JPH0733528A - Composite sintered ceramic, its production and semiconductor production jig made therefrom - Google Patents
Composite sintered ceramic, its production and semiconductor production jig made therefromInfo
- Publication number
- JPH0733528A JPH0733528A JP5156747A JP15674793A JPH0733528A JP H0733528 A JPH0733528 A JP H0733528A JP 5156747 A JP5156747 A JP 5156747A JP 15674793 A JP15674793 A JP 15674793A JP H0733528 A JPH0733528 A JP H0733528A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- silicon carbide
- amount
- ppm
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体製造用の高純度
の治具に適したセラミック複合焼結体およびその製法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic composite sintered body suitable for a high-purity jig for semiconductor production and a method for producing the same.
【0002】[0002]
【従来技術】高純度の炭化珪素焼結体は、半導体素子な
どを製造する際に使用する治具用の材料として注目さ
れ、その実用化が進められている。一般に、高純度炭化
珪素焼結体は、炭化珪素の焼結助剤として知られるホウ
素や周期律表第3a族元素酸化物あるいはAl2 O3 な
どを全く添加せずに高密度化したものであり、通常は、
反応焼結法により作製される。2. Description of the Related Art A high-purity silicon carbide sintered body has been attracting attention as a material for a jig used in manufacturing a semiconductor element or the like, and its practical application is being promoted. Generally, a high-purity silicon carbide sintered body is obtained by densifying boron, which is known as a sintering aid for silicon carbide, an oxide of a Group 3a element of the periodic table, Al 2 O 3 or the like, without any addition. Yes, usually
It is produced by the reaction sintering method.
【0003】反応焼結法とは、高純度の炭化珪素粉末に
炭素粉末を添加し成形した後、この成形体を1200℃
以下の温度で熱処理して多孔質体を作製し、さらにこの
多孔質体を溶融金属珪素と接触させて毛細管現象で多孔
質体内部に金属珪素を浸透させた後、1450〜170
0℃程度で反応焼結して炭素粉末を珪化処理して多孔質
体の空隙部に炭化珪素を生成させることにより、炭化珪
素のみ、あるいは炭化珪素と金属ケイ素からなる焼結体
を得るものである。The reaction sintering method is a method in which carbon powder is added to high-purity silicon carbide powder and molded, and then this molded body is heated to 1200 ° C.
After heat treatment at the following temperature to prepare a porous body, the porous body is brought into contact with molten metallic silicon to allow the metallic silicon to permeate into the porous body by a capillary phenomenon, and then 1450 to 170.
A sintered body composed of only silicon carbide or silicon carbide and metallic silicon is obtained by reacting and sintering at about 0 ° C. to silicify carbon powder to generate silicon carbide in voids of a porous body. is there.
【0004】[0004]
【発明が解決しようとする問題点】しかしながら、上述
したような反応焼結法によれば、過剰の金属ケイ素を含
むため耐食性が著しく低下し、また高温での強度劣化が
生じるという問題がある。しかも、半導体製造用治具に
おいては熱サイクルに対する耐久性が要求されるもの
の、従来の焼結体は不均一なために熱サイクルによりク
ラックが生じるなどの問題があった。However, according to the above-mentioned reaction sintering method, there is a problem that the corrosion resistance is remarkably lowered and the strength is deteriorated at a high temperature because an excessive amount of metallic silicon is contained. Moreover, although a jig for semiconductor manufacturing is required to have durability against a heat cycle, there is a problem that cracks are generated due to the heat cycle because the conventional sintered body is non-uniform.
【0005】また、炭化珪素と炭素からなる多孔質体の
強度が非常に弱いために炭素の珪化処理の際の発熱反応
による炭化珪素の生成により焼結体にクラックが生じる
という問題があった。Further, since the strength of the porous body composed of silicon carbide and carbon is very weak, there is a problem that cracks are generated in the sintered body due to generation of silicon carbide due to an exothermic reaction during the silicidation treatment of carbon.
【0006】[0006]
【問題点を解決するための手段】本発明者らは上記の問
題点に対して検討を重ねた結果、炭化珪素を窒化すると
窒化珪素と炭素が生成されることに着目し、炭化珪素の
みからなる成形体を窒化処理することにより窒化珪素の
生成とともに遊離炭素が均一に生成され、しかも、窒化
珪素の生成により高密度化、高強度化が達成されるとと
もに、Si以外の陽イオン金属量の少ない高純度の焼結
体が得られることを知見し、本発明に至った。As a result of repeated studies on the above problems, the present inventors have noticed that nitriding silicon carbide produces silicon nitride and carbon. By nitriding the formed body, free carbon is uniformly generated together with generation of silicon nitride, and further, high density and high strength can be achieved by generation of silicon nitride, and the amount of cation metal other than Si can be increased. The inventors have found that a small amount of high-purity sintered body can be obtained, and have reached the present invention.
【0007】即ち、本発明のセラミック複合焼結体は、
炭化珪素、窒化珪素および遊離炭素からなる焼結体であ
って、該窒化珪素および該遊離炭素が焼結体中に実質的
に均一に存在するとともに、Si以外の陽イオン金属量
が100ppm以下であり、且つ相対密度が70%以上
であることを特徴とし、炭化珪素と窒化珪素の複合体よ
り3次元網状構造の骨格が形成されるもので、かかるセ
ラミック複合焼結体の製法として、Si以外の陽イオン
金属量が200ppm以下の炭化珪素粉末からなる成形
体を窒素雰囲気中で熱処理することにより前記炭化珪素
の一部を窒化して窒化珪素と炭素を生成させて、Si以
外の陽イオン金属量が100ppm以下、相対密度が7
0%以上の焼結体を得るか、あるいは上記成形体を仮焼
処理した後、該成形体を窒素雰囲気中で熱処理して前記
炭化珪素の一部を窒化して窒化珪素と炭素を生成させて
Si以外の陽イオン金属量が50ppm以下、相対密度
が70%以上の焼結体を得ることを特徴とするものであ
る。これにより、上記のセラミック複合焼結体を半導体
製造用治具に用いることを特徴とする。That is, the ceramic composite sintered body of the present invention is
A sintered body composed of silicon carbide, silicon nitride and free carbon, wherein the silicon nitride and the free carbon are substantially uniformly present in the sintered body and the amount of cation metal other than Si is 100 ppm or less. And a relative density of 70% or more, a skeleton having a three-dimensional network structure is formed from a composite of silicon carbide and silicon nitride. As a manufacturing method of such a ceramic composite sintered body, other than Si By heat-treating a compact made of silicon carbide powder having a cation metal content of 200 ppm or less in a nitrogen atmosphere to nitrid a part of the silicon carbide to generate silicon nitride and carbon. Amount less than 100ppm, relative density 7
After obtaining a sintered body of 0% or more or calcining the molded body, the molded body is heat-treated in a nitrogen atmosphere to nitride part of the silicon carbide to generate silicon nitride and carbon. It is characterized by obtaining a sintered body having a cation metal content other than Si of 50 ppm or less and a relative density of 70% or more. Thereby, the above-mentioned ceramic composite sintered body is used for a jig for semiconductor production.
【0008】以下、本発明を実施例をもとに説明する。
通常、窒化珪素焼結体や炭化珪素焼結体では、ある程度
の緻密化を達成するためには各種の焼結助剤を必要とす
る。しかしながら、焼結体の高密度化を達成するととも
に高純度化を達成する場合には、焼結助剤は添加するこ
とは極力避ける必要がある。The present invention will be described below with reference to examples.
Usually, in a silicon nitride sintered body or a silicon carbide sintered body, various sintering aids are required to achieve a certain degree of densification. However, in order to achieve high density and high purity of the sintered body, it is necessary to avoid adding the sintering aid as much as possible.
【0009】本発明は、炭化珪素の窒化反応により焼結
助剤を全く添加することなしに高密度化を達成するもの
である。この炭化珪素の窒化反応によれば、窒化珪素と
遊離炭素が生成されると同時に、密度も高めることがで
きる。この時の窒化条件を制御することにより、炭化珪
素、窒化珪素および遊離炭素の均一体の焼結体となる。
また、かかる反応により焼結体中には炭化珪素と窒化珪
素が複雑に絡み合った3次元網状構造の骨格が形成され
る。よって、本発明の焼結体では、焼結助剤などの添加
がないため、Si以外の陽イオン金属量が100ppm
以下、特に80ppm以下に制御され、しかも相対密度
が70%以上、特に80%以上の高密度体が得られる。The present invention achieves densification by the nitriding reaction of silicon carbide without adding any sintering aid. According to this nitriding reaction of silicon carbide, silicon nitride and free carbon are generated, and at the same time, the density can be increased. By controlling the nitriding conditions at this time, a sintered body of silicon carbide, silicon nitride and free carbon is obtained.
Further, by such a reaction, a skeleton having a three-dimensional network structure in which silicon carbide and silicon nitride are intricately entangled with each other is formed in the sintered body. Therefore, in the sintered body of the present invention, since no sintering aid is added, the amount of cation metal other than Si is 100 ppm.
Hereinafter, a high density body is obtained, in which the relative density is controlled to 80 ppm or less and the relative density is 70% or more, particularly 80% or more.
【0010】本発明において、Si以外の陽イオン金属
量を上記範囲に制御したのは、例えば半導体素子製造用
の治具などに用いた時の素子への影響を極力抑えるため
であり、相対密度を前記範囲に設定したのは、治具とし
て必要な機械的強度を付与するためである。In the present invention, the amount of the cation metal other than Si is controlled within the above range in order to suppress the influence on the element as much as possible when it is used in a jig or the like for manufacturing a semiconductor element. Was set to the above range in order to impart the mechanical strength required for the jig.
【0011】次に、本発明の焼結体を製造する方法につ
いて説明すると、まず、出発原料として炭化珪素粉末を
用いる。用いる炭化珪素粉末は、α型、β型のいずれで
も使用することができ、その粒径は、その後の窒化反応
を促進させるために、平均粒径0.5〜10μmの粒子
が望ましい。また、原料粉末中におけるSi以外の金属
不純物量は極力少ないことが必要であり、陽イオン金属
量が200ppm以下、特に150ppm以下であるこ
とが必要である。これは、原料中の不純物量が200p
pmを越えると製造過程での高純度化が不充分となり、
最終焼結体として高純度のものが得られないためであ
る。Next, the method for producing the sintered body of the present invention will be described. First, silicon carbide powder is used as a starting material. The silicon carbide powder to be used may be either α-type or β-type, and its particle size is preferably an average particle size of 0.5 to 10 μm in order to promote the subsequent nitriding reaction. The amount of metal impurities other than Si in the raw material powder needs to be as small as possible, and the amount of cation metal needs to be 200 ppm or less, particularly 150 ppm or less. This is because the amount of impurities in the raw material is 200p
If it exceeds pm, purification in the manufacturing process becomes insufficient,
This is because a high-purity final sintered body cannot be obtained.
【0012】上記炭化珪素粉末は、プレス成形、押出成
形、射出成形、鋳込み成形、冷間静水圧成形などの周知
の成形方法に基づき、所望により有機バインダーや分散
剤などを添加し、所望の形状に成形する。そして、この
成形体を有機バインダーを熱処理により分解除去する。
この時の成形体の気孔率はおよそ30〜56%程度であ
る。The above-mentioned silicon carbide powder is formed into a desired shape by adding an organic binder and a dispersant, if desired, based on well-known molding methods such as press molding, extrusion molding, injection molding, casting molding, cold isostatic molding and the like. To mold. Then, the organic binder is decomposed and removed from the molded body by heat treatment.
The porosity of the molded body at this time is about 30 to 56%.
【0013】次に、この成形体を窒化処理する。窒化処
理は、10〜1000atmの窒素分圧中で1500〜
1950℃の温度で行われる。この窒化処理により成形
体中の炭化珪素は窒素と反応し窒化珪素と炭素が生成さ
れ、炭化珪素粒子は生成された窒化珪素により強固に結
合されて3次元網状構造の骨格が形成される。また、炭
化珪素から窒化珪素への変換時に体積膨張することによ
り全体として緻密化も進行し気孔率が10〜30%(相
対密度70〜90%)程度の焼結体が形成される。この
時の窒化反応は成形体全体で生じるために、成形体内に
均一に窒化珪素と炭素が生成される。ただし、窒化珪素
と炭素の生成にあたり、表面部と内部において濃度差が
生じる場合があるため、望ましくは窒化処理時の窒素分
圧を10〜500atm、窒化温度を1550〜195
0℃に設定することがよい。Next, the molded body is nitrided. The nitriding treatment is 1500 to 1000 in a nitrogen partial pressure of 10 to 1000 atm.
It is performed at a temperature of 1950 ° C. By this nitriding treatment, silicon carbide in the molded body reacts with nitrogen to generate silicon nitride and carbon, and the silicon carbide particles are firmly bonded by the generated silicon nitride to form a skeleton having a three-dimensional network structure. Further, the volume expansion at the time of conversion of silicon carbide into silicon nitride also progresses the densification as a whole to form a sintered body having a porosity of about 10 to 30% (relative density of 70 to 90%). Since the nitriding reaction at this time occurs in the entire molded body, silicon nitride and carbon are uniformly generated in the molded body. However, in producing silicon nitride and carbon, a concentration difference may occur between the surface portion and the inside. Therefore, the nitrogen partial pressure during nitriding treatment is preferably 10 to 500 atm and the nitriding temperature is 1550 to 195.
It is recommended to set it to 0 ° C.
【0014】上記のように窒化処理後の焼結体中には、
炭化珪素と窒化珪素および遊離炭素が存在するが、本発
明によれば、窒化珪素が28重量%以上、遊離炭素7重
量%以上の量になるように窒化時間を制御することが望
ましい。これは、窒化が不十分で炭素量が7重量%より
少ないと焼結体の密度を高められず、高密度体を得るこ
とができないためである。なお、炭化珪素の窒化によれ
ば、生成される遊離炭素は21重量%を越えることはな
い。また、上記窒化処理によれば、成形体中の陽イオン
不純物量を低減することができ、窒化条件を制御するこ
とにより100ppm以下にまで低減することができ
る。In the sintered body after the nitriding treatment as described above,
Although silicon carbide, silicon nitride and free carbon are present, according to the present invention, it is desirable to control the nitriding time so that the amount of silicon nitride is 28% by weight or more and the amount of free carbon is 7% by weight or more. This is because if the nitriding is insufficient and the carbon content is less than 7% by weight, the density of the sintered body cannot be increased and a high density body cannot be obtained. By nitriding silicon carbide, the generated free carbon does not exceed 21% by weight. Further, according to the nitriding treatment, the amount of cation impurities in the molded body can be reduced, and can be reduced to 100 ppm or less by controlling the nitriding conditions.
【0015】また、本発明によれば、上記製造過程にお
いて、窒化前の成形体を1600〜2100℃、特に1
700〜2000℃の10torr以下の減圧下で仮焼
処理することにより、さらに成形体中の陽イオン不純物
量を低減でき、この仮焼処理がその処理時間が長いほど
純度が向上する傾向にあるが、実用的には0.5〜12
時間が適当である。この仮焼処理によれば、成形体中の
陽イオン金属量を処理前よりも大幅に減少させることが
できる。出発原料中の陽イオン不純物量が200ppm
以下である場合、最終焼結体中の陽イオン金属量を50
ppm以下、さらに後述する実施例のように仮焼条件お
よび窒化条件を制御することにより10ppm以下にま
で低減することができる。Further, according to the present invention, in the above manufacturing process, the green body before nitriding is heated to 1600 to 2100 ° C., particularly 1
By performing the calcination treatment at 700 to 2000 ° C. under a reduced pressure of 10 torr or less, the amount of cationic impurities in the molded body can be further reduced, and the calcination treatment tends to improve the purity as the treatment time increases. , Practically 0.5-12
Time is appropriate. According to this calcination treatment, the amount of cation metal in the molded body can be significantly reduced as compared with that before the treatment. The amount of cationic impurities in the starting material is 200 ppm
When the amount is less than 50, the amount of cation metal in the final sintered body is 50
By controlling the calcination conditions and the nitriding conditions as below ppm, and further as in Examples described later, it is possible to reduce to below 10 ppm.
【0016】なお、高純度化のための他の方法として
は、上記仮焼処理ほどの効果はないが、窒化処理後の焼
結体を王水などに浸漬し成形体の表面に存在する不純物
成分を溶解除去し、その後純水で洗浄したり、成形体を
塩酸ガスと少量の水蒸気からなる800〜1200℃の
高温雰囲気に曝すことによっても純度を高めることがで
きる。As another method for high purification, although not as effective as the above-mentioned calcination treatment, impurities existing on the surface of the molded body by immersing the sintered body after the nitriding treatment in aqua regia or the like. Purity can also be increased by dissolving and removing the components and then washing with pure water or exposing the molded body to a high temperature atmosphere of 800 to 1200 ° C. consisting of hydrochloric acid gas and a small amount of water vapor.
【0017】[0017]
【作用】本発明のセラミック複合焼結体は、助剤成分な
どを全く含有せず、しかも遊離珪素などを含むこともな
く、炭化珪素と窒化珪素との複合体により3次元の網状
構造の骨格を有しているために、従来の反応焼結法によ
る炭化珪素焼結体に比較して高い強度を有する。しか
も、助剤などを全く添加せずに高密度化が達成され、し
かも陽イオン金属不純物量が非常に少ないことから、特
に半導体素子製造用の治具をはじめとして不純物の混入
を避ける必要のある各種の製造用治具や部品などに適用
することができる。The ceramic composite sintered body of the present invention does not contain auxiliary components at all, and does not contain free silicon, etc., and has a three-dimensional network structure skeleton made of a composite of silicon carbide and silicon nitride. Therefore, it has higher strength than the conventional silicon carbide sintered body by the reaction sintering method. Moreover, since densification is achieved without adding any auxiliaries or the like, and the amount of cation metal impurities is very small, it is necessary to avoid mixing of impurities especially in jigs for semiconductor device manufacturing. It can be applied to various manufacturing jigs and parts.
【0018】また、窒化前の成形体を仮焼処理すること
により成形体中の陽イオン不純物量を大幅に低減するこ
とができ、焼結体中の純度を高めることができ、半導体
製造用治具としての用途に対して特に有用である。ま
た、窒化後の焼結体は、炭化珪素結晶粒子が窒化珪素に
より結合された三次元網状の骨格により形成されている
ために骨格自体の強度が高い。By calcining the green body before nitriding, the amount of cation impurities in the green body can be significantly reduced, the purity in the sintered body can be increased, and a semiconductor manufacturing treatment can be performed. It is especially useful for application as a ingredient. Further, the sintered body after nitriding has high strength of the skeleton itself because the silicon carbide crystal particles are formed by the three-dimensional network skeleton bonded by silicon nitride.
【0019】さらに、従来の反応焼結法では高純度の炭
化珪素粉末を用いる必要があるが、本発明の方法によれ
ば、製造過程で高純度化が達成できるために、出発原料
として格別に高純度の原料を用いる必要がなく原料コス
トを低減できる。Further, in the conventional reaction sintering method, it is necessary to use high-purity silicon carbide powder, but according to the method of the present invention, since high purification can be achieved in the manufacturing process, the starting raw material is exceptionally high. The raw material cost can be reduced because it is not necessary to use a high-purity raw material.
【0020】[0020]
実施例1 α型炭化珪素粉末(平均粒径0.5μm、金属不純物量
180ppm)を純水を溶媒としてゴムライニングポッ
トおよびウレタンボールを用いて十分に混合し、成形用
バインダーとしてPVAを添加し乾燥造粒を行った。Example 1 α-type silicon carbide powder (average particle size 0.5 μm, metal impurity amount 180 ppm) was thoroughly mixed with pure water as a solvent using a rubber lining pot and urethane balls, and PVA was added as a molding binder and dried. Granulation was performed.
【0021】得られた造粒粉を1000kg/cm2 の
圧力で金型プレスし、外径60mm厚さ20mmの成形
体を得、該成形体を真空中で加熱し、バインダーを分解
除去した。この時の成形体の相対密度をアルキメデス法
により測定したところ、60%であった。The obtained granulated powder was die-pressed at a pressure of 1000 kg / cm 2 to obtain a molded product having an outer diameter of 60 mm and a thickness of 20 mm, and the molded product was heated in vacuum to decompose and remove the binder. When the relative density of the molded body at this time was measured by the Archimedes method, it was 60%.
【0022】次に、この成形体を表1に示す条件で窒化
処理した。得られた焼結体に対してアルキメデス法によ
り相対密度を測定するとともに、X線回折測定により結
晶相の同定を行った。さらに、焼結体表層部と焼結体内
部より切り出した試料を粉砕し、窒素酸素同時分析装置
(LECO社製)で全炭素量、全窒素量および遊離炭素
量を測定し、窒素は窒化珪素として計算し、全炭素量と
遊離炭素量との差により炭化珪素として存在する結合炭
素を求め、炭化珪素、窒化珪素および遊離炭素量を定量
した。また不純物量についてはICP発光分光分析によ
り測定した。Next, this molded body was nitrided under the conditions shown in Table 1. The relative density of the obtained sintered body was measured by the Archimedes method, and the crystal phase was identified by X-ray diffraction measurement. Further, the sample cut out from the surface portion of the sintered body and the inside of the sintered body was crushed, and the total carbon amount, the total nitrogen amount and the free carbon amount were measured by a nitrogen-oxygen simultaneous analyzer (manufactured by LECO), and nitrogen was silicon nitride. The bonded carbon present as silicon carbide was determined by the difference between the total carbon content and the free carbon content, and the silicon carbide, silicon nitride and free carbon content were quantified. The amount of impurities was measured by ICP emission spectroscopy.
【0023】さらに、焼結体の機械的特性評価として、
JISR1601に基づき、4点曲げ強度を測定した。
また、ヒートサイクルテストとして、N2 雰囲気中で室
温から1500℃の出し入れを10回行った後、クラッ
クの有無を観察した。測定結果は表1に示した。Further, as an evaluation of mechanical properties of the sintered body,
Four-point bending strength was measured based on JISR1601.
In addition, as a heat cycle test, the presence or absence of cracks was observed after carrying out in and out from room temperature to 1500 ° C. 10 times in an N 2 atmosphere. The measurement results are shown in Table 1.
【0024】[0024]
【表1】 [Table 1]
【0025】表1によれば、窒化処理時のN2 圧が10
atmより低い試料No.1、窒化温度が1500℃より
低い試料No.3は、いずれも窒化が生じない。また、窒
化が生じる条件であって、N2 圧が高い試料No.10や
試料No.11では、表面から内部まで窒化は進行する
が、炭素量に内外差が生じた。それにより熱サイクルで
クラックが生じるため、繰り返し特性の点からは、窒化
条件をN2 圧10〜500atm、窒化温度1550〜
1950℃に設定し、炭素量の内外差を20%以内に抑
制することが望ましいことがわかる。According to Table 1, the N 2 pressure during the nitriding treatment is 10
The nitriding did not occur in the sample No. 1 lower than atm and the nitriding temperature lower than 1500 ° C. Further, in the sample No. 10 and the sample No. 11 where the N 2 pressure is high, which is the condition for nitriding, the nitriding proceeds from the surface to the inside, but the difference in carbon amount between the inside and the outside occurred. As a result, cracks are generated in the heat cycle. From the viewpoint of repeated characteristics, the nitriding conditions are N 2 pressure of 10 to 500 atm and nitriding temperature of 1550 to.
It can be seen that it is desirable to set the temperature to 1950 ° C. and suppress the difference between the inside and outside of the carbon amount within 20%.
【0026】実施例2 実施例1と同様にして得た成形体に対して、表2に示す
ような条件で仮焼処理および窒化処理を行った。なお、
試料No.12〜17は、窒化条件を一定にし仮焼条件を
変えたもの、試料No.18〜27は表1の試料No.1〜
No.10の条件に対して1800℃、8時間の仮焼処理
工程を付加したものである。得られた各焼結体に対して
実施例1と同様にして特性の評価を行った。Example 2 The molded body obtained in the same manner as in Example 1 was subjected to calcination treatment and nitriding treatment under the conditions shown in Table 2. In addition,
Sample Nos. 12 to 17 are obtained by changing the calcination conditions while keeping the nitriding conditions constant, and Samples No. 18 to 27 are samples No. 1 to 1 in Table 1.
A calcination treatment step of 1800 ° C. for 8 hours is added to the No. 10 condition. The characteristics of each of the obtained sintered bodies were evaluated in the same manner as in Example 1.
【0027】[0027]
【表2】 [Table 2]
【0028】表2において、試料No.12〜17によれ
ば、仮焼処理温度が1600℃より低い試料No.12で
は不純物の除去効果が顕著でなく、2300℃を越える
と炭化珪素の分解が生じた。また、試料No.18〜27
は、最終焼結体中の陽イオン不純物量について表1の試
料No.1〜10と比較すると陽イオン不純物量が仮焼処
理により格段に減少することがわかる。In Table 2, according to the samples No. 12 to 17, the effect of removing impurities is not remarkable in the sample No. 12 in which the calcination temperature is lower than 1600 ° C., and the decomposition of silicon carbide occurs above 2300 ° C. occured. In addition, sample No. 18-27
In comparison with the samples No. 1 to 10 in Table 1 regarding the amount of cation impurities in the final sintered body, it can be seen that the amount of cation impurities is significantly reduced by the calcination treatment.
【0029】比較例1 実施例1で用いた炭化珪素粉末90重量部と、炭素粉末
(平均粒径2μm)10重量部とをメタノール溶媒を用
いて振動ミルにより混合し、成形用バインダーとしてP
VAを添加し、乾燥造粒を行った。この顆粒を金型プレ
スを用いて成形圧1000kg/cm2 で外径40m
m、厚み5mmの円板上成形体を得た。Comparative Example 1 90 parts by weight of the silicon carbide powder used in Example 1 and 10 parts by weight of carbon powder (average particle size 2 μm) were mixed in a vibrating mill using a methanol solvent, and P was used as a molding binder.
VA was added and dry granulation was performed. The granules were molded with a die press at a molding pressure of 1000 kg / cm 2 and an outer diameter of 40 m.
A disk-shaped molded product having a thickness of m and a thickness of 5 mm was obtained.
【0030】この成形体を窒素5気圧中で1800℃で
1時間処理し、気孔率48%の多孔質体を形成した。こ
の多孔質体を真空下で1600℃の溶融金属珪素に接触
させて、多孔質体の空隙部に金属珪素を充填させるとと
もに炭素をケイ化処理した。その結果、炭素は消失して
おり、新たにβ型炭化珪素の生成が認められた。This molded body was treated under nitrogen at 5 atm at 1800 ° C. for 1 hour to form a porous body having a porosity of 48%. The porous body was brought into contact with molten metallic silicon at 1600 ° C. under vacuum to fill the voids of the porous body with metallic silicon and to carbonize the carbon. As a result, carbon disappeared, and formation of β-type silicon carbide was newly confirmed.
【0031】この焼結体の嵩比重は2.82g/c
m3 、開気孔率8%、抗折強度は20kg/mm2 であ
り、本発明の実施例1〜3と比較して密度が低く、強度
も低いものであった。さらに、この焼結体の表面には金
属珪素が付着していたが、非常に強固に固着しており、
研磨しないと除去することができなかった。さらに陽イ
オン不純物量を測定したところ、168ppmであり、
原料中の不純物量がそのまま反映され製造工程では低減
されないことがわかった。The bulk specific gravity of this sintered body is 2.82 g / c.
m 3 , the open porosity was 8%, and the bending strength was 20 kg / mm 2 , and the density was low and the strength was low as compared with Examples 1 to 3 of the present invention. Furthermore, although metallic silicon was adhered to the surface of this sintered body, it adhered very firmly,
It could not be removed without polishing. Further, when the amount of cationic impurities was measured, it was 168 ppm,
It was found that the amount of impurities in the raw material was directly reflected and was not reduced in the manufacturing process.
【0032】比較例2 炭化珪素粉末(平均粒径0.5μm)22重量%、窒化
珪素粉末(平均粒径0.6μm)62重量%、炭素粉末
16重量%をメタノールを溶媒として振動ミルで混合し
成形用バインダーとしてPVAを添加し乾燥造粒を行っ
た。この顆粒を金型プレスを用いて成形圧1000kg
/cm2 で外径60mm、厚み20mmの円板状成形体
を得た。この成形体中の陽イオン不純物量は173pp
mであった。Comparative Example 2 22% by weight of silicon carbide powder (average particle size 0.5 μm), 62% by weight of silicon nitride powder (average particle size 0.6 μm), and 16% by weight of carbon powder were mixed in a vibrating mill using methanol as a solvent. Then, PVA was added as a molding binder, and dry granulation was performed. Molding pressure of these granules is 1000kg using a die press.
A disk-shaped molded body having an outer diameter of 60 mm and a thickness of 20 mm was obtained at a pressure of / cm 2 . The amount of cation impurities in this compact is 173 pp
It was m.
【0033】この成形体を窒素5気圧中、1800度で
1時間焼成した。この焼成では、十分な緻密化ができ
ず、得られた焼結体の密度は相対密度で60%であり、
その強度も70MPaと低いものであった。また、陽イ
オン不純物が170ppmと多く、出発原料中の不純物
量を低減することができなかった。This compact was fired at 1800 ° C. for 1 hour in nitrogen atmosphere of 5 atmospheres. With this firing, sufficient densification was not possible, and the density of the obtained sintered body was 60% in relative density,
Its strength was as low as 70 MPa. Further, the amount of cationic impurities was as large as 170 ppm, and the amount of impurities in the starting material could not be reduced.
【0034】[0034]
【発明の効果】以上詳述した通り、本発明によれば、助
剤などを全く添加することなく高密度化が達成され、し
かも従来の反応焼結法による炭化珪素焼結体に比較して
高い強度を有するとともに、高純度化をも達成できる。
これにより半導体素子製造用の治具をはじめとする不純
物の混入を避ける必要のある各種の製造用治具や部品な
どに適用することができる。As described above in detail, according to the present invention, high density can be achieved without adding any auxiliary agent, and in comparison with the conventional silicon carbide sintered body by the reaction sintering method. It has high strength and can achieve high purification.
As a result, the present invention can be applied to various manufacturing jigs, parts, etc. that need to avoid mixing of impurities such as jigs for manufacturing semiconductor elements.
Claims (4)
る焼結体であって、該窒化珪素および該遊離炭素が焼結
体中に実質的に均一に存在するとともに、Si以外の陽
イオン金属量が100ppm以下であり、且つ相対密度
が70%以上であることを特徴とするセラミック複合焼
結体。1. A sintered body composed of silicon carbide, silicon nitride and free carbon, wherein the silicon nitride and the free carbon are substantially uniformly present in the sintered body and a cation metal other than Si. An amount of 100 ppm or less, and a relative density of 70% or more, a ceramic composite sintered body.
以下の炭化珪素粉末からなる成形体を窒素雰囲気中で熱
処理することにより前記炭化珪素の一部を窒化して窒化
珪素と炭素を生成させて、Si以外の陽イオン金属量が
100ppm以下、相対密度が70%以上の焼結体を得
ることを特徴とするセラミック複合焼結体の製法。2. The amount of cation metal other than Si is 200 ppm.
A molded body made of the following silicon carbide powder is heat-treated in a nitrogen atmosphere to nitride part of the silicon carbide to generate silicon nitride and carbon. The amount of cation metal other than Si is 100 ppm or less, and the relative density is Of 70% or more is obtained, a method for producing a ceramic composite sintered body.
以下の炭化珪素粉末からなる成形体を仮焼処理した後、
該成形体を窒素雰囲気中で熱処理して前記炭化珪素の一
部を窒化して窒化珪素と炭素を生成させてSi以外の陽
イオン金属量が50ppm以下、相対密度が70%以上
の焼結体を得ることを特徴とするセラミック複合焼結体
の製法。3. The amount of cation metal other than Si is 200 ppm.
After calcination treatment of the following formed body made of silicon carbide powder,
A sintered body having a content of cation metals other than Si of 50 ppm or less and a relative density of 70% or more by heat-treating the formed body in a nitrogen atmosphere to nitride part of the silicon carbide to generate silicon nitride and carbon. A method for producing a ceramic composite sintered body, which comprises:
る焼結体であって、該窒化珪素および該遊離炭素が焼結
体中に実質的に均一に存在するとともに、Si以外の陽
イオン金属量が100ppm以下であり、且つ相対密度
が70%以上のセラミック複合焼結体からなる半導体製
造用治具。4. A sintered body composed of silicon carbide, silicon nitride and free carbon, wherein the silicon nitride and the free carbon are substantially uniformly present in the sintered body and a cation metal other than Si. A jig for semiconductor production, which comprises a ceramic composite sintered body having an amount of 100 ppm or less and a relative density of 70% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5156747A JPH0733528A (en) | 1993-06-28 | 1993-06-28 | Composite sintered ceramic, its production and semiconductor production jig made therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5156747A JPH0733528A (en) | 1993-06-28 | 1993-06-28 | Composite sintered ceramic, its production and semiconductor production jig made therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0733528A true JPH0733528A (en) | 1995-02-03 |
Family
ID=15634437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5156747A Pending JPH0733528A (en) | 1993-06-28 | 1993-06-28 | Composite sintered ceramic, its production and semiconductor production jig made therefrom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0733528A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270780A (en) * | 2000-03-27 | 2001-10-02 | Ibiden Co Ltd | Jig for producing semiconductor |
WO2015199099A1 (en) * | 2014-06-27 | 2015-12-30 | 三井金属鉱業株式会社 | Firing jig and process for producing firing jig |
CN116573940A (en) * | 2023-04-28 | 2023-08-11 | 合肥陶陶新材料科技有限公司 | High-toughness silicon carbide ceramic material and preparation method thereof |
-
1993
- 1993-06-28 JP JP5156747A patent/JPH0733528A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270780A (en) * | 2000-03-27 | 2001-10-02 | Ibiden Co Ltd | Jig for producing semiconductor |
WO2015199099A1 (en) * | 2014-06-27 | 2015-12-30 | 三井金属鉱業株式会社 | Firing jig and process for producing firing jig |
TWI609162B (en) * | 2014-06-27 | 2017-12-21 | 三井金屬鑛業股份有限公司 | Calcination jig and method for producing the same |
CN116573940A (en) * | 2023-04-28 | 2023-08-11 | 合肥陶陶新材料科技有限公司 | High-toughness silicon carbide ceramic material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5942455A (en) | Synthesis of 312 phases and composites thereof | |
JPH027908B2 (en) | ||
US4564601A (en) | Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process | |
JP3214890B2 (en) | Aluminum nitride sintered body, method for producing the same, and firing jig using the same | |
KR100500495B1 (en) | Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members | |
JP3667121B2 (en) | Boron carbide sintered body and manufacturing method thereof | |
JPH0733528A (en) | Composite sintered ceramic, its production and semiconductor production jig made therefrom | |
JP2003226580A (en) | Aluminum nitride-based ceramic and member for producing semiconductor | |
JP3297547B2 (en) | Method for producing silicon carbide sintered body | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JPS6041634B2 (en) | Method for manufacturing high-density silicon nitride reaction sintered body | |
JPH1179848A (en) | Silicon carbide sintered compact | |
JP3141505B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2696735B2 (en) | Manufacturing method of silicon nitride sintered body | |
JP2801821B2 (en) | Ceramic composite sintered body and method of manufacturing the same | |
JP3124866B2 (en) | Method for producing silicon nitride based sintered body | |
JP2000335989A (en) | Boron nitride sintered body and its production, jig for ceramic sintering, and production of boron nitride ceramic parts using the same | |
Yuan et al. | Reaction‐Formed Processes for AlN/Al Ceramic Composites | |
JPH08169765A (en) | Production of silicon nitride sintered compact | |
JPH02233560A (en) | High-strength calcined sialon-based compact | |
JP2890849B2 (en) | Method for producing silicon nitride sintered body | |
JP2747627B2 (en) | Silicon nitride based sintered body and method for producing the same | |
JP2777051B2 (en) | Method for producing silicon nitride based sintered body | |
JPH08104570A (en) | Production of silicon nitride-based sintered compact | |
JPH0812437A (en) | Production of sintered silicon carbide having high purity |