B2 (en) 1998-09-30

Family

ID=13053080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057348A Expired - Fee Related JP2806350B2 (en) 1996-03-14 1996-03-14 Patch type array antenna device

Country Status (1)

Country Link
JP (1) JP2806350B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375545B1 (en) 1999-01-18 2002-04-23 Kabushiki Kaisha Toshiba Chemical mechanical method of polishing wafer surfaces
US6454819B1 (en) 1999-01-18 2002-09-24 Kabushiki Kaisha Toshiba Composite particles and production process thereof, aqueous dispersion, aqueous dispersion composition for chemical mechanical polishing, and process for manufacture of semiconductor device
KR100523068B1 (en) * 2002-02-09 2005-10-24 장애인표준사업장비클시스템 주식회사 Integrated active antenna
US7321338B2 (en) 2002-12-27 2008-01-22 Honda Motor Co., Ltd. On-board antenna
JP2008141765A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Beam tilting patch antenna using high order resonance mode
JP2008295062A (en) * 2006-07-12 2008-12-04 Toto Ltd Microstrip antenna and high-frequency sensor comprising same
KR100896486B1 (en) * 2007-05-16 2009-05-08 충남대학교산학협력단 Planar monopole antenna on the surface of conducting plane for rfid tag
EP2081251A1 (en) * 2008-01-15 2009-07-22 Nokia Siemens Networks Oy Patch antenna
US8026853B2 (en) 2003-01-24 2011-09-27 Fractus, S.A. Broadside high-directivity microstrip patch antennas
JP2012519449A (en) * 2009-03-02 2012-08-23 イーエムダブリュ カンパニー リミテッド Multiband and wideband antenna using metamaterial and communication apparatus including the same
WO2013121673A1 (en) 2012-02-16 2013-08-22 古河電気工業株式会社 Wide-angle antenna and array antenna
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
JP2015092658A (en) * 2013-09-30 2015-05-14 京セラサーキットソリューションズ株式会社 Antenna substrate
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
WO2015133033A1 (en) * 2014-03-03 2015-09-11 株式会社フジクラ Microstrip antenna
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
JP2016152590A (en) * 2015-02-19 2016-08-22 日本ピラー工業株式会社 Antenna unit
JP2017046107A (en) * 2015-08-25 2017-03-02 株式会社日本自動車部品総合研究所 Antenna device
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
CN107317107A (en) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 Anti-interference array is antenna integrated
JP2018074240A (en) * 2016-10-25 2018-05-10 株式会社デンソーテン Antenna device
WO2018168356A1 (en) * 2017-03-14 2018-09-20 富士通株式会社 Microwave heating device
US10594036B2 (en) 2017-07-06 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Antenna and vehicle
US11245198B2 (en) 2014-12-05 2022-02-08 Astyx Gmbh Radar antenna and suitable method for influencing the radiation characteristics of a radar antenna
WO2023100908A1 (en) * 2021-12-03 2023-06-08 Agc株式会社 Antenna device and antenna device for vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3987403B2 (en) * 2002-09-24 2007-10-10 八木アンテナ株式会社 Antenna with ground plate and array antenna with ground plate
JP4126724B2 (en) * 2006-08-14 2008-07-30 Toto株式会社 High frequency sensor device
WO2018074377A1 (en) 2016-10-19 2018-04-26 株式会社村田製作所 Antenna element, antenna module, and communication device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213104A (en) * 1984-03-15 1985-10-25 ブラウン・ボバリ・ウント・シー・アクチエンゲゼルシヤフト Microwave antenna
JPS644101A (en) * 1987-06-26 1989-01-09 Nippon Telegraph & Telephone Circularly polarized wave microstrip antenna
JPH04157905A (en) * 1990-10-22 1992-05-29 Nippon Telegr & Teleph Corp <Ntt> Broad band plane antenna
JPH0522023A (en) * 1991-07-17 1993-01-29 Murata Mfg Co Ltd Microstrip antenna
JPH05504034A (en) * 1990-02-06 1993-06-24 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー antenna
JPH05308223A (en) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency Two-frequency common use antenna
JPH0983240A (en) * 1995-09-12 1997-03-28 Toshiba Corp Communication module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213104A (en) * 1984-03-15 1985-10-25 ブラウン・ボバリ・ウント・シー・アクチエンゲゼルシヤフト Microwave antenna
JPS644101A (en) * 1987-06-26 1989-01-09 Nippon Telegraph & Telephone Circularly polarized wave microstrip antenna
JPH05504034A (en) * 1990-02-06 1993-06-24 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー antenna
JPH04157905A (en) * 1990-10-22 1992-05-29 Nippon Telegr & Teleph Corp <Ntt> Broad band plane antenna
JPH0522023A (en) * 1991-07-17 1993-01-29 Murata Mfg Co Ltd Microstrip antenna
JPH05308223A (en) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency Two-frequency common use antenna
JPH0983240A (en) * 1995-09-12 1997-03-28 Toshiba Corp Communication module

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454819B1 (en) 1999-01-18 2002-09-24 Kabushiki Kaisha Toshiba Composite particles and production process thereof, aqueous dispersion, aqueous dispersion composition for chemical mechanical polishing, and process for manufacture of semiconductor device
US6375545B1 (en) 1999-01-18 2002-04-23 Kabushiki Kaisha Toshiba Chemical mechanical method of polishing wafer surfaces
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US9761934B2 (en) 1999-09-20 2017-09-12 Fractus, S.A. Multilevel antennae
US9362617B2 (en) 1999-09-20 2016-06-07 Fractus, S.A. Multilevel antennae
US10056682B2 (en) 1999-09-20 2018-08-21 Fractus, S.A. Multilevel antennae
US9240632B2 (en) 1999-09-20 2016-01-19 Fractus, S.A. Multilevel antennae
US9054421B2 (en) 1999-09-20 2015-06-09 Fractus, S.A. Multilevel antennae
US9000985B2 (en) 1999-09-20 2015-04-07 Fractus, S.A. Multilevel antennae
US8976069B2 (en) 1999-09-20 2015-03-10 Fractus, S.A. Multilevel antennae
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
US10355346B2 (en) 2000-01-19 2019-07-16 Fractus, S.A. Space-filling miniature antennas
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
KR100523068B1 (en) * 2002-02-09 2005-10-24 장애인표준사업장비클시스템 주식회사 Integrated active antenna
US7321338B2 (en) 2002-12-27 2008-01-22 Honda Motor Co., Ltd. On-board antenna
US8026853B2 (en) 2003-01-24 2011-09-27 Fractus, S.A. Broadside high-directivity microstrip patch antennas
JP2008295062A (en) * 2006-07-12 2008-12-04 Toto Ltd Microstrip antenna and high-frequency sensor comprising same
US10644380B2 (en) 2006-07-18 2020-05-05 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9899727B2 (en) 2006-07-18 2018-02-20 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11735810B2 (en) 2006-07-18 2023-08-22 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11349200B2 (en) 2006-07-18 2022-05-31 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US12095149B2 (en) 2006-07-18 2024-09-17 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11031677B2 (en) 2006-07-18 2021-06-08 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
JP2008141765A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Beam tilting patch antenna using high order resonance mode
KR100896486B1 (en) * 2007-05-16 2009-05-08 충남대학교산학협력단 Planar monopole antenna on the surface of conducting plane for rfid tag
EP2081251A1 (en) * 2008-01-15 2009-07-22 Nokia Siemens Networks Oy Patch antenna
US8059033B2 (en) 2008-01-15 2011-11-15 Nokia Siemens Networks Gmbh & Co. Kg Patch antenna
JP2012519449A (en) * 2009-03-02 2012-08-23 イーエムダブリュ カンパニー リミテッド Multiband and wideband antenna using metamaterial and communication apparatus including the same
WO2013121673A1 (en) 2012-02-16 2013-08-22 古河電気工業株式会社 Wide-angle antenna and array antenna
JP2015092658A (en) * 2013-09-30 2015-05-14 京セラサーキットソリューションズ株式会社 Antenna substrate
CN106104923A (en) * 2014-03-03 2016-11-09 株式会社藤仓 Microstrip antenna
US10008780B2 (en) 2014-03-03 2018-06-26 Fujikura Ltd. Microstrip antenna
WO2015133033A1 (en) * 2014-03-03 2015-09-11 株式会社フジクラ Microstrip antenna
JP2015167293A (en) * 2014-03-03 2015-09-24 株式会社フジクラ microstrip antenna
US11245198B2 (en) 2014-12-05 2022-02-08 Astyx Gmbh Radar antenna and suitable method for influencing the radiation characteristics of a radar antenna
JP2016152590A (en) * 2015-02-19 2016-08-22 日本ピラー工業株式会社 Antenna unit
WO2017033722A1 (en) * 2015-08-25 2017-03-02 株式会社デンソー Antenna device
US10446940B2 (en) 2015-08-25 2019-10-15 Denso Corporation Antenna apparatus
JP2017046107A (en) * 2015-08-25 2017-03-02 株式会社日本自動車部品総合研究所 Antenna device
US20180331432A1 (en) * 2015-08-25 2018-11-15 Denso Corporation Antenna apparatus
CN107925169A (en) * 2015-08-25 2018-04-17 株式会社电装 Antenna assembly
JP2018074240A (en) * 2016-10-25 2018-05-10 株式会社デンソーテン Antenna device
WO2018168356A1 (en) * 2017-03-14 2018-09-20 富士通株式会社 Microwave heating device
US10594036B2 (en) 2017-07-06 2020-03-17 Panasonic Intellectual Property Management Co., Ltd. Antenna and vehicle
CN107317107A (en) * 2017-07-11 2017-11-03 深圳市鼎耀科技有限公司 Anti-interference array is antenna integrated
CN107317107B (en) * 2017-07-11 2023-09-08 深圳市鼎耀科技有限公司 Anti-interference array integrated antenna
WO2023100908A1 (en) * 2021-12-03 2023-06-08 Agc株式会社 Antenna device and antenna device for vehicle

Also Published As

Publication number Publication date
JP2806350B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP2806350B2 (en) Patch type array antenna device
Yang et al. A wide beamwidth and wideband magnetoelectric dipole antenna
US7589676B2 (en) Aperture-coupled antenna
JP2536194B2 (en) Microstrip antenna
JPS61264804A (en) Plane antenna shared for two frequencies
JP3026171B2 (en) Antenna device
JPH0270104A (en) Wide directional microstrip antenna
JPH04122107A (en) Microstrip antenna
JPH0440003A (en) Multilayered array antenna
US5933115A (en) Planar antenna with patch radiators for wide bandwidth
JP4516246B2 (en) antenna
JP2000196344A (en) Antenna device
JPS60217702A (en) Circularly polarized wave conical beam antenna
JPH02168703A (en) Plane antenna and its production
JP3177540B2 (en) Microstrip antenna
JP2001251135A (en) Polarization sharing antenna
JPH0628321B2 (en) Circularly polarized antenna
JP3064395B2 (en) Microstrip antenna
JP3822817B2 (en) Dielectric Leaky Wave Antenna
JP3068149B2 (en) Microstrip array antenna
JPH0685526A (en) Planer antenna
JPH0522028A (en) Antenna system
JPH1131914A (en) Plane antenna having parasitic element
JPH10209743A (en) Slot-coupling type microstrip antenna
JP2536163B2 (en) Microstrip antenna

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070724

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees