JPH0555419A - Structure of fitting semiconductor device to heat sink - Google Patents

Structure of fitting semiconductor device to heat sink

Info

Publication number
JPH0555419A
JPH0555419A JP3212359A JP21235991A JPH0555419A JP H0555419 A JPH0555419 A JP H0555419A JP 3212359 A JP3212359 A JP 3212359A JP 21235991 A JP21235991 A JP 21235991A JP H0555419 A JPH0555419 A JP H0555419A
Authority
JP
Japan
Prior art keywords
metal carrier
heat dissipation
chassis
packing
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3212359A
Other languages
Japanese (ja)
Inventor
Kyoichi Ishii
恭一 石井
Nobuo Masuda
信雄 増田
Akio Iso
彰夫 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU TSUSHIN KISO GIJUTSU KENK
UCHU TSUSHIN KISO GIJUTSU KENKYUSHO KK
Original Assignee
UCHU TSUSHIN KISO GIJUTSU KENK
UCHU TSUSHIN KISO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU TSUSHIN KISO GIJUTSU KENK, UCHU TSUSHIN KISO GIJUTSU KENKYUSHO KK filed Critical UCHU TSUSHIN KISO GIJUTSU KENK
Priority to JP3212359A priority Critical patent/JPH0555419A/en
Publication of JPH0555419A publication Critical patent/JPH0555419A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce the contact heat resistance between the bottom part of a semiconductor package and a metal carrier, or between a case chassis (or heat radiating table) and the metal carrier, and to stabilize and uniformize it. CONSTITUTION:A circular groove 6 for a packing is formed in the periphery of the opposing surface to the bottom part 2b of the semiconductor package of a metal carrier l and is filled with a packing 12, and an InGa filler 11 is interposed between the upper surface and bottom part 2b of the metal carrier l surrounded by the groove 1b for the packing. It is favorable that the surfaces of a recession and a protrusion 2d and 1d to engage each other are formed at a contact part where the InGa filler 11 is put. Besides, it is also possible to provide substances similar to the InGa filler 11, groove 1b for a packing, packing 12, or surfaces of the recession and protrusion 2d and 1d at the contact part of the metal carrier 1. with a case chassis or heat radiating table 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】無線通信装置あるいはレーダー等
の高出力マイクロ波電力増幅器や高出力マイクロ波発振
器における半導体デバイスの放熱取付け構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation mounting structure for a semiconductor device in a high power microwave power amplifier or a high power microwave oscillator such as a wireless communication device or radar.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】高出力
マイクロ波電力増幅器は、増幅素子であるトランジスタ
チップ内で発生する多量の熱を能率的に外部に放熱して
トランジスタチップの温度を低く保つために、図3に示
すような構造が一般的にとられている。すなわち、熱伝
導性の良い銅又はアルミニュウム等の金属キャリア1の
上に半導体パッケージ2を搭載し、その左右にマイクロ
波インピーダンス整合回路、バイアス回路等からなる回
路基板3,4を配置したものを、アルミ等より成る筐体
シャーシ(又は放熱台)5に取り付けているものが多
い。金属キャリア1には半導体パッケージ2の基底部2
bを埋め込むためのパッケージ用溝1aが形成される。
2. Description of the Related Art A high output microwave power amplifier efficiently radiates a large amount of heat generated in a transistor chip, which is an amplifying element, to the outside to keep the temperature of the transistor chip low. Therefore, the structure shown in FIG. 3 is generally adopted. That is, a semiconductor package 2 is mounted on a metal carrier 1 such as copper or aluminum having good thermal conductivity, and circuit boards 3 and 4 including a microwave impedance matching circuit and a bias circuit are arranged on the left and right sides of the semiconductor package 2. Many are attached to a chassis chassis (or heat sink) 5 made of aluminum or the like. The metal carrier 1 has a base portion 2 of the semiconductor package 2.
A package groove 1a for burying b is formed.

【0003】半導体パッケージ2のトランジスタ等の半
導体チップ2a内で発生した熱は、図中に矢印で示した
ように、まず銅又はベリリアより成るパッケージの基底
部2bに伝わり、次に金属キャリア1に伝熱し、横方向
にも拡がり、更に筐体シャーシ(又は放熱台)5に伝わ
り、横方向にいっそう拡散され、最終的には空気中へ放
散される。熱が伝わっていく過程には、パッケージ基底
部2b、金属キャリア1、筐体シャーシ(あるいは放熱
台)5がある。放熱系の性能は、これらの部材の機械的
寸法から主に決まる伝熱性能(熱伝導率)と、各部材間
に存在する接触熱抵抗によって左右される。
The heat generated in the semiconductor chip 2a such as the transistor of the semiconductor package 2 is first transferred to the base 2b of the package made of copper or beryllia and then to the metal carrier 1 as shown by the arrow in the figure. The heat is transferred, spreads in the lateral direction, further propagates to the chassis chassis (or heat dissipation table) 5, is further diffused in the lateral direction, and is finally dissipated in the air. There are the package base 2b, the metal carrier 1, and the chassis (or heat sink) 5 in the process of heat transfer. The performance of the heat radiation system depends on the heat transfer performance (thermal conductivity) mainly determined by the mechanical dimensions of these members and the contact thermal resistance existing between the members.

【0004】その接触熱抵抗は、図3の例では、半導体
パッケージ2と金属キャリア1間、金属キャリア1と筐
体シャーシ(あるいは放熱台)5間に存在し、発熱源に
近いところのものほど、熱の横方向の拡がりが少なく、
接触面積も小さいので、接触熱抵抗値が大きくなり、そ
の影響も大きくなり無視できない。従って、パッケージ
基底部2bと金属キャリア1の接触熱抵抗が特に重要で
ある。
In the example of FIG. 3, the contact thermal resistance exists between the semiconductor package 2 and the metal carrier 1, between the metal carrier 1 and the chassis (or heat sink) 5, and the closer to the heat source, , Little lateral spread of heat,
Since the contact area is also small, the contact thermal resistance value is large, and its influence is large and cannot be ignored. Therefore, the contact thermal resistance between the package base 2b and the metal carrier 1 is particularly important.

【0005】上述の熱的接触はいずれもネジの締付けに
よって行われる機械的圧力接触の形態をとるのが一般的
方法である。従って、少しでも隙間ができると、接触面
積が小さくなり、さらに接触熱抵抗値が大きくなってし
まう。この隙間(20〜100μ)は、機械加工精度、
熱膨張係数差および内部応力によるソリなどに起因して
いる。
All of the above-mentioned thermal contacts generally take the form of mechanical pressure contacts, which are carried out by tightening screws. Therefore, if a gap is formed even a little, the contact area becomes smaller and the contact thermal resistance value becomes larger. This clearance (20 to 100 μ) is
This is due to the difference in thermal expansion coefficient and warpage due to internal stress.

【0006】上述のパッケージ基底部2bと金属キャリ
ア1の間の隙間が、近年無視できなくなってきた。それ
は、半導体デバイスが近年高出力化されたためと、整合
回路をパッケージ内にチップと一緒に封入してより高性
能化を図るため、パッケージの基底部が大面積化(15
0mm2 以上に)され、そこにソリ等が発生しやすくなっ
てきたためである。大面積化により接触熱抵抗値は小さ
くなると期待されていたのに、ソリ等のために実際に有
効な接触面積は小さくなってしまうという皮肉な現象す
ら起きている。
In recent years, the gap between the package base 2b and the metal carrier 1 cannot be ignored. This is because the output of semiconductor devices has been increased in recent years, and because the matching circuit is enclosed together with the chip in the package to achieve higher performance, the package has a large base area (15
0 mm 2 or more), and warps are more likely to occur there. Although it was expected that the contact thermal resistance value would decrease with the increase in area, there is even the ironic phenomenon that the actual effective contact area decreases due to warpage and the like.

【0007】一方、高出力化とともに発生する熱も大き
くなり、より一層の放熱性能の改善を図る必要があるの
に、現実は放熱特性の悪化のため、信頼性だけでなく、
出力電力、利得等のマイクロ波特性の電気的性能をも劣
化させる状況にある。また、隙間ができると、半導体デ
バイスの高周波的接地にアンバランスを生じてくる。従
来は、これらの問題点を改善するために、接触面にシ
リコーンコンパウンドを介在させて、ネジ締めする。
パッケージ基底部を金属キャリアにはんだ付けする。な
どの方法も一部で行われている。しかし、これらの方法
は以下に述べるような問題点を持っている。即ち、 (1)シリコーンコンパウンドはあまり熱伝導度が高く
なく(アルミの1/100程度)、接触熱抵抗値の改善
量が十分でない。 (2)シリコーンコンパウンドは絶縁性なので、高周波
の接地に害を及ぼす。 (3)はんだ付けは、接触熱抵抗と高周波接地の初期性
能は改善されるが、温度サイクル、間欠動作試験あるい
は長時間動作によって劣化する。 (4)はんだ付けの際の熱によって、半導体デバイスお
よび他の回路部品、材料が劣化することがある。 (5)はんだ付けは半導体デバイスの取りはずし、取り
付けの作業がやりにくい。
On the other hand, the amount of heat generated increases with the increase in output, and it is necessary to further improve the heat radiation performance. However, in reality, not only the reliability but also the heat radiation characteristic deteriorates.
The electric performance of microwave characteristics such as output power and gain is also deteriorated. Further, if a gap is formed, imbalance occurs in high frequency grounding of the semiconductor device. Conventionally, in order to improve these problems, a silicone compound is interposed on the contact surface and the screw is tightened.
Solder the package base to the metal carrier. Some of these methods are also used. However, these methods have the following problems. That is, (1) the silicone compound does not have a very high thermal conductivity (about 1/100 of that of aluminum), and the amount of improvement in the contact thermal resistance value is not sufficient. (2) Silicone compounds are insulative and therefore damage the grounding of high frequencies. (3) Soldering improves contact thermal resistance and high-frequency grounding initial performance, but deteriorates due to temperature cycle, intermittent operation test, or long-term operation. (4) The semiconductor device, other circuit components, and materials may be deteriorated by the heat during soldering. (5) Soldering makes it difficult to remove and attach semiconductor devices.

【0008】この発明の目的は、半導体パッケージ2の
基底部2bと金属キャリア1間、あるいは筐体シャーシ
又は放熱台5と金属キャリア1間の接触熱抵抗に関する
従来の問題点を解決し、接触熱抵抗値の低減と安定化、
均一化を図ろうとするものである。
The object of the present invention is to solve the conventional problems relating to the contact thermal resistance between the base portion 2b of the semiconductor package 2 and the metal carrier 1 or between the housing chassis or the heat dissipation table 5 and the metal carrier 1 and solve the contact heat. Resistance reduction and stabilization,
It is intended to achieve uniformity.

【0009】[0009]

【課題を解決するための手段】(1)半導体パッケージ
を放熱用の板状の金属キャリア上に搭載し、その金属キ
ャリアを筐体シャーシ又は放熱台上に搭載して成る半導
体デバイスの放熱取付け構造において、請求項1の発明
では、上記金属キャリアの上記半導体パッケージの基底
部と対向する上面の周辺にリング状のパッキング用溝が
形成され、その溝にリング状のパッキングが充填され、
上記パッキング用溝に囲まれた上記金属キャリアの上面
と上記半導体パッケージの基底部との間にInGaフィ
ラーが介在される。 (2)上記(1)項において、上記パッキング用溝に囲
まれた金属キャリアの上面と、その上面と対向する上記
半導体パッケージの基底部とに、互いに噛み合う凹凸面
がそれぞれ形成されているのが望ましい。 (3)半導体パッケージを放熱用の板状の金属キャリア
上に搭載し、その金属キャリアを筐体シャーシ又は放熱
台上に搭載して成る半導体デバイスの放熱取付け構造に
おいて、請求項3の発明では、上記筐体シャーシ又は放
熱台の上記金属キャリアと対向する上面の周辺にリング
状のパッキング用溝が形成され、その溝にリング状のパ
ッキングが充填され、上記パッキング用溝に囲まれた上
記筐体シャーシ又は放熱台の上面と上記金属キャリアの
底面との間にInGaフィラーが介在される。 (4)上記(3)項において、上記パッキング用溝に囲
まれた筐体シャーシ又は放熱台の上面と、その上面と対
向する上記金属キャリアの底面とに、互いに噛み合う凹
凸面がそれぞれ形成されているのが望ましい。
(1) A semiconductor device heat radiation mounting structure in which a semiconductor package is mounted on a heat-dissipating plate-shaped metal carrier and the metal carrier is mounted on a chassis chassis or a heat sink. In the invention of claim 1, a ring-shaped packing groove is formed around an upper surface of the metal carrier facing the base of the semiconductor package, and the groove is filled with ring-shaped packing.
InGa filler is interposed between the upper surface of the metal carrier surrounded by the packing groove and the base of the semiconductor package. (2) In the above item (1), uneven surfaces that mesh with each other are formed on the upper surface of the metal carrier surrounded by the packing groove and on the base portion of the semiconductor package that faces the upper surface. desirable. (3) In a heat dissipation mounting structure for a semiconductor device, wherein a semiconductor package is mounted on a plate-shaped metal carrier for heat dissipation, and the metal carrier is mounted on a chassis chassis or a heat dissipation base. A ring-shaped packing groove is formed around an upper surface of the housing chassis or the heat dissipation table facing the metal carrier, and the groove is filled with a ring-shaped packing, and the housing is surrounded by the packing groove. An InGa filler is interposed between the top surface of the chassis or the heat sink and the bottom surface of the metal carrier. (4) In the above item (3), the upper and lower surfaces of the chassis chassis or heat sink surrounded by the packing groove and the bottom surface of the metal carrier facing the upper surface are provided with indented surfaces which mesh with each other. Is desirable.

【0010】[0010]

【実施例】この発明の実施例を図1に、図3と対応する
部分に同じ符号を付して示し、重複説明を省略する。こ
の発明では、パッケージ基底部2bと金属キャリア1と
の接触部の隙間に、従来のシリコーンコンパウンドに代
えて、熱伝導率が高く(シリコーンコンパウンドの50
〜80倍)、導電性の半凝固性金属のInGaフィラー
11を数百μm以下の厚さで介在させ、かつ、その溶融
状のInGaフィラー11が周囲に流出散逸するのを防
ぐために、InGaフィラー介在領域の周囲をとり囲む
ように弾力性、圧縮性のある例えばシリコンゴム等より
成るリング状(ロ字状)のパッキング12を装着して、
ネジ締めにより両者を機械的圧接する構造とする。パッ
ケージ用溝1aの底面には、半導体パッケージ2を締め
付けるためのネジ穴15,16が形成される。パッキン
グ12は、パッケージ用溝1aの底面に、一段低くリン
グ状(ロ字状)の細い溝1bを掘り込み、そこに装着す
る。パッキング12は、InGaフィラー11の流出を
防止するとともに、湿気の侵入を防いで、InGaフィ
ラーの性能劣化を防止している。また、余分のInGa
フィラーは、このパッキング用溝1bに溜り、溝1bが
InGaフィラー11の熱収縮を吸収する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. 1 by giving the same reference numerals to the portions corresponding to those in FIG. In the present invention, in the gap between the contact portion between the package base 2b and the metal carrier 1, a high thermal conductivity (50% of the silicone compound) is used instead of the conventional silicone compound.
In order to prevent the molten InGa filler 11 from flowing out and dissipating to the surroundings, the InGa filler 11 made of a conductive semi-solidifying metal is interposed at a thickness of several hundreds of μm or less. A ring-shaped (square-shaped) packing 12 made of, for example, silicon rubber having elasticity and compressibility is attached so as to surround the intervening region,
The structure is such that both are mechanically pressure-welded by tightening screws. Screw holes 15 and 16 for tightening the semiconductor package 2 are formed on the bottom surface of the package groove 1a. The packing 12 is formed by digging a ring-shaped (square-shaped) thin groove 1b, which is one step lower, in the bottom surface of the package groove 1a, and is mounted therein. The packing 12 prevents the outflow of the InGa filler 11 and prevents the ingress of moisture to prevent the performance deterioration of the InGa filler. Also, extra InGa
The filler collects in the packing groove 1b, and the groove 1b absorbs the thermal contraction of the InGa filler 11.

【0011】また、接触部の接触面積を大きくして、接
触熱抵抗値を小さくするためにパッケージ基底部2bと
金属キャリア1との対接面にそれぞれ凹凸面2d,1d
を形成し、互いに噛み合せる構造とする。半凝固性金属
InGaフィラー11は常温以上の温度では溶融状態で
あるので半導体パッケージの基底部2bの表面や金属キ
ャリア1の表面をよくぬらし、従ってそれらの間の接触
熱抵抗は固体と固体の、即ち基底部2bと金属キャリア
1との直接接触の状態の接触熱抵抗にくらべて無視でき
るくらい小さい。さらに、機械加工精度やソリ等に起因
する隙間も完全に埋められ、しかもInGaフィラー1
1の熱伝導率は、従来用いられていたシリコーンコンパ
ウンドに比べて50〜80倍も高いので、実効的な接触
熱抵抗値は後で述べるように格段に小さい値に改善され
る。
Further, in order to increase the contact area of the contact portion and reduce the contact thermal resistance value, the concavo-convex surfaces 2d and 1d are respectively formed on the contact surfaces of the package base 2b and the metal carrier 1.
Are formed so that they are engaged with each other. Since the semi-solidifying metal InGa filler 11 is in a molten state at a temperature higher than room temperature, it wets the surface of the base 2b of the semiconductor package and the surface of the metal carrier 1 well, so that the contact thermal resistance between them is solid or solid. That is, it is negligibly smaller than the contact thermal resistance in the state of direct contact between the base portion 2b and the metal carrier 1. Furthermore, the gaps caused by machining accuracy and warpage are completely filled, and InGa filler 1
Since the thermal conductivity of No. 1 is 50 to 80 times higher than that of the conventionally used silicone compound, the effective contact thermal resistance value is improved to a significantly small value as described later.

【0012】図1A,Bの例について、接触熱抵抗値の
具体的数値例を以下に示し、本発明の効果を明らかにす
る。マイクロ波出力電力18Wクラスの半導体デバイス
のパッケージ基底部2bの接触面積A=155mm2 、A
クラス無信号時の消費電力Pd=48W、基底部2bと金
属キャリア1の材質が共に銅の場合について、銅と銅と
の理想的接触状態での接触熱抵抗値Rcs は、Rcs =1/
hcA で表わされる。1/hcは接触コンダクタンスと呼ば
れ、銅の場合1/hc=0.18×10-4m2・℃/Wであ
るので、Rcs=0.116℃/Wとなる。その時の温度
差はΔTcs =Rcs ×Pd=5.6℃である。ソリ等により
接触面積が1/4になった場合、Rcs2=0.464℃/
W,ΔTcs2=22.3℃となる。
With respect to the examples of FIGS. 1A and 1B, specific numerical examples of the contact thermal resistance value will be shown below to clarify the effect of the present invention. Microwave output power 18 W class semiconductor device package base 2b contact area A = 155 mm 2 , A
When the class has no signal power consumption Pd = 48W and the base 2b and the metal carrier 1 are both made of copper, the contact thermal resistance Rcs in an ideal copper-copper contact state is Rcs = 1 /
It is represented by hcA. 1 / hc is called contact conductance, and in the case of copper, 1 / hc = 0.18 × 10 −4 m 2 · ° C./W, so that Rcs = 0.116 ° C./W. The temperature difference at that time is ΔTcs = Rcs × Pd = 5.6 ° C. If the contact area becomes 1/4 due to warping, etc., Rcs 2 = 0.464 ° C /
W, ΔTcs 2 = 22.3 ° C.

【0013】実際上は、先に述べたように、機械加工精
度やソリ等の問題を補償し、安定化、均一化を図るため
従来はシリコーンコンパウンドを介在させている。この
場合の接触熱抵抗値の相当値Rcc は、Rcc =δG /λc
A で表わされ、シリコンコンパウンドの平均厚さδG
50μ、熱伝導率λc =0.795W/m℃の場合、Rc
c =0.406℃/W、ΔTcc =Rcc ×Pd=19.5℃
となる。
In practice, as described above, a silicone compound is conventionally interposed to compensate for problems such as machining accuracy and warpage, and to stabilize and uniformize the problem. The equivalent value of contact thermal resistance Rcc in this case is Rcc = δ G / λc
A, the average thickness of the silicon compound δ G =
Rc at 50μ and thermal conductivity λc = 0.795W / m ° C
c = 0.406 ° C / W, ΔTcc = Rcc x Pd = 19.5 ° C
Becomes

【0014】本発明のInGaフィラーを介在させた場
合の接触熱抵抗値の相当値Rci は、InGaフィラーの
平均厚さδG =50μ、熱伝導率λi =43.5W/m
℃として、Rci =δG /λi A =0.0074℃/W、
ΔTci =Rci ×Pd=0.36℃となる。このように、I
nGaフィラーを用いることにより従来のシリコーンコ
ンパウンドの場合に比べて、接触熱抵抗値、接触部の温
度差は1/54に低減し、改善される。
The equivalent value Rci of the contact thermal resistance value when the InGa filler of the present invention is interposed is such that the average thickness of the InGa filler is δ G = 50 μ, and the thermal conductivity λ i = 43.5 W / m.
℃, Rci = δ G / λi A = 0.0074 ℃ / W,
ΔTci = Rci × Pd = 0.36 ° C. Thus, I
By using the nGa filler, the contact thermal resistance value and the temperature difference at the contact portion are reduced to 1/54 and improved as compared with the case of the conventional silicone compound.

【0015】更に、接触抵抗の低減のため、図1Cに示
すような凹凸の噛み合せ構造を採用して、パッケージ基
底部2bと金属キャリア1との実効的な接触面積を拡大
する場合について数値例を示す。図1Aの平面形(凹凸
面を設けない場合)に比べた接触面積の増大係数mは、
図2Aに示すように、凹凸のピッチをP、深さをdとす
れば、 m=(P+d)/P=1+d/P (1) となる。これにより接触抵抗値及び温度差はさらに1/
mに低減される。
Further, in order to reduce the contact resistance, a concave-convex meshing structure as shown in FIG. 1C is adopted to enlarge the effective contact area between the package base 2b and the metal carrier 1 by using a numerical example. Show. The increase factor m of the contact area as compared with the planar shape of FIG. 1A (when the uneven surface is not provided) is
As shown in FIG. 2A, when the pitch of the unevenness is P and the depth is d, m = (P + d) / P = 1 + d / P (1) As a result, the contact resistance value and temperature difference are 1 /
m.

【0016】例としてP=1.5mmとし、d=0.7
5,1.0,1.5又は3.0mmとすれば、それぞれm
=1.5,1.67,2.0又は3.0である。凹凸の
形状を図2Bに示すようにノコギリ波形にした場合に
は、 m={(P2 +d2 1/2 +d}/P={1+(d/P)2 1/2 +d/P (2) となる。P=1.5mmとし、d=0.75,1.0,
1.5又は3.0mmとすれば、それぞれm=1.62,
1.87,2.41又は4.24となる。
As an example, P = 1.5 mm and d = 0.7
If 5, 1.0, 1.5 or 3.0 mm, m
= 1.5, 1.67, 2.0 or 3.0. When the shape of the unevenness is a sawtooth waveform as shown in FIG. 2B, m = {(P 2 + d 2 ) 1/2 + d} / P = {1+ (d / P) 2 } 1/2 + d / P (2) P = 1.5 mm, d = 0.75,1.0,
If 1.5 or 3.0 mm, m = 1.62, respectively
It becomes 1.87, 2.41 or 4.24.

【0017】凹凸形状を図2Cに示すように二等辺三角
形にした場合には、 m=2{(P/2)2 +d2 1/2 /P={1+(2d/P)2 1/2 (3) となる。P=1.5mmとし、d=0.75,1.0,
1.5又は3.0mmとすれば、それぞれm=1.41,
1.67,2.24又は4.12となる。凹凸形状を図
2Dに示すように正弦波形にした場合には、接触面積の
増大係数mは図2Cの場合((3)式)より更に大きく
なる。
When the uneven shape is an isosceles triangle as shown in FIG. 2C, m = 2 {(P / 2) 2 + d 2 } 1/2 / P = {1+ (2d / P) 2 } 1 It becomes / 2 (3). P = 1.5 mm, d = 0.75,1.0,
If 1.5 or 3.0 mm, m = 1.41, respectively
It becomes 1.67, 2.24 or 4.12. When the concavo-convex shape has a sinusoidal waveform as shown in FIG. 2D, the contact area increase coefficient m becomes even larger than in the case of FIG. 2C (equation (3)).

【0018】これまでの説明では、金属キャリア1にパ
ッケージ用溝1aを設けるものとしたが、これを省略
し、パッキング用溝1bのみとしてもよい。また、図1
の実施例では、半導体パッケージの基底部2bが方形で
あるため、パッキング用溝1b及びパッキング12をロ
字状に形成したが、もし基底部2bが他の形状(例えば
円又はだ円状)であれば、パッキング用溝1b及びパッ
キング12はその形状に合せればよい。
In the above description, the metal carrier 1 is provided with the package groove 1a, but it may be omitted and only the packing groove 1b may be provided. Also, FIG.
In the embodiment, since the base portion 2b of the semiconductor package is rectangular, the packing groove 1b and the packing 12 are formed in a square shape, but if the base portion 2b has another shape (for example, a circle or an ellipse). If so, the packing groove 1b and the packing 12 may be matched to their shapes.

【0019】また、これまでの説明では、InGaフィ
ラー11、パッキング用溝1b及びパッキング12或い
は凹凸の噛み合せ構造をパッケージ基底部2bと金属キ
ャリア1との対向部に設けるものとしたが、これらを金
属キャリア1と筐体シャーシ(又は放熱台)5との対向
部に設けても同様の効果が得られることは明らかであ
る。
Further, in the above description, the InGa filler 11, the packing groove 1b and the packing 12 or the engaging structure of the concavities and convexities are provided at the opposing portion between the package base portion 2b and the metal carrier 1, but these are made of metal. It is obvious that the same effect can be obtained even if the carrier 1 and the chassis chassis (or the heat dissipation table) 5 are provided at the facing portions.

【0020】[0020]

【発明の効果】この発明によれば、パッケージ基底部2
bと金属キャリア1或いは金属キャリア1と筐体シャー
シ(又は放熱台)5との接触部の隙間をInGaフィラ
ーで完全に埋めることができ、しかもInGaフィラー
の溶液性のため、熱膨張/収縮のため隙間が変化して
も、常にInGaフィラーで満たされている。このた
め、熱が流れる接触面積が増大し、しかも一定化でき、
接触熱抵抗値の低減および安定化、均一化が可能とな
る。これによって半導体チップの動作温度が低下し、ま
た、均一化し、信頼性が高くなるのみならず、電気的特
性の向上、均一化の効果にも寄与する。またInGaフ
ィラーの導電性のため、高周波接地も良好、均一化する
利点もある。
According to the present invention, the package base 2
It is possible to completely fill the gap between the b and the metal carrier 1 or the metal carrier 1 and the housing chassis (or heat dissipation table) 5 with InGa filler, and the thermal expansion / contraction of the InGa filler due to its solution nature. Therefore, even if the gap changes, it is always filled with the InGa filler. For this reason, the contact area through which heat flows can be increased and can be made uniform,
The contact heat resistance value can be reduced, stabilized, and made uniform. This not only lowers the operating temperature of the semiconductor chip and also makes the semiconductor chip uniform and highly reliable, but also contributes to the effect of improving and uniforming the electrical characteristics. Further, due to the conductivity of the InGa filler, there is an advantage that the high frequency grounding is good and uniform.

【0021】さらに、はんだ付けの場合と違い、半導体
デバイスの取付け、取外しの場合に、加熱が必要でな
く、従来のネジ止めの場合と同様に簡単に行える。ま
た、上記接触部に、互いに噛み合う凹凸面を設けた場合
には接着面積が増大し接触熱抵抗値をいっそう低減でき
る。上述したように、放熱性、高周波接地特性が良くな
るため、従来使用が制限されていたものよりも高出力お
よび大型の半導体デバイスの使用が可能になり、マイク
ロ波機器の高出力化、高性能化が実現できる。
Further, unlike the case of soldering, heating is not required when attaching and detaching a semiconductor device, and it can be easily performed as in the case of conventional screwing. Further, when the contact portion is provided with the uneven surface which meshes with each other, the adhesion area is increased and the contact thermal resistance value can be further reduced. As described above, the heat dissipation and high-frequency grounding characteristics are improved, making it possible to use higher-power and larger-sized semiconductor devices than previously restricted in use, and to achieve higher output and higher performance in microwave equipment. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの発明の実施例を示す縦断面図、Bは回
路基板3,4を搭載したAの金属キャリア1の平面図、
CはAのパッケージ基底部2bと金属キャリア1との対
接面に互いに噛み合う凹凸面を形成した場合を示す要部
の縦断面図。
1 is a longitudinal sectional view showing an embodiment of the present invention, B is a plan view of a metal carrier 1 of A on which circuit boards 3 and 4 are mounted,
C is a longitudinal cross-sectional view of a main part showing a case where a concavo-convex surface that meshes with each other is formed on the contact surface between the package base portion 2b of A and the metal carrier 1.

【図2】図1Cの凹凸面1d,2dの種々の形状を示す
要部の縦断面図。
FIG. 2 is a vertical cross-sectional view of a main part showing various shapes of uneven surfaces 1d and 2d of FIG. 1C.

【図3】従来の半導体デバイスの放熱取付け構造を示す
要部の縦断面図。
FIG. 3 is a vertical cross-sectional view of a main part showing a conventional heat dissipation mounting structure for a semiconductor device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体パッケージを放熱用の板状の金属
キャリア上に搭載し、その金属キャリアを筐体シャーシ
又は放熱台上に搭載して成る半導体デバイスの放熱取付
け構造において、 上記金属キャリアの上記半導体パッケージの基底部と対
向する上面の周辺にリング状のパッキング用溝が形成さ
れ、その溝にリング状のパッキングが充填され、 上記パッキング用溝に囲まれた上記金属キャリアの上面
と上記半導体パッケージの基底部との間にInGaフィ
ラーが介在されることを特徴とする、 半導体デバイスの放熱取付け構造。
1. A heat dissipation mounting structure for a semiconductor device, comprising: mounting a semiconductor package on a plate-shaped metal carrier for heat dissipation; and mounting the metal carrier on a chassis chassis or a heat dissipation base. A ring-shaped packing groove is formed around an upper surface facing the base of the semiconductor package, and the ring-shaped packing is filled in the groove, and the upper surface of the metal carrier surrounded by the packing groove and the semiconductor package. A heat dissipation mounting structure for a semiconductor device, characterized in that an InGa filler is interposed between the base part and the bottom part of the.
【請求項2】 請求項1において、上記パッキング用溝
に囲まれた金属キャリアの上面と、その上面と対向する
上記半導体パッケージの基底部とに、互いに噛み合う凹
凸面がそれぞれ形成されていることを特徴とする半導体
デバイスの放熱取付け構造。
2. The uneven surface which meshes with each other is formed on an upper surface of the metal carrier surrounded by the packing groove and a base portion of the semiconductor package facing the upper surface, respectively. The heat dissipation mounting structure of the characteristic semiconductor device.
【請求項3】 半導体パッケージを放熱用の板状の金属
キャリア上に搭載し、その金属キャリアを筐体シャーシ
又は放熱台上に搭載して成る半導体デバイスの放熱取付
け構造において、 上記筐体シャーシ又は放熱台の上記金属キャリアと対向
する上面の周辺にリング状のパッキング用溝が形成さ
れ、その溝にリング状のパッキングが充填され、 上記パッキング用溝に囲まれた上記筐体シャーシ又は放
熱台の上面と上記金属キャリアの底面との間にInGa
フィラーが介在されることを特徴とする、 半導体デバイスの放熱取付け構造。
3. A heat dissipation mounting structure for a semiconductor device, comprising: mounting a semiconductor package on a plate-shaped metal carrier for heat dissipation; and mounting the metal carrier on a chassis chassis or a heat dissipation base. A ring-shaped packing groove is formed around the upper surface of the heat sink facing the metal carrier, and the ring-shaped packing is filled in the groove, and the housing chassis or the heat sink is surrounded by the packing groove. InGa between the top surface and the bottom surface of the metal carrier
A heat dissipation mounting structure for semiconductor devices, characterized in that a filler is interposed.
【請求項4】 請求項3において、上記パッキング用溝
に囲まれた筐体シャーシ又は放熱台の上面と、その上面
と対向する上記金属キャリアの底面とに、互いに噛み合
う凹凸面がそれぞれ形成されていることを特徴とする半
導体デバイスの放熱取付け構造。
4. An uneven surface that meshes with each other is formed on an upper surface of a chassis chassis or a heat sink surrounded by the packing groove and a bottom surface of the metal carrier facing the upper surface. A heat dissipation mounting structure for semiconductor devices.
JP3212359A 1991-08-23 1991-08-23 Structure of fitting semiconductor device to heat sink Pending JPH0555419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3212359A JPH0555419A (en) 1991-08-23 1991-08-23 Structure of fitting semiconductor device to heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3212359A JPH0555419A (en) 1991-08-23 1991-08-23 Structure of fitting semiconductor device to heat sink

Publications (1)

Publication Number Publication Date
JPH0555419A true JPH0555419A (en) 1993-03-05

Family

ID=16621244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3212359A Pending JPH0555419A (en) 1991-08-23 1991-08-23 Structure of fitting semiconductor device to heat sink

Country Status (1)

Country Link
JP (1) JPH0555419A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845012B2 (en) 2000-04-19 2005-01-18 Denso Corporation Coolant cooled type semiconductor device
JP2005203778A (en) * 2004-01-07 2005-07-28 Thermagon Inc Heat sink and heat spreader assembly
JP2007234905A (en) * 2006-03-01 2007-09-13 Nec Corp High power amplifier
US7285429B2 (en) 2002-11-12 2007-10-23 Fujitsu Limited Mounting device for high frequency microwave devices
JP2008004745A (en) * 2006-06-22 2008-01-10 Denso Corp Electronic apparatus
JP2011071550A (en) * 2010-12-21 2011-04-07 Denso Corp Electronic apparatus
JP2011187331A (en) * 2010-03-09 2011-09-22 Stanley Electric Co Ltd Headlight for vehicle
JP2015056608A (en) * 2013-09-13 2015-03-23 株式会社東芝 Semiconductor package and semiconductor device
US20150102479A1 (en) * 2013-10-15 2015-04-16 Infineon Technologies Ag Electrically insulating thermal interface on the discontinuity of an encapsulation structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027302B2 (en) 2000-04-19 2006-04-11 Denso Corporation Coolant cooled type semiconductor device
US7106592B2 (en) 2000-04-19 2006-09-12 Denso Corporation Coolant cooled type semiconductor device
US7248478B2 (en) 2000-04-19 2007-07-24 Denso Corporation Coolant cooled type semiconductor device
US7250674B2 (en) 2000-04-19 2007-07-31 Denso Corporation Coolant cooled type semiconductor device
US6845012B2 (en) 2000-04-19 2005-01-18 Denso Corporation Coolant cooled type semiconductor device
US7729129B2 (en) 2002-11-12 2010-06-01 Fujitsu Limited Mounting device for high frequency microwave devices
US7285429B2 (en) 2002-11-12 2007-10-23 Fujitsu Limited Mounting device for high frequency microwave devices
JP2005203778A (en) * 2004-01-07 2005-07-28 Thermagon Inc Heat sink and heat spreader assembly
JP2007234905A (en) * 2006-03-01 2007-09-13 Nec Corp High power amplifier
JP2008004745A (en) * 2006-06-22 2008-01-10 Denso Corp Electronic apparatus
JP4710735B2 (en) * 2006-06-22 2011-06-29 株式会社デンソー Manufacturing method of electronic device
JP2011187331A (en) * 2010-03-09 2011-09-22 Stanley Electric Co Ltd Headlight for vehicle
JP2011071550A (en) * 2010-12-21 2011-04-07 Denso Corp Electronic apparatus
JP2015056608A (en) * 2013-09-13 2015-03-23 株式会社東芝 Semiconductor package and semiconductor device
US20150102479A1 (en) * 2013-10-15 2015-04-16 Infineon Technologies Ag Electrically insulating thermal interface on the discontinuity of an encapsulation structure
US9437513B2 (en) * 2013-10-15 2016-09-06 Infineon Technologies Ag Electrically insulating thermal interface on the discontinuity of an encapsulation structure
US20160372399A1 (en) * 2013-10-15 2016-12-22 Infineon Technologies Ag Electrically insulating thermal interface on the discontinuity of an encapsulation structure
US11049790B2 (en) * 2013-10-15 2021-06-29 Infineon Technologies Ag Electrically insulating thermal interface on the discontinuity of an encapsulation structure

Similar Documents

Publication Publication Date Title
US6570764B2 (en) Low thermal resistance interface for attachment of thermal materials to a processor die
US5258887A (en) Electrical device cooling system using a heat sink attached to a circuit board containing heat conductive layers and channels
US7190585B2 (en) Thermal heat spreaders designed for lower cost manufacturability, lower mass and increased thermal performance
US20040037044A1 (en) Heat sink for surface mounted power devices
US20110235278A1 (en) Circuit module
WO2007105368A1 (en) Semiconductor package mounting apparatus
JPH0555419A (en) Structure of fitting semiconductor device to heat sink
KR101008772B1 (en) Thermal-conductive substrate package
JP4278617B2 (en) Mounting structure and electronic device
CN111564430B (en) System-in-package structure and electronic equipment
JP3733783B2 (en) Module having heat dissipation structure of heating element
JPH08264688A (en) Ceramic package for semiconductor
JP2020191316A (en) Circuit module
CN220272469U (en) Package structure and electrical component
JPH053383A (en) Printed board
JP2004031854A (en) Heat radiation structure
JP2612455B2 (en) Substrate for mounting semiconductor elements
JP4770518B2 (en) High power amplifier
CN219778877U (en) Connection structure of MOS device on printed circuit board
US12022606B2 (en) Power supply apparatus
WO2003019997A1 (en) Improved heat sink for surface mounted power devices
JPH10189803A (en) Mounting structure of insulating substrate for heat dissipating plate
JPH07202387A (en) Ball-grid-array
JP2798464B2 (en) Power amplification module structure
JPH06181395A (en) Heat dissipation printed-wiring board