JPH07253320A - Controller for light source of optical scanning type displacement sensor - Google Patents

Controller for light source of optical scanning type displacement sensor

Info

Publication number
JPH07253320A
JPH07253320A JP4377794A JP4377794A JPH07253320A JP H07253320 A JPH07253320 A JP H07253320A JP 4377794 A JP4377794 A JP 4377794A JP 4377794 A JP4377794 A JP 4377794A JP H07253320 A JPH07253320 A JP H07253320A
Authority
JP
Japan
Prior art keywords
light
displacement sensor
holder
optical scanning
light projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4377794A
Other languages
Japanese (ja)
Inventor
Toshimitsu Isoi
利光 磯井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4377794A priority Critical patent/JPH07253320A/en
Publication of JPH07253320A publication Critical patent/JPH07253320A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To simply and precisely regulate the directivity of a light beam output from a light source. CONSTITUTION:An eccentric rivet 7 having an eccentric pin engaging with a groove provided on the outer circumference of a cylindrically formed light source is provided on a holder 12 wherein the light source 1 is rotatably housed around its axis. The light source 1 is rotated around its axis by the rotation operation of the rivet 7 and the long axial direction of a light beam whose cross section is elliptical is regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学的な三角測量によっ
て被測定物体までの距離や被測定物体の傾き(形状)を
非接触で計測する光走査型変位センサーにおける投光素
子の調整機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adjusting mechanism of a light-projecting element in an optical scanning displacement sensor for measuring the distance to an object to be measured and the inclination (shape) of the object to be measured by optical triangulation. It is a thing.

【0002】[0002]

【従来の技術】被測定物体までの距離や被測定物体の形
状を非接触で計測するために用いられている光走査型変
位センサーは、図6に示すように、レーザーからなる投
光素子1と、この投光素子1から出力される光ビームを
集光する投光光学系2及び走査装置3とからなる投光部
と、受光光学系4と一次元位置検出素子(PSD)であ
る検出素子5とからなる受光部とを備えたものとして形
成されている。
2. Description of the Related Art An optical scanning type displacement sensor used for measuring a distance to an object to be measured and a shape of the object to be measured in a non-contact manner is shown in FIG. And a light projecting unit including a light projecting optical system 2 that condenses the light beam output from the light projecting element 1 and a scanning device 3, a light receiving optical system 4, and a detection that is a one-dimensional position detecting element (PSD). It is formed as a device including a light receiving portion including the element 5.

【0003】投光部から出力される光ビームで被測定物
体6を照射してその反射光を受光部で受光する時、図7
に示すように、被測定物体6までの距離に応じて、受光
部における受光光学系4によって検出素子5上に形成す
る集光スポットの位置が変わるものであり、この時、検
出素子5はその集光スポットが両端電極間のどの位置に
あるかによって相反する一対の電流出力である位置信号
1 ,I2 を出すことから、被測定物体6までの距離を
測定することができるものであり、また上記走査方向
と、検出素子5における両端電極方向とは直交配置され
ていることから、上記走査により、被測定物体6表面に
おける走査方向における形状を判別することができる。
When the object to be measured 6 is irradiated with the light beam output from the light projecting section and the reflected light is received by the light receiving section, FIG.
As shown in FIG. 5, the position of the focused spot formed on the detection element 5 by the light receiving optical system 4 in the light receiving section changes according to the distance to the object 6 to be measured. Since the position signals I 1 and I 2 which are a pair of current outputs that are contradictory to each other depending on the position of the focused spot between the electrodes on both sides are output, the distance to the measured object 6 can be measured. Further, since the scanning direction and the both-end electrode direction of the detection element 5 are arranged orthogonally to each other, the shape of the surface of the measured object 6 in the scanning direction can be determined by the scanning.

【0004】ここにおいて、投光素子1が半導体レーザ
ーである場合、出力される光ビームはその断面形状が円
形ではなく、楕円形となっている。この時、図6に示す
ように、光ビームBの長軸方向が走査方向と一致してい
るならば、つまりは図8に示すように検出素子5上の集
光スポットSの短軸方向が両端電極を結ぶ方向となって
いるならば、距離検出精度が高くなる上に、走査方向両
端における集光スポットSa,Sbが図9に示すように
検出素子5上に集光されても、同図(b)に示すように光
強度分布は両集光スポットSa,Sbで同一であるため
に、位置信号I 1 ,I2 の比は一定であり、従って被測
定物体6表面の平面度はそのまま出力される。
Here, the light projecting element 1 is a semiconductor laser.
, The output light beam has a circular cross-sectional shape.
It has an oval shape, not a shape. At this time, as shown in FIG.
As described above, the long axis direction of the light beam B coincides with the scanning direction.
In other words, that is, as shown in FIG.
The minor axis direction of the light spot S is the direction connecting both electrodes.
If this is the case, distance detection accuracy will increase and
As shown in FIG. 9, the focused spots Sa and Sb at the end are
Even if the light is focused on the detection element 5, as shown in FIG.
Since the intensity distribution is the same for both focused spots Sa and Sb
And the position signal I 1, I2The ratio of
The flatness of the surface of the fixed object 6 is output as it is.

【0005】しかし、投光素子1から出力される断面楕
円形の光ビームの長軸方向が走査方向と平行になってい
ない(検出素子5の両端電極方向と直交していない)時
には、図10に示すように、走査方向の両端における検
出素子5への集光スポットSa,Sbのかかり方が違っ
てくるために、光強度分布が図10(b)に示すように、
両集光スポットSa,Sbによって異なることになり、
位置信号I1 ,I2 の比も図10(c)に示すように走査
方向両端で異なるものとなる。この結果、被測定物体6
表面の光ビーム走査方向における形状が異なるものとし
て判断されることになる。
However, when the major axis direction of the light beam having an elliptical cross section output from the light projecting element 1 is not parallel to the scanning direction (not perpendicular to the both end electrode direction of the detecting element 5), FIG. As shown in FIG. 10, since the focusing spots Sa and Sb are applied to the detection element 5 at both ends in the scanning direction differently, the light intensity distribution is as shown in FIG.
It depends on both focus spots Sa and Sb,
The ratio of the position signals I 1 and I 2 is also different at both ends in the scanning direction as shown in FIG. As a result, the measured object 6
It is determined that the shapes of the surfaces in the light beam scanning direction are different.

【0006】このために、光走査型変位センサーにおい
ては、図11に示すように、円筒形となっている投光素
子1を保持するホルダー12に、投光素子1のフランジ
部11に設けられた基準スロットとしての位置決め用の
溝10に係合する突起13を設けて、投光素子1の方向
性を考慮した保持を行っている。図中19は止め金具で
ある。
For this reason, in the optical scanning type displacement sensor, as shown in FIG. 11, the holder 12 for holding the cylindrical light projecting element 1 is provided on the flange portion 11 of the light projecting element 1. The projection 13 that engages with the positioning groove 10 serving as a reference slot is provided to hold the light projecting element 1 in consideration of its directivity. In the figure, 19 is a stopper.

【0007】[0007]

【発明が解決しようとする課題】しかし、この保持は、
投光素子1の部品精度(パッケージに対する素子の角度
ずれ)と、投光素子1を保持するホルダー12の部品精
度に頼っていたことから、各部品精度が一方向に偏って
いた場合、無視することができない角度ずれが生じてし
まうことがあった。
However, this holding is
Since the accuracy of the components of the light projecting element 1 (angle deviation of the element with respect to the package) and the accuracy of the component of the holder 12 that holds the light projecting element 1 are used, if the accuracy of each component is biased in one direction, it is ignored. There was a case where an angle deviation that could not be done occurred.

【0008】本発明はこのような点に鑑み為されたもの
であり、その目的とするところは投光素子から出力され
る光ビームの方向性についての調整を簡便に且つ精度良
く行うことができる光走査型変位センサーの投光素子調
整機構を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to easily and accurately adjust the directionality of a light beam output from a light projecting element. An object of the present invention is to provide a light projecting element adjusting mechanism of an optical scanning displacement sensor.

【0009】[0009]

【課題を解決するための手段】しかして本発明は、投光
素子から出力されるとともに走査装置によって走査され
る光ビームの被測定物体からの反射光を検出素子上に集
光して、検出素子上の集光位置によって被測定物体まで
の距離を検出する光走査型変位センサーにおいて、円筒
状に形成された投光素子をその軸回りに回転自在に納め
ているホルダーに、投光素子外周面に設けられた溝と係
合する偏心ピンを有する偏心鋲を設けていること、ある
いは投光素子外周面に設けられた溝と係合する突起を備
えたレバーを回転自在に取着して、このレバーをホルダ
ー外面に突出させていることに特徴を有している。
SUMMARY OF THE INVENTION According to the present invention, however, the reflected light from the object to be measured of the light beam which is output from the light projecting element and which is scanned by the scanning device is condensed on the detecting element and detected. In an optical scanning displacement sensor that detects the distance to the object to be measured by the focusing position on the element, the outer circumference of the light emitting element is placed in a holder that houses a cylindrical light emitting element rotatably around its axis. An eccentric stud having an eccentric pin that engages with a groove provided on the surface, or a lever provided with a protrusion that engages with the groove provided on the outer peripheral surface of the light emitting element is rotatably attached. The feature is that this lever is projected to the outer surface of the holder.

【0010】[0010]

【作用】本発明によれば、偏心鋲の回転もしくはレバー
の回転操作によって投光素子をその軸回りに回転させて
断面楕円形である光ビームの長軸方向を調整することが
できる。
According to the present invention, the projection element can be rotated about its axis by rotating the eccentric stud or the lever to adjust the major axis direction of the light beam having an elliptical cross section.

【0011】[0011]

【実施例】以下本発明を図示の実施例に基づいて詳述す
ると、光走査型変位センサー全体としての構成は上記従
来例で示したものと同じであるが、投光素子1として、
図1に示すように、円筒形で且つ後端側のフランジ部1
1の外周面に基準スロットとしての溝10を備えたもの
を用いている。そして投光素子1は投光光学系2と共に
ホルダー12に取り付けられるのであるが、このホルダ
ー12における断面円形で且つホルダー12を貫通して
いる収納孔14は、その後端側に段部を有して後端開口
径が内部径よりも大きくなっている。またホルダー12
はその外面と収納孔14の大径となっている後端部とを
つなぐねじ孔15及び貫通孔16を有しており、ねじ孔
15には止めねじ17が納められ、貫通孔16には先端
に偏心ピン70を有する偏心鋲7が納められている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the illustrated embodiments. Although the configuration of the entire optical scanning displacement sensor is the same as that shown in the above-mentioned conventional example,
As shown in FIG. 1, a cylindrical flange portion 1 on the rear end side
1 is provided with a groove 10 as a reference slot on the outer peripheral surface thereof. The light projecting element 1 is attached to the holder 12 together with the light projecting optical system 2, and the storage hole 14 of the holder 12 having a circular cross section and penetrating the holder 12 has a step portion on the rear end side. The rear end opening diameter is larger than the inner diameter. Also holder 12
Has a screw hole 15 and a through hole 16 for connecting the outer surface thereof and the rear end portion having the large diameter of the housing hole 14, and a set screw 17 is housed in the screw hole 15 and An eccentric tack 7 having an eccentric pin 70 at its tip is housed.

【0012】投光素子1をホルダー12の収納孔14に
その後端開口から納めてフランジ部11の前面を段部に
当接させ、止め金具19をホルダー12にビス止めし
て、止め金具19と投光素子1との間に介在させたリン
グ状の弾性材18で投光素子1を段部に押圧すること
で、投光素子1をがたつきのない状態で軸回りの回転が
自在となる状態でホルダー12に装着する。この時、投
光素子1の外周面の溝10が貫通孔16に対面するよう
にしておく。
The light projecting element 1 is housed in the housing hole 14 of the holder 12 from the rear end opening, the front surface of the flange portion 11 is brought into contact with the stepped portion, and the stopper 19 is screwed to the holder 12 to form the stopper 19. By pressing the light projecting element 1 against the stepped portion by the ring-shaped elastic material 18 interposed between the light projecting element 1 and the light projecting element 1, the light projecting element 1 can be freely rotated around its axis without rattling. The holder 12 is attached in this state. At this time, the groove 10 on the outer peripheral surface of the light projecting element 1 is made to face the through hole 16.

【0013】そして貫通孔16に偏心鋲7を挿入して先
端の偏心ピン70を溝10に係合させるとともに、この
偏心鋲7を回転させれば、偏心ピン70の動きにつれて
投光素子1は自身の軸回りに微小範囲内で回転する。従
って、表面が平面となっている被測定物体6までの距離
の測定を行うとともに、走査方向における出力変化が無
い状態となるように投光素子1の調整を偏心鋲7によっ
て行い、調整が終われば止めねじ17を締め込んで投光
素子1を固定する。この結果、投光素子1から出力され
る断面楕円形の光ビームの長軸方向のずれをなくすこと
ができる。
When the eccentric stud 7 is inserted into the through hole 16 so that the eccentric pin 70 at the tip end is engaged with the groove 10 and the eccentric stud 7 is rotated, the light projecting element 1 moves as the eccentric pin 70 moves. It rotates around its own axis within a very small range. Therefore, the distance to the measured object 6 having a flat surface is measured, and the projection element 1 is adjusted by the eccentric stud 7 so that the output does not change in the scanning direction, and the adjustment is completed. The projecting element 1 is fixed by tightening the set screw 17. As a result, it is possible to eliminate the deviation in the major axis direction of the light beam having an elliptical cross section output from the light projecting element 1.

【0014】図3及び図4に示す実施例においては、上
記偏心鋲7に代えて、レバー8を用いている。リング状
であるとともに軸方向に突出する係合片80と、外周方
向に突出する操作片81とを備えているレバー8は、弾
性材18と投光素子1との間に配設されて係合片80を
投光素子1の溝10に係合させるとともに、操作片81
をホルダー12に形成された切欠20を通じてホルダー
12の外面に突出させるものであり、レバー8の操作片
81を操作することでレバー8を回転させれば、投光素
子1も軸回りの回転を行う。この場合、ホルダー12の
外面に突出するレバー8は投光素子1の組み込み方向で
あるホルダー12の後端面側から操作することができる
ことになる。操作片81に孔82を明けておくと、工具
9を孔82に差し込んで操作片81を動かすことができ
るために、調整操作がより容易となる。図5に示すよう
に、操作片81を後方側へ屈曲させておいても、調整操
作が容易となる。
In the embodiment shown in FIGS. 3 and 4, a lever 8 is used instead of the eccentric stud 7. The lever 8 having a ring-shaped engaging piece 80 protruding in the axial direction and an operating piece 81 protruding in the outer peripheral direction is disposed between the elastic member 18 and the light projecting element 1 and is engaged. The coupling piece 80 is engaged with the groove 10 of the light projecting element 1, and the operation piece 81
Is projected to the outer surface of the holder 12 through the notch 20 formed in the holder 12. When the lever 8 is rotated by operating the operation piece 81 of the lever 8, the light projecting element 1 also rotates about the axis. To do. In this case, the lever 8 protruding to the outer surface of the holder 12 can be operated from the rear end surface side of the holder 12, which is the direction in which the light projecting element 1 is assembled. When the hole 82 is opened in the operation piece 81, the tool 9 can be inserted into the hole 82 and the operation piece 81 can be moved, so that the adjustment operation becomes easier. As shown in FIG. 5, even if the operation piece 81 is bent rearward, the adjustment operation becomes easy.

【0015】[0015]

【発明の効果】以上のように本発明においては、偏心鋲
の回転もしくはレバーの回転操作によって投光素子をそ
の軸回りに回転させて断面楕円形である光ビームの長軸
方向を調整することができるものであり、投光素子の調
整を容易に且つ確実に行うことができる。特に、偏心鋲
を用いた場合は微調整が容易となり、ホルダー外面に突
出するレバーを用いた場合は調整操作の操作方向が限定
されないことになる。
As described above, in the present invention, the major axis direction of the light beam having an elliptical cross section is adjusted by rotating the light projecting element about its axis by rotating the eccentric stud or rotating the lever. It is possible to adjust the light projecting element easily and surely. Especially, when the eccentric stud is used, fine adjustment becomes easy, and when the lever protruding to the outer surface of the holder is used, the operation direction of the adjustment operation is not limited.

【0016】また弾性材を介してホルダーで投光素子を
保持している時には、投光素子のがたつきを抑制するこ
とができるために、調整操作がより容易となる。
Further, when the light projecting element is held by the holder through the elastic material, it is possible to suppress the rattling of the light projecting element, so that the adjusting operation becomes easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示すもので、(a)は分解斜視図、(b)
は斜視図である。
1 shows an embodiment, (a) is an exploded perspective view, (b)
Is a perspective view.

【図2】(a)は同上の縦断面図、(b)は同上の横断面図で
ある。
FIG. 2A is a vertical sectional view of the above, and FIG. 2B is a horizontal sectional view of the same.

【図3】他の実施例を示すもので、(a)は分解斜視図、
(b)は斜視図である。
FIG. 3 shows another embodiment, (a) is an exploded perspective view,
(b) is a perspective view.

【図4】(a)は同上の縦断面図、(b)は同上の横断面図で
ある。
FIG. 4 (a) is a vertical sectional view of the above, and FIG. 4 (b) is a horizontal sectional view of the same.

【図5】同上の他例を示すもので、(a)は斜視図、(b)は
レバーの斜視図である。
5A and 5B show another example of the above, wherein FIG. 5A is a perspective view and FIG. 5B is a perspective view of a lever.

【図6】光走査型変位センサーの概略構成を示す斜視図
である。
FIG. 6 is a perspective view showing a schematic configuration of an optical scanning displacement sensor.

【図7】同上の側面図である。FIG. 7 is a side view of the above.

【図8】同上の走査方向における集光位置を示すもの
で、(a)は平面図、(b)は正面図である。
8A and 8B are views showing the light collecting position in the scanning direction of the above, wherein FIG. 8A is a plan view and FIG. 8B is a front view.

【図9】集光スポットの長軸方向が正規の場合を示すも
ので、(a)は正面図、(b)は光強度分布図、(c)は出力説
明図である。
9A and 9B show a case where the major axis direction of a focused spot is normal, where FIG. 9A is a front view, FIG. 9B is a light intensity distribution diagram, and FIG. 9C is an output explanatory diagram.

【図10】集光スポットの長軸方向がずれている場合を
示すもので、(a)は正面図、(b)は光強度分布図、(c)は
出力説明図である。
10A and 10B show a case where the long axis direction of a focused spot is deviated, where FIG. 10A is a front view, FIG. 10B is a light intensity distribution diagram, and FIG. 10C is an output explanatory diagram.

【図11】従来例の分解斜視図である。FIG. 11 is an exploded perspective view of a conventional example.

【符号の説明】[Explanation of symbols]

1 投光素子 7 偏心鋲 12 ホルダー 1 Light emitting element 7 Eccentric stud 12 Holder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 投光素子から出力されるとともに走査装
置によって走査される光ビームの被測定物体からの反射
光を検出素子上に集光して、検出素子上の集光位置によ
って被測定物体までの距離を検出する光走査型変位セン
サーにおいて、円筒状に形成された投光素子をその軸回
りに回転自在に納めているホルダーに、投光素子外周面
に設けられた溝と係合する偏心ピンを有する偏心鋲を設
けていることを特徴とする光走査型変位センサーの投光
素子調整機構。
1. The object to be measured is focused on a detection element by converging light reflected from the object to be measured, which is a light beam output from the light projecting element and scanned by the scanning device, on the detection element. In an optical scanning type displacement sensor that detects the distance to, a holder that rotatably houses a cylindrical light emitting element is engaged with a groove provided on the outer peripheral surface of the light emitting element. An illuminating element adjusting mechanism for an optical scanning displacement sensor, characterized in that an eccentric stud having an eccentric pin is provided.
【請求項2】 投光素子から出力されるとともに走査装
置によって走査される光ビームの被測定物体からの反射
光を検出素子上に集光して、検出素子上の集光位置によ
って被測定物体までの距離を検出する光走査型変位セン
サーにおいて、円筒状に形成された投光素子をその軸回
りに回転自在に納めているホルダーに、投光素子外周面
に設けられた溝と係合する突起を備えたレバーを回転自
在に取着して、このレバーをホルダー外面に突出させて
いることを特徴とする光走査型変位センサーの投光素子
調整機構。
2. The object to be measured is focused on the detection element by collecting reflected light from the object to be measured, which is a light beam output from the light projecting element and scanned by the scanning device, on the detection element. In an optical scanning type displacement sensor that detects the distance to, a holder that rotatably houses a cylindrical light emitting element is engaged with a groove provided on the outer peripheral surface of the light emitting element. A projection element adjusting mechanism for an optical scanning displacement sensor, characterized in that a lever having a protrusion is rotatably attached and the lever is projected to the outer surface of the holder.
【請求項3】 投光素子は弾性材にてホルダーに保持さ
れていることを特徴とする請求項1または2記載の光走
査型変位センサーの投光素子調整機構。
3. The light projecting element adjusting mechanism of the optical scanning displacement sensor according to claim 1, wherein the light projecting element is held by a holder with an elastic material.
【請求項4】 レバーにおけるホルダー外面への突出部
は投光方向と逆方向に屈曲されていることを特徴とする
請求項2記載の光走査型変位センサーの投光素子調整機
構。
4. The light-projecting element adjusting mechanism for an optical scanning displacement sensor according to claim 2, wherein the protrusion of the lever on the outer surface of the holder is bent in a direction opposite to the light-projecting direction.
JP4377794A 1994-03-15 1994-03-15 Controller for light source of optical scanning type displacement sensor Withdrawn JPH07253320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4377794A JPH07253320A (en) 1994-03-15 1994-03-15 Controller for light source of optical scanning type displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4377794A JPH07253320A (en) 1994-03-15 1994-03-15 Controller for light source of optical scanning type displacement sensor

Publications (1)

Publication Number Publication Date
JPH07253320A true JPH07253320A (en) 1995-10-03

Family

ID=12673194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4377794A Withdrawn JPH07253320A (en) 1994-03-15 1994-03-15 Controller for light source of optical scanning type displacement sensor

Country Status (1)

Country Link
JP (1) JPH07253320A (en)

Similar Documents

Publication Publication Date Title
US5626424A (en) Dual light source aiming mechanism and improved actuation system for hand-held temperature measuring unit
US6982410B2 (en) Photoelectric sensor with deflection angle adjustment arrangement
JPH063125A (en) Optical type displacement meter
US7330278B2 (en) Optical displacement measurement device
JPH0581693A (en) Optical head
US5570187A (en) Weld-position detector provided with an optical axis adjustment means and used with a robot welding machine
JPH10227621A (en) Surface inspecting apparatus and method
JPH05280943A (en) Light source device for measuring shape
JPH07253320A (en) Controller for light source of optical scanning type displacement sensor
JPH0587548A (en) Attitude angle detector
JP2004045381A (en) Optical sensor
JP3922002B2 (en) Laser marking device
JPH0340478A (en) Laser diode module
JP2561465Y2 (en) Optical device fixing structure of optical device
JPH03160411A (en) Laser light scanner
JPH11271595A (en) Mirror holder device
JPH0942953A (en) Optical displacement sensor
JPH0637372Y2 (en) Focus detection device
JPH1123699A (en) Laser optical axis adjustment device
JPH10239148A (en) Vibration-measuring device
JP2003344011A (en) Displacement measuring apparatus
JPH10142517A (en) Micro-actuator
JPH01138625A (en) Optical head structure
JPS61104240A (en) Alignment of optical axis in light transmissivity measuring apparatus
JPS6124883Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605