JPH06267408A - Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these - Google Patents
Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using theseInfo
- Publication number
- JPH06267408A JPH06267408A JP5072841A JP7284193A JPH06267408A JP H06267408 A JPH06267408 A JP H06267408A JP 5072841 A JP5072841 A JP 5072841A JP 7284193 A JP7284193 A JP 7284193A JP H06267408 A JPH06267408 A JP H06267408A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- cantilever
- micro
- detection probe
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000523 sample Substances 0.000 title claims abstract description 111
- 238000006073 displacement reaction Methods 0.000 title claims description 35
- 238000001514 detection method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000010365 information processing Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 239000011800 void material Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 14
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Micromachines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は原子間力やトンネル電流
の検知等に用いられる微小変位検出プローブ及びこれを
用いた走査型プローブ顕微鏡並びに情報処理装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine displacement detection probe used for detecting atomic force and tunnel current, a scanning probe microscope using the probe, and an information processing apparatus.
【0002】[0002]
【従来の技術】単結晶、非晶質を問わず実空間の高い分
解能を有する表面観察方法として、走査型プローブ顕微
鏡(以下、SPMと略す)と総称され、試料とプローブ
の近接相互作用による種々の力を測定する装置が開発さ
れてきている。近年、注目を集めている走査型トンネル
顕微鏡(STM)(G.Binning et al.
Phys.Rev.Lett.49、57(198
2))は、プローブと試料が接近したときに得られるト
ンネル電流及び電界放射電流を利用して表面状態を調べ
る装置であり、走査型原子間力顕微鏡(AFM)は試料
とプローブが接近したときに生じる原子間力を検出して
試料の表面状態を調べる装置である。2. Description of the Related Art A scanning probe microscope (hereinafter abbreviated as SPM) is a general term for a surface observing method having high resolution in a real space regardless of whether it is a single crystal or an amorphous material, and various methods based on proximity interaction between a sample and a probe are used. Devices have been developed to measure the force of the. A scanning tunneling microscope (STM) (G. Binning et al.
Phys. Rev. Lett. 49, 57 (198
2)) is a device for investigating the surface state using the tunnel current and field emission current obtained when the probe and the sample come close to each other. The scanning atomic force microscope (AFM) is a device when the sample and the probe come close to each other. This is a device for examining the surface condition of the sample by detecting the interatomic force generated in the.
【0003】かかるプローブとしては、カンチレバー上
に探針尖端を備えたものが知られている。従来、カンチ
レバーの変位を光干渉計、特にファブリペロー共振器で
測定するSPMには、(a)G.Binningらから
出願されたもの(EP0290648,JP63−30
9802)があり、この構成を図11に示す。これはカ
ンチレバー5上に備えた反射鏡73と、支持体71の反
対面に備えたハーフミラー74と、支持体71に設けら
れたヴァイアホール72でファブリペロー共振器が構成
される。As such a probe, a probe having a probe tip on a cantilever is known. Conventionally, the SPM for measuring the displacement of the cantilever using an optical interferometer, particularly a Fabry-Perot resonator, includes (a) G. Filed from Binning et al. (EP0290648, JP63-30)
9802), and this configuration is shown in FIG. A Fabry-Perot resonator is composed of a reflecting mirror 73 provided on the cantilever 5, a half mirror 74 provided on the opposite surface of the support 71, and a via hole 72 provided in the support 71.
【0004】また、別の従来例として(b)Rev.S
ci.Instrum.,Vol.62,No.5,
p.p.1280−1284(1991)にP.Mul
hernらが報告したものがあり、この構成を図12に
示す。これは光ファイバー端84を一方の反射面となる
ように高精度の治具82を用いてファブリペロー共振器
を構成したものである。As another conventional example, (b) Rev. S
ci. Instrum. , Vol. 62, No. 5,
p. p. 1280-1284 (1991). Mul
Some of them have been reported by hern et al., and this configuration is shown in FIG. This is a structure in which a Fabry-Perot resonator is constructed by using a highly accurate jig 82 so that the optical fiber end 84 becomes one reflection surface.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記従来
例(a)では、ファブリペロー共振器を構成する2つの
反射面73,74の間隔がプローブ支持体71の厚さ以
上に離れてしまう。プローブ支持体の厚さを測定光の波
長あるいはそれ以下の厚さとすることは、取扱いや作製
技術の面から不可能である。このために以下の欠点があ
った。(1)測定光を波長あるいはその10倍程度のビ
ームに絞ろうとすると、光の平行度が悪くなり、従って
共振器を往復する間のビームの広がりから、得られる干
渉縞が暗くなる、あるいはコントラストが下がってしま
う。(2)また、逆に平行度の高い太いビームを用いる
とカンチレバーの変位が自由端側と固定端側で異なるこ
とから、得られる干渉縞の動きが複雑になる、あるいは
コントラストが下がってしまう。However, in the above-mentioned conventional example (a), the distance between the two reflecting surfaces 73 and 74 constituting the Fabry-Perot resonator is larger than the thickness of the probe support 71. It is impossible to set the thickness of the probe support to the wavelength of the measurement light or less than that from the viewpoint of handling and manufacturing technology. Therefore, there are the following drawbacks. (1) If the measurement light is narrowed down to a beam having a wavelength or about 10 times that, the parallelism of the light is deteriorated, so that the interference fringes obtained become dark or the contrast becomes dark due to the spread of the beam while reciprocating the resonator. Will drop. (2) On the contrary, when a thick beam having a high degree of parallelism is used, the displacement of the cantilever differs between the free end side and the fixed end side, so that the movement of the interference fringes obtained becomes complicated or the contrast decreases.
【0006】また、従来例(b)では、共振器の2つの
反射面である光ファイバー端面84とカンチレバー81
上の反射面を近接させ、かつほぼ平行となるように調整
するには作業者の高い熟練度、あるいは高い精度の治具
が要求される、また生産性も悪い。Further, in the conventional example (b), the optical fiber end surface 84 and the cantilever 81, which are two reflecting surfaces of the resonator, are provided.
In order to bring the upper reflecting surfaces close to each other and to adjust them so that they are substantially parallel to each other, a highly skilled operator or a jig with high accuracy is required, and productivity is also poor.
【0007】従って、本発明の目的は、明るくコントラ
ストの高い干渉縞が得られるファブリペロー共振器を備
えたプローブを提供することにある。Therefore, an object of the present invention is to provide a probe having a Fabry-Perot resonator capable of obtaining bright and high-contrast interference fringes.
【0008】本発明の他の目的は、上記プローブを備え
た走査型プローブ顕微鏡、情報処理装置を提供すること
にある。Another object of the present invention is to provide a scanning probe microscope and an information processing apparatus equipped with the above probe.
【0009】[0009]
【課題を解決するための手段及び作用】上記目的を達成
するために成された本発明は、第一に、カンチレバーの
自由端に探針尖端を備え、該探針尖端と試料表面との相
互作用により生ずるカンチレバーの微小変位が、測定光
を用いた光学的な手段により検出される微小変位検出プ
ローブの製造方法において、(1)測定光に対して透明
な層上に後工程で除去するバッファ層を形成する工程、
(2)上記透明層上にカンチレバー支持部を形成する工
程、(3)上記バッファ層上にカンチレバー本体を形成
する工程、(4)カンチレバー形成後に上記バッファ層
を除去する工程とを含むことを特徴とする微小変位検出
プローブの作製方法であり、第二に、上記第一の作製方
法により作製される微小変位検出プローブであって、片
面に測定光を部分反射する反射面を有する透明層上に、
該透明層に対して空隙を保持してカンチレバーが形成さ
れていることを特徴とする微小変位検出プローブであ
り、第三に、プローブと試料間の近接相互作用を利用し
た走査型プローブ顕微鏡において、該プローブに上記第
二の微小変位検出プローブを用いたことを特徴とする走
査型プローブ顕微鏡であり、第四に、記録媒体にプロー
ブを介して情報の記録再生を行う情報処理装置におい
て、該プローブに上記第二の微小変位検出プローブを用
いたことを特徴とする情報処理装置である。Means for Solving the Problems and Actions to be Solved by the Invention The first aspect of the present invention is to provide a free end of a cantilever with a probe tip, the probe tip and the sample surface being mutually In the method of manufacturing a microdisplacement detection probe, the microdisplacement of the cantilever caused by the action is detected by an optical means using the measurement light, (1) A buffer to be removed in a later step on a layer transparent to the measurement light. Forming layers,
(2) a step of forming a cantilever support portion on the transparent layer, (3) a step of forming a cantilever body on the buffer layer, and (4) a step of removing the buffer layer after forming the cantilever. A method for manufacturing a micro displacement detection probe, and second, a micro displacement detection probe manufactured by the above-mentioned first manufacturing method, on a transparent layer having a reflective surface for partially reflecting measurement light on one surface ,
A microdisplacement detection probe characterized in that a cantilever is formed by holding a gap with respect to the transparent layer, and thirdly, in a scanning probe microscope utilizing proximity interaction between the probe and the sample, A scanning probe microscope characterized by using the second minute displacement detection probe for the probe, and fourth, in an information processing device for recording and reproducing information on a recording medium via the probe, In the information processing device, the second minute displacement detection probe is used.
【0010】本発明の微小変位検出プローブは、一般の
半導体プロセス技術を用いて容易に作製することがで
き、その具体例を図1の工程図に従って説明する。The micro-displacement detecting probe of the present invention can be easily manufactured by using a general semiconductor process technique, and a specific example thereof will be described with reference to the process chart of FIG.
【0011】先ず、基板1上に100Å〜数百Åの厚さ
で測定光の反射率が50〜90%となる第1の反射層2
を形成する(図1(a)参照)。基板1はカンチレバー
およびファブリペロー共振器を保持するものであり、測
定光(波長λ)が可視光の場合はガラス基板、赤外光の
場合はガラスあるいはSi基板など測定光に対して透明
な材料を用いることができる。第1の反射層2としては
AuあるいはCrなどの蒸着膜や誘電体多層膜を用いる
ことができる。First, the first reflection layer 2 having a thickness of 100 Å to several hundred Å on the substrate 1 and the reflectance of the measurement light is 50 to 90%.
Are formed (see FIG. 1A). The substrate 1 holds a cantilever and a Fabry-Perot resonator, and is a material transparent to the measurement light such as a glass substrate when the measurement light (wavelength λ) is visible light and a glass or Si substrate when the measurement light is infrared light. Can be used. As the first reflective layer 2, a vapor deposition film of Au or Cr or a dielectric multilayer film can be used.
【0012】次に、厚さがλの数分の1程度のAlある
いはTiのバッファ層3を形成し、フォトリソ技術によ
りカンチレバー支持部となる部分3aをエッチングによ
り除去する(図1(b)参照)。Next, a buffer layer 3 of Al or Ti having a thickness of a fraction of λ is formed, and a portion 3a to be a cantilever supporting portion is removed by etching by photolithography (see FIG. 1B). ).
【0013】次に、第1の反射層2と同様にして第2の
反射層4を形成する(図1(c)参照)。尚、この第2
の反射層4は、後述するカンチレバー本体が測定光を反
射する材料から成る場合には必ずしも設ける必要はな
い。Next, the second reflective layer 4 is formed in the same manner as the first reflective layer 2 (see FIG. 1C). In addition, this second
The reflective layer 4 is not necessarily provided when the cantilever body described later is made of a material that reflects the measurement light.
【0014】次に、カンチレバー本体5となるSiO2
あるいはSi3N4層を厚さ0.5〜1μmでスパッタあ
るいはCVDにより形成する。さらにフォトリソ技術に
よりカンチレバー形状に加工し、その上に探針尖端6を
Pt等でEB蒸着により作製する(図1(d)参照)。Next, SiO 2 which becomes the cantilever body 5
Alternatively, a Si 3 N 4 layer is formed with a thickness of 0.5 to 1 μm by sputtering or CVD. Further, it is processed into a cantilever shape by a photolithography technique, and a probe tip 6 is formed thereon by EB vapor deposition with Pt or the like (see FIG. 1D).
【0015】最後に、AlあるいはTiのバッファ層3
を選択的に、例えば弗酸と硝酸の混酸でエッチングによ
り除去する(図1(e)参照)。尚、7aは測定光、7
bは第1の反射層2からの反射光、7cは第2の反射層
4からの反射光を表わしている。Finally, a buffer layer 3 of Al or Ti
Are selectively removed by etching, for example, with a mixed acid of hydrofluoric acid and nitric acid (see FIG. 1E). In addition, 7a is a measuring light,
Reference numeral b represents reflected light from the first reflective layer 2, and reference numeral 7c represents reflected light from the second reflective layer 4.
【0016】この様にして作製される本発明の微小変位
検出プローブは、透過層となる基板1に設けられた反射
層2と、カンチレバー5に設けられた反射層4との間隔
を測定光の波長あるいはそれ以下とすることができ、ま
た、これらの反射面をほぼ平行な状態で形成することが
できる。これにより、明るくコントラストの高い干渉縞
が得られるファブリペロー共振器を備えた微小変位検出
プローブとなるものである。The micro-displacement detecting probe of the present invention produced in this manner measures the distance between the reflective layer 2 provided on the substrate 1 serving as the transmissive layer and the reflective layer 4 provided on the cantilever 5 for measuring light. The wavelength can be set to the wavelength or less, and these reflecting surfaces can be formed in a substantially parallel state. As a result, the fine displacement detection probe is provided with the Fabry-Perot resonator that can obtain bright and high-contrast interference fringes.
【0017】本発明の微小変位検出プローブは図1
(e)に示したような構成に限定されるものではなく、
例えば図2や図3に示すような構成とすることもでき
る。The small displacement detection probe of the present invention is shown in FIG.
The configuration is not limited to that shown in (e),
For example, the configuration shown in FIGS. 2 and 3 may be adopted.
【0018】図2の構成では、測定光に対して不透明な
基板8上に透過層9を形成した後、図1と同様に反射層
2,4、バッファ層3、カンチレバー5、尖端6を形成
後、バッファ層3を除去し、さらに測定光7aが透過す
る部分の基板8を除去して形成したものである。In the structure shown in FIG. 2, after the transmission layer 9 is formed on the substrate 8 which is opaque to the measurement light, the reflection layers 2 and 4, the buffer layer 3, the cantilever 5 and the tip 6 are formed as in FIG. After that, the buffer layer 3 is removed, and the substrate 8 in a portion where the measurement light 7a is transmitted is removed.
【0019】図3の構成では、測定光に対して不透明な
基板8上に、先に反射層2を形成し、その上に透過層9
を形成し、その後は図2のものと同じ工程で作製したも
のであり、2つの反射層2,4間に透明層9と空隙3b
が存在している。In the configuration of FIG. 3, the reflective layer 2 is first formed on the substrate 8 which is opaque to the measurement light, and the transmissive layer 9 is formed thereon.
2 is formed in the same process as that of FIG. 2, and the transparent layer 9 and the void 3b are provided between the two reflective layers 2 and 4.
Exists.
【0020】尚、本発明の微小変位プローブにおいて、
カンチレバー本体が絶縁性材料で形成されている場合、
図4に示されるようにカンチレバー5上に尖端6を形成
する前に、後でバッファ層除去行程で犯されない材料例
えばAuなどで電極10を形成し、その上の尖端6を導
電性材料、例えばPtで形成する。これにより試料と尖
端6間にトンネル電流を流すための電極10とファブリ
ペロー共振器を備えたプローブが得られる。In the micro displacement probe of the present invention,
If the cantilever body is made of an insulating material,
Prior to forming the tip 6 on the cantilever 5 as shown in FIG. 4, the electrode 10 is formed of a material that is not violated later in the buffer layer removal process, such as Au, and the tip 6 thereon is made of a conductive material, such as Au. It is made of Pt. As a result, a probe provided with the electrode 10 for passing a tunnel current between the sample and the tip 6 and the Fabry-Perot resonator is obtained.
【0021】尚、上記構成例ではカンチレバー支持部5
aとカンチレバー本体5をおなじ材料で形成したが、支
持部5aを別の材料、例えばAu電極で挟み込んだ圧電
体ZnOで蒸着やスパッタにより形成し、外部から圧電
体に電圧を印加することにより圧電体を変形させて、2
つの反射面の間隔を調整可能なものとすることもでき
る。In the above configuration example, the cantilever support portion 5
Although the a and the cantilever body 5 are made of the same material, the supporting portion 5a is made of another material, for example, a piezoelectric body ZnO sandwiched between Au electrodes by vapor deposition or sputtering, and a voltage is applied to the piezoelectric body from outside to generate a piezoelectric material. Transform your body, 2
The distance between the two reflecting surfaces may be adjustable.
【0022】[0022]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0023】実施例1 本実施例では図1に示したような微小変位プローブを形
成した。 Example 1 In this example, a minute displacement probe as shown in FIG. 1 was formed.
【0024】先ず、ガラス基板1上に300Åの厚さで
測定光(波長6328Å)の反射率が50%となるAu
の層2を蒸着した。(図1(a))。さらにその上に厚
さが2000Å程度のAlのバッファ層3を蒸着し、フ
ォトリソ技術によりカンチレバー支持部となる部分3a
をエッチングにより除去した(図1(b))。さらに先
の反射層2と同様の反射層4を蒸着した(図1
(c))。その上にカンチレバー本体5となるSiO2
層を厚さ0.5μmでスパッタあるいはCVDにより形
成した。さらにフォトリソ技術によりカンチレバー形状
に加工し、その上にPtで尖端6をEB蒸着により作製
した(図1(d))。その後、Alのバッファ層3を選
択的に、弗酸と硝酸の混酸でエッチングにより除去した
(図1(e))。First, Au having a thickness of 300 Å on the glass substrate 1 has a reflectance of 50% for the measuring light (wavelength 6328 Å).
Layer 2 of was deposited. (FIG. 1 (a)). Further, a buffer layer 3 of Al having a thickness of about 2000 Å is vapor-deposited thereon, and a portion 3a to be a cantilever support portion is formed by photolithography technology.
Were removed by etching (FIG. 1 (b)). Further, a reflective layer 4 similar to the reflective layer 2 was vapor-deposited (see FIG. 1).
(C)). On top of that, the cantilever body 5 becomes SiO 2
The layer was formed with a thickness of 0.5 μm by sputtering or CVD. Further, it was processed into a cantilever shape by a photolithography technique, and the tip 6 was made of Pt thereon by EB vapor deposition (FIG. 1 (d)). Then, the Al buffer layer 3 was selectively removed by etching with a mixed acid of hydrofluoric acid and nitric acid (FIG. 1E).
【0025】本実施例で作製した微小変位プローブは、
2つの反射面がほぼ平行で、その間隔は2000Åであ
り、上記測定光の波長以下に形成しているため、該測定
光を用いて得られる干渉縞は非常に明るくコントラスト
の高いものであった。The micro displacement probe manufactured in this embodiment is
Since the two reflecting surfaces are substantially parallel and the distance between them is 2000 Å and they are formed at the wavelength of the measuring light or less, the interference fringes obtained by using the measuring light are very bright and have high contrast. .
【0026】実施例2 本実施例では図2に示したような微小変位プローブを形
成した。 Example 2 In this example, a minute displacement probe as shown in FIG. 2 was formed.
【0027】先ず、可視の測定光に対して不透明な方位
(100)のSi基板8の表面に熱酸化層9を形成し
た。さらにその上に実施例1と同様に、反射層2,4、
バッファ層3、カンチレバー5、尖端6を形成後、バッ
ファ層3を除去し、さらに測定光7aが透過する部分の
Si基板をKOHをエッチャントとして用いた異方性エ
ッチングにより除去した。First, a thermal oxide layer 9 was formed on the surface of a Si substrate 8 having an azimuth (100) opaque to visible measuring light. Further thereon, as in Example 1, the reflective layers 2, 4,
After forming the buffer layer 3, the cantilever 5, and the tip 6, the buffer layer 3 was removed, and the Si substrate of the portion through which the measurement light 7a was transmitted was removed by anisotropic etching using KOH as an etchant.
【0028】本実施例の微小変位プローブにおいても、
可視光を用いて得られる干渉縞は非常に明るくコントラ
ストの高いものであった。Also in the small displacement probe of this embodiment,
The interference fringes obtained using visible light were very bright and had high contrast.
【0029】実施例3 本実施例では図3に示したような微小変位プローブを形
成した。 Example 3 In this example, a minute displacement probe as shown in FIG. 3 was formed.
【0030】先ず、可視の測定光に対して不透明な方位
(100)のSi基板8上にAuの反射層2を蒸着し、
その上に、SiO2の透明層9をCVDで形成した。さ
らにその上に実施例1と同様に、反射層2,4、バッフ
ァ層3、カンチレバー5、尖端6を形成後、バッファ層
3を除去し、さらに測定光7aが透過する部分のSi基
板をKOHをエッチャントとして用いた異方性エッチン
グにより除去した。First, a reflective layer 2 of Au is vapor-deposited on a Si substrate 8 having an azimuth (100) which is opaque to visible measurement light.
A transparent layer 9 of SiO 2 was formed thereon by CVD. Further, similarly to the first embodiment, after forming the reflection layers 2 and 4, the buffer layer 3, the cantilever 5 and the tip 6 thereon, the buffer layer 3 is removed, and the portion of the Si substrate through which the measurement light 7a is transmitted is KOH. Was removed by anisotropic etching using as an etchant.
【0031】本実施例の微小変位プローブにおいても、
可視光を用いて得られる干渉縞は非常に明るくコントラ
ストの高いものであった。Also in the small displacement probe of this embodiment,
The interference fringes obtained using visible light were very bright and had high contrast.
【0032】実施例4 本実施例では実施例1〜3にて作製した本発明の微小変
位プローブを図5に示されるような構成の走査型プロー
ブ顕微鏡に搭載し、試料表面の観察を行ったものであ
る。 Example 4 In this example, the micro-displacement probe of the present invention produced in Examples 1 to 3 was mounted on a scanning probe microscope having a structure as shown in FIG. 5, and the sample surface was observed. It is a thing.
【0033】先ず、図5の装置において探針尖端6が観
察試料55の表面に1nm以下の距離まで近接するよう
に、X・Y・Zステージ56で該試料55の位置を調整
する。光源51から出射された測定光7aは、偏光ビー
ムスプリッタ52によりプローブ方向に反射され、1/
4波長板53により偏光方向が45度回転される。第1
の反射層2で測定光の一部が反射光7bとなり、透過光
の一部あるいは全てが第2の反射層4で反射光7cとな
る。反射光7b,7cは1/4波長板53を透過すると
偏光方向がさらに45度回転され、偏光ビームスプリッ
タ52を透過して受光素子54で受光される。受光され
る光強度は、複数の反射光が干渉した結果の強度とな
る。この光強度は2つの反射層2,4間距離によって、
すなわちカンチレバー5のたわみ量によって変化する。First, in the apparatus of FIG. 5, the position of the sample 55 is adjusted by the XYZ stage 56 so that the probe tip 6 approaches the surface of the observation sample 55 by a distance of 1 nm or less. The measurement light 7a emitted from the light source 51 is reflected toward the probe by the polarization beam splitter 52,
The polarization direction is rotated by 45 degrees by the four-wave plate 53. First
Part of the measurement light becomes reflected light 7b at the reflective layer 2 and part or all of the transmitted light becomes reflected light 7c at the second reflective layer 4. When the reflected lights 7b and 7c are transmitted through the quarter-wave plate 53, the polarization direction is further rotated by 45 degrees, transmitted through the polarization beam splitter 52, and received by the light receiving element 54. The received light intensity is the result of the interference of a plurality of reflected lights. This light intensity depends on the distance between the two reflective layers 2 and 4,
That is, it changes depending on the amount of deflection of the cantilever 5.
【0034】この光強度変化をZ方向変位信号として用
い、探針尖端6と試料55との相互作用によって生じる
カンチレバー5のたわみ量が一定となるようにZ方向フ
ィードバック処理回路57でZ方向ステージを調整しな
がら、X,Yステージ駆動回路57によりX方向,Y方
向の走査を行う。このとき試料55の表面状態により変
化するZ方向のフィードバック信号とX,Yの位置信号
を用いて表示装置58で試料表面状態を観察することが
できる。Using this change in light intensity as a Z direction displacement signal, the Z direction feedback processing circuit 57 moves the Z direction stage so that the deflection amount of the cantilever 5 caused by the interaction between the probe tip 6 and the sample 55 becomes constant. While adjusting, the X and Y stage drive circuit 57 performs scanning in the X and Y directions. At this time, the surface condition of the sample can be observed on the display device 58 by using the feedback signal in the Z direction and the position signals of X and Y which change depending on the surface condition of the sample 55.
【0035】上記プローブを用いて、高精度な走査型プ
ローブ顕微鏡を容易に実現できた。A highly accurate scanning probe microscope can be easily realized by using the above probe.
【0036】尚、観察試料55を情報が記録された媒
体、即ち表面変調したHOPG(Highly−Ori
ented−Pyrolithic−Graphit
e)劈開面、Siウェハー、Rh25Zr75、Co5
5Tb65、ガラス金属とし、表示装置26を情報抽出
装置とすることにより、本構成で情報再生装置も容易に
実現できた。The observation sample 55 is a medium on which information is recorded, that is, a surface-modulated HOPG (Highly-Ori).
ented-Pyrolithic-Graphit
e) Cleaved surface, Si wafer, Rh25Zr75, Co5
By using 5Tb65 and glass metal and using the display device 26 as an information extracting device, an information reproducing device could be easily realized with this configuration.
【0037】実施例5 本実施例では実施例1〜3の微小変位プローブの作製方
法において、フォトリソグラフのパターンを拡張するこ
とにより同一シリコン基板上に複数個作製したマルチ微
小変位プローブを、図6に示される構成の情報処理装置
に搭載し、情報の記録再生を行ったものである。 Embodiment 5 In this embodiment, in the method for manufacturing the micro displacement probe of Embodiments 1 to 3, a plurality of multi micro displacement probes manufactured on the same silicon substrate by expanding the pattern of the photolithography are shown in FIG. It is mounted on the information processing apparatus having the configuration shown in (1) to record and reproduce information.
【0038】記録時には、記録用電圧印加装置62によ
り適当なプローブの電極にパルス電圧を印加し、そのプ
ローブの尖端6と媒体55(例えば、スクアリリュウム
−ビス−6−オクチルアズレン等)間に流れるトンネル
電流により媒体の表面状態を変化させて情報を記録す
る。At the time of recording, a pulse voltage is applied to the electrode of an appropriate probe by the recording voltage applying device 62, and the pulse is applied between the tip 6 of the probe and the medium 55 (for example, squarylium-bis-6-octylazulene). Information is recorded by changing the surface state of the medium by the flowing tunnel current.
【0039】61は一つの光源と複数の部分反射ミラー
からなる光出射ユニットで、ここから出射された光7a
は実施例4と同様に2つの反射層で反射光7b,7cと
なる。この反射光によりできた干渉縞の光強度を受光素
子アレイ63で検知する。得られた光強度情報から記録
された情報を再生することができた。これにより、情報
記録再生装置が得られる。Reference numeral 61 is a light emitting unit consisting of one light source and a plurality of partial reflection mirrors, and the light 7a emitted from this unit.
In the same manner as in Example 4, the two reflection layers serve as reflected lights 7b and 7c. The light intensity of the interference fringe formed by this reflected light is detected by the light receiving element array 63. The recorded information could be reproduced from the obtained light intensity information. As a result, an information recording / reproducing device is obtained.
【0040】本プローブによれば、明るくコントラスト
の高い干渉縞が得られるので、各プローブ毎に光源を備
えたり、複数の光スイッチで光路を切り替えたりするこ
となく、単純な光源構成で情報処理装置を実現できた。According to the present probe, since bright and high-contrast interference fringes can be obtained, an information processing apparatus with a simple light source configuration is provided without providing a light source for each probe or switching the optical path with a plurality of optical switches. Was realized.
【0041】[0041]
【発明の効果】以上説明したように本発明によれば以下
の効果を奏する。As described above, the present invention has the following effects.
【0042】(1)一般の半導体プロセス技術を用い
て、2つの反射面がほぼ平行で間隔が測定光の波長以下
のファブリペロー共振器を備えた微小変位検出プローブ
を容易に作製できる。(1) Using a general semiconductor process technique, it is possible to easily fabricate a minute displacement detection probe provided with a Fabry-Perot resonator in which two reflecting surfaces are substantially parallel to each other and the distance is equal to or less than the wavelength of the measuring light.
【0043】(2)本発明のプローブにより測定光を用
いて得られる干渉縞は非常に明るくコントラストが高い
ものとなり、より正確で精度良く微小変位を検出でき
る。(2) The interference fringes obtained by using the measuring light with the probe of the present invention are very bright and have a high contrast, and more precise and accurate microdisplacements can be detected.
【0044】(3)本発明のプローブを用いて構成され
る走査型プローブ顕微鏡及び情報処理装置は、より高精
度な装置となる。(3) The scanning probe microscope and the information processing device configured by using the probe of the present invention are highly accurate devices.
【図1】本発明の一実施例に係るプローブ作製工程を示
す断面図である。FIG. 1 is a cross-sectional view showing a probe manufacturing process according to an embodiment of the present invention.
【図2】本発明の他の実施例によるプローブ断面図であ
る。FIG. 2 is a cross-sectional view of a probe according to another embodiment of the present invention.
【図3】本発明の他の実施例によるプローブ断面図であ
る。FIG. 3 is a cross-sectional view of a probe according to another embodiment of the present invention.
【図4】本発明の他の実施例によるプローブ断面図であ
る。FIG. 4 is a cross-sectional view of a probe according to another embodiment of the present invention.
【図5】本発明のプローブを用いた走査型プローブ顕微
鏡の概略図である。FIG. 5 is a schematic view of a scanning probe microscope using the probe of the present invention.
【図6】本発明のプローブを用いた情報処理装置の概略
図である。FIG. 6 is a schematic diagram of an information processing apparatus using the probe of the present invention.
【図7】従来例のファブリペロー共振器を備えたプロー
ブを示す図である。FIG. 7 is a diagram showing a probe including a Fabry-Perot resonator of a conventional example.
【図8】従来例のファブリペロー共振器を備えたプロー
ブを示す図である。FIG. 8 is a diagram showing a probe including a Fabry-Perot resonator of a conventional example.
1 測定光に対して透明な基板 2 第1の反射層 3 バッファ層 3a カンチレバー支持部のために除去するバッファ層 3b バッファ層を除去してできた空隙 4 第2の反射層 5 カンチレバー 6 探針尖端 7 測定光 7a 入射光 7b 第1の反射層からの反射光 7c 第2の反射層からの反射光 8 不透明基板 9 透明層 10 電極 51 レーザ光源 52 偏光ビームスプリッタ 53 1/4波長板 54 受光素子 55 観察試料あるいは情報記録媒体 56 XYZ方向移動ステージ 57 Z方向フィードバック及びXYステージ駆動回路 58 表示装置 61 光源と光分波器からなる発光ユニット 62 記録用電圧印加装置 63 受光素子アレイ 1 substrate transparent to measurement light 2 first reflective layer 3 buffer layer 3a buffer layer removed for cantilever support 3b void formed by removing buffer layer 4 second reflective layer 5 cantilever 6 probe Tip 7 Measurement light 7a Incident light 7b Reflected light from the first reflective layer 7c Reflected light from the second reflective layer 8 Opaque substrate 9 Transparent layer 10 Electrode 51 Laser light source 52 Polarized beam splitter 53 1/4 Wave plate 54 Light reception Element 55 Observation sample or information recording medium 56 XYZ direction moving stage 57 Z direction feedback and XY stage drive circuit 58 Display device 61 Light emitting unit consisting of light source and optical demultiplexer 62 Recording voltage applying device 63 Light receiving element array
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/09 (72)発明者 黒田 亮 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01L 41/09 (72) Inventor Ryo Kuroda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. In the company
Claims (8)
え、該探針尖端と試料表面との相互作用により生ずるカ
ンチレバーの微小変位が、測定光を用いた光学的な手段
により検出される微小変位検出プローブの製造方法にお
いて、 (1)測定光に対して透明な層上に後工程で除去するバ
ッファ層を形成する工程、 (2)上記透明層上にカンチレバー支持部を形成する工
程、 (3)上記バッファ層上にカンチレバー本体を形成する
工程、 (4)カンチレバー形成後に上記バッファ層を除去する
工程 とを含むことを特徴とする微小変位検出プローブの作製
方法。1. A free tip of a cantilever is provided with a probe tip, and a minute displacement of the cantilever caused by an interaction between the probe tip and a sample surface is detected by an optical means using measurement light. In the method for producing a detection probe, (1) a step of forming a buffer layer to be removed in a subsequent step on a layer transparent to measurement light, (2) a step of forming a cantilever support portion on the transparent layer, (3) ) A step of forming a cantilever body on the buffer layer, and (4) a step of removing the buffer layer after forming the cantilever.
れる微小変位検出プローブであって、片面に測定光を部
分反射する反射面を有する透明層上に、該透明層に対し
て空隙を保持してカンチレバーが形成されていることを
特徴とする微小変位検出プローブ。2. A micro-displacement detecting probe manufactured by the manufacturing method according to claim 1, wherein a void is provided on the transparent layer on one surface thereof, the transparent layer having a reflecting surface for partially reflecting the measurement light. A micro-displacement detection probe, characterized in that it holds and forms a cantilever.
る面に、反射面が形成されていることを特徴とする請求
項2に記載の微小変位検出プローブ。3. The micro-displacement detecting probe according to claim 2, wherein a reflective surface is formed on a surface of the cantilever facing the transparent layer.
が、測定光の波長以下であることを特徴とする請求項2
又は3に記載の微小変位検出プローブ。4. The gap between the transparent layer and the cantilever is less than or equal to the wavelength of measurement light.
Or the small displacement detection probe described in 3.
探針尖端が導電性材料から成り、該探針尖端と試料間に
トンネル電流を流すための電極を備えたことを特徴とす
る請求項2〜4いずれかに記載の微小変位検出プロー
ブ。5. The probe tip provided at the free end of the cantilever is made of a conductive material, and is provided with an electrode for passing a tunnel current between the probe tip and the sample. The small displacement detection probe according to any one of 4 to 4.
検出プローブを同一基板上に複数個有することを特徴と
するマルチ微小変位検出プローブ。6. A multi-micro displacement detection probe comprising a plurality of micro displacement detection probes according to claim 2 on the same substrate.
した走査型プローブ顕微鏡において、該プローブに請求
項2〜6いずれかに記載の微小変位検出プローブを用い
たことを特徴とする走査型プローブ顕微鏡。7. A scanning probe microscope utilizing close proximity interaction between a probe and a sample, wherein the micro-displacement detecting probe according to any one of claims 2 to 6 is used as the probe. microscope.
再生を行う情報処理装置において、該プローブに請求項
2〜6いずれかに記載の微小変位検出プローブを用いた
ことを特徴とする情報処理装置。8. An information processing apparatus for recording / reproducing information on / from a recording medium via a probe, wherein the micro displacement detection probe according to claim 2 is used for the probe. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5072841A JPH06267408A (en) | 1993-03-09 | 1993-03-09 | Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5072841A JPH06267408A (en) | 1993-03-09 | 1993-03-09 | Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06267408A true JPH06267408A (en) | 1994-09-22 |
Family
ID=13501030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5072841A Withdrawn JPH06267408A (en) | 1993-03-09 | 1993-03-09 | Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06267408A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475822B2 (en) | 1993-11-16 | 2002-11-05 | Formfactor, Inc. | Method of making microelectronic contact structures |
US6713374B2 (en) | 1999-07-30 | 2004-03-30 | Formfactor, Inc. | Interconnect assemblies and methods |
US6780001B2 (en) | 1999-07-30 | 2004-08-24 | Formfactor, Inc. | Forming tool for forming a contoured microelectronic spring mold |
WO2005015570A1 (en) * | 2003-08-11 | 2005-02-17 | Japan Science And Technology Agency | Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device |
US6888362B2 (en) | 2000-11-09 | 2005-05-03 | Formfactor, Inc. | Test head assembly for electronic components with plurality of contoured microelectronic spring contacts |
US6939474B2 (en) | 1999-07-30 | 2005-09-06 | Formfactor, Inc. | Method for forming microelectronic spring structures on a substrate |
WO2006062048A1 (en) * | 2004-12-06 | 2006-06-15 | Japan Science And Technology Agency | Mechanical vibrator and production method therefor |
US7063541B2 (en) | 1997-03-17 | 2006-06-20 | Formfactor, Inc. | Composite microelectronic spring structure and method for making same |
US7073254B2 (en) | 1993-11-16 | 2006-07-11 | Formfactor, Inc. | Method for mounting a plurality of spring contact elements |
US7189077B1 (en) | 1999-07-30 | 2007-03-13 | Formfactor, Inc. | Lithographic type microelectronic spring structures with improved contours |
JP2007212182A (en) * | 2006-02-07 | 2007-08-23 | Kagawa Univ | Probe device, manufacturing method of the probe device, and stylus-type surface measuring device |
US7435108B1 (en) | 1999-07-30 | 2008-10-14 | Formfactor, Inc. | Variable width resilient conductive contact structures |
WO2019118327A1 (en) * | 2017-12-11 | 2019-06-20 | Quality Vision International Inc. | Interferometric touch probe |
CN111289472A (en) * | 2020-03-11 | 2020-06-16 | 大连理工大学 | Nano-precision steel bar surface corrosion depth testing device based on Fabry-Perot optical fiber probe |
-
1993
- 1993-03-09 JP JP5072841A patent/JPH06267408A/en not_active Withdrawn
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482013B2 (en) | 1993-11-16 | 2002-11-19 | Formfactor, Inc. | Microelectronic spring contact element and electronic component having a plurality of spring contact elements |
US6475822B2 (en) | 1993-11-16 | 2002-11-05 | Formfactor, Inc. | Method of making microelectronic contact structures |
US7073254B2 (en) | 1993-11-16 | 2006-07-11 | Formfactor, Inc. | Method for mounting a plurality of spring contact elements |
US7063541B2 (en) | 1997-03-17 | 2006-06-20 | Formfactor, Inc. | Composite microelectronic spring structure and method for making same |
US7524194B2 (en) | 1999-07-30 | 2009-04-28 | Formfactor, Inc. | Lithographic type microelectronic spring structures with improved contours |
US7435108B1 (en) | 1999-07-30 | 2008-10-14 | Formfactor, Inc. | Variable width resilient conductive contact structures |
US6939474B2 (en) | 1999-07-30 | 2005-09-06 | Formfactor, Inc. | Method for forming microelectronic spring structures on a substrate |
US7675301B2 (en) | 1999-07-30 | 2010-03-09 | Formfactor, Inc. | Electronic components with plurality of contoured microelectronic spring contacts |
US6713374B2 (en) | 1999-07-30 | 2004-03-30 | Formfactor, Inc. | Interconnect assemblies and methods |
US6780001B2 (en) | 1999-07-30 | 2004-08-24 | Formfactor, Inc. | Forming tool for forming a contoured microelectronic spring mold |
US7189077B1 (en) | 1999-07-30 | 2007-03-13 | Formfactor, Inc. | Lithographic type microelectronic spring structures with improved contours |
US7245137B2 (en) | 2000-11-09 | 2007-07-17 | Formfactor, Inc. | Test head assembly having paired contact structures |
US6888362B2 (en) | 2000-11-09 | 2005-05-03 | Formfactor, Inc. | Test head assembly for electronic components with plurality of contoured microelectronic spring contacts |
KR100793122B1 (en) * | 2003-08-11 | 2008-01-10 | 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 | Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device |
WO2005015570A1 (en) * | 2003-08-11 | 2005-02-17 | Japan Science And Technology Agency | Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device |
WO2006062048A1 (en) * | 2004-12-06 | 2006-06-15 | Japan Science And Technology Agency | Mechanical vibrator and production method therefor |
JP2007212182A (en) * | 2006-02-07 | 2007-08-23 | Kagawa Univ | Probe device, manufacturing method of the probe device, and stylus-type surface measuring device |
WO2019118327A1 (en) * | 2017-12-11 | 2019-06-20 | Quality Vision International Inc. | Interferometric touch probe |
JP2021505867A (en) * | 2017-12-11 | 2021-02-18 | クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. | Interfering touch probe |
CN111289472A (en) * | 2020-03-11 | 2020-06-16 | 大连理工大学 | Nano-precision steel bar surface corrosion depth testing device based on Fabry-Perot optical fiber probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3618896B2 (en) | Manufacturing method of probe having minute aperture, probe thereby, combined apparatus of scanning near-field light microscope and scanning tunneling microscope using the probe, and recording / reproducing apparatus using the probe | |
US7441447B2 (en) | Methods of imaging in probe microscopy | |
JP3000492B2 (en) | Information processing device | |
US7404313B2 (en) | Scanning probe microscope | |
US5247186A (en) | Integrated optical displacement sensor | |
US5206702A (en) | Technique for canceling the effect of external vibration on an atomic force microscope | |
JPH06267408A (en) | Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these | |
US20130278937A1 (en) | Integrated Displacement Sensors for Probe Microscopy and Force Spectroscopy | |
US20070089496A1 (en) | Three-dimensional nanoscale metrology using firat probe | |
JPH05284765A (en) | Cantilever type displacement element, cantilever type probe using the same, scan type tunnel microscope using the same probe and information processor | |
JPH10197542A (en) | Evanescent wave detecting microprobe and manufacture therefor, probe having this microprobe and manufacture therefor, evanescent wave detecting device having this microprobe, near field optical scanning microscope and information reproducing device | |
JPH05196458A (en) | Piezoresistance cantilever structure for atomic power microscope | |
JPH10282130A (en) | Probe and scanning probe microscope using it | |
JPH10246730A (en) | Probe and its production, and information-processing apparatus with the probe | |
JPH04188022A (en) | Displacement detecting apparatus | |
JP3069923B2 (en) | Cantilever probe, atomic force microscope, information recording / reproducing device | |
US6995367B2 (en) | Nanotube, near-field light detecting apparatus and near-field light detecting method | |
JPH0721968A (en) | Cantilever type displacement element, cantilever type probe using the displacement element, and scanning type probe microscope and data processer using the probe | |
US20020178801A1 (en) | Self-detecting type SPM probe | |
US5717132A (en) | Cantilever and process for fabricating it | |
JPH0821841A (en) | Fine displacement element and information processing device therewith | |
JPH0763548A (en) | Cantilever type probe, and scanning tunneling microscope having it and information processing device having it | |
JP2000292339A (en) | Self light emitting type optical probe, its manufacture and scan type near field microscope | |
JPH1073607A (en) | Scanning probe microscope | |
JP2007121316A (en) | Scanning near-field microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |