JPH0774449B2 - Method for producing diamond-coated hydrogen-brittle metal - Google Patents
Method for producing diamond-coated hydrogen-brittle metalInfo
- Publication number
- JPH0774449B2 JPH0774449B2 JP63252286A JP25228688A JPH0774449B2 JP H0774449 B2 JPH0774449 B2 JP H0774449B2 JP 63252286 A JP63252286 A JP 63252286A JP 25228688 A JP25228688 A JP 25228688A JP H0774449 B2 JPH0774449 B2 JP H0774449B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- thin film
- diamond thin
- diamond
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面をダイヤモンド薄膜で被覆した水素脆性
金属及びその製造方法に関する。TECHNICAL FIELD The present invention relates to a hydrogen-brittle metal whose surface is coated with a diamond thin film and a method for producing the same.
ダイヤモンドは、従来、高温高圧の熱力学的安定状態か
ら合成されていたが、最近では化学気相合成法により低
圧もしくは常圧で基材上に薄膜状のダイヤモンドが合成
されるようになつた。Diamond has been conventionally synthesized from a thermodynamically stable state at high temperature and high pressure, but recently, thin film diamond has been synthesized on a substrate at low pressure or normal pressure by a chemical vapor deposition method.
かかる化学気相合成法(所謂CVD法)では、炭化水素と
水素の混合ガスを使用し、例えば熱フイラメント(特開
昭58−91100号公報)、マイクロ波無極放電(特開昭58
−110494号公報)、水素プラズマ(特開昭58−135117号
公報)、マイクロ波プラズマ(特開昭59−30398号公
報)、紫外線照射(特開昭60−112697号公報)等により
上記混合ガスを励起して、基板上にダイヤモンド薄膜を
形成するものである。又、最近では、炭素源としてアル
コール等を用いたり、直流バイアスの印加により成膜速
度を高める方法(特開昭59−35092号公報)等も提案さ
れている。上記いずれの方法においても、結晶性のよい
ダイヤモンド薄膜を形成する条件は、無定形遊離炭素な
どの析出を防ぐために炭化水素を10倍以上の水素で希釈
した混合ガスを用い、基板温度は700〜1000℃とされて
いる。In such a chemical vapor phase synthesis method (so-called CVD method), a mixed gas of hydrocarbon and hydrogen is used. For example, thermal filament (Japanese Patent Laid-Open No. 58-91100), microwave non-polar discharge (Japanese Patent Laid-Open No. 58-58100).
-110494), hydrogen plasma (JP-A-58-135117), microwave plasma (JP-A-59-30398), ultraviolet irradiation (JP-A-60-112697) and the like. Are excited to form a diamond thin film on the substrate. Further, recently, a method of using alcohol or the like as a carbon source or a method of increasing a film formation rate by applying a DC bias (JP-A-59-35092) has been proposed. In any of the above methods, a condition for forming a diamond thin film having good crystallinity is to use a mixed gas prepared by diluting hydrocarbon with 10 times or more hydrogen to prevent precipitation of amorphous free carbon, and the substrate temperature is 700 to It is said to be 1000 ° C.
このように金属やセラミツクスの表面に結晶性のよいダ
イヤモンド薄膜を形成することによつて、耐摩耗性を向
上させたり、摩擦係数を下げたりすることが出来るの
で、ダイヤモンド被覆材料は切削工具、メカニカルシー
ル、スピーカー用振動板、集積回路基板などの用途に利
用されている。By forming a diamond thin film with good crystallinity on the surface of metal or ceramics in this way, it is possible to improve wear resistance and reduce the friction coefficient, so diamond coating materials are used for cutting tools and mechanical It is used in applications such as seals, speaker diaphragms, and integrated circuit boards.
しかしながら、チタンやジルコニウム、又はその合金、
及びニツケルクロム鋼などの強靭鋼などの水素脆性金属
には上記の方法によりダイヤモンド薄膜を形成すること
は出来なかつた。チタンやジルコニウム、又はその合金
は比強度が高く、航空及び宇宙工学材料等として、又強
靭鋼は構造用材料や工具材料として一般に使用されてい
る。ところが、これらの金属は水素脆性金属と称され化
学的に非常に活性であるため、炭化水素と水素を原料と
した還元性雰囲気で行なわれる従来のCVD法では、炭素
や水素と反応して不安定で脆い炭化チタンのような炭化
物や水素化チタン等の水素化物を形成するからである。However, titanium and zirconium, or their alloys,
Further, it has been impossible to form a diamond thin film on a hydrogen-brittle metal such as nickel-chromium steel and other tough steel. Titanium, zirconium, or their alloys have high specific strength, and are generally used as materials for aviation and space engineering, etc., and tough steels are generally used as structural materials and tool materials. However, since these metals are called hydrogen embrittlement metals and are chemically very active, the conventional CVD method carried out in a reducing atmosphere using hydrocarbons and hydrogen as raw materials reacts with carbon and hydrogen to cause an incompatibility. This is because it forms stable and brittle carbides such as titanium carbide and hydrides such as titanium hydride.
このため、水素脆性金属の表面にCVD法によりダイヤモ
ンド薄膜を被覆しようとしても、炭化物や水素化物の生
成により水素脆性金属の特性や形状自体が損なわれ、密
着性のよいダイヤモンド薄膜が形成できなかつた。又、
水素脆性金属の基材が厚さ5mm以下の場合や、長時間に
亘り原料ガスのプラズマにさらされた場合等には、炭化
物や水素化物の生成が激しく、逐には基材自体が破損に
至ることもあつた。Therefore, even if the diamond thin film is coated on the surface of the hydrogen embrittlement metal by the CVD method, the characteristics and shape of the hydrogen embrittlement metal are impaired due to the formation of carbides or hydrides, and the diamond thin film with good adhesion cannot be formed. . or,
When the hydrogen-brittle metal substrate has a thickness of 5 mm or less, or is exposed to the plasma of the source gas for a long time, the formation of carbides and hydrides is severe, and the substrate itself is damaged. It was also possible.
上記の如く、炭化水素と水素の混合ガスを用いる従来の
化学気相合成法では、水素脆性金属が炭化物や水素化物
を生成してしまうので、水素脆性金属を密着性のよいダ
イヤモンド薄膜で被覆することは不可能であつた。As described above, in the conventional chemical vapor deposition method using a mixed gas of hydrocarbon and hydrogen, the hydrogen-brittle metal produces carbides and hydrides, so the hydrogen-brittle metal is coated with a diamond thin film having good adhesion. It was impossible.
本発明はかかる従来の事情に鑑み、表面を密着性のよい
ダイヤモンド薄膜で被覆した水素脆性金属を提供するこ
とを目的とする。In view of such conventional circumstances, it is an object of the present invention to provide a hydrogen-brittle metal whose surface is coated with a diamond thin film having good adhesion.
上記目的を達成するため、本発明のダイヤモンド薄膜被
覆水素脆性金属の製造方法では、水素脆性金属の表面
に、チタンの炭化物及び窒化物、珪素並びに珪素の炭化
物、窒化物、硼素並びに硼素の炭化物、窒化物、及びア
ルミニウムの窒化物からなる群から選ばれた単層又は複
数層の中間層のうち少なくとも水素脆性金属と接する層
を物理気相合成法により形成し、次に前記中間層の上に
化学気相合成法によりダイヤモンド薄膜を形成すること
を特徴とする。To achieve the above object, in the method for producing a diamond thin film-coated hydrogen-brittle metal of the present invention, the surface of the hydrogen-brittle metal, titanium carbide and nitride, silicon and silicon carbide, nitride, boron and boron carbide, Nitride, and a single layer or a plurality of intermediate layers selected from the group consisting of aluminum nitride, to form a layer in contact with at least hydrogen embrittlement metal by physical vapor phase synthesis method, then on the intermediate layer The feature is that a diamond thin film is formed by a chemical vapor deposition method.
従つて、上記方法により得られる本発明のダイヤモンド
薄膜被覆脆性金属は、水素被覆金属と、水素脆性金属の
表面に密着性よく形成したチタンの炭化物及び窒化物、
珪素並びに珪素の炭化物、窒化物硼素並びに硼素の炭化
物、窒化物、及びアルミニウムの窒化物からなる群から
選ばれた単層又は複数層の中間層と、中間層の上に密着
性よく形成したダイヤモンド薄膜とからなる。Therefore, the diamond thin film-coated brittle metal of the present invention obtained by the above method is a hydrogen-coated metal, and a carbide and nitride of titanium formed on the surface of the hydrogen-brittle metal with good adhesion,
A single layer or a plurality of intermediate layers selected from the group consisting of silicon and silicon carbide, boron nitride and boron carbide, nitride, and aluminum nitride, and a diamond formed on the intermediate layer with good adhesion. It consists of a thin film.
尚、本発明において水素脆性金属とは、チタン、ジルコ
ニウム、5重量%以上のチタン又はジルコニウムを含有
する合金、及びニツケル、クロム、モリブデンを各々5
重量%以下含有する強靭鋼を意味する。In the present invention, the hydrogen-brittle metal includes titanium, zirconium, alloy containing 5% by weight or more of titanium or zirconium, nickel, chromium and molybdenum.
It means a tough steel containing less than or equal to wt%.
本発明方法において、中間層を形成する物理気相合成法
(所謂PVD法)としては蒸着、スパツタリング、イオン
プレーテイング等があり、ダイヤモンド薄膜を形成する
化学気相合成法(CVD法)としては熱フイラメント法、
マイクロ波プラズマCVD法、高周波プラズマCVD法、紫外
線励起法、又はこれらを組合せた方法等、従来公知の全
てのCVD法を利用できる。尚、PVD法及びCVD法とも、通
常の反応条件を用いる。In the method of the present invention, the physical vapor deposition method (so-called PVD method) for forming the intermediate layer includes vapor deposition, sputtering, ion plating, etc., and the chemical vapor deposition method for forming the diamond thin film (CVD method) is thermal Filament law,
All conventionally known CVD methods such as a microwave plasma CVD method, a high frequency plasma CVD method, an ultraviolet excitation method, or a method combining these can be used. Note that ordinary reaction conditions are used for both the PVD method and the CVD method.
本発明においては、水素脆性金属の表面に直接ダイヤモ
ンド薄膜を形成せず、水素脆性金属との密着性に優れた
中間層を介して形成するので、密着性のよいダイヤモン
ド薄膜が得られる。In the present invention, the diamond thin film is not directly formed on the surface of the hydrogen-brittle metal, but is formed via the intermediate layer having excellent adhesion to the hydrogen-brittle metal, so that the diamond thin film having good adhesion can be obtained.
中間層としては、水素脆性金属及びダイヤモンド薄膜の
両方との密着性に優れているチタンの炭化物及び窒化
物、珪素並びに珪素の窒化物、炭化物、硼素並びに硼素
の炭化物、窒化物、及びアルミニウムの窒化物が好まし
く、これらの物質からなる単層でも又は複数層でもよ
い。特に、ダイヤモンド薄膜に接する中間層は、密着性
の点において炭化珪素、窒化珪素、若しくは珪素である
ことが好ましい。As the intermediate layer, titanium carbides and nitrides, silicon and silicon nitrides, carbides, boron and boron carbides, nitrides, and aluminum nitrides, which have excellent adhesion to both hydrogen-brittle metal and diamond thin film, are used. The thing is preferable and it may be a single layer or multiple layers which consist of these substances. In particular, the intermediate layer in contact with the diamond thin film is preferably silicon carbide, silicon nitride, or silicon in terms of adhesion.
中間層の形成に通常のCVD法を用いると、活性な炭化又
は水素を含む還元性雰囲気を使用することになるので、
ダイヤモンド薄膜を直接形成する場合と同様に炭化物や
水素化物の生成により水素脆性金属の特性や形状自体が
損なわれ、密着性のよい中間層が得られない。そこで、
本発明方法では中間層の形成にPVD法を用いることによ
つて、水素脆性金属を損なうことなく、その表面に密着
性のよい中間層を形成できる。When the normal CVD method is used to form the intermediate layer, a reducing atmosphere containing active carbonization or hydrogen is used,
As in the case of directly forming a diamond thin film, the characteristics and shape of the hydrogen embrittlement metal are impaired by the formation of carbides and hydrides, and an intermediate layer having good adhesion cannot be obtained. Therefore,
By using the PVD method for forming the intermediate layer in the method of the present invention, the intermediate layer having good adhesion can be formed on the surface of the hydrogen-brittle metal without damaging it.
このように水素脆性金属の表面に中間層を形成する結
果、その上に形成するダイヤモンド薄膜は通常のCVD法
によつて形成できる。即ち、上記した中間層はダイヤモ
ンド薄膜合成のための通常のCVD法で用いられる還元性
雰囲気において炭素又は水素と反応しないので、その下
層の水素脆性金属の脆化又は特性の低下、若しくは形状
の変化を起こすことなく、最上層として結晶性のよいダ
イヤモンド薄膜を密着性よく形成することができる。As a result of forming the intermediate layer on the surface of the hydrogen-brittle metal in this way, the diamond thin film formed thereon can be formed by the ordinary CVD method. That is, since the above-mentioned intermediate layer does not react with carbon or hydrogen in the reducing atmosphere used in the ordinary CVD method for synthesizing a diamond thin film, the hydrogen embrittlement metal of the lower layer becomes brittle or its characteristics deteriorate, or its shape changes. It is possible to form a diamond thin film having good crystallinity as the uppermost layer with good adhesion without causing the above phenomenon.
下記第1表に示す形状の水素脆性金属を#600のダイヤ
モンドパウダーで表面仕上げしたものを基材として用意
した。A hydrogen brittle metal having the shape shown in Table 1 below was surface-finished with # 600 diamond powder to prepare a substrate.
この基材の表面に、第1表に示す第1層の中間層をPVD
法の一種であるマグネトロンスパツタリング法(PVD−M
S法と略記)又はイオンプレーテイング法(PVD−IP法と
略記)を用いて通常の条件で形成した。このうち幾つか
の試料には、第1表に示すように更に第2層の中間層を
上記PVD−MS法、PVD−IP法若しくはCVD法を用いて通常
の条件で形成した。On the surface of this substrate, PVD the intermediate layer of the first layer shown in Table 1
One type of magnetron sputtering method (PVD-M
S method or abbreviated) or ion plating method (abbreviated as PVD-IP method) was used to form under normal conditions. As shown in Table 1, an intermediate layer of a second layer was formed on some of the samples under the usual conditions by using the PVD-MS method, the PVD-IP method or the CVD method.
このようにして単層又は複数層の中間層を形成した基材
の表面を#600のダイヤモンドパウダーで表面仕上げし
た後、第1表に示すCVD法によりCH4ガスとH2ガスを原料
としてダイヤモンド被覆のための気相反応を施した。用
いたCVD法は、第1図に示すマイクロ波プラズマCVD法
(μ−PCVD法と略記)、第2図に示す高周波プラズマCV
D法(RF−PCVD法と略記)、第3図に示すDCプラズマ併
用熱フイラメント法(F−PCVD法と略記)又は熱フイラ
メントCVD法(F−CVD法と略記)、及び第4図に示すDC
プラズマCVD法(DC−PCVD法と略記)のいずれかであ
り、第1表に記した以外の反応条件は最適な条件を選択
した。After surface finish of the surface of the intermediate layer formed substrate with diamond powder # 600 of the thus single layer or plural layers, diamond CH 4 gas and H 2 gas as a raw material by a CVD method as shown in Table 1 A gas phase reaction for coating was performed. The CVD method used is the microwave plasma CVD method (abbreviated as μ-PCVD method) shown in FIG. 1 and the high frequency plasma CV shown in FIG.
D method (abbreviated as RF-PCVD method), DC plasma combined thermal filament method (abbreviated as F-PCVD method) or thermal filament CVD method (abbreviated as F-CVD method) shown in FIG. 3, and shown in FIG. DC
Any of the plasma CVD methods (abbreviated as DC-PCVD method), and the optimum reaction conditions other than those shown in Table 1 were selected.
上記の如く形成した試料No.1〜15のダイヤモンド薄膜は
X線回折、RHEED(高速電子線回折)及びラマン分光分
析のいずれかによつても結晶性のダイヤモンドであるこ
とが確認できた。例えば、試料No.6で得られたラマンス
ペクトルを第5図に示すが、ダイヤモンドに特有の133
2.5cm-1のラマン線が明瞭に現われ、非常に結晶性のよ
いダイヤモンドであることが判る。更に、試料No.1〜10
のダイヤモンド薄膜上にイオンプレーテイング法により
Ti/Au電極を作成し、基材を他方の電極として、2電極
間のV−I特性の測定から求めた各ダイヤモンド薄膜の
電気抵抗は1.0×109〜1.0×1013Ω・cmであつた。又、
試料No.1〜15のダイヤモンド薄膜のビツカース硬度(荷
重500g)はいずれも10000kg/mm2以上であつた。It was confirmed by any of X-ray diffraction, RHEED (high-speed electron beam diffraction) and Raman spectroscopic analysis that the diamond thin films of Sample Nos. 1 to 15 formed as described above were crystalline diamond. For example, the Raman spectrum obtained for sample No. 6 is shown in FIG.
A Raman line of 2.5 cm -1 appears clearly, which indicates that the diamond has a very good crystallinity. Furthermore, sample No. 1-10
By ion plating on the diamond thin film of
The electric resistance of each diamond thin film was 1.0 × 10 9 to 1.0 × 10 13 Ω · cm, which was obtained by measuring Ti / Au electrodes and using the substrate as the other electrode to measure the VI characteristics between the two electrodes. It was or,
The diamond thin films of Sample Nos. 1 to 15 all had Vickers hardness (load: 500 g) of 10000 kg / mm 2 or more.
上記本発明例として得られた試料No.1〜15について、基
材及びダイヤモンド薄膜の状態を調べ、中間層及びダイ
ヤモンド薄膜の形成法等と共に第1表に要約した。更に
比較例として、中間層を形成せず、基材表面上に直接ダ
イヤモンド層を形成した試料(No.16〜23)についても
本発明例と同様の事項を第1表に合せて示した。Regarding the samples Nos. 1 to 15 obtained as examples of the present invention, the states of the base material and the diamond thin film were examined, and Table 1 is summarized together with the method for forming the intermediate layer and the diamond thin film. Further, as a comparative example, the same items as in the present invention example are also shown in Table 1 for the samples (No. 16 to 23) in which the intermediate layer was not formed and the diamond layer was directly formed on the surface of the substrate.
第1表から、本発明例のうち、ダイヤモンド薄膜に接す
る中間層がSiC、Si3N4、又はSiである試料No.1〜10、1
2、13では基材表面に非常に密着性の良いダイヤモンド
薄膜を形成できるが、ダイヤモンド薄膜に接する中間層
がTiCである試料No.11はやゝ密着性に劣ることが判る。
一方、中間層のない比較例では、試料No.16、17及びNo.
22、23でダイヤモンド薄膜が得られたが、基材表面に多
量の水素が取り込まれ表面に炭化物や水素化物が生成す
るため密着性が極めて低く、No.18〜21では基材の大部
分が炭化物や水素化物に変化しダイヤモンド薄膜は形成
されなかつた。 From Table 1, among the examples of the present invention, sample Nos. 1 to 10 and 1 in which the intermediate layer in contact with the diamond thin film was SiC, Si 3 N 4 or Si.
In Nos. 2 and 13, a diamond thin film having excellent adhesion can be formed on the surface of the base material, but it can be seen that Sample No. 11 in which the intermediate layer in contact with the diamond thin film is TiC is slightly inferior in adhesion.
On the other hand, in the comparative example without the intermediate layer, samples No. 16, 17 and No.
Although diamond thin films were obtained in Nos. 22 and 23, adhesion was extremely low because a large amount of hydrogen was taken in the surface of the substrate and carbides and hydrides were generated on the surface. The diamond thin film was not formed by changing to carbide or hydride.
尚、本発明に係る中間層の材質のうち、第1表に例示し
なかつた材質も、ダイヤモンド薄膜に接する中間層とし
てはやゝ密着性に劣るものの、それ以外の中間層として
は有効であつた。Incidentally, among the materials of the intermediate layer according to the present invention, the materials not exemplified in Table 1 are slightly inferior in adhesiveness as the intermediate layer in contact with the diamond thin film, but are effective as other intermediate layers. It was
本発明によれば、水素脆性金属とダイヤモンド薄膜との
間にPVD法により形成した中間層を存在させるので、通
常のCVD法によつても炭化物や水素化物の生成がなく且
つ水素脆性金属の特性、形状を損なうことなく、結晶性
のよいダイヤモンド薄膜を密着性よく形成できる。特
に、水素脆性金属の厚さが5mm以下、例えば0.04mm程度
であつても、ダイヤモンド薄膜で被覆することが可能で
ある。According to the present invention, since the intermediate layer formed by the PVD method is present between the hydrogen embrittlement metal and the diamond thin film, there is no formation of carbides or hydrides even by the ordinary CVD method and the characteristics of the hydrogen embrittlement metal. A diamond thin film having good crystallinity can be formed with good adhesion without damaging the shape. In particular, even if the hydrogen-brittle metal has a thickness of 5 mm or less, for example, about 0.04 mm, it can be coated with the diamond thin film.
従つて、本発明のダイヤモンド被覆水素脆性金属は、表
面のダイヤモンドの特性と内部の水素脆性金属の特性と
を兼ね備え、航空機材料、宇宙光学材料、原子力工学材
料、切削工具材料、メカニカルシールのような耐摩耗特
性を要する材料、音響用スピーカーの振動板のような高
比弾性率を要する材料、集積回路基板のような低誘電率
を要する材料などとして利用できる。Therefore, the diamond-coated hydrogen-brittle metal of the present invention has both the characteristics of the surface diamond and the characteristics of the hydrogen-brittle metal inside, and is used in aircraft materials, space optical materials, nuclear engineering materials, cutting tool materials, mechanical seals, etc. It can be used as a material requiring abrasion resistance, a material requiring a high specific elastic modulus such as a diaphragm of an acoustic speaker, and a material requiring a low dielectric constant such as an integrated circuit board.
第1図はマイクロ波プラズマCVD装置を示す概念図、第
2図はRFプラズマCVD装置の概念図、第3図はDCプラズ
マ併用可能な熱フイラメントCVD装置の概念図、第4図
はDCプラズマCVD装置の概念図であり、第5図は実施例
の試料No.6のダイヤモンド薄膜のラマン分光スペクトル
である。 1……基材、2……石英管 3……真空排気口、4……ガス導入口 5……マグネトロン、6……導波管 7……プランジヤー、8……プラズマ 9……RF電極、10……コイル 11……支持台、12……冷却水 13……フイラメント、14……絶縁シール 15……AC電極、16……DC電極 17……カソードFig. 1 is a conceptual diagram showing a microwave plasma CVD device, Fig. 2 is a conceptual diagram of an RF plasma CVD device, Fig. 3 is a conceptual diagram of a thermal filament CVD device that can be used with DC plasma, and Fig. 4 is a DC plasma CVD device. FIG. 5 is a conceptual diagram of the apparatus, and FIG. 5 is a Raman spectrum of the diamond thin film of sample No. 6 of the example. 1 ... Substrate, 2 ... Quartz tube 3 ... Vacuum exhaust port, 4 ... Gas inlet port 5 ... Magnetron, 6 ... Waveguide 7 ... Plunger, 8 ... Plasma 9 ... RF electrode, 10 …… Coil 11 …… Supporting base, 12 …… Cooling water 13 …… Filament, 14 …… Insulating seal 15 …… AC electrode, 16 …… DC electrode 17 …… Cathode
Claims (1)
コニウムを5重量%以上含有する合金、若しくはニツケ
ル、クロム、モリブデンを各々5重量%以下含有する強
靭鋼からなる水素脆性金属の表面に、チタンの炭化物及
び窒化物、珪素並びに珪素の炭化物及び窒化物、硼素並
びに硼素の炭化物及び窒化物、及びアルミニウムの窒化
物からなる群から選ばれた単層又は複数層の中間層のう
ち少なくとも水素脆性金属と接する層を物理気相合成法
により形成し、次に前記中間層の上に化学気相合成法に
よりダイヤモンド薄膜を形成することを特徴とする、ダ
イヤモンド被覆水素脆性金属の製造方法。1. A surface of a hydrogen embrittlement metal made of titanium or zirconium, an alloy containing 5% by weight or more of titanium or zirconium, or a tough steel containing nickel, chromium or molybdenum in an amount of 5% by weight or less. A layer in contact with at least a hydrogen-brittle metal among intermediate layers of a single layer or a plurality of layers selected from the group consisting of nitrides, silicon and carbides and nitrides of silicon, boron, carbides and nitrides of boron, and nitrides of aluminum. Is formed by a physical vapor phase synthesis method, and then a diamond thin film is formed on the intermediate layer by a chemical vapor phase synthesis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63252286A JPH0774449B2 (en) | 1987-10-15 | 1988-10-06 | Method for producing diamond-coated hydrogen-brittle metal |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26149487 | 1987-10-15 | ||
JP62-261494 | 1987-10-15 | ||
JP63252286A JPH0774449B2 (en) | 1987-10-15 | 1988-10-06 | Method for producing diamond-coated hydrogen-brittle metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01201480A JPH01201480A (en) | 1989-08-14 |
JPH0774449B2 true JPH0774449B2 (en) | 1995-08-09 |
Family
ID=26540641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63252286A Expired - Fee Related JPH0774449B2 (en) | 1987-10-15 | 1988-10-06 | Method for producing diamond-coated hydrogen-brittle metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0774449B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2731233B1 (en) * | 1995-03-03 | 1997-04-25 | Kodak Pathe | MULTILAYER SYSTEM COMPRISING A DIAMOND LAYER, INTERPHASE AND METAL SUPPORT AND METHOD FOR OBTAINING SUCH LAYERS |
FR2733255B1 (en) * | 1995-04-21 | 1997-10-03 | France Etat | METHOD FOR MANUFACTURING A METAL PIECE COVERED WITH DIAMOND AND METAL PIECE OBTAINED BY SUCH A METHOD |
FR2790267B1 (en) * | 1999-02-25 | 2001-05-11 | Suisse Electronique Microtech | METHOD FOR DEPOSITING A DIAMOND LAYER ON A TRANSITIONAL REFRACTORY METAL AND PART COATED WITH SUCH A LAYER |
JP4296523B2 (en) * | 2007-09-28 | 2009-07-15 | 勝 堀 | Plasma generator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62218566A (en) * | 1983-03-11 | 1987-09-25 | Mitsubishi Metal Corp | Surface coated tool member having excellent wear resistance |
JPS61106494A (en) * | 1984-10-29 | 1986-05-24 | Kyocera Corp | Member coated with diamond and its production |
-
1988
- 1988-10-06 JP JP63252286A patent/JPH0774449B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01201480A (en) | 1989-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0413834B1 (en) | Diamond-covered member and process for producing the same | |
US5190823A (en) | Method for improving adhesion of synthetic diamond coatings to substrates | |
JPS63153275A (en) | Diamond coated alumina | |
JPH0566358B2 (en) | ||
EP0779940B1 (en) | Method for the deposition of a diamond film on an electroless-plated nickel layer | |
JPH0774449B2 (en) | Method for producing diamond-coated hydrogen-brittle metal | |
EP0440384B1 (en) | Method of bonding a diamond film to a substrate | |
Shih et al. | Application of diamond coating to tool steels | |
JP3353239B2 (en) | Method for producing diamond-coated member | |
JP2969291B2 (en) | Abrasion resistant member and method of manufacturing the same | |
JPH04157157A (en) | Production of artificial diamond coated material | |
JP3260986B2 (en) | Member with diamond composite film | |
JPH0542508B2 (en) | ||
JPS62133068A (en) | Diamond coated member | |
JPH0649945B2 (en) | Diamond-coated hydrogen-brittle metal and method for producing the same | |
JP3260156B2 (en) | Method for producing diamond-coated member | |
JPH0762541A (en) | Wear resistant member | |
JPH0710443B2 (en) | Cutting tip | |
JPH05214532A (en) | Coated sintered body | |
US5164230A (en) | Method of applying a boron layer to a steel substrate by a cvd process | |
Li et al. | Diamond growth on Fe-Cr-Al alloy by H2-plasma enhanced graphite etching | |
JP3212057B2 (en) | Diamond coated substrate and method for producing the same | |
JPH07116606B2 (en) | Diamond coated carbon material | |
JPH05209274A (en) | Manufacture of diamond coated member | |
JP3314119B2 (en) | Diamond composite member and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |